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Abstract 

The general aim of this thesis was to increase the knowledge regarding some clinical and 

methodological aspects, relevant in view of toxicity as well as tumour control, in stereotactic 

body radiation therapy (SBRT) of lung tumours. In the first two studies, reirradiation and 

radiation-induced atelectasis were studied. In the following two studies, estimations of doses 

delivered to the tumour, considering geometrical uncertainties, were performed. 

 

Considering the very high biological tumour doses delivered in SBRT, knowledge of the risk 

of high grade toxicity is of utmost importance for its clinical use. In the first study, 

reirradiation with SBRT of lung tumours after previous SBRT in the same region was 

retrospectively evaluated in 29 patients with 32 tumours with regard to toxicity, local control 

and survival. Larger tumour volumes and central location were correlated to more severe 

toxicity, and larger tumour volumes were also correlated to worse local control. Three of the 

patients with centrally located lung tumours died due to bleeding, while no grade-5 toxicity 

was observed for patients with peripherally located tumours. The one- and three-year survival 

from time of reirradiation was estimated to 59% and 23%, respectively. It was concluded that 

reirradiation with SBRT in a location previously treated with SBRT was feasible with low 

rates of toxicity for patient with peripheral lung tumours, while caution should be taken for 

patients with central lung tumours due to the risk of increased severe toxicity. 

 

In the second study a possible dose-response relationship for radiation-induced atelectasis and 

bronchial doses after SBRT close to the main, lobar or segmental bronchi was evaluated. Out 

of the 74 patients, 18 (24%) developed radiation-induced atelectasis at a median time of 8 

month after radiotherapy. A significant dose-response relationship was found between the 

high-dose bronchial volume and the incidence of atelectasis. The median of the minimum 

dose to 0.1 cm3 of the bronchi receiving the highest dose (D0.1cm3) was 210 Gy3 (EQD2, using 

α/β=3 Gy) for patients with atelectasis, and 105 Gy3 for patients without. The estimated 

incidence of atelectasis at 1, 2 and 3 years was 3%, 8% and 13%, respectively, at a bronchial 

D0.1cm3 of 100 Gy3, 10%, 21% and 31% at 150 Gy3, and 25%, 42% and 53%, respectively, at 

a dose of 200 Gy3.  

 

Of decisive importance for the clinical use of SBRT is the balance between the risk of 

toxicity and the gain expected by control of the treated tumour. As a surrogate, to 

quantitatively foresee the latter, dose to the tumour is used. As planned and delivered dose 

may differ more in SBRT as compared to conventional radiotherapy, knowledge of delivered 

dose is highly important for SBRT. Study three and four were focused on the issue of 

delivered tumour dose in SBRT. 

 

Study three aimed to evaluate the accuracy of a dose-shift approximation used for estimating 

delivered clinical target volume (CTV) doses, given the geometrical uncertainties pertinent to 

SBRT. For a set of 10 representative patients with lung tumours, the static dose matrix was 



shifted according to clinically representative setup errors and a breathing trace scaled with 

different breathing amplitudes. The dose-shift approximation was compared to the more 

accurate beam-shift method with recalculation of dose at every geometrical position. 

Averaged over the patients, the disagreement between the methods for minimum CTV dose 

(D98%) was approximately 4% (root-mean-square) for setup shifts up to 10 mm, and for setup 

shifts up to 5 mm the disagreement was approximately 2%. It was concluded that for 

estimation of delivered dose for a particular patient it is advisable to use the beam-shift 

method for increased accuracy, while averaged over a group of patients the dose-shift 

approximation has an acceptable error. 

 

In study four, the delivered CTV dose was estimated for a cohort of patients treated with 

SBRT, taking clinical data of breathing motions and setup errors into account. Two different 

volumetric soft-tissue image-guidance techniques were compared; pre-treatment verification 

computed tomography (CT) (IG1) and online verification with cone-beam CT (CBCT) (IG2). 

Treatment plans for 50 consecutively treated patients, with 69 lung tumours, were 

retrospectively simulated. The dose-shift approximation was used with the static dose 

distribution shifted according to a breathing trace scaled with patient-specific amplitudes. 

Applied were also systematic and random setup errors (for IG1) and matching errors (for 

IG2), sampled from normal distributions. Each simulation was repeated 500 times for each 

tumour. For each tumour, 500 different dose-volume histograms were obtained, and from 

those a tumour-specific dose coverage histogram was calculated. For all tumours, a 

population-averaged dose coverage histogram was calculated as the mean of the tumour-

specific dose coverage histograms. The result showed that prescribed dose, to the periphery 

of the planning target volume, was delivered to 98% of the CTV with a population coverage 

probability within 86-96% (range between worst and best case setup assumptions, realistic 

assumptions: 90%) using IG1, and 97-99% (realistic assumptions: 99%) using IG2. Looking 

at 90% of the simulations with highest dose to 98% of the CTV (tumour coverage 

probability), at least the prescribed dose was delivered to 67% of the tumours with IG1 using 

realistic assumptions of setup errors, and to 99% of the tumours with IG2. In conclusion, the 

minimum dose delivered to the CTV increased with the use of online CBCT image-guidance, 

compared to the pre-treatment verification CT. 

  



 

 

Populärvetenskaplig sammanfattning 

Lungcancer är den femte vanligaste cancerformen i Sverige och orsakar mest cancerrelaterad 

död med en 5-årsöverlevnad på 15%. Detta beror delvis på att mer än hälften av patienterna 

har spridd sjukdom vid diagnos, cirka en tredjedel har lokalt avancerad sjukdom, och bara en 

femtedel upptäcks med lokaliserad lungtumör. För de senare är kirurgi förstahandsalternativet 

för behandling, men många patienter är medicinskt inoperabla, dvs inte kandidater för kirurgi, 

på grund av samsjuklighet eller för dålig lungfunktion. Då kan stereotaktisk strålbehandling 

(SBRT) med hög precision och få behandlingstillfällen framgångsrikt användas, med 

möjlighet att uppnå lokal kontroll. Denna metod kan också användas vid enstaka 

lungmetastas från annan cancersjukdom. Syftet med denna avhandling var att öka kunskapen 

kring några av de frågeställningar vi ställs inför i den dagliga verksamheten inom SBRT av 

lungtumörer. 

 

Med allt bättre behandlingsresultat och allt längre överlevnad efter cancerdiagnos ökar antalet 

patienter som behöver upprepad behandling. I den första studien undersöktes möjligheterna 

till rebestrålning med SBRT efter tidigare SBRT i samma område, främst med avseende på 

biverkningar. Slutsatsen var att rebestrålning med SBRT är möjlig med acceptabla nivåer av 

biverkningar för patienter med icke-centralt belägna lungtumörer. För patienter med centralt 

belägna lungtumörer bör man vara extra försiktig, då högre risk för allvarliga biverkningar 

observerades för dessa. 

 

Tumörer belägna centralt i lungorna, nära strålkänsliga riskorgan så som luftvägarna, är svåra 

att behandla. I den andra studien analyserades förhållandet mellan strålningsinducerad kollaps 

av hela eller del av lungan (atelektas) och doser till luftvägarna vid SBRT. Ett förhållande 

hittades mellan uppkomsten av lungkollaps och dosen till högdosområdet av luftvägarna. 

 

Att uppskatta den dos som faktiskt ges till tumören vid SBRT utifrån den dos som är planerad 

är viktigt för att bättre kunna förstå sambandet mellan dosen och sannolikheten att få kontroll 

på tumören. I den tredje studien undersöks noggrannheten i en enklare och snabbare metod 

för att uppskatta given dos, med hänsyn tagen till andningsrörelser och 

positioneringsvariationer vid behandlingen. Den enklare metoden, som innebär att den 

statistiska dosfördelningen förflyttas, jämförs med en noggrannare metod, där 

behandlingsfälten förflyttas och dosen räknas om i varje geometrisk position. Slutsatsen var 

att den enklare metoden generellt sett uppskattade en lägre tumördos i jämförelse med den 

noggrannare metoden. Men vid realistiska antaganden om osäkerheter och sett för en hel 

grupp av patienter var skillnaden begränsad mellan metoderna. 

 

I den fjärde studien användes ovannämnda enklare metod för att uppskatta given tumördos 

för en grupp patienter med lungtumörer behandlade med SBRT. Då den tekniska 

utvecklingen inom strålbehandling har varit stor de senaste decennierna så jämfördes given 

dos vid behandling med användandet av två olika bildtagningsmetoder för ökad 

positioneringsprecision. Slutsatsen var att den dos som ordinerades till tumören i högre 

utsträckning gavs vid behandling med hjälp av den nyare bildtagningstekniken. 



  



 

 

List of scientific papers 
 

I. Peulen H, KARLSSON K, Lindberg K, Tullgren O, Baumann P, Lax I, 
Lewensohn R, and Wersäll P. Toxicity after reirradiation of pulmonary 
tumours with stereotactic body radiotherapy. Radiotherapy and Oncology 
2011;101:260-266. 
 

II. KARLSSON K, Nyman J, Baumann P, Wersäll P, Drugge N, Gagliardi G, 
Johansson KA, Persson JO, Rutkowska E, Tullgren O, and Lax I. 
Retrospective cohort study of bronchial doses and radiation-induced 
atelectasis after stereotactic body radiation therapy of lung tumors located 
close to the bronchial tree. International Journal of Radiation Oncology 
Biology Physics 2013;87:590-595. 
 

III. KARLSSON K, Lax I, Lindbäck E, and Poludniowski G. Accuracy of the 
dose-shift approximation in estimating the delivered dose in SBRT of lung 
tumours considering setup errors and breathing motions. Manuscript. 
 

IV. KARLSSON K, Lax I, Lindbäck E, Wersäll P, Lindberg K, and Poludniowski 
G. Estimation of delivered dose to lung tumours considering setup 
uncertainties and breathing motion in a cohort of patients treated with SBRT. 
Manuscript. 



Contents 

1 Introduction ................................................................................................................ 1 

1.1 Lung cancer ....................................................................................................... 1 

1.2 Conventional radiotherapy ................................................................................ 1 

1.3 Stereotactic body radiation therapy ................................................................... 2 

1.4 Purpose of this thesis ......................................................................................... 3 

2 Radiation physics and biology .................................................................................... 5 

2.1 Radiation interaction ......................................................................................... 5 

2.2 Radiobiological models ..................................................................................... 6 

2.2.1 Linear-quadratic model .......................................................................... 8 

2.2.2 Universal survival curve ........................................................................ 9 

2.3 Dose-volume response modelling.................................................................... 11 

3 Methodological aspects of SBRT of lung tumours.................................................... 13 

3.1 SBRT at the Karolinska University Hospital ................................................... 13 

3.2 Hypofractionation............................................................................................ 13 

3.3 Stereotactic coordinate system and immobilisation ......................................... 15 

3.4 Heterogeneous dose distribution...................................................................... 15 

3.5 Tumour position verification ........................................................................... 16 

3.6 CTV-to-PTV margins and breathing motion assessment ................................. 17 

4 Clinical aspects of SBRT of lung tumours ................................................................ 19 

4.1 Local control ................................................................................................... 19 

4.2 Toxicity ........................................................................................................... 23 

4.2.1 Radiation-induced damage .................................................................. 23 

4.2.2 Timeframe of toxicity .......................................................................... 24 

4.2.3 Toxicity after SBRT of centrally located lung tumours ....................... 24 

4.2.4 Toxicity related to organs in the vicinity of the lungs .......................... 25 

4.2.5 Toxicity related to the lungs ................................................................ 26 

4.2.6 Toxicity and dose constraints .............................................................. 29 

4.3 Reirradiation .................................................................................................... 31 

5 Geometric and dosimetric aspects of SBRT of lung tumours .................................... 33 

5.1 Geometrical uncertainties ................................................................................ 33 

5.1.1 Breathing motion ................................................................................. 33 

5.1.2 Deformations and tissue changes ......................................................... 34 

5.1.3 Baseline shift ....................................................................................... 34 

5.1.4 Breathing phase of the treatment-planning CT .................................... 34 

5.1.5 Structure delineation ............................................................................ 35 

5.1.6 Online image-guidance ........................................................................ 35 

5.1.7 Setup.................................................................................................... 36 

5.1.8 Machine geometry ............................................................................... 37 

5.1.9 Human factor ....................................................................................... 37 

5.2 Dosimetric uncertainties .................................................................................. 38 

5.2.1 Dose calculation .................................................................................. 38 



 

 

5.3 Strategies to account for uncertainties ............................................................. 39 

5.3.1 Margin concept .................................................................................... 39 

5.3.2 Dose-coverage probability and probabilistic treatment planning ......... 42 

5.3.3 Estimation of delivered dose ................................................................ 43 

6 Summary of papers ................................................................................................... 47 

6.1 Paper I: Toxicity after reirradiation of pulmonary tumours with 

stereotactic body radiotherapy ......................................................................... 47 

6.2 Paper II: Retrospective cohort study of bronchial doses and radiation-

induced atelectasis after stereotactic body radiation therapy of lung 

tumors located close to the bronchial tree ........................................................ 47 

6.3 Paper III: Accuracy of the dose-shift approximation in estimating the 

delivered dose in SBRT of lung tumours considering setup errors and 

breathing motions ............................................................................................ 48 

6.4 Paper IV: Estimation of delivered dose to lung tumours considering setup 

uncertainties and breathing motion in a cohort of patients treated with 

SBRT ............................................................................................................... 49 

7 Main conclusions ...................................................................................................... 51 

8 Future research .......................................................................................................... 53 

Acknowledgements .......................................................................................................... 54 

Bibliography .................................................................................................................... 57 

 

  



List of abbreviations 

3D Three-Dimensional 

4D Four-Dimensional 

4DCT Four-Dimensional Computed Tomography 

AAA Analytical Anisotropic Algorithm 

ADL Activities of Daily Living 

AUC Area Under the Curve 

BED Biologically Effective Dose 

BED10 Biologically Effective Dose, using α/β=10 Gy 

BSh Beam-Shift 

CBCT Cone-Beam Computed Tomography 

CC Collapsed Cone 

COPD Chronic Obstructive Pulmonary Disease 

CR Complete Response 

CT Computed Tomography 

CTCAE Common Terminology Criteria for Adverse Events 

CTV Clinical Target Volume 

CVD Cardiovascular diseases 

d Fraction dose 

D Total dose 

Dx Minimum dose to volume x receiving the highest dose 

DNA Deoxyribonucleic acid 

DSh Dose-Shift 

DVH Dose-Volume Histogram 

EQD2 Equivalent Dose in 2 Gy fractions 

FFLR Freedom From Local Recurrence 

FFLP Freedom From Local Progression 

FSU Functional Subunit 

GTV Gross Tumour Volume 

Gy3 Gray, using α/β=3 Gy 

Gy10 Gray, using α/β=10 Gy 

ICRU International Commission of Radiation Units & Measurements 

IGRT Image-Guided Radiation Therapy 

ITV Internal Target Volume 

LC Local Control 

LR Local Recurrence/Relapse 

LQ Linear Quadratic 

MC Monte Carlo 

MLC Multi-Leaf Collimation 

MLD Mean Lung Dose 

MR Magnetic Resonance 

n Number of fractions 

NSCLC Non-Small Cell Lung Cancer 

NTCP Normal Tissue Complication Probability 

OAR Organs At Risk 



 

 

OS Overall Survival 

PB Pencil Beam 

PD Progressive Disease 

PET Positron Emission Tomography 

PR Partial Response 

PTV Planning Target Volume 

RECIST Response Evaluation Criteria In Solid Tumours 

ROC Receiver Operating Characteristic 

RT Radiation Therapy 

SBF Stereotactic Body Frame 

SBRT Stereotactic Body Radiation Therapy 

SD Stable Disease 

SF Surviving Fraction 

SRT Stereotactic Radiation Therapy 

std Standard Deviation 

TCP Tumour Control Probability 

TPS Treatment Planning System 

USC Universal Survival Curve 

Vx Volume receiving at least dose x 

VMAT Volumetric Modulated Arc Therapy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 1 

1 Introduction 

1.1  Lung cancer 

Current statistics about the prevalence, prognosis and treatment strategies for lung cancer in 

Sweden are published by Socialstyrelsen, Cancerfonden and Regionala Cancercentrum i 

Samverkan (Regionala Cancercentrum i Samverkan, 2015; Socialstyrelsen, 2015; 

Socialstyrelsen & Cancerfonden, 2013). It is estimated that about every 3rd person in Sweden 

will have a cancer diagnosis during their lifetime. About 50,000 persons are newly diagnosed 

with cancer each year, and the survival rate averaged over all cancer diagnoses is about 70% 

at 5 years after diagnosis, and about 65% at 10 years. Lung cancer is the 5th most common 

cancer in Sweden but is the most common cause of cancer-related death, both among men 

and women. The survival rate is about 15% at 5 years after diagnosis, and about 10% at 10 

years. The poor survival is due to the commonly late discovery of lung cancer, high age at 

diagnosis and concomitant comorbidities, which limits the treatment possibilities. Besides the 

primary lung tumours, included in the term lung tumours are also lung metastases. Lung 

metastases are common from several cancer diagnoses including primary lung cancer, but 

also diagnoses such as colorectal cancer and renal cancer. 

