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ABSTRACT 
Normal adipose tissue function is necessary for maintaining proper energy balance, as both 
excess and absence of this tissue lead to metabolic disturbances, such as insulin resistance. 
Adipose tissue can be dysfunctional in many ways, including disturbances in adipocyte size, 
lipolysis rate, adipokine secretion, inflammation, fibrosis or oxidative stress. Recently 
ceramides have been proposed as candidate molecules that mediate the development of 
adipocyte insulin resistance. The aim of this thesis is to evaluate different aspects of 
dysfunctionality in human adipose depots in relation to their potential contribution to insulin 
resistance and cardiovascular disease.  

Paper I and II focus on the role of ceramides in human adipose tissue. We show that in obese 
women with high liver fat increased ceramide content in the subcutaneous adipose depot is 
most probably due to the increased sphingomyelin hydrolysis rather than de novo production. 
Moreover, sphingomyelinases, that are responsible for this reaction, are present in areas rich 
in apolipoprotein B, which may suggest that circulating lipoproteins may be a source of 
sphingomyelin for the local ceramide production within adipose tissue. Additionally, we 
show increased ceramide levels in the mediastinal as compared to the subcutaneous adipose 
tissue and show that ceramides in this depot are associated with inflammatory processes. In 
our unpublished data we demonstrate that ceramide induces inflammatory cytokine 
expression in both macrophages and adipocytes. Paper III investigates whether the 
mediastinal depot shows characteristics of brown adipose tissue. A comparison of several 
markers of brown and white fat between subcutaneous and mediastinal adipose tissue reveals 
that the mediastinal fat has higher expression levels of some brown (UCP1, PPARGC1A) and 
lower expression levels of white (SHOX9, HOXC8) markers. Gene ontology analysis 
indicates that mediastinal depot is enriched in genes related to mitochondrial function. In 
some sections of mediastinal fat positive UCP1 staining and presence of multilocular cells are 
observed. In Paper IV we investigate whether adipose tissue in patients with chronic kidney 
disease is dysfunctional. We report that subcutaneous adipose tissue in patients with kidney 
failure is characterized by higher numbers of phagocytic cells and smaller adipocytes, but 
shows no signs of fibrosis as compared to healthy subjects. Additionally, proteomic analysis 
shows differential expression patterns between the patients and controls. Among the proteins 
expressed at higher levels in the patients, alpha-1-microglobulin/bikunin precursor is the most 
significant and among those expressed at lower levels in the patients, the most significant is 
vimentin – a protein known to be involved in lipid droplet metabolism.  

In summary, the work presented in this thesis demonstrates that adipose tissue ceramides can 
promote local inflammation, a process strongly linked to insulin resistance. Moreover, the 
mediastinal adipose depot shows some signs of brown fat, however the functional 
consequences remain to be evaluated. Finally, uremic adipose tissue shows adverse protein 
composition, which together with an increased number of phagocytic cells and smaller 
adipocyte size indicates that uremic adipose tissue is dysfunctional, which could lead to 
increased cardiovascular risk in chronic kidney disease patients.   
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1 INTRODUCTION 

1.1 Structure and function of human adipose tissue 

Human adipose tissue is a loose connective tissue that in healthy, non-obese individuals 

constitutes about 20% (in men) or 25% (in women) body weight and is composed of several 

cell types. They can be classified into mature adipocytes and a so-called stromal-vascular 

fraction (SVF). SVF is a mixture of vascular (endothelial), inflammatory and progenitor 

cells, whose contribution to the total SVF may vary according to the depot or body mass 

(1). Blood vessels provide the tissue with necessary nutrients and enable gas exchange. 

Immune and inflammatory cells are represented mainly by macrophages, that remove 

apoptotic or necrotic cells or cell debris (2). Progenitor cells (or preadipocytes) upon 

appropiate stimulation (increased energy intake and insulin levels) undergo a major 

differentiation programme and become mature adipocytes (3). In this way adipose tissue 

can expand in order to store excess energy. Mature adipocytes constitute the major part of 

the tissue and it is here that the tissue’s basic function – uptake, storage and release of fatty 

acids – takes place.  

As mentioned above the main function of adipose tissue is the uptake of circulating non-

esterified fatty acids (NEFA), both – albumin-bound as well as those that are released 

following hydrolysis of triacylglycerol (TG) in circulating lipoproteins by lipoprotein lipase 

(LPL), their esterification onto glycerol-3-phosphate and storage as triacylglycerols. 

Triacylglycerols can be hydrolysed back to NEFA and leave the adipocyte in the process 

called lipolysis. The sequential hydrolysis of triacylglycerols is catalysed by 3 enzymes - 

adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol 

lipase (4). The flux of NEFA to and from adipocytes is regulated by a number of hormones, 

such as insulin, leptin and adrenergic receptor agonists (adrenaline, noradrenaline). Apart 

from energy storage adipose tissue provides cushioning and insulation helping to maintain 

body temperature as well as helping to keep internal organs in place.  

1.2 White adipose depots 

The vast majority (about 85%) of adipose tissue in humans is located under the skin and 

therefore this depot is called subcutaneous adipose tissue. The rest forms visceral depots, 

such as mesenteric, omental, perirenal fat (in the abdominal cavity), or mediastinal, 

pericardial and epicardial fat (within the thoracic cavity). However lipid droplets can be 
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stored even inside muscle fibers (intramuscular fat) or in the liver (liver fat) (5). Adipose 

depots share many similarities, but some differences have also been consistently reported, in 

particular the high metabolic activity (expressed as the rate of stimulated lipolysis) observed 

in intra-abdominal adipocytes as compared to the subcutaneous cells (6-8), and reduced lipid 

turn-over of the lower-body (gluteofemoral) fat (9). The secretion of adipokines and 

cytokines also differs between adipose depots, with subcutaneous tissue secreting more leptin 

than the visceral depot (10), but the latter secreting more inflammatory molecules, such as 

IL8, MCP1, resistin and visfatin (11). 

1.3 White and brown adipose tissue 

The two major types of human fat that have been well recognized are white (WAT) and 

brown (BAT) adipose tissue. They both originate from the mesoderm, but from distinct 

progenitor cells and they are remarkably different in both structure and function (12, 13). 

WAT is composed of large adipocytes (50-150µm in diameter) containing one, large lipid 
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hibernating animals, rodents and small mammals. Adult humans however present with much 
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adipocytes are usually scattered among white adipocytes but they show comparable 

thermogenic potential to classical brown cells (15). 

1.4 Adipose tissue as an endocrine organ 

It was long believed that adipose tissue was a mere storage place for excess fat, however this 

view was drastically changed a few decades ago with discoveries of its secretory properties 

(16, 17) and today we have identified a whole set of proteins that are secreted from mature 

adipocytes (18, 19) as well as other cells present in the adipose tissue, such as preadipocytes 

and macrophages (11, 20). Now it is well established that the tissue participates in the 

regulation of body homeostasis by secreting a range of cytokines and hormones including 

leptin, adiponectin, resistin, interleukin-6 (IL-6), tumour necrosis factor α (TNF), monocyte 

chemoattractant protein-1 (MCP1/CCL2), naming just few of them.  

Leptin is secreted almost exclusively (95%) by adipose tissue and the amount of the secreted 

hormone is proportional to the adipose mass. It acts centrally in the hypothalamus as well as 

on the periphery (21). The central effects of leptin include suppression of hunger and 

inducing the feeling of satiety by inhibiting neuropeptide Y (NPY) and agouti-related peptide 

(AgRP), and activating α-melanocyte-stimulating hormone (α-MSH) (22). The peripheral 

effects of leptin include a wide range of actions, such as regulation of energy expenditure, 

reproduction or immune cell modulation (23). Despite the initial excitement about leptin 

being a potential cure for obesity, obese individuals have higher circulating leptin levels 

(proportionally to the amount of body fat) and are resistant to it (24). Thus leptin fails to 

modulate feeding behavior and energy expenditure properly in obesity. 

Adiponectin is another hormone specifically secreted by adipose tissue that affects metabolic 

processes, such as glucose levels and fatty acid oxidation (25). On the contrary to leptin, 

adiponectin levels rise during weight loss and higher circulating adiponectin has been 

associated with insulin sensitivity (26). Adiponectin has anti-oxidative and anti-inflammatory 

effects and is believed to prevent vascular pathologies, such as atherosclerosis (27).  

In addition to leptin and adiponectin, adipose tissue produces and secretes several cytokines, 

some of which are released into the circulation, such as IL6, and some with more local, 

paracrine effects, like TNF and MCP1 (28, 29). These are pro-inflammatory cytokines that 

have been associated with inflammatory cell recruitment and impairment of insulin signaling 

(30, 31). 
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1.5 Adipose tissue dysfunction and its consequences 

1.5.1 Obesity 

One of the earliest symptoms of adipose dysfunctionality that may indicate metabolic 

complications is obesity. It develops when energy intake chronically exceeds the expenditure, 

however the underlying mechanisms may be related to the genetic background as well as 

environmental factors. There are several genetic conditions associated with obesity, such as 

leptin deficiency, polymorphisms in the melanocortin 4 receptor (MC4R) or fat mass and 

obesity-associated protein (FTO) genes (32-34); however they will not be discussed in detail 

in this section. Obesity is characterized by adipocyte hypertrophy (increase in size) and 

hyperplasia (increase in number) (35). According to the World Health Organization (WHO) 

overweight and obesity are defined as abnormal or excessive fat accumulation that presents a 

risk to health. The commonly used measure of obesity is the body mass index (BMI), where 

weight in kilograms is divided by the square of height in meters. BMI between 20 and 25 is 

considered normal 25-30 is overweight and above 30 indicates obesity. However, as useful as 

BMI may be to roughly estimate the body mass, it does not take into account body 

composition, which may play a major role in some individuals, for example in those with 

high muscle mass.  

