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Distinguishing Probability Weighting from  
Risk Misperceptions in Field Data†

By Levon Barseghyan, Francesca Molinari, Ted O’Donoghue,  
and Joshua C. Teitelbaum *

There is a large literature that attempts to esti-
mate risk preferences from field data (e.g., Jullien 
and Salanié 2000 (horse race bets); Cohen and 
Einav 2007 (auto insurance); Snowberg and 
Wolfers 2010 (horse race bets); Sydnor 2010 
(home insurance); Barseghyan et al. forthcoming 
(auto and home insurance)). Many of the studies 
in this literature consider nonstandard models of 
risk preferences. One particular model that has 
received a great deal of attention is “probability 
weighting.”

The idea of probability weighting is that 
agents behave roughly as in expected utility 
theory, except that they evaluate probabilities 
nonlinearly, transforming them into decision 
weights. Probability weighting was popularized 
by Kahneman and Tversky (1979) as part of 
prospect theory. Their original approach, how-
ever, can lead to violations of stochastic domi-
nance, and so the model of probability weighting 
typically used today incorporates rank depen-
dence as proposed by Quiggin (1982).1 Under 
rank-dependent probability weighting (RDPW), 
agents transform cumulative instead of individ-
ual probabilities, and consequently the decision 
weights depend on the ranking of outcomes. The 
RDPW model has been studied extensively in 

1 Cumulative prospect theory (Tversky and Kahneman 
1992) incorporates Quiggin’s notion of rank dependence. 

laboratory experiments, producing a large body 
of evidence in support of the theory (for a recent 
review, see Fehr-Duda and Epper 2012).

When economists take RDPW models to field 
data, however, an important confound emerges: 
systematic risk misperceptions (RM). In the labo-
ratory, when subjects are explicitly told that an 
event occurs with probability 3 percent, and then 
behave as if the event occurs with probability 7 per-
cent, this behavior clearly is not driven by RM. In 
the field, by contrast, when researchers assess that 
an event occurs with probability 3 percent, but 
agents behave as if the event occurs with probabil-
ity 7 percent, this behavior could be driven by RM. 
Indeed, recent papers that estimate RDPW models 
using field data explicitly acknowledge this issue 
(e.g., Snowberg and Wolfers 2010; Sydnor 2010; 
Barseghyan et al. forthcoming).2

In this paper, we outline a strategy for dis-
tinguishing RDPW from RM in field data. Our 
strategy relies on identifying a field environment 
with two key properties (which are not satis-
fied in most existing studies): (i) the objects of 
choice are money lotteries with more than two 
outcomes and (ii) the ranking of outcomes differs 
across lotteries. In such environments, the rank-
ing of outcomes is irrelevant to agents’ decision 
weights under RM, which simply correspond to 
their misperceived probabilities, but it is crucial 
to agents’ decision weights under RDPW, which 
are rank dependent. Thus, the models can make 
distinct predictions and thereby can be distin-
guished empirically (although exactly how their 
predictions differ depends on the details of the 
specific environment). In the remainder of the 
paper, we elucidate the general point and illustrate 
the details within one particular application using 
simulated data.

2 Barberis (2013) also highlights this issue. 
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I. The Model

An agent faces a choice among money lotter-
ies. Under each lottery ℓ, the agent pays a price 
p(ℓ) and faces N potential “income” events, which 
represent gains or losses to wealth. An income 
event n occurs with probability  μ n  and generates 
income  x n (ℓ), where either  x n (ℓ) < 0 or  x n (ℓ) > 0 
for all ℓ and n = 1, … , N. With probability  
1 −  μ 1  − ⋯ −  μ N  the agent does not experi-
ence an income event. Thus, we can write

 ℓ ≡  ( −p(ℓ) +  x 1 (ℓ),  μ 1 ; … ;

    − p(ℓ) +  x N  (ℓ),  μ N ; − p(ℓ), 1 −  ∑  
n=1

   
N

    μ n  ) .

This structure can suit many applications. For 
example, it can capture deductible choices in 
insurance, where p(ℓ) is the total premium paid 
for insurance against N losses, and  x n (ℓ) < 0 is 
the deductible paid if loss n occurs. Similarly, it 
can describe bets on horse races, where p(ℓ) is 
the aggregate wager on N bets, and  x n (ℓ) > 0 is 
the payoff received if bet n pays.3

Without loss of generality, take a lottery 
ℓ such that  x 1 (ℓ) ≤ ⋯ ≤  x N  (ℓ) < 0. Under 
expected utility with correct beliefs, the utility 
of ℓ is given by

(1) U(ℓ) =  ∑  
n=1

   
N

    μ n  u ( w − p(ℓ) +  x n (ℓ) ) 

 +  [ 1 −  ∑  
n=1

   
N

    μ n  ]  u ( w − p(ℓ) ) .

