
Payment Support in Ubiquitous Computing Environments

P. Boddupalli1, 2, F. Al-Bin-Ali1, 2, N. Davies1, 2, A. Friday2, O. Storz2 and M. Wu2

1
Department of Computer Science

University of Arizona

Arizona, United States

2
Computing Department

Lancaster University

Lancaster, England

{bprasad, albinali, nigel}@cs.arizona.edu, {adrian, oliver, maomao}@comp.lancs.ac.uk

Abstract

Despite ten years of extensive research, Weiser’s vision of
ubiquitous computing is far from a widespread reality.

While research into enabling technologies has progressed
significantly, there has been a lack of research into the

economic and commercial aspects of ubiquitous
computing. In this paper, we investigate techniques that

will enable investors in ubiquitous computing
infrastructure and services to recoup their investment

through charging for service use. In particular, we
identify the key requirements for a ubiquitous computing

payment system, discuss existing payment systems and
present the Payment Session Protocol (PSP) that is

designed to support payment-enabled ubiquitous
computing environments.

1. Introduction.

Since the publication of Mark Weiser’s influential
paper on ubiquitous computing in 1991 [1], researchers
have been working towards the realization of his vision of
environments saturated with computing and
communication capabilities. To date, the emphasis has
been on fundamental research into enabling technologies
such as networking, data management, security and user
interfaces. As a result, prototype ubiquitous computing
environments are being created within the laboratory
[2][3][4]. However, the widespread deployment of
ubiquitous systems is still far from reality and significant
research challenges in the field of deployable ubiquitous
computing systems remain [5].

One important element that will be critical in the
widespread deployment of ubiquitous computing systems
is a sound economic model that will encourage individuals
and companies to invest in ubiquitous computing

technology. The deployment of ubiquitous applications
and environments is likely to involve huge investments
and hence, an important precondition for such investment
is that a suitable return can be obtained. This is in contrast
to the ‘Internet’, which in its infancy was chiefly
supported by government organizations. Moreover, while
services such as mobile communications are typically
controlled by a single operator, it is our belief that
ubiquitous computing environments will thrive due to the
input of many companies and individuals.

Drawing on the experiences of the Internet, we can
identify a number of potential approaches to generating
returns on investment in ubiquitous computing
infrastructure and service provision: cross-subsidization,
advertisement revenues, public investment and revenue
collection from the end-user.

Cross-Subsidization:
In cross-subsidization models, the cost of service

provision is covered by revenue that is generated through
the use of other charged services. For example, consider a
ubiquitous computing environment in a shopping mall that
lets shoppers send email and use large displays. In the
cross-subsidization model, the cost of providing these
services could be borne by the outlets in the mall, which
in turn pass the cost on to shoppers in the form of higher
in-store prices. While examples of cross-subsidization can
be found in many areas of commerce, we believe that this
scheme is unlikely to provide a comprehensive solution
for ubiquitous computing for a number of reasons. Firstly,
infrastructure in ubiquitous computing environments is
likely to be owned by more than one individual or
organization: in the shopping mall, different companies
may provide the displays, email server, and
communication capabilities. Consequently, a subsidization
scheme would require a complex set of contracts among
service providers for revenue sharing: an undesirable
proposition. Secondly, premium services (say, a color

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

printing service) may well be too expensive to be cross-
subsidized. Finally, ubiquitous computing services might
be offered in places such as a road-side kiosk where the
possibility of cross-subsidization is low.

Ad-based Revenue:

Within the context of the Internet, advertisement-based
revenue has been a popular model. In this model, services
are paid for not by users, but by advertisers who promote
their goods to users of the service. However, in the
Internet domain, this model did not turn out to be a viable
business proposition as attested to by the changes
underway. Vendors on the Internet have realized that ad-
based revenue is not sustainable and are increasingly
turning to charging individual customers for service use
(for examples see www.theendoffree.com). Within the
context of ubiquitous computing, many different
advertising modes are possible, ranging from pop-up ads
and tickers on public displays to location-based
advertising [6]. However, drawing parallels with the
Internet, we believe that it is unlikely that advertising
alone will be sufficient to cover the cost of premium
ubiquitous computing services.

Public Service:
Yet another possibility is for governments to create

ubiquitous computing infrastructure on the lines of public
radio. Indeed, in many countries ubiquitous services such
as the telephone network began as publicly funded
initiatives. However, while it may be the case that some
elements of ubiquitous computing infrastructure are
government subsidized, it is unlikely that governments
will want to take on the role of ubiquitous computing
service providers. Hence, it is our belief that ubiquitous
computing services and environments will thrive as a
result of private enterprise driven by the desire for profits.

Charging for Service Use:

Finally, revenue for ubiquitous computing services can
be recovered from end-users as is the case for many other
services such as mobile telephony. Such a scheme
provides immense flexibility and scope for creating
revenue streams and reflects the current mechanisms used
in most service industries. For example, television in the
UK was established as a public service paid for by the
government and was subsequently enhanced to include
many subscription-based channels.

All of the above schemes provide mechanisms by
which investors in ubiquitous computing infrastructure
can recover their costs. In our opinion, no one scheme will

emerge as the sole mechanism that is employed, and in
practice combinations of two or more of these schemes
will be used to obtain suitable returns on the investment.
In this paper, we focus on issues concerned with direct
payment for service use – one of the techniques we

identify above as being suitable for obtaining revenue in
ubiquitous computing systems. The main contributions of
this paper are:
1. identification of the key requirements for payment

systems for ubiquitous environments,
2. analysis of existing payment systems and their

suitability for supporting payment for ubiquitous
computing services,

3. a new protocol, the Payment Session Protocol (PSP)
that provides rich support for payment enabled
ubiquitous computing environments, and,

4. examples of the use of PSP to support charging for
service use.

