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ABSTRACT 

Bruton's tyrosine kinase (BTK) is an important cytoplasmic signaling protein, where the 
kinase activity plays a pivotal role in the development, proliferation and differentiation of 
B-cell lineages. Ankyrin repeat domain 54 (ANKRD54) is a nuclear-resident adaptor 
protein, where the ankyrin domain repeats are critical for specific protein-protein 
interaction, while the NLS and NES motifs control the nucleo-cytoplasmic shuttling 
ability. 

We have identified and characterized ANKRD54 as a novel functional (paper I), 
interaction-partner for BTK using proteomics analysis. ANKRD54 is the first protein 
identified that specially influences the nuclear export of both BTK and TXK/RLK, in a 
Crm-1 dependent manner. Further, we mapped the interaction site to the C -terminus of 
BTK-SH3 domain, by using a synthetic peptide of BTK, covering the following region: C-
ARDKNGQEEGYIPSNYVTEAEDS.  In addition, tyrosine phosphorylation of BTK was 
investigated in the presence of increased amount of ANKRD54 and selectively the 
phosphorylation of BTK was down regulated.  

We have presented a second novel interaction-partner and regulator of BTK (paper II), the 
14-3-3 ζ protein, which is also identified by proteomics strategy. In this work, we have 
mapped the interaction sites on BTK to phospho-serine pS51 in the (RGRRGpS)-motif in 
the PH-domain and phospho-threonine pT495 in the (RHRFQpT)-motif in the kinase 
domain. Additionally, a newly characterized 14-3-3 inhibitor (BV02) interfered binding 
with BTK and siRNA knockdown of 14-3-3ζ increased the nuclear translocation of BTK, 
while overexpression of 14-3-3ζ resulted in accumulation of BTK in the perinuclear 
region.  

We have generated single ankryin domain deletions of ANKRD54 and subsequently 
characterized their binding capacity and also their influence on the sub-cellular 
localization of BTK (paper III). In this work, we report that three out of four ankyrin 
repeats are required for the interaction and nucleo-cytoplasmic shuttling of BTK. 
Inhibition of Crm-1 nuclear export pathway influences differently the nuclear shuttling; 
rapid-ANKRD54 versus slow-BTK nuclear accumulation. Furthermore, we have 
determined that the interaction between BTK and ANKRD54 establishes in the nuclear 
compartment. 

We have classified ANKRD54 as a prime interactor to the SH3-domain of BTK (paper 
IV). In this study, we utilized a screening strategy based on phage display libraries of the 
complete human “SH3-domainome” as a possible binding-target for ANKRD54. The aim 
is to identify the target spectrum and specificity of ANKRD54 for SH3 domain library, 
containing all the 296 human SH3 domains. The novel finding is that BTK is not only 
binding to ANKRD54, but also stands out as the preferred interactor, being highly 
dominant over all other human SH3 domains. However, other lower colony-score 
candidates for SH3-domain interactions were found, but without any further in vivo/in 
vitro validation. 

 



REZUMAT POPULAR 

 

Corpul uman are aproximativ 100 bilioane de celule. Fiecare celulă umană posedă 
ADN – material genetic ereditar, bine împachetat în nucleul celulei. Genomul 
nuclear este împărțit în 23 de perechi de molecule ADN liniar, numite cromozomi, 
din care ultima pereche conţine cromozomii sexuali, şi anume XX la femei şi XY la 
barbați. ADN-ul deține informația din care iau naştere proteinele, care de fapt sunt 
esenţa tuturor organismelor vii. 

Celulele au diferite funcţii şi forme, iar durata lor de viaţă variază, ca de exemplu: 
celulele din muşchi trăiesc aproximativ 15 ani, celulele roşii din sânge au o durată 
de viaţă de aproximativ 120 zile, iar celulele pielii trăiesc în medie 14 zile. 

Celulele mature B, aşa numitele limfocite, joacă un rol important în acţiunea 
sistemului imunitar, cu efect de autoapărare a corpului împotriva microbilor. 
Celulele mature B dau naştere la celule B cu memorie şi plasmocite. Funcţia de 
bază a plasmocitelor este de a produce anticorpi. În cazul unei infecţii, o singură 
celulă poate produce o cantitate imensă de anticorpi, aproximativ 2000 
anticorpi/secundă. 

De asemenea, în prezenţa antigenilor, celulele B se pot activa şi transforma în celule 
B cu memorie, care circulă pe traseul sânge – organ limfoid – sânge, pe o perioadă 
de câţiva ani. La o eventuală întalnire cu un microb, ele pot acţiona sistemul 
imunitar – ca exemplu bolile copilăriei nu vor mai fi contactate a doua oară. Dacă 
limfocitele nu ar circula, atunci ele nu ar avea posibilitatea de a întâlni şi de a 
declanşa un răspuns imun cu scopul de a distruge bacteriile, de a inactiva virusurile 
sau de a neutraliza microbii. 

Un număr redus de pacienţi, cu precădere de sex bărbătesc, sunt diagnosticaţi cu 
Agamaglobulinemie legată de cromozomul X (XLA), o imunodeficienţă ereditară. 
Acestor pacienţi le lipsesc limfocitele B şi de aceea este blocată formarea de 
plasmocite, care sunt responsabile pentru producerea de anticorpi. Drept urmare, 
aceşti pacienţi sunt extrem de susceptibili la diferite tipuri de infecţii recurente sau 
severe de genul: sinuzitelor, otitelor, conjuctivitelor, rinitelor, bronşitelor, 
pneumoniilor şi infecţiilor de piele. 

În primele şase luni de viaţă ale bebeluşilor, în special la sugari, această boală nu 
poate fi diagnosticată deoarece în sistemul nou-născuţilor se regăsesc anticorpii 
transmişi de la mamă pe durata sarcinii. Laptele matern conţine combinaţia perfectă 
de proteine, grăsimi, vitamine şi carbohidraţi, suplimentată cu anticorpi şi leucocite 
care protejează împotriva unor infecţii sau alergii. 

Bruton Tirosin Kinaza (BTK) este proteina responsabilă pentru dezvoltarea normală 
a limfocitelor B. Pacienţii cu XLA prezintă mutaţii genetice la nivelul acestei gene, 
situate pe cromozomul X, aşa după cum îi sugerează şi numele. 



