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ABSTRACT 

A purpose of chemical health risk assessment is to characterize the nature and size of the 

health risk associated with exposure to chemicals, including identification of a dose below 

which toxic effects are not expected or negligible. This is usually based on analysis of dose-

response data from toxicity studies on animals. Traditionally the dose-response in animals has 

been analyzed employing the No-Observed-Adverse-Effect-Level (NOAEL) approach, but 

because of the several flaws of this approach it is to a greater and greater extent being 

replaced by the so called Benchmark Dose (BMD) approach.  

Previous evaluations of how to design studies in order to obtain as much information as 

possible from a limited number of experimental animals have revealed the importance of 

including high doses. However, these studies have not taken the distress of the laboratory 

animals, which is likely to be higher at high doses, into account.  

The overall aim of the present thesis was to examine how study designs, especially with dose 

groups of unequal size, affect the quality of BMD estimates and level of animal distress.  

In Paper I our computer simulations concerning the appropriateness of using nested models 

in BMD modelling of continuous endpoints indicate that it is problematic to calculate BMD 

on the basis of simpler models and that they should be used with caution in connection with 

risk assessment as they may result in underestimations of the true BMD.  

In Paper II-III our computer simulations of toxicity testing with unequal group sizes showed 

that better information about dose-response can be obtained with designs that also reduce the 

level of animal distress. 

In Paper IV we interviewed members of the Swedish Animal Ethics Committees concerning 

how the number of animals used in toxicity tests might be weight against the distress of the 

individual animal. Their opinions concerning whether it is preferable to use fewer animals 

that suffer more rather than a large number of animals that suffer a little, differed 

considerably between individuals. However, there were no statistically significant differences 

in relation to the fact that respondent were either researchers, political representatives or 

representatives of animal welfare organizations. 

In Paper V the results from Paper IV and the simulation techniques in Paper II were 

combined to evaluate how toxicity tests could be designed to obtain as much information as 

possible at a limited ethical cost, with respect to both the number of animals used and their 

individual distress. The most ethically efficient design depended on what constituted the 

ethical cost and how large that ethical cost was.  

In conclusion, this thesis describes the potential to use BMD-aligned study design as a mean 

for refinement of animal toxicity testing. In addition, new strategies for model selection and 

quantitative measures of ethical weights are presented.  



POPULÄRVETENSKAPLIG SAMMANFATTNING 

Vi utsätts ständigt i olika grad för kemikalier som potentiellt kan vara skadliga för oss. 

Hälsoriskbedömningar av dessa kemikalier görs för att avgöra när åtgärder behöver sättas in 

för att begränsa vår exponering. Riskbedömningarna mynnar ofta ut i sättandet av riktvärden, 

såsom acceptabla dagliga intag. Riktvärdena baseras ofta på djurförsök där man identifierar 

NOAEL-värden, dvs. den högsta dos som inte ger en statistiskt säkerställd effekt. NOAEL 

metodiken har dock brister och därför använder allt fler Benchmark Dos (BMD) metoden. En 

fördel med BMD-metoden är att den tar hänsyn till osäkerheter i data på ett bättre sätt.  

Flera tidigare undersökningar har studerat hur man designar ett toxikologiskt försök för att få 

ut så mycket information som möjligt. Dessa studier har utgått ifrån ett bestämt totalt antal 

försöksdjur och bland annat visat att det är viktigt att det förekommer höga doser i försöken. 

Dock har inga tagit hänsyn till de etiska aspekterna av försöket. I samband med toxikologiska 

tester är det till exempel rimligt att tänka sig att djur som utsätts för en hög dos lider mer än 

djur som får en lägre dos. 

Det övergripande målet var därför att studera hur designen av toxikologiska försök kan 

förbättras så att likvärdig, eller bättre, information kan tas fram med lika mycket eller mindre 

lidande hos försöksdjuren. 

Under arbetet med våra datasimuleringar observerade vi att den vedertagna BMD-metodiken 

i vissa fall kan leda till värden som underskattar risken. I studie I undersökte vi varför, hur 

ofta och när detta inträffar. Vi visade att fenomenet uppkommer när alltför enkla matematiska 

modeller väljs för att beskriva sambandet mellan dos och effekt.  

I studie II-III har vi med datorsimuleringar undersökt förhållandet mellan kvalitén på den 

information man får från ett toxikologiskt och hur försöket läggs upp. Vi visade att i flera fall 

kan kvaliteten på denna information förbättras samtidigt som djurlidandet minskas. 

I studie IV intervjuade vi ledamöterna i de svenska djurförsöksetiska nämnderna om hur 

tecken på djurs lidande bör värderas etiskt. Vilket är det minst dåliga alternativet; att ha ett 

fåtal djur som utsätts för ett större lidande eller att använda fler djur som lider mindre? 

Individuella ledamöter resonerade väldigt olika kring dessa frågor. Vi såg dock inga säkra 

skillnader mellan forskare, politiker eller representanter från djurskyddsorganisationer. 

I studie V kombinerade vi resultaten från studie IV med datorsimuleringarna från studie II 

för att undersöka hur ett toxikologiskt försök skulle kunna läggas upp för att få ut mest 

information givet en fast etisk kostnad för försöket, där den etiska kostnaden var beroende 

både av antalet djur i försöket och av djurens lidande. Det visade sig att det finns potentiella 

etiska vinster i förändrad studiedesign, beroende på hur den etiska kostnaden definieras. 

Sammantaget visar avhandlingen att det finns en potential att minska djurs lidande utan att 

förlora vetenskaplig information genom att använda moderna metoder för dos-responsanalys 

samt att djurförsök kan värderas både utifrån antalet djur och utifrån deras lidande.  
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1 INTRODUCTION 

Current toxicity testing involves use of many non-human animals (hereafter simply referred 

to as just “animals”), which has been criticized on both ethical (Regan, 1983; Singer, 2009) 

and scientific grounds (see Knight, 2013 for a review). This thesis does not resolve such 

controversies, but focuses on how to use animals as efficiently as possible, from a 

mathematical and statistical perspective. In addition, the ethical aspects of animal 

experiments are introduced as a limiting factor in optimization of experimental design. Many 

of the conclusions in Papers I-III are also relevant for in vitro toxicity testing. 

1.1 RISK ASSESSMENT 

An aim of quantitative chemical risk assessment is to assess the risk associated with the 

chemical exposure in a target population such as workers or the general public. The risk 

assessment process consists of 4 different steps (Figure 1) (NRC, 1983; WHO/IPCS, 2004): 

 

Figure 1. The four parts of chemical risk assessment. 

 

During the exposure characterization, the exposure to chemical through various sources is 

estimated. Chemicals can be taken up via the gastrointestinal tract, via inhalation or through 

the skin and the sources of exposure varies between different chemicals and human 

populations. This includes exposures via food, drinks, exposures in the workplace or as 

exposures as results of accidents etc. Finally, at the risk characterization stage all evidence 

from the previous steps is weight together to determine the human risk associated with the 

exposure.  
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The RfDs being determined in the dose-response assessment is derived from so called Points-

of-Departure (PoDs), i.e doses that exert no or acceptably low adverse effect in the study of 

interest. To obtain the RfD, the PoD is divided by a number of different Assessment Factors 

(AF) that take into account the uncertainties resulting from extrapolation of animal data to 

humans, as well as other uncertainties:  

RfD =
𝑃𝑜𝐷

𝐴𝐹
   (US EPA, 2002) 

The traditional AF of 100 consists of two parts, a factor of 10 designed to take into account 

the toxicokinetic and toxicodynamic differences between the species tested and humans, 

along with a factor 10 that reflects differences in sensitivity between different human 

individual (ECHA, 2012). Additional assessment factors may also be applied when 

extrapolating from short- to a long-term exposure and/or when utilizing incomplete 

databases. When quantitative information concerning the difference in sensitivity between 

animals and humans or between different individuals are available, chemical specific 

assessment factors should be used instead of the standard assessment factors (Meek et al., 

2002; US EPA, 2002). 

For most chemicals, it is assumed that there is a threshold level of exposure below which 

there is no risk of adverse effects (Dybing et al., 2002; Edler et al., 2002), but it is extremely 

difficult or even impossible to determine the existence of such a threshold based on 

experimental data (Slob, 1999; Slob, 2007). For genotoxic carcinogens it is however 

generally assumed that there is no threshold for the risk because a single genotoxic molecule 

could interfere with DNA leading to a mutation and cancer (US. EPA, 2005). This difference 

in the risk assessment of genotoxic carcinogens and other toxicants has its origins in the late 

1970´s, when similarities between the effects of genotoxic carcinogens and radiation were 

realized (Bogdanffy et al., 2001). 

1.1.1 No-Observed-Adverse-Effect-Level  

Traditionally, the so-called No-Observed-Adverse-Effect-Level (NOAEL) has been used as 

the PoD. The NOAEL is the highest dose in a study that does not give rise to an adverse 

effect that is statistically significantly different from the effect in the control group (WHO, 

1999). Since it is occasionally very difficult to determine whether an effect is actually adverse 

and relevant to humans the term No-Observed-Effect-Level (NOEL) is sometimes preferred  

(Berry, 1988). The term NOAEL will however be used throughout this thesis.  In studies 

where there is no NOAEL as the effect in all dose groups differs from the control, the RfD 

can be calculated from the Lowest Adverse Effect-Level (LOAEL) instead of the NOAEL, 

usually with application of an additional assessment factor of 3-10 (ECHA, 2012) .  

1.1.2 Benchmark Dose  

The Benchmark dose (BMD) approach (Figure 2) was introduced by Crump to circumvent 

some of the disadvantages connected with the use of the NOAELs to set RfDs (Crump, 

1984). BMD was originally mostly used with quantal data from developmental studies (Allen 
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et al., 1994a; Allen et al., 1994b), but is now used for both other types of experimental data 

and epidemiological data  (Budtz-Jorgensen et al., 2001; Sand et al., 2008).   

Determination of a BMD involves first fitting a dose-response model to the data and then 

interpolating to find which dose that causes a predefined response. That dose is defined as the 

BMD. To account for uncertainty and provide a margin of safety, a two-sided 90% 

confidence interval for the BMD is calculated and the lower limit of that interval, the BMDL, 

is employed instead of the NOAEL to calculate RfDs. The upper limit of this confidence 

interval, the BMDU, is sometimes used to calculate the BMDU/BMDL ratio which provides 

an estimate of the uncertainty in the BMD value. The BMD/BMDL ratio can also be used for 

this purpose but is less good as it is does not take the full uncertainty in the BMD estimation 

into account (Slob, 2014a). The profile likelihood procedure (Venzon and Moolgavkar, 

1988), which is relatively rapid,  is commonly used to calculate the BMDL and BMDU, but 

other approaches have been discussed and used as well, such as the bootstrap and the delta 

methods (Moerbeek et al., 2004).  

The BMD approach has numerous advantages over the usage of the NOAEL (Crump, 1984; 

Davis et al., 2011). The most important, of which is that BMD takes uncertainty into account 

in a proper manner. In a test with smaller dose groups, the NOAEL tends to be higher, giving 

rise to higher RfDs when there is not much data available. This is not reasonable from a 

precautionary perspective. With BMD on the other hand, the use of small groups usually 

results in lower, more precautionary, RfDs.   

 

 

Figure 2. The BMD procedure. After fitting a mathematical model to the dose-response data the BMD is the dose that 

causes a predefined response. The BMDL and BMDU values are the lower and upper limits of the 90% confidence 

interval for the BMD.  
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Another advantage of BMD modeling is that it well suited to handle covariates, such as sex 

(Edler, 2014). Data from females and males can be used simultaneously in the curve fitting 

and the parameters of interest will only be covariate dependent if there is a difference 

between the sexes for those parameters. For the parameters where there is no difference, the 

different groups will share the same parameter, thereby extracting more information. 

Additional differences between the BMD approach and the NOAEL approach are listed in 

Table 1. Despite some reluctance to use the BMD approach (Travis et al., 2005), this method 

has now been implemented as an alternative or preferred approach by many regulatory 

agencies (Brandon et al., 2013; ECHA, 2012; NAC/AEGL, 2001; Solecki et al., 2005; 

USEPA, 1995; WHO, 2009). 

 

Table 1. Comparisons of the BMD and NOAEL approaches (Öberg, 2010; Slob, 2014a; Travis et al., 2005) 

Advantages of the BMD Disadvantages of the BMD 

Takes uncertainty into account in a 

proper manner. 
More difficult to perform. 

More suitable for simultaneous 

analysis and pooling of datasets. 
Less intuitive. 

Promotes good quality experiments. Less well known. 

Takes the shape of the dose-effect 

curve into account. 

Requires greater harmonization and consensus 

regarding the choice of models, benchmark responses 

etc. 

The choice of critical effect size can 

reflect the severity of the effect. 
 

Less dependent on study design.  

