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INTRODUCTION 

“Blindness separates people from things; deafness separates people from people (Helen 

Keller).”  This quote truly encapsulates the incredible loss an individual with a hearing 

impairment can experience.  The inability to communicate can have a profound impact on an 

individual, regardless of his or her age or stage in life.  It can be especially debilitating in 

children.  “Approximately 1 to 3 per 1,000 newborns in the well-baby nursery population, and 

approximately 2 to 4 per 1,000 infants in the neonatal intensive care unit population have been 

shown to have significant bilateral hearing loss (DeMichele, 2008);” making hearing loss one of 

the most common congenital anomalies.  

Hearing deficits in children can interfere with normal speech and language development, 

education, and social interaction. Hearing deficits can also have negative psychological and 

emotional effects.  Early detection of hearing loss, however, can considerably reduce these 

negative consequences.  Research suggests that there is significant improvement in expressive 

and receptive language development, as well as in the vocabulary, reading, and educational 

progress of children identified with hearing loss when they receive intervention by 6 months of 

age (Yoshinaga-Itano, Sedey, Coulter, & Mehl, 1998).  As a result, universal newborn hearing 

screening programs have been implemented across the country.  Currently 43 states have 

newborn hearing legislation, with 28 of these laws mandating hearing screenings for all infants.  

These programs aim to identify all infants with hearing loss as early as possible to ensure 

appropriate remediation including audiological, educational and medical intervention (EHDI, 

2006). 

For optimal auditory stimulation, acoustic amplification should be implemented 

immediately following diagnosis. One of the greatest challenges audiologists face when working 
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with the pediatric population, is providing access to all the sounds necessary for speech 

production, speech perception, and language development.  This is especially difficult when 

hearing loss is present in the high frequency region.  Providing access to high frequency speech 

information with conventional acoustic amplification has not always successful, due to 

inadequate gain, limited bandwidth, and acoustic feedback.  Although there have been numerous 

attempts to address this issue through frequency lowering techniques, most were unpopular 

because of the poor sound quality they produced.  A discussion of these strategies will follow in 

the literature review section of this paper.  

A child’s inability to hear high frequency sounds often compromises his or her speech 

understanding, appreciation of music, environmental sounds (Kuk et al., 2006), and may 

negatively affect a child’s ability to reproduce high frequency phonemes.  In addition, delays in 

phonological and morphological development are common in children with high frequency 

impairment.  The spectral energy for many consonants is primarily located in the high frequency 

region (Widex, 2010).  Phonemes such as /s/, /∫/, /t/, /z/, /f/ are therefore difficult to discriminate 

when hearing loss is present in that region.  Although these sounds are softer in intensity, their 

contribution toward understanding speech is critical.  

Stelmachowicz et al. (2004) examined the importance of high frequency audibility in 

speech and language development of children with hearing loss.  Phonological development was 

evaluated in three groups of children: 1) normal hearing (NH) children, 2) hearing-impaired (HI) 

children identified with hearing loss prior to 12 months of age (early identified), and 3) HI 

children identified with hearing loss after 12 months of age, during the first 4 years of life (late 

identified). In terms of speech recognition, this study concluded that HI children were more 

negatively affected than their NH peers because they received less high frequency speech 
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information.  HI children also showed delays in the acquisition of all phonemes compared to 

their NH peers. In infants with hearing loss, the greatest delays occurred for fricatives, consistent 

with limited hearing-aid bandwidth (Stelmachowicz, Pittman, Hoover, Lewis, & Moeller, 2004). 

The bandwidth of most conventional hearing aids is inadequate at accurately representing high 

frequency sounds, particularly for female and child speakers. 

Limited access to high frequency acoustic cues and speech information may also interfere 

with a child’s ability to categorize sounds into their morphological contexts (Auriemmo, Kuk, & 

Stenger, 2008).  In the English language high frequency phonemes (/s/, /∫/, and /t/) play a critical 

role in denoting plurals (dog vs. dogs), possessions (Kelly vs. Kelly’s), third person singular 

tense (he vs. she) and contractions (can vs. can’t) (Widex, 2010; Auriemmo et al., 2008).  “In 

addition, distinguishing between similar sounding words (sip – tip – ship, and but – bus – bust) 

can also be impaired when hearing loss is present in the high frequency region” (Widex, 2010). 

Confusion of a single phoneme for another can change the word entirely (fun vs. sun). 

Compounding issues of speech comprehension, high frequency hearing impairment also 

adversely affects hearing environmental sounds including, alarms, doorbells, telephone ring 

tones, chirping birds, and music.  Audibility of high frequency sounds contributes to enhancing 

the overall sound quality of music, and allows children to enjoy the sounds of nature.  More 

importantly, a child’s safety is dependent upon his or her ability to hear an alarm or warning 

signal (Stelmachowicz et al., 2004).  

As evidenced by the many examples provided above, high frequency speech information 

is extremely important for speech comprehension, detection of environmental sounds, and safety.  

Unfortunately, this frequency region is difficult to amplify sufficiently using conventional 

hearing aids.  Hearing aids are not able to provide adequate gain to high frequencies for four 
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primary reasons: 1) “dead” regions of the cochlea 2) insufficient gain/output, 3) limited 

bandwidth, and 4) acoustic feedback before the desired gain can be reached (Kuk, Keenan, 

Korhonen, & Lau, 2009).   

