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Abstract

The paper offers a formal model of analogical legal reasoning and takes the model

to data. Under the model, the outcome of a new case is a weighted average of the

outcomes of prior cases. The weights capture precedential influence and depend on

fact similarity (distance in fact space) and precedential authority (position in the

judicial hierarchy). The empirical analysis suggests that the model is a plausible

model for the time series of U.S. maritime salvage cases. Moreover, the results

evince that prior cases decided by inferior courts have less influence than prior cases

decided by superior courts.

∗Georgetown University, Law Center, 600 New Jersey Avenue NW, Washington, DC 20001
(jct48@law.georgetown.edu). I thank Conor Larkin for his herculean research assistance. Thanks also
to the editor, two anonymous referees, Andrew Christensen, Joshua Fischman, workshop participants at
the Center in Law, Economics, and Organization at the University of Southern California Gould School
of Law, and conference participants at the 2010 Conference on Empirical Legal Studies. This paper is
based on a chapter of my doctoral dissertation at Cornell University.



1 Introduction

How do judges reason about the law? There are many theories. The canonical theory

is that judges reason by analogy from case to case (Levi 1949; Weinreb 2005). This

method of reasoning is known as analogical legal reasoning to jurisprudence scholars and

case-based legal reasoning to scholars in the field of artificial intelligence and law.1

In its purest form, analogical legal reasoning (ALR) involves reasoning directly from

prior cases to the case at hand– the judge evaluates the similarities and differences

between prior cases and the case at hand and reaches a decision through application

of the principle that like cases should be treated alike (Alexander and Sherwin 2008).

Notably, ALR operates without invoking a legal rule that governs the decision in the

case at hand (Sunstein 1993, 1996).2 In this way, ALR stands in contrast to rule-based

legal reasoning (RLR), which involves reasoning deductively from legal rules (Alexander

and Sherwin 2008; Schauer 2009).3 In its purest form, RLR operates without reference

to prior cases– the judge simply applies the governing legal rule to the case at hand.4

ALR constitutes a "legalist" theory of judicial behavior (Posner 2008). According to

the legalist theory, "judges decide cases through systematic application of the external,

objective sources of authority that classically comprise the law" (Cross 2003).5 Although

the legalist theory is the traditional theory of judicial behavior in legal circles, it has

many critics. Perhaps the leading criticism of the legalist theory is that it suffers from

theoretical and empirical indeterminacy (Cross 2003). ALR has been especially targeted

by critics, with one commentator complaining that "it is infrequently described with any

rigor or care" (Alexander 1996).6

1Some commentators argue that its use of analogy makes legal reasoning a distinctive form of reasoning
(e.g., Fried 1981; Weinreb 2005). The mystical notion that legal reasoning is a distinctive form of
reasoning was famously articulated by Sir Edward Coke, the Chief Justice of England, who denied the
authority and competence of the King of England to render legal judgments on the grounds that legal
questions "are not to be decided by natural reason but by the artificial reason and judgment of law."
Prohibitions Del Roy, 77 Eng. Rep. 1342 (1607).

2On the different forms of analogical legal reasoning, see generally Macagno and Walton (2009).
3See also Westen (1982), Eisenberg (1988), Posner (1990, 1995, 2006, 2008), Schauer (1991), and

Alexander (1996, 1998).
4At most, the judge uses prior cases to infer (perhaps abductively or inductively) the governing legal

rule. However, she does not reason directly from case to case.
5Of course, there are many other theories of judicial behavior. Posner (2008) identifies no fewer

than nine theories, including most notably the legalist theory, the attitudinal theory, which posits that
judges decide cases according to their ideological preferences (e.g., Segal and Spaeth 1993, 2002), and the
economic and strategic theories, which posit that judges decide cases strategically, taking into account
the responses of other actors, to promote their ideology (e.g., Epstein and Knight 1998; Smith and Tiller
2002), enhance their reputation or career prospects (e.g., Miceli and Coşgel 1994; Levy 2005), or further
some other specified objective.

6Notable exceptions include Sunstein (1993, 1996), Brewer (1996), and Weinreb (2005). Alexander
(1996) also asserts that ALR is a "fantasy."
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This paper has two objectives. The first objective is to offer a formal model of

ALR. The model posits that the outcome in the case at hand is a weighted average of

the outcomes of prior cases. The weight placed on the outcome of a prior case in the

weighted average captures the precedential influence of the prior case and depends on

the fact similarity (distance in fact space) and precedential authority (position in the

judicial hierarchy) of the prior case relative to the case at hand.

The ALR model is closely related to the empirical similarity model of Gilboa et al.

(2006) and Billot et al. (2005), as well as the wider literature on case-based decision

theory.7 Case-based decision theory is a model of reasoning by analogy to past cases

(Gilboa and Schmeidler 2001).8 Empirical similarity theory is a closely-related model

for real-valued assessment problems. Under the empirical similarity model, new assess-

ments are made according to similarity-weighted averages of prior assessments.9 In most

applications of empirical similarity theory, the similarity function (i.e., the function that

determines the weights in the weighted average) is symmetric– the influence of a prior

case on a new case is the same as the (counterfactual) influence of the new case on the

prior case. This is because the similarity function typically is based on a metric, usually

a weighted Euclidean metric (e.g., Gayer et al. 2007; Lieberman 2010; Gilboa et al. 2011).

In the ALR model, by contrast, the similarity function is asymmetric– the influence of

a prior case on a new case is not necessarily the same as the (counterfactual) influence

of the new case on the prior case. This is because the similarity function is based on a

quasimetric, i.e., a function that satisfies the properties of a metric, apart from symme-

try. This allows the ALR model to capture an important feature of reasoning by analogy

in law, namely that precedential influence depends not only on fact similarity, which is

symmetric, but also on precedential authority, which is not symmetric.10

7 In case-based decision theory, the term "case" is used generically; it does not refer to a legal case.
8See also Gilboa and Schmeidler (1995, 1996, 1997, 2000, 2002, 2003) and Gilboa et al. (2002). Case-

based decision theory was inspired by work on case-based reasoning in artificial intelligence (Riesbeck
and Schank 1989) and harkens back to the notion that all human "reasonings concerning matter of fact
are founded on a species of Analogy" (Hume 1748).

9Empirical similarity theory is related to various methods in computer science, statistics, and related
fields, including, most notably: kernel methods (Pagan and Ullah 1999), which are commonly used
in nonparametric estimation; nearest neighbor methods (Dasarathy 1991; Devroye et al. 1996), which
are commonly used in machine learning and pattern recognition; and conditional autoregressive (CAR)
and simultaneous autoregressive (SAR) models (Banerjee et al. 2004), which are commonly used in the
analysis of areal and other spatial data. I expand upon the connection between empirical similarity theory
and kernel regression in Section 3.2. For discussions of the relationship between empirical similarity
theory, on the one hand, and nearest neighbor methods and CAR models, on the other hand, see
Lieberman (2010) and Gilboa et al. (2011).
10Lieberman (2012) and Argenziano and Gilboa (2012) also feature asymmetric similarity functions,

the former in a model of similarity-based autoregression and the latter in a model of history-dependent
belief formation in coordination games. In neither paper, however, is the similarity function asymmetric
because it depends on the authority of the prior case. In Lieberman (2012), the similarity function is
asymmetric because it depends on the direction of the change of the characteristics of a variable from
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The second objective of the paper is to take the ALR model to data. The data

comprise the time series of reported decisions by federal courts in U.S. maritime salvage

cases.11 The first step of the empirical analysis is to embed the ALR model in a statistical

model. The next step is to assess whether the ALR model is a plausible model for the

data. I focus on two properties of the ALR model: (i) it is an autoregressive process and

(ii) the process has a unit root. To investigate whether an autoregressive process could

have generated the data, I estimate a linear regression model and test for autocorrelation

in the residuals using parametric and nonparametric tests. To investigate whether the

data has a unit root, I employ a "nearly effi cient" unit root test. The results suggest

that the data are consistent with an autoregressive process that has a unit root.

