
From Department of Molecular Medicin and Surgery 

Karolinska Institutet, Stockholm, Sweden 

MONITORING THE EFFECT OF ANTI-
CANCER TREATMENT IN URO-

ONCOLOGICAL MALIGNANCIES WITH 
MOLECULAR IMAGING 

Jacob Farnebo 

 

Stockholm 2016 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications from Karolinska Institutet

https://core.ac.uk/display/70344089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

All previously published papers were reproduced with permission from the publisher. 

Published by Karolinska Institutet. 

Printed by AJ E-print AB 

© Jacob Farnebo, 2016 

ISBN 978-91 -7676 -390 -2 

Printed by E-Print AB 2016 



 
 

Institutionen för molekylär medicin och kirurgi, Karolinska Institutet  

Röntgenkliniken, Karolinska Universitetssjukhuset, Solna 

 
Monitoring the effect of anti-cancer treatment in uro-

oncological malignancies with molecular imaging 

 

AKADEMISK AVHANDLING 

som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen 

försvaras i Cancer Centrum Karolinskas stora föreläsningssal, entréplan, Karolinska 

Universitetssjukhuset, Solna 

Fredagen den 18 november, 2016, kl. 09.00 

av 

 
Jacob Farnebo 
 

Huvudhandledare: 

Professor Lennart Blomqvist 

Karolinska Institutet 

Department of Molecular Medicin and Surgery 

Department of Diagnostic Radiology 

Karolinska University Hospital 

 

Bihandledare: 

Dr. Per Sandström 

Current Bayer pharmaceutical  

former Karolinska Institutet 

Department of oncology and pathology 

 

Dr. Per Grybäck 

Karolinska Institutet 

Department of Molecular Medicine and Surgery 

Department of Diagnostic Radiology 

Karolinska University Hospital 

 

 

Opponent: 

Adj Professor Jens Sörensen 

Uppsala University 

Department of Surgical Science and Radiology 

 

Examination Board: 

Professor Sharon Stone-Elander 

Karolinska Institutet 

Department of Clinical Neuroscience 

 

Docent Torkel Brismar 

Karolinska Institutet 

Department of Clinical science, intervention and 

technology CLINTEC 

Division of Radiology 

 

Docent Magnus Lindskog 

Uppsala University 

Department of immunology, genetics and 

pathology 

Division of Clinical Oncology 

 

 



 

 

 



 

 

 

“In golf as in life it is the follow through that makes the difference” 

(Anonymous) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Alice, Tom, Adam and Marianne 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRACT 

In the last decade, new therapies have changed the management of patients with metastatic 

renal cell carcinoma (mRCC) and metastatic castration resistant prostate cancer (mCRPC). 

Although new therapies have improved survival, drug response varies widely with some 

patients not responding to treatment. Unfortunately, traditional assessment of drug response 

with computed tomography (CT) has limitations, and novel biomarkers of treatment response 

are warranted in order to reduce unnecessary side-effects and costs. The general aim of this 

thesis was to identify imaging biomarkers that can help predict the treatment response in 

mRCC and mCRPC.  

In the first study, metabolic changes of tumour lesions detected by 
18

F-Fluorodeoxyglucose 

(FDG) positron emission tomography (PET) and CT (PET/CT) after 14 days of treatment 

predicted the progression-free (PFS) and overall survival (OS) in 32 patients. Metabolic 

response was assessed in several ways revealing that PET parameters measuring FDG uptake 

within a volume had stronger association to outcome than parameters based on single voxel 

analysis. 

In the second study, the benefit of repeated 
11

C-acetate PET/CT was evaluated retrospectively 

to assess response in patients with mCRPC treated with abiraterone acetate. Potential 

association between 
11

C-acetate PET/CT, serum levels of prostate specific antigen (PSA), 

PFS and OS were investigated. 
11

C-acetate PET/CT predicted PFS and OS which may be of 

particular clinical interest in patients who do not exhibit a PSA response to treatment. 

In the third study, the maximal diameter of metastatic lesions originating from mRCC as 

determined by diffusion-weighted magnetic resonance imaging (DWI) were compared with 

the corresponding measurements on CT. These measurements appeared to be in close 

agreement warranting for a larger trial investigating the feasibility of employing DWI in 

clinical trials that follow the Response Evaluation Criteria in Solid Tumours (RECIST 

version 1.1) guideline. 

In conclusion, the novel imaging biomarkers evaluated here have the ability to predict 

response of mRCC and mCRPC to targeted therapies, but need to be validated in a larger 

setting before being implemented into the clinic. 
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2 INTRODUCTION 

 

2.1 DIAGNOSTIC IMAGING AND THE EMERGING ROLE OF MOLECULAR 
IMAGING IN MEDICINE 

 

The era of medical imaging began in 1895 with the discovery of X-rays by the German 

physicist Wilhelm Conrad Röntgen, an achievement for which he was awarded the Nobel 

prize in physics 6 years later. An enormous fascination with the possibility of viewing 

uninvasively inside the human body led to virtually instant utilization of X-rays, before the 

dangers of ionizing radiation were discovered. During the 20th century the development of 

novel modes of imaging such as nuclear medicine (1940s), ultrasound (1960s), computer 

tomography (CT) and magnetic resonance imaging (MRI) (1970s) also exerted great impact 

on medicine and today most medical specialties depend on imaging for diagnosis guiding 

invasive procedures and monitoring disease treatment.  

The 20
th

 century also brought revolutionary new insights into the molecular details of life 

including pathological processes.  The many new tools, including not least medical imaging 

and drugs discovered have improved our ability to cure or at least prolong the life of patients 

with cancer. However, the anatomic or physiological abnormalities indicative of cancer arise 

relatively late in the course of the disease and further improvement is necessary. Molecular 

imaging techniques allow visualization of functional events on a cellular level, and when 

combined with conventional anatomical imaging to achieve what is often referred to as fusion 

imaging, can help reveal the location of a specific event in the organism. 

In the present thesis, the use of novel imaging technologies that combine anatomical 

information with physiological information to monitor the treatment of patients with 

urological malignancies has been evaluated. 
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2.2 UROLOGICAL MALIGNANCIES 

 

All work described here involves patients with renal cell carcinoma (RCC) or prostate cancer 

and a brief introduction to these pathologies follows.  

 

2.2.1 Renal cell carcinoma (RCC) 

RCC, also called hypernephroma or renal cell cancer, arises from the renal cortex (i.e. the 

renal tubules) and is distinct from tumours that form in the transitional epithelium of the renal 

pelvis or in the renal medulla. RCCs are relatively uncommon, with an annual incidence 

today of approximately 1000 cases in Sweden, accounting for around 2 % of all cancers[1], 

with a male-to-female ratio of around 1.6:1[2]. Risk factors include cigarette smoke, obesity, 

hypertension, diabetes mellitus and reproductive factors, while genetic factors are involved in 

approximately 3-4%[2] of all RCC[3]. The World Health Organization (WHO) classifies this 

disease into several subgroups of which clear cell is by far the most common group (around 

85%), followed by papillary (10%), chromophobe (5%) and an unclassified form somewhat 

different from these others. A sarcomatoid subtype seen in all subgroups is considered to be 

an indicator of progressive disease[2]. Non-specific symptoms of RCC include haematuria, 

flank pain, weight loss and fever. RCC is often discovered incidentally, most often when 

conducting abdominal ultrasound or computerized tomography[4].  

If diagnosed at an early stage, when the tumour is still localized to the kidney or within the 

immediate surrounding tissue, RCC can be cured. Overall, the 5-year survival rate for the 70-

80% of Swedish patients without metastases at the time of diagnosis is 83%[1], while the 

corresponding  figure for the others is only 15%. Although, metastatic RCC (mRCC) is 

relatively resistant to chemotherapy and radiation therapy, our increased understanding 

during the last decade of the underlying mechanisms have led to novel specific therapies, so-

called targeted therapies. Thus, the introduction of tyrosine kinase inhibitors (TKIs) that 

target angiogenic pathways such as sorafenib, sunitinib and pazopanib, has improved the 

survival of patients with mRCC.  

CT is the preferred method for imaging RCC today. In most cases a dedicated multi-phase 

CT allows detection, staging and planning for surgery. When metastases are present repeated 

CT examinations are usually performed to monitor treatment.  

The work described here involves patients with either metastatic disease at the time of 
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diagnosis or a disease relapse following curative therapy.  