 

 

Această boală nu poate fi transmisă, ci doar moştenită în cadrul familiei. Rudele de 
sex feminin din familie pot fi purtătoare ale bolii, ele neprezentând niciun simptom. 
Există totuşi 50% şanse de a transmite boala fiilor lor. La ora actuală nu există niciun 
tratament pentru vindecarea acestei boli. Singura încercare de ameliorare este 
administrarea intravenoasă sau subcutanată a anticorpilor lipsă, combinată cu 
utilizarea zilnică a antibioticelor. Este interzisă efectuarea de vaccinuri cu virusuri vii. 
Cu acest tratament, pacienţii cu XLA sunt capabili să îşi continue viaţa în condiţii 
relativ normale 1,2. 

Proteina BTK joacă un rol important în maturitatea finală a celulelor B. Lipsa acestor 
celule şi a altor proteine, presupuşi parteneri ai proteinei BTK, este cauza şi a altor 
boli imunodeficitare bine-cunoscute. De asemenea, cancerul limfatic este cauzat de 
divizarea şi multiplicarea necontrolată a celulelor B. 

Sub îndrumarea profesorului Edvard Smith, grupul de cercetare din care fac parte şi 
eu, grup numit “Molecular Cell Biology and Gene Therapy Science”, se axează pe 
două programe de cercetare paralele care studiază pe de o parte semnalizarea 
intercelulară în limfocite – având drept scop proteina Bruton Tirosin Kinaza – iar pe 
de altă parte terapia genetică – cu scopul de a dezvolta noi tratamente. Printre acestea 
se numără şi terapia bazată pe oligo-nucleotide sintetice, care reprezintă bucăţi scurte 
de material genetic. 

Obiectivul principal al tezei mele de doctorat este de a înţelege procesul de 
semnalizare intercelulară în limfocite. Fiecare celulă are capacitatea de a recunoaşte, 
interpreta şi răspunde la semnalele din mediul înconjurător. Semnalizarea 
intercelulară implică semnale preluate de receptori din exteriorul celulei şi transmise 
mai departe prin căi biochimice direct în nucleu, unde se efectuează un răspuns 
celular. 

Un alt obiectiv al tezei de doctorat se referă la identificarea de parteneri noi ai 
proteinei BTK, investigarea relaţiilor structură-funcţie dintre ele şi descoperirea 
rolului biologic al proteinei BTK în nucleu. Totodată, studiind şi înţelegând 
componentele implicate în semnalizarea celulară, se va deschide o nouă arie de 
cercetare pentru dezvoltarea tratamentelor aplicate bolilor cauzate de disfuncţiile 
asociate cu proteina BTK. 

ANKRD54 şi 14-3-3 (zeta) sunt două proteine identificate ca fiind noi parteneri ai 
proteinei BTK şi care influenţează în mod diferit BTK. 

Cercetarea ştiinţifică nu-şi ia niciodată...pauză de cafea. Aventura descoperirii şi a 
cunoaşterii împinge cercetătorii de la spate, iar rezultatele cercetării din întreaga lume 
sunt publicate lunar în jurnalele ştiinţifice recunoscute pe plan internaţional.Eu sper 
ca munca efectuată pe parcursul acestei teze de doctorat – aceste câteva piese de 
puzzle – să fie utile şi să îşi găsească locul potrivit în imaginea de ansamblu 
referitoare la semnalizarea intercelulară a proteinei BTK. 
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1 INTRODUCTION 
Protein-protein interactions (PPI) are required for the most cellular functions; they are 
building signal transduction networks starting from cell-membrane receptors through 
cytoplasmic compartment until specific responses are reached, such as transcriptional 
activation, which control many aspects of the cell biology. Therefore, understanding the 
molecular and cellular mechanisms, as well the specific roles of proteins will definitely 
provide us with a deeper insight into biological processes. Still, these aspects remain greatly 
challenging due to the diversity of how proteins interact and, as well, the involvement of 
various post-translational protein modifications. 

1.1 B-CELL RECEPTOR (BCR) SIGNALING 

1.1.1 B-lymphocytes (B-cells) 

Pluripotent hematopoietic stem cells (HSCs) are immature and very specialized cells that 
have the ability of both self-renewal and differentiation to all lineages of blood cells, 
including B-cells. The latest reports indicated that the hematopoietic system could be divided 
in four separate compartments: hematopoietic stem cells, hematopoietic progenitor cells, 
precursor cells and mature blood cells 3,4.  

Since the discovery and characterization of B-cells in the mid-1960s a lot has been learnt 
about B- and T-cell development 5,6. Except all critical checkpoints 7, B-lymphocyte 
development requires involvement of several different transcription factors and a network of 
cytokines that coordinate with each other 8. B-cells play an essential role in the humoral 
immune response, which includes antibody production, isotope switching (IgM to 
IgG/IgA/IgE) or memory cell generation. First part of B-cell development takes place in the 
bone marrow and compromises the pro-B-cell to pre-B-cell to immature-B-cell stages. 
During these differentiations steps occurs the expression of surface pre-B-cell receptor and 
mature B-cell receptor (Figure 1). However, these cells are still immature and can be easily 
eliminated in contact with self-antigen. After exit from the bone marrow, the cells migrate to 
secondary lymphoid tissues, where after two transitional steps, become mature B-cells 9,10. 

 

 

 

 

 

 

 

 Figure 1. Schematic overview of B-cell differentiation, whereby the pre B-cell 
developmental arrest in XLA patients is indicated. 
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B-cell activation starts in spleen and lymph node when an antigen binds to the B-cell receptor 
(BCR), leading to the further differentiation into plasma cells or memory B-cells. When B-
cells fail to successfully complete the development process, it will undergo programmed cell 
death, apoptosis. Memory B-cells are circulating through the body ready to initiate a rapid 
and strong response, have a long life span and express membrane bound antibodies. Opposite 
of memory B-cells, the plasma cells secrete about 2000 antibody molecules per second and 
the mature forms reside in the bone marrow for many years 11,12. The quantity and quality of 
the circulating antibodies in our body are the result of a complex system, still it is not 
completely understood 13. 

Following the latest results within B lymphocyte field, the basic role of B-cells is to recognize 
and bind antigen, to present antigen, to generate antibodies and cytokines. Except these, B-
cells can receive help from a helper T-cell (T-cell dependent B-cell response) and generate 
high affinity antibodies during several days. As well, antigens can activate B-cells, without T-
cell help (T-cell independent B-cell response) and generate a rapid response, but with low-
affinity antibodies 14. 