 

The first choice of treatment for localised lung tumours (Stage I-II) is surgery, commonly by 

removing the lung lobe or a wedge of the lobe where the tumour is located, which is possible 

in less than 20% of newly diagnosed patients. If the patient is inoperable due to reduced 

general medical condition or comorbidities, like chronic obstructive pulmonary disease 

(COPD) or cardiovascular diseases (CVD), the patient could be referred to local treatment 

with radiotherapy (RT). 

1.2 Conventional radiotherapy 

Most commonly lung cancer is diagnosed at a late stage of the disease. Approximately one-

third of the patients are diagnosed with locally advanced disease with lymph node 

involvement (Stage III). For some of these patients, treatment with combined chemo- and 

radiotherapy with curative intent is possible. The extent of the disease might lead to high 

doses to adjacent organs at risk, with increased risk of different kinds of toxicity. However, 

more than half of the patients are diagnosed with distant metastases (Stage IV), where 

chemotherapy is the primary choice. Some of these patients are treated with radiotherapy in a 

palliative setting for relief of pain, dyspnea, hemoptysis etc. 

 

To facilitate consistent reporting of dose to the tumour and surrounding normal tissues and 

healthy organs in radiotherapy, relevant structures to be delineated during treatment planning 

are defined by the International Commission of Radiation Units & Measurements (ICRU) in 

reports 50, 62 and 83 (ICRU, 1993, 1999, 2010) as follows: 
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• Gross tumour volume (GTV) – The visible or palpable extent and location of tumour 

growth: this might be primary tumour, metastasis or metastatic nodes 

• Clinical target volume (CTV) – This includes the GTV and microscopic or subclinical 

tumour cells, or diffuse and spiky growth around the GTV; it is defined by clinical 

experience 

• Internal target volume (ITV) – This accounts for variations in size, shape and position 

of the CTV; it is defined typically by recording the breathing motion 

• Planning target volume (PTV) – This includes the CTV (or the ITV) with the addition 

of a margin to account for the total effect of all relevant geometrical and dosimetric 

uncertainties; the target dose is typically specified to this volume, to ensure acceptable 

probability of the delivery of prescribed dose to the CTV 

• Organs at risk (OAR) – These are the selected normal tissues that due to their 

sensitivity to radiation might affect the treatment planning or the prescribed dose 

 

In conventional radiotherapy, the dose distribution is planned to be homogeneous within the 

tumour region. Often 95% of the prescribed dose is planned to cover the PTV, but sometimes 

with a trade-off between target coverage (probability for local control) and the dose to organs 

at risk (risk of side-effects). 

 

Clinical experience obtained early in the history of radiotherapy showed that dividing the 

treatment into multiple fractions could result in tumour control but with less severe side-

effects compared to a single fraction. This was later explained by radiobiological research. 

Normal tissue cells generally have a better ability to repair damage than most cancer cells 

(Steel & Nahum, 2007), implying fractionated radiotherapy to be more gentle for the normal 

cells without losing too much therapeutic effect on the cancer cells. Lower dose per fraction 

is beneficial for recovery of late-responding normal tissues (Steel & Nahum, 2007). 

However, there is a benefit of shortening the overall treatment time to reduce proliferation of 

tumour cells during the treatment (Steel & Nahum, 2007). In external beam radiotherapy the 

general convention today is to prescribe 2 Gy per fraction to the tumour, given in daily 

weekday fractions during several weeks. However, there are also other kinds of treatment 

schedules like accelerated hyperfractionated treatments with lower dose per fraction delivered 

in a shorter overall treatment time, and hypofractionated treatments with higher dose per 

fraction delivered in fewer fractions. The appropriate treatment schedule can vary depending 

on the patient, cancer type, body site and intent of therapy, e.g. curative or palliative therapy. 

1.3 Stereotactic body radiation therapy 

With the implementation in clinical practice of computed tomography (CT), multi-leaf 

collimators (MLCs) and 3D treatment planning, it became possible to obtain high conformity 

of the dose distribution to the PTV. This led to the possibility to decrease the dose to OAR, 

and due to that the possibility of hypofractionation, despite the apparent radiobiological 

disadvantage. Hypofractionation is one of the key aspects of stereotactic treatments. 
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The concept of stereotactic treatments started with intracranial stereotactic radiation therapy 

(SRT) developed from the 1950s by Lars Leksell. The Gamma Knife has been used in 

clinical practice since 1968 (Lax & Blomgren, 2005; Leksell, 1983). This treatment unit has 

about 200 Cobalt-60 sources placed in a hemispherical shape to treat brain tumours or 

malfunctions with a very high dose delivered in a single treatment fraction. The dose 

distribution is heterogeneous within the target volume for two reasons. The first is that the 

highest possible dose gradient was intended at the periphery of the target. The second is 

related to the way the total dose distribution was built up from several almost spherical high-

dose volumes, called shots. The high geometrical accuracy in the dose delivery in SRT was 

based on the use of a rigid stereotactic frame placed with screws into the skull bone as an 

external reference system. The outcome of these treatments has been very good with high 

local control rates and low toxicity for selected targets (Lax & Blomgren, 2005; Leksell, 

1983). 

 

The idea of extending this way of treating tumours to targets located in the thorax and 

abdomen led to the development of stereotactic body radiation therapy (SBRT) in the early 

1990s (Lax & Blomgren, 2005; Lax, Blomgren, Näslund, & Svanström, 1994). SBRT with 

hypofractionation started with relatively small tumours in the liver and lungs, and required a 

high geometrical accuracy of the treatment delivery. Essential aspects considered were, 

among others, the concept of tumour localisation with a stereotactic coordinate system, rigid 

patient immobilisation, heterogeneity of the dose distribution and hypofractionated regimen. 

For patients considered inoperable with localised primary lung tumours, or one or a few lung 

metastases from other cancer diagnoses, SBRT can be used with possibilities to achieve local 

tumour control. 

1.4 Purpose of this thesis 

The purpose of this thesis was to increase the knowledge regarding some of the 

considerations in daily clinical practice that need to be solved in SBRT of lung tumours, in 

order to improve this technique and to extend the scope of it to cases not previously 

considered, through the implementation of modern technologies and clinical experience 

collected in our clinic and elsewhere. 

 

Paper I. The first question to be answered was the feasibility of using SBRT for reirradiation 

of lung tumours in patients already treated with SBRT in the same region. In lack of other 

efficient treatment options for these patients, it was of utmost importance to evaluate the 

possibilities of treatment with this technique. A retrospective review of medical records and 

treatment plans were conducted, primarily evaluating toxicity (Peulen et al., 2011). 

 

Paper II. The second question to be investigated was the tolerance dose of the bronchial tree 

at SBRT. Several cases of radiation-induced atelectasis had been observed after SBRT of 

tumours close to the bronchi. The aim of the study was to estimate the relationship between 
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radiation-induced atelectasis and doses to the bronchi (Karlsson et al., 2013). The incidence 

of radiation-induced atelectasis was retrospectively evaluated from medical records and the 

relationship with planned bronchial doses was subsequently modelled. 

 

Papers III and IV. The third question to be investigated was that of the actual dose delivered 

(rather than planned) to lung tumours with SBRT, considering geometrical uncertainties. This 

was thought to be an issue of importance especially due to the form of the dose distributions 

used in SBRT and their impact under breathing motion and setup errors. The aim was to 

evaluate the dose delivered to the tumour to be able to explore the possibility of reducing the 

CTV-to-PTV margins while maintaining the high local tumour control, with the prospect of 

reduced toxicity. In Paper III the accuracy of a dose-shift (DSh) approximation was 

evaluated, modelling setup errors and breathing motions by shifting the static invariant dose 

distribution. This approach was compared to a beam-shift (BSh) model, simulating the same 

setup errors and breathing motions but with shifts of the beams/isocenter and recalculation of 

the dose distribution at each geometrical position. In Paper IV the DSh model was used to 

estimate the delivered dose considering setup uncertainties and breathing motions, comparing 

two different soft-tissue image-guidance techniques; pre-treatment verification CT (IG1) and 

online cone-beam CT (CBCT) (IG2). The delivered dose was estimated in terms of coverage 

probability of the CTV (to be covered by a certain dose), with tumour coverage probability 

for a single tumour and population coverage probability averaged over a population of 

tumours. 

 

In Chapter 2, the radiation physics and biology underpinning radiotherapy and SBRT is 

described. The methodological aspects of delivering SBRT are elaborated upon in Chapter 3. 

In Chapter 4, the clinical aspects providing context to the projects are presented. In Chapter 5, 

the geometric and dosimetric aspects of planning and delivery of SBRT are summarised, 

providing the context for the work presented in Paper III and IV. Chapter 6 summarises in 

detail the papers that constitute this thesis. Finally, Chapter 7 summarises the main 

conclusions and Chapter 8 highlights some possibilities for future research. 
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2 Radiation physics and biology 

2.1 Radiation interaction 

Megavoltage photons are the most common radiotherapy modality. The main mechanisms for 

energy deposition of photon interactions are the photoelectric effect, Compton scatter, pair 

production and photonuclear reactions (Nikjoo, Uehara, & Emfietzoglou, 2012). Compton 

scatter is the dominating interaction process at photon energies between 100 keV-20 MeV in 

low atomic number materials (Dance & Alm Carlsson, 2007), which is the case in RT of 

humans. In this interaction process, the incident photon interacts with a free or atomic 

electron, and the photon and the secondary electron are scattered in different directions. The 

photon can be scattered in all angles, while the secondary electron is scattered in forward 

angles (Dance & Alm Carlsson, 2007; Nikjoo et al., 2012). The higher the incoming photon 

energy, the more forward-focused the scattering distribution of the photon, and the higher the 

energy transferred to the electron (Dance & Alm Carlsson, 2007). For a 6 MV beam the range 

of the Compton electrons will be around 16 mm in human tissues (Mayles & Williams, 

2007), while the scattered photons reach much farther (Dance & Alm Carlsson, 2007). The 

scattered photons and electrons continue to interact with the surrounding tissues in several 

generations. Most of the energy loss events of the Compton scattered electrons occur through 

soft collisions, with small energy transfer, when the electron passes an atom at a distance and 

affects the whole atom by excitation or ionisation of an outer-shell electron (Nahum, 2007). 

When the electron passes an atom at a close distance, a hard collision may occur where a 

larger amount of energy is transferred to one of the atomic electrons that is ejected, called a 

delta-ray (Nahum, 2007). 

 

This chain reaction of photons and electrons results in ionisations and excitations of the 

atoms in the cells (Nikjoo et al., 2012; Steel, Chapman, & Nahum, 2007). The interactions in 

human tissues occur mainly with water, but also with lipids, proteins and the 

deoxyribonucleic acid (DNA) (Okunieff, 2005). In contrast to most components of a cell, the 

DNA chain has no redundancy; its unique encoding of genes with essential functions, which 

makes the impact of DNA damage much more severe (Steel et al., 2007; Wouters & Begg, 

2009). About 70% of the biological effect of the irradiated cells is caused by ionisations of 

the water molecules, resulting in highly reactive free radicals (Nias, 2000). The other part is 

due to direct damage of biological structures (Nias, 2000), by primary and secondary photons 

and their corresponding secondary electrons. Inside the cell there are many enzymes to repair 

DNA damage, which occur spontaneously on average tens of thousands of times in a human 

cell during a day (Bernstein, Prasad, Nfonsam, & Bernstein, 2013). However, the damage can 

also be lethal, i.e. leading to apoptosis or necrosis within hours, or cause mutations leading to 

cancer after many years, or hereditary damage in coming generations. Besides the DNA 

damage, signalling proteins (cytokines) are produced within the irradiated region (Okunieff, 

2005). These cytokines can for example induce apoptosis, necrosis, proliferation, cell cycle 
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arrest and promote or inhibit inflammation, and are a large cause of the indirect consequences 

of radiation leading to late effects (Okunieff, 2005).  

 

The purpose of radiotherapy is to prevent proliferation (mitosis) of the tumour cells so that 

the cells lose their ability to form colonies of cells, known as proliferative cell death, or to 

induce apoptosis (Hagan, Yacoub, Grant, & Dent, 2005; Okunieff, 2005; Steel et al., 2007), 

without causing too much irreparable damage to normal cells. The absorbed dose in tissue 

correlates with the damage of the cells (Steel, 2007). Photon irradiation with 1 Gy gives about 

100,000-200,000 ionisations in every cell nucleus (Steel et al., 2007), leading to about 1000 

or even up to 20,000 single-strand breaks and 20-40 double-strand breaks of the DNA 

(Okunieff, 2005; Steel et al., 2007; Wouters & Begg, 2009). Single-strand breaks are easily 

repaired, while double-strand breaks are a more serious type of damage. Despite such 

extensive damage at 1 Gy, the effective repair enzymes enable most cells to survive anyway 

(Steel et al., 2007), resulting in about 30% cell kill in human cells (Wouters & Begg, 2009). 

However, most cancer cells are less effective in repairing damage than normal cells are (Steel 

& Nahum, 2007). 

2.2 Radiobiological models 

To model cell survival, the term surviving fraction is used which is defined in cell-studies as 

the number of irradiated cells with preserved reproductive (mitotic) function and ability to 

form colonies compared to the number of the non-irradiated cells (Steel et al., 2007). Besides 

the loss of reproductive function, irradiation may also lead to smaller colony sizes or reduced 

growth rate of cell colonies, not generally considered in radiobiological models evaluating the 

radiation effect (Steel et al., 2007). The relationships between the surviving fraction and the 

radiation dose (absorbed dose) are plotted in cell survival curves (Figure 1).  

 

 
Figure 1: Cell survival curves with surviving fraction on logarithmic scale, for single fraction (solid 

line) and multiple a) 2 Gy/fraction and b) 15 Gy/fraction (dashed line), calculated with the LQ model, 

using α/β=3 Gy, and α=0.206 Gy-1 from Wennberg and Lax (2013) for normal tissues. 
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Whether every single tumour cell has to be killed to achieve local tumour control has been 

debated and studied over the years, but there are no results supporting the opposite and no 

consensus has yet been reached (Steel et al., 2007). 

 

An essential factor affecting the cell survival is the fractionation schedule. The different 

important aspects of fractionation are summarised in the 5 Rs of radiotherapy: 

 

• Repair – Repair of the cells occur within a few hours after irradiation, making the 

tissue more radioresistant for fractionated radiotherapy (Steel et al., 2007). 

• Redistribution or Reassortment – Redistribution of the cells in the cell cycle 

between fractions which increases the probability of irradiating cancer cells in a more 

radiosensitive phase of the cell cycle at repeated fractions, and makes the tissue more 

radiosensitive for fractionation (Steel et al., 2007). 

• Repopulation – Repopulation rates for tumour cells are generally slow (but vary) 

with an average doubling time of about three months (Steel & Nahum, 2007). 

However, after induced damage the repopulation rate appears to increase, with 

doubling times shorter than one week (Steel & Nahum, 2007). Repopulation increases 

the tissue radioresistance at fractionated therapy (Steel et al., 2007). 

• Reoxygenation – Hypoxic cells are more radioresistant, and reoxygenation of these 

cells makes them more radiosensitive at repeated treatment fractions (Steel et al., 

2007). Generally, most hypoxic cells require about three times the dose as oxic cells 

for the same biological effect (oxygen enhancement ratio) (Fowler, Tome, & Welsh, 

2005); this factor might be reduced at fraction doses below 3 Gy (Steel et al., 2007). 

• Radiosensitivity – Radiosensitivity between different kinds of normal cells and 

cancer cells differs (Steel et al., 2007). Radiosensitivity is quantified as the surviving 

fraction at 2 Gy (SF2). 

 

This complex process of cell killing is challenging to describe in mathematical models. 

Regardless, there are several proposed radiobiological models that describe cell survival in 

vitro, which have been applied in vivo. The most frequently used is the linear-quadratic (LQ) 

model. However, it has been suggested that application of the LQ model at high fraction 

doses is limited, and several other models have been proposed, among which the Universal 

Survival Curve (USC) (Park, Papiez, Zhang, Story, & Timmerman, 2008) is one commonly 

used. 
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2.2.1 Linear-quadratic model 
The LQ model of cell killing describes the logarithm of the surviving fraction (SF) of the 

irradiated cells as a continuous bending curve (Steel et al., 2007), as illustrated in Figure 1. 

