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ABSTRACT 
 
The cornea is the outermost layer of the eye, which is responsible for transmitting 95% of the 
incident light to the retina for vision and provides 70% of the focusing power of the eye. 
Corneal disease is a primary cause of blindness worldwide. Replacing the pathologic cornea 
with a donor cornea is the most accepted treatment, but there is a severe shortage of donor 
tissue, resulting in an extensive waiting list for transplantation of over 10 million people. In 
this thesis, we worked on the development of artificial corneas to solve the donor shortage 
issue. Although an artificial cornea made from carbodiimide crosslinked recombinant human 
collagen developed within our lab was successfully transplanted into 10 patients in a clinical 
trial, this material was not tough enough to withstand severe disease conditions where 
inflammation is present, and where enzymes secreted can cause premature implant 
degradation. To improve mechanical strength and material stability, a secondary network of  
2-methacryloyloxyethyl phosphorylcholine (MPC) biopolymer was incorporated within the 
collagen hydrogel, forming an interpenetrating network (IPN). High resolution transmission 
electron microscopy showed that the implants comprised loosely bundled collagen filaments. 
X-ray scattering further revealed that the collagen fibrils within the implants were uniaxially 
oriented, whereas a biaxial alignment is present within the human cornea. This fibril 
arrangement resulted in highly transparent implants that transmitted virtually all incoming 
light of visible spectra together with a large proportion of UV light. This study is critical in a 
sense that it strongly suggests that all patients transplanted with this artificial cornea should 
take the precaution to use UV protection prior to re-growth of the epithelium, which is known 
to absorb harmful UV rays. To determine the utility of the implants for clinical use, we 
showed that they could be cut with a femtosecond laser. Laser excision of diseased patient 
tissue avoids damage to the surrounding healthy tissue, thereby circumventing excessive, 
undesirable inflammatory responses associated with the manual surgical technique while the 
cutting of a matched implant allows for precise host-graft apposition and seamless 
regeneration. We also showed that the surface of the implants could be modified to enhance 
rapid and stable epithelial growth. We demonstrated that we could pattern the implants 
surfaces using microcontact printing with fibronectin as “ink”. The dimensions of the 
patterned stripes were important in controlling corneal epithelial cell behavior including 
proliferation. This is important to ensure rapid wound healing and hence, an overall superior 
clinical outcome.   
 
In all of the above materials, the collagen was crosslinked with N-(3-dimethylaminopropyl)-
N'-ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS). EDC is a zero-length crosslinker 
and while it produces a sufficiently robust hydrogel for clinical implantation, suturability was 
still an issue. To enhance suturability, we evaluated the effects of an epoxy-based crosslinker, 
1,4-Butanediol diglycidyl ether (BDDGE), which has been shown to result in collagen 
hydrogels with enhanced elasticity. As neuronal ingrowth into the hydrogels and epithelial 
cell coverage are important considerations in achieving regeneration, we examined the effects 



 

 

of incorporation of short cell adhesive laminin peptides within the BDDGE-crosslinked 
hydrogels. We showed that incorporation of YIGSR and IKVAV peptides enhanced the 
proliferation of corneal epithelial cells and neuronal progenitor cells, respectively.  
 
Although artificial corneas made from collagen have been successfully tested in the clinic, 
animal-derived collagens, in general, come from very heterogeneous sources and carry a risk 
of pathogen transmission. Use of recombinant human collagens mitigates those issues but just 
like native collagens; they are large macromolecules, relatively inert and therefore difficult to 
chemically alter to design in new functionalities. They are difficult and hence expensive to 
produce. Collagen-like peptides (CLP), also known as collagen mimetic peptides, are 
relatively short sequences that have been designed to replicate and reproduce the function of 
full-length collagen. We examined the safety and efficacy of one such CLP that we had 
conjugated to polyethylene glycol-maleimide (PEG) as implants for promoting corneal 
regeneration in mini-pig models. This CLP-PEG implants promoted the regeneration of 
corneal epithelial and stromal cells from endogenous progenitors, as well as cornea nerves to 
form a stable neo-cornea. The use of fully synthetic materials that can be produced under a 
tightly controlled environment such as CLP-PEG mitigates safety issues associated with 
native collagen from animal or human sources, as well as makes production sufficiently cost-
effective to allow for future scale-up. 
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1 INTRODUCTION 