 

2.2.2 Castration Resistant Prostate Cancer (CRPC) 

 

Prostate cancer, the most common cancer in Sweden, accounts for 1/3 of all malignancies 

among men[5]. In 2014, 10985 cases were diagnosed and around 2500 of these patients died, 

accounting for approximately 5% of all mortalities among Swedish men. The number of 

cases diagnosed each year has been increasing steadily most likely due to the aging 

population and increasing number of PSA tests being performed. Prostate cancer is rare in 

men under 45 years of age, but very common among men older than 80. However, because of 

its slow progression, most men afflicted will not die from this disease.  

A study from USA reported in 2012 that at the time of diagnosis that 80% of patients 

demonstrate localized, 12% loco-regional and 4% metastatic disease[6] (the remaining were 

not staged at diagnosis). In the absence of metastatic spread, curative treatment involving 

surgery or radiotherapy in combination with androgen deprivation therapy (ADT) is initiated. 

It is now well known that prostate cancer cells require testosterone in order to grow, a 

discovery for which Huggins and Hodges received the Nobel Prize in 1967. However, in the 

majority of patients with metastatic prostate cancer, the disease will eventually become 

refractory to all anti-hormonal treatment, a status referred to as androgen-independent or 

castration resistant (the latter term being preferred by the Prostate Cancer Working Group 2 

committee[7]).  

Determination of whether the tumour has spread beyond the prostate gland and to loco-

regional lymph nodes is critical for deciding on a treatment strategy and much effort is 

currently focused on finding a reliable diagnostic imaging technique for this purpose. The 

role of magnetic resonance imaging (MRI) or positron emission tomography (PET) to stage 

local disease is still under investigation. In 2015 Swedish authorities recommended MRI 

before re-biopsy of patients with suspected cancer but with negative first biopsy, and that 

further studies are conducted to determine if MRI should be implanted as a standard pre-

operative routine[8]. 

When prostate cancer spreads, the cells enter the blood and/or lymph vessels which can 

transport them to distant locations to establish metastases[9]. Thus, such metastases are often 

found in regional lymph nodes before they appear in bone, only occasionally being found in 
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visceral organs such as the lungs or liver. Once spread to distant parts of the body, the disease 

becomes incurable. The most common approach to visualize metastatic spread to the skeleton 

is using bone scintigraphy, while visceral metastases are generally diagnosed with CT. 

 

2.3 TARGETED CANCER THERAPIES  

 

Until the late 1990’s with exception of certain hormone blockers, almost all chemotherapeutic 

drugs against cancer were designed to kill proliferating cells, so that they also kill normal 

cells to a certain extent. So-called targeted therapies based on greater understanding of the 

molecular biology of cancer target specific molecules required for cancer cell growth, 

division and/or spread[10]. Targeted therapies are usually cytostatic, blocking the 

proliferation of tumour cells, while chemotherapeutic agents are cytotoxic, killing the cells. In 

recent decades the several types of targeted therapies approved for use in cancer treatment 

include hormone therapies, inhibitors of signal transduction/angiogenesis[11], modulators of 

gene expression[12], immunotherapies[13] and molecules that deliver toxins[14]. Table 1 

below illustrates the new targeted therapies introduced against mRCC and mCRPC. The 

continuously increasing number of therapeutic options makes it even more important to 

identify patients who will not benefit from treatment, potentially by imaging biomarkers of 

response. Imaging can capture not only heterogeneity within one lesion, but also between 

lesions.  

 

Table 1. Drugs that have received FDA approval for treatment of mRCC or mCRPC. Arrow 

indicates timeline. 

Renal cell carcinoma       Prostate cancer 

Agent       FDA approval   Agent      FDA approval 

 

Interleukin-2 (Proleukin)    1992     cabazitaxel (Jevtana)   2010 

sorafenib (Nexavar®)    2005     abiraterone acetate (Zytiga)  2011 

sunitinib (Sutent®)     2006     enzalutamide (Xtandi)   2012 

temsirolimus (Torisel®)    2007     radium 223 dichloride (Xofigo)  2013 

everolimus (Afinitor®)    2009 

bevacizumab (Avastin®)    2009 

pazopanib (Votrient®)    2009 

axitinib (Inlyta®)     2012 

nivolumab (Opdivo®)    2016 

cabozantinib (Cabometyx™)   2016 

lenvatinib mesylate (Lenvima®)   2016 
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2.4 MOLECULAR IMAGING TECHNOLOGIES 

 

In the present research Positron Emission Tomography (PET) in combination with CT 

(PET/CT) utilizing the radiotracers 
18

F-Fluorodeoxyglucose (FDG) and 
11

C-acetate, along 

with Diffusion Weighted MRI (DWI) have been employed.  

 

2.4.1 PET/CT 

PET/CT, one of the most powerful imaging modalities presently available, combines 

functional information obtained with radio-labelled substances with anatomical information 

provided by CT, with the two being superimposed to provide a fusion image. In the case of 

PET, a radio-labelled tracer injected into the body intravenously is then distributed to tissues 

on the basis of its biochemical and pharmacokinetic properties. At some point the isotope will 

decay and emit a positron from the nucleus which will travel a short distance (less than 1 

mm) before losing most of its energy in collisions with electrons. This collision begins the 

conversion of the mass of the electron and positron into electromagnetic energy in the form of 

two gamma photons, each with an energy of 511 keV and travelling in opposite 

directions[15] though the body.  

These photons can be detected by an external PET camera that converts them into a signal. If 

a pair of such detectors record two annihilating photons at the same time their source is 

located along the line connecting these detectors. After adjusting this information for scatter, 

body attenuation and detector properties, a 3D image can be constructed, in which the signal 

intensity of any given volume is proportional to the amount of radionuclide in that particular 

voxel. Thus, PET images are based on radiation emitted outwards from the patient, while CT 

involves transmission of an outside X-ray through the patient’s body. Due to the present 

physical limitation of the technique, the resolution of modern clinical PET scanners is too 

limited to be able to detect micro-metastatic lesions, which is also beyond reach of other 

imaging modalities. 

 

2.4.2 18F-Fluorodeoxyglucose - FDG 

Fluorodeoxyglucose or 2-deoxy-2-(
18

F)fluoro-D-glucose (FDG), a glucose analogue in which 

the 2’-hydroxyl group has been replaced with the radioactive isotope flouorine-18 that emits 

positrons with a half-life time of 110 minutes. FDG, the most common radioactive tracer used 
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in clinical PET examinations and considered to be “the magic bullet” in nuclear medicine, is 

employed in the evaluation of many types of cancers and infectious diseases. Although every 

living cell in the human body requires glucose, many cancer cells exhibit relatively little 

oxidative phosphorylation and are thus more dependent on glycolysis than most other tissues 

(a phenomenon known as the Warburg effect). Hannahan and Weinberg[16] published a 

highly influential article entitled “The hallmarks of cancer” in 2000 and in the updated 

version of this article that appeared in 2011 one of the two hallmarks added was 

“reprogramming of energy metabolism”, i.e. increased metabolism is not only a characteristic 

of, but even an essential necessity for cancer development. Although many different factors 

influence the uptake of FDG, a number of studies have demonstrated a relationship between  

this uptake and the number of cancer cells[17, 18]. After cellular uptake, FDG is 

phosphorylated by intracellular hexokinases to 
18

F-FDG-6-phosphate, which unlike glucose, 

can neither be metabolized further nor exit the cell and thus can serve as a biomarker for 

glucose uptake in the body.  

 

2.4.3 The standardized uptake value SUV 

The raw PET signals can be converted into concentrations by calculating a Standardized 

Uptake Value (SUV), defined for certain image volume, as the tracer concentration 

normalized to the radioactivity administered and body weight (Figure 1). The unit is g/mL, 

but SUV is generally presented as a unitless value, since 1 mL soft tissue has a mass of 

approximately 1 g. If the FDG injected were to be uniformly distributed throughout the body, 

the SUV would be 1 g/mL, regardless of the amount injected or size of the patient. 

The many factors that potentially can influence the SUV include fundamental physical 

limitations such as the spatial resolution and total effective counts of the detector, which 

together determine the signal-to-noise ratio in a PET image [19]. The limited spatial 

resolution leads to a well-known error in partial volume, where small objects display less than 

their actual concentration of tracer[20]. Other factors include the status of the patient (e.g. 

blood glucose level, previous physical exercise or recent chemotherapy), as well as variations 

in the scan protocol and reconstruction parameters used in processing the images[21]. 

Although the maximal SUV, SUVmax, is most commonly used in the clinic, several other 

SUV parameters are also employed. The SUVmean and SUVmax values apply to a specified 

volume-of-interest (VOI). The SUVmean represents the average SUV within a given volume, 

whereas SUVmax is the peak value for one voxel within the same VOI. SUVmean is 
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influenced by the size of the VOI, while SUVmax is not and is therefore less dependent on 

the observers, more reproducible[22] and especially advantageous for small tumours. 