Hearing aids are not able to combat a “dead region,” defined as a region in the cochlea 

where there is a complete loss of function or depletion of inner hair cells (IHC) and/or auditory 

neurons” (Moore, 2001).  When a dead region is present at a particular frequency, basilar 

membrane vibrations in that frequency region are not transduced. This prevents the creation of 

action potentials in the auditory nerve necessary to interpret the signal in the cerebral cortex 

(Moore, 2004).  Dead regions cannot be determined accurately from thresholds on an audiogram, 

however a dead region is likely to exist when a threshold is 70 dB or greater at a given 

frequency.  Furthermore, when a dead region exists at the signal frequency, an individual may 

perceive the signal as distorted or “noise-like” (Moore, 2004).  Therefore, acoustic stimulation of 

“dead regions” may not improve performance.  Amplification of a distorted signal may 

negatively affect the sound quality and further degrade speech understanding (Ching, Dillon, & 

Bryne, 1998; Turner & Cummings, 1999; Moore, 2004). 

In addition to dead regions in the cochlea, hearing aids are not able to amplify high 

frequency information sufficiently due to inadequate gain, attributable to “low maximum power 

output, limited bandwidth, or the presence of acoustic feedback before the desired gain is 

reached” (Kuk et al., 2009).  A hearing loss may be so severe that the maximum output of the 

amplification device may not be able to reach a level at which benefit can be perceived.  In 

addition, hearing aids are restricted in the fitting ranges they can accommodate.  Originally, 

engineers designed amplification devices to target the frequencies where the majority of speech 

sounds occur; thus, the targeted frequency range was 500 Hz to 4,000 Hz.  Above 4,000 Hz, the 
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frequency response of most hearing aids drops off significantly.  Thus, limited bandwidth of 

hearing aids is another factor contributing to this issue.  

Evidence in the literature suggests that there are significant differences between children 

and adults in the bandwidth required for accurate fricative recognition (Stelmachowicz et al., 

2001, 2002, 2004). In these studies, children required greater high frequency bandwidth than 

adults to achieve similar speech recognition scores for the phoneme /s/.  This suggests that 

children require broader bandwidth for optimal access to high frequency fricative information.  

Stelmachowicz and colleagues (2004) measured the spectral energy of /s/ spoken by a male, 

female, and child (Graph 1).  As illustrated by the graph below, the spectral energy of /s/ is 

confined to the high frequency range with a peak at 8,000 Hz or higher (Stelmachowicz et al., 

2004). 

 

Graph 1. Relative levels of spectral energy in one-third octave-bands for 
the utterance /s/, displayed as a function of frequency for male, female, 
and child speakers (Stelmachowicz, et al., 2004).  

  Thus, the upper limit of gain hearing instruments are capable of providing may be well below 

the peak frequencies of certain high frequency phonemes (Stelmachowicz et al., 2004).  

Furthermore, when a hearing aid is programmed to amplify sounds beyond its fitting range, or 
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when high levels of gain are applied, feedback is a common consequence. Depending upon the 

amplitude of the feedback signal, the output signal of the receiver may sound distorted and the 

sound quality of the signal may be degraded.  Whistling may also be audible.  Even with 

sophisticated feedback cancellation systems, the only solution for eliminating feedback is often 

by decreasing high frequency gain.  

Expansion of the signal bandwidth in hearing devices would be an appropriate resolution; 

however, “technical problems and increased acoustic feedback have precluded the development 

of wider-bandwidth devices, particularly in behind-the-ear (BTE) hearing aids” (Stelmachowicz 

et al., 2004).  BTE hearing aids, which are typically the most appropriate style of hearing aids for 

infants and young children, are problematic because of the resonance associated with the tubing 

(Stelmachowicz et al., 2004).   

LITERATURE REVIEW 

In the past, hearing aid manufacturers have attempted to achieve high frequency 

audibility using a number of different frequency lowering techniques.  The basic premise of 

frequency lowering techniques was to shift unaidable high frequency acoustic information into 

lower aidable frequency regions.  “Thus, lower-frequency hair cells would encode the higher 

frequency information” (Kuk et al., 2009).  These techniques consisted of slow-playback, time-

compressed slow-playback, frequency modification with amplitude modulation, vocoding, zero-

crossing rate division, frequency shifting, and most recently, proportional frequency compression 

(Kuk et al., 2006).  For a detailed review of these methods and research studies evaluating their 

effects, readers are encouraged to consult Braida et al., (1979). 

 While these techniques were effective in frequency lowering, leading to better aided 

thresholds, their acceptance was limited because other aspects of speech, such as harmonic 
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relationships, spectral transitions, and segmental-temporal characteristics were altered, as well.  

This resulted in unnatural sounding speech, distorted gross temporal and rhythmic patterns, and 

extended durations of speech signals (Kuk et al., 2006; Braida et al., 1979).  Many individuals 

reported that the transposed sounds were unnatural, hollow, and more difficult to understand.  In 

order to reduce the effects of unnatural sounding speech, the lowered speech signal must possess 

the same characteristics as the original signal.  “In addition, the lowered speech signal should 

retain the same extra-linguistic (prosodic) cues, such as pitch, tempo, and loudness” (Kuk et al., 

2006).  

The limitations of past approaches prompted the development of linear frequency 

transposition and nonlinear frequency compression.  These algorithms both aim to improve 

audibility of high frequency speech sounds where traditional amplification alone is not sufficient. 

Their signal-processing schemes for achieving audibility, however, are significantly different.  

 

LINEAR FREQUENCY TRANSPOSITION 

The Audibility Extender (AE), a form of frequency lowering using linear frequency 

transposition (LFT), first appeared in the Inteo series of Widex hearing aids.  LFT identifies, 

filters, and shifts unaidable high-frequency information into a lower frequency region.  AE 

includes Integrated Signal Processing (ISP), which integrates the hearing loss of the user, the 

environment, and the intermediate processing of each algorithm within the device into the 

Dynamic Integrator (DI).  “In turn, the DI coordinates all the activities and dispatches the 

appropriate commands to each algorithm so that the processed sounds would be as natural as 

possible with little or no artifacts” (Kuk et al., 2006). 
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Based on the degree and slope of the user’s hearing loss, the DI determines a “start 

frequency” at which transposition begins.  The frequency region located one octave above the 

start frequency, known as the “source octave,” is the target for transposition (Figure 1a).  