Partially solves the “LOAEL only” 

problem. 
 

Set on a continuous scale.  

BMD ratios are more informative 

than NOAEL ratios. 
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1.1.2.1 Quantal data  

With quantal data, also referred to as dichotomous or dose-response data, the outcomes are 

incidences, e.g. number of animals with tumors. Since each animal/human/cell either 

responds or not, quantal data lie between 0% and 100%. With such data the BMD is defined 

as the dose that gives rise to a Benchmark Response (BMR), most often defined as either an 

increased additional risk or extra risk:  

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑖𝑠𝑘 = 𝑃(𝑥) − 𝑃(0) 

𝐸𝑥𝑡𝑟𝑎 𝑅𝑖𝑠𝑘 =
𝑃(𝑥) − 𝑃(0)

1 − 𝑃(0)
 

An extra risk of 10% is recommended as default for the BMR by both EFSA (EFSA, 2009) 

and US EPA (US EPA, 2012). One advantage of using extra rather than additional risk is that 

a BMD based on extra risk and calculated with a multivariate method, will always be lower 

than the corresponding value calculated from each endpoint separately (Gaylor et al., 1998). 

It has also been suggested that the BMR could be defined as the effect at the Signal-to-Noise-

Cross-over-Dose, i.e. a dose where the extra risk is equal to the background noise (Sand et al., 

2011). 

A multitude of dose-response models have been used for quantal data (Sand et al., 2008).  

Since the results of developmental toxicity studies are a special kind of quantal data the pups 

from the same litter are correlated. BMD modeling of developmental toxicity data therefore 

uses special types of models to take intra-literal effects into account (Kodell et al., 1991; Rai 

and Vanryzin, 1985). 

1.1.2.2  Continuous data 

Body weight, organ weights and enzyme levels are typical continuous data, also referred to as 

dose-effect data. For such data each animal has its own magnitude of effect and the arithmetic 

or geometric means of the different dose groups are usually compared. One important 

difference between quantal and continuous data is the inherent presence of an upper limit of 

100% in the case of the former. Although most continuous effects have a lower and upper 

limit, the value of it is not known beforehand.  

Originally continuous data were often modelled using linear models, power models or 

polynomials (Allen et al., 1994a; Allen et al., 1996; Crump, 1984; Kavlock et al., 1995). 

However, such models do not level off at higher doses and are thereby clearly not suitable for 

some datasets. As a consequence, there has been a stronger focus on models that do have the 

ability to level off at higher doses (US EPA, 2012),  such as the Hill model (Barton et al., 

1998; Murrell et al., 1998) and exponential model (Slob, 2002). Both the Hill model and the 

exponential model can be parametrized as families of nested models, i.e. the simpler models 

within a family can be derived from the more complex ones by fixing parameters in the latter 

(Figure 3).   
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Figure 3. The nested set of exponential models (Slob, 2002).  Model 1 is obtained from model 2 by setting b = 0 and 

model 2 from model 3, 4 or 5 by setting c = 0 and/or d = 1. A more complicated model is selected if the fit is 

significantly better according to a likelihood ratio test. This image is taken from Ringblom et al (2014) 

 

When Slob and Setzer (2014) analyzed a large set of historical data sets including both in 

vivo and in vitro endpoints, they found that both the 4-parameter exponential and Hill models 

fitted the data adequately. Fitting the data simultaneously for the same endpoint, but different 

chemicals, gave curves of the same shape for the in vitro endpoints, as well as dose-effect 

curves of similar shape for the in vivo endpoints.  

The different approaches to choosing a BMR for continuous data can be categorized into two 

categories, nonprobabilistic and probabilistic. The original definition was a nonprobabilistic 

definition with the BMR, or cBMR, defined as a percentage change in the mean effect 

compared to the mean background effect: 

𝑐𝐵𝑀𝑅 =
𝑚(𝑥) − 𝑚(0)

𝑚(0)
 

 

The cBMR was later renamed Critical Effect Size (CES) and discussed further by Slob and 

Pieters (Slob and Pieters, 1998). It is has been recommended that the CES should be a low 

but still measurable effect. Having a CES that is too low will lead to extrapolations and heavy 

dependence of the BMD on the model employed (Edler, 2014). Different endpoints therefore 



 

 7 

requires different CES values (Dekkers et al., 2001). EFSA has proposed a preferred default 

5% as a CES, with modifications if required by toxicological or statistical considerations 

(EFSA, 2009). It has also been suggested that CES values can be set by observing the intra-

animal variation in historical data (Dekkers et al., 2006). 

Other definitions of the BMR for continuous data have been proposed, e.g. as the effect 

corresponding to a percentage of the entire dose-effect span, so that a BMD10 would be 

equivalent to a ED10  (Murrell et al., 1998) or as the dose at that corresponds to where the 

slope of the dose-effect curve changes most rapidly (Sand et al., 2006).  

The simplest probabilistic approach to define a BMR for continuous data is to transform the 

continuous data into quantal data, e.g. by defining a cutoff point such as weight loss of 5% or 

10% as adverse. Any animal with a larger weight loss will be considered a responder and 

animals with less weight loss will be considered a non-responder. This procedure has 

however been criticized since information is lost when the data are quantalized (Crump, 

1995; West and Kodell, 1999).   

The probabilistic hybrid approach proposed by Gaylor and Slikker (1990)  is more advanced. 

Here, the distribution of the effect at each dose level is estimated and the BMD defined as the 

dose that causes a predefined fraction of the animals to exhibit effects greater than a certain 

cut-off level. The U.S EPA supports the use of this procedure as the default approach to 

selecting a BMR, but only if there is no specific change in endpoint that can be considered 

adverse (US EPA, 2012).   

Another important difference between quantal and continuous data is that for continuous data 

is that the latter requires assumptions concerning the distribution of the data (normally 

distributed, lognormally distributed or some other form of distribution).  Shao and Small 

(2013) concluded that incorrect assumptions regarding normality or lognormality exert only 

minor impact on the BMD estimate when the variation is small. The variance of continuous 

data may also be assumed to be consistent at all doses or to change with the effect size. None 

of these assumptions are necessary with quantal data.  

1.1.3 Choice of models and model-averaging techniques.  

Application of different models to the same data will yield different values for the BMD and 

BMDL. As a consequence, there are different methods that guide the choice of which BMD 

and BMDL to use. The different methods rely on the goodness of fit of the model, often 

assessed as the loglikelihood of the fit. An acceptable fit can be examined by comparisons to 

the fit of the full saturated model and/or the fit of the reduced straight line model (Edler, 

2014). While larger and more complex models usually provide better fits they may still be 

less preferable than simpler based on the principle of parsimony.  

In the case of two nested models, statistical theory states that the difference in loglikelihood 

follows a chi-square distribution. This means that in a nested set of models, as with the family 

of exponential models or Hill models, the choice of model can be based on a series of 
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likelihood ratio tests (Figure 3). If addition of a parameter to a simple model does not 

significantly improve the fit the simpler model is retained. Following this procedure for all 

model comparisons in a nested set, a single model can be selected.  

Current EFSA guidelines suggest that the lowest BMDL among the models that pass a 

goodness-of-fit test should be used as the PoD (EFSA, 2009). EPA´s guidelines are less 

conservative, suggesting that the model with the lowest AIC (Akaike Information Criterion) 

should be used as the PoD, unless there is a large difference between the BMDL values 

obtained with the different models (US EPA, 2012).  The AIC takes the likelihood (L) of the 

model fit into account, but penalizes models with many parameters (k): 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿) 

Accordingly, the EPA guidelines result in less conservative estimates of BMDLs than do the 

EFSA guidelines, which on the other hand can be seen as overly conservative.  

Model averaging is a more advanced alternative which takes model uncertainty into 

consideration by weighting the contribution of various models together. The information 

from all of the models rather than only the most conservative or the one with the best fit is 

used to determine the PoD. Bayesian Model Averaging (BMA) has been used in to calculate 

BMDs in several BMD investigations (Dankovic et al., 2007; Morales et al., 2006; Shao and 

Gift, 2014; Simmons et al., 2015). Full scale BMA is both complicated and time-consuming 

which led Buckland and colleagues (1997) to propose simpler model averaging methods that 

also have been used within the BMD field (Faes et al., 2007; Moon et al., 2005; Piegorsch et 

al., 2013; Wheeler and Bailer, 2007; Wheeler and Bailer, 2009b). These frequentist 

procedures commonly relies on estimating model weights based on measures of the model fit 

such as the AIC, the corrected AIC (AICn), Bayesian Information Criterion (BIC) or the 

Kullback Information Criterion (KIC).   

Various non-parametric and semi-parametric procedures for calculating the BMD has been 

suggested (Bhattacharya and Lin, 2010; Guha et al., 2013; Piegorsch et al., 2012; Wheeler 

and Bailer, 2012), but these have so far been used only rarely and not yet incorporated in 

regulatory guidelines.  

The extent to which a model selection or model averaging procedure is conservative or anti-

conservative can be estimated by calculating the coverage rate for the BMDL, i.e. how often 

the BMDL is lower than the true BMD, by using Monte Carlo simulations. Theoretically, the 

coverage rates should be 95%, but it can be substantially different if the model selected is 

different from the “true” model. West and colleagues (2012) have shown that relying solely 

on the AIC for modeling quantal data can lead to substantial undercoverage. Below expected 

coverage rates have also been noted in passing in a study on continuous data (Slob et al., 

2005). 
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1.1.4 Experimental designs 

The efficiency of the design of a toxicological experiment can be evaluated either by Monte 

Carlo simulations (Kavlock et al., 1996; Shao and Small, 2012; Slob, 2014b; Slob et al., 

2005; Weller et al., 1995) or by evaluating or minimizing a design criterion such as the 

expected variance of the parameters (Dette et al., 2009; Holland-Letz and Kopp-Schneider, 

2015; Krewski et al., 2002; Kuljus et al., 2006; Weller et al., 1995). Published reports 

involving any of these approaches are summarized Table 3 in the Results section. Öberg 

(2010) suggested that animal distress could be taken into account when investigating study 

designs, this has not yet been done. 

1.2 ANIMAL EXPERIMENTS 

Animal based research, carried out since the time of ancient Greece (Hajar, 2011), has been 

criticized, not least by the anti-vivisectionist movement that started in Britain during the 

nineteenth century (Rollin, 2006) and off-shoot organizations.  

Today, animals are widely used in medical research and safety testing of chemical. It has 

been estimated that more than 100 million experimental animals according to the EEC 

definition (EEC, 1986) of animals and experiments, were used worldwide during 2005 

(Taylor et al., 2008). While some animals experience little or no distress and/or pain in this 

context, others are subjected to significant discomfort. During 2013 in Canada 38.2% of the 

laboratory animals used were reported to be subjected to procedures that could potentially 

cause moderate-to-severe distress or discomfort, such as major surgical procedures under 

general anesthesia with subsequent recovery or exposure to drugs and chemicals at levels that 

impair physiological systems. 2.5% were reported to be subjected to procedures that could 

potentially cause severe pain near, at, or above the pain tolerance threshold for conscious 

animals, such as  exposure to drugs or chemicals at levels that (may) markedly impair 

physiological systems and which cause death, severe pain, or extreme distress (Canadian 

Council on Animal Care, 1991; Canadian Council on Animal Care, 2015). Although this 

categorization is based on a precautionary approach and the percentages are therefore likely 

to be overestimations, they are nonetheless disturbing.  

1.2.1 Legislation concerning animal experiments 

The laws regulating usage of animals in research are mostly regulated with a utilitarian 

perspective where the chance of positive outcome is weighted against the risk of harm (Vieira 

de Castro and Olsson, 2015). In the USA researchers must adhere to the United States 

Animal Welfare Act (USAWA) (US Department of Agriculture, 2013), which does not 

however, cover rats or mice bred for research purposes, that constitute the lion’s share of all 

animals used in research. Within the EU, researchers must follow the Directive on Animals 

used for scientific purposes (EU, 2010) and all animal experiments must be impartially pre-

evaluated to ensure that the benefits of the experiments outweigh the harm to the animals. In 
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Sweden this evaluation is performed by one of the six regional Animal Ethics Committees 

(AECs), consisting of both researchers and laypersons including representatives for animal 

welfare organizations.  

Other legislation influences the utilization of experimental animals. The EU’s regulation of 

chemicals, REACH, demands the identification and management of the risks linked to all 

chemicals imported into, or produced in the EU in an annual quantity larger than one ton (EC, 

2006a) and Rovida and Hartung (2009) have estimated that fulfilling these demands could 

potentially require the use of 54 million animals before 2018. The REACH legislation do 

however encourage the use of animal free methods (EC, 2006b) and animal-free risk 

assessment, such as read-across, are being utilized to a greater extent (ECHA, 2014; 

Spielmann et al., 2011) 

1.2.2 3R 

The principle of the 3Rs (replacement, reduction and refinement) for animal experiments was 

launched in 1959 (Russell and Burch, 1959) and has now been incorporated in governmental 

legislation in the EU (EU, 2010).  The definition of the 3Rs has changed since the original 

definitions by Russel and Burch. The 3R Declaration of Bologna, defined: 

 “Reduction alternatives are methods for obtaining comparable levels of information from the 

use of fewer animals in scientific procedures, or for obtaining more information from the 

same number of animals. 