However, the influence of scatter noise is substantial. The metabolic tumour volume (MTV) 

is defined as the volume of tissue for which the SUV is above a certain threshold. Total lesion 

glycolysis (TLG) can be calculated by multiplying the MTV by the SUVmean within the 

same VOI.  

 

2.4.4 PET/CT for response assessment of mRCC 

While FDG PET/CT is widely utilized to evaluate the metabolism of various cancers, this 

approach has not yet received the same attention in connection with mRCC. The obvious 

reasons for this include the fact that mRCC can vary from intense to only mild uptake of 

FDG, similar to that of normal parenchyma and, moreover as a consequence of urinary 

excretion of FDG by the kidneys, tumours can easily be missed. However, FDG PET/CT is 

better at detecting distant metastases than the primary neoplasm, with a pooled sensitivity 

and specificity in a meta-analysis of 91% and 88% compared to 62% and 88% for renal 

lesions [23].  

The approval of several novel anti-angiogenic therapies targeting mRCC has heightened the 

need for novel biomarkers, such as FDG PET/CT, designed to monitor the early response in 

order to customize effective treatment. Today, standard anatomic radiographic CT imaging 

is carried out usually once every three months during therapy. As illustrated in Figure 1 

conventional CT imaging of mRCC is not very effective. The Response Evaluation Criteria 

in Solid Tumors (RECIST) state that only the longest dimensions of no more than five 

lesions (according to the updated RECIST 1.1, further explained in section 2.5) are to be 

analyzed and that sum of these dimensions must differ more than 30% in order to conclude 

that progress or a partial response has occurred. However, a relatively large proportion of 

the patients who benefit from treatment experience only disease stabilization at the 

beginning and show progress later on[24]. Functional molecular imaging such as FDG-

PET/CT can be utilized to assess early changes in tumour metabolism and may thus be 

useful for monitoring clinical efficacy as illustrated in Figure 2.  
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Figure 1. A large metastatic lesion originating from RCC before (left) and after (right) 

three months of treatment. Since tumour size has changed less than 10%, this would be 

classified as stable disease according to RECIST. Nonetheless, there is a significant 

reduction in the amount of peripheral contrast-enhanced viable tumour and an increase in 

central necrosis, indicative of a positive response.  

 

Although several studies have explored sequential PET/CT with FDG as a biomarker of 

response, the role of this approach in evaluating the response of mRCC to treatment is still 

not very clear. In an early investigation in 2009 by Vercellino and colleagues [25] 12 

patients with a total of 29 different metastases were examined with FDG PET/CT at 

baseline and after the first cycle of sunitinib therapy and the response after 3 months 

treatment compared to the CT response as evaluated according to RECIST. Although the 

results were not statistically significant due to the small sample size, a reduction in FDG 

uptake as reflected in the SUVmax appeared to be associated with longer progression-free 

survival (PFS). That same year Lyrdal and co-workers[26] reported that among 10 patients 

(52 lesions) receiving sorafenib and examined by FDG PET/CT before and 1-2 months 

after initiation  of therapy, those with a decrease in FDG uptake (in this case expressed as 

SUVmax and SUVmean) exhibited significantly better overall survival (OS) (18.1 versus 

12.9 months), but with no significant difference in PFS.  

The 12 patients studied by Minamoto et al[27] in 2010  exhibited similar results. Three with 

partial response had significantly longer PFS and OS than those classified as having stable 

and progressive disease. In a larger investigation by Kayani and colleagues[28] in 2011, 43 

patients receiving sunitinib were examined by FDG PET/CT at baseline and after the first 

4-week cycle of treatment, and 39 of these underwent an additional examination after the 
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third cycle. In contrast to previous reports, they observed no significant correlation between 

a reduction in SUVmax in connection with either the first or second examination and either 

PFS or OS. However, patients with a progressive disease after the third cycle demonstrated 

a significantly shorter OS. These authors also reported that both high metabolic activity and 

a large number of metastatic lesions at baseline were associated with shorter OS.  

In 2012 Ueno and co-workers[29] described a similar study on 30 patients with mRCC who 

underwent PET/CT examinations at baseline and after 1 month of treatment with either 

sorafenib or sunitinb. The changes in SUVmax and in lesion diameter as determined by CT 

were combined to classify response as good, intermediate or poor, all of which 

demonstrated statistically significant associations with both PFS and OS. CT alone could 

not predict outcome.  

Critical aspects of assessing drug efficacy are the time required before a detectable effect 

can be expected and whether or not this effect is sustained. In 2010 Lassau et al[30] found 

that comparison of contrast-enhanced ultrasound examinations performed before and after 

initiation of sunitinib treatment revealed detectable effects after as little as 15 days. These 

investigators also found that the time to peak intensity and wash-in were significantly 

associated with drug-free survival and OS. Accordingly, TKIs appear to act rapidly and 

their effects can be visualized within the first month of treatment. 
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Figure 2. Reduction in the metabolic activity of a liver metastasis originating from mRCC 

after one month of treatment with sunitinib. 

 

2.4.5 Imaging Prostate cancer with 11C-acetate PET/CT  

Imaging of prostate cancer is still a challenge. The existing tools, such as bone scintigraphy 

and CT, do not adequately provide the clinical information required for this highly 

heterogeneous disease and the interest for exploring the potential role of PET in this context 

is increasing. A variety of radiolabelled tracers have been and are currently in use for staging 

prostate cancer, the most well characterized of which are 
18

F-FDG, 
18

F/
11

C-choline and 
11

C-

acetate. The latter two visualize lipogenesis and exhibit similar sensitivity and specificity 

with respect to identifying prostate cancer cells. Initially, both were labelled with 
11

C, a 

radionuclide which has a physical half-life time of only 20 min, making them difficult to use 

without a cyclotron available. To obtain a longer half-life 
18

F-labelled derivatives such as 
18

F-

choline have been developed, and reported to be as accurate as the 
11

C labelled compounds 

[31].  

Normally, PET reveals accumulation of 
11

C-acetate in the heart, kidneys, liver, pancreas 

(highest levels), spleen, stomach, bowel and bone marrow. In addition to prostate cancer, 

malignancies with elevated uptake include hepatocellular carcinomas, RCCs, bladder 

carcinoma and brain tumours. 
11

C-Acetate is involved in the synthesis of phospholipids in 
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which fatty acid synthase (FASN), an enzyme up-regulated in prostate cancers, 

participates[32]. More aggressive forms of prostate cancer, with higher Gleason scores, 

display higher levels of FASN[33] activity and enhanced uptake of 
11

C-acetate has recently 

been proposed  to be a surrogate biomarker for sensitivity to inhibitors of FASN[34], which 

suppress cell proliferation, adhesion, migration and invasion[35]. Thus, targeting FASN 

might effectively suppress multiple steps in the progression of prostate cancer. Figure 3 

illustrates a patient with lymph node and bone metastases from prostate cancer.  

Most studies performed to date indicate a limited ability for choline and acetate tracers to 

localize and characterize the primary tumour within the prostate. Another aspect of initial 

detection of prostate tumours is staging of local lymph nodes in high risk patients. One of the 

few investigations in this area[36] found high patient-by-patient sensitivity, but low 

specificity, in combination with low sensitivity, but high specificity with respect to the nodal 

region. These results are in line with studies indicating the high specificity, but low to 

moderate sensitivity of 
18

F/
11

C-choline.  

The ten-year recurrence rate for prostate cancer can be as high as 34% [37]. In most patients 

recurrence will first be reflected in a rise in prostate specific antigen (PSA), usually referred 

to as biochemical recurrence and thereafter metastases are detectable within months to years. 

The evidence indicates a linear relationship between the level of PSA and detection of 

metastases by PET [38].  

In clinical practice bone scintigraphy is most frequently utilized for imaging of prostate 

cancer. In comparison with 
18

F-Flouride PET the latter has shown to have slightly higher 

sensitivity in detecting bone metastases[39]. It is anticipated that choline or acetate PET could 

be expected to be of value in detecting not only bone but also extra-osseous metastases.  
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Figure 3. Elevated uptake of 
11

C -acetate in abdominal lymph node metastases (encircled) 

and a sclerotic bone metastasis (arrow). 

2.4.6 Diffusion weighted magnetic resonance imaging (DWI) 

DWI, a pulse sequence technique in MRI, monitors the random motion of protons in water 

molecules present in tissues, where their diffusion is restricted by interactions with cell 

membranes and macromolecules. Tissues with high cellularity, such as tumours, impede the 

diffusion of water and are seen as bright areas with high signal intensity in DWI images, 

whereas areas with less restriction produce lower signals on such images with high b-

values[40].  