Frequencies above the start frequency are inaccessible due to possible dead regions of the 

cochlea or inadequate gain of amplification devices.  

 

 The most prominent spectral peak of the original signal located within the source octave,  

is identified and selected for transposition (Figure 1b and 1c).  The AE allows frequencies up to 

two octaves above the start frequency to be lowered linearly, to one octave immediately below 

the start frequency (Korhonen & Kuk, 2008).  By transposing the signal linearly, the harmonic 

relationship and temporal structure of the transposed and the original signal are preserved.   As 

the peak frequency changes, the transposed frequency also changes, meaning that at any given 

moment, “the absolute amount of frequency lowering is directly related to the location of the 

dominant peak in the source octave” (Korhonen & Kuk, 2008).  In addition, frequencies around 

the spectral peak in the source octave are transposed linearly (Figure 1d). 
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High frequency sounds located above the “start frequency “ are continuously transposed 

regardless of their voicing characteristics.  Thus, this algorithm is equally effective on periodic 

and aperiodic sounds, including music and environmental sounds, such as birds chirping.  

Sounds below the start frequency are amplified without modification. “To limit the masking 

effect from the transposed signal and any potential artifacts, frequencies that are outside the one 

octave bandwidth are filtered out” (Figure 1e) (Kuk et al., 2006). The transposed signal is then 

amplified and mixed with the original signal at the final output (Figure 1f).  This method aims to 

limit potential masking effects, discontinuities of the output signal, and artifact, while preserving 

the naturalness of the output signal delivered to the user (Kuk et al., 2009; Korhonen & Kuk, 

2008). 
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In LFT, an optimum start frequency is critical.  The more aggressive (or lower) the start 

frequency is, the higher the frequency compression ratio will be.  The result is a more unnatural 

sound.  A more conservative approach (i.e., a higher start frequency) will minimize the 

disturbance on the original signal and avoid any potential interaction between the original signal 

and the processed signal.  Conversely, if the approach is too conservative and the start frequency 

is too high, unaidable high frequencies may remain inaudible.  To ensure an optimum start 

frequency, audiologists may manually adjust the start frequency and gain adjustments of the 

transposed signal. 

In summary, when using LFT, only the frequencies above the start frequency – where 

hearing is most severely impaired – are lowered, as opposed to the full range of frequencies.  

Importantly, the AE lowers frequencies linearly, preserving transition cues, temporal structure, 

and the harmonic relationship between the original and the transposed signals.  Thus, the original 

source signal is easily recognizable at a lower frequency. This method thereby preserves the 

original signal in the lower frequencies, while providing audibility in the high frequencies (Kuk 

et al., 2009). 

Studies Evaluating LFT  
 

Auriemmo et al. (2009) studied the effectiveness of LFT on phoneme recognition and 

fricative articulation in school-aged children.  Ten children between 6 and 13 years of age who 

had severe-to-profound hearing loss at and above 3,000 Hz particpated in this study.  

Researchers used the NST test to evaluate performance of phoneme recognition and fricative 

articulation, for /s/ and /z/.  Participants were tested using three different processing schemes: 1) 

the participants’ digital hearing aids 2) Widex Inteo hearing aids with LFT (AE program),  and 

3) Widex Inteo hearing aids without LFT (master program).  The results of this study revealed 
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significant improvement in consonant and vowel identification for children using the AE 

program compared to the their performance using digital hearing aids.  However, a similar 

improvement was also recognized when comparing performance using the master program.  

Therefore, it is likely that the improvement realized between the conditions can be attributed to 

the quality of the Inteo heairng aids, rather than from the benefit of LFT.  The benefit of LFT 

alone was minimal when compared to the master program.  

The literature presents conflicting data regarding whether LFT provides speech 

perception benefit in the presence of background noise.  High frequency speech information is 

difficult to detect, especially when competing noise is present.  Presumably, using LFT would 

improve speech perception in a noisy environment because LFT provides access to high 

frequency acoustic cues.  Nevertheless, it is important to consider that using LFT could introduce 

high frequency noise that may not have been audible to a HI person.  Consequently, the 

introduction of high frequency noise could potentially mask the low-to-mid frequencies, 

resulting in poorer speech recognition in noise with LFT than without LFT (Kuk et al., 2009).  

The available research on this issue is, unfortunately, conflicting and limited. 

Gengel and Foust (1975) conducted a study evaluating speech recognition using sentence 

material at various SNRs: + 30, +15, and 0 dB.  Similar to the study conducted by Auriemmo et 

al., scores were obtained using two different devices: 1) the subjects conventional amplification 

and 2) amplification with LFT.  The results of this study showed no decrement in performance 

between the devices.  Contrary to the findings of Gengel and Foust, McDermotta and Knight 

(2001) conducted a study examining recognition of monosyllabic words, medial consonants, and 

understanding of speech sentences in competing noise.  The results of this study revealed that 

recognition of monosyllabic words and medial consonants did not differ significantly, however 
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the subjects' understanding of sentences in  competing noise was significantly poorer with the 

ImpaCt (a frequency lowering hearing device) than with the subjects’ own aids (McDermott & 

Knight, 2001). 

Another area of research examines LFT’s effect when dead regions exist.  In 2007, 

Robinson and colleagues evaluated the use of a transposition algorithm in listeners suspected of 

having dead regions along the basilar membrane.  Recruits for this study were seven subjects 

with suspected high-frequency dead regions.  The researchers tested consonant identification in 

quiet, using vowel-consonant-vowel (VCV) stimuli.  In addition, they evaluated discrimination 

between /s/ and /z/ using word pairs.  The results indicated significant improvement in VCV-

testing for two subjects.  Even though not every subject benefited equally from the algorithm, all 

subjects demonstrated an improved perception of the affricatives.  In fact, five subjects showed a 

statistically significant improvement and, even more importantly, no subjects exemplified 

degradation in performance.  Thus, this study suggests that transposition can improve consonant 

identification in individuals with dead regions (Robinson, Baer, & Moore, 2007). 

