
In the Smart-Its project, we are developing
technology to realize a vision of computa-

tion everywhere, where computer technology seam-
lessly integrates into everyday life, supporting users in
their daily tasks. By embedding sensors, computation,
and communication into common artifacts, future com-
puting applications can adapt to human users rather

than the other way around. Howev-
er, it’s currently difficult to develop
this type of ubiquitous computing1

because of the lack of toolkits inte-
grating both the required hardware
and software. Therefore, we are cre-
ating a class of small computers—
called Smart-Its (http://www.
smart-its.org)—equipped with
wireless communication and sen-
sors to make it possible to create
smart artifacts with little overhead.

The Smart-Its project is a collabo-
ration among six partners in five
countries: ETH Zurich (Switzer-
land), Interactive Institute (Swe-
den), Lancaster University (UK), the
University of Karlsruhe (Germany),

the Viktoria Institute (Sweden), and VTT (Finland). The
project ran from 2001 to 2003 as part of the European
research initiative called the Disappearing Computer
(http://www.disappearing-computer.org). In this proac-
tive research program, the European Union’s funding
agency for Future and Emerging Technologies supports
the exploration of how information technology can be
diffused into everyday objects and settings. There are 16
projects in the program, developing everything from
computational fibers to computer-augmented office fur-
niture. By supporting a critical mass of innovative and
far-reaching projects, the Disappearing Computer pro-
gram hopes to create synergy effects that could not have
been achieved by a smaller number of separate projects.

The Smart-Its vision fits well into the overall goal of
the Disappearing Computer initiative. We see a future
in which mundane everyday artifacts become aug-

mented as soft media, and thus become able to enter
into dynamic digital relationships with users and with
each other. The long-term goal of the Smart-Its project
is providing a platform that developers and researchers
can use to explore future applications but with much
less overhead than currently required. As Smart-Its and
other similar physical construction kits stabilize, they
should become as easy to use as today’s GUI toolkits for
desktop computers. When we reach this stage, we
believe there will be an explosion of new innovations;
just as fast graphics and GUI toolkits have enabled a mul-
titude of new interactive applications for desktop com-
puters. To this end, we are in the process of releasing all
necessary information about Smart-Its into the public
domain so that others can benefit from the work.

Smart-Its platform
You can think of a Smart-Its as a small, self-contained,

stick-on computer that users can attach to objects much
like a 3M Post-It note. To ensure flexibility, we used a
modular approach when designing the hardware. A
Smart-Its consists of a core board with a wireless trans-
ceiver to let the device communicate with other Smart-
Its, plus a sensor board that gives the Smart-Its data
about its surroundings. For more information about the
Smart-Its architecture, see “The Smart-Its Hardware”
sidebar. The standard sensor board has five sensors:
light, sound, pressure, acceleration, and temperature.
For specific purposes, we could add other sensors—such
as a gas sensor, a load sensor, or a camera for receiving
images. We have also developed several APIs to aid
application development. For instance, there is a com-
munication API to facilitate communication between
Smart-Its and other devices. Another example is the per-
ception API, which allows the abstraction of low-level
sensor data to higher-level concepts, so-called percepts.
For more information about programming for the
Smart-Its, see “The Smart-Its Perception API” sidebar
on page 58.

The major advantage of the Smart-Its platform is that
it allows designers and researchers to construct respon-
sive or intelligent environments with comparably little

Emerging Technologies

Smart-Its are self-contained,

stick-on computers that

attach to everyday objects.

These augmented objects

become soft media,

enabling dynamic digital

relationships with users and

each other.

Lars Erik Holmquist
Viktoria Institute

Hans-Werner Gellersen, Gerd Kortuem,
Albrecht Schmidt, and Martin Strohbach
Lancaster University

Stavros Antifakos, Florian Michahelles, and
Bernt Schiele
ETH Zurich

Michael Beigl
University of Karlsruhe

Ramia Mazé
Interactive Institute

Building Intelligent
Environments with
Smart-Its

56 January/February 2004 Published by the IEEE Computer Society 0272-1716/04/$20.00 © 2004 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

overhead.2 Typically, research projects that develop
smart or context-aware objects require building a lot of
custom hardware and software from scratch. The

Smart-Its project addresses this issue by presenting a
standardized hardware solution coupled with commu-
nication and sensing APIs. Future interactive systems