1.1.2 B-cell abnormalities 

B-cell disorders 15 are divided into defects within the B-cell development/immunoglobulin 
production (Figure 1), known as immunodeficiencies (X-linked agammaglobulinemia, 
XLA), into defects in the B-cell regulation, called autoimmune diseases (multiple sclerosis 16 
systemic lupus erythematous 17, rheumatoid arthritis 18, type 1 diabetes 19) and into defects 
due to the uncontrolled proliferation causing lymphoma/leukemia (Hodgkin’s 6 and non-
Hodgkin’s lymphoma 20, CLL, chronic 21- or ALL acute lymphocytic leukemia 22).  Other 
B-cell malignancies, where BTK activity or inhibition is crucial, are: ABC-DLBLC, 
activated B-cell-like diffuse large B-cell lymphoma 23,24; MCL, mantle cell lymphoma; 
WM, Waldenström’s macroglobulinaemia 25 or MM, multiple myeloma 26. 

1.1.3 B-cell receptor (BCR) 

A mature BCR is a transmembrane receptor protein, composed of two parts. A membrane 
bound antibody of one isotype (IgM, IgG, IgA or IgE), which recognizes/binds antigen and a 
heterodimer co-receptor Ig-α/β (also known as CD79A/B) that can mediate signal 
transduction through its cytoplasmic tail that contains an immunoreceptor tyrosine-based 
activation motif (ITAM). The receptor binding site is unique and randomly determined by 
heavy and light chain [V(D)J] rearrangements 8,27.  

1.1.4 The BCR signalosome 

When an antigen binds to the BCR it results in receptor aggregation in the lipid rafts. Because 
the cytoplasmic tails of the receptor immunoglobulins are too short they are not signaling 
directly, but they covalently associate with the Ig-α/β heterodimer, which further transduces 
signals into the interior of the cell. The SRC–family kinases phosphorylate the ITAM motifs, 
which in turn recruit other cytoplasmic tyrosine kinases, described below. The activation of 
BCR results in the formation of a “micro-signalosome” in which BTK plays a necessary role. 
Subsequently, different signaling cascades will be activated, that ultimately will lead to the B-
cell survival, proliferation and differentiation 28,29. 
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1.2 THE KINOME 

Approximately, 2% of the human genes code for protein kinases, that plays a fundamental 
role in various signal transduction pathways, as well as involved in other processes like, cell-
cycle regulation, differentiation, apoptotsis or metabolism. The human kinome (whole set of 
kinases) consists of 518 putative protein kinase genes, divided into groups and sub-groups 
30,31. The largest group is represented by protein tyrosine kinases (PTKs), which is subdivided 
into 58 trans-membrane receptor kinases and 32 cytoplasmic kinases 32. Taken together only 
the cytoplasmic Tec family kinases (TFKs, where BTK belongs) and Src family kinases 
(SFKs, where LYN belongs), are covering about 45% of all non-receptor PTKs 33. 
Customized creation of the human kinome tree, are available via a web-based tool, Kinome 
Render 30. Protein kinases, as mentioned earlier are playing a central role in many cellular 
processes, especially in cancer development, therefore they become (and still are) a popular 
therapeutic target in development of new kinase inhibitors 34–37.  

 

1.3 TYROSINE KINASES 

1.3.1 Bruton’s Tyrosine Kinase (BTK) 

Bruton’s tyrosine kinase (BTK) is a non-receptor tyrosine kinase belonging to the TEC 
family kinases (TFKs) together with the additional four mammalian members: tyrosine 
kinase expressed in hepatocellular carcinona (TEC), Interleukin 2 inducible T cell kinase 
(ITK/EMT/TSK), bone-marrow expressed kinase (BMX/ETK) and resting lymphocyte 
kinase (RLK/TXK). The structures of these tyrosine kinase family members are 50-60% 
conserved and they share domain structures, even if especially RLK/TXK differs from the 
others. They together constitute the second largest family of cytoplasmic tyrosine kinases in 
humans and play a key role in signaling and maturation of hematopoietic cells 38,39. In 
addition, these kinases are found in other species, including Drosophila melanogaster 40, 
skate and zebra fish 41. 

 1.2.1.1 Structure of BTK 

Bruton’s Tyrosine Kinase (BTK) is expressed in all hematopoietic cells except T-
lymphocytes and plasma cells. Btk is a 659 amino acid protein with a molecular weight of 77 
kDa. Human and mouse Btk share 98.3% sequence homology 42–44. 
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The BTK protein has a conserved multi-domain architecture comprised of five domains, 
necessary for proper function. From the N-terminus, Pleckstrin homology (PH) domain, Tec 
homology (TH) domain, Src homology 3 (SH3), Src homology 2 (SH2) and Kinase (SH1) 
domain 45. Each of the BTK domains has the capacity to interact with various molecules, 
enabling BTK to carry out diverse biological processes (Figure 2). 

 

           Figure 2. Domain structure of Bruton’s tyrosine kinase and interaction partners.  

 

The PH domain, comprising 138 amino acids is important for membrane 
translocation/anchoring during BCR signaling 46,47. It has the capacity to bind to 
phosphatidylinositol lipids facilitating membrane recruitment for further protein-protein 
interactions 46,48. The TH domain consist of two regions of approximately 80 amino acids; a 
BTK motif characterized by a zink-binding sequence important for optimal protein activity 
and stability; and a proline rich region, which can bind to other SH3 containing proteins 49,50. 
The SH3 domain is involved in protein-protein interaction, its known to interact with proline-
rich regions, but not only that. This domain comprises about 60 amino acids and includes the 
autophosphorylation site tyrosine, Y223. The SH2 domain is consisting of about 100 amino 
acids and the main function is to interact with phosphorylated tyrosine residues. The largest 
domain of BTK is the kinase domain 51, consisting of approximately 250 amino acids and it 
contains the conserved tyrosine residue Y551 52, located in the activation loop 53. This 
domain is catalytically active and important as substrate binding domain 29,43,54. 

 1.2.1.2 Activation of BTK 

Through the years many biochemical experiments have contributed to elucidation BTK’s 
activation mechanism. Upon BCR stimulation, SRC-family kinases such as LCK/YES novel 
tyrosine kinase (LYN) are activated, which enables them to phosphorylate the tyrosine in the 



 

  5 

ITAMs 55, thereby providing docking sites for spleen tyrosine kinase (SYK) 54. At the same 
time, B-cell adapter protein BCAP 56 and B-cell co-receptor protein CD19  recruits and 
enables activation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) at the plasma 
membrane 57. Activated PI3K catalyzes the conversion of membrane-associated 
phosphatidylinositol (4,5)-bisphosphate (PIP2) 58 to phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) 59, that is important for the plasma membrane recruitment of two 
kinases: tyrosine kinase BTK and serine/threonine AKT/PKB. The PH domain of BTK will 
bind to its principal lipid ligand, PIP3 in the membrane and become fully activated by SYK 
kinase 60. 