In the past centuries high body weight was considered a sign of wealth and fertility and the 

prevalence of obesity was higher in rich, well-developed countries. Accompanied by 

increasing availability of low-cost, energy-dense fast foods and beverages this trend has 

recently changed its direction and now it is many of the developing and low-income countries 

that struggle with an obesity pandemic: since 1980 worldwide obesity has more than doubled 

and in 2014 39% of adults were overweight and 13% were obese (WHO).  

Obesity does not necessarily have to be related to metabolic complications (36), but in the 

majority of cases it is related to hypertension, insulin resistance and diabetes, cardiovascular 

disease, cancer and other comorbidities (37, 38). 

1.5.2 Insulin resistance and diabetes 

Insulin resistance is one of the conditions frequently (but not necessarily) associated with 

obesity and a central feature of Type 2 Diabetes Mellitus (T2DM). The definition of insulin 

resistance encompasses impaired insulin-stimulated glucose uptake, glucose intolerance and 

hyperinsulinemia (39) often accompanied by abnormal lipid and lipoprotein profiles. In other 
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words cells such as myocytes, adipocytes and hepatocytes that would normally respond to 

increased insulin levels with uptake of glucose, amino acids and fatty acids (for instance in a 

post-prandial state) no longer do so – they become resistant to insulin. As a result circulating 

glucose and NEFA levels remain elevated which further signals to pancreatic beta-cells to 

secrete insulin and promotes hepatic secretion of very low density-lipoproteins (VLDL). The 

reasons why cells fail to respond properly to insulin signaling are not clear, however several 

suggestions have been made. Even though genetic variants account for a small proportion of 

cases there is certain genetic predisposition for insulin resistance syndrome and several 

polymorphisms have been described within the insulin receptor substrate (IRS) family of 

proteins, PPARγ, PCSK1 and many others (40, 41). Other explanations include a decrease in 

the cellular amount and translocation of glucose transporters or a decrease in the number of 

insulin receptors, but most probably it is molecules that counteract insulin action and disrupt 

the insulin signaling cascade that are the most common culprits (42). The effects of insulin on 

glucose production, levels and uptake are antagonized by glucagon, adrenaline, cortisol, 

growth hormone and inflammatory cytokines, such as TNF, which has emerged as a powerful 

agent that can inhibit insulin receptor signaling by a modified form of IRS1 (43). Relatively 

new and exciting findings link adipose tissue ceramides to the development of insulin 

resistance and the metabolic syndrome and they will be discussed in more detail in section 

1.5.5. Long-term elevation of glucose levels lead to glucotoxicity and results in the glycation 

and other modifications of proteins that stimulate oxidative stress and cytokine release from 

inflammatory cells triggering vascular dysfunction (44). Increased levels of NEFA cause 

lipotoxicity, where lipids accumulate in tissues not adapted for lipid storage, such as skeletal 

muscle, liver, kidney or pancreas where they further disrupt insulin signaling and lead to 

endoplasmic reticulum stress and the unfolded protein response (45). Currently the most 

effective treatment of insulin resistance and T2DM includes dietary intervention that reduces 

amounts of simple carbohydrates favoring fiber-rich products as well as several classes of 

drugs that increase insulin release and sensitivity (46-48). A first-line drug for T2DM is the 

biguanide metformin. It suppresses hepatic glucose production, enhances glucose uptake in 

the periphery and decreases absorption of glucose from the intestine. It also decreases insulin-

induced suppression of fatty acid oxidation. A class of drugs called sulphonylureas acts on 

pancreatic beta cells, closing the ATP-sensitive potassium channels and promoting insulin 

release. However, while they help to lower glucose levels, they have no effect on lipid levels. 

Finally, the thiazolidinediones activate the PPARγ transcription factor and improve 

sensitivity to insulin as well as plasma lipids. Physical exercise and reducing body weight are 

also strongly recommended. 
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1.5.3 Cardiovascular disease (CVD) 

CVD is globally the leading cause of death, representing 31% of all deaths in 2012 (WHO). 

The term “cardiovascular disease” includes disorders of the heart and blood vessels, the most 

common being angina, myocardial infarction, stroke, hypertension, peripheral artery disease, 

congenital heart disease and heart failure. A family history of heart disease increases the risk 

of CVD, with other major causes being smoking, physical inactivity, unhealthy diet and 

harmful use of alcohol, which means that many of the CVDs are preventable. The process 

lying behind some of the most common forms of CVD, such as myocardial infarction, stroke 

and angina, is atherosclerosis. Atherosclerosis is a thickening of the arterial wall as a result of 

inflammatory cells accumulation, migration and proliferation of smooth muscle cells and 

neointima formation, forming a fibrous cap (49). The mechanisms of atherosclerotic plaque 

accumulation are complex and multi-factorial, but it is believed that the major cause is related 

to the high levels and retention of cholesterol- and triacylglycerol-carrying LDL particles in 

the arterial wall where they are prone to oxidation and trigger inflammatory responses 

(monocyte recruitment and foam cells formation) in the intimal space (50). Atherosclerotic 

plaques may be stable, with little risk of rupture, or unstable, with high probability of rupture 

(51). Plaque rupture leads to thrombus formation in the vessel lumen which rapidly reduces 

or completely blocks the blood flow and causes death of the tissues supported by the affected 

artery. Most commonly this happens in the coronary artery and causes myocardial infarction 

or in the brain where it causes stroke. Several risk factors have been associated with 

atherosclerotic plaque development, including dyslipidemia, smoking, insulin 

resistance/diabetes, male sex, advanced age and obesity, in particular central (abdominal) 

obesity (52). 

1.5.4 Chronic kidney disease (CKD) as a cardiovascular risk factor 

The complexity of CVD, particularly its multifactorial background, often results in its 

simultaneous occurrence to other diseases, such as kidney disease. Chronic kidney disease is 

a complex disease where the number of deaths more than doubled between 1990 and 2013 

(53) indicating its increasing prevalence. There are 3 major conditions underlying CKD that 

together are responsible for about 75% of all adult CKD cases – hypertension, diabetes and 

glomerulonephritis (54). CKD – as its name indicates – is a chronic condition and usually 

develops over a period of months or years. It is traditionally classified into 5 stages on the 

basis of estimated glomerular filtration rate (GFR), with stage 1 being the most modest, with 

almost normal or only mild decrease in GFR rate (≥90 ml/min/1.73 m2) and stage 5 being the 
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most advanced with GFR <15 ml/min/1.73 m2, which indicates kidney failure and requires 

permanent renal replacement therapy in a form of dialysis or kidney transplantation. What is 

interesting about CKD is that patients with earlier stages of the disease are more likely to die 

of CVD than develop kidney failure (55, 56). CVD is responsible for about 50% of all-cause-

mortality in patients who have received kidney transplant (55). CKD patients often present 

the traditional CVD risk factors, such as diabetes (insulin resistance in non-diabetic CKD 

patients), hypertension and dyslipidaemia (57-59). It is still a matter of debate as to why these 

patients have such a high CVD risk. However, since the involvement of adipose tissue 

dysfunction in CVD has been established, a new field for study is emerging. However, not 

many reports exist that explore possible links between dysfunctional adipose tissue and 

increased CVD risk in kidney disease (60-65). In support of this hypothesis are several key 

findings, including elevated circulating NEFA concentrations (65), altered circulating 

adipokines (62, 64) and increased systemic inflammation that correlates with fat mass (60) in 

patients with CKD. More interestingly, studies on isolated adipocytes showed that uremic 

serum increases basal lipolysis and decreases mRNA expression of perilipin – a lipid droplet-

associated protein (63), which may lead to increased fatty acid release promoting ectopic fat 

deposition and the development of insulin resistance. Finally, the activity of adipose 

lipoprotein lipase was decreased in CKD patients leading to the formation of lipoproteins 

with a pro-atherogenic lipid composition (66). Altogether these data indicate that 

dysfunctional adipose tissue in CKD patients could be one of the factors increasing their risk 

of CVD development and that studies to verify this question are motivated. 

1.5.5 Adipose tissue contribution to the development of IR and CVD 

Dysfunctionality within adipose tissue encompasses a set of disturbances, such as 

dysregulated lipolysis or uptake of fatty acids, adipocyte hypertrophy, inflammation, adverse 

adipokine secretion or fibrosis (2, 19, 20, 67, 68). During energy oversupply adipocytes can 

expand so rapidly that new capillaries can barely keep up, leading to one of the earliest signs 

of adipose dysfunctionality – hypoxia. Additionally, adipocytes are surrounded by 

extracellular matrix, which in normal conditions provides flexibility to the tissue and enables 

adipocyte expansion. Abnormal collagen deposition is another hallmark of adipose 

dysfunctionality, restricting adipocyte growth and promoting an inflammatory phenotype 

(68). When adipose tissue becomes even more dysfunctional it impacts on both the local 

environment and exerts systemic effects. For example when the tissue’s storage capacity is 

exceeded and it cannot accommodate more TG or when the lipolysis rate increases, the 

circulating NEFA levels rise. NEFA originating from perivascular fat can directly affect the 
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underlying vessel wall impairing endothelial cell function, accelerating lesion formation and 

inflammation (69). Circulating NEFA in turn may end up in tissues not suitable for fatty acid 

storage, such as liver, heart, skeletal muscle and pancreas. Ectopic fat deposition impairs 

insulin sensitivity, glucose metabolism and increases oxidative stress (70) and these 

symptoms are particularly pronounced in abdominal obesity, where excess of visceral fat, 

which is believed to have a higher lipolytic rate, is drained directly to the portal vein and 

exposes the liver to high concentrations of NEFA, adipokines and inflammatory cytokines. 