 

NONLINEAR FREQUENCY COMPRESSION 

Another approach to accessing high frequency speech information, Sound Recover, uses 

nonlinear frequency compression (NFC), which compresses and shifts inaudible high frequencies 

into a lower frequency region. SoundRecover was introduced in a number of Phonak hearing 

aids, including: Audeo, Exelia Art, Naida, and Nios. Similar to LFT, only the frequencies above 

a specified level are targeted for compression. Frequencies below the cut-off are amplified 

without modification, thereby preserving a natural sound quality. This approach aims to 
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minimize artifact, improve speech understanding, and enhance environmental sounds such as 

birds chirping, alarm clocks, etc.   

Automatically configured by Phonak’s proprietary software, iPFG, the frequency 

compression prescription of SoundRecover is determined based on the patient’s audiometric 

thresholds and the prescriptive formula chosen by the fitter.  For pediatrics, the DSL v5 formula 

is most commonly used.  The high frequency pure tone average (2,000 Hz, 3,000 Hz and 4,000 

Hz) is then calculated, and used to predict the initial “cut-off frequency” and compression ratio 

values.  Input frequencies up to a defined knee-point, called the “cut-off frequency,” do not 

undergo any frequency compression. Speech signals at or below this kneepoint are audible to the 

user and may be amplified conventionally.  All speech signals above the cut-off are shifted to a 

lower frequency, determined by the compression ratio applied.  “For example, if the cut-off 

parameter is set to 2 kHz, and the ratio is 2:1, each octave range of input frequencies above 2 

kHz will be compressed into a half-octave range. Thus an input frequency range of 2-4 kHz, 

which is one octave wide, will become 2-2.8 kHz or half an octave wide” (McDermott, 2010).  

In general, the more severe the hearing loss, the stronger the frequency compression 

setting will be.  Frequencies above the cut-off frequency (i.e., formant 3 in Figure 2a) are 

selected by the software and compressed into an adjacent area that has less cochlear damage 

(Figure 2b).  
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FIGURE 2 a. Formant peaks are represented 
by numbers 1, 2, and 3 in this figure. As a 
consequence of high frequency hearing loss, 
formant 3 is inaudible to the listener. 

FIGURE 2 b. The frequency range above the 
cut-off frequency (i.e. the 3rd formant) is 
selected and compressed into an adjacent 
area that has less cochlear damage.  

 

The frequency compressed output signals do not overlap or interfere with frequencies below the 

cut-off. Therefore, artifact is minimized and a clear sound quality maintained. 

In summary, NFC provides access to high frequency information, while preserving the 

natural sound quality of the original signal. The software only compresses frequencies above the 

cut-off frequency, while amplifying frequencies below the defined kneepoint without 

modification. Similar to LFT, the cut-off frequency and compression ratios are easy to modify to 

optimize fitting benefits and user preference. 

Studies Evaluating NFC 

Several studies have evaluated the benefits of NFC in populations with varying degrees 

of hearing loss.  For instance, Glista et al. (2000) tested this algorithm in children and adults with 

sloping, high frequency hearing loss.  These researchers examined speech sound detection and 

speech recognition abilities using “multiple outcome measures” including The University of 

Western Ontario Distinctive Features Differences test (UWO-DFD).  The study revealed 

significant improvement of consonant and plural recognition with NFC enabled; however, they 

did not observe a significant change in vowel recognition. 
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 Similarly, Boretzki and Kegel (2009) examined the benefits of NFC for subjects with 

mild to moderate hearing loss. These researchers utilized The Adaptive Test, designed to 

measure thresholds at which high-frequency consonants are decipherable. The findings of 

Boretzki and Kegel’s study suggest that NFC has the potential to provide substantial 

improvement in identification of high frequency speech signals and environmental sounds when 

compared to the subjects’ amplification devices. Users participating in this study preferred NFC 

processing better than their conventional digital hearing aids.   

In 2005, Simpson et al. conducted a study to evaluate speech perception in seventeen 

participants with moderate-to-severe sloping SNHL. Using frequency compression, the 

researchers programmed a hearing aid to amplify and shift frequencies above 1,600 Hz to a 

lower frequency range. Researchers then compared participant’s recognition of monosyllabic 

words using compression amplification devices to their recognition using conventional hearing 

aids. When using frequency compression, eight of the seventeen subjects demonstrated 

significant improvements in speech recognition scores. Simpson et al. conducted further research 

evaluating the recognition abilities of seven subjects with moderately-severe to profound, steeply 

sloping hearing losses in both quiet and noisy conditions. Under quiet conditions, participants’ 

speech perception scores using the frequency compression device were not significantly different 

from their scores using conventional hearing instruments.  Similarly, when testing in noise, only 

one of the five subjects showed improvement when utilizing compression. Thus, this study 

concluded that frequency compression provides limited benefit for listeners with steeply sloping 

hearing losses (Simpson, Hersbach, & McDermott, 2006).  

To uncover how hearing loss configuration affects speech perception abilities, Souza and 

Bishop, in 2000, conducted a study comparing speech recognition in subjects with sloping SNHL 
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to subjects with a flat SNHL. The researchers aimed to determine whether NFC provided greater 

improvement in speech recognition in subjects with sloping SNHL, evaluating consonant 

identification as a function of audibility using wide dynamic range compression (WDRC) 

amplification and linear amplification. The results of this study revealed similar improvements in 

recognition for subjects with flat and sloping loss when using linearly amplified speech. 