The adaptor protein B-cell linker (BLNK/SLP-65) 61 is recruited to phosphorylated the Ig-
α/β, to the plasma membrane, where is activated by SYK. Tyrosine phosphorylated BLNK 
serves as a scaffold protein that recruits and binds to BTK and phospholipase Cγ2 (PLCγ2). 
In this close proximity, BTK is phosphorylated by SRC kinase at Tyr551 62, followed by an 
auto-phosphorylation at Tyr223 63,64. BTK activates PLCγ2 by phosphorylation 65, which 
leads to cleavage of PIP2 into secondary messengers, inositol (1,4,5) triphosphate (IP3) and 
diacylglycerol (DAG). IP3 binds to its receptor on endoplasmic reticulum (ER) where it 
activates Ca2+ channels, resulting in intracellular Ca2+ influx 29 thereby activation of nuclear 
factor of activated T cells (NFAT), respectively DAG mediates activation of protein kinase 
C (PKC) 66, which further activates the NF-κB pathways 67–69 that will promote cell 
survival and cell cycle entry 70,71.  

BTK is expressed also in other hematopoietic lineages, and can be activated through 
various receptor types like: chemokine receptor 72 CXCR4 and CXCR5 signaling important 
for tissue homing, homeostatis or B-cell trafficking 73 and toll-like receptor 4 (TLR) 74,75 in 
Btk-deficient B-cells shows reduced proliferation potential 76. 

      

 

 



 

 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 3. Model for Bruton’s tyrosine kinase involvement in B-cell receptor signaling. 

 

1.2.1.3 Down-regulation of BTK 

In B-cells, BTK activation can be regulated by various phosphatases. Both, SH2 domain 
containing inositol 5-phosphatase-1 (SHIP) 77 and the dual-specific phosphatase and tensin 
homologue (PTEN) 78,79 can dephosphorylate PIP3 and thereby inhibit BTK association to the 
membrane. Association whit Caveolin-1 80, PKC 49, AKT 81 or Peptidylpropyl cis/trans 
isomerase PIN-1 82 proteins have been found to decrease BTK kinase activity. 
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 1.2.1.4 BTK deficiency in human 

1952, Dr. Odgen Carr Bruton was first describing the immunodeficiency symptoms in an 8-
years boy, suffering of recurrent bacterial (respiratory tract and gastrointestinal) and 
enteroviral infections 83. Dr Bruton was able to determine the absence of gamma globulin in 
patient blood serum by electrophoretic analysis 84, method developed by Arne Tiselius in 
Uppsala, Sweden, in 1937 and for which he awarded the Nobel Prize in chemistry in1948.  

In 1986, the gene for X-linked agammaglobulinemia (XLA) was mapped on the long arm of 
the X chromosome Xq22.1, region 3-22 85,86 and in the subsequent years later, these results 
were further confirmed 87,88. Meanwhile it has been speculated the possibility of an enzyme 
defect, responsible for the disease89,90. Later, in 1993 two independent groups, characterized 
ATK (agammaglobulinemia tyrosine kinase) 91 as the defective gene in XLA, respectively 
BKP (B-cell progenitor kinase) 92 as candidate for XLA. From there on, a common name 
BTK (Bruton’s tyrosine kinase) was adopted and first used when a similar defect in mice X-
linked immunodeficiency (Xid), was reported 93,94. 

X-linked agammaglobulinemia (XLA), is characterized by severe defects in B-cell 
development. The defect is caused by a partial block at the transition step from the pro-B-cell 
to the pre-B-cell stage (Figure 1), followed by a complete block from the pre-B-cell to mature 
B-cell stage in the bone marrow. XLA patients have <1 % of the normal number of B-cells in 
their circulation and the symptoms normally appear only after the first 6-9 mounts of life. 
Due to the X- chromosome linked inheritance essentially only boys are affected, whereas 
their mothers are healthy carriers 95–98. Database BTKbase contains a collection of more than 
800 BTK mutations 99. 

 1.2.1.4 BTK deficiency in mice  

X-linked immunodeficiency (Xid) 94 is the corresponding XLA disease in mice 100–103.  It is 
caused by a single point mutation in the PH domain of Btk, where a highly conserved 
arginine at position 28 is replaced by a cysteine (R28C) 72,104. In contrast with XLA, the Xid 
phenotype is a less severe form of B-cell deficiency and the affected mice still have 50% of 
the normal values of B-lymphocytes. Compensatory role for Btk has been studied in Tec/Btk 
double-deficient mice 105. 

1.2.1.4 BTK inhibitors 

Chemical compounds like LMF-A13 or terric acid have been shown to inhibit BTK catalytic 
activity, in vitro 106,107. Ibrutinib (PCI-32765/ Imbruvica) 108 is the first-in-human FDA- 
approved inhibitor and binds irreversibly to cysteine 481 near ATP binding domain of BTK 
66. Several Phase II and III clinical trials are ongoing to valuate BTK inhibition in patients 
with various B-cell malignancies 109–112.  

Acalaibrutinib (APC-196) is the second generation of BTK inhibitor designed to have more 
selectivity, still irreversible with less side effects. This novel inhibitor is already in clinical 
trials in patients with chronic or more aggressive B-cell malignancies 113. While BTK 
inhibitors remain highly efficient, several cases of relapses or disease progression on therapy 
with BTK inhibitors have been reported 66,114,115. 
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1.3.2 Resting lymphocyte kinase (RLK) 

RLK, also known as T-cell expressed kinase (TXK) 116, is a TEC family member expressed 
predominantly in T-cell lineage, especially THelper1 cell and mast cells. RLK kinase has a 
nuclear localization signal (NLS) sequence and is structurally similar to BTK, except that 
this kinase lacks the PH-domain, but instead consists of a distinctive cysteine-string motif, 
causing a constitutive membrane association 117. Upon receptor stimulation, a high 
proportion of RLK molecules shuttles to nucleus, where it enhances interferon INF-γ 
production 118. 

1.3.3 LCK/YES novel tyrosine kinase (LYN) 

LYN is a member of SRC family non-receptor kinases that compromises 9 members 119 and 
is expressed in all blood cells, neural, liver and adipose tissues 120. Upon B-cell activation, 
LYN undergoes rapid phosphorylation that will initiate a series of signaling events 121. SRC 
tyrosine kinases share conserved domain structure and consists of a myristoylated N-
terminal domain followed by SH2, SH3, kinase domain and a C-terminal tail. LYN has 
been reported to play an important role in Epo-induced erythroid differentiation, as well in 
involved in signal transduction from various hematopoietic receptors 122. 