The remainder of this paper is structured as follows.
Section 2 presents a ubiquitous computing scenario in
which services are charged for and establishes the
requirements for a ubiquitous computing payment system.
Section 3 analyses existing electronic payment schemes
and examines their suitability for use in ubiquitous
computing environments. Section 4 presents our protocol
(PSP) for supporting payment in ubiquitous computing
environments and section 5 describes our use of PSP to
support prototype payment-enabled applications. Section
6 describes related work and section 7 presents our
conclusions and discusses future work.

2. Design Requirements for Ubiquitous

computing Payment Systems.

So, what does it mean to charge for ubiquitous
computing services? Do ubiquitous computing
environments impose additional requirements for payment
systems? Do existing electronic payments fulfill those
requirements? To help answer such questions, we
illustrate a typical ubiquitous computing scenario adapted
from [7] and motivate the requirements for payment
systems in ubiquitous computing environments.

Jane is at Gate 23 in the Pittsburgh airport, waiting for

her connecting flight to Honolulu. She has edited
documents on her laptop and would like to print a copy

and use her wireless connection to e-mail them. The
pervasive computing system on her laptop has already

discovered the services available in the airport. The
printer application prompts Jane to select her choice

from the list of discovered services, displaying details of
the services and their associated costs. The email client

however selects the lowest priced service automatically
and mails the documents. In both instances, the wallet on

Jane’s laptop, which Jane has configured to pay
automatically, pays for the services. After collecting her

printed copies, she heads towards a 'triptik' service,
where she can obtain a map of the route from Honolulu

airport to her hotel. Upon payment request, Jane enters
her remote wallet id as her laptop is powered down. She

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

is also issued an e-tag by the 'triptik' service that
identifies her to other services in the airport. Poring over

the map, she strolls across to a café where she can watch
clips of the previous day's super bowl. The scanner

recognizes her e-tag and the payment requests for her
coffee and the football clips are directed to her remote

wallet. Putting down her coffee cup, Jane realizes that
her flight departs in the next 10 minutes, invalidates her

e-tag and heads towards the gate.

From the above sketch, we see that ubiquitous
computing interactions are typically spontaneous and
short-lived, often initiated by mobile users and involving
numerous trusted and untrusted geographically dispersed
services. In the following sections, we derive the design
requirements for payment systems for ubiquitous
computing environments in light of these characteristics.

Spontaneity

Kindberg and Fox [8] argue that spontaneity is an
inherent and desirable characteristic of ubiquitous
interactions. They identify the volatility principle that
states that ubiquitous computing systems should be
designed "on the assumption that the set of participating
users, hardware and software is highly dynamic and
highly unpredictable". In terms of payment systems, this
means that it is highly unlikely that individuals will enter
into long-standing relationships with all of the different
service providers they are likely to encounter. We believe
that ubiquitous computing payment systems should thus
allow users to adopt a pay-as-you-go model for service
use.

Efficiency

A lot of efficiency requirements of ubiquitous
computing payment systems flow out of the trust relation
between users and service providers. More clearly, in
situations where the user and the provider do not have an
established trust relationship, frequent low-value
payments for incremental service provision are more
likely. When many small payments are involved, it is
important that the payment process is lightweight and
efficient; characterized by low communication and
computation costs coupled with low financial overheads.
The computational and communication considerations are
especially important when we consider the resource
limitations typically associated with ubiquitous computing
devices. Finally, many existing payment schemes incur a
significant financial overhead for each transaction (for
example, credit card companies' processing fee is typically
of the order of 50 cents for each transaction). Such an
overhead is clearly unacceptable in ubiquitous computing
environments where frequent low-value transactions are
involved.

Security

Clearly, security is an important consideration in any
payment system and adequate safeguards have to be taken
against frauds such as theft, counterfeit money, and
payment evasion. Ubiquitous computing environments
that are created anywhere and by anybody are more
vulnerable to security breaches than controlled
environments that can be physically secured. The issue of
security also arises due to the lack of established trust
relationships between end-users and service providers. For
example, while users paying upfront for a service are not
assured of the service, service providers charging users
after delivering a service are not assured of payment.
Payment systems that do not address above security
concerns are not acceptable to users or service providers.

Privacy

Many payment systems like credit cards and money
transfers require users to disclose personal information
such as their name and account numbers as part of the
transaction. One could envision ubiquitous scenarios in
which users do not wish to disclose this information but
need to pay for services. Furthermore, without adequate
privacy protection mechanisms, payment information
could be combined with other contextual information
providing detailed information on users' activities. Thus,
for payment systems to be acceptable to users, privacy
should be addressed in the design of ubiquitous computing
payment systems from the beginning, rather than as an
afterthought.

Flexibility

As mentioned previously, ubiquitous systems should
abide by the volatility principle and not assume any
specific configuration of networks, devices, and users.
While we generally consider ubiquitous environments to
be rich in device and network resources, we can identify
two important special cases, disconnected operation and
device unavailability.