IEEE Computer Graphics and Applications 57

The Smart-Its Hardware
With the Smart-Its hardware (see Figure A), we provide

generic devices for sensing, computing, and
communication on a large scale. Currently, Smart-Its can be
as small as 17 x 25 x 15 mm including sensors and battery,
with a weight of about 8 grams (or 20 grams including an
AAA battery). Other Smart-Its types are larger and simpler,
aiming at ease of modification, customization, and
reproduction for use as teaching material or as quick
demonstrator projects. Over the course of the project, the
Smart-Its hardware has evolved into smaller, more compact
iterations, as shown in Figure B. A broad range of sensors
and actuators can be integrated on the devices. The generic
sensor boards can sense audio, light levels, acceleration,
humidity, temperature, and pressure. Outputs include a
speaker and LEDs. Additional sensors and actuators are
attachable via standard I/O interfaces, allowing us to
extend the capabilities with off-the-shelf components.

Smart-Its can be powered by a range of sources, from
lithium coin cells, standard AAAs, or rechargeable batteries.
The choice depends on the target artifact’s shape and size,
use, and projected lifetime. Smart-Its’ onboard computing
and storage allows it to process small programs without any
assumption of computing infrastructure in the environment.
For example, each Smart-Its can interpret its own sensor
values along with those gathered from other sensor devices.
It can then communicate the interpreted values to other
systems, such as a PC or other more high-powered
processing unit. To minimize the requirements for regular
user-based maintenance, Smart-Its introduces a new power-
management concept based on sensed situations. The
device controls power-safe modes of internal and attached
external devices. Depending on the application—sensors
used, processing required, and communication needs—a
Smart-Its’ lifetime ranges from several days to one year.

The Smart-Its also features efficient short-range
communication through a wireless ad hoc network.
Hardware requirements and constraints for the radio link
design were size, energy consumption, full control on the
physical layer, and midspeed transmission bandwidth (125
kilobits per second). Up to 1,024 nodes can request to be
sent at the same time. An arbitrary number of Smart-Its
receiving and 256 trying to send at the same time reduces
the available network bandwidth by about 10 percent. In
typical settings with a dozen Smart-Its, interference is
below the noise on the channel and is therefore not
measurable. To allow fast reaction on network changes,
Smart-Its instantly communicates (average 12.6 ms) even
from a switched-off state or when coming to a new
environment without any need for configuration. High-
precision automatic clock synchronization makes possible
real-time reaction on events from other devices, or
cooperative behavior of devices. This lets us compare high-
speed signals such as audio or acceleration.

Development on Smart-Its is done in C. A wireless
program download tool, analysis tool, and database tool

support programming. The download tool connects to the
editor and compiler and transfers developed programs to
the Smart-Its. The analysis tool supervises the behavior of
Smart-Its and helps debug applications. The database tool
allows retrieval of information from all communication and
exports the data to statistic tools for long-term evaluation.

Sensors

Actuators

Pr
oc

es
si

ng

C
om

m
un

ic
at

io
ns

A To ensure flexibility, the Smart-Its hardware consists of two
separate components: a core board and a sensor board.

B During the course of the project, the Smart-Its hardware has
moved through several evolutionary steps from (1) larger
hardware to (2) smaller hardware.

(1)

(2)

will require a multitude of sensors and distributed com-
putation. With Smart-Its and other physical prototyp-
ing toolkits, we can explore such systems today but
without building everything from scratch. Smart-Its is
only one of several similar physical prototyping tools
that researchers can use to get applications up and run-
ning quickly. See the sidebar “Other Physical Prototyp-
ing Kits” for more information about prototyping.

A major part of the Smart-Its project has been to
develop and integrate the hardware and software. We

also developed several sample applications to demon-
strate the vision of computation embedded in the world.
These applications vary from solving a mundane but
intricate task such as furniture assembly, to lifesaving
applications such as supporting avalanche rescue teams.
However, none of these should be considered the killer
app that will accelerate the presence of ubiquitous com-
puting. Instead, they act as a vehicle to explore the pos-
sibilities of Smart-Its and similar technology. These
application demonstrations have also served to validate
the technology itself during the development process.

Proactive furniture assembly
Printed handbooks, instructions, and reference man-

uals for items such as a laptop, furniture, or VCR all have
a common fault: Users rarely read them. It’s not simply
that people are lazy, overconfident, and believe they
have no time to spend bothering with instructions. The
quality of the instructions themselves is often poor. Fur-
thermore, there is a divide between the instructions on
the printed page and the real object. What if the instruc-
tions could be better integrated with the actual task?