 

1.4 SERINE/THREONINE KINASES 

1.4.1 Protein kinase AKT 

AKT, also known as protein kinase B (PKB) is a specific serine/threonine kinase involved 
in several signaling pathways divided through the three AKT isoforms; cell growth, 
proliferation, differentiation (AKT1/PKBα); glucose metabolism, insulin signaling 
(AKT2/PKBβ) and brain development (AKT3/PKBγ) 123. 

AKT isoforms have similar domain structure consisting of an N-terminal PH domain, 
required for membrane recruitment where it binds to PIP3. AKT carries a central kinase 
domain containing Thr308 site important for partial kinase activation and a C-terminal 
hydrophobic regulatory motif containing Ser473 site critical for fully activation and cellular 
relocation of the AKT kinase 124 (Figure 4). One of the downstream effects of PI3K-AKT 
relocation is further phosphorylation of target proteins containing RXRXXS/T motif 81. 
Because many of these substrates are shared with other kinases, the PI3K/AKT signaling is 
intersecting with other signaling pathways affecting in this way many other downstream 
effects 125. 
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            Figure 4. Domain structure of protein kinase AKT and regulatory partners.  

 

1.5 ADAPTOR PROTEINS 

1.5.1 Ankyrin repeat domain 54 protein (ANKRD54) 

ANKRD54, also known as Liar, LYN-interacting ankyrin repeat, is a 300 amino acid 
protein consisting of 4 ankyrin repeats, flanked by a nuclear localization signal (NLS) and a 
nuclear export signal (NES), and is expressed in various tissues.  

The structure of ANKRD54 displays a highly conserved structure among rat, mouse and 
human 126 (Figure 5). ANKRD54 is a nuclear/cytoplasmic shuttling protein and three of four 
ankyrin repeats are important for the interaction with BTK and LYN, interactions 
independent of the proline-rich regions in the SH3 domain. The direct interaction with BTK 
influences its nucleo/cytoplasmic shuttling in B-cells 126 and association of ANKRD54 with 
LYN and HS1 in a complex influences erythropoietin induced differentiation of erythrocytes 
122.  

    

           Figure 5. Schematic representation of ANKRD54 domains and interacting partners. 
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Ankyrin repeat domains are considered the most common sequence motif in nature 127, found 
in a plethora of proteins with a wide range of cellular function, they are involved in: protein 
transport, cell-cell signaling and development (Notch) 128, cytoskeleton integrity, cell-cycle 
regulation/tumor suppressor (family of INK4 tumor suppressors, p15, p16, p18, and p19 and 
53BP2, a regulator of the tumor suppressor p53) 129 or transcription factors (NFκB or Swi6) 
130. In addition, the three-dimensional structure of some of these ankyrin repeat proteins has 
been determined 127. Except predominant existence in eukaryotes, ankyrin repeats have been 
found in viruses, bacteria and archaea 131.  

Each internal ankyrin repeats consist of 33 amino acids residues, composed of a β-hairpin 
structure followed by two antiparallel α-helices and a variable loop 132,133. A unified trait 
among ankyrin repeats is the conserved GxTPLHLA motif 134–136 (Figure 6), found in all 
internal and C-terminal ankyrin repeats within a protein 137. Analyses of databases show that 
the number of ankyrin repeats in a protein varies greatly 136,138, but the majority of proteins 
contains two to six ankyrin repeats 137, tightly packed in a well-folded structure 139,140. Both 
theory and experiments agree that ankyrin repeats folding and structure is favorable for 
binding to targets proteins despite the lack of “long-range contacts”, like globular protein for 
example 141.  

 

Figure 6. Conserved motif features and secondary structural composition of ANKRD54 
ankyrin domains. 

 

In addition, designed ankyrin repeat proteins (DARPins) have a great potential as antibody 
mimetic proteins, already used in clinical and preclinical development 142. DARPins have 
high specificity binding potential to their target proteins, consists of 2 to 5 very stable repeats, 
designed after natural repeats, which as previously mentioned, are involved in protein-protein 
interaction in relatively all species, and are found in all extra-/intracellular environments 
143,144. A unifying trait of the ankyrin repeat proteins is that they are lacking enzymatic 
activity and typically function as universal scaffold or adaptor molecules 139.  
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1.5.2 14-3-3 protein 
 
The 14-3-3 family of acidic soluble proteins consists of 7 distinct members named with 
Greek letters (β, γ, ε, ζ, η, θ and σ) after their elution profile. The 14-3-3 are present in all 
eukaryotic cells and are involved in regulation of a large spectra of cellular proceses, 
including metabolic pathway signaling, cell cycle, cytoskeleton organization, cellular 
traffiking, apoptosis. These proteins have the ability to bind to a plethora of signaling 
molecules, including transmembrane receptors, kinases or phosphateses 145. Except 
abundant localization in the cytoplasm, 14-3-3 proteins can also be detected in the nucleus, 
Golgi apparatus or at the plasma membrane 146. 

Phospho-bindning motifs like RSXpSXP and RXXXpSXP (where pS is phosphoserine and 
can be replaced by pT Phosphothreonine) has been reported as 14-3-3 binding sites 147, as 
well as an AKT phosphorylation site RXRXXpS/T 81. 

14-3-3 proteins are able to form homo- and heterodimeric 148 U shaped structures and they 
were classified 149 according to their mode of binding:  

(i) conformational changes directly on the target protein, e.g. catalytically 
inefficient Serotonin-N-acetyltransferase due to phosphorylation on two 
separates sites 150.  

(ii) inhibition by protein interaction and modulation of subcellular localization of 
target protein, for example cytoplasmic sequestration of class II histone 
deacetylases 151 or high nuclear export rate of Cdc25 152. 

(iii) acting as a scaffold molecule, by bringing in close proximity two different 
proteins, e.g. BCR/RAF 153 or GSK3β to tau 154. 

14-3-3 are small proteins (27.7 kDa), mainly localized into the nucleus 155,  but can rapidly 
translocate to the cytplasm, in a chromosome maintenance region 1 (Crm1)-dependent 
manner, when its C-terminal NES becomes exposed. 14-3-3 proteins are exported from the 
nucleus together with their targets 156. 
 

1.6 SH3-DOMAINS 
 
Src-homology 3 (SH3) domains are small interaction modules found in many signaling 
proteins, including non-receptor tyrosine kinases. Evolutionary they are well conserved 
mediating protein-protein interactions important for a variety of signal transduction 
processes. The human genome encodes almost 300 SH3 domains 157. 