Refinement alternatives as methods which alleviate or minimize potential pain, suffering and 

distress, and which enhance animal well-being. 

Replacement alternatives as methods which permit a given purpose to be achieved without 

conducting experiments or other scientific procedures on animals.” (Executive Committee of 

the Congress, 2000) 

In many cases the 3Rs are positively correlated. For instance, refinement methods leading to 

less animal distress often also result in less variable data so that fewer animals are required to 

achieve acceptable scientific power (reduction). However, sometimes the 3Rs can correlate 

negatively, e.g. surgical implantation of telemetry devices for continuous monitoring, which 

may cause distress, can produce better data and consequently reduce the need for animals. 

The conflict between refinement and reduction is also evident in connection with toxicity 

testing. Lowering doses represents a refinement, but then the statistical power of the test will 

also be lowered so that more animals are required. In such situations, there is a lack of 

guidance concerning which R to prioritize (de Boo et al., 2005). 

For an example, the EU directive on the protection of animals used for scientific purposes 

states that the benefits expected must outweigh the ethical cost i.e. a cost-benefit analysis 

must be performed for each individual animal (EU, 2010). However, this directive provides 

no general guidance concerning the relative priorities that should be assigned to reduction and 
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refinement. Consider a hypothetical example: A planned experiment that could be quite 

distressful involves two individual rats named Sprague and Dawley, among others. In 

experimental setup 1 both would be among the animals used and the expected benefit is 

considered to be larger than the ethical cost. If either Sprague or Dawley were removed, 

scientific power would be lost and no conclusion could then be drawn from the experiment. 

Therefore, if the cost-benefit analysis for the entire experiment is acceptable, it must include 

both Sprague and Dawley and their use is thus also acceptable on the basis of individual cost-

benefit analysis. 

The alternative experimental setup 2, offers the same potential benefits as setup 1, but 

Dawley no longer needs to be used. However an additional blood sample has to be taken 

from Sprague, thereby increasing his distress slightly. This experiment would still be 

considered ethically acceptable if the overall stress experienced by Sprague is outweighed by 

the benefits, but which setup should be chosen? The EU directive states that the individual 

animal must be considered, but Sprague suffers more in setup 2 whereas Dawley suffers more 

in setup 1. Such a decision must be based on ethical, not legal considerations. 

1.2.3 Ethical considerations regarding reduction versus refinement 

The choice between reduction and refinement is not entirely straightforward, especially since 

experimental animals are usually killed at the end of the experiment. Moreover, these animals 

are bred for this specific purpose and in the long run a reduction in the usage of animals will 

lead to fewer animals being born. It therefore becomes a conflict between quantity and 

quality of life, as discussed further by Sandøe and Christiansen (2007) . 

Some argument support prioritization of refinement over reduction under all circumstances. 

For instance, animal rights philosopher Tom Regan advocates the worse-off principle in 

general whenever there is a conflict between rights. This principle states that if we must 

choose between overriding the rights of many or a few, it is better to override the rights of 

many, if harming the few will leave them worse off than the any of the many would be if the 

other option was chosen (Regan, 1983).  

In many instances a hedonistic utilitarian, who are interested in the maximizing the amount of 

pleasure or wellbeing, have good reasons to prioritize refinement over reduction. If the 

experimental animals have a life generally worth living, reduction is even ethically 

questionable since it will lead to fewer animals being born and therefore less total wellbeing, 

a conclusion that most people probably find counterintuitive. Furthermore, it is not clear 

whether it is generally preferable to have more individuals, even if each has a positive 

wellbeing.  One problem with maximizing total happiness in this manner is that it easily leads 

to the so-called Repugnant Conclusion (RC) as follows:  

In Figure 4, the heights of the bars represent the positive wellbeing of a group of individuals, 

and the width represents the number of individuals in each group. In Scenario A only 

contains individuals with a high wellbeing. Scenario A+ is similar to scenario A, but with the 

addition of more individuals with less, although still positive wellbeing, so in scenario A+ the 
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total wellbeing is greater.  Scenario B contains the same number of individuals as A+ each 

with the same wellbeing which is slightly higher than the average in A+, it is then reasonable 

to consider B preferable to A+.  If B is better than A+ and A+ is better than A, then B should 

be better than A.    

If this process is repeated almost indefinitely, scenario Z in which an enormous number of 

individuals have a wellbeing that is barely high enough to be better than not living, will be 

reached. Z, which involves the most wellbeing, should be the best scenario of them all.  This 

conclusion, that a world in which everyone has a life barely worth living, is better than a one 

which smaller number of individuals have a wonderful life is referred to as the Repugnant 

Conclusion (Figure 4).  

Those who defend utilitarian welfare aggregation have dealt with this conclusion either by 

arguing that there is something wrong in the arguments involved (Blackorby et al., 1997; Ng, 

1989) or that it is not actually repugnant (Ng, 1989; Tännsjö, 2002). Carlson (1998) has 

discussed a similar situation in which all cases (A-Z) include negative wellbeing with lives 

worth avoiding and concluded that those who are worse off should reasonably be given 

higher weight when aggregating the wellbeing. In an animal experiment this would mean that 

refinement should generally be given higher priority than reduction, although not in all cases. 

There will be situations where it is better for fewer animals to experience more negative 

wellbeing than for more animals to experience less negative wellbeing. 

 

Figure 4. The Repugnant Conclusion.  See text for explanation. 
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If killing animals always should be avoided it can be considered that reduction always should 

have precedence over refinement. This “badness-of-killing argument” has however been 

critized as it is not in line with how animal ethics are handled in other parts of society, such as 

concerning production of meat (Hansen et al., 1999; Olsson et al., 2012). 

In the absence of normative prioritizations concerning reduction and refinement, ethical 

decisions are made on case by case basis, which implicitly or explicitly requires a measure of 

ethical cost, preferably on a cardinal scale where the ethical cost of using an animal is 

proportional to the ethical severity of that use. This scale must also be additive so that the 

ethical cost of using a number of animals is equal to the sum of the ethical cost for each 

individual animal.  

There are few point and score systems for the quantitative ethical evaluation of animal 

experiments described to date (Porter, 1992; Stafleu et al., 1999) but their cardinality is 

questionable at best (Table 2).  Moreover, their primary aim was to guide harm-benefit 

analysis rather than specific choices between reduction and refinement. 

Table 2. Ethical cost points concerning the number of animals in the scoring system developed by Porter (Porter, 

1992).  This scoring is not cardinal since the cost is not proportional to the number of animals.  

Animals used Cost points 

1-5 1 

6-10 2 

11-20 3 

21-100 4 

>101 5 

 

 

Other, more detailed scoring sheets for clinical signs of pain, distress and suffering have been 

developed for use with laboratory animals (Morton and Griffiths, 1985; Scharmann, 1999). 

These are often semi-quantitative and employed to determine when the animals should be 

given analgesia or euthanized because their suffering exceeds what is deemed acceptable. 

Accordingly, these scoring schemes involve the assessment of individual animals during the 

course of an experiment and they cannot in their present form be used directly to decide 

between reduction and refinement in connection with experimental design.  

A set of cardinal weights for animal experiments could be developed using an approach 

similar to the Person Trade-Off (PTO) technique, originally known as the equivalence 

technique, that has been used to derive Quality Adjusted Life Years (Murray and Lopez, 

1996). With the PTO interviewees are asked questions such as: “If there are x people in 
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adverse health situation A and y people in adverse health state B and if you can only help 

(cure) one group (for example due to limited time or limited resources) which one would you 

choose to help?”(Torrance, 1986). 

 



 

 15 

2 AIMS 

The general objective of this thesis was to improve BMD modeling in relationship to the use 

of experimental animals in toxicological experiments. The specific objectives were as 

follows: 

 

Paper I 

To investigate under what circumstances and how frequently BMDL coverage with 

continuous data are below the nominal level. A secondary aim was to investigate the 

coverage of the NOAEL in relation to the true BMD. 

 

Paper II  

To investigate whether and under what circumstances experimental designs involving dose 

groups of unequal size can both result in less animal distress and provide more reliable 

estimates of the BMD for quantal data.  

 

Paper III 

To investigate whether and under what circumstances experimental designs involving dose 

groups of unequal size can both result in less animal distress and provide more reliable 

estimates of the BMD for continuous data.  

 

Paper IV 

To determine cardinal ethical weights for toxicity testing, as well as investigate how these 

differ between different categories of responders.  

 

Paper V 

To investigate the impact of taking ethical cost into consideration in connection with 

optimization of dose-response studies.  
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3 METHODS 

In Paper I the BMDL coverage rates were investigated by simulating continuous data from a 

sigmoidal exponential curve and then calculating the BMDL values with a standard nested set 

of exponential models (Figure 3). One of these models was selected on the basis of likelihood-

ratio tests as described by Slob (2002). Utilizing a model from earlier simulations studies as the 

true underlying model,  Monte Carlo simulations were performed to investigate how often the 

BMDL and the NOAEL was higher than the true BMD, and how much higher they were  

In Paper II the effects of using unequal numbers of animals in the different dose groups for 

toxicological studies, with in total 200 animals, on the quality of BMD estimates were 

investigated using Monte Carlo simulations on quantal data. Six different dose-response models 

commonly used in BMD calculations for quantal data were used in the simulations and in the 

re-estimations. All six were used as true models, by fitting them to two different datasets from 

an NTP (National Toxicology Program) cancer study on furan (NTP, 1993); one on the 

incidence of hepatocellular carcinoma, without background incidence, and one on the incidence 

of mononuclear cell leukemia, where there was a background incidence of 16%. Thus, 12 (2×6) 

different “true” curves were used in the simulation. Nine different dose placements were 

evaluated, ranging from very low doses to very high doses, each with 85 different distributions 

of animals between four dose groups. An AIC-based model averaging approach was used and 

the performance of a specific design evaluated using the root mean squared error (RMSE) of the 

AIC-averaged BMD estimates and by calculating the ratio between AIC-averaged BMDU and 

the AIC-averaged BMDL. The animal distress was assumed to be proportional to dose. 

In Paper III the effects of using unequal numbers of animals in the different dose groups for 

toxicological studies on the quality of BMD estimates were investigated using Monte Carlo 

simulations on continuous data. The simulation step was based on four different hypothetical 

“true” curves. The curves included two sigmoidal curves, one that either clearly levelled off 

within the covered dose-effect span and one that barely leveled off within the dose-effect span 

as well as two models that did not level off. Designs with either 40, 80 or 200 animals in total 

were evaluated as these are common study sizes in OECD guidelines (OECD, 2012). Nine 

different dose placements were evaluated, ranging from very low doses to very high doses, each 

with 85 different distributions of animals between four dose groups. An AIC-based model 

averaging approach was used and the performance of a specific design evaluated using the root 

mean squared error (RMSE) of the AIC-averaged BMD estimates. The animal distress was 

assumed to be proportional to dose. 

In Paper IV members of the Swedish Animal Ethics Committees (AEC) were interviewed via 

telephone concerning how they prioritized reduction versus refinement in connection with 

toxicological experiments. The interviews were based on a fictitious one-week study in rats. The 

committee members were asked to evaluate the ethical impact of nine different clinical signs, 

each having one mild and one severe variant, and for each sign an ethical weight was 
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determined as how many animals free from clinical signs would entail the same ethical cost as a 

single animal experiencing the sign. The ethical weights assigned by the different member 

categories (researchers, political representatives and laypersons representing animal welfare 

organizations) were evaluated with Kruskal-Wallis tests. 

In Paper V various study designs were evaluated using Monte Carlo simulations of quantal 

data.  The designs did not have the same number of animals as is the case with most studies on 

experimental design, instead they had the same estimated ethical cost. The incidence of 

hepatocellular carcinoma and mononuclear cell leukemia in male rats (i.e. the same data as in 

Paper II), were used to define the true curve. The loglogistic model was included as a “true” 

dose-response model in the simulation step. All six models used in Paper II were fitted to the 

simulated data, and the BMD estimated from each model were averaged using an AIC based 

methodology. Several different study designs were evaluated, all having approximately the 

same ethical cost as a study with 200 animals evenly distributed to four dose groups at a 

medium-low dose placement. The ethical cost of a design was estimated in the basis of with 

ethical weights of 1, 4, 16, 64 or 256, based on the result from paper IV. The “true” curves were 

used to define the ethical cost of the studies, i.e. this cost of exposing to a certain dose depended 

on the response at that dose. Both datasets on hepatocellular carcinoma, without a background 

incidence, as well as on mononuclear cell leukemia, with a background incidence, were used to 

define the true dose-response curve as well as to define a dose-ethical cost-curve. 
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4 RESULTS AND DISCUSSION 

4.1 MODELS FOR CONTINUOUS ENDPOINTS   

In Paper I we found that coverage rates (i.e. how often the estimated BMDL is lower than the 

true BMD) depended on the dose placements and the assumed coefficient of variation (CV). 