Disconnected operation is a mode of operation that
enables clients to continue accessing services during
temporary failures of a shared data repository [9] or a
network connection. In the future, when ubiquitous
computing environments proliferate, they are likely to
span areas that vary widely in network characteristics.
Hence, payment systems should not be based on
assumptions of continuous connectivity.

On the issue of device unavailability, user interactions
with ubiquitous computing environments may or may not
involve a personal device such as PDA or a smart phone.
However, users still need to pay for the service use. It is
therefore important to not make payment rely on the use
of users' personal devices. This issue was highlighted in
the above airport scenario when Jane uses her remote
wallet to pay for the 'triptik' service.

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

Usability

A ubiquitous computing payment system is likely to
be involved in many transactions during the course of a
typical day and it is crucial that special attention be paid to
the usability aspect. For instance, users will expect a level
of service comparable to existing credit cards and bank
accounts. Issues such as trust, liability, accounting and
insurance must be adequately addressed for users to
accept the system. Payment systems face new and difficult
research challenges unique to ubiquitous computing
environments. For example, Mark Weiser espoused the
notion of calm technology [10] where computing
disappears into users' subconscious. However, most users
would not accept a system that allows arbitrary financial
transactions to take place without their involvement. At
the same time, it is not practical for user involvement in
all transactions when transactions are typically of low
value. Hence, designers of payment systems are faced
with balancing the contradictory needs of calmness and
user involvement.

Deployability

In order to be successful, any ubiquitous computing
payment system must be capable of being deployed on a
wide scale. In practical terms, this will require support for
both new and existing services. It is a common experience
that if new concepts such as payment necessitate
significant changes to existing applications, they are
unlikely to be adopted by users at large. Hence, payment
systems should be engineered so as to require minimal or
no changes to the existing code base.

The above requirements highlight some of the key
challenges in designing a payment system for ubiquitous
computing environments.

3. Existing Payment Schemes.

Existing electronic payment systems can be broadly
classified into two categories: macropayment systems and
micropayment systems. Macropayment systems, the most
widely used form of payment, are exemplified by credit
cards and electronic money transfers. Macropayment
systems are generally designed to support transactions
involving medium-high valued payments. In contrast,
micropayment systems are generally characterized by
low-value transactions. Examples of micropayment
systems include Millicent [11] and MicroMint [12]. In the
following sections, we provide an overview of these two
classes of payment system and analyze their suitability for
payment in ubiquitous computing.

3.1. Macropayments

Macropayment schemes are generally designed to
support medium-large payments of the order of $5 or

more [11]. Typical examples of macropayment systems
include credit cards, subscriptions, and bank checks. Since
the value of macropayment transactions is generally high,
such systems are characterized by a requirement for strong
security measures. For example, the theft of someone's
credit card number or a bank account number could result
in the loss of a significant amount of money by users or
merchants. Hence, security measures such as strong
encryption schemes and centralized authorization brokers
are typically an integral part of macropayment systems.
As a result of this desire for strong security together with
associated accounting rigour and billing requirements,
macropayment systems typically incur high overheads in
terms of computational resources, set up costs, and
processing fees. Such overheads result in significant
financial costs being associated with each transaction in a
macropayment scheme. For example, a typical credit card
transaction incurs a processing cost of 50 cents or more. It
is important to note that although Macropayments are
occasionally used for small payments, they are designed
for high-value transactions, for which these overheads
represent a small percentage of the total transaction.

Examining today's e-commerce systems we are able to
identify three frequently used payment mechanisms that
can be classified as macropayment based.

Subscriptions: Subscriptions represent the simplest
model for e-commerce. In this scheme, customers create
accounts with vendors and are billed periodically. During
service initiation, users identify themselves as legitimate
users by providing proper credentials. Vendors add
service costs to the user account and bill the user at
regular intervals.

Credit Cards: In contrast to subscriptions, credit card
schemes allow users to pay as they go without having to
establish accounts with every vendor. Instead, both the
user and the vendor enter into long-term agreements with
a centralized broker, e.g. a bank or a credit card company.
The broker generally represents a trusted entity who is
contacted on every transaction for authentication and
payment authorization. Brokers typically impose a
processing fee for providing their services.

Aggregation: Aggregation is a form of subscription
wherein transaction costs are accumulated at the vendor
until they exceed some threshold. At that point, the
aggregation service deducts the accumulated amount in a
single transaction from the user’s credit card or bank
account. Thus, aggregation amortizes billing charges over
a sequence of less expensive transactions. Aggregation
services are provided by vendors themselves or by third-
party services such as Pay-Pal [13].

3.2. Micropayments

In contrast to macropayments, micropayments are
lightweight payment schemes designed to support low-

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

valued transactions of the order of a few cents. In this
model, users obtain digital cash from an authorized broker
in bulk using conventional payment methods such as cash
or credit cards. This digital cash can be used to pay for
services directly or can be exchanged for vendor specific
digital cash that can be used to pay for a service from a
particular vendor. Thus, micropayment schemes can
operate as a hierarchy of issuers and provide for
lightweight validation of cash without the need to have
cash validated always by a central authority.
Micropayments were conceived to be used to pay for low-
valued items such as web pages, ringtones or small
multimedia clips.

As a result of their focus on low-value transactions,
micropayment systems have lower security requirements
than their macropayment counterparts and thus are
characterized by lightweight encryption techniques. More
specifically, encryption techniques need to be only strong
enough to make the costs of breaking them greater than
the potential monetary benefits. Moreover, the loss of a
few Micropayments is akin to losing small change in a
vending machine and generally considered less acute than
losing a credit card number. Hence, lightweight
encryption techniques are sufficient for micropayment-
based payment systems. Such encryption schemes
decrease the latency of a payment transaction and have
significantly lower computational costs. Furthermore,
Micropayments typically do not incur overheads such as
account setup.