The function u( ⋅ ) is a utility function defined 
over final wealth, and w is initial wealth.

A possible deviation from (1) is a RM model. 
A second possible deviation is a RDPW model. 
Under both models, the utility of ℓ is given by

 U(ℓ) =  ∑  
n=1

   
N

    ω n  u ( w − p(ℓ) +  x n (ℓ) ) 

 +  [ 1 −  ∑  
n=1

   
N

    ω n  ]  u ( w − p(ℓ) ) .

3 Note that under this structure  μ n  is independent of ℓ. This 
holds in the case of horse bets, where the bets do not influence 
the probability of winning (unless the race is fixed). In the 
case of insurance deductibles, it is a reasonable approximation 
provided that any deductible-related moral hazard is small. 

The two models, however, differ on the deci-
sion weights,  ω 1 , … ,  ω N . Under RM, the weight 
on income event n is  ω n  = ψ( μ n ) for all n, where 
ψ( μ n ) is the agent’s incorrect belief regarding the 
probability of event n. Under RDPW, by contrast, 
the weights are  ω 1  = π( μ 1 ) and  ω n  = π (  ∑  i=1  

n
   μ i  )   

− π (  ∑  i=1  
n−1   μ i  )  for n ≥ 2, where π( ⋅ ) is a prob-

ability weighting function.4 Consequently, 
except for the special case where π(μ) = cμ for 
some c > 0, the decision weights depend on the 
ranking of outcomes under RDPW but are inde-
pendent of the ranking of outcomes under RM. 
It follows that if the ranking of outcomes dif-
fers across lotteries, the decision weights differ 
across lotteries under RDPW but are identical 
across lotteries under RM.

A. Binary Lotteries

In most studies that estimate risk prefer-
ences from field data, there is one income event 
that either occurs or does not occur, and for all 
options in the choice set the payoff when the 
event occurs is always worse (insurance) or 
always better (gambling) than the payoff when 
the event does not occur. In this case, both mod-
els are given by

 U(ℓ) =  ω 1 u ( w − p(ℓ) + x(ℓ) ) 

 + (1 −  ω 1 )u ( w − p(ℓ) ) ,

where  ω 1  = ψ( μ 1 ) under RM and  ω 1  = π( μ 1 ) 
under RDPW. Because the ranking of outcomes 
is the same for all lotteries, RDPW loses the 
distinction that the weights differ across lotteries. 
Hence, the two models are indistinguishable.

B. Lotteries with Multiple Income Events

With multiple income events, however, it 
becomes possible to distinguish RDPW from 
RM. The key additional requirement is that the 
ranking of outcomes differs across lotteries. To 
illustrate the intuition, it suffices to consider the 
case of two income events and two lotteries.

4 As in Tversky and Kahneman (1992), in the loss 
domain we order outcomes from largest loss to smallest loss. 
For the case of bets, which are in the gain domain, Tversky 
and Kahneman order outcomes from largest gain to smallest 
gain (i.e.,  x 1 (ℓ) ≥ ⋯ ≥  x N  (ℓ) > 0), which yields identical 
equations for  ω 1 , … ,  ω N . 
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Suppose there are two income events, 1 and 2, 
and two lotteries, a and b. Suppose further that 
(i)  x 1 (ℓ) < 0 and  x 2 (ℓ) < 0 for ℓ = a, b and (ii)  
x 1 (a) <  x 2 (a) and  x 2 (b) <  x 1 (b). Under RM, the 
decision weights do not depend on the ranking of 
outcomes and, hence, are the same for lotteries a 
and b. In particular, the weights are  ω 1  = ψ( μ 1 )  
and  ω 2  = ψ( μ 2 ), whether the agent chooses 
 lottery a or b. Under RDPW, by contrast, the 
decision weights are dependent on the ranking 
of outcomes and, hence, differ for lotteries a and 
b. In particular, the weights are  ω 1  = π( μ 1 ) and  
ω 2  = π( μ 1  +  μ 2 ) − π( μ 1 ) if the agent chooses 
lottery a but are  ω 1  = π( μ 1  +  μ 2 ) − π( μ 2 ) and  
ω 2  = π( μ 2 ) if the agent chooses lottery b.

