
Supporting Evolution in Software using
Frame Technology and Aspect Orientation

Neil Loughran, Awais Rashid

Computing Department, Lancaster University, Lancaster LA1 4YR, UK
{loughran | awais} @comp.lancs.ac.uk

Abstract

This paper discusses how the problems involved in
supporting evolution in software can be resolved by
using aspect oriented programming and frame
technology. Throughout the lifetime of a software
system, new requirements may arise that will require the
existing system to be altered or evolved in someway.
Evolution is something which is almost impossible to
predict at the design stage. Although it is common to
anticipate future evolutions and therefore prepare and
design our code to accommodate this, there will
eventually come a time when a certain feature or
scenario appears where this may not be practical.

1. Introduction

Throughout the lifetime of a software system or
architecture, new requirements may arise that will
require the existing system to be altered or evolved in
someway. Therefore an effective mechanism for
evolution is an important factor in the creation of
software systems. It is estimated that up to 80% of
lifetime expenditure on a system will be spent on
maintenance and evolution. However, achieving
effective evolution across the board with current
technologies is difficult because of the complexities
involved.

Evolution is something which is almost impossible to
predict at the design stage. Although it is common to
anticipate future evolutions and therefore prepare and
design our code to accommodate this, there will
eventually come a time when a certain feature is required
or a scenario appears where this may not be practical.

2. Background

2.1 Categories of evolution

Software evolution and maintenance can be divided
into the categories shown in Table 1, which are derived
from [6].

Table 1. Traditional categorisation of evolution

Category Description / Example

Corrective Fixing of bugs

Adaptive Addition of new features
Changing of functionality
Support for new platforms

Perfective Improving system
functionality
Improving performance

Preventative Preventing problems before
they occur

It should be noted here that any evolution made to a

system could fall into one or more of the categories
shown. For instance perfective evolution where, for
example, the performance of a particular component
needs to be improved, may also require other components
of the system to be evolved thus requiring adaptive and
possibly preventative evolution. Evolution of a particular
component or feature may require other assets at different
stages of the software lifecycle to also be evolved such as
testing and documentation. This brings forward cases
where evolution effectively crosscuts system structure and
architecture. From this we can add two sub categories to
the aforementioned, namely crosscutting and non-
crosscutting evolution.

Corrective

Perfective

Adaptive

Preventative

Crosscutting

Non-Crosscutting

Anticipated

Unanticipated
Evolution

Corrective

Perfective

Adaptive

Preventative

Crosscutting

Non-Crosscutting

Anticipated

Unanticipated
Evolution

Figure 1. Evolution types

Another important notion is that of anticipated and

unanticipated evolution. While anticipated evolutions
can be obviously accommodated, unanticipated
evolutions are of great concern if the system or

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

architecture is to avoid erosion. Figure 1 illustrates the
possible evolutions types.

Aspect orientation is designed to be used with
conventional separation of concerns mechanisms, such as
object-orientation, and should not be seen as a
replacement for these techniques. It should be noted that
the notion of aspect orientation now goes far beyond just
programming level and is now being used at different
levels of the software lifecycle such as the software
design [7] [8] and requirements stages [9][10].

2.2 Crosscutting and separation of concerns

One of the principle requirements in software
composition is to achieve a good level of separation
between the different concerns in the system. By
separation of concerns we mean the encapsulation of
particular functional or non functional properties of the
system which crosscut the system structure. This allows
each concern to be viewed in it own space making system
comprehensibility and manageability easier to understand
thus facilitating reuse and evolution.

2.3 Software erosion

Erosion occurs when software, which has been
continually evolved, eventually becomes difficult to
understand, maintain and therefore evolve and reuse.
When evolving a system we want to lessen the negative
effects of the evolution in order to minimise the
possibility for erosion. Erosion can occur anywhere from
erosion of a particular component to the much larger
problem of erosion in software designs and architectures.
[1] cites cases where projects have had to be started from
scratch as the source had become eroded beyond repair.

3. Approaches

3.1 Frame Based Technologies

Frame technology [2] is a concept that has its roots in
the 1970s and was conceived by Paul G. Bassett as a
means to providing adaptive reuse. By adaptive reuse we
mean the process of creating generalised components that
can be easily adapted or modified to different reuse
contexts. From a simple perspective frame technology is
a language independent textual pre-processor that creates
software modules by using code templates and a
specification from the developer. Variations of the
technology inspired by Bassetts work such as XVCL [3]
and FPL [4] use the XML language in order to
implement the framing syntax. Frame technology works

by organising frames into a hierarchy as shown in Figure
2, which depicts a partial view of a simple web browser.