With one Smart-Its application, shown in Figure 1,
we propose a framework for proactive guidance that
aims to overcome limitations of today’s printed instruc-
tions.3 We chose as our example the task of assembling
a piece of flat-pack furniture—a seemingly simple
process but one that often goes wrong. By attaching
computing devices and multiple sensors onto the parts
of the unassembled furniture, the system can recognize
the actions of the user and determine the current state
of the assembly process. It can then suggest the next
most appropriate action at any point in time. We used
the sensors in Smart-Its devices attached to the furni-
ture to gather information about the user’s actions. A
separate laptop collected the information through wire-
less communication with the Smart-Its.

To assist the user, we need to create a plan that repre-
sents the different ways to assemble the piece. The plan
consists of states and interconnecting actions, similar to
those in a finite-state machine. We can divide the actions
required to assemble the furniture hierarchically into par-
tial actions. We can detect these partial actions with the
accelerometers and force sensors of the Smart-Its
attached to the boards. Furthermore, a gyroscope in the
screwdriver supplies additional information. Using a
large enough number of sensors, we achieve high-quali-
ty perception and provide precise instructions to the user.

One important problem is how to present the infor-
mation. Originally, we used a laptop screen to present
the user’s progress. However, this still presents a divi-
sion between the instructions and the actual object.
Instead, to integrate the instructions into the objects
perfectly, we mounted LEDs directly on the boards,
shown in Figure 2. By using different colors and blink-
ing patterns, we can provide a limited but precise set of
instructions: The underlying principle is to enhance the
physical object’s static affordances by additional dynam-
ics hints.4 User studies revealed that the integration of
the instructions into the objects provides a significant-
ly better understanding than presenting descriptions on
a separate screen.

Emerging Technologies

58 January/February 2004

The Smart-Its Perception API
The Perception API (PAPI), which insulates application requests

from internal sensor processing, provides uniform access to various
kinds of sensors. PAPI addresses single perception among sensors
located on the same Smart-Its board, collective perception among
distributed Smart-Its boards, and out-band processing for large data
streams. Unique universal identifiers distinguish the different
boards, sensors, and features of sensor values. Each Smart-Its device
is aware of its attached sensors and can share this information with
other devices through wireless communication. PAPI offers a query
mechanism for discovering available sensors. As a result, PAPI
abstracts from internal sensor processing and provides a more
convenient access to sensor readings by various methods.

Devices can access local sensor readings, referred to as single
perception, via four methods. A single request enables a device to
receive only one single sensor value, or allows it to poll a series of
values. The condition-triggered notification method offers atomic
feature value conditions (<, >, =) that specify when a particular
sensor should send an interrupt to the calling device. All conditions
are treated as one-time triggers. The continuous-subscription
method offers a continuous feature value series on a timely basis.
The constant stream method constantly streams feature data by
using maximal bandwidth.

Collective perception enables Smart-Its to have remote access to
sensors attached to other Smart-Its boards. In such cases, a
distance measure can set the sensor discovery range. A value of 0
represents all local sensors on a Smart-Its board, whereas 255
means all accessible boards. The values in between represent
corresponding physical distance measures.

Finally, an out-band functionality enables an application to
reserve the entire radio band for streaming intensive data, such as
video or high-quality audio, to external back-end resources.
However, because out-band functionality blocks the entire Smart-Its
communication function, its use should be limited to short periods.

1 We attached
Smart-Its to the
pieces of a flat-
pack furniture
kit and to some
of the assembly
tools, letting
the system
monitor the
user’s progress.

Although this example concerns
furniture, we can generalize it to
many other assembly tasks, such as a
car or airplane factory assembly line.
For many safety-critical assembly
and maintenance tasks, this type of
recognition and verification of pro-
cedural actions might also prove use-
ful. We predict the initial adoption of
this technology happening in this
area. Another possibility is quality
control. Whereas it currently does
not make economic sense to embed
sensors in furniture that costs a few
hundred dollars, it can pay off quick-
ly when assembling an expensive

IEEE Computer Graphics and Applications 59

Other Physical Prototyping Kits
A main feature of intelligent environments is the ability to

sense different contexts, and there are several frameworks
for creating context-aware applications. For instance, the
context toolkit1 presents a software framework to support
the implementation of context-aware applications. This
framework enables exploration of context-aware design
space, particularly in dealing with ambiguous or inaccurate
sensor data. However, the level of abstraction is high, and
this toolkit doesn’t present the integrated hardware-
software solution that Smart-Its represents.