REGENERATIVE MEDICINE  

Regeneration or regrowth of lost or damaged tissues or organs is a part of life. An adult 

human body has stem cells in virtually every organ that, in theory, have the capacity to 

replace themselves. Although organs like the liver and skin do have the regenerative 

capacity, in most organs, however, the resident stem cells on their own are not 

sufficient to achieve the repair needed to prevent organ failure in cases of disease or 

extensive damage. Hence, in humans, regeneration is limited.  

Regenerative Medicine has been defined as a “branch of medicine that develops 

methods to regrow, repair or replace damaged or diseased cells, organs or tissues[1]”. 

As such, it includes the science of developing therapeutic stem cells and tissue 

engineering. This field holds the promise of restoring damaged tissues and organs by 

stimulating the body's own repair mechanisms to functionally heal previously 

irreparable tissues or organs. 

If the patients’ own endogenous or autologous cells were used therapeutically, then 

immune rejection issues would be circumvented. The use of acellular biomaterials that 

can promote endogenous regeneration is an option that has been gaining momentum. 

The use of such an approach alleviates the need for expensive cleanrooms that are 

needed for cell expansion[2]. In this thesis, I will mostly discuss the regenerative 

approaches of making artificial cornea using biomaterials that promote endogenous 

regeneration. 

 

1.1 CORNEA 

The cornea is the transparent covering and the main refractive element of the eye. It is 

responsible for transmission of light to the retina. The human cornea is composed of 

three primary layers, an outermost epithelium layer, a middle stroma containing 

keratocytes and an innermost, single layer of endothelial cells[3]. Two acellular layers 

separate these cellular layers; Bowman’s layer that separates epithelium and stroma, 

and Descemet’s layer which separate stroma and the endothelium. There is an 



 

 2 

additional, recently discovered, acellular layer termed as the pre-Descemet’s layer 

(Dua’s layer) that lies adjacent to the Descemet’s layer[4].  

The corneal epithelium is a stratified, non-keratinizing epithelium. Centrally, it is five 

cell layers thick, whereas, in the periphery, it is up to 10 cell layers thick. Cells of the 

epithelial layer are self-renewing, and their stem cells are located basally as will as in 

the limbus, which is a ring of tissue immediately adjacent part to the peripheral 

cornea[5].  

Keratocytes or stromal cells are neural crest-derived mesenchymal cells that make up 

approximately 3% of the total stromal volume[6].  The rest of the stroma comprises 

extracellular matrix (ECM) macromolecules consisting of mainly collagen and 

proteoglycans. Functional properties of the healthy cornea largely depend on the 

structure of corneal stroma, which is around 500um thick  (90% of the total cornea) and 

highly hydrated (78% water). Highly specific arrangement of collagen fibrils within the 

stroma is the reason behind corneal transparency[7]. Unlike corneal epithelial cells, 

stromal cells are not self-renewing and they remain quiescent throughout life. Upon 

injury to the stroma, keratocytes transform into mitotically active fibroblasts[8, 9], 

while ECM secreted by the fibroblasts[10] form a scar within the cornea that can lead to 

vision loss.  More recent studies have shown that stromal cells with stem cell specific 

markers have been isolated from the corneal limbal resign. These cells have the ability 

to differentiate into keratocytes and are most likely stem cells[11, 12].  

The corneal endothelium is a single layer of non-proliferative cells[13]. The density of 

the cells is 2-5x103 cells/mm2 in the normal human cornea[14]. The endothelium 

functions to maintain the hydration of cornea by pumping out excess water from the 

corneal stroma through their Na, K-ATPase pump[15]. In case of the loss of endothelial 

cells during the aging or wounding process, the exposed area becomes covered by 

increasing the overall cell size and altering the shape to fit the gap[16]. Recent studies 

showed that endothelial progenitor cells exist in the corneal periphery and have the 

potential to differentiate into functional corneal endothelial cells[17, 18].  