These rates were in many cases considerably lower than the theoretical 95%, indeed in some 

scenarios as low as 20%, due to the exclusion of a ceiling parameter. With lower doses, the 

ceiling parameter was often excluded from the model selected, often resulting in coverage rates 

that were quite poor. On the other hand the BMDL values were on only slightly higher than the 

true BMD. With higher doses, the ceiling parameter was identified more often, so the coverage 

rates were closer to the expected 95%. However, when the ceiling parameter was excluded, the 

BMDLs were even less protective. Although the coverage of the BMDLs were somewhat 

disturbing, the situation with the NOAELs was generally worse. 

Less than nominal coverage rates are especially problematic from the point-of-view of the 

EFSA which generally supports a conservative approach to model selection, advocating the 

model with the lowest BMDL in cases where several model fits the data (EFSA, 2009). Thus 

the BMDLs selected using EFSAs guidelines would be expected to be conservative in general, 

but this is not the case as they don’t advocate the use of the model with lowest BMDL within a 

nested set, but instead advocating the selection one model from a nested set using likelihood-

ratio tests.  

Our findings on the BMDL coverage rates favor the use of a ceiling parameter (c) in dose–effect 

analysis, although this is not always entirely unproblematic. Within the nested set of exponential 

models, the ceiling parameter will be excluded if the data do not provide a significant amount of 

information about this parameter. Obviously, if the c-parameter is always included, the 

likelihood curve will sometimes be very flat due to the lack of information about the parameter 

which will lead to problems with model convergence.  

However, a lack of convergence should not automatically lead to dismissal of the result of the 

model fit, since it is the exact value of the c-parameter that is not of interest in BMD modeling, 

but rather the BMDL which is not much influenced by the exact value of an uninformative c-

parameter.  

More problematic is the fact that the overparametrization increases the risk of errors in the 

confidence interval estimated by the profile likelihood procedure, if the shape-determining d-

parameter is included as well.  The risk of obtaining such erroneous confidence intervals could 

potentially be avoided by starting the numerical estimations during the confidence interval 

estimations at different points in the parameter space, at least in those cases where there is a 

sharp drop in the profile likelihood curve.  
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Another issue with the 4-parameter models, that includes both a ceiling parameter (c) and a 

shape-determining parameter (d), is that the confidence intervals can be very broad, especially if 

the d-parameter is unrestricted.  From a precautionary perspective such a wide confidence 

interval and very low BMDL could be reasonable. The BMDL should reflect the lower limit of 

the risk and if the data do not support the absence of effects at low doses, then the BMDL value 

should be low. However, from a regulatory perspective it would be unfortunate if RfD based on 

continuous data differ from RfD obtained with quantal data (Crump, 2002), and since the 4-

parameter models are much more flexible RfD based on these could be considerably more 

conservative.  

Broad confidence intervals could be restricted by including prior information concerning the 

dose-effect relationship. This could either be done by including historical datasets on the same 

endpoint (Slob, 2014a; Slob and Setzer, 2014) or by including endpoint specific limits to the 

model parameters. However, both of these solutions require use of prior information and 

increases the demand of expert knowledge needed for the BMD analysis.  

It is also possible that always including d-parameter and allowing it to be lower than 1, instead 

of always including the c-parameter, may provide a model with enough flexibility to result in 

reasonable coverage rates.  

Yet, another approach would be to determine BMDs utilizing non-parametric approaches, but 

these can also result in unnecessarily wide confidence intervals (Slob and Setzer, 2014).  

4.2 BMD AND EXPERIMENTAL DESIGN  

Our major findings concerning study design in Paper II and Paper III, as well as relevant 

findings by others, are listed in Table 3. Paper II, with quantal data, indicates that it is 

important to include doses close to the targeted BMD, or a bit above the targeted BMD if there 

is a high background incidence. This is in line with the conclusions by Slob (2005)  and 

Kavlock and colleagues (1996). Shao and Small (2012) found that the best design for one of 

their two datasets had the lowest dose group much higher on the dose-response scale. However, 

Shao and Small used a different quality metric (the difference between the 95
th

 and 5
th

 percentile 

of the BMD estimates) and that can possibly contribute to the difference in the results.  

Moreover, Paper II and Paper III indicate that it is important to include higher doses with a 

clear response as well, which is in agreement with the findings of others (Dette et al., 2009; 

Holland-Letz and Kopp-Schneider, 2015; Krewski et al., 2002; Shao and Small, 2012; Slob et 

al., 2005).  

Our observation that dose groups of unequal size, with a larger number of animals close to or 

above the BMD, is generally in agreement with previous reports (Dette et al., 2009; Kavlock et 

al., 1996; Krewski et al., 2002; Weller et al., 1995).  However, Paper II indicates that this 

scientific gain is quite small with quantal data, as was also observed by Shao and Small (2012). 



 

20 

The other studies did not state how big the difference was between an equal distribution of 

animals and an optimal uneven distribution. Paper III showed that with continuous data this 

gain was greater and moreover, it seems as the control groups is more important for continuous 

data than for quantal data.    

Using distress as a criterion for evaluating designs has not been done before. In many of the 

scenarios in Papers II and III, the best design with more animals receiving a dose close to the 

BMD, showed less estimated distress. It was shown that although the improvement was quite 

limited there is a potential to use BMD-aligned experimental design as a means to refine 

toxicity testing. However, this was most clearly evident when the doses were high in general, in 

the range where a clear effect could be observed and where distress also can be expected to be 

higher.  

Some of the previous studies have included parameter or model uncertainties in the modeling. 

Shao and Small (2012) combined two models as “true” models, but did not take into account 

potential uncertainties in the location of the dose-response curve. Kuljus and colleagues (2006) 

as well as Holland-Letz and Kopp-Schneider (2015) included uncertainty in the steepness 

paramater, but their suggested optimal designs did not take into account the uncertainty in the 

dose placement. Dette and colleagues (2009) took uncertainties into account when determining 

optimal designs in a part of their study.  However the uncertainties were very small, they are 

much larger when designing real toxicity experiments. In Paper II and Paper III we to some 

extent took dose placement uncertainty into account by investigating the same designs at 

different dose placements, although we did not consider a continuous range as Dette and 

colleagues did. Further investigation of the designs of studies should ideally take into account 

realistic uncertainties in the parameter estimates, and ideally also model uncertainties.  

Various approaches on how to incorporate prior information or how to combine different 

datasets have been described (Slob and Setzer, 2014; Wheeler and Bailer, 2009a). The influence 

on such approaches on experimental design aligned to BMD has however not been examined 

and warrants investigation. Wang and colleagues (2013) proposed optimization of the design of 

a sequential experiment by performing by designing sequential design, i.e. the second stage is 

designed after the first, but this approach does not take variability between the experimental 

stages into account.  

This issue of differences between experimental stages performed in the same laboratory is 

analogous to designing new studies on the basis of previous ones. The uncertainties are larger in 

the latter case, but not fundamentally different. Since these uncertainties need to be included in 

the development of experimental designs their quantification in desirable.  
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Table 3. Summary of previous and present studies concerning the estimation of BMD. “-“ = Not investigated. 

Article Methods Results 

Type of 

data 

Evaluated 

simulated 

data or 

minimized 

expected 

variance? 

Was model 

uncertainty 

included the 

estimations

? 

Were 

BMDLs 

calculated

? 

Was 

animal 

distress 

considered

? 

Did more dose 

groups give better 

estimates? 

Are the 

estimates 

better with a 

dose closer to 

the BMD? 

Are high doses 

important? 

Does unequal 

distribution of 

animals have an 

impact on 

quality? 

(Weller et 

al., 1995) 

Quantal Both. No Yes No More groups resulted 

in better accuracy, 

but worse precision. 

- - Yes, few animals 

needed at the 

high dose. 

(Kavlock 

et al., 

1996) 

Quantal Evaluated 

simulated data 

No Yes No Not necessarily, it 

depended on the 

situation.  

Yes Doses close to 

the BMD are 

more important.  

 - 

(Krewski 

et al., 

2002) 

Quantal Minimized 

expected 

variance  

No No No 3-4 groups are more 

efficient than 5-7 

groups. 

Sometimes, but 

not always.  

Yes Yes, fewer 

animals needed 

at the high dose. 

(Dette et 

al., 2009) 

Quantal Minimized 

expected 

variance 

No No No Sometimes 4 doses 

are better than 3.  

- Yes Yes, few animals 

are needed at the 

highest dose.  



 

22 

(Shao and 

Small, 

2012) 

Quantal Evaluated 

simulated data 

Yes, used 

two models 

weighed 

with a BMA 

approach.  

No No Yes. On one 

occasion the 

best design 

involved a dose 

almost as high 

as ED50.  

Yes Only minor 

effect. 

(Slob, 

2014b) 

Quantal Evaluated 

simulated data 

No Yes No Not clearly.  - - - 

(Slob et 

al., 2005)  

Continuous Evaluated 

simulated data 

Yes, model 

selection 

based nested 

set of 

models 

Yes No More dose groups 

reduced the risk of 

poor dose placement. 

 

Most often, yes. Yes - 

(Kuljus et 

al., 2006) 

Continuous Minimized 

expected 

variance 

No No No > 4 dose groups 

better when 

parameter values 

were uncertain. 

No, at least not 

a strong trend.  

- - 

(Holland-

Letz and 

Kopp-

Schneider, 

2015) 

Continuous Minimized 

expected 

variance 

Yes No No Yes, > 4 dose groups 

were preferred when 

parameter values 

were uncertain. 

No Yes Yes, but there 

was no clear 

trends regarding 

how to distribute 

the animals. 
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Included in this thesis 

Kalantari 

et al  

(Paper II) 

Quantal Evaluated 

simulated 

data 

Yes, 6 models 

weighted 

together with 

an AIC-based 

model 

averaging 

approach. 

Yes Yes - Yes Yes Small effect on 

BMD, but 

potential ethical 

benefit 

Ringblom 

et al.  

(Paper 

III) 

 

Continuous Evaluated 

simulated 

data 

Yes, 4 models 

together with 

AIC-based 

model 

averaging 

approach. 

No Yes - Not 

necessarily, 

but it was 

advantageous 

with many 

animals closer 

to the BMD.  

Yes More 

pronounced 

effect on BMD 

than in Paper II. 

Ringblom 

et al.  

(Paper V) 

Quantal Evaluated 

simulated 

data 

Yes, 6 models 

together with 

an AIC-based 

model 

averaging 

approach. 

Yes Yes - Yes Yes, if there was 

a background 

incidence of 

distress. Less so 

without  a  

background 

incidence of 

distress. 

Yes, large effect 

since few high 

dose animals 

was converted to 

more low dose 

animals. 
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4.3 REDUCTION VERSUS REFINEMENT 

In 47 interviews with members of the Swedish AECs in Paper IV, priorization between 

reduction and refinement varied widely. One researcher and one political representative 

always prioritized reduction and 3 researchers, 1 political representative and 2 representatives 

of animal welfare organizations always prioritized refinement. The responses of the 

remaining 39 participants implied that a limited increase in animal numbers in some cases 

could be acceptable if the individual animal distress was reduced.  

The median ethical weights, that is how many animals not showing a clinical sign that 

entailed the same ethical cost as 1 animal with the clinical sign, was 2-4 for the milder 

version of the signs and 5-20 for the more severe version of the signs. There were no 

statistically significant difference between the magnitudes of the ethical weights assigned by 

different member categories of members (researchers, political representatives and 

representatives of animal welfare organizations) the within group variation was large 

compared to the between group variation. There where however a small trend that the 

political representatives assigned lower ethical weights than the other committee members.  

These similarities between the groups raise the question as to whether there is any reason to 

include laypersons in the AECs. Personally, I believe, in agreement with others (Hansen, 

2013), that the laypersons play an important role and that the committees should not consist 

of researchers alone. When evaluating research protocols, the members must weight the harm 

of an animal experiment against the scientific benefits. Our participants only weighted harm 

against harm, which is not the same thing.  

8 participants (5 researchers, 1 politically nominated layperson and 2 laypersons nominated 

by animal welfare organizations), found the questions to be too hard to answer and did not 

complete the interview, as also happens in connection with PTO studies on human health 

(Damschroder et al., 2007).  Such studies involve making decisions concerning the health of 

other humans and it is not surprising that many find PTOs difficult and unpleasant (Nord, 

1995), nor is it surprising that this is the case for questions regarding animal experimentation 

as well, which is potentially even more sensitive than questions regarding health care.  