However, when using WDRC amplification, subjects with a flat loss showed a greater rate of 

improvement as audibility increased than that of subjects with sloping loss (Souza & Bishop, 

2000).  In contrast, a study conducted by Turner and Hurtig (1999), using an identical processing 

scheme, found that participants with more steeply sloping SNHL showed greater improvement in 

speech recognition scores than participants with a flat SNHL.  

STUDY 

As previously discussed, LFT and NFC have been developed in an attempt to overcome 

the historical limitation of conventional amplification devices providing access to high frequency 

acoustic information.  Presently, there is a large discrepancy among research studies evaluating 

the efficacy of NLC and LFT.  In an effort to distill these incongruent findings and examine 

whether age is a factor in the efficacy of NFC and LFT, the aim of this study is to evaluate the 

benefit these algorithms provide in terms of speech perception in school-aged children. 

Specifically, the primary objectives of this study are to: 

1) Evaluate the effectiveness of  Phonak’s SoundRecover algorithm, and Widex’s Audibility 

Extender algorithm, in providing access to sounds otherwise inaudible for children with 

high frequency hearing loss.  The Consonant/Nucleus/Consonant (CNC) Test served to 

evaluate speech intelligibility in a quiet environment.   
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2) Assess speech intelligibility in the presence of noise, as well as, obtain a reception 

threshold for sentences (RTS), using the Hearing in Noise Test for Children (HINT-C) 

will be used to evaluate speech intelligibility in the presence of noise.   

3) Find signal to noise performance functions at a -4 signal to noise ratio (SNR), -2 SNR, 0 

SNR, +2 SNR, and +4 SNR.   

This study will compare the performance of the participants with the NFC or LFT 

algorithm activated to performance with the algorithm deactivated.   

It is hypothesized that no significant differences for CNC test scores, RTS (dB), or 

performance SNR functions will be found.  Results will be presented on an individual-level. 

This study is relevant for several reasons.  First, research evaluating these algorithms in 

the pediatric population is limited.  For developmental purposes, it is imperative that children 

receive optimal amplification as early as possible.  Without evidence-based research, 

audiologists cannot determine whether they are providing the best available patient care.  

 Secondly, the available research offers inconsistent results.  While some studies 

demonstrated that frequency lowering and frequency compression algorithms resulted in 

substantial improvement in speech recognition scores, others showed minimal improvement or 

degradation in performance.  Furthermore,  many of these studies compared the users’ own 

hearing aids to LFT or NFC hearing aids, as opposed to comparing performance of the same 

hearing aids with the algorithm activated and deactivated.  While this comparison may seem 

impressive, it fails to take into account major differences among devices, such as: “bandwidths, 

number of channels, compression parameters, distortion levels, noise reduction algorithms, 

directional microphones, etc.  A difference in any of these parameters could account for 

substantial differences in performance” (Kuk et al., 2010).   

21 



Helm 

Lastly, frequency transposition and frequency compression alter the natural spectral 

content of an input signal.  It is possible that this alteration  may have a negative effect on the 

way other phonemes are perceived.  Perceptual overlap, for example, is an issue in LFT.  

Perceptual overlap occurs when different phonemes share the same acoustic information as a 

result of transposition.  “For example, a  /∫/, that has dominant energy between 2000 and 4000 Hz 

may be confused with a transposed /s/, which may have the same spectral content after frequency 

lowering” (Kuk et al., 2009).  Increased identification of some phonemes may be offset by the 

potential decreased identification of others.  Thus, the result would be little or no improvement in 

speech understanding.   

METHODS 

Study Participants 

The Washington University School of Medicine Institutional Review Board and the 

Human Studies Committee reviewed and approved the research protocol and informed consent 

used for the present study. 

Six participants with audiometric thresholds ranging from normal to profound from 250 

Hz to 8,000 Hz were recruited for this study.  Four subjects were recruited from St. Louis Special 

School District, one subject was recruited from St. Louis Children’s Hospital, and one subject 

was recruited through Moog Center for Deaf Education through letters approved by Washington 

University’s Human Research Protection Office (WUHRPO).  All participants of this study were 

experienced hearing aid users.  The mean age of subjects was 10.04 years with a range from 6.61 

to 13.33 years (SD = 2.53 years).  Since all participants were minors, a parent or legal guardian 

was required to sign the Informed Consent Form, in addition to the Assent Form that each 

participant signed.  These forms were signed and returned at or prior to data collection.  
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In order to qualify for entrance into this study, each participant was required to: a) have a 

high frequency SNHL b) wear hearing aids with the NFC or LFT algorithm activated bilaterally, 

c) and be a native speaker of the English language.  Subjects with a major medical problem 

associated with a cognitive impairment were not included in this study.  Individual 

characteristics of the six participants are reported in Table 1. Hearing thresholds for each of the 

subjects can be seen in Appendix A. 

 
Table 1. Individual subject characteristics 

Subject Age Gender 
Etiology 

of HL Device Algorithm 

1 12.49 F Unknown 
Naida III 

SP LFC 

2 13.33 M 

Premature; 
Low Birth 
Weight 

Naida V 
SP LFC 

3 8.93 F Genetic Inteo 19 LFT 

4 6.61 M 
Ototoxic 

Medication 
Nios 

Micro V LFC 

5 10.30 F CMV Inteo 19 LFT 

6 8.58 M 
PPHN; 

Respirator 
Naida V 

UP LFC 
 

Two males and four females participated in this study.  The etiologies of their hearing losses 

include: Cytomegalovirus (CMV), ototoxic medication, prematurity and low birth weight, 

persistent pulmonary hypertension, and genetic and idiopathic causes.  Two subjects wore Widex 

hearing aids with the Audibility Extender (AE) (LFT), and four subjects wore Phonak hearing 

aids with SoundRecover (NFC).  The parametric data  of the subjects using AE can be seen in 

Table 3, and the parametric data of subjects using SoundRecover can be seen in Table 4. 
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Table 2. Parametric settings for subjects using SoundRecover. 
          