The final step of the empirical analysis is to estimate the ALR model by maximum

likelihood and test the null hypothesis that the similarity function is symmetric. This is

the crucial step of the empirical analysis, as the key innovation of the ALR model, and

the paper’s main contribution, is the asymmetry of the similarity function. I find that

the symmetry hypothesis is rejected at the one percent level. The implication is that

precedential authority, and not just fact similarity, matters for precedential influence.

All else equal (namely, fact similarity), the precedential influence of a prior case that

was decided by a inferior court is significantly less than the precedential influence of a

prior case that was decided by a superior court.

The remainder of the paper is organized as follows. Section 2 presents the ALR model.

Section 3 contains the empirical analysis. In Section 4, I discuss certain limitations of

the ALR model and the empirical analysis, as well as directions for future research.

2 The ALR Model

2.1 Legal System

Let K denote the set of judges or courts in the legal system. The courts in K are ordered
in accordance with the hierarchy of courts in the legal system. Accordingly, I sometimes

refer to K as the authority space.
Let Q denote the set of questions of law that may be presented to a court. For

each question q ∈ Q, there exists a set of conclusions of law Y that a court may reach
with respect to question q. There also exists an array of issues of fact that the court

must resolve in order to reach a conclusion with respect to question q. For each issue i,

one time to the next. In Argenziano and Gilboa (2012), the similarity function is asymmetric because it
depends on the outcome of the prior game.
11 In Section 3.1, I describe the data and explain why I selected U.S. maritime salvage cases for the

empirical analysis.
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there exists a set of findings of fact Φi that the court may make with respect thereto.

Accordingly, each question q ∈ Q induces a fact space Φ = Φ1 × · · · ×Φn. Each element

φ = (φ1, ..., φn) ∈ Φ is a fact pattern. Given question q, the set of conclusions Y and the
fact space Φ are known and unique.

For example, consider the question of patentability under U.S. patent law. The

authority space K comprises the U.S. district courts (at the bottom of the hierarchy),

the U.S. courts of appeals (in the middle), and the U.S. Supreme Court (at the top).

The question of law q is whether an invention is patentable. The set of conclusions

is Y = {0, 1}, where zero represents no and one represents yes. The issues of fact

are whether the invention is (1) a patentable subject matter (i.e., a process, machine,

article of manufacture, or composition of matter, or any improvement thereof), (2) novel,

(3) nonobvious, and (4) useful. For each issue i, the set of findings is Φi = {0, 1},
where again zero represents no and one represents yes. Accordingly, the fact space is

Φ = {0, 1} × {0, 1} × {0, 1} × {0, 1}, and one example fact pattern is φ = (1, 1, 0, 1).

A case involving question q is a triple c = (φ, κ, y), where φ ∈ Φ, κ ∈ K, and y ∈ Y.
Define x = (φ, κ) as the inputs of the case and y as the outcome of the case. The set

of all possible cases involving question q is C = (Φ × K)× Y. I assume throughout the
paper that the inputs and outcomes of cases are or may be represented by real variables:

Φ ⊆ Rn, K ⊆ R, and Y ⊆ R.
At time t, a court is presented with question q and a body of evidence. Based on the

evidence, the court makes findings of fact φt ∈ Φ. The court has access to a q-relevant

case history Ct = (c1, ..., ct−1), where cj = (xj , yj) ∈ C is a prior case involving question
q. How the court reaches its conclusion yt depends on its method of legal reasoning.

Under ALR, the outcome of the case at hand is a function of the inputs of the case at

hand as well as the history of prior cases, yt = Y (xt, Ct).12

2.2 ALR Model

I model ALR as similarity-weighted averaging of prior outcomes. Formally:

yt = Y (xt, Ct) =
∑
j<t

(
s(xj , xt)∑
j<t s(xj , xt)

)
yj , (1)

where s : Rn+1×Rn+1 → R++ is a function that indexes the similarity between the inputs
xj of the prior case and the inputs xt of the case at hand. Equation (1) posits that the

outcome yt in the case at hand is a weighted average of the outcomes y1, ..., yt−1 of prior

12Contrast this with RLR, under which the outcome of the case at hand is a function of the inputs
only, yt = Y (xt).
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cases. The weight placed on the outcome yj of a prior case depends on the degree to

which the inputs xj of the prior case are similar to the inputs xt of the case at hand.

The degree of input similarity is given by s. The greater is the input similarity s of a

prior case, the greater is the weight given to the outcome yj of the prior case in the

determination of the outcome yt of the case at hand. Hence, I interpret s as measuring

the precedential influence of a prior case on the case at hand.

I assume that input similarity s– and, therefore, precedential influence– is an expo-

nentially decaying function of the distance µ from the inputs xj of the prior case to the

inputs xt of the case at hand:

s(xj , xt) = exp(−µ(xj , xt)), (2)

where µ : Rn+1×Rn+1 → R+ with µ(xj , xt) = 0 only if xj = xt. The assumption that

influence decays exponentially with distance seems natural and appears in other contexts.

For instance, Shepard (1987) derives a law of psychological generalization in which the

probability of generalizing a response from one stimulus to another decays exponentially

with the distance between the stimuli in psychological space. White (2001) argues that

both theory and evidence support exponential decay of memory with distance in time

(scaled as
√
t). And Glaeser et al. (2003) introduce a model of socially influenced behavior

in which social influence decays exponentially with social distance. What’s more, Billot

et al. (2008) provide an axiomatic justification for specifying an exponential similarity

function in the present context (similarity-weighting averaging as a model of reasoning).13

Next, I assume that input distance µ is a proportional function, with proportionality

factor v, of the weighted Euclidean distance d between the facts φj of the prior case and

the facts φt of the case at hand:

µ(xj , xt) = v(xj , xt)d(φj , φt), (3)

where v : Rn+1×Rn+1 → R++ captures the precedential authority of the prior case

relative to the case at hand and d : Rn×Rn → R+, which captures the fact similarity of
the prior case relative to the case at hand, is given by

d(φj , φt) =

√√√√ n∑
i=1

ωi(φji − φti)2, ωi > 0 for all i. (4)

13More specifically, Billot et al. (2008) provided an axiomatization of an exponential similarity function
based on a metric induced by norm. The key axiom for the exponential form is ray shift invarance, which
requires that if the facts of all prior cases lie along a ray emanating from the facts of the case at hand,
then an equal shift along this ray of the facts of all prior cases does not change the outcome of the case
at hand.

5



Note that the weights ω1, ..., ωn in the weighted Euclidean distance d reflect the rela-

tive importance of the n issues of fact that the court must resolve in order to reach a

conclusion with respect to the legal question at issue.