In an examination, on the balance between reduction and refinement, Franco and Olsson 

(2014) asked participants in a Laboratory Animal Science course if they ethically preferred 

performing a stressful experiment with no permanent effects 20 times on one animal or once 

in 20 animals. If the animals were mice, a slight majority preferred refinement, using more 

animals, whereas if the animals were primates or dogs more favored reduction. Franco and 

Olsson note that this difference might reflect considerations other than purely ethical ones, 

such as financial and logistical considerations, but some ethical differences might still be 

truly ethical. This indicates that the size of ethical weights could be species specific. Also, 

completely different clinical signs may be needed for different species.  
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It is also quite possible that cultural differences between countries regarding reduction versus 

refinement exist. For instance, there are considerable differences among the residents in the 

different countries of Europe concerning the opinions on human euthanasia (Cohen et al., 

2006). This question has, of course, other dimensions than animal euthanasia and reduction 

versus refinement in animal experiments, but the value of a life and wrongness of killing is 

involved in both cases. According to the report by Cohen, Swedes are more positive to 

euthanasia than the inhabitants in most other European countries, and one wonders whether 

this might also be the case with respect to refinement of animal experimentation. If so, the 

ethical weights determined in our study would be expected to be higher than if the study was 

performed in a similar test population in a different country, for instance in southern Europe. 

Previously statements on reduction and refinement have mostly been of qualitative nature. 

However in some situations qualitative statements are not informative enough, for instance 

when it comes to evaluating several experimental setups or test strategies. The determined 

ethical weights are up for criticism, for instance regarding their accuracy. However being up 

to criticism in some sense positive, compared to mere qualitative statements that often lack 

specificity and evaluability. 

In Paper V, we used the quantitative ethical weights determined in Paper IV to investigate 

how toxicity tests can be designed taking into account both the number of animals used and 

the experiences of the individual animals. We evaluated ethical weights of 1,4,16,64 and 256. 

The results show that the optimal dose placement was heavily dependent on the ethical 

weight of the sign determining the ethical cost and the background incidence of that clinical 

sign. When the distress of the individual animal was not considered at all (ethical weight=1) 

it was preferable to place the doses relatively high on the dose-response scale with the mid 

dose group around or even above the ED50. Already the use of an ethical weight of 4, made it 

generally preferable to have the mid dose placed below the true BMD (ED10), if there was no 

background incidence of distress and no background incidence of the toxicological endpoint. 

However, if it was assumed that there was distress present already in the control group, there 

is not a lot to gain by moving animals to lower doses.  

The use of even higher ethical made it more advantageous to use more animals at lower 

doses, but it was only in one case where it was preferable to use the lowest dose placement 

tested, with the high dose group around the true BMD. In that case there were more than 

1000 animals in the study and it seems unlikely that such study would be performed in 

practice.  

The ethical weights determined in Paper IV were based on one-week experiments on eight 

week old rats, while the dose-response data in Paper V was from a two-year study. It is not 

obvious that these weights are directly transferable in this manner. In a two-year study the 

animals could suffer distress for a longer period of time, but they also live longer, i.e. might 

have longer periods of life worth living as well, balancing the enhanced stress out from a 

utilitarian perspective. 
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The degree to which the ethical weights would need to be adjusted to be appropriate for a 2-

year study, remains an open question. On the other hand we tested a wide range of ethical 

weights (1,4,16,64,256) in Paper V, so even if the weights are changed, it is still possible to 

draw conclusions about study designs.  

Are the results presented in Paper V relevant also for shorter studies, even though the dose-

response data are from a longer study? In principle, they should be. The background 

responses can surely be the same for endpoints relevant to shorter exposures. At the same 

time the slope of the dose-response curves could differ for different endpoints and different 

experimental setups. Nothing has yet been published concerning the shape of the quantal 

dose-response data, although Slob and Setzer mention that they are working on this (Slob and 

Setzer, 2014). In the absence of such data, I find no compelling reason to believe that the 

shape of the dose-response curve for carcinogenicity should differ markedly at higher doses 

compared to other quantal responses.  
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4.4 METHODOLOGICAL CONSIDERATIONS 

4.4.1 Assumptions regarding dose-response models 

In Papers I-III and V we studied BMD modeling using Monte Carlo simulations meant to 

emulate real life experiments. Investigating the performance of different designs by 

performing the experiments with real animals may look favorable for obvious reasons. 

However, computer simulations offer the advantage “true” dose-response relationship is 

known by definition, providing a reference for the results. Also, with computer simulations it 

is possible to investigate many possible situations (i.e., shapes of dose-response curves, 

combinations of designs, etc.) compared to what can be realistically evaluated with real 

toxicity data. The results obtained with a simulation approach are of course dependent on the 

assumptions made in the simulations, e.g. the true models used, the values of the parameters 

and variation in these models etc. In these papers of this thesis we employed several different 

assumptions depending on the specific aims of each project. 

In Papers II and V the true models originate from two actual datasets with different 

background incidences in an NTP cancer study on F344 rats exposed to Furan (NTP, 1993). 

In Paper II six different models of varying steepness were fitted to each dataset, giving rise 

to 12 different dose-response curves, with different steepness. The F344 strain is an inbred 

strain and it is therefore likely that the dose-response curve is steeper than it would be from 

an outbred strain or human population. In Paper V we fitted only the loglogistic model to the 

two different endpoints, giving rise to two different true curves, one without and the other 

with a background incidence.  

In Paper I we employed a dose-effects model already used in a similar simulation study 

(Slob et al., 2005), the choice of  parameters and CV in previously published article was 

based on a database of dose-effect data. We used CVs of 5%, 10% and 15%. It has been 

suggested that the size of the CV covaries with the difference between the maximum effect 

and the background effect (Slob, 2014b) . If so, it is likely that 5% scenario is the most 

realistic one.  

In Paper III, we used four hypothetical curves (exponential, Hill, power and polynomial). 

The exponential and Hill models are realistic according to Slob & Setzer (2014). We also 

used the power and polynomial models in both the simulation and estimation step. It could 

have been argued that both of these models should have been omitted on the basis of the 

findings by Slob and Setzer (2014), who showed that a vast array of dose-effect relationships 

can be adequately described using the four-parameter exponential and Hill models. The 

power and polynomial models were included anyway since it is common practice to use these 

in dose-effect modeling.  

While the results in Papers I and III are dependent on the model parameters, it can be 

demonstrated that the results from the simulations based on continuous data are valid also for 

situations with different CVs, as long as the CES and ceiling parameter (c) is changed 

appropriately as well (see Slob, 2005 for details). 
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In contrast to the case for quantal data, the choice of CV and the assumptions regarding the 

distribution of the data both matter for continuous data. We assumed that the data are 

distributed lognormally. Shao and colleagues (2013) demonstrated that the assumption 

regarding normality or lognormality has limited impact when the CV is small (CV=10%), 

which was the case in Paper I and Paper III. 

4.4.2 What constitutes a good design? 

Different investigations in the literature have used difference methods and different quality 

metrics to evaluate different experimental designs. In Paper II, III and V we explored 

experimental designs using Monte Carlo simulations and we employed the RMSE as the 

primary quality metric. Minimizing a design criterion, such as the expected variance of the 

parameter estimates, was an alternative to the simulations, but simulations were chosen as 

they reflect actual experiments more closely. Minimizing the expected variance gives no 

information regarding the frequency of statistically significant dose-response relationships or 

the BMDLs.  

We employed RMSE of the BMD as the primary quality metric in our simulations. The 

advantage of using the RMSE is that it measures both accuracy and precision of the BMD 

estimate. The RMSE (or MSE) has also been used as a quality metric in earlier simulation 

studies involving BMD estimations (Fung et al., 1998; Guha et al., 2013; Kavlock et al., 

1996).  It might appear to be more realistic to primarily employ a metric based on the BMDL 

rather than the BMD since the lower confidence interval is the value used in risk assessment 

and BMDU/BMDL or BMD/BMDL ratios are commonly used to assess the precision in 

BMD analysis. However, these metrics only assess the apparent precision and not real 

precision and they should therefore be used with caution as quality metrics in simulations. 

For instance the BMDU/BMDL ratio can be very low, indicating good estimation, while the 

“true” BMD is actually outside of the BMDL-BMDU interval (as shown in Paper I). 

An alternative approach has been proposed by Slob(2014a). He proposes that minimizing the 

“true”BMD/BMDL ratio provide good evaluations in BMD simulations. Following this 

suggestion literally is, however, not recommended since it implies that higher BMDLs are 

always better and that anti-conservative approaches are always preferred. It would perhaps be 

sounder to use the coverage rates or the “true”BMD/BMDL95th percentile as quality metrics. 

Although a coverage of 95% and a “true”BMD/BMDL95th percentile=1 seems favored it is 

unclear whether a coverage of 90% and a “true”BMD/BMDL95th percentile=0.9 is better or 

worse than a coverage of 99% “true”BMD/BMDL95th percentile=1.3. In addition, results based 

on coverage rates will be heavily dependent on the model selection or averaging procedure.  

The procedure we applied to weight BMDLs together is not formally correct as the BMDL is 

“not an independent random variable but a statistic of the variable BMD”(Shao and Gift, 

2014), although it has been suggested and used by others as well (Bailer et al., 2005a; Bailer 

et al., 2005b; Wheeler and Bailer, 2009b). RMSEs based on BMD estimates are also 

influenced by the choice of selection or averaging procedure, but less so.  
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In Paper III some of the BMD estimates were very high due to the fact that the dose-effect 

curve was very flat. Consequently we set a limit on the BMDs for certain outlier datasets, 

treating them as exhibiting lower BMDs than they actually did. Otherwise, the quality of the 

designs would have depended solely on single outlier values. A different solution would be to 

keep all of the BMDs and calculate the Root Median Squared Errors instead of the more 

commonly used Root Mean Squared Errors, as medians are less sensitive to outliers.   

In Paper II and V we left out models with poor fits in the model averaging, as suggested by 

Wheeler and Bailer (2009b).  Accordingly for certain datasets no models gave an acceptable 

model fit and thus there were no BMDs or BMDLs for these datasets. In Paper II these 

simulations without a BMDAIC were excluded from the RMSE calculations. In Paper V we 

used an alternative approach where they were treated as having a BMDAIC to 10 interquartile 

ranges higher than the average BMDAIC for that particular design, in order to penalize 

simulations without a dose-response trend as false negatives are negative outcomes. 

BMDU/BMDL ratios, a measure of apparent precision, were used as secondary quality 

metrics in Papers II and V, but not in Paper III where preliminary simulations indicated that 

confidence interval calculations sometimes resulted in erroneous BMDLs and BMDUs due to 

numerical problems when calculating the profile likelihood curve. With real data such 

erroneous confidence intervals can be identified by visual inspection of the profile likelihood 

curve, but in the present case it was not possible to visually inspect the output of all BMD 

calculations. In retrospect, we could have accepted the erroneous BMDL, since as long as 

they are relatively few in number, they distort the median BMDU/BMDL ratios only slightly.   

4.4.3 Trade-off interviews 

In Paper IV we determined cardinal weights for the ethical cost of animal experiments by 

trade off interviews with the members of the Swedish AECs. We chose the interview group 

based on that they are used to evaluate situations regarding animal ethics and they also 

include members of different backgrounds and beliefs. The participants in our study match 

the composition in the Swedish AECs fairly well when it comes to the fraction of members 

being researchers, politicians or animal welfare representatives and there were participants 

from all regional committees. It is still possible that those who agreed to participate are not 

representative. Furthermore, the representativeness of committee members may not be ideal. 

For instance, maybe a more ideal test population would include individuals with other 

backgrounds as well, such as ethicists and ethologists. 

We conducted interviews, instead of written surveys, as trade-off questions are easy to 

misunderstand. For instance, in a PTO investigation involving written surveys by Ubel and 

colleagues (2002), two thirds of the responses of showed inconsistencies and had to be 

excluded. Consequently, interviews are the gold standard for trade-off investigations allowing 

the task to be explained more thoroughly and inconsistences to be addressed.  

However, interviews can be quite time-consuming and moreover, involve a risk that the 

interviewer influences the participants (Damschroder et al., 2004). The answers obtained at 
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later stages of a PTO study can be influenced by anchoring these numerically to earlier 

answers (Ubel et al., 2001; Ubel et al., 2002). In other words once a participant has given a 

numerical value, the next choice will be anchored to that value.  Alternatively, participants 

can anchor their values to numerical values provided, e.g. when a bidding game (ping-pong) 

methodology, a common search elicitation in trade-off studies is utilized. In such a bidding 

game the participants answers iterative yes/no questions, e.g. as follows:  

1. Would 11 animals experiencing mild tremor entail a higher ethical cost than 10 

animals experiencing severe tremor?  