Additionally, this increased flux of NEFA to the liver favours the development of an 

atherogenic lipoprotein profile, in particular increased VLDL formation. A common hallmark 

of obesity is adipocyte hypertrophy, which is considered detrimental for adipose tissue 

function since the cell volume has been shown to positively correlate with insulin and TG and 

negatively with insulin sensitivity and HDL in both SAT as well as VAT (71). Moreover, 

even in non-obese subjects increased adipocyte size is often accompanied by tissue fibrosis 

which restricts its expansion capacity and secretion of proinflammatory cytokines which 

trigger recruitment of inflammatory cells in to adipose tissue and facilitate insulin resistance 

development (72).  

The presence of inflammatory cells within the adipose tissue to a large extent relates to tissue 

macrophages, which exist in two activation states – a pro-inflammatory (M1 macrophages) 

and an anti-inflammatory (M2 macrophages) (73). M1 activity inhibits cell proliferation and 

causes tissue damage, while M2 activity promotes cell proliferation and tissue repair. These 

two activation states are possible thanks to the ability of a macrophage to (via two enzymes) 

metabolize arginine to produce nitric oxide (M1 activation) or ornithine (M2 activation). The 

former is further associated with molecules that attract other inflammatory cells, such as IL8 

(neutrophils), MCP1 (monocytes), and with T cell polarization. Ornithine on the other hand is 

required for many repair processes, such extracellular matrix construction. The presence of 

tissue resident M2 macrophages is therefore a normal state, providing support and repair 

during cellular senescence or injury. The activation of the M1 phenotype however has been 

associated with obesity and insulin resistance (67). It is believed that expanding adipocytes 

that lose their storage capacity become necrotic and attract macrophages that form so-called 

crown-like structures around the necrotic cell and act as scavengers to remove cell debris and 

lipid droplets (74). NEFA which are released from hypertrophic/necrotic adipocytes can 

trigger pro-inflammatory responses in macrophages, contributing to increased systemic and 

local levels of inflammatory cytokines, such as TNF (75).  Furthermore, activated M1 

macrophages limit the plasticity of adipose tissue via secretion of matrix metalloproteinase 9 

 

8 

underlying vessel wall impairing endothelial cell function, accelerating lesion formation and 

inflammation (69). Circulating NEFA in turn may end up in tissues not suitable for fatty acid 

storage, such as liver, heart, skeletal muscle and pancreas. Ectopic fat deposition impairs 

insulin sensitivity, glucose metabolism and increases oxidative stress (70) and these 

symptoms are particularly pronounced in abdominal obesity, where excess of visceral fat, 

which is believed to have a higher lipolytic rate, is drained directly to the portal vein and 

exposes the liver to high concentrations of NEFA, adipokines and inflammatory cytokines. 

Additionally, this increased flux of NEFA to the liver favours the development of an 

atherogenic lipoprotein profile, in particular increased VLDL formation. A common hallmark 

of obesity is adipocyte hypertrophy, which is considered detrimental for adipose tissue 

function since the cell volume has been shown to positively correlate with insulin and TG and 

negatively with insulin sensitivity and HDL in both SAT as well as VAT (71). Moreover, 

even in non-obese subjects increased adipocyte size is often accompanied by tissue fibrosis 

which restricts its expansion capacity and secretion of proinflammatory cytokines which 

trigger recruitment of inflammatory cells in to adipose tissue and facilitate insulin resistance 

development (72).  

The presence of inflammatory cells within the adipose tissue to a large extent relates to tissue 

macrophages, which exist in two activation states – a pro-inflammatory (M1 macrophages) 

and an anti-inflammatory (M2 macrophages) (73). M1 activity inhibits cell proliferation and 

causes tissue damage, while M2 activity promotes cell proliferation and tissue repair. These 

two activation states are possible thanks to the ability of a macrophage to (via two enzymes) 

metabolize arginine to produce nitric oxide (M1 activation) or ornithine (M2 activation). The 

former is further associated with molecules that attract other inflammatory cells, such as IL8 

(neutrophils), MCP1 (monocytes), and with T cell polarization. Ornithine on the other hand is 

required for many repair processes, such extracellular matrix construction. The presence of 

tissue resident M2 macrophages is therefore a normal state, providing support and repair 

during cellular senescence or injury. The activation of the M1 phenotype however has been 

associated with obesity and insulin resistance (67). It is believed that expanding adipocytes 

that lose their storage capacity become necrotic and attract macrophages that form so-called 

crown-like structures around the necrotic cell and act as scavengers to remove cell debris and 

lipid droplets (74). NEFA which are released from hypertrophic/necrotic adipocytes can 

trigger pro-inflammatory responses in macrophages, contributing to increased systemic and 

local levels of inflammatory cytokines, such as TNF (75).  Furthermore, activated M1 

macrophages limit the plasticity of adipose tissue via secretion of matrix metalloproteinase 9 



 

 9 

which degrades the extracellular matrix (76) and impairs adipocyte progenitor cell 

proliferation and differentiation (77).  

Studies focusing on the ability of adipose tissue to initiate inflammatory processes became 

extensive after the discovery that adipose tissue can secrete a proinflammatory TNF and that 

TNF levels are increased in obesity (31, 78). In addition to the effects of TNF on insulin 

signaling that promote an insulin resistant phenotype (79), it also affects adipocyte 

metabolism, including increasing basal lipolysis and intracellular ceramide levels, inhibiting 

LPL expression and activity, and inducting apoptosis and adipose plasminogen activator-

inhibitor-1 (PAI-1) synthesis (80). Circulating concentrations of other  hormones and 

cytokines produced within adipose tissue, including leptin and IL6, that are elevated in 

obesity, correlate with measures of insulin sensitivity (81) mediating pro-inflammatory and 

chemoattractant processes. It has been shown that in response to a high-fat diet adipose tissue 

secretes MCP1 that promotes macrophage recruitment and inflammation (82), and in fact, 

adipose visceral progenitor cells were revealed to initiate the process of MCP1 secretion and 

macrophage infiltration. The direct effects of adipose tissue on the vascular wall have also 

been shown. In physiological conditions perivascular fat may have beneficial properties via 

reduction in vascular tone and anti-inflammatory and anti-proliferative effects of adiponectin, 

for instance (83). In pathological situations however, such as obesity, adipose tissue can 

secrete a whole set of adipokines that activate inflammatory cells (84) and exert proliferative 

and angiogenic effects on the vessel wall (85). It was demonstrated that adipocyte-

conditioned media obtained from epicardial adipocytes from patients undergoing coronary 

artery bypass surgery combined with oleic acid induce a potent proliferation and migration of 

vascular smooth muscle cells (VSMC) and activate inflammatory responses (86). 

Adipokines, such as visfatin were shown to increase not only VSMC, but also endothelial 

cells proliferation (87) and resistin was shown to activate the endothelium by upregulation of 

adhesion molecules (88). (89). In addition to its potent chemoattractant properties in adipose 

tissue itself, MCP1 has been also shown to mediate neointimal hyperplasia and prominent 

adventitial inflammation and angiogenesis promoting atherosclerotic processes in carotid 

arteries (90).  

Thus, adipose tissue, via all the mechanisms described above, on local as well as systemic 

levels contributes to the metabolic disturbances that may lead to cardiovascular diseases and 

insulin resistance.  
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1.5.6 Ceramide metabolism and role in IR 

Ceramides are lipid molecules composed of a sphingoid base (sphingosine) linked to a fatty 

acid via an amide bond. The fatty acids in naturally occurring ceramides have variable length, 

usually between 14 and 26 carbons and are unsaturated or monounsaturated. Free ceramides 

are present in tissues in very small amounts and ceramides are usually part of complex lipids, 

such as glycosphingolipids or the major lipids of the lipid bilayer – phospholipids, where they 

are part of sphingomyelin. In greater amounts ceramides (together with other lipids, such as 

cholesterol, cholesteryl esters, TG and fatty acids) are present in stratum corneum of the skin 

and vernix caseosa, the waxy white substance coating the skin of newborn babies where they 

play a protective role against loss of water, form a physical barrier and probably also 

conserve heat (vernix caseosa). Ceramides are not only constituents of a lipid bilayer, but 

they are important signaling molecules and regulate several cellular processes, like 

proliferation, differentiation, apoptosis, migration or inflammation (91). Production of 

ceramides occurs via two major processes – de novo synthesis and the hydrolysis of 

sphingomyelin. De novo synthesis of ceramide takes place in the endoplasmic reticulum 

(ER). The first step of the synthesis is rate limiting and starts with palmitate and serine being 

condensed by serine palmitoyl transferase (SPT) to form 3-keto-dihydrosphingosine. The 

following chain of reactions transforms the intermediate products to form dihydroceramide 

and finally ceramide, which is then transported by the ceramide transfer protein (CERT) or 

vesicular trafficking to the Golgi apparatus where it can be further incorporated into 

sphingolipids or be transformed into ceramide-1-phosphate, for instance. The alternative 

pathway is the hydrolysis of sphingomyelin catalyzed by several sphingomyelinases that 

differ in their preferences for cofactors and pH (SMPD1, SMPD2, SMPD3 and SMPD4). 

Therefore the production of ceramide from sphingomyelin can take place in several cell 

compartments, such as the Golgi apparatus, the lysosome or the cell membrane. 