The cornea is the most densely innervated surface tissue of human body. Most of the 

corneal nerves are sensory in origin and originate from the ophthalmic branch of the 

trigeminal nerve. Corneal nerves lose their perineurium and myelin sheaths as they 

enter the vicinity of the limbus before entering into the cornea. They form a nerve 
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plexus that lies parallel to the surface of the cornea[19]. Corneal nerves play an 

important role in sensory function, maintaining the homeostasis of the corneal 

epithelium, tear production and blinking[20]. The cornea does not have blood vessels. 

The nutritional requirement is fulfilled by the tears[21], aqueous humor[22] and also 

neurotrophins from its nerve supply. The highly hydrated and porous structure of the 

cornea allows for diffusion of solutes and nutrition throughout the structure[23]. The 

cornea is immunologically privileged[24] and is, therefore, a perfect model for studying 

transplantation and tissue engineering. 

 

1.2 CORNEAL DISEASES 

According to World Health Organization (WHO), 285 million people throughout the 

world are visually impaired, and among them, 39 million are blind[25]. One of the 

major causes of blindness worldwide is corneal disease, leading to loss of corneal 

transparency and deteriorating vision. There are a wide variety of infectious and 

inflammatory eye diseases that cause corneal scarring and may result in total blindness. 

Ulceration and trauma cause cornea related monocular blindness to 1.5–2.0 million new 

cases every year[26]. 

Microbial attack is a common cause of corneal disease. Endogenous antimicrobial 

peptides or proteins such as lysozyme, lactoferrin, phospholipase A2, defensins, and 

cathelicidins are present in the tear film. These provide host defense against microbial 

attack[27-31]. Alteration of this host defense mechanism makes the cornea susceptible 

to microbial attack.   

Herpes simplex virus (HSV) infection is one of the prime causes of corneal disease and 

loss of vision. HSV is a neurotrophic virus that infects the skin, mouth mucous 

membrane, genitalia and eyes. HSV serotype 1 (HSV-1) is commonly associated with 

corneal infections. Up to 500,000 cases per year of HSV infection in the cornea are 

reported in the USA alone. HSV-1 infection is the most frequent cause of corneal 

blindness in North America and reports of visual disability are as high as 40%[32]. The 

pathogenesis of the HSV-1 virus is complex. Initial exposure generally results in a 

primary infection during which the clinical signs can include the followings: 1) 

Infectious epithelial keratitis in which corneal epithelial ulcers (surface lesions) are 
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present; 2) Neurotrophic keratopathy in which abnormal corneal innervation and poor 

tear production occur. The infection produces a non-healing surface ulcer that can 

progress into the deeper layers and cause corneal perforation; 3) Stromal keratitis that 

can be either necrotizing or non-necrotizing; and 4) Endothelialitis, which is an immune 

reaction at the level of the endothelium that may occur by months to years of HSV 

infection. After recovery from primary infection, the virus establishes latency in the 

trigeminal ganglion that supplies sensory neurons to the ocular surface[33] and also 

likely, within the cornea[34]. Prompts for reactivation are diverse and nonspecific 

including stress, immunosuppression and sunlight. The recurrent disease is generally 

more severe, involving the stroma as well as epithelium, leading to Herpes Simplex 

Keratitis (HSK). 

Bacterial and fungal keratitis are also common corneal diseases that can cause damage 

to the cornea and lead to blindness[35].  Most keratitis is associated with the use of 

contact lenses, e.g. infection caused by the bacterium, Pseuromonas aeruginosa[36] 

and the fungus, Fusarium solani[37]. Infective crystalline keratopathy is caused by 

Viridans streptococci[38], Staphylococcus epidermidis[39] and Candida albicans[40]. 