In specifying v, I am guided by three criteria. First, all else equal, prior cases decided

by inferior courts should have less influence than prior cases decided by superior courts.

At the same time, prior cases decided by coequal courts should have no less influence

than prior cases decided by inferior courts and no more influence than prior cases decided

by superior courts. Second, the influence penalty (resp. bonus) for prior cases decided

by inferior (resp. superior) courts should diminish as the distance in fact space to the

case at hand becomes large. This is motivated by the notion that the lesser is the factual

similarity of a prior case (i.e., the greater is d), the less important is relative position

of the deciding court in the judicial hierarchy. Third, the input distance µ = vd should

satisfy all the properties of a metric, apart from symmetry. As stated previously, the key

innovation of the ALR model, and the paper’s main contribution, is the asymmetry of

the similarity function. This is accomplished by relaxing the symmetry of the distance

measure on which the similarity function is based. However, it is neither necessary nor

proper to relax any of the other properties. Hence, the specification of v should preserve

these other properties, including the triangle inequality.14

Guided by these criteria, I assume that v is given by

v(xj , xt) = sec θjt + tan θjt, (5)

where

θjt = arctan

(
β(κt − κj)
d(φj , φt)

)
, β ≥ 0.

Below I show that with v specified by equation (5), the ALR model satisfies the first

and second criteria set forth above. Moreover, in the Appendix I prove that the third

criterion is satisfied as well.

Before proceeding, however, I want to supplement the instrumental motivation for v

with a geometric motivation. To draw an analogy between a prior case and the case at

hand, a court has to traverse (metaphorically) the distance in input space from the prior

case to the case at hand. The greater is this distance, the more strained is the analogy.

14The third criterion rules out many otherwise desirable specifications of v. For instance, a simple way
to impose asymmetry would be to define v as follows:

v(xj , xt) =

{
1 if κj > κt
β if κj ≤ κt

, β ≥ 1

(cf. Lieberman 2012; Argenziano and Gilboa 2012). Under this specification of v, however, µ = vd
generally does not satisfy the triangle inequality on Rn+1 (n > 0).
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In input space (or fact-authority space), θjt is direction from the prior case (the origin)

to the case at hand, where the distance in fact space is given by d(φj , φt), the distance

in authority space is given by β(κt − κj), and the radial distance is given by

f(xj , xt) =
√

(d(φj , φt))
2 + (β(κt − κj))2

(see Figure 1). Note that sec θjt = f(xj , xt)/d(φj , φt) and tan θjt = β(κt− κj)/d(φj , φt).

It follows that

µ(xj , xt) = v(xj , xt)d(φj , φt) = f(xj , xt) + β(κt − κj).

That is, input distance equals radial distance plus an adjustment that takes into account

both the direction and distance in authority space. The adjustment is positive if the

prior case has inferior authority (κj < κt) and negative if the prior case has superior

authority (κj > κt). It is harder to travel uphill than downhill. If the prior case has

coequal authority (κj = κt), there is no adjustment and µ = d. The court only has to

overcome any factual dissimilarity to draw the analogy.15

Figure 2 provides a visualization of v. Observe that v = 1 if β = 0. Thus, β = 0

implies that precedential influence is symmetric, depending only on fact similarity and

not on precedential authority. However, if β > 0, then v > 1 if the prior case has inferior

authority (κj < κt), v = 1 if the prior case has coequal authority (κj = κt), and v < 1 if

the prior case has superior authority (κj > κt). Hence, β > 0 begets influence penalties

and bonuses for prior cases with inferior and superior authority, respectively, and thus

implies that precedential influence is asymmetric.

Figure 3 displays the relationship in the ALR model between precedential influence

(s), fact similarity (d), and precedential authority (v).16 The precedential influence of

a prior case is greatest when the facts of the prior case are identical to the facts of the

case at hand (φj = φt ⇔ d = 0), and it decays exponentially at rate v as fact similarity

decreases (i.e., as d increases). Both the precedential influence at d = 0 and the rate of

decay for d > 0 differ depending on the precedential authority of the prior case. If the

prior case was decided by a superior court (κj > κt), the precedential influence at d = 0 is

the highest possible (s = 1) and the rate of decay for d > 0 is the lowest possible (v < 1).

15 In Teitelbaum (2013), I provide an axiomatic motivation for v. In brief, I show that the input
distance µ = vd is a quasimetric induced by a skewed norm. A skewed norm is a positive definite
function F (N, p)(x) = N(x) − 〈p, x〉, where N is a norm on Rn, p ∈ Rn, and 〈·, ·〉 denotes the scalar
product (Plastria 1992). I then provide a "skewness" axiom that, when imposed in lieu of the symmetry
axiom in the main result of Billot et al. (2008), characterizes an exponential similarity function based
on a skewed norm. The skewness axiom essentially postulates exponential discounting of the influence
of prior cases with inferior authority relative to equidistant prior cases with superior authority.
16Note that fact similarity and precedential authority are negatively related to d and v, respectively.
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If the prior case was decided by a coequal court (κj = κt), the precedential influence at

d = 0 is equally high (s = 1) but the rate of decay for d > 0 is higher (v = 1). If the

prior case was decided by an inferior court (κj < κt), the precedential influence at d = 0

is lower (s < 1) and the rate of decay for d > 0 is even higher (v > 1). All else equal

(namely, d), therefore, the influence of prior cases with inferior authority is less than

the influence of prior cases with superior authority, and the influence of prior cases with

coequal authority is greater than the influence of prior cases with inferior authority and

not less than the influence of prior cases with superior authority. Moreover, the size of

the influence penalty (resp. bonus) for prior cases with inferior (resp. superior) authority

increases with the degree of fact similarity (i.e., as d increases) at a rate determined by

(and positively related to) the parameter β.

Importantly, Figure 3 illustrates that with v specified by equation (5), the ALR model

satisfies the first and second criteria set forth above. In the Appendix, I prove that the

third criterion is satisfied as well. That is, I prove that µ = vd is a quasimetric, i.e., a

function that satisfies the properties of a metric, apart from symmetry.

3 Empirical Analysis

In this section, I take the ALR model to data. After describing the data, I embed the

ALR model in a statistical model and assess whether it is a plausible model for the data.

I then estimate the ALR model by maximum likelihood and test the null hypothesis that

the similarity function is symmetric (i.e., β = 0) against the alternative hypothesis that

it is asymmetric (i.e., β > 0).

3.1 Data

The data comprise the time series of reported decisions by federal courts in U.S. maritime

salvage cases. Under U.S. maritime law, a salvor of imperiled maritime property on

navigable waters is entitled to a monetary award from the owner.17 There are two forms

of maritime salvage: "contract" salvage and "pure" salvage. Contract salvage is rendered

pursuant to a prior agreement. Pure salvage is rendered voluntarily in the absence of a

contract. The data include only pure salvage cases.