3.3. Analysis

Given the above classification of payment schemes we
can begin to explore the relative merits of macropayment
and micropayment schemes for use in ubiquitous
computing environments.

Considering spontaneity first, we note that in
ubiquitous computing payment systems users should be
able to pay for services without having to establish a long-
term relationship with service providers: it is impractical
for users to have the knowledge of services at different
locations ahead of time. Such spontaneous interactions are
impossible in systems that require advance account set-up.

In terms of efficiency, micropayment systems are
designed to be more efficient than macropayments in
terms of low financial and computational costs and lower
payment latencies. Almost all of the macropayments incur
high financial processing costs and high computational
costs by virtue of using strong encryption mechanisms.
High payment latencies are also associated with services
such as MSN Passport and PayPal that require connection
to a central broker to authorize transactions.

 As regards privacy, macropayment schemes such as
credit cards and third party services such as MSN Passport
require users to disclose their personal information,

allowing different vendors to collude and infer the buying
patterns of users. This clearly amounts to a violation of
users’ privacy. In contrast, the digital cash used in
Micropayments does not contain any personal information,
preventing vendors from colluding to profile users.
However, brokers who dispense the broker scrip to users
and exchange the broker scrip for cash with vendors are
still able to mine information about users. However, in
practice, brokers are likely to be few in number and
generally more trustworthy than vendors (brokers would
be akin to banks) and hence Micropayments generally
offer more privacy than Macropayments.

Finally, macropayments such as credit cards and
aggregation schemes are based on strong connectivity to
brokers for payment authentication and authorization. In
contrast, micropayment systems often utilize authorization
hierarchy and avoid contacting a central authority for
every transaction. The relative merits of macro and
micropayments in terms of requirements for ubiquitous
computing payment systems are summarized in table 1.

Table 1. Comparison of macropayment and

micropayment systems
System/Property Macropayments Micropayments

Spontaneity Not supported Supported

Encryption costs High Low

Broker interaction Frequent Infrequent

Financial costs High Low

Disconnected

operation

Not supported Supported

Payment Latency High Low

Anonymity Low High

Security Medium-High Low-Medium

In general, macropayment schemes such as credit
cards, third-party aggregation services such as PayPal and
other subscription schemes fail to meet one or more of our
requirements of spontaneity, low financial processing
costs, low latencies, anonymity and disconnected
operation. Therefore, we believe that future ubiquitous
computing payment systems will be based on
micropayment schemes that have the potential to satisfy
the design requirements we have identified. In the
following sections, we describe a prototype micropayment
based solution designed to support payments in ubiquitous
computing environments.

4. Payment Session Protocol.

Consider a typical commercial transaction in the real
world such as buying a coffee from a café. After the user
walks into the café, the price of the required item is found
out either by looking at the menu or asking the shop
keeper. In some cases the price may be open to

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

negotiation or reduction through the use of, for example,
discount vouchers. Once the price is agreed, cash is paid
or credit card details disclosed so that the appropriate
amount is billed upon service use. If the merchandise is to
be collected at a later time, the merchant might even issue
a receipt or a token that helps in identifying the user while
claiming the merchandise. This example illustrates that
the actual payment mechanism (cash or credit card) is
only one component of a rich set of interactions that are
required to conduct even the simplest of commercial
transactions. Similarly, for ubiquitous computing
environments where services are charged, the provision of
payment infrastructure requires flexible integration with
other ancillary protocols for service discovery and
interaction. More specifically, we can identify five key
stages in a typical commercial transaction or service use
as shown in figure 1.

Figure 1. Stages of service use in payment-enabled systems

For any given transaction not all of these stages will be
applicable and the order may differ from other
transactions. For example, client applications may do
service discovery and price negotiation ahead of obtaining
the appropriate currency and use the service subsequently.
Hence, these stages should simply be viewed as a set of
tasks that must be supported in order to provide
comprehensive support for a broad range of commercial
transactions.

In the following sections, we present a new protocol
termed the Payment Session Protocol (PSP) that provides
support for payment-related interactions between clients
and servers. It should be noted that PSP does not address

issues such as service discovery since numerous protocols
already exist to support these issues. PSP reflects
commercial transactions in the real world and is based on
the exchange of contracts. These contracts describe the
non-functional characteristics of services such as QoS,
cost and terms and conditions of use and are created to
provide service level agreements between clients and
servers. PSP is designed to operate in conjunction with a
micropayment-based payment solution. In our current
architecture we have focused on interoperating with the
Millicent micropayment system [11].

It should be noted that one critical component of any
payment system is maintaining association between
payment and service use. In a secure environment in
which clients and servers are always authenticated prior to
service use this is a straightforward problem since the
identities of the parties involved are know and payment
can be associated with specific clients, servers and
instances of service use. However, in the more general
case, maintaining an association between service use and
payment is a challenging problem. For example, if a client
pays for access to a service using one payment-specific
protocol and then accesses the service using a second
service-specific protocol, the service provider needs to
ensure that only clients who have paid have their requests
honored. In ubiquitous environments we believe that it is
unreasonable to assume a secure environment or a single
mechanism for identifying clients. Hence, we adopt an
approach in which the mechanism for maintaining the
association between service use and payment is negotiated
as part of the contract exchange process. For example, a
contract may specify either that service invocations are
accompanied by specific session identifier or are
acceptable only from a specified client address. Where
services are of a high-value more rigorous means of
associating service use and payment (such as using a
secure channel for both payment and service use) must be
specified in the contract. In short, no one method of
associating payment and the service use suffices and the
particular method depends on the service and the
corresponding terms of service use.