Left Ear Right Ear 

Subject # 

Cut-off 
Frequency 

(Hz) 
Compression 

Ratio (dB) 

Cut-off 
Frequency 

(Hz) 
Compression 

Ratio (dB) 

1 2.9 kHz 3.5:1 3.2 kHz 3.1:1 
2 3.3 kHz 2.5:1 3.3 kHz 2.5:1 
4 3.2 kHz 2.4:1 3.2 kHz 2.4:1 
6 2.1 kHz 4.0:1 1.8 kHz 4.0:1 

          
 

Table 3. Parametric settings for subjects using AE. 
          

Subject # Default SF (Hz) Expanded LFT 
LFT Gain (dB) 

(Left Ear) 
LFT Gain (dB) 

(Right Ear) 

3 2500 No 6 4 
5 4000 Yes 0 0 

          
 

The settings of the devices were not manipulated at any point during data collection, 

aside from activating and deactivating the LFT or NFC algorithm.  Prior to data collection, each 

of the hearing aids were cleaned using audiowipes and a listening check was performed to verify 

that the hearing aids were functioning properly.  In addition, all zinc air size 13 batteries were 

checked to ensure that the battery was fully charged and operational prior to testing. 

Calibration 

Calibration of all recorded speech materials occurred prior to data collection using a 

Larson-Davis model 831 Sound Level Meter (SLM), which had been previously calibrated using 

a Larson Davis Model CAL200. To ensure that the overall presentation level was 65 dB (A),  a 

½” Class 1 free-field pre-polarized microphone, 50 mV/Pa connected to the Larson-Davis model 

831 Sound Level Meter was placed at ear level, with the subject absent, one meter from the 

loudspeaker.  The SLM was calibrated using a Larson Davis Model CAL200. A 1,000 Hz tone at 
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94 dB was presented. The measured output of 1,000 Hz tone at 94 dB was read through the 

sound level meter to verify that the free field level was -0.12 from the level presented. To verify 

the appropriate presentation level of the speech stimuli according to ANSI S3.1, a recorded 1,000 

Hz calibration tone was used to monitor that the VU meter needle accurately pointed to 0 dB on 

the audiometer.  

Procedure 

All testing was conducted in an acoustically treated soundbooth.  The subject was placed 

1 meter from the soundfield loudspeaker at 0 degrees azimuth.  Each subject was instructed to 

keep his or her head level, and to face the loudspeaker at all times throughout the testing session.  

Prior to data collection, the subjects were familiarized with the CNC words and HINT-C 

sentences. They were asked to repeat each word or sentence they heard. If the subjects were 

uncertain of what they heard, they were instructed to guess.  

Consonant/Nucleus/ Consonant (CNC) Test  

The Consonant/Nucleus/Consonant Test consists of 10 lists of 50 monosyllabic words 

with equal phonemic distribution across lists.  Each list exhibits approximately the same 

phonemic distribution as used in the English language.  The response can be scored as words 

correct and/or phonemes correct.  For this study, two lists were presented to the subject.  The 

first list was presented at a soft level, 30 dB HL, and the second list was presented at a 

conversational level, 50 dB HL. Scores were first obtained with the NFC or LFT algorithm 

active, and then with the algorithm deactivated.  

Hearing in Noise Test for Children (HINT-C) 

The Hearing in Noise Test for Children (HINT-C) consists of 13 lists of 10 phonetically 

balanced sentences.  The sentences are approximately equal in length (six to eight syllables) and 

difficulty.  Digitally recorded sentences, read by a male speaker, are presented simultaneously 
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with speech-spectrum noise in order to determine the RTS. The RTS is the level at which the 

sentences, embedded in background noise, can be repeated correctly 50% of the time. The 

HINT-C employs an adaptive procedure in which the noise is presented at a fixed level of 65 dB 

(A), and the presentation level of the sentence is varied depending upon the accuracy of the 

listener’s response.  Lastly, SNR performance functions were obtained at -4 SNR, -2 SNR, 0 

SNR, +2 SNR, and +4 SNR. HINT-C sentences were utilized as the speech stimulus for this test. 

These tests provide an accurate estimation of speech recognition abilities in the presence of 

background noise at various SNRs.  

RESULTS 

For each test conducted throughout this study, scores were obtained in two conditions: 1) 

LFT or NFC algorithm activated, and 2) algorithm deactivated.  Performance was evaluated on 

an individual basis using binomial distribution for speech developed by Thornton and Raffin 

(1978).  Thornton and Raffin constructed a Critical Difference Table for Word Recognition 

Testing. This table delineates the upper and lower limits of the 95% critical range (95% 

confidence levels) for changes in word recognition scores obtained with monosyllabic word lists 

(Gelfand, 2009).  Using the Consonant-Nucleus-Consonant Test in a quiet soundfield, word lists 

presented to the subjects at 30 dB HL and 50 dB HL elicited speech intelligibility scores, based 

on a percentage correct. Graph 2 reports CNC scores for all subjects at 30 dB HL.  
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Graph 2. CNC scores for all 
six subjects reported with 
word lists presented at 30 
dB HL.  Scores shown for 
both conditions: 1) 
algorithm activated, and 2) 
algorithm deactivated. 
There were no significant 
changes displayed 
between conditions. 

A comparison of performance at 30 dB HL revealed no significant improvement between the 

conditions 1 and 2.  Even though these differences were not statistically significant, all subjects, 

with the exception of Subject 6, performed poorer with the algorithm activated.  