After treatment with n number of fractions of the dose d the SF is calculated by (Steel & 

Nahum, 2007): 

  ���� = ���	
��

��  (1) 

 

where α describes the initial slope of the survival curve, while β describes the curvature in a 

semi-log plot (c.f. Figure 1).  

 

The cell-specific parameters α and β may be obtained from experimental in vitro systems. 

These values may however not be relevant for in vivo (clinical) systems, and have to be 

obtained from clinical follow-up data for the end-point of interest. For the latter case the 

biologically effective dose (BED) can be derived from the LQ equation, recalculating the 

actual fractionation schedule into the equivalent dose given in infinitely small fractions (Steel 

& Nahum, 2007): 

  ��� = �� 
�	 �⁄
	 �⁄   (2) 

 

where d is the dose per fraction and n is the number of fractions. Calculations of BED using 

α/β=10 Gy are denoted BED10. 

 

From different sets of clinical data, all with the same biological/clinical end-point (same 

BED), but obtained with different fractionation schedules (d, n), values for α and β may be 

obtained. However, accurately obtained parameter values relevant for clinical radiotherapy 

are sometimes hard to find, and sometimes values obtained from in vitro systems are used in 

the clinic. 

 

The quotient between α and β parameters describes the fractionation sensitivity, where a low 

α/β ratio means a more curved survival curve and a greater dependence on fractionation (dose 

per fraction) (Steel & Nahum, 2007). It has been shown, initially from experimental animal 

data, that a higher fractionation sensitivity is correlated with a late radiation response 

(Thames & Hendry, 1987). 

 

A generally used value for the α/β ratio in clinical practice, for tumours as well as for early 

responding normal tissue, is 10 Gy, even though there are exceptions with lower α/β values 

for some tumour types (Steel & Nahum, 2007). Late responding normal tissues are often 

assigned a ratio of 3 Gy. This means that a late-responding normal tissue is more affected by 

fractionation than tumours are, and that many small fractions are beneficial for normal tissues 

without any larger loss of treatment effect of the tumour. 
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From the LQ equation the equivalent dose in 2 Gy fractions (EQD2) can be derived, used to 

recalculate a dose of d Gy/fraction in n fractions into the total dose giving the same surviving 

fraction as given with 2 Gy/fraction: 

 

  ���� = �� 
�	 �⁄
��	 �⁄   (3) 

 

Calculations of EQD2 using α/β=3 Gy are denoted Gy3 and calculations using α/β=10 Gy are 

denoted Gy10. 

2.2.2 Universal survival curve 
To more accurately model the biological effect for hypofractionation with high fraction 

doses, the USC model has been proposed by Park et al. (2008). The USC model uses the LQ 

model at low fraction doses up to the transition dose dT to describe the shoulder of the 

survival curve, and the single-hit multitarget (SHMT) model above dT as a straight line, in a 

semi-log plot (see Figure 2). 

 

The surviving fraction with the SHMT model is calculated as (Joiner, 2009; Wennberg & 

Lax, 2013): 

  ������ = �1 − �1 − ��
/ !
�"#
�

  (4) 

 

where n is the number of fractions and d is the fraction dose, as in the LQ model, while D0 is 

the dose that on average gives one hit per target (defined in the model as an assumption of a 

sensitive region of the DNA) and determines the slope (-1/D0), and �" is the number of targets 

in the cell and represents the extrapolated y-intercept of the linear part of the log-linear 

survival curve. At high doses the SHMT model asymptotically approaches a straight line 

(Wennberg & Lax, 2013): 

 

  ln&������' = �− (
 !
� + ln	&�"'# ∙ �  (5) 

 

Comparisons of the LQ and the USC models with regard to the SF at different doses, for both 

tumour and normal tissue with dose delivered in 3 and 8 fractions respectively, can be seen in 

Figure 2. The parameter values used were, following Wennberg and Lax (2013); D0 = 1.25 

Gy, �" = 4.5, dT = 6.61 Gy, α/β = 10 Gy and α = 0.3446 Gy-1 (tumour), and D0 = 1 Gy, �" = 10, 

dT = 5.8 Gy, α/β = 3 Gy and α = 0.206 Gy-1 (normal tissue). 
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Figure 2: Survival curves calculated with the LQ (blue) and the USC (red) models for 3 (solid lines) 

and 8 (dotted lines) fractions, using α/β = 10 Gy (left) and α/β = 3 Gy (right).  Indicated (grey lines) 

are total doses of 45 Gy (15 Gy × 3) and 56 Gy (7 Gy × 8) commonly used in our clinic. 

 

Figure 2 shows that there are only small differences between the LQ and the USC models for 

eight fractions. However, for three fractions there is a substantial difference, which is more 

pronounced for tissues with lower α/β ratios. 

 

In Paper II, EQD2 was calculated with both the LQ model and the USC model. The receiver 

operating characteristic (ROC) curves and the area under the curve (AUC) for the association 

between radiation-induced atelectasis and the minimum dose to 0.1 cm3 of the bronchi 

receiving the highest dose (D0.1cm3) are shown in Figure 3. No difference was shown between 

the two models in the predicting power of atelectasis from bronchial doses in EQD2.  
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Figure 3: ROC curves for radiation-induced atelectasis and bronchial D0.1cm3 in EQD2 calculated 

with the LQ and USC models. 

2.3 Dose-volume response modelling 

Cell survival models are commonly used in the clinic to convert doses between different 

fractionation schedules, by recalculating prescribed or planned doses into equivalent doses 

with BED or EQD2. This is applicable for point-doses or for homogeneously irradiated 

tumours and organs. To get an estimate of the probability of a certain outcome after 

heterogeneously irradiated tumours or organs, tumour control probability (TCP) and normal 

tissue complication probability (NTCP) models are used. In these models, the volume effect 

is considered and the dose-volume histogram data for the tumour or organ is used in such a 

way that a single risk measure is obtained. For organs with a large functional reserve (often 

referred to as parallel tissues, for example, lung or liver), the mean dose is often best 

correlated to the end-point of interest. For organs with a small functional reserve (often 

referred to as serial tissues, for example, spinal cord), on the other hand, the maximum dose 

is often best correlated to the end-point of interest. The relationship between TCP, as well as 

NTCP, and dose is commonly modelled with some type of sigmoid function (see Figure 4). 

 

The aim of radiotherapy is to treat the tumour with a dose giving a high TCP, which may be 

limited by the tolerance dose for normal tissues close to the tumour. The dose distribution can 

be optimised with regard to the therapeutic window (see Figure 4) or the therapeutic gain, i.e. 

the ratio between tumour response and normal tissue toxicity, making trade-offs between the 

TCP and acceptable NTCP. Whether there is a gain for the patient with increased dose 

depends on the steepness and the dose level, i.e. the location on the dose axis, of the dose-

response curves for the TCP and each specific NTCP end-point, which varies depending on 
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different biological factors, such as the 5 Rs of radiotherapy (Steel, 2007). Generally, the 

dose-response curve is steeper for late-responding normal cells, than for early-responding 

normal cells and tumour cells (Steel, 2007). This means that the size and shape of the 

therapeutic window might vary for different patients, tumour types, toxicity end-points and 

treatment schedules. 

 
Figure 4: Illustration of therapeutic window (grey shaded area) between sigmoid curves of 

therapeutic effect (TCP) and toxic effect (NTCP). 

 

Since cells are more or less sensitive to radiation in different phases of the cell cycle (more 

sensitive in G2 and mitosis phase and less sensitive in synthesis/S phase (Steel et al., 2007)), 

a result of dividing the radiotherapy dose into many fractions is that cells in a less sensitive 

part of the cycle at a given fraction can be in a more sensitive part at another fraction. Several 

factors may determine the width of the therapeutic window, such as fractionation and total 

treatment time (Bentzen, 2009). The former, due to the fact that normal cells are more 

effective in repairing damage than most cancer cells are (Steel & Nahum, 2007). 

 

When modelling dose-response relationships the time to response and follow-up time of the 

patients also have to be considered. For this purpose, survival analysis models can be used. In 

these models, every patient contributes to the follow-up data up to the time when the studied 

event occurs or to the time when the patient is censored, due to becoming lost for follow-up 

or death caused by other reasons than the event studied (Kirkwood & Sterne, 2003). 

Furthermore, the risk of the event studied is not required to be constant with time, but is 

allowed to vary. In Paper I and II, Kaplan-Meier curves were calculated for survival and time 

to toxicity or atelectasis, respectively. In Paper II, also the lognormal accelerated failure time 

model was used, to model the dose-response relationship of radiation-induced atelectasis and 

bronchial doses, at different time points after treatment. 
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3 Methodological aspects of SBRT of lung tumours 

Essential methodological aspects of SBRT were from the beginning the hypofractionated 

regimen, the concept of tumour localisation with a stereotactic coordinate system, rigid 

patient immobilisation, heterogeneity of the dose distribution, tumour position verification, 

the CTV-to-PTV margins and breathing motion assessment. Most of these are still essential, 

while some have developed over time. 

3.1 SBRT at the Karolinska University Hospital 

An overview of the development of the SBRT methodology at the Karolinska University 

Hospital over time can be seen in Table 1. In the following subsections, aspects of the 

methodology will be described in greater detail. 

 

Table 1: A general overview of the development of the SBRT methodology at the Karolinska 

University Hospital over the years. Changes in treatment technique are highlighted in bold. 

Characteristics 1991-2009 ≥2009 ≥2011 

Prescription isodose ~67% ~67% ~67% 

Setup and fixation SBF SBF SBF 

Technique Static beams Static beams 
Static beams 

VMAT (2011) 

No of beams or arcs 5-7 beams 5-7 beams 
5-7 beams 
2-4 arcs 

Photon energy 6 MV 6 MV 6 MV 

Dose calculation 
algorithm 

PB 
AAA (2008) 

AAA AAA 

Geometrical verification Verification CT CBCT (2009) CBCT 

CTV definition Tumour Tumour Tumour 

PTV-margin (depending 
on breathing amplitude) 

Long ≥10 mm 
Trans ≥5 mm 

Long ≥10 mm 
Trans ≥5 mm 

Long ≥10 mm 
Trans ≥5 mm 

Tumour movement 
assessment 

Diaphragm or tumour: 
Fluoroscopy 
Frontal projection 

Diaphragm or tumour: 
Fluoroscopy 

Frontal and lateral 

projection (2010) 

Tumour: 

4DCT (2011) 

SBF = stereotactic body frame, VMAT = volumetric modulated arc therapy, PB = pencil beam, AAA = 
analytical anisotropic algorithm, CT = computed tomography, CBCT = cone-beam computed tomography, 
4DCT = four-dimensional computed tomography  

3.2 Hypofractionation 

Hypofractionation, with fractionation schedules typically 10-15 Gy × 3 to the PTV periphery, 

was controversial when SBRT was introduced in the 1990s due to clinical practice and 

experience from conventionally fractionated radiotherapy. When SBRT was first introduced, 

the intention was to treat with single fractions, as done with the Gamma Knife, but 

unsatisfactory rate of local control in this early experience directed the treatment into 

delivering the dose in a few fractions (Blomgren, Lax, Näslund, & Svanström, 1995; Lax & 

Blomgren, 2005). Despite the radiobiological advantages of using many fractions, 
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hypofractionation in SBRT has been shown to be effective for treating certain tumours 

(mainly in the lungs and liver) with acceptable toxicity (Baumann et al., 2009; Blomgren et 

al., 1998; Blomgren et al., 1995). The main reasons for this appear to be the following: the 

selection of small tumours, the fact that the PTV only includes the gross tumour and no 

sensitive OAR, and the high setup accuracy allowing reduced treatment margins and 

consequently delivering of high tumour doses without too large doses to normal tissues. The 

wide acceptance of hypofractionation in SBRT today is due to the clinical results, and the 

practical benefit of few fractions where greater effort can be put into the tumour position 

reproducibility at each fraction (Lax & Blomgren, 2005). 

 

For tumour locations close to OAR, risk-adaption of the dose prescription might, however, be 

necessary in order to minimise toxicity. This implies an increased number of fractions for 

higher-risk patients (Guckenberger, 2015). Whether that also optimises the therapeutic 

window, i.e. what consequences the increased number of fractions has on the TCP, is not yet 

known in detail. 

 

In a randomised study of conventional RT (2 Gy × 35) and SBRT (15 Gy × 3 to 68% isodose 

encompassing the PTV) treatments of Stage I NSCLC by Nyman et al. (2016), no significant 

difference in local control (LC) was seen for the two treatment arms, at a median follow-up 

time of 37 months. However, lower incidence of different types of toxicity was observed 

within the SBRT arm, except for rib fractures. Even though the SBRT treatment is delivered 

in fewer fractions, the similar or lower toxicity compared to the conventional treatment might 

be explained by the reduced CTV-to-PTV margins used in SBRT. 

 

Lagerwaard et al. report about risk-adapted SBRT fractionation schedules selected from 

tumour stage and risk for toxicity, with 20 Gy × 3 for T1 tumours, 12 Gy × 5 for T1 tumours 

with large contact (the extent of which was not specified) with the chest wall or T2 tumours, 

and 7.5 Gy × 8 for tumours close to the heart, hilus or mediastinum, prescribed to the 80% 

isodose encompassing the PTV (Lagerwaard, Haasbeek, Smit, Slotman, & Senan, 2008). 

They show a local progression-free survival at 1 and 2 years of 98% and 93%, respectively, 

and less than 3% of the patients experienced severe late toxicity (local control results were 

not reported). This indicates promising results with risk-adapted fractionation, however, with 

only a minor part of the included patients with centrally located tumours. 

 

Moreover, risk-adaption of the total dose might also be advantageous. Especially for patients 

with severe comorbidity, Guckenberger (2015) argues that doses above approximately 

BED10=105 Gy to the periphery of PTV, and approximately BED10=170 Gy to central parts 

of the tumour, might not be beneficial. This implies that too high a dose might lead to severe 

side-effects for these patients, a conclusion depending on the dose to normal tissues which 

however was not reported. 
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3.3 Stereotactic coordinate system and immobilisation 

A stereotactic frame with a coordinate system for robust immobilisation was a prerequisite 

for the high geometrical accuracy during the time period when routine online image-guidance 

was not available. The frame together with a soft-tissue image verification procedure made it 

possible to achieve the accuracy required for delivery of stereotactic treatments. 

 

With the stereotactic body frame (SBF), the patient was positioned is a custom fitted vacuum 

pillow placed in a frame with a stereotactic coordinate system (Figure 5 left). This 

stereotactic coordinate system was visible on the CT images which allowed the tumour 

position to be located in the stereotactic system at treatment planning, as well as accurate 

patient positioning and tumour localisation at treatment. To improve the reproducibility of 

positioning the patient in the SBF, skin tattoos at sternum and tibia were applied and used for 

adjustment via laser systems attached to the frame; later the tattoos at the tibia were omitted. 

For patients with large breathing motions, an abdominal compression plate was placed on the 

patients’ upper abdomen to reduce breathing motions (Figure 5 right). The breathing motion 

was initially assessed with fluoroscopy, and in later years with four-dimensional CT (4DCT). 

 

   
Figure 5: The stereotactic body frame with the external coordinate system (left), and possibility for 

abdominal compression (right). 

 

With the introduction of online image-guidance, several other immobilisation systems have 

been developed for SBRT. Some of them employ a more or less frameless manner and only a 

few are available with a stereotactic coordinate system. Frequently these systems consist of a 

custom fitted vacuum pillow. Some clinics use devices, such as infrared markers placed on 

the patient’s chest, to monitor patient motions during treatment (Jin et al., 2007). In a 

comparison of different immobilisation system devices, the SBF had the highest 

reproducibility (Shah et al., 2013). Besides the abdominal compression, breathing motions 

may be handled with gating and tracking techniques (Verellen et al., 2007; Verellen et al., 

2010). 

3.4 Heterogeneous dose distribution 

Both intracranial SRT and SBRT deal with treatment of gross tumours. Thus increasing the 

dose inside the GTV as compared to the peripheral dose, with a heterogeneous dose 
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distribution, is likely to be advantageous. Especially considering the potentially more hypoxic 

and radioresistant cells within the GTV, even though the hypoxic cells might not be located 

exclusively in the central part of the tumour (Kavanagh & Cardinale, 2005). However, with a 

beam geometry approaching a 4π geometry, i.e. with the usage of non-coplanar beams, the 

dose increase to the central parts of GTV may be obtained without substantially increasing 

the dose to normal tissues outside the GTV (Lax, 1993). Thus, there is no price to pay for the 

“extra dose” to central volumes of the tumour that may contain more radioresistant cells. 