4.1. Underlying Payment Scheme: Millicent

PSP could work in conjunction with multiple
payment schemes. For the purposes of our research
however we have focused on the use of the Millicent
protocol as an underlying payment protocol. Millicent is
based on two kinds of scrip: ‘broker scrip’ and ‘vendor
scrip’ that are specific to, and validated by, brokers and
vendors respectively. When a customer makes a purchase
with a scrip, the cost of the purchase is deducted from the
scrip’s value and a new scrip (with the new value) is
returned as change. When the customer has completed a

1. Obtaining means of payment – this stage
involves obtaining the appropriate means of

paying for the service, e.g. obtaining digital
cash in an appropriate currency.

2. Service discovery and selection – in this stage
the client discovers available services and

selects based on a range of factors including
price.

3. Payment negotiation – once an appropriate
service has been selected the client can

negotiate payment related parameters such as
payment method and mechanism for
authentication.

4. Service use – clients use the service in question,
possibly making on-going payments during this

phase.
5. Termination - this is an extension of stage 3, in

which at the end of service use clients reclaim
any unspent money or obtain a proof of payment

and service use.

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

series of transactions, they can “cash in” the remaining
value of the scrip.

Brokers, serving as accounting intermediaries, buy and
sell ‘broker scrip’ and ‘vendor scrip’ as a service to
customers and vendors. Users buy ‘broker scrip’ when
they do not have prior knowledge of services they will use.
In such instances, ‘broker scrip’ serves as the common
currency, accepted by all vendors. When users utilize the
services of a vendor, they initially tender the broker scrip.
The vendor after validating the ‘broker scrip’ with the
broker returns ‘vendor scrip’ to the user, that is
subsequently used for paying that vendor. It might be
noted that the vendor contacts the broker only once for
validating the broker scrip and thereafter validates the
‘vendor scrip’ locally. Alternatively, if users have prior
knowledge of the vendors they will interact with, they can
buy the corresponding vendor scrip from brokers. In such
instances, vendors need not contact brokers as the vendor
scrip is validated locally. Thus, Millicent, by localizing
the validation of the vendor scrip, survives network
disconnections between a Ubiquitous computing
environment and the outside world.

The sequence of interactions among the three entities
is captured in the following diagram.

Figure 2. The sequence of interactions among brokers, users

and vendors

In step 1 and 2, users request and obtain ‘broker scrip’
or the ‘vendor scrip’, using some form of macro-payment
such as credit cards. If the broker scrip is bought from the
broker, in step 3, the user connects to the vendor over a
secure channel and tends the broker-scrip to the vendor.
The vendor then validates the broker scrip by contacting
the broker (4). In step 5, the vendor returns its own scrip
(the vendor scrip), a certificate and a session key that is
used to encrypt any further sensitive communication
between the user and the vendor. It should again be noted
that the vendor talks to the broker for validating the
‘broker scrip’ only once. Later on, when the user pays
with the vendor scrip, the vendor itself validates the scrips.
After the service use is complete, the vendor in step 6
translates any unspent vendor scrip into broker scrip and
returns it to the user in step 7. The user can then use that
broker scrip to pay other vendors or exchange it with the
broker for other forms of payment.

Millicent only defines the vendor scrip format and its
associated authentication mechanism. A 'vendor scrip'
consists of the 'Scrip body' and its certificate. The format
of the 'Scrip Body' is shown in figure 3.

Figure 3. Format of the Millicent vendor scrip

The certificate is the result of hashing the scrip body
with 'Master Scrip Secret' (MSS), which is known only to
the vendor, i.e.

Certificate = hash (Scrip Body, MSS);
Vendor Scrip (SV) = <Scrip Body, Certificate>

Using the certificate contained in the scrip, the vendor
ensures that the scrip has not been tampered with. He
further checks that the scrip has not been used by
comparing it against the database of spent scrips. If valid,
the vendor services the request and if any change is left
from the vendor scrip, returns a new scrip S'

V. S'
V is then

used for further payments.
It should be noted that Millicent is one of a number of

micropayment protocols and a detailed comparison of
different micropayment schemes can be found in [15].

4.2 PSP Contracts

Contracts in PSP are documents that specify the terms
and conditions of service provision and use. They have
obvious equivalents in the real world such as the contracts
exchanged during real-estate transactions. The general
format of a PSP contract is shown in figure 3.