Since DWI can be performed relatively quickly employing routine MRI scanners, this 

technique is widely available, which is one reason for its increasing popularity. Another 

advantage in comparison to CT or PET/CT is that DWI requires no administration of 

exogenous contrast medium or ionizing radiation when desired. Images can be acquired over 

multiple stations that cover the entire body, a concept first introduced by Takahara and 

colleagues in 2004[41], who also employed background signal suppression in this 

connection. During the last decade improvements in both MRI hardware and software, such 

as the continuous moving table, allow whole body MRI examinations to be performed in a 

clinical setting.  

The free-breathing T2 spin-echo echo-planar technique involved in DWI is explained in 

Figure 4.  
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Figure 4. The DWI sequence involves a spin echo sequence with two strong magnetic field 

diffusion gradients applied to opposing sides of a 180-degree refocusing pulse. Moving and 

static protons (the latter only being present in areas with restricted diffusion) will be 

dephased by the first diffusion gradient and only the static protons will rephase when the 

second is applied, while all moving protons dephase randomly. Finally, a signal will arise 

from static protons only. The unit of diffusion weight is referred to as the b-value. This b-

value can be enhanced either by increasing or prolonging the magnetic gradient or allowing 

more time to elapse between application of the gradients. 

 

With small b-values (e.g. 50-100 mm s/mm
2
), water molecules with extensive freedom of 

movement will produce a bright signal. At the same time a large b-value (e.g. 1000 s/mm
2
) is 

required to detect slow-moving water molecules with restricted diffusion. Sometimes, normal 

tissues also produce a strong signal on DWI images, not due to restricted diffusion, but rather 

to a strong T2 signal which shines through, a phenomenon referred to as “T2 shine through”. 

By performing DWI with at least two different b-values, an apparent diffusion coefficient 

(ADC) can be calculated and the problem of T2 shine through avoided.  

The ADC expressed as mm
2
/s is calculated automatically by MRI workstations and the 

results displayed as a map of the degree of diffusion in different tissues. The errors in this 
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calculation can be reduced by applying several b-values. Areas with restricted diffusion, such 

as in tumours are characterized by ADC values that are lower than those of normal tissues, 

which are brighter. The diffusivity in a region-of-interest of the ADC map can be quantified. 

Although malignancies with impeded diffusion are common findings, false-positives include 

inflammatory conditions, normal lymph nodes and areas with poor suppression by fat. An 

example of DWI in a patient with metastatic prostate cancer is illustrated in Figure 5.  

 

 

 

 

Figure 5. A reconstructed inverted 

b-800 s/mm
2
 diffusion weighted 

image of maximal intensity 

showing pathological lymph nodes, 

originating from RCC, as dark 

round areas in the axillary (blue 

arrows) and pelvic regions (green 

arrows).  

 

 

 

 

 

2.4.7 Usage of DWI to assess the response solid tumours to treatment 

Efficient therapy causes tumour cells to die, thereby disrupting the cellular membrane, 

widening the extracellular space and increasing the diffusion of water[42]. Several 

assessments indicate that the ADC after initiation of treatment is associated with the 

therapeutic effect of a drug and might predict outcome [43-45] and, moreover that changes in 

ADC occur earlier than the reduction of tumour size. A challenge with ADCs in tissues is that 

it is influenced by microcirculation of blood in capillaries leading to higher ADCs. With the 

intravoxel incoherent motion (IVIM) concept[46, 47], first described in 1988 by Bihan and 

colleagues, the molecular diffusion of water can be separated from the perfusion in 
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capillaries. Perfusion related diffusion effects become significant only at low b-values, which 

allows diffusion and perfusion to be separated. The vascularity and cellularity of tumours are 

often directly affected by targeted therapies, which are quantifiable by analysis of IVIM 

based analysis.  

From a clinical perspective, whole-body DWI may provide a solution to current unmet needs 

in the evaluation of anticancer drugs. For example, such evaluation of metastatic bone disease 

is particularly challenging in part because, unless accompanied by an measurable 

extramedullary soft-tissue component, bone disease is not considered to be a measurable 

lesion according to the RECIST [48, 49]. Today, bone scintigraphy is applied most widely to 

evaluate bone metastases, but lytic metastases may be masked to this technique if osteoblastic 

reaction is absent[50]. Furthermore, an osteoblastic reaction visualized by bone scintigraphy 

may be healing rather than progressive disease. Whole-body MRI has been reported to be 

more sensitive than bone scintigraphy or FDG PET/CT in detecting bone metastases [51].  

 

2.5 RECIST AND PERCIST   

 

The increasing number of oncological therapies available makes personalization of treatment 

to maximize the benefit to the patient and minimize waste of resources even more urgent. 

When the WHO initially introduced cancer response criteria[52] imaging was mentioned, but 

without specific radiological guidelines. This absence called for change and in 2000, the 

European Organization for Research and Treatment of Cancer (EORTC) and the National 

Cancer Institute of the United States among others, set up a task force in order to unify and 

standardize such criteria, creating RECIST[48]. Standardized classification of response is 

necessary to allow objective comparisons between different sites. 

In 2009 a refined version with several improvements was released (RECIST1.1[49]), 

including a reduction in the number of lesions to be assessed, new standards for measurement 

of lymph nodes and clarification of the terms complete or partial response and disease 

progression. According to RECIST1.1 the target lesions to be followed throughout the course 

of treatment should be selected from among lesions considered to be measurable i.e. with a 

longest dimension >10 mm. As many as five (maximally two per organ) are selected and not 

necessarily the largest, but those that are most well defined and can be measured 

reproducibly. Other lesions can also be assessed, but are not measured and considered to be 

non-target lesions. Lymph nodes are only considered measurable if the short axis exceeds 15 
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mm. Lytic bone lesions with a measureable soft tissue component can be considered 

measurable, while blastic bone lesions are not. If the sum of the dimensions’ increases by 

>20% and more than 5 mm or if the tumour burden in non-target lesions has risen 

substantially, the patient is considered to be experiencing progressive disease (PD). 

In a retrospective comparison between RECIST1.0 and RECIST1.1 involving 62 patients 

with mRCC receiving vascular endothelial growth factor (VEGF) -targeted therapy, fewer 

lesions were measured according to with RECIST1.1 and the best response (Kappa = 0.819) 

and median time to progression was similar [53]. Thus, assessment of fewer lesions with 

RECIST 1.1 is equivalent to applying RECIST1.0. Although this updated version of RECIST 

represents an improvement, assessment of response solely on the basis of anatomical 

measurements has limitations, particularly in connection with metastatic solid tumours, where 

novel treatments rarely cure, but instead prolong survival by acting in a cytostatic rather than 

cytotoxic fashion [54]. These treatments may shut down certain functions in the cancer cell to 

establish a highly desirable long-term stable disease. For example, the RECIST guidelines are 

insensitive for evaluating treatment of gastrointestinal stromal tumours (GIST) with imatinib, 

although this drug shrinks’ tumour slowly, can be highly effective. Therefore, it has been 

recommended that RECIST not be applied to GIST[55] and the response evaluated instead 

employing CT criteria according to Choi or FDG-PET/CT[56, 57].   

For several years now, evidence has been accumulating that indicates FDG-PET could not 

only provide better imaging of tumour response to drugs than CT, but could also improve 

prediction of survival [58]. FDG-PET is mentioned only briefly in RECIST 1.1 and no 

guidance concerning classification of response by PET is provided. In lymphoma FDG-PET 

is used frequently and guidelines for response assessment have been created [59, 60].  

The variety of solid tumours being examined with FDG-PET/CT is increasing rapidly and a 

draft framework of PET response criteria in solid tumours (PERCIST) was proposed by 

Richard Wahl in 2009 [61]. Key components of PERCIST include standardization of PET 

protocols on calibrated scanners [62]. The patient should have fasted for 4-6 hours prior to 

the examination and serum his/her glucose level should be no more than 200 mg/dL. 

Scanning should be performed within 50-70 minutes after injection of FDG and follow-up 

scans within 15 minutes after the baseline scan.  