 

Before the advent of optimisation algorithms for treatment planning systems, heterogeneous 

dose distribution was generated with field sizes smaller than the PTV (Lax, 1993). Today, the 

concept of heterogeneous dose distributions in SBRT is generally adopted, with the degree of 

dose distribution heterogeneity varying between different treatment centres and techniques. 

Prescription isodoses, at the periphery of the PTV, commonly range from the 65% to 90% 

isodose line, with heterogeneities up to a 50% higher dose within the GTV compared to the 

periphery of PTV. At the Karolinska University Hospital prescription is typically to the 67% 

isodose encompassing the PTV. There is still no consensus or guidelines on how to report 

doses in SBRT, and the variation in dose heterogeneity can complicate the comparison of the 

true biologic effect for the same prescription dose between different treatment centres 

(Kavanagh & Cardinale, 2005).  

3.5 Tumour position verification 

Today, to obtain a high geometrical accuracy of the treatment, online soft-tissue (or 

implanted marker) image-guidance is generally used in the setup process in SBRT. However, 

at the beginning of SBRT in the early 1990s, imaging in the treatment room was limited to 

planar MV-images on x-ray films. Thus, image verification of the tumour position in the 

stereotactic coordinate system was done with a verification CT, taken in free-breathing as in 

the treatment-planning CT, before the first treatment fraction was given (Lax, Blomgren, 

Larson, & Näslund, 1998). If the tumour was localised outside the PTV in the verification CT 

as compared to the treatment-planning CT, the stereotactic coordinates were adjusted. Since 

the verification of the tumour position was not done exactly at the time of treatment, the 

verification CT provided a probabilistic verification of the tumour position reproducibility 

(Lax & Blomgren, 2005). Today, with improved image-guided radiation therapy (IGRT), the 

tumour position is verified online with CBCT with the patient in the treatment position in the 

treatment room before the delivery of each treatment fraction. The CBCT scan is acquired 

over a period of several breathing cycles, giving a blurred image of moving structures. Other 

imaging systems for tumour position verification used today are, for example, ultrasound 

(Benedict, 2005), orthogonal kV-images and 4D-CBCT. With 4D-CBCT, both target 

visibility and localisation are improved in the presence of breathing, and the inter-observer 

target localisation variability is reduced, compared to 3D-CBCT (Sweeney et al., 2012).  
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3.6 CTV-to-PTV margins and breathing motion assessment 

At the start of SBRT at the Karolinska University Hospital, a verification CT was made 

before delivery of each fraction. In that way, data were collected to determine standard CTV-

to-PTV margins. These were determined to be, and have so been since that time, 10 mm in 

the longitudinal direction and 5 mm in the transversal direction, if the assessed breathing 

motion was within 10 mm in the longitudinal direction and 5 mm in the transversal direction. 

This margin was estimated to have sufficient dose coverage of the tumour in 95% of the 

treatments (Lax & Blomgren, 2005; Lax et al., 1998). If the tumour breathing motion, 

evaluated before the treatment planning, exceeded these limits, abdominal compression was 

applied which commonly reduced the breathing motions. If the tumour breathing motion still 

exceeded 10 mm in the longitudinal direction or 5 mm in the transversal direction, or if the 

abdominal compression did not reduce the motion, the CTV-to-PTV margin was increased to 

the same magnitude as the breathing motion amplitude, evaluated in each direction.  

 

The breathing motion was at the beginning assessed with fluoroscopy of the diaphragm as a 

surrogate for the tumour, but subsequently, the tumour was assessed if visible. At the start, 

the motion was assessed in a frontal projection only. During that time, for small tumours 

located free in the lung parenchyma, a CTV-to-PTV margin of 10 mm was added 

isotropically around the CTV, due to the higher probability of baseline shifts for these 

tumours. In 2011 the assessment of tumour breathing motion was changed to 4DCT gated 

according to the patient’s breathing. Both these methods of assessing the breathing motion 

are associated with certain limitations. When assessing the tumour motion only in a frontal 

projection there is a risk of underestimating the tumour motion in the anterior-posterior 

direction. A limitation with assessing the tumour motion with 4DCT is given by the short 

scan time over the tumour region, potentially underestimating the tumour motion, since the 

motion amplitude might vary between breathing cycles. 

 

With the introduction of CBCT image-guidance, the setup accuracy was increased. For this 

reason, the CTV-to-PTV margins could in principle be decreased. This has not yet been done 

at the Karolinska University Hospital since it has not been known to what magnitude the 

margins could be decreased without reducing the probability of local tumour control. This 

was addressed in Paper IV where the results suggest that, averaged over the tumour 

population, the coverage probability for delivery of at least prescribed dose to 98% of CTV 

was improved from 90% to 99%, with the introduction of CBCT. That implies that the CTV-

to-PTV margin could be decreased; this would be especially important if dose constraints to 

OAR are exceeded with standard margins. If the latter is not at risk, a disadvantage is that the 

local control of the tumour may be jeopardised with reduced margins. However, today there 

is still a lack of conclusive data as to whether a change from 90% coverage probability 

compared to 99% is reflected in the clinical outcome. 
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4  Clinical aspects of SBRT of lung tumours 

Clinical outcome after radiotherapy is commonly evaluated with regard to local control (LC), 

local progression and toxicity, but might also be evaluated as overall survival (OS), cancer-

specific survival, or local, regional or distant progression-free survival. In this chapter, local 

control and toxicity rates after SBRT of lung tumours, as well as in the specific case of 

reirradiation with SBRT after previous radiotherapy treatment, are reviewed. 

4.1 Local control 

The primary aim of radiotherapy is to achieve control of the irradiated tumour. The tumour 

response can be classified according to the Response Evaluation Criteria In Solid Tumours 

(RECIST) guidelines as complete response (CR) with total tumour disappearance, partial 

response (PR) with at least 30% tumour diameter-sum shrinkage, progressive disease (PD) 

with at least 20% tumour diameter-sum increase, or stable disease (SD) with no sufficient 

shrinkage (not PR) or increase (not PD) of the tumour diameter (Eisenhauer et al., 2009; 

Therasse et al., 2000). 

 

The definition of local control might vary between including CR, PR and SD, or only CR and 

PR, but also freedom from PD. In published studies the local tumour effect is described by 

measures such as LC, local recurrence or relapse (LR), freedom from local recurrence 

(FFLR) or local progression (FFLP), cumulative local progression free rate and rate of CR, 

PR and SD, during the total follow-up time or at different time-points after treatment. There 

are numerous publications regarding tumour control after SBRT of lung tumours. The 

purpose of this review is not to evaluate the data quantitatively in detail but instead to 

illustrate the spread in published data of LC, or similar, for a relatively homogeneous group 

of lung tumours, mainly Stage I NSCLC. A summary of some published data on local tumour 

control or absence from local failure (FFLR, FFLP) versus prescribed dose in BED10, 

regardless of the dose prescription point, is shown in Figure 6. The following sections 

provide some further elaborations on the relationship between dose and local tumour effect in 

SBRT of lung tumours. 
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Figure 6: Published data on local control (LC) and freedom from local recurrence (FFLR) or local 
progression (FFLP), at different prescribed doses (regardless of the prescription point, but most 
commonly to the PTV periphery), and different time-points. Data points with LC below 70% have 
been omitted in the figure; these were LC at 3 years from reference 28: 44% at median BED10=105.6 
Gy (range 39-180 Gy), reference 32: 57% at BED10=84 Gy (4 Gy × 15), and reference 35: 63% at 
BED10<80 Gy. Thicker lines indicate references presenting data at several dose levels. 
 
Corresponding references to the numbers in the figure: 
 

Nordic SBRT study group 18. Nagata et al. (2005) 
1. Baumann et al. (2009) 19. Wulf et al. (2004) 
2. Lindberg, Nyman, et al. (2015) 20. Wulf, Baier, Mueller, and Flentje (2005) 
3. Nyman, Johansson, and Hultén (2006) Pooled cohort studies 
4. Baumann et al. (2006) 21. Chang et al. (2015) 

Meta-analyses 22. Grills et al. (2012) 
5. van Baardwijk et al. (2012) Retrospective studies 
6. Zhang et al. (2011) 23. Shaverdian et al. (2016) 

Prospective studies 24. Chik, Cheung, Lam, Kwan, and Au (2015) 
7. Videtic et al. (2015) 25. Peulen, Belderbos, Rossi, and Sonke (2014) 
8. Shibamoto et al. (2012) 26. Boda-Heggemann et al. (2014) 
9. Shibamoto et al. (2015) 27. Guckenberger, Allgäuer, et al. (2013) 
10. van der Voort van Zyp et al. (2010) 28. Baschnagel et al. (2013) 
11. Timmerman et al. (2009) 29. Shirata et al. (2012) 
12. Timmerman, Hu, et al. (2014) 30. Lagerwaard et al. (2012) 
13. Timmerman et al. (2013) 31. Onishi et al. (2011) 
14. Grills et al. (2010) 32. Guckenberger et al. (2009) 
15. Fakiris et al. (2009) 33. Baba et al. (2009) 
16. Timmerman et al. (2006) 34. Onishi et al. (2004) 
17. Zimmermann et al. (2006)  
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There are both proponents (Grills et al., 2012; Videtic et al., 2015) and opponents (van 

Baardwijk et al., 2012; Zhang et al., 2011) of the statement that there is a dose-response 

relationship within the high dose region above about BED10=105 Gy or local control above 

about 85%. However, there seems to be a consensus that a certain minimum dose has to be 

given in order to get local control above 90% (Boda-Heggemann et al., 2014; Chik et al., 

2015; Grills et al., 2012; Guckenberger, Allgäuer, et al., 2013; Guckenberger et al., 2009; 

Kestin et al., 2014; Onishi et al., 2004; Senthi, Haasbeek, Slotman, & Senan, 2013; Shirata et 

al., 2012; Wulf et al., 2005). A phase II clinical trial in the Nordic countries, including 

Karolinska, of SBRT of NSCLC showed a LC of 92% at 3 years (Baumann et al., 2009). The 

long-term follow-up of these patients showed a local control of 79% at 4 and 5 years 

(Lindberg, Nyman, et al., 2015). In this trial 15 Gy × 3 (BED10 = 113 Gy) was prescribed to 

the periphery of PTV, corresponding to approximately the 67% isodose, and it was conducted 

before online image-guidance was available. 

 

The dose reported in SBRT is most often the prescribed dose which generally is at the 

periphery of the PTV. However, in some cases, the dose is prescribed to the isocenter, located 

centrally in the CTV. There is an ambiguity in published data whether the periphery dose to 

the tumour or the central dose correlates to the probability of local control. Guckenberger, 

Klement, et al. (2013) imply that generally there is a better correlation between local tumour 

control and the maximum PTV dose than with the PTV periphery dose. In addition, van 

Baardwijk et al. (2012) concluded that there is no significant relationship between freedom 

from local progression and the dose to the periphery of PTV, from a meta-analysis of SBRT 

and accelerated high-dose conventional RT for NSCLC. However, Wulf et al. (2005) 

concluded from multivariate analysis (including isocenter dose, PTV periphery dose, tumour 

size and primary tumour or metastasis) that the dose to the PTV periphery was the only 

significant parameter for local control. A complicating factor to this question is that there 

have been different degrees of heterogeneity of the dose within the PTV in different studies. 

  

The different conclusions reached in the studies mentioned above may also be due to the 

differences between the reported prescribed or planned dose and the actually delivered dose. 

In Paper IV a lower delivered dose to the CTV was estimated using image-guidance with pre-

treatment verification CT, compared to using online CBCT image-guidance. However, the 

increase in delivered dose to the CTV periphery with the methodological change from pre-

treatment verification CT to online CBCT image-guidance does not seem to be reflected in 

available data of local control. Baumann et al. (2009) presented a local control of 92% after 3 

years with the use of pre-treatment verification CT, while studies using online image-

guidance do not seem to present higher figures of local control, however, with a variety of 

prescribed doses (Baschnagel et al., 2013; Boda-Heggemann et al., 2014; Grills et al., 2012; 

Nyman et al., 2016). Moreover, different CTV-to-PTV margins may have been used in the 

literature, leading to different levels of spatial accuracy; this could also influence the expected 

local control. 
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To demonstrate a significant increase in LC from about 90% to a hypothesised figure of 95% 

at a higher tumour dose, the required patient-cohort size would depend on the unknown 

gradient from the 90% to 95% LC in the corresponding dose-response curve. Clinical data 

after more than 15 years of worldwide use of SBRT does not seem to provide an answer to 

the question of this dose response. If there is a high clinical demand for local control above 

95%, rather than of the order of 90%, good estimates of delivered dose rather than prescribed 

doses will probably be highly important for the future to solve the issue of dose response. 

 

Besides the prescribed dose and the delivered dose, there might be technical-, patient- or 

tumour-related factors influencing the risk of local recurrence, such as: 

 

• Uncertainties in tumour delineation, depending on the diagnostic tools, image quality, 

image modality and experience of the operator. Baumann et al. (2006) discuss 

whether an observed increase in local failures for centrally located tumours was 

caused by the difficulty to distinguish between mediastinal structures and tumour 

growth, but it might also have been due to planned underdosage of the PTV or even 

the CTV due to proximity to OAR, or breathing motion. 

• Tumour size (number of clonogenic cells). There are reports of larger tumours being a 

risk factor for local recurrence (Baumann et al., 2006; Peulen et al., 2014; Zhao et al., 

2015), even though Allibhai et al. (2013) conclude from a prospective risk-adapted 

study that tumour size is not correlated with local failure, but with overall survival. 

• Radioresistant hypoxic cells, or cells in a radioresistant phase of the cell cycle, which 

require a dose that is 2.5-3 times higher than the dose needed for non-hypoxic cells in 

a more radiosensitive phase (Fowler et al., 2005). The heterogeneous dose 

distribution, with up to 50% higher doses in the central parts of the tumour compared 

to the prescribed dose to the periphery of PTV, might therefore not be enough for 

local control. 

• Patient- or tumour-individual radiosensitivity depending on genetic factors or 

histological tumour type, which has been shown in cell studies (Malaise, Fertil, 

Chavaudra, & Guichard, 1986; Skiöld et al., 2015; Williams et al., 2008). 

 

The ultimate purpose of local control after SBRT is that of cure or improved survival or 

improved well-being of the patient. But, even if local tumour control is achieved, cure or 

overall survival might not be improved (Boda-Heggemann et al., 2014; Guckenberger, 2015). 

This non-intuitive result might be caused by distant metastases, comorbidity and high patient 

age. In contrast to studies showing that, others have shown improved survival with high-dose 

SBRT (Baumann et al., 2006; Guckenberger, Allgäuer, et al., 2013; Palma et al., 2010). 

However, Zhang et al. (2011) observed lower OS at 2 and 3 years for patients treated with 

BED10>146 Gy compared to those treated with BED10=83-146 Gy in a meta-analysis. The 

authors mention that this may be due to increased toxicity, but argue that such a conclusion 

should be interpreted with caution due to potential differences between the included studies. 
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4.2 Toxicity 

4.2.1 Radiation-induced damage 

If further increase of dose is not the decisive factor for improving the local control, then it 

might be more relevant to limit the incidence of toxicity, as radiation-induced toxicity can 

have a substantial effect on the quality of life and can even be life-threatening or lead to 

death. The severity of radiation-induced damage depends on the radiation dose delivered to 

different tissues or organs, the volume irradiated, fractionation schedule, concomitant 

treatment, and additionally patient-specific aspects such as general health, comorbidity and 

genetic factors (such as radiosensitivity) (Steel, 2007). To prevent or limit serious toxicity, 

the treatment plan is designed to limit the dose to sensitive OAR. There are different kinds of 

dose constraints for different OAR, such as maximum dose, mean dose or dose-volume 

constraints, depending on the specific side-effects, based on clinical studies and clinical 

experience. 

 

Which kind of dose constraints that should be applied to the different organs depends on 

dose-response data for each specific end-point. If there is a small volume effect associated 

with the dose response the organ is classified as serial. With a large volume effect it is 

classified as parallel. The terms serial and parallel refers to the structural organisation of 

functional subunits (FSUs) assumed in the model describing the dose response. Serial organs 

can be thought of as a chain of FSUs that all have to be preserved to keep the functionality of 

the organ, and are sensitive to maximum point doses or close to the maximum dose (ICRU, 

2010). Parallel organs have FSUs that act independently of each other (ICRU, 2010), so that a 

certain volume (threshold volume) can be destroyed (due to being irradiated to a threshold 

dose) without the organ losing the function, owing to its functional reserve (Timmerman & 

Lohr, 2005). If a part of a parallel organ, like peripheral lung or peripheral liver, is damaged 

due to a too high dose, other parts of the organ can compensate for the loss of function, 

providing the damaged part does not exceed a critical volume. Parallel tissues are not 

sensitive to high-dose points, but rather the mean dose, or the irradiated volume at a certain 

dose level, i.e. if a threshold volume has been destroyed  (ICRU, 2010). The lungs can be 

considered as a combination of the two structure types, with the serial structure of the trachea 

and bronchi, and parallel structure of the alveoli-capillary complexes in the lung parenchyma 

(Timmerman & Lohr, 2005). 