Trachoma, which is caused by the bacterium Chlamydia trachomatis, is related to 

corneal inflammation and scarring that affects 5 million people worldwide[26]. In most 

of the cases, bacteria form the biofilm, which makes them more resistant to 

conventional treatment[41].  

Keratoconus is another common and non-infectious-based corneal disease that is 

characterized by non-inflammatory and progressive thinning of the cornea. Genetic as 

well as environmental factors have been associated with this disease[42]. Keratoconus 

causes visual interference with multiple images and sensitivity to light[43].  

 

1.3 CORNEAL TRANSPLANTATIONS AND ISSUES 

The most widely accepted treatment for corneal blindness is transplantation of a full 

thickness healthy donor cornea after removal of the damaged tissue; a process termed as 

penetrating keratoplasty (PK)[44]. Unfortunately, the supply of donor tissue is 

substantially less than the demand for transplantation that has resulted in 10 million 



 

 5 

untreated patients worldwide, with an additional 1.5 million new patients every 

year[26].  

Apart from the donor shortage, donor corneal grafting is contraindicated in a proportion 

of patients reasons such as autoimmune situations, chemical burns, and infections[45]. 

Graft failure due to the graft rejection remains the most challenging complication in 

corneal transplantation. The Swedish register transplantation database shows that the 2-

year rejection rate of transplanted donor corneas is quite low, at 15% with an overall 

complication rate of 26%[46].  The survival rate of corneal grafts, however, decreases 

over time to 62% at 10 years and 55% at 15 years[47].  

Although the healthy cornea is immune privileged, corneas that are inflamed and 

neovascularized are no longer immune privileged leading to graft rejection.  The loss of 

immune privilege is probably due to infiltration of blood vessels and lymphatics into 

the cornea. Rejection of a corneal graft is a CD4+ T cell-mediated response[48]. In the 

case of inflammation, host antigen-presenting cells (APC) are attracted into the stroma, 

and due to the local production of pro-inflammatory cytokines, major histocompatibility 

complex antigen gets overexpressed on grafted corneal cells. The up-regulation of alien 

histocompatibility complex triggers host immune system. This immune reaction against 

donor antigens results in rejection of corneal graft[49].   

Donor-cornea derived infection is another serious complication associated with 

transplantation of human donor corneas[50]. HSV-1 DNA isolated and characterized 

from donor corneas before and after corneal transplantation confirmed the transmission 

of HSV-1 through transplantation from donor to host[51]. Bacterial and fungal post-

keratoplasty endophthalmitis is another common complication that appears after five 

days of donor transplantation[52]. Processing and proper screening of donor corneas 

can reduce the complications of infection related to donor cornea transplantation. 

Screening is an expensive procedure, with processing fees in the USA around 2.5-3.5 

thousand US dollars per cornea[45]. Infection has been implicated in graft rejection. For 

example, corneal transplantation is the treatment of choice for HSV-induced corneal 

blindness[47] despite a poor prognosis (22% success at 5 years[53]) compared to 73% 

success at 5 years for non-HSV grafts[47]. After recovery from the primary infection of 

HSV, this virus may remain in the trigeminal ganglion as a latent state[54]. The virus 
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can reactivate after transplantation with a donor cornea and cause the same disease to 

the newly transplanted cornea[55].  

 

1.4 PROPOSED ALTERNATIVES TO HUMAN DONOR CORNEAS 

There has been a long history of research into the development of alternatives to human 

corneas, both artificial as well as natural alternatives.  

Xenografts have been tested since the 1800s. In 1838, Richard Sharp Kissam 

transplanted a cornea from a 6 months old pig into the cornea of a young Irishman, 

James Dunn, who suffered from a central leucoma. Within two weeks of 

transplantation, the cornea became opaque and was absorbed within one month[56]. 

During the same year, a sheep xenograft cornea was grafted into a human patient[57]. 

In this case, the grafted cornea became opaque. In all instances of xenografts, the 

implants failed due mainly to host immune reaction against the graft[58]. In addition, 

cross-species diseases are also a major complication of xenograft transplantation. To 

date, xenografts are still being tested. However, they are now treated to remove the 

cellular components to prevent immune rejection and screened to prevent pathogen 

transmission.   