Understanding ceramide synthesis makes one point clear – the rate of its production is largely 

driven by the availability of long-chain saturated fatty acids, in particular palmitate (C16:0) to 

which SPT is specific (±1 carbon) (92). Still it is possible for some extracellular stimuli to 

regulate the ceramide synthesis rate without the fatty acid dependence, for example it has 

been shown that stress signals - cytokines (TNF) and UV radiation – can directly upregulate 

SPT expression (92, 93). Increased ceramide levels have been consistently reported in 

skeletal muscle of insulin resistant or obese subjects and animals (94-96) and even modest 

elevation in ceramide content seems to be sufficient to antagonize insulin action (97). The 

proposed mechanisms by which ceramide promotes the insulin resistant phenotype are the 
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following. Ceramide may induce phosphorylation of inhibitory serine/threonine residues on 

insulin receptor substrate 1 (IRS1) via activation of several enzymes known for IRS1 

inhibition, such as p38, c-Jun N-terminal kinase (JNK) and IκB kinase (IκK) (98). The 

stimulation of JNK and IκK by ceramide additionally leads to activation of transcription 

factors – c-Jun and NFκB (98), which promote an insulin resistant phenotype and mediate 

inflammatory processes. Moreover, ceramide inhibits phosphorylation of Akt/protein kinase 

B (PKB) – a central regulator of insulin action and its effects on metabolic processes, like 

glucose uptake (99) and inhibits GLUT4 translocation to the cell membrane (100). Much less 

extensive research has been performed on ceramides in human adipose tissue (101, 102) 

nevertheless the data that exists also indicates adverse associations between ceramide content 

in human fat and metabolic indices, such as liver fat content (101). Everything we have 

learned so far about the role of ceramide in mediating insulin resistance, especially in skeletal 

muscles, makes it an exciting candidate for a similar role in human adipose tissue. This is one 

of the scopes of this thesis and will be investigated and discussed further. 
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Figure 1. Schematic representation of ceramide synthesis and metabolism. 
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2 HYPOTHESIS AND AIMS 

2.1 General Hypothesis 

Adipose tissue plays a central role in the integration and regulation of metabolism, 

particularly via its capability of fatty acid handling and endocrine actions. However 

metabolic activity and properties related to lipid storage capacity, lipolysis rate and 

adipokine secretion vary significantly between adipose depots. Therefore alterations that 

unfavourably alter adipose tissue function, such as inflammation, impaired insulin signaling 

or lipolysis in the adipocyte, may facilitate the development of insulin resistance and 

cardiovascular disease.  

2.2 Specific Aims 

• Paper I and II. The mechanisms by which dysfunctional adipose tissue contributes 

to the development of insulin resistance: To investigate the role of ceramides as 

candidate mediators of inflammation in subcutaneous, intra-abdominal and 

mediastinal adipose tissue 

• Paper II and III. The neglected mediastinal depot: Friend or foe? To evaluate 

whether mediastinal adipose tissue – one of the thoracic visceral depots – has an 

inflammatory and insulin resistant-pheonotype or a brown-like and fatty acid 

oxidation-promoting phenotype 

• Paper IV. Dysfunctional adipose tissue and cardiovascular risk in complex diseases: 

To examine whether uremic adipose tissue shows signs of dysfunctionality, thereby 

potentially contributing to the increased risk of CVD in patients with kidney failure
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3 METHODOLOGICAL CONSIDERATIONS 

Individual papers contain more detailed descriptions of both study cohorts and methods. This 

Chapter intends to put them in a broader perspective, and therefore contains less detailed 

information. 

3.1 Study material 

In all papers human adipose tissue biopsies were collected from different adipose depots, 

according to the purpose of the study. Additionally, in Paper I liver biopsies were also 

collected. In Paper I adipose depots included the subcutaneous and the intra-abdominal 

depots, in Paper II and III – subcutaneous and mediastinal, in Paper IV – subcutaneous fat 

was used. The biopsies were collected during different surgical procedures (described in the 

Methods sections in individual papers) and usually consisted of approximately 200mg of 

tissue that was immediately cleaned from blood or excess connective tissue, divided (if 

needed) and treated according to the method they were intended for. For gene expression 

analyses the tissue (both adipose tissue and liver) was either stored in RNA Later® or was 

snap-frozen and stored in -80°C, for lipidomics and Western Blot the tissue biopsies were 

snap-frozen. For proteomic analyses the tissue was stored in All Protect Reagent® at -20°C 

and for immunohistochemistry it was collected in 4% zinc formaldehyde and stored in 

ethanol until paraffin embedding.  

In Paper III murine adipose tissue was used in addition to human samples. The biopsies were 

inguinal white adipose tissue and the interscapular depot of brown fat collected from 9-week 

old outbred Naval Medical Research Institute mice acclimatized for 3 weeks to either 30°C or 

4°C. 

3.2 Study subjects 

The subjects involved in the studies described in this thesis consisted of different cohorts of 

adult individuals and were enrolled in different research centers. However, all studies were 

approved by the relevant ethics committee, the potential risks related to the participation in 

the study were explained to the patients and written consents were obtained. 

The study groups described in Paper I involve 20 obese women (BMI 30-42kg/m2) and 8 

morbidly obese individuals (2 women, 6 men, BMI 52.6±2.0kg/m2) recruited in Helsinki 

University Central Hospital, Finland. The first group was divided into 2 subgroups (n=10 in 
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each group) according to the liver fat content (low liver fat – 1-3.5% or high liver fat – 6-

35%). An additional group (n=23, non-obese men and women) was recruited in Karolinska 

University Hospital, Stockholm, Sweden, as a part of the Advanced Study of the Aortic 

Aneurysm (ASAP).  

Patients enrolled in the ASAP study formed also the study cohorts used in Paper II and Paper 

III (overweight men and women, n=10 in Paper II and n=10+23+25 in Paper III). All ASAP 

patients used in the investigations described in this thesis were referred for open-heart aortic 

valve surgery and/or aortic aneurysm surgery and had no documented carotid artery disease. 

In Paper IV two study groups were described - one consisted of normal- or slightly 

overweight men and women recruited at Karolinska University Hospital, Huddinge and the 

second one consisted of morbidly obese patients admitted to King’s College Hospital, 

London, UK. The group recruited at Karolinska University Hospital, Huddinge involved 17 

patients suffering from kidney failure and referred to the kidney transplant surgery and 11 

healthy kidney donors. The group recruited at King’s College was comprised of 9 morbidly 

obese CKD patients (stage 3-5). 

3.3 Methods 

3.3.1 Gene expression analyses 

Quantification of gene expression is one of the most routine analyses used in research in 

order to estimate the relative or absolute number of a gene transcript. Two different 

approaches of gene expression analysis were taken. In Paper I and III the mRNA expression 

of selected genes was quantified by real-time PCR using gene-specific assays (inventoried, 

Invitrogen). This technique is most useful in a “candidate gene approach”, where a response 

from one or several selected genes is expected. In Paper I, II and III global gene expression 

analyses with Affymetrix GeneChip Human Exon 1.0 ST arrays (Affymetrix, Santa Clara, 

CA, USA) were performed. This method measures the expression of a large number 

(thousands) of genes simultaneously and therefore can be very useful in screening for genes 

or pathways that are responsive to a treatment, for instance. This approach however creates a 

very large amount of data which analysis often requires multivariate statistics (discussed in 

section 3.3.6). 

The RNA isolation from biopsies taken in Finland and used in Paper I was done with the 

RNA-STAT60 reagent. RNA was purified with RNeasy kit and the concentration was 

 

 15 

each group) according to the liver fat content (low liver fat – 1-3.5% or high liver fat – 6-

35%). An additional group (n=23, non-obese men and women) was recruited in Karolinska 

University Hospital, Stockholm, Sweden, as a part of the Advanced Study of the Aortic 

Aneurysm (ASAP).  

Patients enrolled in the ASAP study formed also the study cohorts used in Paper II and Paper 

III (overweight men and women, n=10 in Paper II and n=10+23+25 in Paper III). All ASAP 

patients used in the investigations described in this thesis were referred for open-heart aortic 

valve surgery and/or aortic aneurysm surgery and had no documented carotid artery disease. 

In Paper IV two study groups were described - one consisted of normal- or slightly 

overweight men and women recruited at Karolinska University Hospital, Huddinge and the 

second one consisted of morbidly obese patients admitted to King’s College Hospital, 

London, UK. The group recruited at Karolinska University Hospital, Huddinge involved 17 

patients suffering from kidney failure and referred to the kidney transplant surgery and 11 

healthy kidney donors. The group recruited at King’s College was comprised of 9 morbidly 

obese CKD patients (stage 3-5). 

3.3 Methods 

3.3.1 Gene expression analyses 

Quantification of gene expression is one of the most routine analyses used in research in 

order to estimate the relative or absolute number of a gene transcript. Two different 

approaches of gene expression analysis were taken. In Paper I and III the mRNA expression 

of selected genes was quantified by real-time PCR using gene-specific assays (inventoried, 

Invitrogen). This technique is most useful in a “candidate gene approach”, where a response 

from one or several selected genes is expected. In Paper I, II and III global gene expression 

analyses with Affymetrix GeneChip Human Exon 1.0 ST arrays (Affymetrix, Santa Clara, 

CA, USA) were performed. This method measures the expression of a large number 

(thousands) of genes simultaneously and therefore can be very useful in screening for genes 

or pathways that are responsive to a treatment, for instance. This approach however creates a 

very large amount of data which analysis often requires multivariate statistics (discussed in 

section 3.3.6). 

The RNA isolation from biopsies taken in Finland and used in Paper I was done with the 

RNA-STAT60 reagent. RNA was purified with RNeasy kit and the concentration was 



 

16 

measured using RiboGreen fluorescent nucleic acid staining. cDNA synthesis was performed 

using M-MLV reverse transcriptase and oligo(dT)12-18 primers.  

From adipose biopsies used in Paper II and III and liver biopsies used in Paper I total RNA 

was extracted using Trizol Reagent (Invitrogen) using the FastPrep Homogenizer (Qbiogene). 

RNA was purified using RNeasy Mini Kits (Qiagen) following the manufacturer’s protocol. 

RNA concentrations were measured using a NanoDrop spectrophotometer (Thermo) and the 

quality was analyzed with Agilent Bioanalyzer 2100 (Agilent Technologies).  The cDNA 

synthesis was performed using Superscript III reverse transcriptase and oligo(dT)12-18 primers. 