Instead of assessing SUVmax, it is recommended that the SUV be corrected for lean body 

mass (SUL) and measured as a sphere with a diameter of 1.2 cm in a lesion preferably larger 

than 1.5 cm (to minimize partial volume effects) to produce a region of interest (ROI) with a 
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volume of 1,3 cm
3
 designated SULpeak. The ROI for this SULpeak will usually include the 

maximal SUL pixel without necessarily being centred around this. Only lesions with an SUL 

greater than 1.5 times the average SUL in liver parenchyma + 2 standard deviations of mean 

SULs (measured as a 3 cm diameter ROI) are measured. As with RECIST1.1, as many as five 

lesions (maximally two per organ) are measured, but the response is classified only on the 

basis of the behaviour of the lesion that takes up most FDG. Partial response and progressive 

disease are defined as either a decline or increase of more than 30% together with a 0.8 unit 

alteration in SULpeak respectively. PERCIST1.0 also acknowledges total lesion glycolysis 

(TLG) by recommending that this be recorded routinely and that a 75% increase by the most 

active lesion be considered metabolic progression.  

Since 2009, six publications have compared RECIST1.1 and PERCIST1.0 and a pooled 

analysis (including 268 patients with different forms of cancer) revealed considerable 

discordance between the two [63]. Compared to RECIST1.1, PERCIST1.0 graded tumour 

response as higher in 85 patients and lower in 16 indicating that PERCIST1.0 might be more 

sensitive in this respect. However, it remains to be determined whether this response is of 

prognostic relevance or clinical significance. 

 

2.6 STATISTICAL PROCEDURES  

 

2.6.1 Kaplan Meier survival analysis 

The Kaplan-Meier survival analysis named after Edward Kaplan and Paul Meier in 1958 is a 

non-parametric statistical model used to estimate survival from patient lifetime data [64]. The 

length of time required for a critical event to occur is called survival time. In medical studies 

survival time is usually identical to time-in-study, since patients seldom enter a study at the 

same time. A Kaplan-Meier plot depicts a curve that declines in multiple steps, each of which 

indicates the occurrence of a specified critical event (in medicine, this often being death, 

which explains the designation survival analysis). Patients who for some reason leave the 

study or have not yet experienced the critical event by the end of the study are referred to as 

“censored observations”. A censored observation is indicated in the Kaplan-Meier plot as a 

vertical tick or cross at the time-point of last follow-up. The Kaplan-Meier procedure is 

commonly used to compare two different groups employing the Logrank test, with the null 

hypothesis of no difference between the two groups being equivalent to their having the same 

survival time. The Kaplan-Meier plot is explained further in Figure 6. 
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Figure 6. A Kaplan-Meier plot comparing two different groups. The Logrank test can be 

applied to determine whether there is a significant difference between these two groups as 

(indicated by the p-value in the graph). 

 

2.6.2 The Cox Proportional Hazards Model 

Other survival models often employed in medical statistics are the proportional hazards 

model [65], regression models that describe a hazard function or ratio that varies 

multiplicatively over time in relationship to various covariates. The hazard ratio represents 

the instantaneous risk for an event to occur during a study period, whereas the relative risk is 

cumulative over the entire period. The hazard ratio can also be described as the instantaneous 

probability of a particular event occurring over time in a group of patients compared to the 

corresponding probability for a control group. A hazard ratio equal to one indicates no 

difference in survival between the two groups; a ratio of less than one indicates better 

survival in the study group; and a ratio of more than one that the risk for an event to occur in 

this group is larger. The endpoint can be any dependent variable (e.g. death, remission or 

progression of disease) associated with the covariates (independent variables). It is important 

to realize that a hazard ratio is a relative measure of effect that provides no information 

concerning the absolute risk. Proportional hazards models involve the important assumption 

that the hazard for any one individual is a fixed proportion of the hazard for any other 

individual, which means that if a covariate doubles the risk for an event on the first day, it 
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also doubles the risk for this same event on any other day.  

In 1972 Sir David Cox applied proportional hazards models to survival data by including 

survival time [66], which is also a continuous variable but with the possibility of including 

censored observations, to create the Cox proportional hazards ratio [67]. When applying this 

model in a multivariable analysis (where several explanatory covariates are included), it is 

important to recognize that it is the number of events observed, rather than the number of 

included subjects in the study, decides how many variables are to be included. It has been 

recommended that for each variable included in a multivariable Cox analysis, a minimum of 

10 events should have been observed [67]. In relationship to Kaplan-Meier plots, the hazard 

ratio represents the distance between the two curves.  

 

2.6.3 P-Values, Statistical Power and Confidence Intervals  

The one goal of statistical analysis is to utilize information about a sample of individuals to 

draw a conclusion about the general population of interest. This can be accomplished either 

by testing a hypothesis (with p-values) or estimation (with confidence intervals). With the 

first approach it is necessary to formulate a “null hypothesis” statement e.g., treatment with 

sorafenib has no benefits for patients with mRCC and then try to disprove it. Secondly, a 

level of significance concerning the probability of obtaining a false positive or rejecting the 

null hypothesis even if it is true (a type I error) is chosen. In biomedical research this level is 

often set at 0.05, indicating that it is acceptable to have 5% probability of false positive result.  

Statistical analysis will give a measure on how extreme the observations were, defined as a p-

value. If the p-value is less than the chosen level of significance, the test suggests that the 

observed data is incompatible with the null hypothesis, thus it must be rejected. If a test 

reveals a false negative result and the null hypothesis remains although it is false, a type II 

error has occurred. Type two errors are related to the sensitivity or the so-called power of the 

test.  

The so-called power of a test is defined as 1 minus the sensitivity and reflects the probability 

of obtaining a type II error, i.e. with lower power there is less chance of rejecting a null 

hypothesis that is false. Thus, the power decides the probability of obtaining a statistically 

significant result. Among the factors that influence the power of a test, the most important are 

the level of statistical significance chosen, the expected magnitude of the differences between 

the groups studied and the sample size. If something is known beforehand about the 
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magnitude of the effect and level of significance, a power analysis can be conducted to 

determine the minimal sample size required to detect the effect.  

Statistical testing of a hypothesis reveals whether there is any difference between the groups 

studied, but does not say anything about the nature of size of the difference. Supplementation 

with a confidence interval provides a range of values covering the actual mean difference 

[68]. Typically, a 95% confidence interval (a 5% significance level) is utilized i.e. the range 

containing of the true value with 95% confidence, indicating both the magnitude of the 

difference and any lack of precision in the estimate thereby helping to decide whether the 

difference is of clinical interest.  
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3 AIM OF THESIS  

 

3.1 GENERAL AIM OF THE PRESENT THESIS 

The general objective of this thesis was to identify imaging biomarkers that can help predict 

the response of mRCC and mCRPC to treatment. 

 

3.1.1 Specific Aims 

More specifically, the aims were as follows: 

Study 1 

To determine whether early metabolic alterations in tumour lesions detected by FDG PET/CT 

can predict the PFS and/or OS of patients with mRCC undergoing treatment with an inhibitor 

of tyrosine kinases i.e. sorafenib, sunitinib or pazopanib, and if so, to identify the most 

valuable FDG PET/CT parameters in this context. 

 

Study 2 

To examine whether changes in uptake of 
11

C-acetate as assessed by PET/CT, are correlated 

with the PSA values and prognosis of patients undergoing treatment with abiraterone acetate 

and whether repeated 
11

C-acetate PET/CT provide clinically relevant information that PSA 

values cannot. 

 

Study 3 

To assess whether the size of metastatic lesions originating from RCC as determined by 

diffusion-weighted MRI are consistent with size as determined by CT, as well as to determine 

whether conventional CT can be replaced by DWI in connection with clinical trials 

conducted according to the RECIST 1.1 protocol.  
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4 MATERIALS AND METHODS 

 

A summary of the general methods applied in this thesis including certain aspects of 

particular interest. 

 

4.1 ETHICAL APPROVAL, PATIENT RECRUITMENT AND INFORMED 
CONSENT 

 

Studies 1 and 3 were prospective and conducted with pre-approval by the regional ethical 

committee in Stockholm, Sweden (Dnr 2007/1551-31/3 and Dnr 2013/1216-31/3). All 

participants, recruited by the referring oncologist, provided their written informed consent 

and were free to leave the study at any time.  

Study 2, a retrospective analysis of available clinical material, was also pre-approved (Dnr 

2015/1068-31) by the same ethical committee. Patient consent was not obtained, in part 

because most of the individuals concerned had already died. 

 

4.2 TREATMENT 

 

In Study 1, 39 patients with mRCC underwent repeated FDG PET examinations prior to and 

after treatment with one of the TKIs sorafenib (19), sunitinib (18) or pazopanib (2) between 

2006 and 2010. These drugs block multiple tyrosine kinase receptors e.g., the receptors for 

platelet-derived and vascular endothelial growth factors [69, 70]. Several of these tyrosine 

kinases play a role in both tumour angiogenesis and proliferation. In addition to being 

approved for treatment of mRCC, sorafenib is also approved for therapy of advanced 

hepatocellular and radioactive iodine-resistant thyroid carcinomas, sunitinib for imatinib-

resistant gastrointestinal stromal tumours and pazopanib for soft tissue sarcoma.  