As small computing devices that integrate physical
interaction and wireless networking, Smart-Its shares several
features with other wireless sensor platforms. The Berkeley
Motes platform was originally developed for collection of
sensor data in large-scale ad hoc networks but recently
researchers have considered it for ubiquitous computing
applications.2 Motes places more emphasis on networking,
communication, and data propagation. To support this,
Motes provides the Tiny OS for very small networked
devices and a protocol stack that supports ad hoc routing in
large networks—features not available in Smart-Its. Smart-
Its, on the other hand, provides distinct support for rapid
assembly and design iterations over device concepts.

Other small-computing platforms to which Smart-Its
relates include the i-Bean from Millennial Net and MIT’s
Sensor Stack. The i-Bean is a self-contained, miniaturized
computer with a digital I/O interface, analog-to-digital and
digital-to-analog converters, and a radio frequency trans-
ceiver for bidirectional communication.3 The i-Bean func-
tions as a data-acquisition and processing device and is
primarily used for healthcare applications. The Sensor Stack
platform for high-density wireless sensing stresses device
modularity and fast prototyping.4 The modules are fabri-
cated in a 3D stackable manner, allowing for the develop-
ment and easy addition of extra panels.

Two European platforms to which the Smart-Its project
relates are the Eyes sensor node,5 which is under develop-
ment by a European project consortium for sensor network
research, and the BTNode developed at ETH Zurich.6 The
BTNode Bluetooth-based sensor node stresses interoper-
ability as the main design goal. To support Bluetooth
networking, BTNode uses a more powerful processor and

more memory than most other sensor-node platforms.
Among these platforms, the Smart-Its technology is unique in
its focus on rapid prototyping and development of hardware
and software.

Several toolkits exist for prototyping tangible input and
output systems not based on wireless communication.
Recent examples include Phidgets7 and iStuff.8 Such toolkits
help developers create customized input and output
devices for a variety of applications running on a dedicated
computer. Examples of input devices include physical
buttons, sliders, and tag readers. Output devices include
motors, buzzers, and lights as well as a computer screen.
Such toolkits could potentially expand the vocabulary of
interactive applications beyond the mouse and keyboard.

References
1. A.K. Dey et al., “Conceptual Framework and a Toolkit for Sup-

porting the Rapid Prototyping of Context-Aware Applications,”
Human-Computer Interaction (HCI) J., vol.16, nos. 2-4, 2001, pp.
97-166.

2. J. Hill et al., “System Architecture Directions for Networked Sen-
sors,” Architectural Support for Programming Languages and Oper-
ating Systems, 2000, pp. 93-104.

3. S. Rhee and S. Liu, “An Ultra-Low Power, Self-Organizing Wireless
Network and Its Applications to Noninvasive Biomedical Instru-
mentation,” Proc. IEEE/Sarnoff Symp. Advances in Wired and Wire-
less Comm., IEEE Press, 2002.

4. J. Barton et al., “Miniature Modular Wireless Sensor Networks,”
Adjunct Proc. 4th Int’l Conf. Ubiquitous Computing (Ubicomp), Vik-
toria Inst., 2002, pp. 25-26.

5. S. Dulman and P. Havinga, Operating System Fundamentals for the
EYES Distributed Sensor Network, Utrecht, 2002.

6. J. Beutel et al., Thiele: Bluetooth Smart Nodes for Ad-Hoc Networks,
TIK Report No. 167, ETH Zurich, April 2003.

7. S. Greenberg and C. Fitchett, “Phidgets: Easy Development of
Physical Interfaces through Physical Widgets,” Proc. 14th Ann.
ACM Symp. User Interface Software and Technology (UIST 01), ACM
Press, 2001, pp. 209-218.

8. R. Ballagas et al., “iStuff: A Physical User Interface Toolkit for Ubiq-
uitous Computing Environments,” Proc. ACM Ann. Conf. Human
Factors in Computing Systems (SIGCHI), 2003, pp. 537-544.

2 LED lights on
the components
guide the user
in the assembly
process: (a)
rotation and
(b) screwing.

(a) (b)

item (such as a car) or when maintaining a safety-criti-
cal part of a power plant. If even one mistake per item is
avoided, this could easily justify the whole investment.