1.6.1 SH3 Domain structure and function 

Generally, this domain is sharing many common structural features; a β-sandwich consisting 
of five stands connected by three loops and a short 310 helix, where the amino acids are 
arranged in a right-handed helical structure. Each SH3 domain consists of approximately 60 
amino acids. The three-dimensional structures of a number of SH3 domains 158,159 are well 
described and cataloged 160–162, predicting different modes of binding. Numerous low- and 
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high affinity-binding partners have been found 163, characterized by their biological function 
157 or stored into peptide libraries 164, as well as accessible databases 165. BTK, RLK and LYN 
contain a single SH3 domain, but several other proteins can contain up to six SH3 domains. 
The significant role of the SH3 domain is mediation of protein-protein interaction.  

Following the reports about the composition and solution structure of BTK-SH3-domain 
(Figure 5), it has been determined that three tyrosine (Y223, Y225 and Y268), one aspartate 
(D232) and one tryptophan (W251) are highly conserved surface residues 166,167. These amino 
acids are important for fully activation of BTK (Y223 for auto-phosphorylation) or as key 
binding site with other proteins (ANKRD54 and Y268) (Figure 2).  Surface representation of 
amino acids forming BTK SH3-domain, places P265 in an inner cleft and Y268 very exposed 
and available on the surface 166. 

 

Figure 7. Secondary structure elements in the BTK SH3-domain,  

 

1.6.2 SH3 Domain in signal transduction 

As like TEC-family tyrosine kinases, many SH3-containing proteins are involved in signal 
transduction pathways, including SRC-family kinases, PLCγ, RasGAP and PI3K self-
phosphorylated residues, within the SH3 domain, are important for the full activation of these 
molecules and subsequent downstream transduction of signals 168,169. 
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2 AIMS OF THE THESIS 
 

The focus of this study was to explore futher the signaling of Tec family kinases, with the 
main focus for BTK kinase. Along that line, we have investigated the signalosome complex 
downstream of the BCR using proteomics approach, aiming to identify new bindings partners 
of BTK, in order to elucidate their mode of binding and biological function. Owing to that 
BTK shuttles between the cytoplasm and the nucleus, elucidating the role of BTK in the 
nucleus is of great interest. In particular, we have characterized two novel interaction-
parteners ANKRD54 and 14-3-3ζ proteins. In summary, we have: 
 
 
AIM 1: Characterized a novel interaction-partner for BTK, the ankyrin repeat domain 54 
protein, ANKRD54 and studied its role in the nucleo-cytoplasmic shuttling of BTK. 
 
 
AIM 2: Characterized a second novel interaction-partner for BTK, the 14-3-3ζ protein, and 
investigated its role in the regulation of the intracellular signaling of BTK. 
 
 
AIM 3: Characterized the critical ankyrin-repeat domains of ANK54RD responsible for the 
BTK interaction. The site of intracellular binding was determined to be in nucleus.  

 

AIM 4: Characterized the SH3 domain binding specificity with ANKRD54 through 
screening of  a complete human SH3-domain library. 
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3 MATERIALS & METHODS 
Many more details of the experimental procedures use in this thesis are available in the 
published papers and manuscripts. Briefly, I describe some of the general principles.  

 

3.1   CELLS 

3.1.1 Cell lines 

Namalwa and Ramos (human Burkitt B-cell lymphoma), Nalm-6 (pre-B-cell leukemia), K562 
(human myelogenous leukemia), A20 (mouse B-cell lymphoma), Jurkat (human T-
lymphocyte), Cos7 (African green-monkey fibroblast-like kidney), Phoenix GP and PG13 
(retrovirus producer lines based on a human-embryonic kidney, HEK293T cells) and NIH 3T3 
(mouse embryonic fibroblast) cell lines were obtained from the American Type Culture 
Collection (ATCC). The cell lines Phoenix GP, Cos7 and NIH3T3 were cultured in 
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% heat inactivated 
Fetal Bovine Serum (FBS) (Invitrogen). All other hematopoietic cells were cultured in 
RPMI1640 medium with supplements. All cells were cultivated at 37 °C in a humidified 5% 
CO2 incubator. 

3.1.2 Primary cells 

Purified mouse splenic B-cells or total cell suspensions prepared from spleens obtained from 
BTK wild type and BTK KO mice were immediately used. Stockholm South animal ethics 
committee approved the use of mouse models in this study.  

3.2 MASS SPECTROMETRY 

Mass spectrometry (MS) is a chemical analytical technique with remarkable improvements 
and is applied to proteins, peptides, DNA and other biological molecules. This powerful 
method combined with chromatographic separation methods allows detection of proteins in a 
mixture. Proteins are fragmented into small peptides, then converted to ions that are easier to 
manipulate by electric and magnetic fields. Ions are directed in a mass analyzer where they 
are separated by mass to charge ratio. The resulting spectra were analyzed by using the 
MASCOT program against the human Ensembl Database, thereby providing the molecular 
mass and other structural information. Further, the proteins of interest were biochemically 
validated by other methods used in our lab, co-IP and Western blot and/or immune-
fluorescence analysis. Modern MS allows high-confidence identification of protein-protein 
interactions and it is often used in large-scale studies 170. 

3.3 PHAGE-DISPLAY SCREENING 
 
Phage-display technology allows in vitro high-throughput screening of protein-protein 
interaction with help of bacteriophages 171. We have screened through a library containig a 
complete collection of all human Src homology-3 (SH3) domains expressed on the surface of 
the M13-derived phagemid vector fused to pVIII gene. As mentioned before, some proteins 
can contain more that one SH3 domain. In this library each SH3 domain, together with six 
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splice variants were counted as individual domains, which all jointly comprises of 296 SH3 
domains 172. Detalied bioinformatic information and sequences of all these SH3- domains are 
avalaible online 173. 
 

3.4 TRANSFECTION METHODS 
 
Transfection is the process of deliberately inserting genetic material into the cells. In this work 
different, transfection protocols have been used. At 48 h post-transfection, all cells were 
collected and analyzed. 
 
3.4.1 Electroporation 
The hematopoietic cells were transfected by electroporation using a Neon Electroporator 
(Life Technologies) and the 100 µL tip kit with the following settings: 1350V (pulse- 
voltage); 20ms (pulse-width); 2 (pulse-number).  