 

To be able to compare toxicity data between treatment centers, the evaluation of side-effects 

needs to be consistent. However, there are different toxicity scales available, with similarities 

and differences. One of the most commonly used is Common Terminology Criteria for 

Adverse Events (CTCAE) (National Cancer Institute, 2010), with a grading from one (with 

none or mild symptoms) to five (with side-effects leading to death) (see Table 2). 
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Table 2: General summary of toxicity grading according to CTCAE version 4.0. 
Toxicity grade Symptoms 

Grade 1 Asymptomatic or mild symptoms, no intervention required 

Grade 2 Moderate symptoms, or limited instrumental ADL, or medical or non-
invasive intervention 

Grade 3 Severe symptoms, or limited self-care ADL, or hospitalisation, or 
operative intervention 

Grade 4 Life-threatening, or urgent intervention 

Grade 5 Death 
ADL = activities of daily living (instrumental ADL is cooking, shopping, handle private economy, etc; self-care 
ADL is dressing, personal hygiene, etc (National Cancer Institute, 2010)) 

 

Irradiation of lung tumours can induce toxicity due to damage to different structures in the 

lungs or nearby, such as the trachea, bronchi, alveoli, blood vessels, chest wall, heart, 

esophagus and spinal cord. It is recommended that circumferential irradiation of tubular 

organs is avoided of any critical structures (Grimm et al., 2011; Videtic et al., 2014). 

Depending on the tumour extent and location relative to OAR, the probability of different 

side effects varies. The incidence and severity of toxicity are related to higher doses (Zhang et 

al., 2011), and to central or peripheral tumour location (Bral et al., 2011).  

4.2.2 Timeframe of toxicity 
The time for the manifestation of radiation response varies between different kinds of cells, 

due to diversity in lengths of cell cycles. The timeframe might range from a few hours to 

several years. Toxicity is often classified into acute or early toxicity and late toxicity. Early 

toxicity is generally defined as that appearing within 3 months from radiotherapy, while late 

toxicity appears after 3 months up to several years after the treatment. The early-responding 

cells are those that proliferate fast, like epithelial cells, and respond to radiation within weeks 

from treatment (Steel, 2007). A short overall treatment time will reduce the cell repopulation 

time, which is an extra burden on healthy cells but an advantage in terms of tumour control 

(Steel & Nahum, 2007). Late-responding cells, like in the lungs and spinal cord, have a 

slower proliferation and express damage after weeks or years after the treatment (Steel, 

2007). These cells are less affected by the overall treatment time (Steel & Nahum, 2007). 

Late-responding cells are more sensitive to the dose per fraction than early-responding cells 

(Steel & Nahum, 2007). Early side-effects are often temporary and heal, while late side-

effects might be chronic (Dobbs & Landberg, 2003; Steel, 2007). 

4.2.3 Toxicity after SBRT of centrally located lung tumours 
Especially for centrally, compared to peripherally, located lung tumours, severe toxicity and 

death after SBRT have been observed (Haseltine et al., 2016; Timmerman et al., 2006). For 

these tumours, the distance to radiosensitive OAR generally decreases, leading to increased 

probability of high doses to OAR which may cause toxicity. From a systematic review by 

Senthi et al. (2013) of 20 studies including 563 centrally located primary NSCLC tumours or 

lung metastases treated with SBRT, the risk of grade 3-4 toxicity is reported to be less than 

9%, which might still be higher compared to patients treated for peripheral tumours. This is 

supported by Fakiris et al. (2009) who observed a rate of grade 3-5 toxicity of 10% for 
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patients with peripheral tumours, and 27% for those with central tumours. Furthermore, 

Timmerman et al. (2006) concluded from a phase II study of SBRT-treated NSCLC that there 

is an 11-fold higher risk of severe side-effects for patients with centrally located tumours 

(within 2 cm from the proximal bronchial tree) compared to patients with peripherally located 

tumours. Bezjak et al. (2016) report a maximum tolerated dose of 12 Gy × 5 from a dose-

escalation phase I/II study (RTOG 0813) of SBRT for centrally located NSCLC (within 2 cm 

from the proximal bronchial tree, or close to mediastinal or pericardial pleura), with 7% dose-

limiting toxicity at this dose level. However, Chaudhuri et al. (2015) treated central tumours 

abutting the bronchi with 10 Gy × 5 or 12.5 Gy × 4, and did not observe any grade 2 or 

higher toxicity. Due to the proximity to OAR for centrally located lung tumours, a prolonged 

treatment schedule with more number of fractions might be advantageous (Guckenberger, 

2015; Timmerman & Lohr, 2005), but might be at the expense of decreased tumour control 

(Timmerman & Lohr, 2005). 

4.2.4 Toxicity related to organs in the vicinity of the lungs 
Toxicity related to the organs in the vicinity of the lungs are fatigue, pleural effusion, chest 

wall pain and rib fractures, skin necrosis, esophagitis, pericardial effusion, brachial 

plexopathy and spinal cord damage. 

 

• Fatigue is a general weakness with inability to perform daily activities (National 

Cancer Institute, 2010). 

• Pleural effusion is the collection of fluid in the pleural cavity surrounding the lungs 

(National Cancer Institute, 2010). This fluid is usually reabsorbed after some months 

without any intervention (Timmerman & Lohr, 2005). 

• Chest wall pain and rib fractures. Chest wall pain seems especially to be a problem 

for patients with tumours in the dorsal part of the lungs, close to the spine, with 

irradiation of the roots of the chest wall nerves. Rib fractures might be subclinical, i.e. 

without symptoms (Baumann et al., 2006). 

• Skin necrosis. Irradiation with high dose in the skin may trigger a necrotic process. 

For calculation of skin dose, the skin is commonly defined as a 5 mm thick layer from 

the body surface (Grimm et al., 2012). 

• Esophagitis is an inflammation of the esophageal wall, while esophageal stenosis or 

perforation is narrowing or rupture of the esophageal lumen (National Cancer 

Institute, 2010). Perforation of the esophagus requires food intake through 

percutaneous endoscopic gastrostomy, which might have a large impact of quality of 

life, and can also be life-threatening. 

• Pericardial effusion is the collection of fluid in the sac surrounding the heart 

(National Cancer Institute, 2010), which can cause pressure on the heart and thereby 

reduced heart function. Further, long-term effects of lethal damage to the heart tissue 

can be caused by radiation. The coronary vessels seem to be the most radiosensitive 

parts of the heart, where high doses might disrupt the electrical impulses for the heart 

beat. 
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• Brachial plexopathy is a destruction of the nerves to the arm and hand on the 

affected side. The brachial plexopathy can cause numbness, tingles, pain, weakness, 

and reduced function of the arm or hand (National Cancer Institute, 2010). Risk 

factors include large tumours located in the apex of the lungs and the maximum dose 

to the brachial plexus (Lindberg, Grozman, et al., 2015). 

• Spinal cord damage. Myelitis is inflammation of the spinal cord which might lead to 

tingle, weakness and sensory loss (National Cancer Institute, 2010). Spinal cord 

damage can lead to paralysis (myelopathy) of the body (Steel, 2007), from the 

damaged point and downwards. Since this is a very serious toxicity, it is highly 

prioritised to be avoided despite potentially limiting the probability of tumour control. 

4.2.5 Toxicity related to the lungs 
Different kinds of toxicity related to the lungs are cough, dyspnea, fibrosis, pneumonitis, 

pneumonia, haemoptysis and atelectasis. 

 

• Cough may appear with mild coughing up to severe coughing limiting the self-care 

activities of daily living (ADL) (National Cancer Institute, 2010). 

• Dyspnea is difficulty in breathing (National Cancer Institute, 2010), with shortness of 

breath or breathlessness. This is common after radiotherapy treatment with fibrosis in 

the lungs, leading to limitations in expanding the lungs at inhale and retracting at 

exhale. Many patients with lung cancer are smokers with COPD, with breathing 

difficulties due to enlarged alveoli and lungs with limited breathing dynamics, already 

prior to the cancer treatment. 

• Fibrosis is a reaction to radiotherapy, in which the lung tissue is replaced by 

connective tissue (National Cancer Institute, 2010). The lung parenchyma loses its 

elasticity, with thickening around the small bronchi and blood vessels, and reduced 

ability to oxygen exchange (Timmerman & Lohr, 2005). This might appear a year or 

more after irradiation (Steel, 2007). 

• Pneumonitis is a radiation-induced sterile lung inflammation of the lung 

parenchyma. Symptoms might be fever, dry cough, chest pain and dyspnea 

(Timmerman & Lohr, 2005). This decreases the patient’s breathing capacity, since the 

ability for the air to come into the alveoli and the oxygen-carbon dioxide exchange is 

reduced (Timmerman & Lohr, 2005). This side effect generally appears 3-6 months 

after radiotherapy (Steel, 2007). 

• Pneumonia is a bacterial (or sometimes viral) infection causing lung inflammation 

with symptoms like fever, cough and respiratory distress, and is commonly treated 

with antibiotics. Fatal pneumonia has been reported after SBRT of both central and 

peripheral tumour locations (Timmerman et al., 2006). 

• Haemoptysis is coughing up blood or blood-stained mucus from the airways. 

Haseltine et al. report about 4 out of 18 (22%) patients with treatment-related death, 

of which 2 were due to pulmonary hemorrhage, after SBRT of tumours touching the 

proximal bronchial tree (Haseltine et al., 2016). The cause of bleeding after treatment 
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of centrally located lung tumours is not known in detail. One reason might be high 

doses to the bronchi or to vessels in the bronchial wall. Another reason might be that 

the tumour grows into the bronchial wall, not related to the treatment but to disease 

progression. 

• Atelectasis is the collapse of the lung parenchyma, either limited to a segment of the 

lung, or a lung lobe, or extending to a whole lung (National Cancer Institute, 2010). 

This side effect might be asymptomatic, diagnosed on radiological findings, if the 

collapsed volume is less than the patient’s lung reserve (Timmerman & Lohr, 2005), 

or might have a major impact on the patient’s breathing. Baumann et al. observed 

atelectasis for patients with centrally located lung tumours or tumours close to the 

main bronchi (Baumann et al., 2006). Whether the cause of atelectasis is bronchial 

damage with obstruction of the airway, vascular damage with blocked supply of 

blood, or a combination of these, is not known (Timmerman & Lohr, 2005). 

Furthermore, whether the effect of irradiating the whole cross-section of a bronchus is 

more pronounced or not in terms of incidence of atelectasis, compared to only 

irradiating a part of the bronchial wall with a certain dose level, is also not known. 

 

Due to the observed atelectases by Baumann et al. (2006), we conducted a retrospective study 

of radiation-induced atelectasis (Paper II) which shows that there is a correlation between the 

maximum dose to the bronchi and radiation-induced atelectasis (Karlsson et al., 2013). 

Among the 64 patients with available dose-volume data for the bronchi, 49 patients (77%) 

did not show signs of atelectasis and 15 patients (23%) developed atelectasis considered to be 

radiation induced, during the median follow-up period of 12 months (1-82 months). The 

median of the minimum dose to 0.1 cm3 of the bronchi receiving the highest dose (D0.1cm3) 

was EQD2=105 Gy3 (mean 124 Gy3, range 20-279 Gy3) for the patients who did not develop 

atelectasis, and 210 Gy3 (mean 213 Gy3, range 98-293 Gy3) for the patients who did. The 

incidence of atelectasis at different intervals of bronchial doses can be seen in Figure 7, 

without consideration of different follow-up times, together with the estimated dose-response 

relationships at 1, 2 and 3 years after treatment, however, with wide confidence intervals. The 

atelectases were developed at a median time of 8 months (mean 10 months, range 1-30 

months) after treatment. Kaplan-Meier curves for time to atelectasis are shown in Figure 8, 

with a significant difference for patients with bronchial D0.1cm3 above or below the median 

dose 147 Gy3 (log-rank p<0.001). 
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Figure 7: Incidence of radiation-induced atelectasis (number of patients with atelectasis divided by 

the number of patients in total) at different intervals of bronchial doses (D0.1cm3) in EQD2, not 

considering different follow-up times for the patients. The superimposed curves are estimated dose-

response relationships at different times after treatment. 

 
Figure 8: Cumulative incidence of atelectasis with time, for all patients (solid line) and for those 

receiving a bronchial dose D0.1cm3 of EQD2<147 Gy3 (dash-dotted line) and EQD2>147 Gy3 (dotted 

line), markers (+) indicate censored patients. 
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As a comparison, Duijm et al. presented atelectasis incidence for the lobar and segmental 

bronchi, in a study of 104 evaluated patients with centrally located tumours treated with 

SBRT (Duijm, Schillemans, Aerts, Heijmen, & Nuyttens, 2016). The lobar bronchi received 

a median maximum dose (Dmax) of EQD2=124 Gy3 (range 67-233 Gy3); after 1 year 12% had 

developed atelectasis and after 2 years 19%, while the segmental bronchi received a median 

Dmax of EQD2=121 Gy3 (range 39-245 Gy3); after 1 year 24% had developed atelectasis and 

after 2 years 30%. These results indicate that the segmental bronchi might be more sensitive 

to radiation than the lobar bronchi. 

4.2.6 Toxicity and dose constraints 
The most common target today for SBRT is lung tumours of a relatively limited volume, 

resulting in low toxicity. However, all toxicity end-points and organs at risk listed above, 

associated with SBRT, are of increasing importance due to the widening of indications for 

SBRT. Due to limitations in follow-up data for many toxicity end-points, dose-response 

relationships used in SBRT are uncertain and in many cases based on data from conventional 

RT. To what extent the predictive models from conventional RT are applicable to SBRT 

might be questioned (Timmerman & Lohr, 2005). 

 

In the literature, dose data refer mainly to the prescribed or planned doses, which might 

deviate from the delivered dose that generated the outcome studied, such as local control, 

progression-free survival and toxicity. Even though this to some extent is a disadvantage 

since the predictive model (and in general the data analysis) is based on inaccurate doses, an 

advantage is that it corresponds to clinical practice when evaluating doses in a treatment plan 

before treatment, since only the planned dose can be evaluated at that stage. The importance 

in that case is that the systematic uncertainties between planned and delivered dose are the 

same for the evaluated patient as for the patients that contributed to the predictive model. This 

requires that the same treatment methodology was used for the modelled patients as for the 

evaluated patient. 

 

In Table 3 literature data on dose constraints for a few selected kinds of toxicity relevant for 

SBRT of central lung tumours are listed. The data refer to constraints selected in clinical trials 

(RTOG and LungTech) and from the follow-up. The purpose of the table is to illustrate the 

spread in dose-volume constraints used, reflecting the lack of solid data for relevant levels of 

constraints. The reason for lack of accurate dose constraints is primarily due to a limited 

amount of relevant follow-up data, further complicated by the possible differences between 

the planned dose to OAR and the delivered one. This is expected to be a more pronounced 

factor in SBRT compared to conventional radiotherapy due to the steeper dose gradients in 

SBRT. 
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4.3 Reirradiation 

Reirradiation of a previously irradiated volume may be needed due to local recurrence or new 

tumours (primary or metastases). There is an increasing need to know more about the 

applicability and limitations with reirradiation with SBRT. If the location of the second target 

is close to the previous one, careful considerations have to be taken to previously delivered 

doses to OAR. The risk of toxicity due to the accumulated dose is the limiting factor for re-

treatment. 

 

If a long time has passed since previous treatment, it might be possible to neglect some of the 

delivered dose due to recovery from previous damage, but the extent to which this is possible 

is not well known and varies between different kinds of organs and cells. According to a 

review by Mantel et al., early-responding tissues show almost complete repair within a few 

months, while recovery of late-responding tissues is more organ specific (Mantel, Flentje, & 

Guckenberger, 2013). 

 

Times to local relapse of lung tumours after SBRT is reported to be between 3-76 months 

(Baumann et al., 2006; Grills et al., 2010; Guckenberger et al., 2009; Lagerwaard et al., 

2012; Lindberg, Nyman, et al., 2015; Wulf et al., 2005). From Figure 6 it may be concluded 

that about 10% of lung tumours will develop local relapse. A new tumour on the other hand, 

close to a previous one, may appear at any time after the first.  