A pooled cDNA obtained from human adipose tissue samples served as an inter-plate control 

and was used to create a standard curve relative to which all individual levels were expressed 

in arbitrary units. Gene expression was normalized relative to the housekeeping genes. 

For global gene expression, RNA samples with integrity number (RIN) value of at least 5.0 

were used. Samples were hybridized and scanned at Karolinska Institutet’s microarray core 

facility and Affymetrix GeneChip Human Exon 1.0 ST protocols were used. The raw Cel 

files were preprocessed and log2 transformed using robust multiple-array average (RMA) as 

implemented in the Affymetrix Power Tools 1.10.2 package apt-probeset-summarize. All 

investigations were performed on the core sets of meta probes provided by Affymetrix. 

3.3.2 Immunohistochemical staining (IHC) 

Immunostaining methods allow detection and visualization of antigens in cells via 

immunological and chemical reactions. The principle of this technique relates to the high 

affinity of antibodies towards antigens and the visualization can be achieved by coupling 

antibodies to a variety of enzymatic or fluorescent labels. The popularity of IHC depends on 

many advantages of this method – it is relatively inexpensive, quick, sensitive and specific, 

allows detection on the protein level and enables detection of a variety of antigens in multiple 

species in relation to the tissue structure (more than one antigen can be detected and 

visualized in one staining). Care should be taken however to avoid certain common problems 

related for example to unspecific binding and high background staining.  

In the articles presented in this thesis staining was performed on formalin-fixed paraffin 

sections of human (Paper I, III and IV) and murine (Paper III) adipose tissue. The sections 

were incubated with primary antibodies followed by incubation with biotinylated secondary 

antibody and the staining was visualized using avidin-biotin peroxidase complex (Vector 

Laboratories) followed by 3,3’-diaminobenzidine tetrachloride (DAB, Vector Laboratories). 
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related for example to unspecific binding and high background staining.  
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 17 

All sections were counterstained with Harris hematoxyline (Histolab) and analyzed with light 

microscopy.  

In Paper I and IV collagen fibers were stained with Sirius Red. In linear polarized light 

collagen fibers appear as orange, yellow or green filaments, depending on their thickness, 

alignment and packing. The sections were analysed with Leica QWin software and collagen 

content (thresholded chromogen area) was calculated as the percentage of the total section 

area (Paper IV).  

3.3.3 Protein analyses 

Similar to gene expression analysis, proteins can also be quantified in different ways. One 

of the most traditional ways is quantifying the amount of a single (or several) “candidate” 

proteins by Western blotting, where a mixture of proteins from a sample is loaded on a gel 

and subjected to electrophoretic separation, transferred to a membrane and stained with 

antibodies allowing detection and subsequent quantification of a specific protein. Western 

blotting can be a straight-forward and sensitive method that quickly provides information 

about the level of protein expression, however some problems are related to this technique, 

such as lack of signal or too strong background as well as uneven distribution of bands. 

For Western blot analyses human and murine adipose tissue protein extracts were separated 

using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), transferred 

to a polyvinylidene difluoride (PVDF) membrane, blocked with 5% milk and incubated 

with a primary antibody at 4 °C for 12 h. Incubation with the secondary biotin-conjugated 

antibody was performed for 1h at room temperature. The signal was then detected with 

ECL plus Western Blotting Detection System (GE Healthcare) with Amersham Hyperfilm 

ECL (GE Healthcare) (Paper III) or with X-ray film Agfa CP-BU new (Agfa Healthcare, 

Paper IV). 

Another approach for protein analysis that is useful for quantification of large numbers of 

proteins is two-dimensional gel electrophoresis. This technique is used in Paper IV and 

allows more precise separation of proteins, first according to their isoelectric point (first 

dimension) and next according to their molecular weight (second dimension). Labelled 

proteins form a spotted pattern on the gel where they were loaded and separated and the 

spot volume corresponds to the amount of the protein present in the sample. The spots can 

be then analyzed by mass spectrometry in order to identify the proteins. This method 

combined with multivariate data analysis was extremely valuable in the project in Paper IV, 
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where adipose proteins with differential expression levels between patients and controls 

were looked for – a goal that cannot easily be achieved with traditional Western blot.  

3.3.4 Ceramide quantification 

Lipids are extremely interesting from a metabolic point of view, since they serve as potent 

signaling molecules. In Paper I and II adipose tissue and plasma lipids were extracted and 

measured. In Paper I  lipidomics was introduced – a large-scale profiling comprising 154 

lipids including ceramide (Cerd18:1/16:0, Cerd18:0/22:0 and Cerd18:1/24:1) and 

sphingomyelin (SMd18:1/16:0, SMd18:1/18:0, SMd18:1/20:0, SMd18:1/22:0, 

SMd18:1/22:1, SMd18:1/24:1, SMd18:1/24:2) species measured by Ultra Performance 

Liquid Chromatography coupled to time-of-flight mass spectrometry (UPLC-QTOFMS). In 

Paper II ceramides were separated and purified using straight-phase HPLC and analyzed 

using reversed-phase HPLC coupled to a triple quadrupole mass spectrometer. Six ceramides 

species (Cerd18:1/16:0; Cerd18:1/18:0; Cerd18:1/20:0; Cerd18:1/22:0; Cerd18:1/24:0 and 

Cerd18:1/24:1) were quantified using external standards.  

3.3.5 Adipocyte size measurement 

As discussed briefly in the Introduction, adipocyte size varies between depots and can be a 

feature of dysfunctional adipose tissue. Therefore estimating the size of adipocytes provides 

an additional parameter in the assessment of tissue function. One way of measuring the 

adipocyte diameter/volume is isolating mature cells and calculating their size in suspension in 

the light microscope, where the cells are well separated and round in shape. However this 

requires a relatively large biopsy that can be freshly processed and still one needs to account 

for the loss of many of these fragile cells. An alternative approach was used in Paper III and 

IV where adipocyte area was calculated on paraffin-fixed and hematoxylin stained adipose 

sections using an open source scientific image processing program (ImageJ) allowing the 

accurate measurement of the whole cell area, even when irregular in shape. Briefly, the 

background threshold was set for optimal visualization of adipocyte plasma membranes. 

Images were then flattened to binary images and “dilated” to ensure best separation of 

adipocytes. “Fill holes” function was applied to remove debris and optical artefacts. 

Adipocyte area was measured using “Analyze particles” function with parameters: particle 

size 100-50000um2, circularity 0-1.00, exclude on edges. 
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3.3.6 Cell culture 

Two types of experiments involving cell culture were used in our as yet unpublished data. 

One included human primary monocytes isolated from buffy coats with the Ficoll-Percoll 

method. Cells were seeded in 6-well plates at a density of 1.5x106 cells/well and grown in 

RPMI 1640 supplemented with 1% antibiotics (penicillin-streptomycin) and 10% heat 

inactivated fetal bovine serum. The cells were stimulated towards macrophage differentiation 

with human macrophage colony-stimulating factor at concentration 50ng/mL. 

The second cell culture included the 3T3 L1 cell line purchased from the European Collection 

of Authenticated Cell Cultures (ECACC). The cells are mouse embryo fibroblasts that were 

stimulated to differentiate into adipocytes by first growing the cells to confluency using 

Dulbecco’s Modified Eagle Medium (DMEM) medium supplemented with 10% serum. Two 

days after confluency differentiation was initiated by adding 0.5 mM 3-isobutyl-1-

methylxanthine (IBMX), 0.25µM dexamethasone and 1µg/ml insulin in DMEM with 10% 

Foetal Bovine Serum (FBS). After 2 days the IBMX and dexamethasone were removed but 

insulin was maintained for another 2 days. On day 4 and thereafter, the cells were cultured in 

DMEM with 10% FBS only. The majority of cells had an adipocyte-like phenotype after 14 

days of differentiation, with multiple visible lipid droplets. The cells used for the experiment 

were at passage 16. 

C6 ceramide was dissolved in dimethyl sulfoxide (DMSO) to obtain a stock solution of 

100mM. Prior to each experiment ceramide was coupled to fatty acid-free bovine serum 

albumin and sonicated. Fresh 10µM ceramide solution was used immediately for cell culture 

experiments. 

3.3.7 Statistical analyses 

The statistical analyses of data presented in this thesis were performed with StatView 

software (Paper I), Statistica (Paper II and IV), R Bioconductor packages (Paper III) and 

Simca 13.0.3 (Paper II and IV). Most of the comparisons were made with a non-parametric 

Mann-Whitney test and Wilcoxon signed rank test, and the relationships between variables 

were assessed with Spearman’s rank correlation. Non-parametric statistics were preferable in 

most of the cases, since they do not depend on normal data distribution, which is often 

difficult to achieve with low number of observations. Additionally, non-parametric tests are 

not sensitive to extreme values, thus lowering their impact on data interpretation. 
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In Paper II and IV multivariate data analysis was necessary in order to extract the required 

information from large data sets. The approach described here was based on projection 

methods, where observations are presented as points in a K-dimensional space (where K is a 

number of variables) and then projected to a lower-dimensional (2-dimensional) plane. This 

system of analyzing data sets is a relatively simple way of summarizing it, looks at all the 

variables at the same time thus eliminating the problem of false discovery rate related to 

multiple testing and – most importantly – it reveals quantitative relationships between 

variables, even if the data is noisy. The projection methods can also handle data with many 

more variables than observations, which is of importance in particular in Paper II. The 

analytical tool used in Paper II and IV is called Orthogonal Projections to Latent Structures 

(OPLS). It connects information from two data sets or matrices (X and Y) with the ability of 

separating the part of the information in X that is related (orthogonal) to Y. In other words – 

it separates variation in data set X into two parts – one that is linearly related (predictive) to Y 

and one that is not (orthogonal), improving transparency and interpretability of the data. 
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4 RESULTS 

4.1 Paper I – Expression of ceramide-metabolizing enzymes in subcutaneous and intra-
abdominal human adipose tissue 

Ceramide has been shown to be a potent molecule involved in the pathogenesis of insulin 

resistance, however we still know very little about its role in human adipose tissue. The aim 

of this study was to investigate which pathways are responsible for the increased ceramide 

content previously observed in inflamed adipose tissue (101).  