2. Would 1 000 000 animals experiencing mild tremor entail a higher ethical cost 

than 10 animals experiencing severe tremor? 

3. Would 20 animals experiencing mild tremor entail a higher ethical cost than 10 

animals experiencing severe tremor? 

4. Would 10 000 animals experiencing mild tremor entail a higher ethical cost 

than 10 animals experiencing severe tremor? 

and so on until a point of indifference in reached. Since our questions were not framed 

following the ping-pong approach, the participants could not have anchored their answer to a 

number provided by the interviewer. The ping-pong methodology is also more time 

consuming method. On the other hand the participants had to decide their point-of-

indifference directly, which can be more difficult.  

Possibly, our participants could have anchored their later answers to their earlier ones and we 

might have gotten different weights if the questions had been asked in a different order. 

Participant fatigue could have a similar effect. A solution to both of these problems would 

have been to ask the questions in random order, but that would have been stressing to the 

interviewer thereby increasing the risk for other mistakes and in addition it would have 

increased the documentation of the responses. 

Others have shown that PTO responses often deviates from cardinal transitivity, i.e. that one 

such response cannot be accurately inferred from two other (Baron et al., 2001; Dolan and 

Tsuchiya, 2003; Schwarzinger et al., 2004; Ubel et al., 1996). We therefore included built-in 

checks for cardinal transitivity between the mild and severe clinical signs. There was, 

however, no direct check for cardinal transitivity between different types of signs, although 

many participants to some degree provided such checks explicitly by thinking out loud during 

the interview. Furthermore, it remains to be evaluated whether our questions exhibits a good 

test re-test reliability and whether the results are reproducible.  

There might be a strong random element in the trade-off studies, but since random elements 

do not introduce bias, median equivalence numbers in large groups of people may be more 

reliable (Nord, 1995). Although our group was not so large, we interviewed at least a 

reasonable part (~24%) of the members of the Swedish AECs. 
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While the clinical signs were defined and described in the same manner to all participants 

they may nonetheless have been interpreted differently, which might have influenced the 

weights. This issue can potentially be solved by showing videos of animals experiencing the 

clinical signs, but many signs are difficult for an unskilled professional to interpret, so most 

laypersons in the AECs would likely have struggled interpreting such videos. 

4.4.4 Other issues related to ethical cost of animal distress 

An unavoidable weakness of our approach is that the ethical weights are assigned by humans, 

since we could not ask the animals about their opinion. Accordingly, the weights are not only 

subjective, but also assigned by subjects that are not ideal and whose appraisals could, for 

instance, be distorted by anthropomorphic tendencies. Such anthropomorphism could, for 

example lead to an ethical weight for “weight loss” that is too low since many humans would 

not mind losing a few kilos of weight themselves. 

There are more objective physiological measures utilized to assess the stress experienced by 

animals during experiments, such as the grimace scales (Keating et al., 2012; Langford et al., 

2010; Sotocinal et al., 2011) and non-invasive measurement of metabolites of stress hormone 

in feces and amylase levels in saliva (Kolbe et al., 2015; Matsuura et al., 2012). Alterations in 

stress hormone levels can however  be caused by both pleasant and unpleasant situations 

(Dawkins, 2008). Moreover, no measure such as these could directly be used as ethical 

weights, since we cannot say anything about if having two animals with a certain facial 

expression or hormone level are equally regrettable as having one animal with a worse facial 

expression or higher hormonal level. 

It is also possible to conduct preference tests concerning how much effort an animal is 

willing to put in to achieve something positive or avoid something negative. Such a study 

could be performed to evaluate the relative severity of some of the clinical signs. Such tests 

would, however, be ethically questionable, at best. 

We based our ethical weights on clinical signs since these are recorded in toxicity tests for 

everyday assessment of animal welfare and determination of the suffering of the animal 

surpasses what deemed acceptable in the study, so that the animal should be humanely killed 

(OECD, 2002). Of course, other factors not picked up directly by our ethical weights, such as 

the size of the cages, presence of environmental enrichment and cage-mates also contribute to 

animal welfare (Balcombe, 2006).  In addition, lack of clinical signs does not necessarily 

mean absence of distress. For example, animals can suppress the expressions of distress to 

deceive predators.  
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5 CONCLUSION 

The current use of nested models in the determination of BMDs for continuous endpoints 

could lead to coverage rates below nominal level due to the fact that the simpler models with 

fewer parameters are not flexible enough. Since coverage rates below the nominal level leads 

to underestimation of the risk, models of lower order should be used with caution in risk 

assessment. In addition, it is clearly shown that the NOAEL approach is even more 

problematic.  

To establish BMD values with high quality, it is important to include a dose located relatively 

high on the dose-response scale.  Employing dose groups of unequal size can also slightly 

increase the quality of BMD estimates or conversely allow the same quality with fewer 

animals. In general, it is preferable to place more animals in the dose groups around the true 

BMD, or a bit above the BMD if there is a high background incidence of the selected 

endpoint. Such designs could also be utilized to reduce the animal distress.  

Prioritization between reduction and refinement, expressed as ethical weights for clinical 

signs, varies considerably among the member of the Swedish AECs. The median ethical 

weights were 2-4 for the mild versions of the clinical signs and 5-20 for the severe versions. 

Some participants assigned an ethical weight of 1 to all signs (always giving priority to 

reduction) while others assigned infinity to all signs (always giving priority to refinement). 

No statistically significant difference was observed between the three categories of 

committee members (researchers, political representatives and representatives of animal 

welfare organizations) regarding the magnitude of the ethical weights. 

Ethical weights with cardinal properties can be used to explore designs for toxicity tests that 

optimize the ethical cost in terms of both number of animals and their distress. These 

optimized designs are heavily dependent on what constitutes the ethical cost, and the relative 

ethical importance of those costs. Using more animals, but at lower doses, can be ethically 

justifiable. Even though it can be ethically justifiable to use a very large number of animals at 

very low doses (all doses below the BMD), the large number of animals required render such 

an approach impractical in reality.  
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6 FUTURE RESEARCH PERSPECTIVES 

Based on the results in this thesis several areas for further investigation and research have 

been identified. In general, the BMD approach and the underlying strategies for model 

selection need to be improved and harmonized. In addition, the alignment between BMD 

analysis and experimental design needs to be further studied and implemented in guidance 

documents. Moreover, the 3R-principles could be used as a factor when evaluating 

experimental design and approaches for dose-response modelling. The following paragraphs 

include specific suggestions and ideas for research studies within this field of research. 

The best way to select a BMDL, to use as a PoD, from continuous data needs to be elucidated 

further.  This could be done by performing large studies that compare the effects of different 

approaches, similar to the ones performed in connection to their modeling averaging 

workshop (US EPA, 2015), including (e.g. non-parametric approaches, model averaging of 

the currently used models etc) on the coverage rates of the BMDLs.   

Further investigations concerning how to design experiments on the basis of prior data, such 

as previous studies on similar compounds and the same endpoint are warranted.  Such 

investigations should ideally take into account parameter uncertainty, especially with regard 

to the potency parameter/dose placement. In this context, additional analysis of historical data 

as performed by Slob and Setzer (2014) would be valuable as would studies designed to 

quantify the uncertainties that can be expected when designing studies.  

Our study on ethical weights in Paper IV is the first of its kind and there are numerous ways 

to expand upon it. First this investigation could be repeated in different settings, with 

participants of different types and/or from different countries. Paper IV also only considered 

a one week study in rats. The impact of other study durations and experiments concerning 

different species also needs to be further elucidated. Also, we focused on the clinical signs 

experienced by the animals during the experiments and additional factors can influence the 

prioritization between reduction and refinement.  

In Paper II-III and V, we investigated designs using Monte Carlo simulations. An 

alternative approach would be to perform a classical optimal design study using a design 

criterion based on the expected variance of the parameters. Such an investigation, with ethical 

costs as in Paper V, could help limit the otherwise impractically large number of 

combinations of designs, ethical weights, dose placements and curves that needs to be tested.  

In Paper V we investigated the impact of ethical weights on the performance of different 

with quantal data and a similar study with continuous data is warranted.  

Paper V was a study on the ethical cost-efficiency of a single dose-response study. Nordberg 

and colleagues (2008) have investigated the monetary cost-efficiency of different tests in 

relation to the criteria for labelling and classification. Animal welfare could be included in 

such strategies as well. To do so the ethical cost of different tests (acute, subacute, irritation 

etc) needs to be estimated. Gabbert and van Ierland (2010) made a similar investigation on 
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mutagenicity tests comparing the efficiency of in vitro and in vivo tests. However, their 

investigation only included number of animals as a proxy for animal welfare. The ethical cost 

of the different type of in vivo studies, depending on the expected distress of the animals,  

could be included as a factor as well.  

Monetary cost could also be included in the analysis such as the ones in Paper V, by setting 

monetary cost boundaries, for example by setting a limit on the numbers used as well as a 

limit on the ethical cost of the study. 



 

 35 

7 ACKNOWLEDGEMENTS 

The work in this thesis was conducted at the Institute of Environmental Medicine at 

Karolinska Institutet. I owe my most sincere gratitude to all who have contributed and I 

would especially like to express my gratitude to:  

The Swedish Research Council and also the Swedish Research Without Animals 

Foundation, who provided financial support for different parts of this thesis work, and the 

Swedish National Infrastructure for Computing that provided computer resources at the 

National Supercomputer Centre.  

My main supervisor Mattias Öberg for accepting me as a PhD student. Your patience, 

encouragement and ability to always see things positively exceeds anything I have ever 

encountered before. 

My co-supervisor and head of the unit Gunnar Johanson, for being the best boss I have ever 

had. The working climate at our unit is great in large part because you lead it. I would also 

like to thank you for all your scientific advice. 

My mentor Anders Grahnén, I have always known that you would be there if I needed you, 

just as you were for us at Pharmen during my undergraduate studies. 

My colleagues and co-authors:  Salomon Sand, for really introducing me to the world of the 

Benchmark Dose. Fereshteh Kalantari for all our fruitful discussions about animal 

distributions and quality metrics. I also owe you thanks for encouraging me to do model 

averaging. Elin Törnqvist, thanks for all your positive energy. Your experience with animals 

has been absolutely vital for this project and you are also such an excellent team member. 

Christina Rudén and Sven-Ove Hansson, for your essential inputs on Paper IV. Helen 

Håkansson and Maria Herlin, for collaborations that are not part of this thesis but 

nonetheless helped me become the scientist I am today. 

Antero da Silva, my master student in toxicology. Your master thesis work was as important 

for my development as any of the papers in this thesis. Thank you for putting such effort into 

a sometimes tedious project.  

Ian Jarvis and Joe DePierre for very valuable language editing of some articles and parts of 

this thesis.  

All the various friends and colleagues who were “guinea pigs” in the interview study and all 

the participants in the actual study. 

Tack alla kollegor och vänner som på olika sätt har förgyllt de senaste 5 åren: 

Mia Johansson, för att du varit en fantastisk “science sister” och för att du, ofta ganska 

bokstavligt, lyst upp min doktorandtillvaro. Ulrika Carlander, speciellt för all input till 

modelleringsseminarierna. Tack till er båda för läsningen av tidiga utkast till denna 



 

36 

avhandling. Aishwarya Mishra, som har varit med och gått parallellt med mig nästan hela 

resan från registrering till disputation och såklart alla andra doktorandkollegor som alla 

bidragit till allt kul: Afshin Mohammadi Bardboori, Anna-Karin Mörk, Johanna 

Bengtsson, Kristin Stamyr och Stephanie Juran. Jag saknar er/kommer att sakna er.  

Bengt Sjögren, en av de vänligaste personerna jag mött. Tack för att du tog mig med i 

Mundialistas.  

Alla orginalarbtoxare (eller arbtoxorginal?): Agneta Rannug, Anne Vonk, Annika 

Calgheborn, Anteneh Desalegn, Birgit Postol, Carolina Vogs, Cecilia Wallin, Dingsheng 

Li, Emma Wincent, Johan Ljungberg, Johnny Lorentzen, Koustav Ganguly, Kristin 

Larsson, Lena Ernstgård, Lina Graner, Linda Bergander, Linda Schenk, Marc-Andre 

Verner, Maria Jönsson, Martin Fransson, Matias Rauma, Michail Panagiotakis, 

Ophelie Brenner, Ramesh Thapaliya, Rosella Dallo, Siraz Shaik, Tao Liu, Tshepo Moto 

och Uriell Deng. Det har varit kul att arbeta med er under de här åren.  

Alla nya dermatologiska enhetsmedlemmar samt de nya korridorsvännerna inom lung- 

och allergiforskning och alla på Swetox för luncher och fikan. Pseudo-enhetsmedlemmarna 

på Arbetsmiljöverket: Anders Iregren, Anna-Karin Alexandrie, Birgitta Lindell, Jill 

Järnberg och Johan Montelius samt Marie Nyman och Jenny Carlsson på 

Gentekniknämnden, för alla diskussioner om gränsvärden, veckans brott, backtrav, storcitrus 

och lillcitrus. 