The fact that the decision weights differ 
across lotteries under RDPW but are identical 
across lotteries under RM is a testable implica-
tion that potentially can be used to distinguish 
RDPW from RM in this environment. This fact 
also implies that, with multiple income events 
and lottery-dependent outcome rankings, the 
RM and RDPW models can make different pre-
dictions. The exact nature of the models’ predic-
tions and their differences depend on the specific 
application. In the next section, we consider the 
application of deductible choices in insurance.

II. Application: Insurance Deductible Choices

A. A Model of Deductible Choice

Heterogeneous agents purchase insurance 
against two potential losses. Each agent is charac-
terized by a vector of loss probabilities μ = ( μ 1 ,  μ 2 )  
and a vector of base premia q = ( q 1 ,  q 2 ). We 
assume the agent ignores the possibility of incur-
ring both losses.5

Each agent purchases a separate policy for 
each loss. Each policy n provides full insurance 
against loss n, subject to a deductible  d n  chosen 
by the agent. Under each policy, the agent faces 
J > 2 deductible options, the highest of which 
never exceeds the size of the covered loss. The 
agent’s base premium  q n , together with its chosen 
deductible  d n , determines the premium  p n  paid 
by the agent for policy n, i.e.,  p n ( d n ) = f  ( d n ;  q n ). 
Let d = ( d 1 ,  d 2 ) denote the vector of deductibles 

5 This assumption is plausible. It is analogous to assum-
ing the agent ignores the possibility of a single loss occur-
ring multiple times. Moreover, it is testable in field data. 

chosen by the agent and p(d) =  p 1 ( d 1 ) +  p 2 ( d 2 ) 
denote the total premium paid by the agent.

In this environment, each agent faces a choice 
among  J   2  lotteries of the form

  ℓ d  = (−p(d) −  d 1 ,  μ 1 ; − p(d) −  d 2 ,  μ 2 ;

 − p(d), 1 −  μ 1  −  μ 2 ).

The utility of lottery  ℓ d  is given by

 U( ℓ d ) =  ω 1 u(w − p(d) −  d 1 )

 +  ω 2 u(w − p(d) −  d 2 )

 + [1 −  ω 1  −  ω 2 ]u(w − p(d)).

Under RM,  ω 1  = ψ( μ 1 ) and  ω 2  = ψ( μ 2 )  
for all  ℓ d . Under RDPW, (i)  ω 1  = π( μ 1 ) and  
 ω 2  = π( μ 1  +  μ 2 ) − π( μ 1 ), if  d 1  ≥  d 2 , or (ii)  
 ω 1  = π( μ 1  +  μ 2 ) − π( μ 2 ) and  ω 2  = π( μ 2 ), if  
d 1  ≤  d 2 . As this environment corresponds to the 
one in Section IB with N = 2, we know that it 
may be possible to distinguish RDPW from RM 
using choice data from this environment.

To develop some intuition for what patterns 
in the data would select RDPW versus RM, we 
need to investigate exactly how the RDPW deci-
sion weights differ across lotteries. Here, we 
develop implications of the probability weighting 
functions typically used in the literature.6 A key 
feature of these functions is that they are subad-
ditive—i.e., π( μ 1  +  μ 2 ) < π( μ 1 ) + π( μ 2 )—for 
relatively small probabilities.

6 Take, e.g., the probability weighting functions in Tversky 
and Kahneman (1992) and Prelec (1998), and the prob-
ability distortion function estimated in Barseghyan et al. 
(forthcoming). 
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Figure 1. Discontinuity in Weights under RDPW
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Assuming that π( ⋅ ) is subadditive, Figure 1 
depicts for both models how the weight  ω 1  on 
loss event 1 varies with  d 1  holding constant  d 2 .  
Under RM, the weight  ω 1  is the same 
for all  d 1  (i.e.,  ω 1  = ψ( μ 1 ) for all  d 1 ).  
Under RDPW, however, the weight  
ω 1  is small for  d 1  ≤  d 2  (when  ω 1  =  
π( μ 1  +  μ 2 ) − π( μ 2 )) and large for  d 1  ≥  d 2   
 ( when  ω 1  = π( μ 1 ) ) . This  discontinuity  creates 
“kinks” in the utility function that encourage 
the agent to choose  d 1  =  d 2  (the strength of 
this force depends on the degree of subaddi-
tivity). By contrast, there is no such disconti-
nuity under RM. Therefore, if the data exhibit 
significant clustering on equal deductibles—
beyond that implied by having similar loss 
 probabilities and base premia—the data will 
tend to select RDPW with a subadditive π(μ).