The expression levels of genes involved in ceramide de novo synthesis and metabolism were 

measured in subcutaneous adipose tissue of obese women (n=20). The subjects were divided 

into 2 groups depending on their liver fat content – normal liver fat (NLF = 2.3% ± 0.3%, 

n=10) or high liver fat (HLF = 14.4 ± 2.9%, n=10). The HLF group had a more adverse blood 

lipid profile and more inflamed adipose tissue with a higher ceramide and sphingomyelin 

content than the NLF group (101). The expression of genes involved in de novo ceramide 

synthesis (SPTLC1, SPTLC2, DEGS1, LASS1, LASS4 and LASS6) did not differ between 

the groups (Table 1). However several genes involved in ceramide metabolism were 

expressed at higher levels in the HLF group as compared to the NLF group, namely ASAH1, 

SPHK1, SMPD1, SMPD3 and SMPD2 and CERK had a strong tendency to be greater in 

HLF group (Table 1). The expression of SMPD1-3 was also compared between 

subcutaneous and intra-abdominal depots of non-obese (n=23) and morbidly obese (n=8) 

subjects. SMPD3 was higher in the intra-abdominal depot of both groups, while SMPD1 and 

SMPD2 did not show consistent differences in their expression pattern (Figure 2). The 

adipose tissue localization of SMPD1-3 by immunohistochemical staining revealed that these 

enzymes are present in macrophages and adipocytes, with the strongest staining present in 

and around blood vessels (Figure 3). The presence of sphingomyelinases in blood vessels 

and higher expression of these enzymes in HLF individuals led to an attractive hypothesis, 

that the sphingomyelin used as a substrate for sphingomyelinases to produce ceramide could 

come from circulating lipoproteins, secreted in abundance from fatty liver. Therefore 

additional apolipoprotein B staining of both obese and non-obese subjects was also 

performed and positive staining was found in blood vessels and CD68-rich areas of adipose 

tissue (Figure 4). 
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Table 1. Expression in subcutaneous adipose tissue of ceramide-metabolising enzymes in 

relation to adipose tissue inflammation and liver fat content.  

Gene 

Less inflamed 
adipose tissue, 
normal liver fat 

More inflamed 
adipose tissue, high 

liver fat P 

n=10 n=10 
SPTLC1 0.99±0.04 1.05±0.06 0.20 
SPTLC2 0.97±0.07 1.00±0.05 0.39 
DEGS1 0.99±0.05 1.07±0.05 0.11 
LASS1 9.07±3.12 9.22±1.63 0.48 
LASS4 1.08±0.10 1.07±0.16 0.49 
LASS6 0.87±0.07 0.89±0.07 0.42 
ASAH1 1.16±0.10 1.47±0.13 0.03 
UGCG 0.91±0.08 0.96±0.06 0.34 
SGMS1 1.01±0.05 1.10±0.06 0.12 
SGMS2 2.09±0.27 2.57±0.32 0.13 
SMPD1 1.51±0.10 1.85±0.10 0.01a 
SMPD2 1.13±0.06 1.26±0.06 0.08 a 
SMPD3 1.33±0.13 1.76±0.18 0.05 a 
SMPD4 1.57±0.09 1.52±0.09 0.35 
CERK 1.57±0.15 1.87±0.10 0.06 
SPHK1 12.18±1.49 17.64±1.65 0.01 
CGT 4.45±1.29 3.45±0.52 0.24 

Relative gene expression levels of genes involved in ceramide and sphingomyelin 

metabolism in subcutaneous adipose tissue of obese women with different degrees of adipose 

tissue inflammation are given. SPTLC: serine palmitoyl transferase long-chain; DEGS: 

dihydroceramide desaturase; LASS: LAG1 homolog (ceramide synthase); ASAH: N-

acylsphingosine amidohydrolase (ceramidase); UGCG: UDP-glucose ceramide 

glucosyltransferase; SGMS: sphingomyelin synthase; SMPD: sphingomyelin 

phosphodiesterase (sphingomyelinase); CERK: ceramide kinase; SPHK: sphingosine kinase; 

CGT: ceramide glycosyl transferase. Gene expression was normalized to housekeeping genes 

RPLP0 and TBP. Values are expressed as mean ± SEM. a Reported previously (101). 
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Figure 2. Gene expression levels of SMPD1-3 in subcutaneous (black bars) and intra-

abdominal (white bars) adipose tissue from 23 non-obese (A) and 8 obese (B) individuals. 

Expression is in arbitrary units normalized to housekeeping genes RPLP0 and TBP, and set to 

1 for the subcutaneous depot. *p<0.05, ***p<0.01 compared to subcutaneous tissue. 
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Figure 3. Immunohistochemical localization of CD68 (A, E), SMPD1 (B, F), SMPD2 (C, G) 

and SMPD3 (D, H) in macrophages (A-D) and blood vessels (E-H) in subcutaneous adipose 

tissue from an obese woman. Positive staining is coloured brown. All sections were 

counterstained with hematoxylin.  
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Figure 4. Localization of CD68 (A) and apoB (B) in a serial section of human subcutaneous 

adipose tissue from an obese woman.  
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4.2 Paper II – Ceramides are associated with inflammatory processes in human 

mediastinal adipose tissue 

It is now recognized that different adipose depots contribute differently to metabolic 

dysregulation, therefore we wondered whether these differences are reflected also in their 

ceramide content. The aim of this study was to investigate ceramide concentrations of several 

ceramide species in human subcutaneous and mediastinal adipose tissue and to determine 

associations between adipose tissue ceramides and global gene expression profiles. 

Concentrations of 3 dihydroceramide (Figure 5A) and 6 ceramide species (Figure 5B) were 

evaluated in subcutaneous and mediastinal adipose depots from 10 patients. Ceramide with 

fatty acid length 16:0 was the dominant species in both depots. One dihydroceramide and all 

6 ceramide species were significantly more abundant in the mediastinal as compared to the 

subcutaneous depot (Figure 5). 

In addition to ceramide quantification, global gene expression profiling was performed in 

both adipose depots. We decided to assess relationships between ceramides and depot-

specific gene expression profile with the OPLS technique. The model quality parameters 

were satisfactory only in the mediastinal tissue, thus only this depot was analyzed further. In 

the OPLS analysis of the mediastinal fat 2398 genes contributed significantly to the model, 

among which 1986 correlated positively and 412 negatively with ceramide. These genes were 

then subjected to gene ontology analysis in order to identify biological processes related to 

ceramide concentration (Figure 6). Genes that correlated positively with ceramide were 

categorized into 165 biological processes, of which 59 were related to immune or 

inflammatory processes (Figure 6A). Genes that correlated negatively with ceramide were 

classified into 42 biological processes, of which 13 were related to carbohydrate and 11 to 

lipid (predominantly fatty acid/cholesterol) metabolism (Figure 6B). 
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4.2 Paper II – Ceramides are associated with inflammatory processes in human 

mediastinal adipose tissue 

It is now recognized that different adipose depots contribute differently to metabolic 

dysregulation, therefore we wondered whether these differences are reflected also in their 
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Figure 5. Dihydroceramide (A) and ceramide (B) concentrations (µmol/mg of tissue) in 

subcutaneous (white bars) and mediastinal (black bars) adipose tissue from 10 subjects. Data 

expressed as mean ± SD, *p<0.05 and **p<0.01 for differences between depots. 

 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
di

po
se

 ti
ss

ue
 d

ih
yd

ro
ce

ra
m

id
e 

(p
m

ol
/m

g 
tis

su
e)

 

* 

* 

0

2

4

6

8

10

12

14

A
di

po
se

 ti
ss

ue
 c

er
am

id
e 

 
(p

m
ol

/m
g 

tis
su

e)
 

** 

** ** 

** 

** ** ** 

 

 27 

A 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

Figure 5. Dihydroceramide (A) and ceramide (B) concentrations (µmol/mg of tissue) in 

subcutaneous (white bars) and mediastinal (black bars) adipose tissue from 10 subjects. Data 

expressed as mean ± SD, *p<0.05 and **p<0.01 for differences between depots. 

 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
di

po
se

 ti
ss

ue
 d

ih
yd

ro
ce

ra
m

id
e 

(p
m

ol
/m

g 
tis

su
e)

 

* 

* 

0

2

4

6

8

10

12

14

A
di

po
se

 ti
ss

ue
 c

er
am

id
e 

 
(p

m
ol

/m
g 

tis
su

e)
 

** 

** ** 

** 

** ** ** 



 

28 

A 

 

B 

 

Figure 6. Distribution of the biological processes (listed clockwise) identified by GO analysis 

of the 1986 genes correlating positively (A) and the 412 genes correlating negatively (B) with 

ceramide concentrations in human mediastinal adipose tissue in OPLS analysis. The number 

of GO categories in each group is indicated. 
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4.3 Ceramide induces an inflammatory response from human monocyte-derived 

macrophages and 3T3-L1 cells (unpublished data) 

In Paper II we clearly demonstrated associations between adipose tissue ceramides and 

inflammation. However, taking into account the complexity of adipose tissue and the 

different cell types that this tissue is composed of,  we wished to further evaluate whether 

cells in adipose tissue (with particular interest in adipocytes and macrophages) responded in 

an inflammatory manner to ceramide and whether these cells produce more ceramide in 

response to inflammation. However, to date we have only started investigating the first 

question. Moreover, these results are very preliminary and should be considered as such (n=3 

for macrophage experiments and n=1 for adipocyte experiment). Due to difficulties obtaining 

adipose tissue biopsies large enough to isolate the required number of primary cells we 

started evaluating the effect of ceramide on human primary monocyte-derived macrophages 

and on differentiated 3T3 L1 cells.  