Decellularized organs for potential transplantation have become popular in recent time 

due to their ability to retain the native ECM of the target organ[59]. Decellularized 

corneas have been studied to evaluate their potential as grafts in same or cross-

species[60]. There have been a number of methods developed to decellularize 

corneas[61, 62]. Most of the methods used 1) 0.1% sodium dodecyl sulfate (SDS)[63] 

for 7 hours, 2) hypoxic nitrogen (N2) for 7days[64] or 3) hypertonic NaCl for 48 

hours[65]. The human cornea was decellularized and evaluated for the reconstruction of 

corneal epithelium and stroma, in vitro[61]. In 2015, decellularized porcine corneas 

have been successfully transplanted into patients in clinical evaluation. Forty-seven 

patients with the fungal corneal infection were transplanted with the decellularized 

porcine cornea. Up to 6 months of post operation, there was no recurrence of infection 

and corneas became re-epithelialized. Visual improvement was reported for 72% of the 

patients although neovascularization was reported in 53% of the patients[66].  

Decellularized tilapia fish scale-derived extracellular matrix has also been tried in a rat 
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model to evaluate the biocompatibility. The short term (21days) result ended up with 

the haziness, neovascularization around the sutures, obscuring the pupil, melting of the 

anterior corneal lamella and local swelling; depending on the place in the cornea the 

scale was transplanted[67]. But in traumatic perforations in a mini-pig model, fish scale 

cornea showed promising results in a very short-term study (3-4 days) with only mild to 

moderate swelling in the perforated cornea[68].     

Stem cell treatment, in contrast to decellularized corneas, is another commonly 

accepted therapy, particularly with problems related to deficiency of the stem cells of 

the corneal epithelium, i.e. limbal stem cell deficiency[69]. Limbal stem cell deficiency 

is overcome by grafting small pieces of the health eye’s limbus to the damaged eye[70]. 

More recently, limbal stem cells have been cultured in vitro to expand their numbers 

and then grafted into cell deficient eye[71]. Autologous grafts obtained from the healthy 

contralateral corneas have worked very well[72]. Burn related destruction of the lumbus 

resulting in limbal stem cell deficiency has been successfully treated with autologous 

cultured limbal stem cells from contralateral eye[72] cultured on human amniotic 

membranes[73] or fibrin substrates[74]. Within our group, we have shown that a 

stratified epithelium layer can be reconstructed by seeding limbal cells on top of 

collagen-based materials[75]. The expansion of stem cells requires the use of certified 

cleanrooms following Good Manufacturing Practice (GMP) guidelines. This therefore 

limits the ability to perform stem cell transplantations to large, affluent tertiary 

healthcare centers. Recently, however, a technique known as Simple Limbal Epithelial 

Transplantation (SLET) was developed to allow for transplantation of stem cells 

without the need for expansion of stem cells. In this technique, a healthy limbal 

(2x2mm) part is divided into small pieces and expanded in vivo in the stem cell-

deficient eye with the help of amniotic membrane and fibrin glue[76]. Two-amniotic 

membranes are also used to sandwich harvested limbal stem cell to protect the cells 

from hostile microenvironment[77]. Multicenter clinical trial with autologous SLET 

technique showed the 83.8% success rate with the complete epithelization and 

avascular corneal surface within 6 months post-operation[78].    

Artificial corneas known as keratoprostheses (KPro’s) have been in development for 

over 200 years. In 1789, French scientist, Pellier de Quengsy proposed replacement of 

opaque corneas using a glass alternative[79]. In 1855, a quartz crystal implant was first 

transplanted into a human[80]. In the second half of the 20th century, core-and-skirt 
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designs for artificial corneas became common. This design comprised of a transparent 

plastic optical core (e.g. poly (methyl methacrylate)) and a porous skirt of different 

materials. The most successful among this approach is the Boston KPro. In this KPro, a 

donor cornea is positioned between the front and back plates[81]. Boston KPros’ are 

well retained. Development of glaucoma, retroprosthetic membrane formation, and 

persistent epithelial defects, however, remain as postoperative difficulties 

encountered[82, 83]. Other problems include the need for lifetime antibiotics, and in a 

proportion of patients, immune suppression is required.  