At the beginning of the study, most of the patients recruited were being treated with sorafenib 

secondary to treatment after interferon. During the study treatment recommendations were 

changed and sunitinib became the drug-of-choice for first-line treatment of mRCC. Most of 

the patients recruited thereafter received sunitinib alone, although a few also received 
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sorafenib and pazopanib as second line treatment.  

In Study 2, conducted over a period of one year, 35 patients with mCRPC recruited 

consecutively were examined by 
11

C-acetate PET/CT before and during treatment with 

abiraterone acetate (1000mg/day). This drug suppresses androgen activity, both by inhibiting 

its enzymatic synthesis and blocking the androgen receptor. Abiraterone acetate has been 

approved only for treatment of mCRPC. Among these patients, 30 had received hormone 

treatment and 30 Docetaxel prior to abiraterone acetate. In addition, four patients had 

previously received Radium-223, two Cyclophosphamide and two Mitoxantrone.   

In study 3 five patients with mRCC was treated daily with 800 mg pazopanib as first line 

treatment for mRCC. Pazopanib is a TKI blocking kinases involved in tumour growth and 

angiogenesis.  

 

4.3 THE PET/CT EXAMINATIONS  

 

4.3.1 The FDG PET/CT examinations in Study 1 

To determine whether early metabolic changes can predict PFS and/or OS in patients with 

mRCC, patients underwent PET/CT before and after 14 (n=32) and 28 days (n=30) of 

treatment with sorafenib, sunitinib or pazopanib. Clinical baseline characteristics and 

measures of outcome, including PFS and OS, were compared to the metabolic response 

indicated by PET. 

The first five patients were examined with a PET camera without CT (ECAT EXACT 31 

CTI), whereas all the other examinations were performed at Karolinska University Hospital 

with a PET/CT (Biograph 64 TruePoint, Siemens) with exception of the two patients from 

Uppsala University Hospital, with whom another PET/CT was employed (Discovery ST, GE 

Healthcare). All PET examinations were carried out in accordance with the standard clinical 

protocol in order to maximize SUV accuracy. Approximately one hour after intravenous 

injection of 4MBq FDG/kg (0.1081 mCi/kg), obtained from the in-house cyclotron, scans 

were performed from the base of the skull to the proximal aspects of the thighs. Patient 

weight and blood level of sugar were measured routinely and all subjects were instructed to 

fast for 6 hours prior to the examination. PET acquisition was done in 3D carried out for 3 

minutes for each bed position with normal tidal breathing. A low dose attenuation correction 

CT and a full-dose diagnostic CT with intravenous contrast (tube tension 120kV, pitch 0,8, 
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slice thickness 1,2 mm and rotation speed 0,5 second) were performed. 

All images were analysed retrospectively by a radiologist who had no information concerning 

the clinical or radiological outcome, utilizing the commercial Siemens software provided by 

the PET/CT manufacturer. Two-dimensional circles were drawn around ROIs in the 

transverse plane of metastatic lesions and three-dimensional iso-contour lines drawn around 

the volume with most FDG uptake as displayed in Figure 7. SUVmax was determined from 

the voxel with the highest SUV within the same volume, the MTV as the entire volume 

delineated and total lesion glycolysis as the MTV multiplied by the average SUV within the 

same volume. The arbitrary SUV threshold was set to either 50% of SUVmax or a fixed 

value of 2.5. A 1-cm
3
 spherical ROI was also drawn around the region demonstrating most 

avid FDG uptake and all SUV values were normalized to lean body mass to obtain SULpeak 

as recommended by PERCIST [61].  

 

Figure 7. Encircled ROIs in one metastatic lesion. The single voxel measurement in the 

centre is SUVmax, the entire metabolic volume around a fixed SUV threshold provides 

MTV/TLG and a small spherical volume around the area with most avid FDG uptake gives 

SULpeak. 

 

Metabolic response was defined as at least a 30% reduction in either SUVmax, TLG50% or 

TLG2.5 and metabolic progression as the appearance of new malignant lesions or at least a 

30% increase in SUVmax, TLG50 or TLG2.5 in comparison to baseline. SULpeak was 

assessed in accordance with the PERCIST criteria [61]. As many as five lesions were 

assessed (no more than two per organ) and two parallel analyses conducted, one on all 

changes in target lesions and the other only on the most FDG-avid lesions. Statistical 

comparison of baseline PET characteristics to clinical outcome was also performed.  

 

4.3.2 C11-acetate PET/CT examinations in Study 2  

In order to evaluate monitoring of mCRPC by 
11

C-acetate PET/CT, 60 PET/CT examinations 
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carried out on 30 patients with this disease at the time of initiation and during treatment with 

abiraterone acetate were evaluated retrospectively. In addition, information on blood levels of 

PSA, haemoglobin and alkaline phosphatase was obtained. 

All of the patients were examined with the same PET scanner (Biograph 64 TruePoint, 

Siemens), approximately 23 minutes after injection of 6-700 MBq 
11

C-acetate (produced by 

an in-house cyclotron). All CT assessments were full-tube diagnostic examinations without 

intravenous contrast medium, otherwise performed according to the same standard protocol 

as in Study 1. All examinations extended from the inferior cervical neck to the proximal 

thighs.  

The repeated 
11

C-acetate PET/CT examinations were examined retrospectively by two 

different readers who had no information concerning clinical or radiological outcome. 

Lesions with the characteristic CT appearance (bone sclerosis, enlarged lymph nodes or 

abnormal lesion in an organ) and elevated 
11

C-acetate uptake were classified as metastases. 

To adjust for variations in plasma clearance 
11

C-acetate uptake was expressed relative to a 

tumour-to-liver ratio. The PET response in connection with the follow-up examination was 

assessed both qualitatively (visual grading of all metastatic lesions) and semi-quantitatively 

by measuring the SUVpeak of the lesion demonstrating the most pronounced uptake. The CT 

examination was analysed in accordance with RECIST1.1. In a separate analysis, a bone 

lesion index was calculated employing an automated segmentation algorithm from General 

Electric (GE) by which in areas exhibiting elevated 
11

C-acetate with a SUV >3 and 

corresponding CT attenuation >150 Hounsfield Units (HU), the volume of metastatic lesion 

was measured. This volume was then divided by the total skeletal volume (areas with CT 

attenuation >150 HU) to obtain an index. All evaluations were performed with the PET 

VCAR software from GE Healthcare. 

 

4.4 THE DWI EXAMINATIONS 

 

In an initial attempt to implement DWI in clinical trials performed according to RECIST1.1, 

we compared the number of lesions measured, their sizes, reduction in their size due to 

treatment and finally, inter-observer variability as determined by DWI and CT. For this 

purpose, five patients with mRCC were examined by both CT and DWI on the same day or 

nearby days before and after three months of treatment with pazopanib. 
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All of the DWI examinations in Study 3 were carried out with the same 1,5T MRI system 

(Siemens) according to a free-breathing echo planar imaging protocol, including suppression 

of background body signal designed to distinguish tumour more clearly from normal tissue.  

Multiple phased-array coils covered the thorax and abdomen at 4 or 5 positions and the total 

acquisition time was 15-20 minutes. Axial DWI images with b-values of 50, 400 and 800 

s/mm
2
 were obtained for analysis and for calculating an ADC.  Maximal intensity projection 

images were also reconstructed to enable diagnosis “at a glance”. The CT examinations were 

performed according to standard clinical protocol and all of these images reconstructed to a 

thickness of 5 mm, with 2,5 mm overlap. Three patients received contrast medium 

intravenously during the parenchymal phase. CT was performed on the same day as DWI in 3 

of the 5 patients, with the difference of 6 and 22 days in the other two cases.  

 

4.4.1 Analysis of DWI imaging  

Two readers interpreted the pre- and post-treatment DWI and CT images independently. 

They had no information concerning the clinical outcome and the images were presented to 

them in random order at two different time-points with no information about whether the 

images were acquired pre- or post-treatment. Lesions that appeared obviously malignant on 

CT or exhibited a high signal on b800 images and markedly reduced diffusion on the ADC 

map were selected for assessment. Each reader measured the diameter of as many as 10 

metastatic lesions (the smallest having a diameter of 10 mm) in the transverse plane. The CT 

and DWI results were compared with respect to the number of target lesions measured, the 

size of lesions, size reduction after therapy and inter-observer variability, as shown in Figure 

8.  
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Figure 8. The longest dimension as determined by DWI (to the left) and CT (in centre) was 

measured and compared before and after treatment. An ADC map (to the right) confirmed 

the identification of malignant lesions by DWI.  