In the United States, the federal courts have exclusive jurisdiction in pure salvage

cases. There are three elements of a valid pure salvage claim: (i) a marine peril; (ii) ser-

vice voluntarily rendered; and (iii) success in whole or in part. In the case of a valid

pure salvage claim, the court determines the award according to six factors enumerated

17The following is a bare bones description of U.S. maritime salvage law. For more detailed overviews,
see, e.g., Force (2004) or Schoenbaum (2011, ch. 16).
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by the Supreme Court in The Blackwall, 77 U.S. 1 (1869): (1) the labor expended by

the salvors in rendering the salvage service; (2) the promptitude, skill, and energy dis-

played in rendering the service and saving the property; (3) the value of the property

employed by the salvors in rendering the service, and the danger to which such prop-

erty was exposed; (4) the risk incurred by the salvors in securing the property from the

impending peril; (5) the value of the property saved; and (6) the degree of danger from

which the property was rescued. The law of salvage provides no precise formula or rule

for computing a salvage award on the basis of the Blackwall factors. The court has broad

discretion in fashioning the award based on its findings with respect to the Blackwall

factors, though it is bound to apply all of the Blackwall factors and the award generally

may not exceed the value of the property saved.

There are several reasons why I selected maritime salvage cases for the empirical

analysis. First, the outcome (the salvage award) is a continuous variable (a dollar

amount) and the inputs (the Blackwall factors) are well defined and stable over time.18

Second, awards in maritime salvage cases arguably are apolitical legal questions. More-

over, it is hard to imagine that a maritime salvage case is an opportunity for a federal

judge to advance strategic goals such as career advancement. Thus, if there is any set-

ting in which we should expect a legalist model of judicial behavior to be operative (and

other models such as attitudinal or strategic models to be inoperative), it is maritime

salvage cases. Third, the law of maritime salvage is federal law, and federal courts have

exclusive jurisdiction in cases involving claims for salvage awards. Accordingly, state

variation in law or courts is not an issue. Fourth, it seems reasonable to treat the federal

courts as a single adjudicative body for purposes of maritime salvage cases: there is no

split among the circuits (The Blackwall is controlling precedent for all circuits); there

are no specialty courts for maritime cases; and it generally is believed that federal courts

are reasonably uniform in quality. Lastly, although the criteria for determining a mar-

itime salvage award are well defined and stable through time, the law provides no precise

formula or rule. This leaves open the possibility that courts are engaging in ALR.

The data comprise 684 pure salvage cases from 1799 to 2007. The cases were identified

using seven search methods. The first search method was "KeyCiting" and "Shepardiz-

ing" The Blackwall in Westlaw and LexisNexis, respectively. The second search method

was performing keyword searches in three databases: Westlaw’s Federal Maritime Law

—Cases (FMRT-CS); Lexis’Admiralty Cases, Federal and State (MEGA); and Ameri-

can Maritime Cases (AMC), which is available on Westlaw and Lexis. The third search

18 In the words of the U.S. Court of Appeals for the Ninth Circuit, the Blackwall factors "have weathered
the storms of the past century." Saint Paul Marine Transp. Corp. v. Cerro Sales Corp., 505 F.2d 1115
(9th Cir. 1974).
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method was consulting the salvage digests in West’s federal digest. The fourth search

method was consulting the salvage award tables in the quinquennial digests of American

Maritime Cases. The fifth search method was consulting leading treatises on admiralty

and maritime law. The sixth search method was consulting early American digests and

reporters. The final search method was examining each case, however identified, for two

purposes: (i) find additional cases cited therewithin and (ii) cull cases that, upon closer

inspection, did not apply the Blackwall factors to determine an award for pure salvage.19

For each case, the data record the date of the decision, the court,20 the award (in 1980

U.S. dollars), and the court’s finding on each Blackwall factor. The position of the court

in the judicial hierarchy is coded as follows: district court = 0, circuit court = 1, and

Supreme Court = 2. The Blackwall factors (other than the value of the property saved)

are coded as binary variables: low = 0 or high = 1. This is for two reasons. The first

reason is that courts routinely characterize salvage operations as "high order" or "low

order." The second reason is that binary coding minimizes subjectivity and, therefore,

disagreement/error. The value of the property saved is recorded in 1980 U.S. dollars.21

Of the 684 cases, 545 cases (79.7 percent) were decided by district courts, 134 cases

(19.6 percent) were decided by circuit courts, and five cases (0.7 percent) were decided

by the Supreme Court. Table 1 displays summary statistics for the award and the six

Blackwall factors. For instance, it shows that the awards range from $240 to $1,866,000,

with a mean award of $74,000; the value of the property saved ranges from $1,200 to

$42,133,000, with a mean value of $1,386,000; and the labor expended by the salvors

was high in 39 percent of the cases.22 Table 2 displays the mean award conditional on

different findings on the Blackwall factors. For instance, it shows that the mean award

for cases in which the labor expended by the salvors was low is $36,000, whereas the

mean award for cases in which the labor expended by the salvors was high is $134,000.

19These searches yielded 881 pure salvage cases from 1779 to 2007. Of these cases, 197 were excluded
from the final data set because they were missing either a clear statement of the salvage award or clear
findings with respect to one or more of the Blackwall factors.
20The court is the court of final adjudication, and the data record the award and findings of fact as

determined by the court of final adjudication.
21The following procedures were followed in coding the cases. After receiving instructions from me, a

research assistant read every case and hand coded every variable. In addition, I met regularly with the
research assistant to review his progress and discuss any coding issues or questions. Finally, I audited
his work by independently reading and shadow coding 15 percent of the cases. Our disagreement rate
was zero with respect to the awards and less than one percent with respect to the Blackwall factors.
22Though not shown in the table, it is worth noting that the award percentage (the salvage award

expressed as a fraction of the value of the property saved) ranges from less than one percent to 85 percent,
with a mean of 14 percent.
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3.2 Statistical ALR Model

The first step of the empirical analysis is to embed the ALR model in a statistical model.

Following Gilboa et al. (2006) and its progeny,23 I assume y1 = ε1 and

yt =
∑
j<t

(
s(xj , xt; Ω)∑
j<t s(xj , xt; Ω)

)
yj + εt, t = 2, ..., T, (6)

where εt
iid∼ N

(
0, σ2

)
for t = 1, ..., T . (Note that I include Ω ≡ (ω1, ..., ωn) in (6) to

make explicit the dependence of s on the weights ω1, ..., ωn in the weighted Euclidean

distance d on which s is based.) Model (6) posits that the outcome yt of the case at hand

is normally distributed around a similarity-weighted average of the outcomes y1, ..., yt−1
of prior cases. To highlight two key properties of the model, rewrite (6) as

yt = (α1,t)yt−1 + (α2,t)yt−2 + · · ·+ (αt−1,t)y1 + εt, (7)

where αi,t = s (xt−i, xt) /
∑
i<t s (xi, xt). From (7), we can see that (i) model (6) is an

autoregressive process of order (t − 1) and (ii) because the αi,t’s sum to one for each t,

the process has a unit root (Lieberman 2010).