Load-sensing furniture
So what happens when the pieces have been assem-

bled? If we leave the Smart-Its and sensors in the furni-
ture, ordinary furniture can be made smart. One area
in which we have found surprising potential is load sens-
ing, which effectively means turning ordinary pieces of
furniture into weight-measuring devices.5

Using Smart-Its, we embedded load-sensing tech-
nology in several pieces of furniture: a coffee table, a
dining table, shelves, and drawers. The tables in partic-
ular are augmented using industrial load cells, as shown
in Figure 3. We can unobtrusively install the cells
between the tabletop and frame so that the tabletop
rests on a load cell at each corner. In our latest version,
we placed the boxes containing the load cells under the
table legs, making augmentation of the table much more
flexible. For each surface, a Smart-Its with a load add-
on module interfaces with the load cells. The system
samples and reads the values from all four load-sensing
cells at about 200 Hz. Because we build the technology
on top of the Smart-Its platform, each augmented object
becomes a wireless sensor in the Smart-Its network.

By measuring the load on each corner, we can easily
calculate the center of gravity’s location on the surface.
By observing how the center of gravity moves, we can
detect interaction on the surface and recognize specific
patterns. We can process this information into interac-
tion primitives, such as tracking an object’s position and
weight or a finger’s track as someone traces it over the
surface. In essence, the entire table surface becomes a
sensor system because we can precisely pinpoint the loca-
tion and weight of all objects placed on it. Together, sev-
eral load-sensing chairs and tables could collect detailed
information about the activity in an environment.

On the basis of these interaction primitives, we devel-
oped several applications. For instance, one application
lets the user use a surface, such as a tabletop, to manipu-

late a mouse pointer on a computer
screen. The movement of the finger
or of an object on the surface—cap-
tured in the trace interaction primi-
tive—is then converted in increments
for the mouse movement in a con-
ventional system. In other words,
instead of manipulating a mouse on
the table, the user can regard the
entire table as a pointing device. This
could be quite convenient when
users must control an electronic
device, such as a television set, but
don’t wish to use yet another remote
control or pointing device.

Supporting avalanche
rescue

Smart-Its is a general platform
suitable for many types of applica-
tions, including mobile and wear-

able computing systems. For example, the prototype of
the avalanche lifeguard system, A-Life, incorporates
Smart-Its technology.6 The goal of the A-Life project was
to explore the applicability of wearable sensors for
mountaineers, skiers, and snowboarders. We involved
domain experts such as emergency physicians, profes-
sional rescuers, and avalanche researchers early in the
development process.

In alpine areas, many landslides each year cause acci-
dents and even deaths. The time it takes to find and
extricate victims is extremely crucial: Once a person is
buried, the survival chances drop dramatically after the
first 15 minutes. Current technology, such as radio-
based tracking systems, can only offer the rescue team
information on the location of a single victim at a time.
However, statistics show that in many cases there are
multiple victims, and the order in which rescuers save
them can be crucial. Some victims might survive for
hours, whereas others only have minutes. If rescuers
could find a means to address the most urgent cases first,
they might save many additional lives.

The A-Life system, shown in Figure 4, addresses this
issue using wearable Smart-Its-based sensors. These
sensors measure vital signs and environmental condi-
tions of avalanche victims; the system then broadcasts
the information to rescuers. Visualizing this informa-
tion will help rescuers in the field separate victims by
urgency and coordinate the rescue process more effi-
ciently. The Smart-Its technology helped in construct-
ing a functional rapid prototype for a first evaluation
with experts: Off-the-shelf oximeters, oxygen sensor,
and accelerometer connect to a Smart-Its communica-
tion board that establishes a connection to a handheld
computer (shown in Figure 5) and wireless connectivi-
ty among different prototype units. Different focus
groups have used this prototype for participatory eval-
uations with practitioners in the field. In particular, we
demonstrated it to avalanche researchers of the Swiss
Federal Institute for Snow and Avalanche Research, to
a practicing emergency physician, and to skiers at an
avalanche rescue-training course.