 

Data on reirradiation of lung tumours in a previously irradiated region are scarce. Mantel et 

al. (2013) suggested in a review that SBRT should be used in order to fulfil the requirements 

of small treatment margins, relying on image-guidance, minimised intra-fractional 

uncertainties due to effective immobilisation and motion management, and highly conformal 

dose distributions, for a reduced risk of toxicity. Furthermore, the authors proposed that 

SBRT delivered with hypofractionated treatment schedules and shorter treatment time, 

compared to conventionally fractionated treatment, is advantageous since reirradiation often 

is delivered with palliative intent. 

 

In Paper I, which was one of the first publications on reirradiation with SBRT, it was shown 

that this kind of reirradiation is feasible with the exception for centrally located tumours, 

where there is an increased risk of high-grade toxicity and mortality (Peulen et al., 2011). The 

prescribed dose to the periphery of the PTV at approximately the 67% isodose had a median 

of EQD2=63 Gy10 (range 30-94 Gy10) at the first treatment, and EQD2=63 Gy10 (range 48-94 

Gy10) at the reirradiation. The median time between first treatment and reirradiation was 14 

months (range 5-54 months), and the median follow-up time was 12 months (range 1-97 

months). Out of the 29 patients studied, 3 deaths due to bleeding were observed, all with 

central tumour locations. It was not possible to assess any toxicity correlation with dose, since 

there were few events and with tumours located close to different OAR. No correlation 

between lung toxicity and mean lung dose (MLD) was found. The dose to larger vessels was 

inspected to investigate any correlation to the risk of bleeding, but no correlation could be 
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established. The local control rate 5 months after the reirradiation was 52%, and the overall 

survival at 1 and 2 years after the reirradiation was 59% and 43%, respectively. 

 

Subsequently, others have published within the field. A study of SBRT as the first treatment 

with later reirradiation, or as the treatment used for reirradiation, was performed by Meijneke 

et al. (Meijneke, Petit, Wentzler, Hoogeman, & Nuyttens, 2013). Of the 20 patients included 

in their study, SBRT was the first treatment for 14 patients and conventional 

chemoradiotherapy was the first treatment for 6 patients. Meanwhile, reirradiation was done 

with SBRT for 18 patients, with curative conventional radiotherapy in 1 patient, and with 

palliative radiotherapy in 1 patient. The mean prescribed dose at the first treatment was 

EQD2=133 Gy10 (range 44-150 Gy10), and at reirradiation EQD2=83 Gy10 (range 23-150 

Gy10), with the SBRT dose prescribed to the isodose line of 70-85% encompassing at least 

95% of the PTV. The time from first treatment to reirradiation was in median 17 months (2-

33 months). A summation of doses in EQD2, with deformable registration, gave a median 

V20Gy3 to both lungs of 15% (range 3-47%), and a median MLD of 15 Gy3 (range 4-28 Gy3). 

There were 4 patients with MLD>20 Gy3, 2 patients with V20Gy3 > 40%, 7 patients with ≥70 

Gy3 to the heart and the trachea, and 8 patients with ≥70 Gy3 to the esophagus (range 71-123 

Gy3). No grade 3-5 toxicity was observed. The local control at 1 and 2 years was 75% and 

50%, respectively, and the overall survival 1 and 2 years was 67% and 33%, respectively.  

 

Patel et al. (2015) retrospectively reviewed 26 patients reirradiated with SBRT for 29 

tumours, after previous conventional RT for 90% of the patients and SBRT for 10% of the 

patients, commonly in combination with chemotherapy. The median physical dose at first 

treatment was 61 Gy (range 30-74 Gy), and at reirradiation 30 Gy (range 15-50 Gy) in 3-5 

fractions (reirradiation BED10 median 48 Gy, range 20-113 Gy) to the 69% isodose (range 

55-85%). The median interval between treatments was 8 months (range 3-26 months). They 

did not observe any grade 3-5 toxicity. The LC rate at 1 and 2 years was 79% and 66%, 

respectively, and OS was 52% and 37%, respectively. 

 

Hearn et al. have studied reirradiation using SBRT of local failures within 1 cm from a PTV 

previously treated with SBRT (Hearn, Videtic, Djemil, & Stephans, 2014). Of their 10 

patients, 2 had tumours located close to the mediastinum, but not in the region of the 

proximal bronchial tree. The prescribed median dose at first treatment was BED10=100 Gy 

(range 100-150 Gy), and BED10=100 Gy (range 100-180 Gy) at the reirradiation, with a 

median time interval of 15 months (range 10-26 months). During a median follow-up time of 

14 months (range 5-44 months) after reirradiation, 4 of the tumours had local progression, but 

no grade 3-5 toxicity was observed. They concluded that reirradiation with SBRT of 

BED10≥100 Gy after previous SBRT is well tolerated for patients with peripheral tumours. 

 

A consensus has therefore now been reached that reirradiation is a viable and effective 

treatment option, although tumour location should be carefully considered before selecting 

reirradiation therapy.  
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5 Geometric and dosimetric aspects of SBRT of lung 
tumours 

Radiotherapy is primarily aiming at delivering a high dose to the tumour, and restricting the 

doses to OAR. This is a challenge, especially in SBRT, as prescribed doses are well above the 

dose-constraints of most OAR. This is the reason why SBRT is most commonly used in lung 

and liver tumours, since these organs have a functional reserve capacity and generally there is 

sufficient distance between the tumour and critical OAR. However, indications for SBRT are 

continuously pushed to more demanding cases with OAR located closer to the target. For this 

reason, as well as for accurate treatment delivery, geometrical uncertainties are very 

important to consider, and to a lesser extent also dosimetric uncertainties. 

 

There are different ways of managing the geometrical and dosimetric uncertainties. The 

standard way is to, in the treatment planning, add safety margins around the tumour by 

constructing a PTV that includes all possible geometrical and dosimetric uncertainties in 

order to ensure delivery of prescribed dose to the whole CTV with an acceptable probability 

(ICRU, 1993, 1999, 2010). A newer approach is probabilistic treatment planning, where the 

uncertainties instead are accounted for during the optimisation process in the treatment 

planning. 

5.1 Geometrical uncertainties 

Geometrical uncertainties affecting the dose distribution depends on several factors such as 

breathing motion, tumour deformation and tissue changes, baseline shifts in tumour position, 

the breathing phase of the treatment-planning CT, structure delineation, patient positioning, 

image-guidance, machine geometry, and the human factor. 

5.1.1 Breathing motion 
The magnitude of breathing motion is generally larger in the longitudinal direction, and for 

tumours located close to the diaphragm. Evaluation of the breathing amplitude can be done 

through fluoroscopy or 4DCT. An evaluation of sinusoidal breathing motion amplitudes from 

different 4DCT systems in a lung phantom showed that the amplitude was underestimated, at 

a level of 82%-97% of the actual amplitude (1-4 cm), for a range of 4DCT systems (Nielsen, 

Hansen, Westberg, Hansen, & Brink, 2016). 

 

Reduction of the breathing amplitude can generally be obtained with abdominal compression 

(Han et al., 2010; Karlsson, Gagliardi, Rutkowska, & Lax, 2008; Wunderink et al., 2008). 

However, for some patients the pressure changes the breathing pattern, from an abdominal to 

a more thoracic one, and sometimes with increased amplitude. Alternative techniques of 

managing breathing motion in RT are tracking, gating and breath hold. 

 

Real-time respiratory tumour/marker tracking consists of online synchronisation of the 

treatment machine or the MLC and the tumour motion (Verellen et al., 2007). The tracking 

approach requires an accurate prediction model of the breathing motion. The breathing 
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pattern is usually obtained from an external signal, and a correlation model has to be 

established between this signal and the internal tumour motion. For the CyberKnife system, 

the tracking accuracy of lung tumours is better than 2 mm (Nuyttens & van de Pol, 2012). 

 

Respiratory gating involves the delivery of treatment in a certain phase or interval of the 

breathing cycle (Verellen et al., 2007). This can be achieved either with the beam-on/off of 

the treatment machine synchronised with the patient’s breathing, or with breath-hold 

techniques (Benedict, 2005). Gating techniques are more time-consuming than tracking 

techniques as only a part of the breathing cycle is beam-on time, but the treatment time can 

be decreased with breath holding. 

 

In general, the probability distribution function of the breathing motion in the longitudinal 

direction, obtained from clinical data of liver tumours presented in Paper III and IV, shows a 

shift of the time-weighted mean position of the tumour towards more cranial locations 

corresponding to an exhale breathing phase. The time-weighted tumour position towards the 

exhale position has also been presented by others (Seppenwoolde et al., 2002). It was also 

shown that the longest time is not spent at the end-positions of the breathing cycle, as 

implicitly assumed when simulating a sinus-shaped motion (Lujan, Larsen, Balter, & Ten 

Haken, 1999). However, simulating breathing motion with a sinus curve is common, 

probably due to the simplicity to implement. It is reasonable to assume that breathing motions 

of liver tumours are applicable also for lung tumours, at least for lung tumours located in the 

lower parts of the lungs. 

5.1.2 Deformations and tissue changes 
Apart from positional changes of the tumour, the breathing also causes deformations of the 

tissues in the lungs and abdomen. In some rare cases, we have also observed deformation of 

the shape of the tumour. During a course of radiotherapy, the tumour and the surrounding 

tissues can change in volume and structure, due to the radiation, but also due to other patient-

related issues (Tatekawa et al., 2014). 

5.1.3 Baseline shift 

Baseline shifts are defined as the differences in the tumour or OAR position relative to the 

skeleton between the treatment-planning CT and the treatment fractions (Worm et al., 2010). 

This can be caused by factors such as weight gain or loss, reduced or increased swellings, 

atelectasis, accumulation of pleural effusion, differences in abdominal content, or other 

patient-related factors. In SBRT, baseline shifts of the tumour are more often seen between 

the treatment-planning CT and the first treatment than in between the treatment fractions, 

since the time generally is longer between the former than the latter. 

5.1.4 Breathing phase of the treatment-planning CT 
There are different methods in use related to breathing for the choice of treatment-planning 

CT, and as the reference in online image-guidance at treatment. One is to use the time-

averaged mid-ventilation phase images reconstructed from a 4DCT, alternatively to select the 
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phase of the 4DCT that best represents a mid-ventilation phase (Wolthaus et al., 2006). 

Another commonly used, but less accurate approach, is to use CT images that are taken in a 

random phase during free-breathing. In SBRT before online CBCT image-guidance was 

introduced and patient positioning was performed by means of the stereotactic coordinates, 

this random breathing phase introduced a systematic error which was accounted for by using 

CTV-to-PTV margins larger than or at least as large as the tumour breathing amplitude. With 

the use of online CBCT image-guidance, the CBCT image of the tumour is matched to the 

reference image of the tumour from the treatment-planning CT. The dose delivered to the 

tumour should therefore be close to the planned one with some residual uncertainties, while 

OAR not moving together with (or not moving to the same extent as) the tumour could 

potentially get a dose that differs considerably from the planned dose. The larger the 

breathing amplitude, the more impact this will have on the delivered dose to these OAR. 

 

In Paper IV, the impact of the treatment-planning CT in a random breathing phase is 

considered in the estimation of delivered CTV doses for the time period before online image-

guidance was available. 

5.1.5 Structure delineation 
The accuracy in delineation of the GTV and the CTV in the images used for treatment 

planning is of utmost importance. For delineation of the CTV, biological characteristics of the 

tumour and recurrence patterns should be taken into consideration (Dobbs & Landberg, 

2003). Apart from the uncertainties in the target delineation, there are also uncertainties in the 

definition and outlining of OAR. The accuracy in the structure delineation might be limited 

by the image resolution and the slice thickness of the treatment-planning CT. 

 

Steenbakkers et al. (2006) studied delineation variations of the GTV for Stage I-III NSCLC 

and concluded that even with the help of fused positron emission tomography (PET) and CT 

images the inter-observer variations were large compared to setup uncertainties and organ 

motion. The observer variation was reduced from 10 mm (standard deviation (std)) to 4 mm 

(std) comparing delineation on CT only with PET/CT. At the same time, Peulen et al. (2015) 

reported a variability in the GTV delineation of 2 mm (root-mean-square) at mid-ventilation 

planning CT for Stage I-II NSCLC, with smaller variations within the different institutions. 

Also, Mantel et al. (2013) suggest PET images to facilitate the tumour definition in 

comparison to radiation-induced fibrosis in a reirradiation setting. 

5.1.6 Online image-guidance 
Online image-guidance with soft-tissue tumour matching with CBCT or other imaging-

systems is today the most commonly used method for fine-tuning the tumour localisation in 

SBRT, thus reducing the setup errors. The focus in the matching process is the repositioning 

of the tumour and to a minor extent the OAR. This might lead to larger uncertainties in the 

reproducibility of the surrounding OAR, compared to that of the target. These uncertainties 

must be considered if there is a risk of delivery of too high doses to OAR.  
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The image quality of the online image system, as well as that of the reference CT, is crucial 

for the accuracy of the matching of the CBCT and the reference CT images. A study by 

Sweeney et al. (2012) showed that with the use of 4D-CBCT in comparison with 3D-CBCT, 

both the target visibility and localisation were improved together with reduced inter-observer 

target localisation variability. They presented an average 3D difference of 2±1 mm (std) 

between matching with 4D-CBCT and 3D-CBCT.  

5.1.7 Setup 

Setup uncertainties can be divided into a systematic and a random component, as expressed 

by van Herk et al., describing the treatment preparation uncertainties and the treatment 

execution uncertainties, respectively (van Herk, Remeijer, Rasch, & Lebesque, 2000). The 

systematic setup uncertainty is caused by differences between patient positioning during the 

treatment-planning CT acquisition, and patient positioning at the treatment execution. It is 

defined as the mean deviation of positioning at all treatment fractions in comparison to the 

planned position, which is an unproblematic definition only in the case of an infinite or large 

number of fractions. The systematic setup uncertainty might be caused by misplaced setup 

tattoos or markers on the CT images, differences in setup routines between CT acquisition 

and treatment, or incorrectly calibrated lasers indicating the isocenter of the linac. The 

random setup uncertainty is due to variations in patient positioning from treatment to 

treatment, and is defined as the deviation in positioning from the mean, which can be caused 

by mobility of the skin with tattoos, patient movements (due to pain, uncomfortable treatment 

position, difficulties in keeping still), or different treatment staff using different routines. 

 

In Paper IV the setup uncertainty was given a very specific meaning, in which the 

uncertainties in the CBCT matching and the breathing phase of the treatment-planning CT 

were considered separately. In a first step, systematic (,�) and random (-�) variances of 

observed patient data of couch corrections after CBCT tumour match were corrected for the 

finite number of fractions in the observations, due to the treatment delivery in few fractions. 

From these, the setup variances for SBRT without online image-guidance were defined as: 

 

  ,�./01� = ,223� − ,3�1456.� − ,�5/74�   (6) 

  -�./01� = -223� − -�5/74�   (7) 

 

where FFC, CTphase and Match, denotes respectively finite fraction corrected, breathing 

phase at the treatment-planning CT and assumed residual setup uncertainty after online 

CBCT matching. 

 

Literature data of setup uncertainties generally gives the observed couch correction data, not 

specifying the systematic and random components. The mean absolute 3D variation of 

observed couch corrections in Paper IV using the SBF was 5.8±3.3 mm. The magnitude of 

observed setup uncertainties differs between different immobilisation devices. Shah et al. 

(2013) compared the translational mean target position correction after online CBCT with 
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different devices used in SBRT: the Stereotactic Body Frame, the Alpha Cradle, the 

BodyFIX, a hybrid combining the Alpha Cradle with the BodyFIX vacuum sheet, a wing 

board, and no fixation device at all. The inter- and intra-fraction mean target position 

variations were shown to be smallest with the SBF, and largest with the hybrid device for the 

inter-fraction variations, and with no device or the wing board for the intra-fraction 

variations, see Table 4. Further, Foster et al. (2013) present inter-fractional variations of 

7.4±4.0 mm and 7.3±4.1 mm for lung tumours treated without and with the abdominal 

compression, respectively, and intra-fractional variations of 1.3±1.5 mm and 1.7±2.0 mm, 

respectively, using the SBF with application of abdominal compression for patients with 

longitudinal tumour breathing motion >10 mm. Correcting only for translational positioning 

errors, Josipovic et al. (2012) have shown a residual rotational error below 4° for 97% of the 

patients, and below 3° for 91% of the patients, using a VacFix cushion (PAR Scientific A/S, 

Odense, Denmark) and knee support. 