Before proceeding to the next step of the empirical analysis, let me say a few words

about the relationship between model (6) and kernel regression.24 Kernel regression

assumes a data generating process of the form

yt = g(xt) + εt, t = 1, ..., T, (8)

where εi
iid∼
(
0, σ2

)
and g is an unknown function. A standard estimator for g is the

Nadaraya-Watson estimator

ĝ(xt) =

T∑
j=1

(
K(xt − xj ;H)∑T
j=1K (xt − xj ;H)

)
yi,

where K is a kernel function and H is a diagonal matrix of bandwidth parameters

h1, ..., hn. Note the connection between (6) and (8). Each generates a new/predicted

value of y by taking a weighted average of the observed values of y where the weights

are a function the distance between the new/hypothesized x and the observed values of

x. Notwithstanding this connection, however, there is an important distinction between

23See, e.g., Gayer et al. (2007), Lieberman (2010), and Gilboa et al. (2011).
24On kernel regression, see, e.g., Pagan and Ullah (1999). My comments below echo the comments

by Gilboa et al. (2011) on the relationship between the empirical similarity model and kernel regression.
For more on this relationship, see Gilboa et al. (2006, 2011) and Lieberman (2010).
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(6) and kernel regression. Kernel regression is a statistical technique that uses weighted

averaging to estimate (8), which assumes that the data are generated by an unknown

function g, whereas (6) assumes that that the data are generated by weighted averaging.

In other words, (8) specifies a rule relating xt to yt, and thus assumes that the distribution

of yt depends only on xt, whereas (6) assumes that the distribution of yt depends not

only on xt but also on the history of prior cases, Ct = {(xj , yj) : j < t}.

3.3 Plausibility of ALR Model

The next step of the empirical analysis is to assess whether the ALR model is a plausible

model for the data. I focus on the two key properties of the model highlighted above:

(i) model (6) is an autoregressive process and (ii) the process has a unit root.

To investigate whether an autoregressive process could have generated the data, I

estimate a linear regression model and test for autocorrelation in the residuals. Because

salvage awards are bounded below by zero and skewed to the right,25 the dependent

variable is the log-transformed award. The regressors comprise a constant and the six

Blackwall factors, where the value of the property saved is log-transformed.26 The model

is estimated by ordinary least squares.

I test for autocorrelation in the residuals using the Ljung-Box test and the Runs test.

The Ljung-Box test is a portmanteau test which considers the null hypothesis that the

residuals are not autocorrelated against the alternative hypothesis of an autoregressive

process of order p.27 The test statistic is Q = T (T +2)
∑p
j=1 ρ

2
j/(T −j), where ρj the jth

autocorrelation coeffi cient of the residual series. Under the null hypothesis, Q is asymp-

totically distributed χ2(p). The Runs test is a nonparametric test that considers the null

hypothesis that the residual process is random against the alternative of a nonrandom

process.28 The test counts the number of runs r above and below zero and compares

it to the expected number of runs r. Under the null hypothesis, r = (2n0n1/T ) + 1,

where n0 and n1 are the number of values above and below zero, respectively. The test

statistic is Z = (r − r)/sr, where sr =
√

2n0n1(2n0n1 − T )/T 2(T − 1). Under the null

hypothesis, Z is approximately distributed N(0, 1).

The results of both tests are reported in Table 3. For the Ljung-Box test, results are

presented for six and twenty lags, which correspond to the values suggested by Box et al.

25More than 72 percent of the awards are less than the mean award ($74,000).
26The log-transformation of the value of the property saved is not an arbitrarily imposed assumption;

rather, it is the specification selected by the multivariable fractional polynomial procedure of Sauerbrei
and Royston (1999). For details, see the Appendix.
27The Ljung-Box test was proposed by Ljung and Box (1978). For a textbook treatment, see, e.g.,

Johnston and DiNardo (1997).
28For a textbook treatment of the Runs test, see, e.g., Bradley (1968, ch. 11).
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(1994) (who suggest min{20, T − 1}) and Tsay (2005) (who suggests lnT ), respectively,

and also for forty lags. In each test, the null hypothesis is rejected at the five percent

level, suggesting that the data are consistent with an autoregressive process.

To investigate whether the data generating process has a unit root, I employ the ADF-

GLS test proposed by Elliott et al. (1996). The ADF-GLS test is an augmented Dickey-

Fuller (ADF) test in which the time series is detrended via generalized least squares

(GLS).29 The ADF-GLS test is "nearly effi cient" in the sense that its asymptotic local

power functions are virtually indistinguishable from the Gaussian power envelope, and

has greater power than the standard ADF test (which is not "nearly effi cient") (Haldrup

and Jansson 2006). The test proceeds in two steps. First, it estimates γ in the regression

yt − ρyt−1 = (1− ρ)γ + vt, where ρ = 1− 7/T . Second, it estimates δ in the regression

∆ỹt = δỹt−1+
∑p
j=1 ηj∆ỹt−j+ut, where∆ỹt = ỹt−ỹt−1, ỹt = yt−γ̂, and γ̂ is the estimate

of γ obtained in the first step. The test statistic is the ordinary t statistic for δ = 0. The

results of ADF-GLS test are reported in Table 3. Results are presented for forty lags,

which corresponds to the value suggested by both the sequential t criterion proposed by

Ng and Perron (1995) and the modified Akaike information criterion (MAIC) proposed

by Ng and Perron (2000). The test fails to reject the null hypothesis of a unit root at

the five percent level, suggesting that the data are consistent with a unit root process.

Of course, the results of the autocorrelation and unit root tests reported in Table 3

provide only indirect, negative assurance that the ALR model is a plausible model for

the data. The autocorrelation tests reject the null hypothesis that the residuals from

the linear regression model are not autocorrelated, and the unit root test fails to reject

the null hypothesis that the data generating process has a unit root. These results are

consistent with a data generating process that is autoregressive and has a unit root, but

they do not affi rmatively establish that the data were generated by such a process, let

alone by the ALR model. Indeed, it is important to highlight two limitations of the

analysis. First, the Ljung-Box test and the ADF-GLS test contemplate a fixed order

autoregressive process,30 and thus can provide only oblique evidence with respect to the

ALR model, which is an autoregressive process of increasing order.31 Second, although

the ADF-GLS test is "nearly effi cient" and has greater power than the standard ADF

test, it has low power in the present context. To get a sense of the test’s power, I

performed 1,000 Monte Carlo simulations in which I first generated simulated data under

the alternative hypothesis that the data generating process is the linear regression model

29For a textbook treatment, see, e.g., Davidson and MacKinnon (2004, ch. 14).
30More specifically, the Ljung-Box test tests against the alternative hypothesis of a pth order autore-

gressive process, and the ADF-GLS test tests for a unit root in a pth order autoregressive process.
31 I am not aware of any autocorrelation or unit root tests that contemplate an increasing order au-

toregressive process.
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estimated above and then tested for a unit root using the ADF-GLS test.32 At the five

percent level, the test correctly rejects the null hypothesis of a unit root 195 times out

of 1,000, implying a power of 19.5 percent.

That said, the Runs test is more generally applicable, as it is nonparametric and

makes no assumptions about the data generating process. Indeed, not only does the

Runs test on the residuals of the linear regression model reject the null hypothesis of

randomness, which provides negative assurance on the plausibility of the ALR model,

but a Runs test on the residuals of the fitted ALR model (see Section 3.4) fails to reject

the null hypothesis of randomness, which provides positive assurance.33

3.4 Testing the Symmetry of the Similarity Function

The final step of the empirical analysis is to estimate the model by maximum likelihood

and test the hypothesis β = 0 against the alternative β > 0, i.e., test the hypothesis that

the similarity function s is symmetric against the alternative that s is asymmetric. As

stated previously, this is the crucial step, as the key innovation of the ALR model, and

the paper’s main contribution, is the asymmetry of the similarity function.