Web
Browser

GUI

Spec

Toolbar Menu Editor
Pane

Look
and
Feel

Services

Network Cache Navigation

Web
Browser

GUIGUI

Spec

Toolbar Menu Editor
Pane

Look
and
Feel

Services

Network Cache Navigation

Figure 2. Example of frame technology hierarchy

Frames allow points of interest in the code, such as
variation points, code repetition, configuration routines,
optionality etc…, to be explicitly marked in place with
metadata tags or moved to a child frame. By allowing
these points of interest to be marked or modularised the
developer can quickly create highly customisable
systems. The basic granularity for a frame is the
separation of a particular concern, class, method or
related attributes with the hierarchy of frames serving to
isolate content into separate layers, allowing the
localisation of the effects of change and easing evolution.
Usually the lower order frames are the most reusable as
they contain less context sensitive information such as IO
routines, library functions etc...

3.2 Aspect Oriented Programming

Aspect oriented programming (AOP) [5] technologies
are now gaining popularity as a means for supporting the
separation of concerns for features and constructs that
would otherwise cause unmanageable code tangled across
multiple classes in traditional object-oriented systems
(Figure 3).

Aspect
Weaver

Executable
Code

Class A Class B

Classes

Aspects

Synchronisation Debug

Other
Members

Other
MembersClass A Class B

Other
Members

Other
Members

Synchronisation

Debugging

(a) (b)

L
eg

en
d

Class Aspect

Figure 3. (a) Crosscutting concerns in OO languages (b)

Separation of crosscutting concerns with AOP

Examples of the type of concerns that can cause this

fragmentation of context are logging, profiling and
tracing. Having all of the code for each particular
concern modularised has the benefit of making system

code easier to evolve, maintain and be reused hence
increasing productivity, flexibility and reducing costs
thus making them conducive for use within the software
product line context.

There are numerous aspect oriented programming
approaches available for use with the most well known
being AspectJ [11], Hyper/J [12], and composition filters
[13]. There also AOP approaches to run time evolution
of programs such as Java Aspect Components [16] (JAC)
and JMangler [17]. Run time evolution promises the
facility for programs to be modified while they are
executing. This facility will be of great importance to
systems where stopping the system and evolving the code
thus rendering the system from functioning is an
undesirable characteristic from economic and safety
perspectives. Examples of these systems could be 24/7
banking facilities, online commerce and air traffic
control systems.

3.3 Other approaches

There are other approaches which seek to solve the
problems associated with software product line issues
notably Gen Voca [14] and work from the SEI [15].
However for the purpose of this paper we will only
concentrate on frame based and aspect oriented
approaches.

4. Supporting evolution

4.1 Evolution with frames

In section 2 we mentioned the notion of crosscutting
and non crosscutting evolution. Non crosscutting
evolutions are generally easy to solve with frame
technology as their implementations are localised, the
main problem being where the evolution might be spread
out over many child frames spawned from the parent
frame. In this sense the framing process can suffer from
fragmentation of context.

Crosscutting evolution however, is not very effective
with framing alone as there is no separation of concern
mechanism beyond class and frame boundaries. For this
reason aspect oriented technologies can play an
important role in improving the evolution of systems
which impart crosscutting behaviour.

4.2 Evolution with aspect orientation

Aspect orientation has been created with separation of
crosscutting concerns in mind and thus would seem to be
an ideal candidate for supporting the crosscutting
evolutions that is difficult to achieve by framing.

However, while it is possible to use aspect oriented
technologies alone to perform some form of evolution, it
is constrained by the lack of configurability,
generalisation and optionality that framing allows.

4.3 Hybrid approach

We have previously made a case where neither
framing nor aspect orientation can support various
evolutionary scenarios effectively in isolation. With this
in mind it makes sense to combine the two technologies
to improve on current techniques. Table 2 shows a
comparison of the two techniques with their associated
merits and demerits.

Table 2. Comparing frames and aspect orientation

Possible in JAC and JMangler.
Future versions of AspectJ will
have support.

Not supportedDynamic Runtime Evolution

Supports evolution of legacy
systems at source and byte
code level

Not supportedUse on Legacy Systems

Constrained to implementation
language although this will
change as AOP gains wider
acceptance

Supports any textual document
and therefore any language

Language Independence

Not supportedAllows autogeneration of code
and refactoring.

Code Generation

Not supportedAllows code to be generalised to
aid reuse in different contexts

Templates

Addresses problems of
crosscutting concerns

Only non crosscutting concerns
supported

Separation of Concern

Not supported natively,
dependent on IDE

Very comprehensive
configuration possible

Configuration Mechanism

AOPFramingCapability

Possible in JAC and JMangler.
Future versions of AspectJ will
have support.

Not supportedDynamic Runtime Evolution

Supports evolution of legacy
systems at source and byte
code level

Not supportedUse on Legacy Systems

Constrained to implementation
language although this will
change as AOP gains wider
acceptance

Supports any textual document
and therefore any language

Language Independence

Not supportedAllows autogeneration of code
and refactoring.