Ricardo, Gunnar och alla andra i Mundialistas och Magna Carta, för fantastisk fotboll. 

Stockbowl, för fantasy football. LIPS för helgerna. Rechoir, för valborgsfrukostar, 

medeltidsveckor och för att ni tagit hand om Karin på torsdagarna. Maria B för att du är en 

så bra vän och för allt stöd du och Marcus B gett mig. Det har betytt mer än ni tror. Alla 

gamla farmisar, speciellt Angelica som tipsade om doktorandplatsen på KI och Erik A som 

illustrerat framsidan på denna avhandling. Börje-Fredrik, Linnea och Peter för såväl 

verklig som imaginär vänskap. Martin Styhre, för att du varit med sen waaaay back och för 

att du tagit halva förnuftet till fånga och åtminstone flyttat till inom tågreseavstånd.  

Min nya extrafamilj: Hans, Gunilla, Anne, Gunnar och Åsa för alla familjehelger, för att ni 

bidragit till att Karin blivit som hon är och för att all tänkbar hjälp med allt möjligt rörande 

hus och barn. 

Min gamla vanliga familj: Mina föräldrar Göran and Kjerstin, som alltid funnits där för mig. 

Mina syskon Anneli, Jesper och Lisa och deras familjer som varit en stabil klippa av 

bohusgranit i Stenungsund under alla mina år i självvald exil. Karin Å för att du alltid 

skämmer bort oss och Karin R och Krille för alla jular. 

Allra sist, men inte minst: Karin L, tack för dina uppoffringar under de sista veckorna och 

för att du flyttat med mig överallt dit mina studier fört mig. Du är mitt livs kärlek och jag kan 

inte föreställa mig livet utan dig. Elias, du är den mest fantastiska lilla son man kan tänka sig.



 

 37 

8 REFERENCES 

Allen, B. C., et al., 1994a. Dose-response assessment for developmental toxicity. II. 

Comparison of generic benchmark dose estimates with no observed adverse effect 

levels. Fundam Appl Toxicol. 23, 487-95. 

Allen, B. C., et al., 1994b. Dose-Response Assessment for Developmental Toxicity. III. 

Statistical-Models. Fundamental and Applied Toxicology. 23, 496-509. 

Allen, B. C., et al., 1996. Benchmark dose analysis of developmental toxicity in rats exposed 

to boric acid. Fundam Appl Toxicol. 32, 194-204. 

Bailer, A. J., et al., 2005a. Model uncertainty and risk estimation for experimental studies of 

quantal responses. Risk Analysis. 25, 291-299. 

Bailer, A. J., et al., 2005b. Incorporating uncertainty and variability in the assessment of 

occupational hazards. International Journal of Risk Assessment and Management. 5, 

344-357. 

Balcombe, J. P., 2006. Laboratory environments and rodents' behavioural needs: a review. 

Laboratory Animals. 40, 217-235. 

Baron, J., et al., 2001. Analog scale, magnitude estimation, and person trade-off as measures 

of health utility: Biases and their correction. Journal of Behavioral Decision Making. 

14, 17-34. 

Barton, H. A., et al., 1998. Dose-response characteristics of uterine responses in rats exposed 

to estrogen agonists. Regulatory Toxicology and Pharmacology. 28, 133-149. 

Berry, C. L., 1988. The No-Effect Level and Optimal Use of Toxicity Data. Regulatory 

Toxicology and Pharmacology. 8, 385-388. 

Bhattacharya, R., Lin, L. Z., 2010. An adaptive nonparametric method in benchmark analysis 

for bioassay and environmental studies. Statistics & Probability Letters. 80, 1947-

1953. 

Blackorby, C., et al., 1997. Critical-Level Utilitarianism and the Population Ethics-Dilemma. 

Economics and Philosophy. 13, 197-230. 

Bogdanffy, M. S., et al., 2001. Harmonization of cancer and noncancer risk assessment: 

proceedings of a consensus-building workshop. Toxicological Sciences. 61, 18-31. 

Brandon, E. F., et al., 2013. Does EU legislation allow the use of the Benchmark dose (BMD) 

approach for risk assessment? Regul Toxicol Pharmacol. 67, 182-8. 

Buckland, S. T., et al., 1997. Model selection: An integral part of inference. Biometrics. 53, 

603-618. 

Budtz-Jorgensen, E., et al., 2001. Benchmark dose calculation from epidemiological data. 

Biometrics. 57, 698-706. 

Canadian Council on Animal Care, Categories of Invasiveness in Animal Experiments. 

Ottawa, 1991. 

Canadian Council on Animal Care, CCAC Animal Data Report 2013. Ottawa, 2015. 

Carlson, E., 1998. Mere Addition and Two Trilemmas of Population Ethics. Ethics and 

Philosophy. 14, 283-306. 



 

38 

Cohen, J., et al., 2006. European public acceptance of euthanasia: Socio-demographic and 

cultural factors associated with the acceptance of euthanasia in 33 European 

countries. Social Science & Medicine. 63, 743-756. 

Crump, K., 2002. Critical issues in benchmark calculations from continuous data. Critical 

Reviews in Toxicology. 32, 133-153. 

Crump, K. S., 1984. A new method for determining allowable daily intakes. Fundam Appl 

Toxicol. 4, 854-71. 

Crump, K. S., 1995. Calculation of Benchmark Doses from Continuous Data. Risk Analysis. 

15, 79-89. 

Damschroder, L. J., et al., 2004. The validity of person tradeoff measurements: Randomized 

trial of computer elicitation versus face-to-face interview. Medical Decision Making. 

24, 170-180. 

Damschroder, L. J., et al., 2007. Why people refuse to make tradeoffs in person tradeoff 

elicitations: A matter of perspective? Medical Decision Making. 27, 266-280. 

Dankovic, D., et al., 2007. An approach to risk assessment for TiO2. Inhalation Toxicology. 

19, 205-212. 

Davis, J. A., et al., 2011. Introduction to benchmark dose methods and U.S. EPA's 

benchmark dose software (BMDS) version 2.1.1. Toxicol Appl Pharmacol. 254, 181-

91. 

Dawkins, M. S., 2008. The science of animal suffering. Ethology. 114, 937-945. 

de Boo, M. J., et al., 2005. The interplay between replacement, reduction and refinement: 

considerations where the Three Rs interact. Animal Welfare. 14, 327-332. 

Dekkers, S., et al., 2001. Critical effect sizes in toxicological risk assessment: a 

comprehensive and critical evaluation. Environmental Toxicology and Pharmacology. 

10, 33-52. 

Dekkers, S., et al., 2006. Within-animal variation as an indication of the minimal magnitude 

of the critical effect size for continuous toxicological parameters applicable in the 

benchmark dose approach. Risk Anal. 26, 867-80. 

Dette, H., et al., 2009. Optimal designs for dose-finding experiments in toxicity studies. 

Bernoulli. 15, 124-145. 

Dolan, P., Tsuchiya, A., 2003. The person trade-off method and the transitivity principle: an 

example from preferences over age weighting. Health Economics. 12, 505-510. 

Dybing, E., et al., 2002. Hazard characterisation of chemicals in food and diet. dose response, 

mechanisms and extrapolation issues. Food Chem Toxicol. 40, 237-82. 

EC, Annex VII:  Standard information requirements for substances manufactured or imported 

in quantities of one tonne or more  Vol. 2014, 2006a. 

EC, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 

December 2006 concerning the Registration, Evaluation, Authorisation and 

Restriction of Chemicals (REACH), establishing a European Chemicals Agency, 

amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 

and Commission Regulation (EC) No 1488/94 as well as Council Directive 

76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 

2000/21/EC. 2006b. 



 

 39 

ECHA, "Guidance on information requirements and chemical safety assessment, Chapter 

R.8: Characterisation of dose [concentration]–response for human health" In: 

European Chemicals Agency, (Ed.), Helsinki, Finland., 2012. 

ECHA, The Use of Alternatives to Testing on Animals for the REACH Regulation. Second 

report under Article 117(3) of the REACH Regulation. Helsinki, 2014. 

Edler, L., 2014. Benchmark Dose in Regulatory Toxicology. in: Reichl, F.-X., Schwenk, M., 

(Eds.), Regulatory Toxicology. Springer Verlag, Berlin. 

Edler, L., et al., 2002. Mathematical modelling and quantitative methods. Food Chem 

Toxicol. 40, 283-326. 

EEC, 1986. Council Directive 86/609/EEC of 24 November 1986 on the approximation of 

laws, regulations and administrative provisions of the Member States regarding the 

protection of animals used for experimental and other scientific purposes. Official 

Journal of the European Communities. L358, 1-29. 

EFSA, 2009. Guidance of the Scientific Committee on a request from EFSA on the use of the 

benchmark dose approach in risk assessment. The EFSA Journal (2009) 1-72. 

EU, 2010. Directive 2010/63/EU of the European Parliament and of the councilL of 22 

September 2010 on the protection of animals used for scientific purposes. Official 

Journal of the European Union. 33-79. 

Executive Committee of the Congress, 2000. The Three Rs Declaration of Bologna: 

Reduction, Refinement and Replacement Alternatives and Laboratory Animal 

Procedures Adopted by the 3rd World Congress on Alternatives and Animal Use in 

the Life Sciences, Bologna, Italy, on 31 August 1999. Atla-Alternatives to Laboratory 

Animals. 28, 1-5. 

Faes, C., et al., 2007. Model averaging using fractional polynomials to estimate a safe level of 

exposure. Risk Analysis. 27, 111-123. 

Franco, N. H., Olsson, I. A. S., 2014. Scientists and the 3Rs: attitudes to animal use in 

biomedical research and the effect of mandatory training in laboratory animal science. 

Laboratory Animals. 48, 50-60. 

Fung, K. Y., et al., 1998. A comparison of methods for estimating the benchmark dose based 

on overdispersed data from developmental toxicity studies. Risk Anal. 18, 329-42. 

Gabbert, S., van Ierland, E. C., 2010. Cost-Effectiveness Analysis of Chemical Testing for 

Decision-Support: How to Include Animal Welfare? Human and Ecological Risk 

Assessment. 16, 603-620. 

Gaylor, D., et al., 1998. Procedures for calculating benchmark doses for health risk 

assessment. Regulatory Toxicology and Pharmacology. 28, 150-164. 

Gaylor, D. W., Slikker, W., 1990. Risk Assessment for Neurotoxic Effects. Neurotoxicology. 

11, 211-218. 

Guha, N., et al., 2013. Nonparametric Bayesian Methods for Benchmark Dose Estimation. 

Risk Analysis. 33, 1608-1619. 

Hajar, R., 2011. Animal testing and medicine. Heart Views. 12, 42. 

Hansen, A. K., et al., The need to refine the notion of reduction., Humane Endpoint in 

Animal Experiments for Biomedical Research. Laboratory Animals Ltd, London, 

1999. 



 

40 

Hansen, L. A., 2013. Institution animal care and use committees need greater ethical 

diversity. Journal of Medical Ethics. 39, 188-190. 

Holland-Letz, T., Kopp-Schneider, A., 2015. Optimal experimental designs for dose-response 

studies with continuous endpoints. Archives of Toxicology. 89, 2059-2068. 

Kavlock, R. J., et al., 1995. Dose-response assessments for developmental toxicity. IV. 

Benchmark doses for fetal weight changes. Fundam Appl Toxicol. 26, 211-22. 

Kavlock, R. J., et al., 1996. A simulation study of the influence of study design on the 

estimation of benchmark doses for developmental toxicity. Risk Analysis. 16, 399-

410. 

Keating, S. C. J., et al., 2012. Evaluation of EMLA Cream for Preventing Pain during 

Tattooing of Rabbits: Changes in Physiological, Behavioural and Facial Expression 

Responses. PLoS One. 7. 

Knight, A., 2013. The Costs and Benefits of Animal Experiments. Palgrave Macmillan, 

Basingstoke, Hampshire, UK. 

Kodell, R. L., et al., 1991. Mathematical-Modeling of Reproductive and Developmental 

Toxic Effects for Quantitative Risk Assessment. Risk Analysis. 11, 583-590. 

Kolbe, T., et al., 2015. Lifetime Dependent Variation of Stress Hormone Metabolites in Feces 

of Two Laboratory Mouse Strains. PLoS One. 10, e0136112. 

Krewski, D., et al., 2002. Optimal designs for estimating the effective dose in developmental 

toxicity experiments. Risk Analysis. 22, 1195-1205. 

Kuljus, K., et al., 2006. Comparing experimental designs for benchmark dose calculations for 

continuous endpoints. Risk Anal. 26, 1031-43. 

Langford, D. J., et al., 2010. Coding of facial expressions of pain in the laboratory mouse. 