The loglikelihood function is

l (Θ) = −T
2

ln (2π)− T

2
ln
(
σ2
)
− y′S′Sy

2σ2
,

where Θ = (β, ω1, ..., ωn, σ
2) is the vector of model parameters, y = [y1 · · · yT ]′, and

S
(T×T )

=



1 0 0 · · · 0

−1 1 0 · · · 0

− s(x1,x3)∑
j<3 s(xj ,x3)

− s(x1,x3)∑
j<3 s(xj ,x3)

1 · · · 0

...
...

...
. . .

...

− s(x1,xT )∑
j<T s(xj ,xT )

− s(x2,xT )∑
j<T s(xj ,xT )

· · · − s(xT−1,xT )∑
j<T s(xj ,xT )

1


.

Recall that β is the shape parameter for the precedential authority function v defined in

equation (5), ω1, ..., ωn are the weights in the Euclidean distance function d defined in

equation (4), and σ2 is the variance of the error term εt in equation (6). For the derivation

32To generate each simulated data set, I performed two steps. First, I sampled 684 residuals from a
normal distribution with a mean of zero and a standard deviation set equal to the root mean squared error
of the residuals from the linear regression model estimated above. Second, I used the fitted regression
line and the simulated residuals to generate 684 simulated awards, one for each observation in the data.
To select the number of lags for each ADF-GLS test, I took the greater of (i) the value suggested by the
sequestial t criterion and (ii) the value suggested by the MAIC.
33The test statistic is −1.543, whereas the five percent critical value is −1.645.
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of the loglikelihood function, as well as an explication of the asymptotic theory of model

(6), which establishes a theoretical basis for simple hypothesis tests involving the model

parameters, see Lieberman (2010).

Table 4 presents the maximum likelihood estimates of the model parameters. Note

that in the estimation both the award (y) and the value of the property saved (x5)

are log-transformed. The estimates for ω1, ..., ω6 suggest that each of the Blackwall

factors, save only the skill displayed by the salvors (x2), is statistically significant to

the determination of the award. They also suggest that the factors which receive the

greatest weight are the labor expended by the salvors (x1), the value of the property

saved (x5), and the danger to the property saved (x6), and that the factors which receive

the least weight are the skill displayed by the salvors (x2), the danger to the salvors’

property (x3), and the risk incurred by the salvors (x4). In addition, the estimate for σ2

suggests that unobserved heterogeneity in salvage awards has unit variance.

Most importantly, the estimate for β is 0.036 with a standard error of 0.017, and

the hypothesis β = 0 is rejected in favor of the alternative β > 0 at the one percent

level. That is, I find that the similarity function is asymmetric, with significant influence

penalties and bonuses for cases decided by inferior and superior courts, respectively (see

Figure 4). The implication is that precedential authority, and not just fact similarity,

matters for precedential influence. All else equal, the precedential influence of a prior case

that was decided by an inferior court is significantly less than the precedential influence

of a prior case that was decided by a coequal court, which in turn is significantly less

than the precedential influence of a prior case that was decided by a superior court.

4 Discussion

The use of analogical reasoning in law is a central topic in the jurisprudence and artificial

intelligence and law literatures. Contributing to these literatures, this paper presents a

formal model of analogical legal reasoning and takes the model to data. The ALR model

posits that the outcome of the case at hand is a weighted average of the outcomes of prior

cases, where the weights are a function of the fact similarity and precedential authority

of the prior cases. The results of the empirical analysis suggest that the ALR model

is a plausible model for the time series of reported decisions by federal courts in U.S.

maritime salvage cases. What’s more, the results indicate that the similarity function

is asymmetric, affi rming that precedential influence indeed depends not only on fact

similarity, which is symmetric, but also on precedential authority, which is not.

The ALR model and the empirical analysis, however, are subject to several important

limitations. First, the ALRmodel is a stylized representation of analogical legal reasoning
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in its purest form– the judge reasons directly from case to case without invoking a

governing legal rule. A model that combines elements of analogical and rule-based legal

reasoning may be more realistic. In future research, it would be interesting to explore a

hybrid ALR-RLR model, perhaps along the lines of a mixed SAR model (Anselin 1988).

Second, the ALR model specifies a particular method of assessment (similarity-

weighted averaging of all prior cases), as well as a specific notion of similarity (exponen-

tially decaying function of asymmetric weighted Euclidean distance). Although I would

argue that any model of ALR must involve some similarity-weighted statistic of the out-

comes of prior cases, statistics other than the mean– e.g., the median or the mode– are

plausible alternatives. Another plausible alternative is a similarity-weighted statistic of

selected prior cases (as opposed to all prior cases)– e.g., the k-nearest cases.34 Further-

more, one could specify other similarity functions (e.g., s = 1/(1+µ)),35 other preceden-

tial authority functions,36 or other distance functions (e.g., d(a, b) =
∑n
i=1 ωi|ai− bi|).37

Third, the ALR model takes a representative agent approach and assumes that all

judges are equipped with the same similarity function. Allowing for heterogeneous judges

surely would be more realistic. However, tractability would require making strong as-

sumptions about the structure of such heterogeneity.

Fourth, the empirical analysis relies on data that records the inputs and outcomes

of legal cases. Such data can provide only indirect evidence regarding the method of

legal reasoning.38 Nevertheless, it arguably is the best available evidence. In many

cases, a court’s written opinion offers no direct evidence regarding the method of legal

reasoning. Even in cases in which the court’s opinion offers some direct evidence, it

rarely is definitive and, in any event, it arguably is of little probative value.39

Lastly, the empirical analysis speaks only to whether the ALR model is a plausible

model for the time series of outcomes in U.S. maritime salvage cases. It says nothing

34A prior study that uses nearest neighbor methods for predicting judicial decisions is Mackaay and
Robillard (1974).
35This specification of s, which exhibits subexponential decay, was suggested by Gilboa et al. (2006)

and used by Gayer et al. (2007) in a study of case-based reasoning about real estate prices.
36For instance, Hodgson et al. (1987) and Drezner and Wesolowsky (1989) suggest other quasimetrics

from which one could derive alternative specifications for v.
37This specification of d is the weighted L1 distance. The L1 distance is also known as the Manhattan

distance or the the taxicab metric.
38Moreover, although the coding scheme was guided by doctrinal considerations and the coding proce-

dures were designed to minimize disagreement/error, one can always quible with the way that legal cases
are coded in any study (or even argue that the enterprise of coding legal cases is inherently flawed).
39"As a rule, we conceive of the judge’s writing of an opinion as a procedure in which he justifies his

decision. The writing coincides neither necessarily nor realistically with the process by which he reaches
his decision, the process of discovery" (Murray 1982). There are (at least) two reasons to think that a
court might use the language of RLR to justify its decision even if it engages in ALR in reaching its
decision. First, "the language of ‘rules’ is much more effi cient and parsimonious than that of ‘cases’"
(Gilboa and Schmeidler 2000). Second, "[r]ules are excellent justification mechanisms" (Hunter 2001).
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about whether it is a plausible model for case outcomes in other areas of law.40 Further-

more, the fact the ALR model is a legalist model of judicial behavior suggests that it

may not be well suited to other areas of law, including, in particular, politically charged

areas (to which we might expect attitudinal or strategic models to be better suited).41