Emerging Technologies

60 January/February 2004

3 Load-sensing
furniture has
load cells
installed in each
corner, moni-
tored by a cen-
tral Smart-Its.

Generally, we received positive feedback for the idea
of applying wearable sensors to avalanche rescue, as
this was a completely new idea for all participants. We
had an interesting discussion with emergency physi-
cians about the appropriateness of the different sens-
ing technologies. The avalanche researchers suggested
recording sensor values over time for analyzing the
process of an avalanche accident, much like black-box
devices do in airplanes. Ethical issues initiated a dis-
cussion on whether a device should suggest to rescuers
which victim to rescue first. The Smart-Its technology
prototype enabled us to show the opportunities of sens-
ing technology for avalanche rescue before we actual-
ly develop the final product. We believe that Smart-Its
also could help in prototyping many other wearable
applications.

Envisioning the smart restaurant
What would it be like to have a complete environ-

ment augmented with smart technology? In a collabo-
ration between an interaction designer and a technical
team, we created a set of demonstrators that used
Smart-Its in conjunction with various presentation

techniques to envision a complete future workplace.7

We presented the demonstrations as an interactive
exhibit in which visitors could manipulate different
augmented objects to trigger various responses. The
demonstration made use of actual sensor values
derived from Smart-Its attached to the objects. To flesh
out the environment, we provided more expansive
parts of each scenario, presented as animations that
visitors’ actions would trigger.

We chose restaurants as the domain. A restaurant is
a dynamic environment where people act in many dif-
ferent roles—as guests, waiters, chefs, and so on—per-
forming different tasks, such as ordering from a menu,
serving a dish, or preparing the food. These activities
rely on a diverse set of artifacts, like kitchen utensils,
food items, and furniture. All this seemed to make
restaurants a perfect environment for Smart-Its aug-
mentation (see Figures 6 and 7).

IEEE Computer Graphics and Applications 61

Oxygen sensor

Oximeter

4 The A-Life
system uses an
oximeter and
other sensors to
provide rescue
teams with
updated infor-
mation about
avalanche
victims.

5 The rescue
team’s interface
is PDA based
and gives
instant access to
vital informa-
tion to aid in
their work.

6 To create a smart restaurant environment, we aug-
mented several everyday artifacts with Smart-Its.

7 Together, the items in the smart restaurant installation created an inter-
active environment where visitors could interact with smart objects.

In the first scenario, as illustrated in Figure 8, we
showed how sensitive food items could keep track of
their lifecycle status, and how they could communicate
in internal and external networks. In the demonstra-
tion, we augmented a box of oysters in a refrigerator
with a Smart-Its. When visitors opened the fridge door,
an image of the oyster box would appear on a separate
screen. A dynamic best-before label on this animated
box would change according to how long the fridge door
was kept open and the time before the oysters expired.
This best-before value changed in real time but was sim-
ulated because we did not have access to a sufficiently
complex set of sensors to correctly determine the oys-
ters’ freshness.

Instead, we simply determined if the fridge door was
open by using the light sensor in the Smart-Its. If the vis-
itor kept the door open too long, an animated sequence
would run, showing how new oysters were arriving in a
delivery truck and a dock at the harbor. The idea was
that if all oyster boxes were augmented, they could start
an internal negotiation of their value. For example, a
box that would soon expire might, if there were fresh
boxes arriving at the local distributor, be prepared to
lower its asking price quite significantly to restaurateurs
shopping for oysters.

The second scenario, shown in Figure 9, illustrated
how the status of food items could be directly reflected
in the cost for customers. Visitors were invited to manip-
ulate a bottle of wine, augmented with a Smart-Its. The
sensors in the bottle would monitor temperature, light
exposure, angle, and movement used to calculate a
decay curve reflecting if the wine had been correctly
stored. When the bottle was shaken—which would
release sediment and thus degrade the quality—an ani-
mated menu would appear. The prices of the different
wines on the menu would change dynamically so that
the price of a bottle that was mistreated might go down,
whereas the price of well-treated bottles would go up.

If the user put the bottle back in
the correct position for storage, its
price would eventually stabilize and
go up again, reflecting that the sed-
iment had settled. We did not mea-
sure the actual sediment, but used
the Smart-Its’ accelerometer to
detect movements and position. An
accompanying video showed how
the bottles in the wine cellar would
negotiate a sort of stock market
value and how the current menu
would be advertised on an external
billboard.