 

Table 4: Inter-fraction setup variations and intra-fraction tumour position variations for the SBF and 

a few other selected immobilisation devices. 

Reference Device Mean ± std (mm) 

Inter-fraction setup variation 

Paper IV SBF 5.8 ± 3.3 

Shah et al. (2013) SBF 6.9 ± 5.2 

Foster et al. (2013) SBF without compression 7.4 ± 4.0 

Foster et al. (2013) SBF with compression 7.3 ± 4.1 

Shah et al. (2013) Hybrid device 12.6 ± 10.2 

Intra-fraction tumour position variation 

Shah et al. (2013) SBF 2.3 ± 1.4 

Foster et al. (2013) SBF without compression 1.3 ± 1.5 

Foster et al. (2013) SBF with compression 1.7 ± 2.0 

Shah et al. (2013) Wing board 3.3 ± 1.7 

Shah et al. (2013) No device 3.3 ± 2.2 
std = standard deviation, SBF = stereotactic body frame 

5.1.8 Machine geometry 

Uncertainties in position and calibration of machine geometry might arise from factors such 

as the gantry angle, the collimator positions, the MLC positions, the isocenter stability, the 

source-skin distance (SSD) scale, the treatment couch position and movement, and the 

alignment of the setup lasers to the treatment isocenter. All these parameters must routinely 

be checked within the quality assurance programs. 

5.1.9 Human factor 
The human factor is also a cause of uncertainties. It is important to maintain consistent 

methods for patient positioning and treatment procedures (McKenzie et al., 2003), as well as 

education of staff and availability of supervision of experienced staff in the learning phase. 

However, it is a complex process and there are still inter-personal differences in the 

judgement of images at image-guidance, and a risk of miscommunication, which can be 

exacerbated by a high work-overload leading to stress and the risk of making mistakes. 
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5.2 Dosimetric uncertainties 

Dosimetric uncertainties may arise to a minor extent from for example the conversion of CT 

data from Hounsfield Units (HU) to electron density, data transfer between different systems 

and output calibration of the treatment machine. More important for dosimetric uncertainties 

is the accuracy in the dose calculation. 

5.2.1 Dose calculation 
The different algorithms for dose calculation can be divided into three different categories; 

Type A, Type B and Type C, depending on the accuracy in dose calculation. Type A models 

are the simplest to which the Pencil Beam (PB) algorithms with longitudinal scaling for 

inhomogeneity corrections belong. Type B models also consider an approximation of the 

lateral distribution of the secondary particles, and use both longitudinal and lateral scaling for 

inhomogeneities. Examples of Type B models are the Analytical Anisotropic Algorithm 

(AAA) and the Collapsed Cone (CC) algorithms. Type C models are the most accurate 

models available and track each particle, such as the Monte Carlo (MC) method. 

 

A particular difference between the algorithms, as stated above, is how tissue 

inhomogeneities are managed. This is especially a challenge for lung tumours where there are 

large tissue density inhomogeneities ranging from the chest wall and tumour to lung tissue. 

Compared to water-equivalent tissue density, the lower density in the lungs results in 

electronic disequilibrium at the lung/tumour interface with lower dose at the edges of the 

tumour as a result (Papiez, Moskvin, & Timmerman, 2005). For lung tumours treated in the 

early period of SBRT, during which PB algorithms were used, this might have led to an 

overestimation of the peripheral dose to the tumour. 

 

Paper III illustrates a consequence on the dose distribution from the interface effect between 

lung and tumour tissue. Setup errors and breathing motion were simulated with the less 

accurate dose-shift and more accurate beam-shift methods. The beam-shift result shows that 

the photon fluence builds up dose within the denser tumour, and the dose “follows” the 

tumour with the breathing motion. 

 

In a phantom study of planned tumour doses in lung SBRT, Aarup et al. (2009) concluded 

that PB algorithms overestimate the tumour dose, while the AAA and the CC algorithms both 

adequately calculate the tumour dose, compared to MC simulations. Ojala et al. compared 

three different algorithms (PB, AAA and Acuros XB) and MC simulations for four patient 

cases with SBRT of lung tumours (Ojala, Kapanen, Hyödynmaa, Wigren, & Pitkänen, 2014). 

They concluded from the comparison with the MC simulations that Acuros XB could be used 

as reference to evaluate the performance of the PB and the AAA algorithms. The results 

showed relatively large differences in mean dose to the PTV, especially for smaller PTV 

volumes, and smaller differences in the lung tissue. Largest PTV dose difference was 

observed for the PB algorithm, with differences above 5% and up to nearly 60%, while 

differences with the AAA algorithm generally were below 5% but up to 20%. According to 
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McCowan et al., calculations with AAA compared to CC result in a 2-5% lower lung dose, 

and up to 5% higher dose in the tissue where the radiation exits the lung (McCowan, Van 

Uytven, Van Beek, Asuni, & McCurdy, 2015).  

 

Latifi et al. (2014) report statistically significant higher rates of local recurrences after SBRT 

of NSCLC calculated with PB compared to those calculated with CC; 21.5% (crude rate) 

with PB and 4.7% with CC. Both patient cohorts were treated with the same prescribed dose 

and planned with the same criterions, but with differences in median follow-up time (24 

months for PB versus 17 months for CC) and image-guidance technique (stereoscopic 

radiographs with implanted markers for PB versus CBCT for CC). However, they concluded 

the difference in local recurrence to be due to the relative underdosage of lung tumours 

planned with PB. Bibault et al. (2015), on the other hand, did not observe any differences in 

local control, between patients planned with Type A or Type B algorithms in SBRT of lung 

cancer. 

5.3 Strategies to account for uncertainties 

5.3.1 Margin concept 
To account for uncertainties, a CTV-to-PTV margin can be added to account for all relevant 

geometrical and dosimetric uncertainties in order to ensure the delivery of prescribed dose to 

the CTV with an acceptable probability (ICRU, 1993, 1999, 2010). Breathing motion may be 

accounted for by an ITV, which should encompass the extent of the tumour in all geometrical 

positions mainly due to breathing (ICRU, 1999, 2010). Around the ITV, an ITV-to-PTV 

margin is added to account for all uncertainties except breathing. However, the ITV concept 

has been shown to provide unnecessarily large margins (Wolthaus et al., 2008). 

 

Another method to account for breathing motion is to create the treatment plan based on the 

time-weighted mid-ventilation breathing phase and add margins to include the tumour for a 

large part of the breathing cycle (Wolthaus et al., 2006). It is not required to fully include the 

whole extent of the breathing amplitude in the margin, since delivery of reduced doses in the 

extreme positions do not have any large impact on the overall dose (Engelsman, Damen, De 

Jaeger, van Ingen, & Mijnheer, 2001), especially if heterogeneous dose distribution is used. 

Sonke et al. (2009) have shown that smaller CTV-to-PTV margins are needed with the mid-

ventilation approach compared to the resulting extent with the ITV concept.  

 

The margin concept used at the Karolinska University Hospital is to apply CTV-to-PTV 

margins of at least 10 mm and 5 mm, in the longitudinal and the transversal directions 

respectively, or equal to the measured peak-to-peak amplitude. Results from Paper IV 

indicate that these margins can be decreased thanks to the introduction of online image-

guidance while still maintaining the same population coverage probability as estimated for 

the era before online image-guidance was introduced.  
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Several methods of calculating the margin have been proposed, with inclusion of different 

uncertainties from centre- or patient-population specific data. Based on recommendations in 

the ICRU report 50 (ICRU, 1993), Stroom et al. performed convolution of the CTV location 

including systematic (Σ) and random (σ) geometrical uncertainties (Stroom, de Boer, 

Huizenga, & Visser, 1999). They proposed a CTV-to-PTV margin recipe of M = 2.0Σ+0.7σ 

to ensure delivery of at least 95% of the dose to 99% of the CTV on average. A commonly 

used CTV-to-PTV margin formula, later proposed by van Herk et al. (2000), is: 

 

  8 = 9, + :�;-� + -1� − -1�  (8) 

 

where σp is determined by the penumbra width and σ excludes the penumbra. With the 

formula constants α=2.5 and β=1.64 it is assured that 90% of the population receives a 

minimum CTV dose of at least 95% of the prescribed dose. Note that the formula constants α 

and β are not to be confused with the α and β values used for fractionation sensitivity. Peulen 

et al. (2015) suggested that α should be increased from 2.5 to 2.8-3.2 to include the GTV 

delineation variability. In the van Herk margin formula a few assumptions are made, such as 

treatment with many fractions, and spherical tumour or large tumour in comparison with the 

random uncertainties (van Herk et al., 2000). To account for breathing, van Herk et al. 

proposed to add the standard deviation of the breathing motion, calculated by 0.358 times the 

peak-to-peak breathing motion amplitude derived from a periodically function with a non-

Gaussian probability distribution, as one of the random geometrical uncertainties (van Herk, 

Witte, van der Geer, Schneider, & Lebesque, 2003). 

 

Any application of simple predicative margin recipes to SBRT must be considered 

speculative without detailed validation studies, due to the specific assumptions that must be 

made. However, such reasoning can be useful for getting a “feeling” for the magnitudes 

necessary. An estimate of the CTV-to-PTV margin for 0-30 mm peak-to-peak breathing 

amplitude will range between 3 mm and 6 mm in each direction from the CTV, using α=2.79 

for the confidence level of 95% of the patients, and β=0.5 for dose prescription to the 67% 

isodose line extrapolated from data provided by van Herk et al. (2000). This also assumes a 

breathing motion amplitude factor of 0.358 (van Herk et al., 2003), a penumbra factor of 

σp=6.4 mm for lung tissue (Sonke et al., 2009), and systematic and random setup errors of 1 

mm, approximately evaluated by Sweeney et al. (2012) to be the variation of 3D-CBCT 

matching compared to 4D-CBCT matching, ignoring all other uncertainties. With a penumbra 

factor of σp=3.2 mm for tumours located in soft tissue (van Herk et al., 2000; Witte, van der 

Geer, Schneider, Lebesque, & van Herk, 2004) the CTV-to-PTV margin will range between 3 

mm and 7 mm. Adding a target delineation uncertainty of 1.5 mm, as proposed by Peulen et 

al. (2015) to vary between 1.2-1.8 mm for early stage NSCLC, for tumours in lung tissue, the 

CTV-to-PTV margin would range between 6 mm and 9 mm. Using the “worst case” 

assumption for the setup uncertainty with CBCT matching from Paper IV with a systematic 

error of 2.1 mm and a random error of 1.6 mm in the longitudinal direction, the CTV-to-PTV 

margin ranges between 6 mm and 9 mm, using a penumbra factor for lung tissue, without any 
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target delineation uncertainty. With further addition in the margin formula of correction of 

treatment in few fractions (Gordon & Siebers, 2007), the CTV-to-PTV margin ranges 

between 7 mm and 10 mm for 0-30 mm peak-to-peak breathing amplitude, for 3 fractions 

with the worst case setup assumption. 

 

Grills et al. (2008) have calculated CTV-to-PTV margins for setup errors not including 

breathing motion, for SBRT of lung tumours using the SBF, of 9-13 mm without online 

image-guidance, of 1-2 mm with daily CBCT image-guidance, and of 2-4 mm with daily 

CBCT and including intra-fractional systematic tumour displacement. These calculations are 

based on a margin formula proposed by Yan et al. (2005), which is a generalisation of the 

margin formulae proposed by Stroom et al. (1999) and van Herk et al. (2000). 

 

Sonke et al. (2009) calculated CTV-to-PTV margins, with the van Herk formula, for 

frameless SBRT of peripheral lung tumours with treatment planning on the mid-ventilation 

phase with prescription to the 80% isodose line using 4D-CBCT image-guidance. They 

included systematic and random setup errors of about 1 mm (std), systematic baseline errors 

of 2-3 mm and random errors of 1-2 mm, systematic and random intra-fraction uncertainties 

of 1-2 mm, delineation variability of 2 mm, and a breathing motion scaling factor of 0.36. 

Monte Carlo validation of the margins showed that CTV-to-PTV margins of 6-11 mm were 

adequate for 94% of the included cases with breathing motions of 2-28 mm. In a publication 

by Peulen et al. (2014), from the same study group, they imply that their margins will be 

decreased to a baseline of 5 mm in the lateral and the longitudinal directions and 6 mm in the 

vertical direction, due to estimation of smaller variations within a more recent and larger 

analysed patient cohort. 

 

Bissonnette et al. calculated setup margins with the van Herk formula M = 2.5Σ+0.7σ, 

incorporating σp=3.2 mm in the constant in front of the σ (van Herk et al., 2000), including 

systematic and random setup uncertainties of 2-5 mm derived from an initial localisation 

CBCT, and of 1-2 mm from a second verification CBCT after couch correction (Bissonnette, 

Purdie, Higgins, Li, & Bezjak, 2009). The calculated margins reduced from 12-15 mm to 4-6 

mm after the introduction of CBCT matching. 

 

Despite the speculative nature of such estimates, a broad agreement emerges that the 

appropriate CTV-to-PTV margin without online image-guidance lies in the approximate 

range of 10-15 mm. This is reduced to somewhere below 10 mm with online imaging, with 

the precise estimates depending on the treatment and imaging techniques as well as the 

assumptions made. Note that the van Herk margin formulae rely on the convolution 

assumption. A more rigorous treatment of the problem for hypofractionated treatments 

therefore requires a different approach, such as probabilistic sampling (Monte Carlo method).   
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5.3.2 Dose-coverage probability and probabilistic treatment planning  
The margin concept is population based and does not take into account the specific geometry 

of the individual patient. Dose-coverage probability is a way of accounting for geometrical 

uncertainties which consider the individual geometry of the patient in the optimisation 

process of the treatment planning (Gordon, Sayah, Weiss, & Siebers, 2010). From data of the 

distributions of geometrical uncertainties, a treatment series may be simulated by repeated 

sampling from the distributions followed by dose calculations to get a number of dose-

volume histograms (DVHs) for a given structure. From the DVHs the dose coverage 

probability or a complete map of dose coverage probabilities (Figure 9a) can be obtained 

(Gordon et al., 2010). This information is used in probabilistic treatment planning and has 

been shown to have the potential to reduce dose to OAR while ensuring adequate target 

coverage, as compared to margin-based planning (Bohoslavsky, Witte, Janssen, & van Herk, 

2013). 

 

To obtain low statistical uncertainties in probabilistic planning hundreds or thousands of dose 

calculations are often necessary. The time overhead for such calculations can be prohibitive 

and simplifications such as the dose-shift approximation are often used. However, Tilly and 

Ahnesjö (2015) have developed a fast dose algorithm of dose coverage probability, 

accounting for dosimetric effects of translational geometrical uncertainties. This algorithm 

repeatedly applies setup uncertainties and intra-fractional motion with random samples to the 

pre-calculated primary and scatter dose components, before the final dose calculation. 

 

In Paper IV, dose-volume coverage maps (Figure 9a) and the resulting tumour-specific dose 

coverage histograms for 98% of the CTV (indicated by the blue dashed line in Figure 9a) 

were retrospectively calculated for a population of tumours (Figure 9b). From the latter, a 

population-averaged dose coverage histogram was calculated (Figure 9c) in order to get a 

measure relevant for comparison to clinical outcome data. 
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Figure 9: An illustration of a) a dose-volume coverage map for one single tumour with the repeated 

DVHs, b) tumour-specific dose coverage histograms for 98% of the CTV volume for 10 different 

tumours, and c) a population-averaged dose coverage histogram for 98% of the CTV volume for the 

population of 10 different tumours. 

5.3.3 Estimation of delivered dose  

Estimation of the delivered dose on a coverage probability basis was done in Paper IV. The 

delivered dose to the CTV, represented by the population coverage probability, was estimated 

considering breathing motion and setup or matching uncertainties, comparing soft-tissue 

image-guidance with pre-treatment verification CT (IG1) and online CBCT matching (IG2). 

A lower delivered dose to the CTV was shown for the IG1 method compared to the IG2 

method, as shown in Figure 10, with different assumptions of setup and matching 

uncertainties. For the realistic case assumptions at a population coverage probability of 90%, 

the delivered D98% to the CTV was at least 100% with IG1 and 117% with IG2, compared to 

the prescribed dose to the PTV periphery enclosed by the 67% isodose line. Compared to the 

planned D98%, the delivered D98% to the CTV was at least 78% with IG1 and 93% with IG2. 
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Figure 10: Population-averaged dose coverage histograms for two different image-guidance 

techniques (IG1 and IG2) and three different simulation scenarios (with worst, realistic and best case 

assumptions), estimated in Paper IV, here applied to the fractionation schedule of prescribed dose 15 

Gy × 3 to the periphery of PTV corresponding to the 67% isodose line. 