Contract ::= Date, ContractId,

 ([ServiceDesc]+ |

[JobDescription]?),

 [signature]?,

 [version history]*;

ContractId ::= uri;

ServiceDesc ::= [ServiceEntry]+,

Association,

 [terms and conditions]?;

ServiceEntry ::= Description, ServiceId,

Cost, [QoS]?;

JobDescription ::= ServiceId, [Argument]*,

 [Payment]*,

[sessionId |

application specific

attributes]?;

ServiceId ::= uri

Argument ::= string, “=”, string;

Payment ::= Currency, PaymentMethod,

 [payment | wallet uri]+;

Association ::= “PSP”, AssociationData |

“InBand”,

 [“SecureChannel”]?,

AssociationData;

Vendor Value ID# Cust ID# Expiration Time Other Data

Broker

1, 2

Vendor

User

3, 5

4, 6

7

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

AssociationData::= “SessionId”, sessionId |

“ApplicationAttributes”,

attribute specification;
Cost ::= Currency,

 PaymentMethod,

 Price;

Currency ::= “MillicentScrip” |

string;

PaymentMethod ::= “Prepay” |

 “Postpay” |

 “OnDemand”;

Price ::= price specification;

Figure 4. PSP contract definition

Contracts are composed of three basic components:
information about the contract itself (identifiers, version
history, signatures etc.), a description of one or more
services offered by the service provider or a description of
one or more services that the client wishes to pay for (akin
to a purchase order). Service descriptions include service
details and associated non-functional parameters such as
cost, QoS and terms and conditions of use. In addition,
service descriptions specify how service use is to be
correlated with payment, as discussed previously.

It should however be noted that contracts are not as
heavyweight as they might sound and are a vehicle to
explore and accommodate the requirements of different
transactions. In a simplistic scheme, a contract might
include just the description and the cost of the service and
the contract negotiation might just involve paying for the
service. We have not at present, defined all aspects of
contracts in detail: to do so would be a major undertaking.
Witness for example, the complexity in developing a
generic mechanism for specifying privacy policies in a
machine-readable format [16]. However, Figure 4 offers
an insight into the likely content of contracts and provides
sufficient detail to motivate the remainder of this paper.

4.3 PSP Commands

PSP is used to support the exchange of contracts and
payment between clients and servers. In other words, PSP
provides a framework for integrating payment into
applications. The protocol supports the basic tasks of
obtaining information on available services, negotiating
the terms and conditions of service provision and use
(including the cost), paying for service use and
management of service use agreements.

The specific operations supported in PSP are shown in
Table 2 and described in the remainder of this section.

Table 2. PSP operations

Operation Return Results

GetServiceDesc (query) Draft Contract(s)

Submit (contract) Contract (possibly

signed)

Invalidate (contractId) Status

Pay (contractId, payment,

args)

Status

GetPayment (contracted,

args)

Status or Payment

GetStatus (options) Status

GetServiceDesc (query)

Clients wishing to use a payment enabled service can
obtain detailed information about the characteristics of the

service by invoking the 'GetSeviceDesc' method on

the service's PSP endpoint. This information is returned as
a draft contract, optionally signed by the server as
described in section 4.2. In many cases clients will already
be aware of the characteristics of the service they wish to
use and may already have cached a draft contract. In such
cases this operation will not be used.

Submit (contract)

Having obtained a draft contract for a service, a client
can decide on the specific details of its service use,
complete a job description associated with the contract
and submit a (optionally signed) version to the server. If
the client has accepted the terms and conditions of the

server's draft contract, the 'Submit' operation creates a

binding agreement between the two parties. However, the
client can also choose to modify parts of the contract and
submit this to the server as part of a negotiation phase.
Such negotiation could involve repeated exchanges of
contracts between clients and servers. However, in general,
we believe that clients will typically accept the draft
contracts proposed by service providers and are unlikely
to become involved in lengthy negotiations with the server.

Invalidate (contractId)

Subject to the terms and conditions of a contract, a
client or server can choose to terminate a previously

agreed contract by invoking the 'Invalidate'

operation. This termination could reflect the satisfactory
conclusion of a transaction or, for example, a client's
desire to no longer use the service offered.

Pay (contractId, payment, args)

Once a contract has been agreed clients can use the
Pay operation to send payment for a service to the service
provider. This payment may take the form of Millicent
scrip or a URI through which the server can obtain
payment. This enables, for example, third-party payment

for service use. The arguments associated with the 'Pay'

operation are contract/service specific and are used to, for
example, associate the payment with a specific use of the
service.

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

GetPayment (contracted, args)

In cases where clients have presented a URI to the
server in lieu of payment the service provider invokes the

'GetPayment' operation on the endpoint specified by

this URI. Once again the arguments are contract/service
specific and can be used to ensure that the endpoint from
whom payment is being requested is able to verify that the
request is bona fide. Besides, this operation should
confirm to transaction semantics for security and
consistency.

GetStatus (contractId, options)

'GetStatus' is used for general management

functions such as enabling clients to enquire about the
status of an agreement or associated session. This
operation can also be used to obtain additional
information from the service provider such as a receipt for
service use or a copy of the contract between the client
and server.

In the general case, clients and servers pass through
the stages of service discovery, negotiation, payment,
service use and termination using the operations described
above. However, there are several optimizations that can
be carried out that help to reduce the overhead associated
with PSP. Specifically:
(i) Clients can cache draft contracts or obtain contracts

as part of their general service discovery mechanisms
– hence removing the requirement to call

'GetServiceDesc' on service providers.

(ii) Clients who hold draft contracts for a service can
send payment together with their job request –
removing the need for a separate interaction for
payment.

(iii) Completion of service use can signal termination of

the agreement and hence 'Invalidate' messages

may not be required.
A subset of PSP can also be implemented as an

extension to existing application protocols such as HTTP
or SMTP. Hence, in an optimal scenario, clients could
simply send a URI for a contract and associated job
request together with payment as part of the extended
application protocol. In this paper we do not specify how
PSP should be engineered. Indeed, it maybe that different
environments would wish to support PSP using
underlying transport protocols that are supported within
the specific environment.