The final scenario showed how
several objects could collaborate
and share data to support a task. It
took the form of an interactive order
preparation where Smart-Its-aug-
mented items included a piece of
cheese and a wine bottle. Visitors
would place the items on a tray, and
by simply moving the tray to the
serving counter, the items would

become grouped together and open a communication
channel. The grouping was determined by comparing
the movement of the objects as read by the Smart-Its’
accelerometers. Only the objects on the tray would share
the same values. This is similar to the Smart-Its friends
technique, where users would hold objects together and
shake them to explicitly create a grouping.8

When the objects had been grouped, the objects
themselves could start to determine the optimal serv-
ing conditions. The cheese requires a correct tempera-
ture, the wine must settle, and so forth. An animation
showed these values as they changed, but because tem-
perature changes much too slowly for use in an exhibi-
tion setting, we simulated some numbers. When all

Emerging Technologies

62 January/February 2004

8 Animations
show aspects of
the demonstra-
tions that we
did not directly
implement in
physical arti-
facts.

9 We used
animation to
illustrate how
the status of
food items
could be direct-
ly reflected in
the cost for
customers.

items were ready, the Smart-Its
devices would signal the waiter and
an animation would show how the
waiter could now serve the com-
pleted order.

Taken together, this suite of pre-
sentations showed how sensors,
communication, and computation
could augment and support several
objects and tasks. By mixing real
sensor data and visual scenarios, we
created a complete vision of an intel-
ligent environment of the future,
with which visitors could interact.

Future Smart-Its
technology

With Smart-Its, we have taken the
first steps toward a platform for cre-
ating intelligent environments like
the kind shown in Figure 10. As
shown in the application examples, such environments
could potentially support users in many different tasks,
from the mundane assembly of a piece of furniture to
life-and-death situations in the field. With the increased
proliferation and availability of Smart-Its and other plat-
forms for creating computationally augmented physi-
cal environments, we will see a lot of experimentation
that could lead to products that enter the mainstream.
In fact, this is already happening. A multitude of smart
consumer products that use this type of sensor and com-
munication technology are in development at research
labs all over the world. It’s only a question of time before
we can buy them in the shops.

But it is obvious that there still must be several key
advances before this type of technology can easily be
embedded in everyday objects. In particular, the size
must shrink, as must the cost, to make possible the real-
istic inclusion of this kind of technology in consumer
products. Power consumption must become signifi-
cantly lower, if only because users will not want to
change batteries in their sensing tables or recharge their
smart coffee cups very often. For prototyping and prod-
uct development, standardized tools and APIs must
make application development easier. Finally, if we envi-
sion a world with a multitude of smart objects that inter-
operate and communicate, we must create common
communication protocols and agree upon semantics for
data sharing.

Enabling platforms such as Smart-Its allows us to
investigate these important issues. By letting researchers
quickly build and evaluate smart and context-aware
applications, they can give us a glimpse of the intelli-
gent environments of the future. �

Acknowledgments
We thank all members of the Smart-Its consortium for

their role in the collaborative development of the Smart-
Its applications. In particular, contributors to the imple-
mentation of the platform and demonstrators include
Timo Ahonen, Christian Decker, Lalya Gaye, Peter
Ljungstrand, Magnus Nilsson, Tobias Rydenhag, Daniel

Spanagel, and Nicolas Villar. Hanna Landin created the
video from which Figure 10 is taken. The Smart-Its pro-
ject is funded in part by the Commission of the Euro-
pean Union under key action “Future and Emerging
Technologies” (contract IST-2000-25428), and by the
Swiss Federal Office for Education and Science (con-
tract BBW 00.0281). Lancaster’s contribution was made
possible with additional support from the UK Engi-
neering and Physical Science Research Council as part
of the Equator project (grant GR/N15986/01).

References
1. M. Weiser, “The Computer for the 21st Century,” Scientif-

ic Am., vol. 265, no. 9, 1991, pp. 66-75.
2. H. Gellersen et al., “Physical Prototyping with Smart-Its,” to

appear in IEEE Pervasive Computing, Oct.-Dec. 2003.
3. S. Antifakos, F. Michahelles, and B. Schiele, “Proactive

Instructions for Furniture Assembly,” Proc. 4th Int’l Conf.
Ubiquitous Computing (Ubicomp), Springer Verlag, vol.
2498, 2002, pp. 351-359.

4. F. Michahelles et al., “Instructions Immersed into the Real
World: How Your Furniture Can Teach You,” Adjunct Proc.
5th Int’l Conf. Ubiquitous Computing (Ubicomp), Springer-
Verlag, 2003, pp. 155-156.