3.4.2 RNA interference 
Small interfering RNAs (siRNA), or short interfering RNA is a class of double-stranded 
RNA molecules (20-25 base pair in lenght) that interfiers with the expression of a certain 
gene, that displays complementary sequence, by inducing degradation of the messenger 
RNA (mRNA) 174. The synthetic RNA duplex induces a short-term silencing of protein 
coding genes.  
 
3.4.3 Plasmid transfection 
For the transient transfections of all the adherent cells, we frequentuely used the cationic 
polymer polyethyleneimine (PEI) (Polyscience Inc.). The standard calcium phosphate 
precipitation method 175 was used in isolated cases for the ectopic expression in HEK293T 
cells. 

3.5 PROTEIN ANALYSIS 
 
3.5.1 Immuniprecipitation 
Individual protein Immunoprecipitation (IP) or Complex protein Immunoprecipitation (Co-
IP) are one of he most widely used techniques to precipitate and purify a desired protein 
(antigen), or a target protein from a complex, or to determine posttranslational modifications 
of proteins, based on antigen-antibody interaction. 
 
3.5.2 Biotin-streptavidin pull-down assay 
The biotin-streptavidin pull-down assay is a comparable method to Co-IP, used to study 
protein-protein interactions as well. The interaction between biotin and streptavidin has been 
explored in many detection/ purification methods and is cataloged as a robust and sensitive 
assay. The principle of IP is based on using specific antibodies against a target protein 
forming an immune complex, which then is captured onto Protein A or G beads. In a similar 
fashion the biotinylated proteins are pulled down with Streptavidin beads. The advantage of 
the biotin-streptavidin pull-down assay is that there are no heavy or light chains (from 
antibodies) which interfere during the immunoblotting step. 
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3.5.3 Western blott (WB) 
Electrophoretic transfer of proteins, later renamed as Western blot 176 is an important 
technique to detect proteins in native or phosphorylated state. Isolated proteins from cells are 
solubilized  with sodium dodecyl sulfate and separated by gel electrophoresis, SDS-PAGE, 
followed by protein transfer onto nitrocellulose membrane.  The subsequent employment of 
primary and secondary antibodies is used to detect specific proteins, by chemiluminescence 
or by Odyssey infrared imaging system (LiCOR Bioscience GmbH).  

3.6 MICROSCOPY 
 
3.6.1Immunohistochemisty and Immunofluorescence 
Immunohistochemisty is a powerfull method, very often used in the laboratories, that reveals 
the existance and the localization of the target protein, in different cell types and tissues, in 
different biological conditions. Antibody-mediated antigen detection is a multi-step process 
that requires carefully optimization in order to obtain a accurate and specific signal detection. 
Vizualization of antibody-antigen can be acomplishmed by chromogenic or fluorescence 
detection and requirers light microscope, respectively fluorescence microscope. 
An alternative method to study dynamic of protein localization, is by vizualization of 
exogenous fusion protein using GFP (green) or RFP (red), which can be fused to the protein 
of interest. This approach is faster, less sensitive and allows to monitor the protein movement 
and localization directly in living cells. 
 
3.6.2 Confocal microscopy 
High-resolution optical images of the transfectd cells were captured on a LeicaDMRXA 
confocal microscope eguipped with a 3D digital microscopy work station (©Leica 
Microsystem, Weltzar) and analyzed using “Slide Book” program (Intelligent imaging 
Innovation Inc., CO, USA) 
 
3.6.3 Fluorescence microscopy 
Transfected cells were analyzed in a motorized Olympus IX-81 inverted-fluorescence 
microscope equipped with an XM10-monochrome-camera and narrow band-filter cubes for 
UV (DAPI), green (GFP) and red (Cy3) excitation.  
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4 RESULTS & DISCUSSIONS 
 

4.1 PAPER I 
 

Regulation of Nucleocytoplasmic Shuttling of Bruton's Tyrosine Kinase (Btk) 
through a Novel SH3-Dependent Interaction with Ankyrin Repeat Domain 54 
(ANKRD54) 

In this study, we have identified ANKRD54 as a novel interacting partner to BTK and 
found that ANKRD54 is the first identified protein that specifically influences the nuclear 
export of BTK. 

The groundwork of this investigation was to identify more partners within the signalosome 
complex downstream of the BRC under different cellular conditions (starvation, activation 
or inhibition), by using bottom-up “shotgun” proteomics approaches, where affinity 
purified samples were subjected to proteolytic digest by trypsin, followed by nano-liquid 
chromatography separation coupled to mass spectrometry. We have established a stable 
Namalwa B-cell line expressing Flag-tagged BTK and the purified BTK-Flag complexes 
were prepared for gel-free, bottom-up proteomics. From the resulting tandem mass spectra 
we have selected ANKRD54 and 14-3-3ζ (paper II) for further studies. 

Combination of biochemical techniques and microcopy were used to confirm the direct 
SH3-domain dependent interaction between ANKRD54 and BTK. With help of peptide 
motif-finder databases, the ANKRD54 motifs were identified. The core region consists of 
four ankyrin domains, important for the interaction with other proteins, flanked by N-
terminal NLS and C-terminal NES motifs, while the N-terminal and C-terminal part of the 
protein are unique.  

Remarkably, we found that ANKRD54 co-localizes with BTK in the cytoplasm and more 
interestingly even when BTK was tagged with a synthetic NLS. In similar experiments we 
demonstrated that ANKRD54 does not affect localization of two different nucleus-resident 
proteins; estrogen receptor β and transcription factor T-bet or the nucleus-trapped tyrosine 
kinase c-ABL. Unexpectedly, the cellular localization of another TEC family kinase, 
namely TXK/RLK was affected by ANKRD54. 

Since a mutant of BTK lacking the entire SH3 domain failed to interact with ANKRD54, 
we designed a peptide covering the C-terminal of BTK’S SH3 domain 
(ARDKNGQEGYIPSNYVTEAEDS) that was sufficient to pull-down endogenous 
ANKRD54.  

Additionally, we showed that the BTK-ANKRD54 interaction was independent of kinase 
activity and that an increased amount of ANKRD54 down regulates tyrosine (Y551) 
phosphorylation of active BTK. 

Moreover, we demonstrated that both proteins utilized the Crm-1 dependent export 
pathway and upon Leptomycin B treatment, complete ANKRD54 nuclear localization 
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occurred after only 3 hours, compared with BTK that required more than 12 hours, 
suggesting that the physical interaction may occur in the nuclear compartment.  

In conclusion, we suggest a model of nuclear export of BTK, mediated by an SH3-domain 
dependent interaction with ANKRD54. 