Code Generation

Not supportedAllows code to be generalised to
aid reuse in different contexts

Templates

Addresses problems of
crosscutting concerns

Only non crosscutting concerns
supported

Separation of Concern

Not supported natively,
dependent on IDE

Very comprehensive
configuration possible

Configuration Mechanism

AOPFramingCapability

By combining the two approaches we gain increased
flexibility which will allow aspects to handle the
crosscutting concerns and framing to impart
configuration, optionality and generalisation of those
aspects where required. Figure 4 demonstrates how a
generalised aspect can be used to perform a crosscutting
evolution on a system or architecture

System/Architecture

Framed
Aspect

Config

Proposed evolution

Classes and aspects

System/Architecture

Framed
Aspect

Config

Proposed evolution

Classes and aspects

Framed
Aspect

Config

Proposed evolution

Classes and aspects

Figure 4. Evolution with framed aspects

It should be noted here that the framed aspect could
work on the architecture even if the architecture itself
was framed or not, thus allowing frames in some sense to

work on legacy systems. Using these approaches brings
forward exciting possibilities for the following:-

• Generalised reusable components which solve

crosscutting problems.
• Refactorisation of aspectual code
• Configurable dynamic run time aspects
• Configurable legacy aspects
• Configurable development aspects (tracing, profiling

etc)
These could be used to perform various kinds of tasks
and evolutions that previously would have been difficult
to realise in a particular technology alone.

5. Conclusion

We have seen that neither frame technology nor aspect
oriented technologies alone can solve all the problems
that evolution brings. There is clearly a need for
configurable aspects for crosscutting evolution. By
combining aspect orientation with a variant configuration
mechanism such as frame technology we get the best of
what both have to offer in terms of flexibility and
evolvability. Generalisation of aspects allows them to be
used in different situations thus making them ideal
candidates for use within software product lines. By
utilising aspect orientation and allowing crosscutting
concerns to be localised we improve our understanding of
system comprehensibility and thus lessen the risks of
architectural erosion.

6. Acknowledgements

The authors would like to thank Dr Stan Jarzabek and
Dr Zhang Weishan of the National University of
Singapore with regards to queries on framing
technologies.

References

[1] van Gurp J. and Bosch J., “Design Erosion: Problems &
Causes”, Journal of Systems & Software, volume 61, issue 2,
2002.

[2] Bassett, P. 1997. Framing software reuse - lessons from real
world, Yourdon Press, Prentice Hall.

[3] Wong, T.W., Jarzabek, S., Soe, M.S., Shen, R. and Zhang,
H.Y. “XML Implementation of Frame Processor,” Symposium
on Software Reusability, SSR’01, Toronto, Canada, May 2001,
pp. 164-172.

[4] Sauer, F. “Metadata driven multi-artifact code generation
using Frame Oriented Programming”, OOPSLA 2002.

[5] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J.-M., Irwin, J., “Aspect Oriented
Programming,” Proc. of the European Conference on Object-
Oriented Programming (ECOOP), 1997.

[6] Lientz, B., Swanson, E., and Tompkins, G., "Characteristics
of Application Software Maintenance," CACM 21, No. 6 June
1978

[7] Clarke, S., Walker, R. J., "Composition Patterns: An
Approach to Designing Reusable Aspects" proceedings of the
23rd International Conference on Software Engineering
(ICSE), Toronto, Canada, May 2001.

[8] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. "N
Degrees of Separation:Multi-Dimensional Separation of
Concerns". Proceedings of the International Conference on
Software Engineering (ICSE'99), May, 1999.

[9] Rashid, A., Sawyer, P. et al., “Early Aspects: A Model for
Aspect-Oriented Requirements Engineering”, IEEE Joint
International Requirements Engineering Conference, IEEE
Computer Society Press, 2002.

[10] Grundy, J., “Aspect-Oriented Requirements Engineering
for Component-based Software Systems”. 4th IEEE
International Sympsium on RE, IEEE Computer Society Press,
1999.

[11] Xerox PARC, USA, AspectJ Home Page,
http://aspectj.org/

[12] IBM Research, Hyperspaces,
http://www.research.ibm.com/hyperspace/

[13] Aksit, M., Bergmans, L. & Vural, S., “An Object-Oriented
Language-Database Integration Model: The Composition-
Filters Approach”, ECOOP '92, LNCS 615, pp 372-395,
Springer-Verlag, 1992.

[14] Batory, D., Chen, G., Robertson, E. and Wang, T. “Design
Wizards and Visual Programming Environments for GenVoca
Generators,” IEEE Trans. on Software Engineering, Vol. 26,
No.5, May 2000, pp. 441-452

[15] Carnegie Mellon, Software Engineering Institute,
homepage http://www.sei.cmu.edu

[16] Pawlak, R., Martelli, L. and Seinturier, L. The JAC project
home page. http://jac.aopsys.com

[17] Kniesel, G., Costanza, P. and Austermann, M. JMangler
home page, http://javalab.cs.uni-bonn.de/research/jmangler/