5. A. Schmidt et al., “Context Acquisition Based on Load Sens-
ing,” Proc. 4th Int’l Conf. Ubiquitous Computing (Ubicomp),
Springer Verlag, vol. 2498, 2002, pp. 333-351.

6. F. Michahelles et al., “Applying Wearable Sensors to
Avalanche Rescue: First Experiences with a Novel
Avalanche Beacon,” Computers & Graphics, vol. 27, no. 6,
2003, pp. 839-847.

7. L.E. Holmquist, R. Mazé‚ and S. Ljungblad, “Designing
Tomorrow’s Smart Products: Experience with the Smart-
Its Platform,” Proc. Designing for User Experience (DUX 03),
ACM Press, 2003.

8. L.E. Holmquist et al., “Smart-Its Friends: A Technique for
Users to Easily Establish Connections between Smart Arti-
facts,” Proc. 3rd Int’l Conf. Ubiquitous Computing (Ubi-
comp), Springer Verlag, vol. 2201, 2001, pp. 116-122.

IEEE Computer Graphics and Applications 63

10 In the
future, a multi-
tude of every-
day objects
could be
equipped with
embedded
sensing, compu-
tation, and
communication
capabilities.

Lars Erik Holmquist is leader of
the Future Applications Lab, a
research group at the Viktoria Insti-
tute in Gothenburg, Sweden. His
research interests include ubiquitous
computing, mobile services, and infor-
mation visualization. Holmquist

received a PhD in informatics from Gothenburg University.

Hans-Werner Gellersen is a pro-
fessor of interactive systems in the
department of computing at Lan-
caster University. His research inter-
ests include ubiquitous computing
and human-computer systems that
take the real world into account.

Gellersen received a PhD in computer science from the Uni-
versity of Karlsruhe.

Gerd Kortuem is a lecturer in
computer science at Lancaster Uni-
versity. His research interests include
user interface technologies, ubiqui-
tous computing, wearable comput-
ing, and software engineering.
Kortuem received a PhD in computer

science from the University of Oregon. He is a member of
the IEEE Computer Society and the ACM.

Albrecht Schmidt is a researcher
with the media informatics group at
the University of Munich. His
research interests include novel user
interfaces and new forms of interac-
tion enabled by ubiquitous comput-
ing. Schmidt received a PhD in

computer science from Lancaster University.

Martin Strohbach is a PhD stu-
dent at Lancaster University. His
research interests include develop-
ment support for smart objects.
Strohbach received an MSc in context
aware systems from the University of
Karlsruhe.

Stavros Antifakos is a PhD stu-
dent in the perceptual computing
and computer vision group at ETH
Zurich. His current research interests
include perceptual computing with a
diverse set of sensors, ambient dis-
plays, and applications for ubiqui-

tous computing environments. Antifakos received the
equivalent of a master’s degree in computer science from
ETH Zurich.

Florian Michahelles is a PhD stu-
dent in the perceptual computing and
computer vision group at ETH
Zurich. His research interests include
participative design of wearable com-
puting applications with end users
and self-organizing sensors for per-

ceptual computing. Michahelles received an MSc in com-
puter science from Ludwig-Maximilians Universität
München, Germany.

Bernt Schiele is an assistant pro-
fessor at the computer science
department at ETH Zurich. His
research interests include computer
vision, perceptual computing, statis-
tical learning methods, wearable
computers, and integration of multi-

modal sensor data. Schiele received a PhD in computer sci-
ence from INP Grenoble, France. He is a member of the IEEE
Computer Society and the ACM.

Michael Beigl is a senior research
assistant at the University of Karl-
sruhe. His research interests include
people at the center of communica-
tion and information technology,
with specific interest in novel infor-
mation appliances, electronic arti-

facts, mobile and ubiquitous networks, human-computer
interaction, and context awareness. Beigl received a PhD
in computing from the University of Karlsruhe.

Ramia Mazé is the director of the
PLAY studio of the Interactive Insti-
tute in Sweden, which focuses on new
materials and methods in the design
of ubiquitous computing applica-
tions. Her research interests include
user-centered methods and strategies

for prototyping new systems, products, and concepts. Mazé
received an MA in computer design from the Royal College
of Art, London.

Readers may contact Lars Holmquist at Viktoria Inst.,
Box 620, SE 405 30; Goteborg, Sweden; leh@viktoria.se.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Emerging Technologies

64 January/February 2004