 

4.5 STATISTICAL ANALYSES  

 

The Kaplan-Meier procedure and Cox proportional hazards model were employed to estimate 

and describe survival from lifetime data in Studies 1 and 2. Confidence intervals and p-values 

were calculated. The Spearman Rho test was applied to investigate non-parametric 

correlations between PET response and PSA in Study 2. The non-parametric Wilcoxon 

signed-rank test was utilized for comparison of the median differences between the PSA 

scores in Study 2, as well as the number of lesions measured by the two different readers, 

tumour length before and after treatment, and inter-observer variability in Study 3. All 

statistical analyses were performed with the IBM SPSS software (version 21 and 22). PFS 

was defined as the period that elapsed from enrolment in the study to the date on which the 

patient experienced an event associated with disease progression (e.g., a laboratory test and/or 

radiological or clinical assessment). PFS is sometimes considered to be a surrogate for OS, 

the most reliable endpoint in clinical studies. PFS is usually evaluated when OS data are not 

available.  
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5 RESULTS AND DISCUSSION  

 

5.1 STUDY 1: MONITORING MRCC WITH FDG PET/CT 

 

Although FDG-PET/CT uptake by mRCC is known to be variable [71, 72], PET/CT was 

performed before and after treatment with a TKI in order to examine whether early metabolic 

changes can predict outcome. In our cohort, univariate Cox regression analysis revealed that 

high metabolic activity in the most FDG-avid lesion prior to treatment was negatively 

associated with survival. Moreover, the clinical Heng factor score [73] was significantly 

associated with outcome. These findings are consistent with previous reports [28, 74, 75], 

although we observed no association between Eastern Cooperative Oncology Group (ECOG) 

status or previous treatment and outcome.  

The metabolic response in connection with the follow-up PET/CT examinations (as indicated 

by SULpeak, TLG2.5 and TLG50 14 and 28 days after initiation of treatment) was 

significantly associated with PFS and OS, although SUVmax was not. The largest study on 

FDG-PET/CT monitoring of TKI treatment of RCC (n=44) conducted to date (Kayani et 

al[28]) failed to show any association between FDG-PET response and outcome after one 

month of treatment, but a negative association between elevated FDG uptake and survival 

after three months of treatment. A key difference between this investigation and ours is that 

these other researchers classified the PET response on the basis of the SUVmax for the most 

FDG-avid lesion.  Studies on patients with GIST have provided strong evidence that FDG-

PET can be used for early prediction of the response of such tumours to TKI [76-78]. For 

example, Prior and co-workers were able to predict PFS employing the volume based 

SUVpeak for the three most FDG-avid lesions after 4 weeks of treatment with sunitinib [79], 

of course there may be essential biological differences between mRCC and GIST in this 

context, but it is also possible that the single most FDG-avid voxel, as reflected in SUVmax, 

chosen from only one of a patient’s many metastases might not be representative of the 

response by a widespread and heterogeneous mRCC. As shown in Figure 9, SUVmax is still 

the PET parameter most commonly utilized, although there is also growing interest in 

volume-based parameters such as metabolic tumour volume, total lesion glycolysis and the 

SUVpeak.  
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Figure 9. Usage of different PET parameters in articles published between 2007 and 2016.  

 

Although we found that the metabolic response as assessed by PET can predict PFS and OS, 

our study does have several limitations. The number of individuals evaluated was relatively 

small and five of the patients underwent their examinations on a PET scanner without an 

attached diagnostic CT, so in these cases only the changes detected by PET were utilized to 

assess the response. Moreover, our patients received three different TKIs, although all three 

do inhibit anti-angiogenesis by blocking the VEGF receptor-2. Some received the treatment 

as second-line therapy, although a separate analysis excluding such patients also revealed an 

association between metabolic response and OS.  

Finally, our definition of response/progress as at least a 30% metabolic change or the 

appearance of new lesions on PET was somewhat arbitrary. There is currently no consensus 

concerning how to define the metabolic response of mRCC on the basis of PET/CT 

examinations. The PERCIST classification proposed attempts to establish a new standard, by 

measuring the average SUV within a small volume of the most FDG-avid region of the 

metastatic lesion. Our present findings support the introduction of new SUV parameters such 

as those proposed by PERCIST, but also of total lesion glycolysis in this context. In a recent 

investigation of patients with follicular lymphoma prediction of treatment failure improved 

when total body metabolic tumour volumes were assessed [80].  

The timing of imaging is another key and unresolved issue. In most cases PET/CT is 

performed at the end of the first cycle of therapy, while patients are still receiving treatment, 

in order to avoid a rebound increase in FDG uptake, a phenomenon previously described in 

connection with treatment of GIST with imatinib [81].  Recently, Horn and colleagues [82] 
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compared FDG and FLT PET results for 19 patients with mRCC after 0, 1, 2 and 3 weeks of 

sunitinib treatment. They showed an immediate and sustained proliferative (FLT) response 

after one week of therapy, but with weaker prognostic value than the metabolic response (the 

average SUVmax for as many as six metastatic lesions on FDG PET), which required at least 

two weeks of treatment.  

Although our results indicate little difference between the results of assessment from 2 to 4 

weeks after initiation of treatment, these findings need to be confirmed in a larger trial in 

which several different PET parameters are assessed. Preferably, a larger cohort of treatment 

naïve patients with mRCC who is about to start treatment with a targeted therapy would 

conduct a FDG PET/CT together with another imaging modality (DWI or contrast-enhanced 

ultrasound) before and after three weeks of treatment.  
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5.2 STUDY 2: MONITORING CRPC WITH 11C-ACETATE PET/CT 

 

Although the therapeutic options for patients with mCRPC are increasing rapidly and a 

variety of techniques are currently used to diagnose recurrent and metastatic disease, none 

has gained a dominant role in all clinical scenarios. Serum PSA, an established biochemical 

marker, demonstrate relatively good correlation to total tumour burden, but limited value in 

explaining clinical symptoms or for planning subsequent radiotherapy.  

In study 2, 10 patients exhibited partial response (PR), 10 stable disease (SD) and 10 

progressive disease (PD) upon comparison of the second PET/CT to the first. Those 

exhibiting a PET/CT response had significantly longer PFS and OS. For the 19 patients with 

a measurable target lesion on CT when treatment was initiated the corresponding numbers 

were 4, 10 and 5 (PR/SD/PD) while the remaining 11 patients had only sclerotic bone 

metastases that could not be assessed according to RECIST. A PSA response, defined as a 

reduction in the serum level by more than 50%, occurred in 14 patients, of whom all but one 

experienced partial response or stable disease as assessed by PET/CT.  

More importantly, in the subgroup of patients without a PSA response, the OS of those 

demonstrating PD on PET/CT differed from that of those with controlled disease (PR or SD). 

Thus, 
11

C-acetate PET/CT is of potential clinical value for patients in whom no PSA response 

occurs. At the same time, the need of 
11

C-acetate PET for general monitoring of mCRPC is 

arguable, since at least in the current investigation the outcome could be predicted equally 

well on the basis of CT alone and PSA. However, in cases where the PSA response is not 

clear and only bone metastases are present, 
11

C-acetate PET/CT could play a key role in 

assessing response. It is also not yet known the extent to which expression of FASN, which 

enzymatic activity is upregulated in aggressive forms of prostate cancer[33], can serve as a 

surrogate biomarker for the response of mCRPC to treatment which might enhance interest in 

11
C-acetate as a radiotracer.  

This study also had several limitations. The cohort consisted of only thirty patients and some 

of these had already received several different treatments prior initiation of abiraterone 

acetate. In addition, the inter-individual variation in 
11

C-acetate uptake by normal tissues 

required adjustment. Although we could not find any substantial evidence in the literature 

that 
11

C-acetate uptake by metastatic lesions differs from that by normal tissues, this remains 

a hypothesis.  
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5.3 STUDY 3: MONITORING MRCC WITH DWI 

 

Our third study was designed to examine whether DWI can be incorporated into radiological 

assessments of response that follow the RECIST1.1 guideline. In addition to not requiring 

any intravenous contrast medium or ionizing radiation, DWI can provide quantitative 

information concerning the diffusivity of tissues (ADC-map), an aspect currently being 

investigated extensively [83-85]. ADC reporting is not mentioned in RECIST1.1, and the 

logical first step before implementing DWI in clinical trials would be to determine whether 

measurement of tumour size as measured by DWI is reliable and in agreement with the 

corresponding values obtained by CT.  