All of that said, I believe that taking a formal modeling approach to ALR helps

sharpen ideas not just about ALR but also about RLR, and suggests ways to distinguish

them theoretically. For instance, the model of the legal environment in Section 2.1

suggests a way to theoretically distinguish ALR and RLR: under ALR the outcome of the

case at hand is a function of the inputs of the case at hand as well as the history of prior

cases, yt = Y (xt, Ct), whereas under RLR the outcome of the case at hand is a function of

the inputs only, yt = Y (xt). Stated another way, under RLR the outcome depends on a

bounded number of parameters, whereas under ALR the number of parameters increases

with the prior case history (cf. Gayer et al. 2007). In addition, the mathematical kinship

between the ALR model and kernel regression highlighted in Section 3.2 suggests a

theoretical connection between ALR and RLR: under ALR, although the judge "does

not explicitly resort to general rules and theories," she "can be viewed as someone who

believes in a general rule of the form Y = f(X1, ..., Xm) but does not know the functional

form of f and therefore attempts to estimate it by nonparametric techniques" (Gilboa

et al. 2006). It also suggests a theoretical distinction: ALR posits that the data are

generated by weighted averaging, whereas RLR posits that the data are generated by a

rule and uses weighted averaging as a statistical technique to estimate the rule. In future

research, it would be valuable to explore whether these connections and distinctions could

be leveraged to develop a way to empirically distinguish ALR and RLR.

40 In future research, it would be interesting to take the ALR model to data on case outcomes in other
areas of law. One area in which potentially suitable data already have been collected is U.S. criminal
confession cases. See Benesh (2002) and Kastellec (2010).
41 In future research, it would be interesting to probe the extent to which non-legalist theories of judicial

behavior could be formalized using statistical models. For example, I believe one could profitably model
an attitudinalist judge as a Bayesian nonparametric statistician.
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Appendix

A Proof that µ is a quasimetric

Here I prove that the input distance function µ : Rn+1×Rn+1 → R+, on which the
similarity function s : Rn+1×Rn+1 → R++ is based, is a quasimetric on Rn+1.

Recall the definition of a quasimetric (Wilson 1931):

Definition 1 A function ξ : Rn× Rn → Rn is a quasimetric on Rn if for all x, y ∈ Rn:

(i) ξ(x, y) ≥ 0;

(ii) ξ(x, y) = 0 if and only if x = y;

(iii) ξ(x, z) ≤ ξ(x, y) + ξ(y, z) for any z ∈ Rn (triangle inequality).

Note that a metric is a quasimetric that also satisfies symmetry: ξ(x, y) = ξ(y, x). A

quasimetric is not necessarily symmetric, i.e., in general ξ(x, y) 6= ξ(y, x).

Theorem 1 For all φj , φt ∈ Rn and κj , κt ∈ R, with xj = (φj , κj) and xt = (φt, κt), let

µ(xj , xt) = v(xj , xt)d(φj , φt),

where

v(xj , xt) = sec θjt + tan θjt,

θjt = arctan

(
β(κt − κj)
d(φj , φt)

)
, β ≥ 0,

and d is a metric on Rn. Then µ is a quasimetric on Rn+1.

Proof. Recall from Section 2.2 that

µ(xj , xt) = v(xj , xt)d(φj , φt) = f(xj , xt) + β(κt − κj),

where

f(xj , xt) =
√

(d(φj , φt))
2 + (β(κt − κj))2.

Observe that f is a metric on Rn+1. Specifically, it is the weighted Euclidean metric.
(i) Observe that f(xj , xt) ≥ |β(κt − κj)| ≥ 0. It follows that µ(xj , xt) ≥ 0.

(ii) If xj = xt then f(xj , xt) = 0 and β(κt − κj) = 0, and hence µ(xj , xt) = 0. Now

suppose µ(xj , xt) = 0 but xj 6= xt. If xj 6= xt then f(xj , xt) > 0 and β(κt − κj) 6= 0.

However, because f(xj , xt) ≥ |β(κt − κj)|, this implies µ(xj , xt) > 0, which contradicts

µ(xj , xt) = 0.
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(iii) Take any x ∈ Rn+1. To prove that µ satisfies the triangle inequality, we must
show that µ(xj , xt) ≤ µ(xj , x) + µ(x, xt). The condition holds if and only if

f(xj , xt) ≤ f(xj , x) + f(x, xt)

+β(κ− κj) + β(κt − κ)− β(κt − κj).

Observe that β(κ− κj) + β(κt − κ)− β(κt − κj) = 0. Observe further that

f(xj , xt) ≤ f(xj , x) + f(x, xt)

holds because f is a metric on Rn+1. Hence, the condition holds.

B Selection of lnx5 by multivariable fractional polynomial regression

As stated in footnote 26, the log-transformation of the value of the property saved (x5) is

the specification selected by the multivariable fractional polynomial (MFP) procedure of

Sauerbrei and Royston (1999).42 The following is a brief summary of the MFP procedure.

For a textbook treatment, see Royston and Altman (1994, ch. 6).

The standard MFP regression model may be expressed as

yt = Y (xt; θ) = b0 +
h∑
i=1

bixit +
n∑

i=h+1

m∑
j=1

bijx
(pj)
it + εt, t = 1, ..., T,

where εt
iid∼ N

(
0, σ2

)
and θ = (b0, b1, ..., bh, bh+1,1, ..., bh+1,m, ..., bn1, ..., bnm, σ

2). The

first h covariates, x1, ..., xh, are binary, categorical, or ordinal, and the remaining covari-

ates, xh+1, ..., xn, are continuous. The round bracket notation signifies the Box-Tidwell

transformation,

x
(pj)
it =

{
x
pj
it for pj 6= 0

lnxit for pj = 0
.

The MFP algorithm selects the covariates and the powers p1, ..., pm for the continuous

covariates. The researcher predefines the set of potential covariates, the set of potential

powers, denoted P, and the maximum degree of the fractional polynomial, denoted M .

The researcher also predefines two significance levels: α1, which determines the critical

value for variable selection; and α2, which determines the critical value for power selec-

tion. The covariates are selected using a backward elimination procedure in which the

potential covariates are iteratively removed and added based a sequence of significance

42A fractional polynomial is an extension of a conventional polynomial that allows for noninteger and
negative powers.
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tests at level α1. The powers are selected using a closed test procedure in which an M

degree fractional polynomial is tested at level α2 against a linear model and then, if and

as necessary, against increasingly complex fractional polynomials. Once the covariates

and powers are selected, the parameter vector θ is estimated by maximum likelihood.

To select the specification for the value of the property saved (x5), which is the only

continuous covariate, I ran an MFP regression in which the dependent variable is the log-

transformed salvage award, the set of potential covariates comprises the six Blackwall

factors, the set of potential powers is P = {−4,−3,−2,−1,−12 , 0,−
1
2 , 1, 2, 3, 4, 5, 6, 7, 8},

the maximum degree of the fractional polynomial is M = 5, the significance level for

covariate selection is α1 = 1, and the significance level for power selection is α2 = 0.05.

Note that setting α1 = 1 forces the MFP algorithm to select all the covariates into the

model, which is justified here by the doctrinal principle that courts are bound to apply

all of the Blackwall factors in determining salvage awards. Although the model allows

for a five-degree fractional polynomial in x5 with powers ranging from −4 to 8, the MFP

algorithm selects a one-degree fractional polynomial with power zero, which corresponds

to a simple log transformation. For further details, see Teitelbaum (forthcoming).
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Miceli, Thomas J., and Metin M. Coşgel. 1994. Reputation and judicial decision-making.