5. Integrating Payment into Applications.

Critical to the success of PSP is the ease with which it
can be integrated into new and existing applications. In
this section we explore the practical implications of
including PSP in a ubiquitous computing environment by
considering how PSP can be integrated into our existing
system to control access to a public wireless network.

As part of our on-going work into providing public
access to ubiquitous computing infrastructure we have
deployed a wireless city-wide public access network based
on 802.11. This network runs IPv6 and public access is
managed using a custom public access control system
developed in-house [17]. This system is based on the
concept of packet marking and filtering. More precisely,
each IPv6 packet sent from an authenticated client
terminal contains within the IPv6 extension header an
access control token (ACT), which is then verified by the
router that controls network access (AR). Based on the
presence and validity of the ACT, access to the rest of the
network is either granted or denied. The ACT is generated
and distributed to the client terminal and the access
control router by the Authentication Server (AS) after the
user is authenticated. A detailed description of our access
control mechanism and the secure token distribution
protocol can be found in [17].

Currently we authenticate clients (and hence control
access to the network) by requiring users to log-in to the
system using a user name and password. Successful
authentication results in an ACT being distributed to the
client. To protect the user name, password and ACT a
secure channel is used for the log-in process. In order to
support public access to the network based on payment
rather than credentials the following changes would be
required. Firstly, the AS would need to be extended to
support PSP and to provide a suitable PSP end-point
through which clients could interact with the AS. The
second step would be to formulate an appropriate contract
for network access. Such a contract would need to
describe the service and associated terms and conditions
and would clearly have much in common with existing
service agreements between ISPs and users. For the
remainder of this example we assume that the contract
states that network connectivity costs 10c per minute with
payment being required for each minute in advance. Since
the service provider does not trust the client they are
requesting payment prior to providing the service. Of
course, since the client does not, in turn, trust the service
provider they are unlikely to wish to pay for more than
one minute in advance; hence payment will need to be
collected in parallel with service use.

Client devices entering our network domain would
first request the draft contract for service use from the
AS's PSP end-point. Assuming they agree to the terms and
conditions they would complete the necessary details in
the contract and send a copy back to the AS. Since the
contract requires payment in advance the client sends a
URI and an identifier as part of the job request component
of the contract that is returned to the AS. The AS can then

invoke the GetPayment operation on this URI and obtain

Millicent scrip sufficient to cover the first minute of
operation. The AS can then issue the client with an
appropriate ACT and the client can access the network.

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

For each minute the client accesses the network the AS
can request additional payment from the URI. In order to
protect the client from fraud the AS is required to present
identifying information when making this request. The
nature of this identifying information can be specified as
part of the contract and the level of security can be
selected to match the perceived risks and costs. If the
client does not send data for a specified period (or
payment cannot be obtained) the server can terminate the
agreement and invalidate the ACT at the AR.

It is important to note that since we need to protect the
ACT from eavesdroppers the ACT must be sent to the
client over a secure channel, just as in the existing scheme.

6. Related Work.

To the best of our knowledge, we are the first to
explore the concept of payments in ubiquitous
environments. The concept of charging for services has
however been explored in considerable depth in the
context of the Internet [18]. Of late, the economics of
peer-peer systems has been receiving a lot of attention. In
particular, P2P systems such as Mojonation are attempting
to create a file-sharing economy of agents, servers, and
search engines in which senders and receivers can agree
on prices for each transaction [19][20]. Grid computing is
another area where payment issues are beginning to
receive attention [21].

The applicability of micropayments for information
goods such as web pages has been explored by both
researchers [11][12], and commercial enterprises.
However, while proposals such as Millicent and NetBill
[22] reached the trials stage, other proposals such as
MicroMint remained on paper. The World Wide Web
consortium formed a working group on micropayments
and defined html extensions to include payment
information. After steering an initial implementation of
the specification, the working group wound up its activity
in 1999 [23].

7. Discussion and Future Work.

In this paper, we have drawn attention to the
importance of economic considerations for the
proliferation of ubiquitous computing environments. More
specifically, the deployment of ubiquitous applications
and environments involves huge investments, and hence
there must be a financial underpinning that encourages
such investment. To this end, we discussed different ways
of recouping investments in ubiquitous computing
environments: cross-subsidization, ad-based revenue,
public investment and charging for service use.
Subsequently, we motivated the need for charging for
ubiquitous computing services and identified the design
requirements of payment systems for ubiquitous

computing environments. By analysing existing electronic
payment schemes, namely macropayment and
micropayment systems, we concluded that micropayment
protocols provide a firm basis for payment in ubiquitous
computing systems. We presented our new protocol, the
Payment Session Protocol (PSP) that represents an initial
step towards providing a framework for enabling payment
in ubiquitous computing systems. We also presented an
example of a payment-enabled prototype application that
provides insights into the mechanics of ubiquitous
computing payment systems and serves as a proof-of-
concept for our Payment Session Protocol.

While our initial impressions and efforts look very
promising, there is more ground to cover before payment-
enabled ubiquitous computing services can be widely
deployed. In addition to creating a payment infrastructure
of clients, service providers and brokers, further research
is required in two key areas: pricing structure and user
acceptance. Within the context of pricing structure, there
is a need to investigate techniques for expressing the
richness and complexity of pricing schemes that we
anticipate occurring in ubiquitous computing
environments (witness the proliferation of pricing
schemes in the field of mobile telephony). In terms of user
acceptance, balancing the need to provide users with
information on financial transactions with the desire for
calm technology will clearly present a significant
challenge to researchers.