Next, speech intelligibility scores were obtained in both conditions using CNC words 

lists presented at a 50 dB HL.  The results indicated that subject performance was significantly 

better for Subject 6 with the NFC activated at a presentation level of 50 dB HL, as illustrated in 

Graph 3.  

 

Graph 3. CNC scores for all 
six subjects with word lists 
presented at 50 dB. Scores 
shown for both conditions: 
1) algorithm activated, and 
2) algorithm deactivated. 
Subject 6 performed 
significantly better with 
NFC. 
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The HINT-C was then administered to determine the RTS (dB) of each subject.  “An 

RTS (dB) of 0 means the subject required the intensity level of the sentences to be equal to the 

level of the noise (65 dB) in order to correctly repeat the HINT sentences 50% of the time” 

(Oeding, 2009).  Thus, a negative RTS (dB) indicated that the subject required the sentence 

presentation level to be higher than the noise level. Table 5 reports the RTS for each subject with 

the algorithm activated and deactivated.  

 
Table 4. RTS (dB) reported for all subjects. 

Subject Algorithm  

Algorithm 
Activated RTS 

(dB)  

Algorithm 
Deactivated RTS 

(dB) Difference   

1 NFC -5.57 -2.15 3.35 * 
2 NFC 5.57 7.57 2.00 * 
3 LFT 1.99 -0.58 1.41 
4 NFC 4.70 4.35 0.35 
5 LFT 7.99 5.99 2.00 * 
6 NFC 2.58 3.99 1.05   

Note:  “*” Indicates statistical significance as determined by Nilsson et al.'s (1994) confidence interval 
for two 10-sentence list in noise of +/- 1.5 dB (Oeding, 2009). 

 

Five subjects had an RTS (dB) greater than zero, and one subject had an RTS lower than zero. 

Thus, the majority of participants required the sentence presentation level to be higher than the 

noise level.  The symbol “*” in the table denotes a statistical significance as determined by 

Nilsson et al.’s (1994) confidence interval for two 10-sentence HINT lists in noise of +/- 1.5 dB. 

As seen in the table, performance varied considerably among the subjects.  Subject 1 and Subject 

2, using NFC, performed significantly better with the algorithm activated. Subject 5, using LFT, 

performed significantly worse with the algorithm activated. Differences for the other three 

subjects were not statistically significant.  
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Performance SNR functions were then performed at -4 SNR, -2 SNR, 0 SNR, +2 SNR, 

and +4 SNR. Table 6 shows individual performances.  

 
Algorithm Activated 

 
Table 5. Performance on HINT-C at various SNRs. 
Subject -4 SNR -2 SNR 0 SNR +2 SNR +4 SNR

1 84.00% * 87.71% * 98.07% * 96.00% 100.00% 
2 5.26% 6.00% 30.00% 41.50% 56.14% 
3 49.12% 60.00% 54.00% 88.67% 92.59% 
4 21.00% 34.00% 42.00% 67.30% 80.00% 
5 22.00% 20.00% 19.23% 54.00% 84.00% * 
6 21.05% 26.00% 60.00% 75.00% 80.00% 

 

Algorithm Deactivated 
 
Table 6. Performance on HINT-C at various SNRs. 
Subject -4 SNR -2 SNR 0 SNR +2 SNR +4 SNR

1 60.37% 72.00% 86.67% 90.90% 96.00% 
2 0.00% 20.00% * 24.00% 37.73% 58.49% 
3 36.00% 62.26% 76.00% * 87.27% 96.07% 
4 28.00% 33.96% 46.29% 64.91% 80.39% 
5 28.30% 46.00% * 45.28% * 77.19% 60.00% 
6 32.00% 39.62% 51.85% 68.42% 74.00% 

 

Again, results varied considerably across participants.  Subject 1 performed significantly better at 

-4 SNR, -2 SNR, and 0 SNR with NFC.  On the other hand, Subject 2 performed significantly 

better without NFC at -2 SNR. Similarly, Subject 3 performed significantly better at 0 SNR, and 

Subject 5 displayed a significant improvement at -2 SNR and 0 SNR without LFT.  There were 

not significant changes observed with Subject 4 or Subject 6 between conditions across any SNR 

level. Graphs representing individual performance can be found in Appendix B. 
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DISCUSSION 

The purpose of this study was to determine if NFC and LFT processing provided speech 

perception benefit relative to the same hearing aid fitting with the algorithm deactivated. This 

was evaluated across a range of pediatric participants with varying audiometric characteristics. 

There are material individual differences between subjects that could affect the outcome of 

studies evaluating the efficacy of NFC and LFT. These differences include: cognitive level, the 

amount of distortion of the auditory system, degree of hearing loss, subsequent hearing aid use, 

the extent of cortical reorganization, and auditory training (Kuk et al., 2009). Therefore, the 

analysis of each subject was conducted on an individual level. The results of this study revealed 

that performance using NFC and LFT varied considerably across individuals tested.  

Specifically, there were no statistically significant differences noted in individual 

performance with NFC or LFT activated when CNC word lists were presented in a quiet 

environment at 30 dB HL, compared to performance with the algorithm deactivated.  Subject 1 

and Subject 2 showed significant improvement when using NFC in the presence of noise. These 

findings were similar to those of Simpson et al., (2006) who found that participants’ speech 

perception scores using a frequency compression device were not significantly different from 

their scores using conventional hearing instruments in quiet conditions. Similarly, in Simpson et 

al.’s study, only one of the five subjects revealed significant improvement when utilizing 

compression in noise. This finding, thus suggests that NFC and LFT provides limited benefit. 

 In a quiet condition, Subject 6 demonstrated a significant improvement in speech 

recognition at 50 dB HL using NFC. Similarly, Subject 1 performed significantly better at 

various SNRs using NFC. These results are consistent with the findings of Glista et al. (2000) 
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and Boretzki and Kegel (2009), which revealing significant improvement of high frequency 

consonants, plural recognition and environmental sounds when NFC was enabled.  