Monocytes were isolated from buffy coats and stimulated with 50ng/mL of human 

macrophage colony-stimulating factor (hMCSF) for 5 days. The cells were then treated with 

10µM C6 ceramide or DMSO for 0, 3, 6 or 24h and harvested for mRNA expression analysis 

of selected inflammatory cytokines. C6 ceramide evoked a very strong increase in the 

expression of IL6, TNF and interleukin 1B (IL1B) (Figure 7) after 3 and 6 hours, with the 

effect returning towards control values after 24h (Figure 7). 

Differentiated 3T3 L1 cells were treated with 10µM C6 ceramide or DMSO for 0, 3, 6 or 24h 

and then harvested for mRNA expression analysis of selected inflammatory cytokines. To 

date only one  experiment has been performed where IL6 and MCP1 expression levels were 

measured, therefore no statistical analysis has been performed. Ceramide treatment evoked a 

multiple fold-change in the expression levels of both cytokines after 3h, which returned 

towards control levels after 24h (Figure 8). 
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Figure 7. mRNA expression levels of TNF (A, D, G), IL6 (B, E, H) and IL1B (C, F, I) in 

human monocyte-derived macrophages from 3 donors (donor 1 – A, B, C; donor 2 – D, E, F; 

donor 3 – G, H, I) following ceramide treatment. Data are expressed as fold change of the 

expression levels relative to time 0. Data are expressed as mean ± SD. Control experiments 

(DMSO treatment) are coloured blue and 10µM ceramide-treatment experiments are coloured 

red. Differences between the groups were analysed with paired t-test. *p<0.05, **p<0.01. 
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Figure 7. mRNA expression levels of TNF (A, D, G), IL6 (B, E, H) and IL1B (C, F, I) in 

human monocyte-derived macrophages from 3 donors (donor 1 – A, B, C; donor 2 – D, E, F; 

donor 3 – G, H, I) following ceramide treatment. Data are expressed as fold change of the 

expression levels relative to time 0. Data are expressed as mean ± SD. Control experiments 

(DMSO treatment) are coloured blue and 10µM ceramide-treatment experiments are coloured 

red. Differences between the groups were analysed with paired t-test. *p<0.05, **p<0.01. 
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Figure 8. mRNA expression levels of IL6 (A) and MCP1 (B) in differentiated 3T3-L1 cells 

treated with 10μM C6-ceramide for 0, 3, 6 and 12 hours (n=1). Data Are expressed as fold 

change of the expression levels relative to time 0. The control experiment (DMSO treatment) 

is coloured blue and the ceramide experiment is coloured orange.  
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4.4 Paper III – Human mediastinal adipose tissue displays certain characteristics of 

brown fat. 

The mediastinal adipose depot has been associated with CAD (103) but other studies discuss 

the possibility of this depot to display features of brown fat (14). If this depot truly contains 

brown adipocytes, an exciting possibility opens of redirecting excess fatty acids into heat 

production and thus decreasing the CVD risk. The goal of this study was to examine possible 

brown-fat characteristics of human mediastinal depot in comparison to the subcutaneous 

depot. 

In the initial analysis we compared subcutaneous and mediastinal expression levels 

(measured by microarrays) of 33 genes previously described as markers of brown or white 

adipose tissue in humans, animals as well as cell models (see Table 2 in Paper III). Seven out 

of the first 33 screened genes (UCP1, PPARGC1A, COBL, CIDEA, PRDM16, HOXC8 and 

SHOX2) were chosen for confirmation in a separate group of 23 subjects and were measured 

by qPCR. UCP1 and PPARGC1A showed higher and SHOX2 and HOXC8 showed lower 

expression in the mediastinal depot as compared to the subcutaneous (Figure 9). Gene 

ontology analysis revealed that the mediastinal depot was enriched in mitochondrial gene sets 

related to mitochondrial matrix, mitochondrial inner membrane, respiratory chain complex or 

fatty acid oxidation. We also performed microscopic evaluation of the mediastinal depot and 

found that the adipocytes were smaller than in the subcutaneous fat, and in 2 out of 10 

examined patients multilocular cells that stained positively for UCP1 could be found (Figure 

10). 
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Figure 9. Comparison of gene expression levels of four (UCP1, PPARGC1A, SHOX2, 

HOXC8) selected genes in human subcutaneous and mediastinal adipose tissue (n=23). Box 

plots represent median (thick black middle line), first and third quartile (box outlines) and the 

interquartile range (whiskers). Gene expression was normalized to reference gene PPIA. P 

values were calculated using Wilcoxon paired sample test. 
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Figure 10. Microscopic comparison of paired subcutaneous (A, C) and mediastinal (B, D) 

adipose depots from 2 subjects. Multilocular adipocytes were visible in mediastinal (B, D) 

but not in subcutaneous (A, C) depots. The sections were stained for brown fat marker UCP1. 
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4.5 Paper IV – Proteomic analysis reveals an altered protein composition of 

subcutaneous adipose tissue in patients with chronic kidney disease 

CVD is the main cause of death in CKD patients. In spite of a well-known contribution of 

adipose tissue to the development of CVD it remains unknown whether or how uremic fat 

could increase the CVD risk in those patients. The hypothesis of this study was that adipose 

tissue in patients suffering from kidney failure is dysfunctional and contributes to the high 

risk of cardiovascular disease observed in this group of patients. 

Subcutaneous adipose tissue from patients with stage 5 CKD was compared to the same 

depot from healthy individuals. The tissue of the kidney disease patients had more 

inflammation expressed as the number of CD68-positive cells (Figure 11A), but no 

difference in the degree of fibrosis (Figure 11B). The patients also had significantly smaller 

adipocytes than healthy individuals (Figure 11C). Two-dimensional electrophoresis of 

protein extracts of subcutaneous adipose tissue was performed and the data analysed using 

multivariate techniques. This analysis revealed a very good separation of the two groups 

(CKD patients and healthy controls) indicating significant differences between them in terms 

of their adipose tissue protein composition (Figure 12A). The proteins that differed most 

significantly between the groups and that were further identified by mass spectrometry were 

vimentin and alpha-1-microglobulin/bikunin precursor (AMBP) (Figure 12B). The 

differences in the expression levels of vimentin and AMBP were also confirmed by Western 

blot (Figure 13). 
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Figure 11. (A) Infiltration of inflammatory cells (number of CD68, CD11c and CD206 

positive cells per 10mm2 tissue area) in adipose tissue of healthy subjects (black bars) and 

patients with CKD (grey bars). Data expressed as mean ± SD. *p<0.05 for differences 

between groups. (B) Comparison of collagen content in adipose tissue of healthy subjects 

(black bars) and patients with CKD (grey bars). Data expressed as mean ± SD. (C) Adipocyte 

size comparison between healthy subjects (black bars) and patients with CKD (grey bars). 

Data expressed as mean ± SD. **p<0.01 for differences between groups. 
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Figure 12. OPLS-DA analysis of protein spot volumes of adipose tissue from healthy 

controls and patients with CKD. The presence or absence of CKD was used as the Y vector. 

The analysis was performed on 7 control individuals, 13 CKD patients and 202 protein spots. 

The Hotelling’s T2 (based on 95% confidence level) tolerance ellipse is shown in the score 

plot (A), which shows all the individuals analyzed (control individuals colour-coded green, 

CKD patients colour-coded blue). Predictive loadings representing the analyzed protein spots 

are plotted as a scatter plot (B). 

 

_________ Control _________         ____________________ CKD ____________________ 

 

 

 

 

 

Figure 13. Western blot analysis of AMBP and vimentin in control individuals and CKD 

patients. Beta actin was used as loading control. 
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5 DISCUSSION 

5.1 Paper I and II – adipose tissue ceramides: local production, global effects 

In spite of relatively well-studied involvement of ceramides in the pathogenesis of insulin 

resistance in skeletal muscle, not much has been reported on ceramides in human adipose 

tissue. Several studies measured ceramide content in different adipose depots and plasma 

(101, 102, 104-106). Ceramide content is greater in visceral (intra-abdominal and epicardial) 

as compared to the subcutaneous depot (104, 105), but confounding results were reported 

comparing obese and lean subjects, since both increased and decreased ceramide content was 

shown (102, 105). However, it appears that there is more to define adipose ceramide levels 

than only BMI, since it seems that the presence of diabetes may increase the adipose 

ceramide content (102, 105) and higher ceramide concentrations have been observed in 

adipose tissue from obese women with high liver fat content as compared to equally obese 

women with normal liver fat (101).  