 

4.2 PAPER II 
 

Dual phosphorylation of Btk by Akt/Protein Kinase B Provides Docking for 14-3-3 
ζ , Regulates Shuttling, and Attenuates both Tonic and Induced Signaling in B cells 
 

This paper represents a parallel study to our previous publication (paper I). Here, we 
investigated the interaction between BTK and its novel partner, 14-3-3ζ, which was 
identified from the proteomic data.  

14-3-3 proteins are recognized to bind to RXRXXPpT/S consensus region sequences. Two 
such motifs were identified in BTK, one located in the PH domain (46-RGRRGS-51) and 
the second located in the kinase domain (490-RHRFQT-495).  

Furthermore, we revealed that pS51 and pT495 sites on BTK were phosphorylated by the 
AKT/PKB, and found to be critical for the interaction with 14-3-3, since both BTK and 
14-3-3 inhibitors hindered the interaction. Surprisingly, in the presence of 14-3-3 inhibitor, 
the BTK, phospholipase Cγ2 and nuclear factor-κB protein phosphorylation increased 
strongly, suggesting its implication in the B- cell receptor mediated tonic signaling. 

In addition, the loss-of-function BTK mutant (S51A/T495A) failed to interact with 14-3-
3ζ and oppositely the phosphomimetic BTK mutant (S51D/T495D), exhibited strong 
tyrosine phosphorylation, which ultimately triggers ubiqutination and degradation of 
active BTK. Another inhibitor targeting PI3-K abrogated BTK phosphorylation and 
bindning to 14-3-3ζ. 

Co-localization studies revealed that both BTK and 14-3-3ζ resided in the cytoplasmic and 
perinuclear regions, while depletion of 14-3-3ζ, by siRNA led to more nuclear 
accumulation of BTK.  

Taken together, we present AKT as a novel negative regulator of BTK, via 14-3-3ζ that 
binds to phosphorylated BTK and prevents it’s translocation to the nuclear compartment. 
The fate of active BTK is now dictated by ubiquitination and subsequently proteasome 
degradation, followed by termination of BCR signaling. 
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4.3 PAPER III 
 
Domain Structure Characterization of ANKRD54 and Subcellular 
Localization of Bruton’s Tyrosine Kinase (BTK) 
 
In this work we have extended our initial observation regarding co-localization 
between ANKRD54 and BTK. By site-directed mutagenesis and combined with co-
lokalization studies of ANKRD54 wt and various mutants, we characterized that 
three out of four ankyrin domain are responsible for the interaction with BTK. 
 
ANKRD54 contains four ankyrin repeats domain and accordingly with the 
litterature 137 the first 10 residues of each middle and C-terminal repeats are highly 
conserved consensus regions (GxTPLHLA). 
 
We generated single domain deletions of each ankyrin domain, mutation of NLS 
and NES consensus, together with two point mutation of possible important 
tyrosine sites. Ankyrin repeat domain ANK2, ANK3 and ANK4 were able to 
influence the cellular localization of nuclear targete BTK. 
 
Owing the fact that Leptomycin B influences diffrently the nuclear accumulation of 
BTK vs ANKRD54, we explored futher and determined that the interaction 
between BTK and ANKRD54 establishes in the nuclear compartment. 
 
The Crm-1 dependent nuclear accumulation of BTK suggests that the protein has a 
functional NLS, but the mechanism utilized by BTK to shuttle to the nucleus still 
remains enigmatic. 
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4.4 PAPER IV 
 

ANKRD54 preferentially selects Bruton’s Tyrosine Kinase (BTK) from a 
Human Src-Homology 3 (SH3) Domain Library 
 
In this study, we aimed to indentify the spectrum of an ANKRD54 SH3-
interactome. From our previous work we knew that ANKRD54 interacts with BTK 
in an SH3 domain dependent manner and that a 22-aa short peptide covering the C-
terminal of BTK SH3 domain, was sufficient for binding.  
Owing this knowledge, we visualy inspected the C-terminal of other kinases and 
found certain similarities; the  265-PSNY-268 motif, were SNY ammino acids 
represents a 3.10 helix between the beta sheet 4 and 5 159,166. In addition, single or 
double point mutation of proline or tyrosine residues demonstratrate the importance 
of tyrosine, Y268.  
 
After three independent screenings, with a complete SH3-domain library, we 
identified 15 different, positive hits. Only two of them were previously reported in 
literature as ANKRD54 interactors, namely BTK and LYN. Importantly, the BTK-
SH3 domain was predominantly selected in each screening round.  
 
Further, we have explored the posibility of competition between BTK and LYN 
toward ANKRD54 and we determined that there is no enhanced binding  between 
LYN and ANKRD54 in the absence of BTK. 
 
Taken together, our findings suggest that interaction between BTK and ANKRD54 
is highly selective, therefore we identify BTK as being the preferred partner to 
ANKRD54.  
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5 CONCLUDING REMARKS AND FUTURE PERSPECTIVE 
 
Proteins and proteomics studies remains a key topic in modern cell biology. 
Proteins are coming in all sizes and shapes and are “the workers” that together with 
an increasing number of RNA species control all biological systems in a cell. Even 
if some proteins can function independently, the majority of them need other 
proteins for proper biological activities. In addition, proteins are dynamic, 
constantly co- and post-translationally modified and allows crosstalk of different 
cellular pathways.  
 
Signal transduction is the information flow within eukaryotic cells, relies on both 
stable and transient protein-protein interactions. Due to the complex nature of the 
proteome, modern technologies have been developed, together with the 
improvement of the old one, to investigate the proteome in depth. Neverless, the 
greatest challenge remains to understand and determine function/-s of proteins in 
their proper biological context, in order to be able to combat diseases and/or 
develop new treatments. 
 
Two bona-fide interaction partners to BTK have been identified and studied in 
this work, namely ANKRD54 and 14-3-3ζ, a nuclear-export mediator 
respectively,  a nuclear-import preventor.  
 
The adaptor protein, ANKRD54 preferentially associates with BTK in the nuclear 
compartment, where ANKRD54-mediated export is induced, independent of BTK 
kinase activity.  
 
14-3-3ζ interaction with BTK is facilitated by AKT phosphorylation on two 
different sites on BTK, thereby preventing its nuclear translocation. Furthermore,   
this serine/threonine activation leads to proteosomal degradation of BTK and 
thereby termination of BCR signaling. 
 
Seemingly, our findings will contribuite to further understanding the regulation 
and subcellular localization of BTK. However, parallel proteomic work is ongoing 
whitin the scientific world that hopefully will expand todays knowledge about the 
molecular mechanisms underlying regulation, sub-cellular localization and 
signaling of BTK. 
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