Journal of Economic Behavior and Organization 23:31—51.

Murray, James R. 1982. The role of analogy in legal reasoning. UCLA Law Review 29:

833—871.

Ng, Serena, and Pierre Perron. 1995. Unit root tests in ARMA models with data-

dependent methods for the selection of the truncation lag. Journal of the American

Statistical Association 90:268—281.

– – – . 2000. Lag length selection and the construction of unit root tests with good size

and power. Econometrica 69:1519—1554.

Pagan, Adrian, and Aman Ullah. 1999. Nonparametric econometrics. Cambridge: Cam-

bridge University Press.

Plastria, Frank. 1992. On destination optimality in asymmetric distance Fermat-Weber

problems. Annals of Operations Research 40:355—369.

23



Posner, Richard A. 1990. The problems of jurisprudence. Cambridge, MA: Harvard

University Press.

– – – . 1995. Overcoming law. Cambridge, MA: Harvard University Press.

– – – . 2006. Reasoning by analogy. Review of Legal reason: The use of analogy in legal

argument , by Lloyd L. Weinreb. Cornell Law Review 91:761—774.

– – – . 2008. How judges think. Cambridge, MA: Harvard University Press.

Riesbeck, Christopher K., and Roger C. Schank. 1989. Inside case-based reasoning.

Hillsdale, NJ: Lawrence Erlbaum.

Royston, Patrick, and Douglas G. Altman. 1994. Regression using fractional polynomials

of continuous covariates: Parsimonious parametric modelling. Applied Statistics 43:

429—467.

Sauerbrei, Willi, and Patrick Royston. 1999. Building multivariable prognostic and diag-

nostic models: Transformation of the predictors using fractional polynomials. Journal

of the Royal Statistical Society, Series A 162:71—94.

Schauer, Frederick. 1991. Playing by the rules: A philosophical examination of rule-based

decision making in law and in life. Oxford: Clarendon Press.

– – – . 2009. Thinking like a lawyer. Cambridge, MA: Harvard University Press.

Schoenbaum, Thomas J. 2011. Admiralty and maritime law. 5th ed. St. Paul, MN:

Thomson/West.

Segal, Jeffrey A., and Howard J. Spaeth. 1993. The Supreme Court and the attitudinal

model. Cambridge: Cambridge University Press.

– – – . 2002. The Supreme Court and the attitudinal model revisited. Cambridge: Cam-

bridge University Press.

Shepard, Roger N. 1987. Toward a universal law of generalization for psychological

science. Science 237:1317—1323.

Smith, Joseph L., and Emerson H. Tiller. 2002. The strategy of judging: Evidence from

administrative law. Journal of Legal Studies 31:61—82.

Sunstein, Cass R. 1993. On analogical reasoning. Harvard Law Review 106:741—791.

– – – . 1996. Legal reasoning and political conflict. New York: Oxford University Press.

24



Teitelbaum, Joshua C. 2013. Asymmetric empirical similarity. Mathematical Social

Sciences 66:346—351.

– – – . Forthcoming. Inside the Blackwall box: Explaining U.S. marine salvage awards.

Supreme Court Economic Review.

Tsay, Ruey S. 2005. Analysis of financial time series. 2nd ed. Hoboken, NJ: John Wiley.

Weinreb, Lloyd L. 2005. Legal reason: The use of analogy in legal argument. Cambridge:

Cambridge University Press.

Westen, Peter. 1982. On "confusing ideas": Reply. Yale Law Journal 91:1153—1165.

White, K. Geoffrey. 2001. Forgetting functions. Animal Learning and Behavior 29:

193—207.

Wilson, W. A. 1931. On quasi-metric spaces. American Journal of Mathematics 53:

675—684.

25



β(κt − κj)

f

d(φj , φt)

Figure 1: Geometry of v.

26

jct48
Typewritten Text
θ



0 1 2 3 4 5
0

1

2

3

4

5

6

 d

 v

equal authority

superior authority

inferior authority

v = sec θ + tan θ,
θ = arctan(β(κt − κj)/d)

Thick: β|κt − κj | = 0
Thin: β|κt − κj | = 1

2
Dash: β|κt − κj | = 1

Figure 2: Visualization of v.

27



0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 d

 s

v > 1

v < 1

v = 1

s = exp(−vd)

Thick: β|κt − κj | = 0
Thin: β|κt − κj | = 1

2
Dash: β|κt − κj | = 1

Figure 3: Precedential influence in the ALR model.

28



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d

s

s = exp(−vd)

Thick: β = 0.036, |κt − κj | = 0
Thin: β = 0.036, |κt − κj | = 1
Dash: β = 0.036, |κt − κj | = 2

Figure 4: Influence penalty/bonus implied by β = 0.036.

29



Table 1: Summary Statistics

Standard
Variable Mean deviation Minimum Maximum
y Salvage award 74.44 153.35 0.24 1,865
x1 Labor expended by salvors 0.39 0.49 0 1
x2 Skill displayed by salvors 0.44 0.50 0 1
x3 Danger to salvors’property 0.27 0.45 0 1
x4 Risk to salvors 0.18 0.39 0 1
x5 Value of property saved 1,385.71 2,913.98 1.20 42,133
x6 Danger to property saved 0.51 0.50 0 1

Notes: 684 cases from 1799 to 2007. y and x5 in thousands of 1980 U.S. dollars.
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Table 2: Conditional Salvage Awards

Variable Cases Mean
y 684 74.44
y if x1 = 0 415 35.67
y if x1 = 1 269 134.24
y if x2 = 0 382 51.07
y if x2 = 1 302 103.99
y if x3 = 0 498 57.57
y if x3 = 1 186 119.60
y if x4 = 0 559 58.41
y if x4 = 1 125 146.09
y if x5 ≤ x5 504 37.98
y if x5 > x5 180 176.50
y if x6 = 0 337 45.18
y if x6 = 1 347 102.85

Notes: y in thousands of 1980 U.S. dollars. x5 denotes the mean of x5.
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Table 3: Autocorrelation and Unit Root Tests

Test Five percent
Test statistic critical value
Ljung-Box test:
p = 6 52.604 12.592
p = 20 119.360 31.410
p = 40 205.136 55.758

Runs test −1.817 −1.645
ADF-GLS test (p = 40) −1.520 −1.950

Notes: For the Runs test, the critical value reflects a one-sided test against the alternative of

positive autocorrelation. For the ADF-GLS test, the critical value is interpolated from tables

presented by Elliott et al. (1996).
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Table 4: ALR Model —Maximim Likelihood Estimates

Standard
Parameter Estimate error
β Shape parameter for v 0.036∗ 0.017
ω1 Weight on x1 14.822∗ 2.602
ω2 Weight on x2 0.785 0.843
ω3 Weight on x3 3.419† 2.081
ω4 Weight on x4 6.101∗ 3.092
ω5 Weight on lnx5 9.232∗ 1.777
ω6 Weight on x6 11.823∗ 2.888
σ2 Variance of εt 1.005∗ 0.019

Loglikelihood −974.097

Notes: Dependent variable is ln y. 684 cases from 1799 to 2007.
∗Significant at the one percent level (one-tailed test).
†Significant at the ten percent level (one-tailed test).
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