The major results from Papers I and II can be summarized in several points – ceramide levels 

differ between adipose depots, where ceramide species show little correlation with systemic 

concentrations of ceramides, and that there are clear associations between ceramides and 

inflammatory processes within adipose tissue. The mechanisms responsible for the increased 

ceramide production in the inflamed fat are likely to be related to the formation of ceramide 

from sphingomyelin by the action of sphingomyelinases rather than from de novo ceramide 

synthesis. Immunohistochemical staining revealed the localization of apoB in areas rich in 

inflammatory cells (CD68-positive) and within blood vessels, where sphingomyelins are also 

present, indicating the possibility of direct access of adipose tissue sphingomyelinases to 

sphingomyelin-rich lipoproteins. In fact, it has been reported previously that the percentage of 

adipose tissue ceramides is not related to the percent of tissue sphingomyelin (104), which 

could support the hypothesis that the sphingomyelin used by adipose sphingomyelinases 

comes from circulating lipoproteins rather than adipose tissue itself. This mechanism would 

also explain previous findings that obese subjects with high liver fat have more ceramide in 

their adipose tissue (101), linking the local (adipose) ceramide production to features that 

have been well documented as promoting insulin resistance (fatty liver) and atherosclerosis 

development (adverse lipoprotein profile). This illustrates very well the integrative role of 

adipose tissue as an organ that can sense signals from the periphery and respond at local as 

well as systemic levels. A response in the form of increased ceramide production (from 

sphingomyelin hydrolysis) within adipose tissue is one of the local effects and leads to the 
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induction of insulin resistance and the expression of inflammatory genes within adipose 

tissue. These however may have systemic consequences, since some of the ceramide-induced 

cytokines, such as IL6, will be released into circulation and contribute to further impairment 

of insulin sensitivity. We have shown in our unpublished data that both macrophages as well 

as adipocytes are capable of a rapid inflammatory response when treated with exogenous 

ceramide and it remains to be established to what extent inflammatory treatment affects the 

ceramide content in these cells. These data will be extremely interesting in order to evaluate 

the cause and effect nature of the relationship between ceramide and inflammatory pathways. 

5.2 Paper II and III – the mediastinal adipose depot – friend or foe? 

Mediastinal adipose tissue belongs to the visceral depots located within the thoracic cavity, 

together with pericardial and epicardial fat. Epicardial fat is located between the outer 

myocardium and the visceral layer of the pericardium and is therefore in direct contact with 

the heart, the two tissues sharing microcirculation. Pericardial fat is located between the 

visceral and the parietal layers of the pericardium. The mediastinal depot is situated outside 

the pericardium. Intrathoracic fat depots may serve as a site for NEFA uptake that can be 

stored and quickly released to supply the heart with its energy demands. Large amounts of 

these depots however could lead to excess lipolysis, inflammation and increased adipokine 

release, affecting coronary vessels with accelerated atherosclerosis (107). In the current 

studies we sampled only the mediastinal depot, not the epicardial or pericardial depots, taking 

into consideration potential risks and the patients’ well-being. Mediastinal fat volume has 

been previously associated to CAD (107) and certain adverse features of this depot, such as 

elevated number of inflammatory cells, have been also associated with the elevated risk of 

coronary atherosclerosis (103). Moreover, a gene expression comparison of inflammatory 

markers revealed that many of them were expressed at similar (IL1B, MCP1, PAI1, CD68) or 

higher (TNF, IL6) levels in the mediastinal as compared to the epicardial fat (108). In Paper 

II we also show that the mediastinal depot is characterized by higher ceramide content and 

higher expression of inflammatory cell markers than the subcutaneous fat and that ceramide 

content in this depot is positively associated with inflammatory processes. These results 

suggest a rather detrimental (promoting development of insulin resistance and/or CAD role of 

mediastinal adipose tissue and indicate that this ceramide-rich and inflamed depot could have 

other properties similar to intra-abdominal fat, such as a high lipolysis rate, however this 

requires more functional studies. On the other hand, several reports showed brown fat activity 

in the mediastinal region (14, 109-111). The presence of active brown adipose tissue in this 

region would provide a beneficial situation, where the excess of fatty acids is used to generate 
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heat. However, in spite of higher UCP1 mRNA expression levels in the mediastinal as 

compared to the subcutaneous depot, multilocular adipocytes in the mediastinal depot could 

only be visualised in 2 out of 10 patients and the UCP1 staining was scarce, indicating that 

the functional protein may not be widely expressed in the tissue. These results could indicate 

that the brown-like cells observed scattered between the white adipocytes may be beige rather 

than classically brown, taking into account the very low UCP1 expression. One could 

speculate that from the evolutionary point of view the presence of brown/beige adipose tissue 

around the heart would have practical implications, protecting this vital organ during 

prolonged and cold winters. Nowadays we are rarely exposed to such extreme conditions, but 

it is tempting to wonder whether our current observations could be related to the remnants of 

thermogenic capability and more brown-like properties of the mediastinal adipose tissue. 

With no need for heat generation and a constant oversupply of energy, the mediastinal depot 

may have turned away its friendly face, being more of an enemy today, though the metabolic 

relevance of this depot is definitely worth further investigations. 

5.3 Paper IV – uremic fat – more than meets the eye 

The characterization of subcutaneous adipose tissue from patients with CKD revealed several 

differences as compared to healthy subjects. The tissue from kidney failure patients has 

smaller adipocytes, is enriched in CD68-positive cells and displays a differential protein 

pattern, with the greatest alterations in expression levels of vimentin and AMBP protein. 

Taken together these results indicate that adipose tissue in the uremic milieu is disturbed and 

therefore its proper function is compromised. The most interesting part of this study was the 

proteomic analysis, since, to the best of our knowledge, no such comparisons of the protein 

profiles between uremic and healthy adipose tissues have been reported previously. Lower 

expression of vimentin in CKD patients was observed. Vimentin is one of the intermediate 

filament proteins present in mesenchymal cells and several studies reported the contribution 

of vimentin to the regulation of lipolysis, where it is present as afunctional partner of HSL 

facilitating the lipolytic process (112). Vimentin knock-out results in about 40% reduction in 

adipocyte lipolysis (113) and small adipocytes (114). Vimentin has been also shown to be 

one of the lipid droplet-associated proteins (115, 116) interacting with perilipin during lipid 

droplet formation (117) and primary human adipocytes cultured with uremic serum show 

decreased perilipin expression as well as increased basal lipolysis rates (63) pointing at 

altered lipid droplet metabolism in these conditions. Moreover vimentin protein expression in 

human adipose tissue has been shown to increase and correlate with proteins involved in 

GLUT4 transport and fusion after rosiglitazone treatment (118) indicating that higher 
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vimentin expression is a hallmark of more insulin-sensitive adipose tissue. Thus vimentin 

seems to be involved in some of the basic adipocyte functions, therefore alterations in 

vimentin expression may have adverse consequences for adipose tissue metabolism. On the 

contrary to vimentin, which was expressed at lower levels in CKD patients, AMBP was the 

most significant of the proteins expressed higher in this group. This finding fits with data 

showing that circulating concentrations of AMBP are elevated in CKD patients (119, 120). 

Alpha-1-microglobulin, one of the components of AMBP, binds and degrades free radicals 

protecting tissues from oxidizing agents, in particular free hemoglobin. Since oxidative stress 

is one of the features of disturbed adipose tissue and has been linked to inflammation, 

diabetes and obesity (121, 122), high AMBP levels in CKD patients could indicate that the 

tissues are exposed to the detrimental effects of free radicals, which in turn could oxidize 

lipids and proteins leading to cell stress and death. In summary, our results indicate that 

uremic adipose tissue is exposed to oxidative stress and presents with perturbed lipid droplet 

metabolism, together with increased phagocytic cell number, supporting the hypothesis that 

in uremic conditions adipose tissue function is disturbed, which could result in elevated CVD 

risk.  

  

 

 41 

vimentin expression is a hallmark of more insulin-sensitive adipose tissue. Thus vimentin 

seems to be involved in some of the basic adipocyte functions, therefore alterations in 

vimentin expression may have adverse consequences for adipose tissue metabolism. On the 

contrary to vimentin, which was expressed at lower levels in CKD patients, AMBP was the 

most significant of the proteins expressed higher in this group. This finding fits with data 

showing that circulating concentrations of AMBP are elevated in CKD patients (119, 120). 

Alpha-1-microglobulin, one of the components of AMBP, binds and degrades free radicals 

protecting tissues from oxidizing agents, in particular free hemoglobin. Since oxidative stress 

is one of the features of disturbed adipose tissue and has been linked to inflammation, 

diabetes and obesity (121, 122), high AMBP levels in CKD patients could indicate that the 

tissues are exposed to the detrimental effects of free radicals, which in turn could oxidize 

lipids and proteins leading to cell stress and death. In summary, our results indicate that 

uremic adipose tissue is exposed to oxidative stress and presents with perturbed lipid droplet 

metabolism, together with increased phagocytic cell number, supporting the hypothesis that 

in uremic conditions adipose tissue function is disturbed, which could result in elevated CVD 

risk.  

  



 

42 

5.4 General discussion and conclusions 

All four articles presented in this thesis are an attempt to characterize different aspects of 

dysfunctionality within human adipose tissue. They encompass different adipose depots, 

body compositions and health statuses. However they all focus on changes within the adipose 

tissue that may be a cause or consequence of more complex metabolic conditions, in 

particular insulin resistance and cardiovascular disease. The forms of dysfunctionality that 

were evaluated include the size of adipocytes, presence of fibrosis, inflammation, ceramide 

content as well as expression profiles of genes and proteins – all in light of their plausible 

contribution to the development of metabolic diseases. Taken together - the main findings of 

our investigations can be summarized as follows: 

 Increased ceramide content in human adipose tissue observed in relation to fatty liver 

is most probably due to accelerated hydrolysis of sphingomyelins, possibly from 

circulating lipoproteins, rather than de novo synthesis 

 Compared to the subcutaneous adipose tissue, the mediastinal depot is characterised 

by increased ceramide content, with ceramide concentrations within the depot being 

positively associated with genes involved in immune and inflammatory processes and 

negatively with lipid and carbohydrate metabolism 

 Mediastinal adipose tissue displays certain features of brown fat, such as scarce 

multilocular cells, expression of certain BAT markers, like UCP1, and enrichment in 

genes related to mitochondrial function, however the metabolic properties of this 

depot (for instance fatty acid metabolism) are yet to be established 

 Uremic adipose tissue shows signs of dysfunction, such as higher number of 

phagocytic cells and expression of proteins that are involved in altered lipid droplet 

metabolism and lipolysis rate as well as oxidative stress, supporting the hypothesis 

that in CKD disturbed adipose tissue may contribute to the high risk of CVD  
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