The five patients in Study 3 underwent both CT and DWI examinations in close proximity in 

time before and after three months of treatment. There were no significant differences in the 

number of lesions measured per subject. A reduction in median tumour size was observed 

with both approaches (from 32 to 29 mm with CT and from 30 mm to 28 mm with DWI). 

There was no statistically significant difference when each lesion was assessed pre- and/or 

post-treatment by the same reader on the basis of CT and DWI. Although the inter-observer 

variability in connection with pre-treatment CT and pre- and post- treatment DWI was the 

same, there was a significant difference between readers in connection with post-treatment 

CT. A methodological consideration was that pulmonary metastases under influence of 

motion artefacts were measured frequently (only lymph node metastases were measured more 

frequently), which could have influenced measured dimensions. Another consideration is the 

possible underestimation of tumour size on follow-up examinations due to necrosis induced 

by treatment. This could be the reason why we found a larger mean difference between size 

of the same lesion measured by CT and DWI on post-treatment (1.76 mm) examinations than 

pre-treatment (1.31 mm) examinations. 

This pilot indicates that further investigation of the applicability of DWI in RECIST1.1 trials 

is warranted. Because of the small number of individuals examined there was an obvious risk 

of a type II statistical error due to under-powering. Nonetheless, these results provide 

important information for deciding sample size in connection with a larger trial. In a post-hoc 

power analysis, we calculated that comparison of 2536 lesions is required in order detect any 

significant difference between measurement by DWI and CT that might exist. One way to 

overcome the sample size problem in a larger trial, is to choose another form of cancer than 
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mRCC. Breast cancer could be a suitable candidate, considering it metastasizes as solid 

tumours in various organs and the increasing number of therapeutic options. In the present 

study we employed measurements on DWI images with a b-value of 800. However, this 

value was arbitrary chosen whether this or other b-values correspond best to measurements 

by CT has to be further investigated. It could also be of interest to use several b-values, that 

makes it possible to extrapolate a computed b-value of desired magnitude, which may show 

higher agreement to CT than that of b-value 800.  
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6 SUMMARY OF FINDINGS 

 

The following conclusions can be drawn from the work described here: 

FDG-PET/CT can potentially provide a surrogate biomarker for the response of mRCC to 

treatment with TKIs. Selection of the appropriate PET parameters appears to be of crucial 

importance in this context and parameters including PET volume may be more reliable than 

those based only on the highest pixel value. 

Repeated 
11

C-acetate PET/CT examinations can predict the clinical outcome of patients with 

mCRPC undergoing treatment with abiraterone acetate. Although CT and serum PSA can 

predict this outcome, CT fails to assess response in the large number of patient with bone 

metastases only and PSA provides no information concerning the localization of tumour 

burden.  

Measurements on mRCC by DWI or CT appear to be in close agreement and initiation of a 

larger trial investigating the feasibility of employing DWI in clinical trials that follow the 

RECIST1.1 guideline is warranted. 
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7 FUTURE PERSPECTIVES AND CHALLENGES 

 

As a consequence of innovations in the fields of molecular biology and technology, 

molecular imaging is showing ever-greater promise. Hybrid PET/CT technology is standard 

in many hospitals and PET/MRI is on the move from the laboratory to the clinic. Better 

availability of scanners allows the introduction of more novel and specific 

radiopharmaceuticals that fill present needs.  

Despite its known drawbacks and the fact that it only reveals the basic metabolism of tissues, 

FDG has definitely become a blockbuster for nuclear medicine and is continuously proving to 

be valuable in more and more aspects of daily clinical work. Although FDG-PET has been 

around for quite some time, many questions concerning interpretation of the results obtained 

still remain to be answered, as demonstrated by this thesis. We can expect larger studies in 

this area in the future going hand in hand with the introduction of novel oncological PET 

tracers. The superior image resolution and better quantification by PET (5-7 mm) than with 

single photon emission computed tomography (SPECT) (12-15 mm) favour the former, 

although the longer half-lives time of the isotopes employed by SPECT enable labelling of 

antibodies, fragments of antibodies or peptides for investigating biodistribution, targeting and 

drug kinetics. 

Some of the radiotracers of tomorrow have already been approved and are available, but their 

clinical usefulness has yet to be proven. 
18

F-Fluorothymidine (FLT), a non-metabolized 

thymidine analogue, can serve as a tracer for tumour proliferation, but the fact that its uptake 

into tumours is relatively low compared to that of FDG has so far limited its clinical use. This 

situation might change as more cytostatic therapies are introduced and novel biomarkers of 

tumour proliferation become desirable.  

Hypoxia is another target for experimental imaging and among the several different tracers 

available, 
18

F-misonidazole (FMISO) is by far the most commonly used. Tumour hypoxia 

may promote tumour progression and has been associated with failure of radio- and 

chemotherapy [86, 87]. Although hypoxia, as visualized by FMISO, has not yet been shown 

to be correlated with clinical outcome [88], such information might help in planning 

treatment in the future. Although, tracers for metabolism (FDG), proliferation (FLT) and 

hypoxia (FMISO) can provide insight into tumour behaviour, these are still relatively non-

specific and development of a tracer that binds to a specific receptor expressed uniquely on 

the surface of cancer cells is highly desirable. 
68

Ga coupled to prostate specific membrane 
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antigen (PSMA), which binds to surface proteins on prostate cancer cells, has recently shown 

high potential for localizing the tumour within the prostate  (87.5% accuracy) [89], as well as 

distant metastatic lesions in patients with a PSA value of < 0.5 ng/mL [90].  

In the case of breast cancer several attempts have been made to image specific therapeutic 

targets, including estrogen receptors, the human epidermal growth factor receptor 2 (HER2) 

receptor, the epidermal growth factor receptor and receptors involved in angiogenesis. 

Trastuzumab, an antibody targeting HER2, has dramatically improved therapy for HER2-

positive patients. In a recent publication from 2016 small affibody molecules labelled with 

68
Ga were utilized to reveal HER2 expression in patients with metastatic breast cancer [91]. If 

cancer cells can be distinguished definitely from normal tissue, it might be possible to follow-

up a diagnostic PET examination with a therapeutic one involving a radionuclide with 

therapeutic properties, such as 
177

Lu.  

The field of body DWI has expanded rapidly during the last decade and is today not only 

subject extensive research but also widely applied in clinical practice. MRI systems are 

continuously improving in hardware and pulse sequence and a variety of platforms are in use. 

The technological difference between MRI systems has created reproducibility issues that 

remain a challenge, and in order to gain interest as a biomarker reproducible quantification is 

essential. While early diffusion measurement protocols only employed a monoexponential 

model, consisting of only two b-values, modern clinical MRI scanners employ protocols with 

multiple b-values including very high values (exceeding 2000 s/mm
2
 as in diffusion kurtosis 

imaging). This enables measurement of capillary perfusion and other flow phenomena [92], 

but at the price of longer scan times. Optimal number of b-values, and what b-values to 

select, are still unknown and more reports concerning this issue are to be expected. 

Considering that DWI does not expose patients to any intravenous contrast media or ionizing 

radiation, repeated examinations for assessment of tumour response to oncological treatment 

may be in favour of DWI to CT. In particular, metastases of the bone (for example from 

breast or prostate cancer) represent an area with unmet clinical need for a robust biomarker. 

Bone metastases can be assessed rapidly by assessment of maximum intensity projections 

images displaying high b-value signal reductions accompanied by rises in ADC [93], and it is 

possible that this technique will replace conventional bone scans in the future. 

PET/MRI combines the morphological, functional and molecular imaging potential of MRI 

and PET. DWI provides PET/MRI with new potential concerning information on tissue 

structure and biology, that are not possible with PET/CT [94]. For example, DWI may be 

complementary to PET when examination is focused on finding small metastases of the liver, 
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where pathological FDG uptake is often blurred by physiological uptake. However, the most 

exciting potential might not lie in lesion detection, but rather in combining information from 

PET tracers more specific than FDG, for example FLT might come out negative concerning 

the tumour proliferation while the lesion is picked-up with DWI.   

It is desirable that the next generation of agents for molecular imaging allow accurate 

visualization of the extent of the primary tumour (for correct staging), early diagnosing of 

metastatic disease (making salvage treatment a realistic option), prediction of the response to 

planned treatment (as a support in decision making) and finally, assessment of the early 

response to any given treatment (to make it possible to change the treatment regime for non-

responders).  
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