Nat Methods. 7, 447-9. 

Matsuura, T., et al., 2012. Estimation of restraint stress in rats using salivary amylase activity. 

J Physiol Sci. 62, 421-7. 

Meek, M. E., et al., 2002. Guidelines for application of chemical-specific adjustment factors 

in dose/concentration - response assessment. Toxicology. 181, 115-120. 

Moerbeek, M., et al., 2004. A comparison of three methods for calculating confidence 

intervals for the benchmark dose. Risk Anal. 24, 31-40. 

Moon, H., et al., 2005. Model averaging using the Kullback information criterion in 

estimating effective doses for microbial infection and illness. Risk Analysis. 25, 

1147-1159. 

Morales, K. H., et al., 2006. Bayesian model averaging with applications to benchmark dose 

estimation for arsenic in drinking water. Journal of the American Statistical 

Association. 101, 9-17. 

Morton, D. B., Griffiths, P. H. M., 1985. Guidelines on the Recognition of Pain, Distress and 

Discomfort in Experimental-Animals and an Hypothesis for Assessment. Veterinary 

Record. 116, 431-436. 

Murray, C. J. L., Lopez, A. D., The global burden of disease. World Health organization, 

Harvard School of Public Health, World Bank, Geneva, 1996. 



 

 41 

Murrell, J. A., et al., 1998. Characterizing dose-response: I: Critical assessment of the 

benchmark dose concept. Risk Anal. 18, 13-26. 

NAC/AEGL, Standing Operating Procedures for Developing Acute Exposure Guideline 

Levels for Hazardous Chemicals. In: Subcommittee on Acute Exposure Guideline 

Levels, N. R. C., (Ed.), Washington, DC, 2001. 

Ng, Y.-K., 1989. What should we do about future generations. Economics and Philosophy. 5, 

235-253. 

Nord, E., 1995. The Person-Trade-Off Approach to Valuing Health-Care Programs. Medical 

Decision Making. 15, 201-208. 

Nordberg, A., et al., 2008. Towards more efficient testing strategies - Analyzing the 

efficiency of toxicity data requirements in relation to the criteria for classification and 

labelling. Regulatory Toxicology and Pharmacology. 50, 412-419. 

NRC, Risk Assessment in the Federal Government: Managing the Process. 1983. 

NTP, Toxicology and Carcinogenesis - Studies of Furan (CAS No. 110-00-9) in F344/n Rats 

and B6C3F1 Mice (Gavage studies)  In: U.S. Department of Health and Human 

Services, (Ed.), 1993. 

Öberg, M., 2010. Benchmark dose approaches in chemical health risk assessment in relation 

to number and distress of laboratory animals. Regul Toxicol Pharmacol. 58, 451-4. 

OECD, Guidance Document on the Recognition, Assessment and Use of Clinical Signs as 

Human Endpoints for Experimental Animals Used in Safety Evaluation. 2002. 

OECD, OECD Guidelines for the Testing of Chemicals 2012. 

Olsson, A. S., et al., 2012. The 3Rs principle - mind the ethical gap. ALTEX Proceedings. 

1/12, 333-336. 

Piegorsch, W. W., et al., 2013. Information-theoretic model-averaged benchmark dose 

analysis in environmental risk assessment. Environmetrics. 24, 143-157. 

Piegorsch, W. W., et al., 2012. Nonparametric estimation of benchmark doses in 

environmental risk assessment. Environmetrics. 23, 717-728. 

Porter, D. G., 1992. Ethical Scores for Animal-Experiments. Nature. 356, 101-102. 

Rai, K., Vanryzin, J., 1985. A Dose-Response Model for Teratological Experiments 

Involving Quantal Responses. Biometrics. 41, 1-9. 

Regan, T., 1983. The Case for Animal Rights. Routledge & Kegan Paul, London. 

Ringblom, J., et al., 2014. Current modeling practice may lead to falsely high benchmark 

dose estimates. Regulatory Toxicology and Pharmacology. 69, 171-177. 

Rollin, B. E., 2006. The regulation of animal research and the emergence of animal ethics: A 

conceptual history. Theoretical Medicine and Bioethics. 27, 285-304. 

Rovida, C., Hartung, T., 2009. Re-Evaluation of Animal Numbers and Costs for In Vivo 

Tests to Accomplish REACH Legislation Requirements for Chemicals - a Report by 

the Transatlantic Think Tank for Toxicology (t(4)). Altex-Alternativen Zu 

Tierexperimenten. 26, 187-208. 

Russell, W. M. S., Burch, R. L., 1959. The principles of humane experimental technique. 

Methuen, London. 



 

42 

Sand, S., et al., 2011. A Signal-to-Noise Crossover Dose as the Point of Departure for Health 

Risk Assessment. Environmental Health Perspectives. 119, 1766-1774. 

Sand, S., et al., 2008. The current state of knowledge on the use of the benchmark dose 

concept in risk assessment. J Appl Toxicol. 28, 405-21. 

Sand, S., et al., 2006. Identification of a critical dose level for risk assessment: developments 

in benchmark dose analysis of continuous endpoints. Toxicological Sciences. 90, 241-

51. 

Sandøe, P., Christiansen, S. B., 2007. The value of animal life: how should we balance 

quality against quantity? Animal Welfare. 16, 109-115. 

Scharmann, W., 1999. Physiological and ethological aspects of assessment of pain, distress 

and suffering. in: Hendriksen, C. F. M., Morton, D. B., (Eds.), In Humane endpoints 

in animal experiments for biomedical research. Royal Society of Medicine Press, 

London, pp. 33-39. 

Schwarzinger, M., et al., 2004. Lack of multiplicative transitivity in person trade-off 

responses. Health Economics. 13, 171-181. 

Shao, K., Gift, J. S., 2014. Model Uncertainty and Bayesian Model Averaged Benchmark 

Dose Estimation for Continuous Data. Risk Anal. 34, 101-120. 

Shao, K., et al., 2013. Is the assumption of normality or log-normality for continuous 

response data critical for benchmark dose estimation? Toxicology and Applied 

Pharmacology. 272, 767-779. 

Shao, K., Small, M. J., 2012. Statistical Evaluation of Toxicological Experimental Design for 

Bayesian Model Averaged Benchmark Dose Estimation with Dichotomous Data. 

Human and Ecological Risk Assessment. 18, 1096-1119. 

Simmons, S. J., et al., 2015. Bayesian model averaging for benchmark dose estimation. 

Environmental and Ecological Statistics. 22, 5-16. 

Singer, P., 2009. Animal Liberation. HarperCollins Publishers, New York. 

Slob, W., 1999. Thresholds in toxicology and risk assessment. International Journal of 

Toxicology. 18, 259-268. 

Slob, W., 2002. Dose-response modeling of continuous endpoints. Toxicological Sciences. 

66, 298-312. 

Slob, W., 2007. What is practical threshold? Toxicologic Pathology. 35, 848-849. 

Slob, W., 2014a. Benchmark dose and the three Rs. Part I. Getting more information from the 

same number of animals. Crit Rev Toxicol. 1-11. 

Slob, W., 2014b. Benchmark dose and the three Rs. Part II. Consequences for study design 

and animal use. Crit Rev Toxicol. 1-13. 

Slob, W., et al., 2005. A statistical evaluation of toxicity study designs for the estimation of 

the benchmark dose in continuous endpoints. Toxicological Sciences. 84, 167-85. 

Slob, W., Pieters, M. N., 1998. A probabilistic approach for deriving acceptable human intake 

limits and human health risks from toxicological studies: General framework. Risk 

Analysis. 18, 787-798. 

Slob, W., Setzer, R. W., 2014. Shape and steepness of toxicological dose-response 

relationships of continuous endpoints. Crit Rev Toxicol. 44, 270-297. 



 

 43 

Solecki, R., et al., 2005. Guidance on setting of acute reference dose (ARfD) for pesticides. 

Food Chem Toxicol. 43, 1569-93. 

Sotocinal, S. G., et al., 2011. The Rat Grimace Scale: A partially automated method for 

quantifying pain in the laboratory rat via facial expressions. Molecular Pain. 7. 

Spielmann, H., et al., 2011. A Critical Evaluation of the 2011 ECHA Reports on Compliance 

with the REACH and CLP Regulations and on the Use of Alternatives to Testing on 

Animals for Compliance with the REACH Regulation. Atla-Alternatives to 

Laboratory Animals. 39, 481-493. 

Stafleu, F. R., et al., 1999. The ethical acceptability of animal experiments: a proposal for a 

system to support decision-making. Laboratory Animals. 33, 295-303. 

Tännsjö, T., 2002. Why We Ought to Accept the Repugnant Conclusion. Utilitas. 14, 339-

359. 

Taylor, K., et al., 2008. Estimates for worldwide laboratory animal use in 2005. Atla-

Alternatives to Laboratory Animals. 36, 327-342. 

Torrance, G. W., 1986. Measurement of Health State Utilities for Economic Appraisal - a 

Review. Journal of Health Economics. 5, 1-30. 

Travis, K. Z., et al., 2005. The role of the benchmark dose in a regulatory context. Regul 

Toxicol Pharmacol. 43, 280-91. 

Ubel, P. A., et al., 2001. Preference for equity as a framing effect. Medical Decision Making. 

21, 180-189. 

Ubel, P. A., et al., 1996. Individual utilities are inconsistent with rationing choices: A partial 

explanation of why Oregon's cost-effectiveness list failed. Medical Decision Making. 

16, 108-116. 

Ubel, P. A., et al., 2002. Exploring the role of order effects in person trade-off elicitations. 

Health Policy. 61, 189-199. 

US Department of Agriculture, Animal Welfare Act. 2013. 

US EPA, A Review of the Reference Dose and Reference Concentration Processes. 

Washington, 2002. 

US EPA, Benchmark dose technical guidance document. EPA/100/R-12/001. . In: U.S. 

Environmental Protection Agency, R. A. F., (Ed.), Washington, DC: , 2012. 

US EPA, Background and Support Materials for Peer Consultation Webinar Workshop on 

Model Averaging Methods for Dose-Response Analysis. In: Development, O. o. R. 

a., (Ed.), Washington, 2015. 

US. EPA, Guidelines for Carcinogen Risk Assessment In: Risk Assessment Forum, U. S. E. 

P. A., (Ed.), Washington, 2005. 

USEPA, The use of the benchmark dose (BMD) approach in health risk assessment. Final 

report. EPA/630/R-94/007. . In: Risk Assessment Forum, U. S. E. P. A., (Ed.), 

Washington, DC., 1995. 

Venzon, D. J., Moolgavkar, S. H., 1988. A Method for Computing Profile-Likelihood-Based 

Confidence-Intervals. Applied Statistics-Journal of the Royal Statistical Society 

Series C. 37, 87-94. 



 

44 

Vieira de Castro, A. C., Olsson, A. S., 2015. Does the Goal Justify the Methods? Harm and 

Benefit in Neuroscience Research Using Animals. in: Lee, G., et al., (Eds.), Ethical 

Issues in Behavioral Neuroscience. vol. 19. Springer, Berlin. 

Wang, K., et al., 2013. Two-Stage Experimental Design for Dose-Response Modeling in 

Toxicology Studies. Acs Sustainable Chemistry & Engineering. 1, 1119-1128. 

Weller, E. A., et al., 1995. Implications of Developmental Toxicity Study Design for 

Quantitative Risk Assessment. Risk Analysis. 15, 567-574. 

West, R. W., Kodell, R. L., 1999. A comparison of methods of benchmark-dose estimation 

for continuous response data. Risk Anal. 19, 453-9. 

West, R. W., et al., 2012. The impact of model uncertainty on benchmark dose estimation. 

Environmetrics. 23, 706-716. 

Wheeler, M., Bailer, A. J., 2012. Monotonic Bayesian Semiparametric Benchmark Dose 

Analysis. Risk Anal. 32, 1207-1218. 

Wheeler, M. W., Bailer, A. J., 2007. Properties of model-averaged BMDLs: A study of 

model averaging in dichotomous response risk estimation. Risk Analysis. 27, 659-

670. 

Wheeler, M. W., Bailer, A. J., 2009a. Benchmark dose estimation incorporating multiple data 

sources. Risk Anal. 29, 249-56. 

Wheeler, M. W., Bailer, A. J., 2009b. Comparing model averaging with other model selection 

strategies for benchmark dose estimation. Environmental and Ecological Statistics. 

16, 37-51. 

WHO, Principles for the Assessment of Risks to Human Health from Exposure to Chemicals. 

Envrionmental Health Criteria 210, Geneva, 1999. 

WHO, Principles for modeling dose–response for the risk assessment of chemicals. In: 

Environmental Health Criteria 239, (Ed.), Geneva, 2009. 

WHO/IPCS, Harmonization document 1. IPCS risk assessment terminology. . In: 

Organization, W. H., (Ed.), Geneva, 2004. 

 

 