Finally, we note that PSP offers the potential to
support a wide range of features such as privacy policies,
liability statements and terms and conditions of service.
These properties will become crucial in ubiquitous
computing environments where users are expected to
interact with a wide variety of trusted and untrusted
services. Walking into a new ubiquitous computing
environment should not involve the user in clicking
"accept" on dozens of service agreements and yet such
agreements will have to be in place to conform to legal
and ethical norms of service use. In short, we foresee a
significant series of research challenges arising in this area
for which PSP provides a starting point for further
exploration.

8. References.

1. M. Weiser, “The Computer for the Twenty-First
Century”, Scientific American, September 1991, pp.
94-100.

2. R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The
active badge location system”, ACM Transactions on

Information Systems, vol. 10, Jan. 1992, pp. 91-102.
3. A. Fox, B. Johanson, P. Hanrahan, and T. Winograd,

“Integrating information appliances into an
interactive workspace”, IEEE Computer Graphics

and Applications, vol.20, no.3, May-June 2000.

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

4. M. Román, C.K. Hess, R. Cerqueira, A. Ranganathan,
R.H. Campbell, and K. Nahrstedt, “Gaia: A
Middleware Infrastructure to Enable Active Spaces”,
IEEE Pervasive Computing, Oct-Dec 2002, pp. 74-83.

5. N. Davies and H.W. Gellersen, “Beyond Prototypes:
Challenges in Deploying Ubiquitous Systems. System
Software for Ubiquitous Computing”, IEEE
Pervasive Computing: Mobile and Ubiquitous

Systems, Vol. 1, No. 1, January - March 2002.
6. A. Ranganathan and R.H. Campbell, “Advertising in

Pervasive Computing Environment”, ACM
International Workshop on Mobile Commerce,
Atlanta, Georgia, September 28, 2002, pp 10-14.

7. M. Satyanarayanan, “Pervasive Computing: Vision
and Challenges”, IEEE PCM, August 2001, pp. 10-17.

8. T. Kindberg and A. Fox, “System Software for
Ubiquitous Computing”, IEEE Pervasive Computing:
Mobile and Ubiquitous Systems, Vol. 1, No. 1, 2002.

9. J.J. Kistler and M. Satyanarayanan, “Disconnected
Operation in the Coda File System”, ACM Symposium

on Operating Systems Principles, 1992.
10. M. Weiser and J.S. Brown, “The coming age of calm

technology”, PowerGrid Journal, Version 1.01, July
1996.

11. S. Glassman, M. Manasse, M. Abadi, P. Gauthier and
P. Sobalvarro, “The Millicent Protocol for
Inexpensive Electronic Commerce”, Proc. 4th Intl.
World Wide Web Conference, Boston, MA, Dec.
1995.

12. R. Rivest and A. Shamir, “Pay Word and Micro Mint:
Two simple micropayment schemes”, Security
Protocols Workshop, 1996.

13. http://www.paypal.com.
14. http://www.passport.net.
15. C. Ellis, “Evaluation of Micropayment Schemes”, HP

Labs Technical Report, HPL-97-14.
16. G. Myles, A. Friday, and N. Davies, “Preserving

Privacy in Environments with Location Based
Applications”, IEEE Pervasive Computing: Mobile
and Ubiquitous Systems, Vol.2, No.1, Jan-March
2003.

17. S. Schmid, J. Finney, M. Wu, A. Friday, A. Scott, and
D. Shepherd, “An Access Control Architecture for
Microcellular Wireless IPv6 Networks”, Proceedings

of 26th Annual IEEE Conference on Local Computer
Networks (LCN 2001), November 2001.

18. Internet Economics Workshop,
http://www.press.umich.edu/jep/econTOC.html.

19. Get Your Music Mojo Working, Wired Magazine,
http://www.wired.com/news/technology/0,1282,3789
2,00.html.

20. http://www.mojonation.net.
21. A. Barmouta and R. Buyya: GridBank, “A Grid

Accounting Services Architecture (GASA) for

Distributed Systems Sharing and Integration”,
www.cs.mu.oz.au/~raj/grids/papers/gridbank.pdf.

22. M. Sirbu and J.D.Tygar, “NetBill: An Internet
Commerce System Optimized for Network Delivered
Services”, IEEE Personal Communications, August
1995.

23. T. Michel, “Common Markup for micropayment per-
fee-links”, W3C Working Draft, 25 August 1999,
http://www.w3.org/TR/WD Micropayment-Markup/.

24. D. Chaum, “Blind signatures for untraceable
payments”, Advances in Cryptology Proceedings,
Crypto 82, 1982, pp. 199-203.

25. Schneier, B., Applied Cryptography: Protocols,
Algorithms, and Source Code, John Wiley and Sons,
Inc., New York, NY, USA, 1994.

26. A. Odlyzko, “The bumpy road of electronic
commerce”, WebNet 96 - World Conf. Web Soc. Proc.,
H. Maurer, ed., AACE, 1996, pp. 378-389.

27. P. C. Fishburn, A. M. Odlyzko, and R. C. Siders,
“Fixed fee versus unit pricing for information goods:
competition, equilibria, and price wars”, First
Monday, vol. 2, no. 7, July 1997.

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003)
0-7695-1995-4/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