 

The results presented in Figure 10 were estimated with a dose-shift (DSh) method with rigid 

shifts of an invariant dose distribution in relation to the tumour, considering breathing motion 

and setup errors. This approximate method has previously been used by others in the 

calculation of dose coverage probabilities (Bohoslavsky et al., 2013; Gordon et al., 2010; 

Moore, Gordon, Anscher, Silva, & Siebers, 2012). The accuracy of this method, for the 

particular case of lung tumours, was investigated in Paper III by comparing it to a beam-shift 

(BSh) method with recalculation of the dose distribution in the different geometrical positions 

resulting from setup errors and breathing motion. Here, the BSh method was considered the 

gold standard to which the DSh method was benchmarked. However, the validity of the BSh 

method used as reference might be questioned, i.e. whether the BSh approach can be 

expected to be accurate, or even more accurate than the DSh method. It is reasonable to 

assume that the BSh method is accurate for pure setup errors. An advantage of the BSh 

method is that the dose tracking effects due to differences in density between the tumour and 

its surrounding is included, which is not the case for the DSh method. However, the BSh 

method does not account for anatomy deformations due to breathing, nor for anatomy 

deformations due to baseline shifts of the tumour location between the treatment-planning CT 

and the dose delivery. To simulate breathing using a rigid shift of a patient is a crude model, 

but it has been demonstrated to be generally accurate to better than 2% even with extreme 

breathing amplitudes (Mexner et al., 2007; Sonke et al., 2009). Further, in this study, it was 
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observed that for breathing amplitudes within the CTV-to-PTV margins, breathing makes 

little difference to the delivered dose in the CTV. 

 

The purpose of Paper IV was to compare the two different methods IG1 and IG2 by means of 

the population-averaged dose coverage histogram. However, for evaluation of dose-response 

data, it would be more relevant to use the tumour-specific dose coverage histogram data and 

to model the patient-individual response with delivered dose, rather than the population-

averaged. Patient-individual reconstruction of delivered dose, based on 4DCT data, has been 

done by Guckenberger et al. and Admiraal et al. They transferred the treatment plan to each 

of the breathing phases in the 4DCT and recalculated the dose to estimate the delivered dose 

considering breathing motion for lung tumours treated with SBRT (Admiraal, Schuring, & 

Hurkmans, 2008; Guckenberger et al., 2007). Admiraal et al. (2008) showed that the 

accumulated CTV dose generally was equal to or higher than the planned PTV dose, except 

in the high-dose region of the DVH comparison. Guckenberger et al. (2007) did not find any 

significant GTV dose difference with the tumour located in its end-exhalation, end-inhalation 

or mid-ventilation phase. Increased accuracy in the delivered-dose estimation, including also 

the setup errors, could be achieved with the usage of 4D-CBCT. 

 

Further accuracy in estimation of the delivered dose would require online registration of the 

patient anatomy during the complete treatment course, followed by recalculation of the dose. 

A possible method in this direction is the use of the electronic portal imaging device (EPID) 

during delivery. Berbeco et al. (2008) retrospectively estimated the delivered dose adjusting 

the beams in the treatment plan to the tumour shift estimated from each projection of the 

EPID images acquired during treatment. The method was further developed with the creation 

of 3D images for different time-points from the EPID images acquired, based on the patient-

specific motion derived from 4DCT (Cai et al., 2015). This method was shown to be as good 

as the accumulated dose calculated on the 4DCT phases for regular breathing motion, but 

better for irregular breathing motions. Another use of the EPID images was implemented by 

McCowan et al. (2015), who created a model for reconstruction of the delivered dose using 

the EPID images acquired during treatment and Monte Carlo simulations of the fluence.  

 

A further alternative for estimating the delivered dose is using the target-position information 

during treatment intended for tumour tracking. Estimation of delivered dose has been based 

on tumour implanted electromagnetic transponder signals (Keall et al., 2014; Poulsen et al., 

2012). However, kV images (Colvill et al., 2016), or magnetic resonance (MR) imaging on a 

MR-fused treatment machine (Menten et al., 2016), could potentially also be used.  
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6 Summary of papers 

6.1 Paper I: Toxicity after reirradiation of pulmonary tumours with 
stereotactic body radiotherapy 

Purpose: The purpose of this study was to evaluate the feasibility of reirradiation with SBRT 

for lung tumours after previous SBRT treatment in an overlapping region. The outcome was 

retrospectively evaluated with regard to toxicity, local control and survival. 

 

Materials and Methods: Included were 29 patients reirradiated for 32 tumours, out of whom 

11 had centrally- and 18 had peripherally-located tumours. The median follow-up time was 

12 months (1-97 months). Reirradiation was defined as more than 50% overlap between the 

previously and new PTVs. Toxicity was retrospectively evaluated from the patients’ medical 

records according to CTCAE version 3. 

 

Results: The mean time between the first treatment and reirradiation was 14 months (5-54 

months). Grade 3-4 adverse events were observed 14 times in 8 patients. Larger tumour 

volumes and central location were correlated to more severe toxicity. Three (27%) of the 

patients with centrally located lung tumours died due to bleeding, while no grade-5 toxicity 

was observed for patients with peripherally located tumours. No association was found 

between MLD and lung toxicity. Local control was 52% at 5 months after reirradiation, with 

poorer local control for larger tumours. The Kaplan-Meier estimated survival at 1, 2 and 3 

years from the time of reirradiation were 59%, 43% and 23%, respectively. 

 

Conclusion: It was concluded that reirradiation with SBRT in a similar location to one 

previously treated with SBRT was feasible with low rates of toxicity for patients with 

peripheral lung tumours, while caution should be taken for patients with central lung tumours 

due to the risk of increased severe toxicity.  

6.2 Paper II: Retrospective cohort study of bronchial doses and radiation-
induced atelectasis after stereotactic body radiation therapy of lung 
tumors located close to the bronchial tree 

Purpose: In this study, a dose-response relationship for radiation-induced atelectasis and 

bronchial doses after SBRT treatment close to the bronchi was evaluated. 

 

Materials and Methods: Retrospectively evaluated were 74 patients with tumours located 

close to the main, lobar or segmental bronchi. Doses to the bronchi were obtained from 

DVHs for maximum point dose as well as the dose to six different volumes ranging from 0.1 

cm3 to 2.0 cm3. To account for different fractionation schedules, doses were recalculated to 

EQD2 with both the LQ and the USC models. Estimations of dose-incidence curves were 

performed using the lognormal accelerated failure time model, with a parametric model for 

the hazard function. 
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Results and Conclusions: Eighteen patients (24%) developed atelectasis considered to be 

induced by radiation, at a median of 8 months (1-30 months) after treatment. A significant 

dose-response relationship was found between atelectasis and the high-dose volume of the 

bronchi. For the 64 patients with data available on D0.1cm3, the median D0.1cm3 of the bronchi 

was EQD2=210 Gy3 (mean 213 Gy3, range 98-293 Gy3) (LQ model, α/β=3 Gy) for patients 

that developed atelectasis, and EQD2=105 Gy3 (mean 124 Gy3, range 20-279 Gy3) for patient 

that did not. The total incidence of atelectasis (without taking the time aspect into account) 

was 0% at bronchial D0.1cm3 in EQD2 <80 Gy3 (0/16 patients), 13% between 80-145 Gy3 (2/16 

patients), 25% between 145-190 Gy3 (4/16 patients), and 56% at bronchial D0.1cm3 ≥190 Gy3 

(9/16 patients). None of the patients with bronchial D0.1cm3 values below EQD2=98 Gy3 

developed an atelectasis, which means that no atelectasis was observed below bronchial 

doses corresponding to 11.3 Gy × 3, 8.5 Gy × 5, or 6.4 Gy × 8. These values may be used as 

dose constraints in treatment planning. The estimated incidence of atelectasis at 1, 2 and 3 

years, respectively, was 3%, 8% and 13% at a bronchial D0.1cm3 of EQD2=100 Gy3, 10%, 

21% and 31% at EQD2=150 Gy3, and 25%, 42% and 53% at EQD2=200 Gy3. 

6.3 Paper III: Accuracy of the dose-shift approximation in estimating the 
delivered dose in SBRT of lung tumours considering setup errors and 
breathing motions 

Purpose: The aim of this study was to evaluate the accuracy of a dose-shift (DSh) 

approximation, with shifts of the planned static dose matrix, when estimating the delivered 

CTV dose considering setup errors and breathing motions of SBRT treated lung tumours. 

This method was compared with a more accurate beam-shift (BSh) method, with shifts of the 

beams/isocenter and recalculation of the dose distribution at different geometrical positions. 

 

Materials and Methods: Ten representative patients treated with SBRT using static fields for 

ten lung tumours were included, selected to represent the variety of lung tumours treated at 

our clinic with respect to location in the lungs, tumour size, tumour shape and tumour 

density. An in-house developed toolkit within a treatment planning system allowed to: (i) 

shift a precalculated dose matrix according to a setup error and averaged over shifts of 

multiple phases of a breathing trace (the DSh method), or (ii) apply setup error and averaged 

over shifts of multiple phases as beam shifts with a recalculation of the treatment plan in 

each geometrical position (the BSh method). In both (i) and (ii) a series of setup errors (up to 

10 mm) and breathing amplitudes (up to 10 mm in the longitudinal and 5 mm in the 

transversal directions) were simulated. From data retrieved from the DVHs of the CTV, dose 

and volume differences between the DSh and the BSh methods were evaluated in terms of 

D98%, D50% and D2%. 

 

Results and Conclusions: The results showed that the DSh method generally underestimates 

the delivered dose compared to the BSh method. To estimate the delivered dose for a 

particular patient, it is advisable to use the BSh method for increased accuracy. However, the 
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DSh method is computationally easier to implement, and averaged over a patient population 

this method is estimated to underestimate the delivered minimum CTV dose (D98%) to about 

1% with setup shifts up to 10 mm. The root-mean-square discrepancy for such large shifts 

was around 4%. However, for more realistic setup shifts when using online image-guidance, 

of up to 5 mm, the root-mean-square discrepancy decreased to approximately 2%. For setup 

shifts up to 5 mm, the mean and root-mean-square dose discrepancies were broadly similar 

for D50% and D2%. It was therefore concluded that averaged over a group of patients the DSh 

approximation has an acceptable error. 

6.4 Paper IV: Estimation of delivered dose to lung tumours considering setup 
uncertainties and breathing motion in a cohort of patients treated with 
SBRT 

Purpose: In this study the purpose was to estimate the delivered dose (dose coverage 

probability) to the CTV for a population of patients, taking into account setup errors, 

matching uncertainties and breathing motions. Comparison of delivered dose was made 

between two different volumetric image-guidance techniques with the capability to discern 

soft-tissue; pre-treatment verification CT (IG1) (standard before the introduction of online 

image-guidance), and online image-guidance with CBCT (IG2). 

 

Materials and Methods: Delivered dose was retrospectively simulated for 50 consecutive 

patients treated with SBRT for 69 lung tumours. Simulations were performed with the DSh 

method using an in-house developed program that shifted and weighted the static dose 

distribution according to a breathing trace scaled with patient-specific amplitudes. Applied 

were also systematic and random setup (IG1) and matching (IG2) errors, sampled from 

normal distributions. These errors were obtained from clinical data with assumptions relevant 

for IG1 as well as IG2, for a best, a worst and a more realistic scenario. The realistic scenario 

was based on literature values for matching errors, while the best and worst scenarios 

constituted a plausible envelope around. The accumulated DVH for the CTV was calculated, 

and the simulations were repeated 500 times for each tumour. From the set of 500 different 

DVHs, a tumour-specific dose coverage histogram was calculated with tumour coverage 

probabilities of the CTV at different dose levels. Further, population-averaged dose coverage 

histograms were calculated as the mean of the tumour-specific dose coverage histograms for 

all tumours, providing population coverage probabilities of the CTV at different dose levels. 

Moreover, dose-population histograms were calculated at different tumour coverage 

probabilities as the percentage of all tumours achieving different dose levels. This was 

repeated for each scenario for IG1 and IG2. 

 

Results: Averaged over the tumours, prescribed dose to the periphery of the PTV was 

delivered to 98% of the CTV with a population coverage probability of 86-96% (range 

between worst and best scenario, realistic scenario: 90%) using IG1, and 97-99% (realistic 

scenario: 99%) using IG2. For a population coverage probability of 90%, D98% to the CTV 

was at least 78% and 93% of the planned D98%, with IG1 and IG2 realistic scenarios 
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respectively. For IG1 in the realistic scenario, 67% of tumours had a tumour coverage 

probability of at least 90% at the prescribed dose, i.e. D98% exceeded the prescribed dose in at 

least 90% of simulations for two-thirds of the tumours. For IG2 in the realistic scenario, 99% 

of tumours achieved that same tumour coverage probability at the prescribed dose. 

 

Conclusions: On average, the minimum dose delivered to the CTV increased with the use of 

online CBCT image-guidance, compared to the use of pre-treatment verification CT. A 

substantial part of the tumours might have received a dose below the prescribed dose before 

the introduction of online image-guidance. However, the increase in dose coverage with the 

implementation of online image-guidance has not yet been reflected in improved clinical 

outcome of local control, implying that the level of dose coverage is not the only explanation 

for local progression. 
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7 Main conclusions 

Paper I: Reirradiation with SBRT after previous SBRT treatment in an overlapping region is 

feasible with acceptable toxicity levels for peripherally located lung tumours, but should be 

performed with caution for centrally located lung tumours due to increased risk of severe 

toxicity. 

 

Paper II: There is a significant dose-response relationship between radiation-induced 

atelectasis and the dose to the high-dose region of the bronchi. However, further research to 

find the maximum tolerable dose for the bronchi is needed. 

 

Paper III: To consider geometrical uncertainties when estimating the delivered dose to the 

tumour from the treatment plan, the use of the dose-shift approximation is generally 

unsuitable when precise dose estimates are desired for specific patients but is acceptable 

when applied to a population of patients. 

 

Paper IV: Comparing estimated delivered doses to the tumour considering breathing motion 

and setup uncertainties with two different image-guidance techniques, the formerly used 

verification CT and the presently used online CBCT matching, showed that with the online 

CBCT matching the delivered dose to the tumour was increased considerably. This implies 

that with CBCT matching, local tumour control may be higher, if there is a dose-response at 

these dose levels. If not, the CTV-to-PTV margins could safely be decreased to lower the 

dose to surrounding OAR and thereby reduce the probability of radiation-induced toxicity. 
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8 Future research 

There are many questions that remain within the field of SBRT. A deeper understanding of 

the relationship between treatment parameters and the outcome is needed, both in terms of 

local control and toxicity. Therefore, there is a need for improved systematic collection of 

follow-up data: this is the “clinical” end of the SBRT issue. However, the relationship 

between planned and delivered dose is poorly known. This requires many of the tools and 

concepts developed by physicists in IGRT over the last decades, as well as new ones, to be 

applied to dose calculations: this is the “physics” end of the SBRT issue. In this thesis, the 

issue was approached from both ends. Further research is needed to be able to relate delivered 

dose to treatment outcome. Here follows some questions within the area of this thesis where I 

see a need for future research. 

 

It is important to get an improved knowledge as to whether increased tumour coverage 

probability (D98%) increases the rate of local tumour control, at the prescribed doses 

commonly used in SBRT. If that is not the case, the local control rather depends on other 

factors. Minimum dose to the CTV may not be the most decisive factor but other aspects of 

the dose distribution within the CTV, or factors that may be tumour-individual and connected 

to the distribution of radiation sensitivity within the CTV. If, on the other hand, it can be 

shown that D98% is the most decisive factor for local tumour control, then the magnitude of 

the CTV-to-PTV margin will be highly important, to which the minimisation of systematic 

geometrical errors is the dominating component. A factor of uncertainty related to the 

probability of local control is the accuracy in the delineation of the CTV, and what dose is 

required for volumes with suspect tumour growth with low tumour-cell density, outside the 

GTV at the periphery of the target. 

 

With regard to toxicity from SBRT, the CTV-to-PTV margin should be as small as possible 

to minimise dose to surrounding tissues. Improved knowledge of delivered dose to OAR for 

improved dose-response relations for OAR is important. The use of these improved relations 

would also require detailed knowledge of geometrical uncertainties, to be applied in 

probabilistic treatment planning. Furthermore, to what extent improved dose-delivery 

methods may reduce dose to OAR is important to evaluate. These methods may include 

improved dose distributions with photons or maybe also protons. It is also of importance to 

evaluate delivery methods such as gating and tracking, and what value these methods adds, 

considering the lower importance of random geometrical uncertainties for the CTV-to-PTV 

margin needed. 
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