B. Simulated Field Data

To buttress the intuition developed in 
Section IIA, we perform simulations in which we 
assume first that the RM model is the data gen-
erating process (DGP) and then that the RDPW 
model is the DGP. We calibrate both models 
according to the data and estimates reported in 
Barseghyan et al. (forthcoming). To lay bare the 
different predictions of the models, we consider 
a stylized environment with two loss events and 
four deductible options. The set of deductible 
options is {$100, $250, $500, $1,000}.

In each simulation, we consider a population 
of 5,000 agents with homogeneous preferences. 
Heterogeneity in deductible choices arises from 
three sources: heterogeneity in loss probabili-
ties μ = ( μ 1 ,  μ 2 ), heterogeneity in base pre-
mia q = ( q 1 ,  q 2 ), and McFadden choice noise 
ε. For each loss event n, we assume: (i) ln  μ n  is 
i.i.d. N(−2.6, 0.4), yielding a mean of 9.1 per-
cent; (ii) ln  q n  is i.i.d. N(5.80, 0.75), yielding 
a mean of $480; (iii) ε is i.i.d. type 1 extreme 
value with scale parameter σ, where σ is chosen 
such that approximately 20 percent of choices 
are altered by noise; and (iv) premiums are 
given by  p n ($1,000) = (0.8) q n ,  p n ($500) =  q n ,  
 p n ($250) = (1.2) q n , and  p n ($100) = (1.5) q n .

In addition, we assume ψ(μ) = π(μ) = 0.061 + 
1.186μ − 2.634 μ 2  (which is subadditive on 
the relevant range). We further assume CRRA 
utility, u(z) =  z 1−ρ /(1 − ρ), and we fix initial 
wealth at w = $33,000 (2010 US per capita 
disposable income). The coefficient ρ differs 

by simulation. In the RM simulation ρ = 17.0, 
whereas in the RDPW simulation ρ = 41.3. 
These values are chosen so the average agent 
in each simulation has a similar “overall” aver-
sion to risk. Specifically, they ensure that an 
agent with the mean loss probability vector,  
 
_

 μ  = (0.091, 0.091), and the mean base pre-
mium vector,  

_
 q  = ($480, $480), is indiffer-

ent (absent choice noise) between d = ($500, 
$500) and d = ($1,000, $1,000), whether the 
agent has RM or RDPW preferences.

Figure 2 compares the distributions of simu-
lated deductible choices under RM and RDPW. 
It clearly reflects the intuition developed 
in Section IIA. Under RM, the cross-event 
deductible choices are nearly uncorrelated—
the correlation between  d 1  and  d 2  is 0.05. Under 

Figure 2. Histograms of Simulated Choices
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RDPW, by contrast, the cross-event deductible 
choices are heavily concentrated along the 
main diagonal (on which  d 1  =  d 2  ), and the cor-
relation between  d 1  and  d 2  is 0.70.

III. Toward Distinguishing RDPW from RM

The simulations in Section IIB clearly dem-
onstrate that a population of RDPW agents 
generates a different pattern of deductible 
choices than a population of RM agents with 
comparable preferences. To truly distinguish 
RDPW from RM, however, one must rule out 

the possibility that a population of RM agents 
with different preferences—i.e., different ψ( ⋅ ), 
ρ, and σ—could generate a pattern of deductible 
choices that is similar to the one generated by a 
population of RDPW agents. As a first pass, we 
estimate the best fit of the RM model to the sim-
ulated data from the RDPW model. In particu-
lar, we specify ψ(μ) = a + bμ + c μ 2  and then 
estimate the model parameters—a, b, c, ρ, σ—
by maximum likelihood.

Figure 3 presents the estimated ψ(μ) and the 
distribution of simulated deductible choices 
under the best fit of the RM model. Panel A dem-
onstrates that the best fit ψ(μ) and ρ are clearly 
different from those used to generate Figure 2, 
panel A. Panel B clearly illustrates that the best 
fit of the RM model cannot mimic the RDPW 
model. Indeed, a comparison of Figure 2, panel 
B and Figure 3, panel B reveals that, unlike the 
RDPW simulated data, the best fit of the RM 
model still has the key distinguishing feature 
that the cross-event deductible choices are 
nearly uncorrelated—the correlation between 
d1 and d2 now is 0.03.
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