Degradation in performance was noted in Subject 3 and Subject 5 using LFT in the 

presence of noise. This finding coincides with the results of Kuk et al. (2010). These researchers 

found that while some conditions improved with the use of LFT, others yielded poorer scores. 

This study also demonstrated the importance of auditory training. There is strong evidence 

within the literature that suggests that auditory training can significantly improve consonant 

identification and speech intelligibility in individuals using these algorithms, particularly in LFT. 

The goal of auditory training is to help a child make fine discriminations among speech sounds 

in order to gain meaning and clarity. 

Limitations  

While a great deal of valuable information may be inferred when evaluating individual 

performance, it is difficult to determine trends and establish statistical significance among groups 

of children using LFT and NFC, due to the limited number of participants.  As in any research, 

conclusions are more substantially supported when drawn from studies utilizing a greater number 

of subjects.  Furthermore, each participant was only evaluated once due to the time constraints of 

this project.  Individual performance could be considerably affected by a number of contributing 

factors, including; time of day, testing fatigue, boredom, inattention, etc.  Therefore, regular (or 

repeated) testing over an extended time period, would verify the accuracy of test results.  

Additionally, recurrent evaluation of speech recognition, using LFT or NFC, would help 

determine whether benefits were sustained or achieved over time.  

Monosyllabic words presented in quiet and sentence tests presented in noise are the 

evaluation measures most commonly used to determine speech perception performance in 
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school-aged children. Typically, a male speaker delivers the test stimuli. Since the use of these 

tests accurately reflects the clinical evaluation of children utilizing these algorithms, CNC word 

lists and HINT-C sentences, spoken by a male speaker, facilitated the evaluation of speech 

perception in this study population. As previously discussed, high frequency content varies by 

gender. Male speakers have a lower fundamental frequency than females, resulting in a spectrum 

with restricted output in the high frequencies. Thus, female speaker word lists may better 

demonstrate the efficacy of the processing schemes being evaluated.  

Finally, it is difficult to know if the parametric settings for each subject were optimal. 

Audiometric testing and hearing aid programming related to this study, was performed by the 

subjects’ chosen audiologist. Thus, audiometric testing, hearing aid fitting strategies, and 

programming lacked uniformity among the hearing aids evaluated in this study.  

Clinical Implications 

The results of this study suggest that LFT and NFC can potentially improve the audibility 

of high-frequency consonant sounds and improve speech understanding in both a quiet and noisy 

environment. Performance varied considerably across subjects, yet the use of LFT and NFC did 

improve performance for a number of the participants. Therefore, a child with precipitously 

sloping high-frequency hearing loss, who is unable to gain access to high frequency information 

through conventional processing, is a candidate for NFC or LFT. Children utilizing these 

processing schemes require regular monitoring to determine whether they are receiving benefit.  

These processing schemes alter the spectral characteristics of the original input signal, 

resulting in a considerable change in overall sound quality. Thus, an acclimatization period is 

necessary for children to adapt to this type of processing. Children utilizing LFT or NFC 
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necessitate enrollment in an auditory training program. Importantly, children who do not receive 

benefit, or exhibit a decrement in performance, warrant the deactivation of the algorithm. 

 

CONCLUSION 

  Access to input across the entire speech range is critical for developing age-appropriate 

speech, language, and auditory skill (Wolf et al., 2009). Yet, successfully providing access to the 

entire speech range for the hearing impaired pediatric population has not always been possible. 

Conventional amplification is limited in providing adequate high frequency gain. There have 

been numerous attempts to address this issue through frequency lowering techniques; although, 

most were unpopular due to the poor sound quality they produced.   

Considering the limitations of these past approaches prompted the development of LFT 

and NFC. Research evaluating these algorithms is limited and conflicting. Thus, the purpose of 

this study was to evaluate the benefit these algorithms provide in various listening situations for 

school-aged children. The results of this study suggest that LFT and NFC can potentially 

improve the audibility of high-frequency consonant sounds and improve speech understanding in 

both quiet and noisy environments, in children with precipitously sloping high-frequency hearing 

loss. When access to high frequency acoustic information is unattainable through conventional 

processing, one of these two algorithms can make high frequency acoustic information available. 
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APPENDICES 

Appendix A: Audiometric thresholds for each subject for his or her left and right ear. 
                           
Audiometric Thresholds (Left Ear)                
  Frequency (Hz)  

  
      
250  

      
500  

      
750  

  
1,000 

   
1,500  

   
2,000  

   
3,000  

   
4,000  

   
6,000  

   
8,000   

  Subject  
  1 35 35 60 60 70 70 95 95 100 120  
  2 5 5 20 60 60 55 70 80 80 80  
  3 60 75 80 85 105 100 105 115 115 120  
  4 5 0 0 5 10 60 55 60 60 70  
  5 25 20 25 55 70 75 80 75 75 70  
  6 25 15 10 5 40 70 85 90 80 85  
                           
Note:  All thresholds are measured in decibels (dB) 

                           
Audiometric Thresholds (Right Ear)                
  Frequency (Hz)  

  
      
250  

      
500  

      
750  

  
1,000 

   
1,500  

   
2,000  

   
3,000  

   
4,000  

   
6,000  

   
8,000   

  Subject  
  1 45 50 50 60 80 70 75 70 100 120  
  2 10 30 60 65 60 55 70 80 85 85  
  3 45 60 65 70 75 80 90 100 115 120  
  4 5 0 0 5 10 55 60 60 60 75  
  5 25 50 70 75 105 105 105 100 95 N/R  
  6 30 10 10 5 25 70 80 100 85 80  
                           
Note:  All thresholds are measured in decibels (dB) 
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Appendix B: SNR performance functions for all six subjects.  
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