The AlphaCor is another well-known KPro that used in the clinic[84]. In this KPro, 

both optic and skirt are made from poly (2-hydroxyethyl methacrylate) (PHEMA). The 

optic is solid, but the skirt contains interconnecting pores that allow biointegration with 

adjacent corneal tissue. The retention rates of AlphaCor after 1, 2 and 3 years of 

transplantation were 87%, 58%, and 42%, respectively. Due to the low water content of 

PHEMA based AlphaCor, the KPro has reduced permeability to glucose and other 

solutes, which may account for the decreasing implant survival over time. In order to 

increase the water content of PHEMA-containing implants, methacrylic acid monomers 

were incorporated into the PHEMA. The surface of this KPro was treated with laminin 

and fibronectin, which increased corneal epithelial growth in vitro[85, 86]. In another 

approach, KPro was designed to selectively assist different corneal cells growth. In this 

approach optic core was made of a dual network of poly (ethylene glycol) and poly 

(acrylic acid) (PEG/PAA) to support epithelization and skirt is made of microperforated 

poly(hydroxyethyl acrylate) (PHEA) that encourages stromal tissue integration[87]. In 

vivo biocompatibility of PEG/PAA based materials were tested in rabbit cornea[88].  

The osteo-odonto-keratoprosthesis or OOKP is another type of KPro that contains 

dental tissue enveloped with autologous oral mucosal cells[80, 89]. OOKP implantation 

requires a two-stage surgical procedure. The first stage involves the harvesting of a 

monoradicular tooth to prepare osteo-odonto-lamina. A hole is drilled through dentine, 

and poly(methyl methacrylate) (PMMA) optic cylinder is placed into the hole. This 

implant then placed into a submuscular pouch within the oral mucosa for 2-4 months. 

By this time, the OOKP becomes vascularized to maintain a blood supply. During the 

second stage, the graft is removed and placed in the eye after removing the cornea up to 

Bowman’s layer. OOKP implantation is a complicated procedure, but the survival rates 
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are high as it can withstand hostile ocular environment and in a severely dry eye 

condition[90]. 

 

1.5 HUMAN RECOMBINANT COLLAGEN BASED ARTIFICIAL 

CORNEAS 

As collagen is the main competent of the corneal extracellular matrix, artificial corneas 

made from collagen have garnered a lot of interest as alternatives to human donor 

corneas. The main source of collagen is extracted animal protein, although 

recombinantly produced collagen is now available. To give mechanical strength and 

feasibility for transplantation, collagen is cross-linked by different mechanisms[91-94]. 

The most conventional crosslinking method is using with N-(3-dimethylaminopropyl)-

N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS)[95]. The EDC cross-

linking reaction starts with the activation of the carboxylic acid groups of Asp or Glu 

residues of collagen by EDC. The reaction of the carboxylic acid with EDC gives O-

acylisourea, an intermediate reactive group. O-acylisourea is very unstable to 

hydrolysis. NHS converts the O-acylisourea group into a NHS-activated carboxylic 

acid group. The resultant then reacts with amine groups of lysine and the final product 

will be zero length cross-linked collagen[96].  Optically transparent and cell friendly 

corneal implants were made from porcine and bovine collagen and transplanted into 

animal models[97, 98]. However, porcine collagen-based corneas when grafted in mice 

showed immunogenic reaction[99]. Animal-derived collagen comes from 

heterogeneous sources, and because of the different levels of processing and screening 

in each different source, great care needs to be taken due to the risk of transmitting 

diseases[100] as well as provoking immune responses in the host[101].  

The use of recombinant human collagen mitigates the heterogeneity and pathogen 

transmission issue. Recombinant human collagen production has been developed using 

mammalian cell culture systems[102], insect cell cultures[103], silkworm[104], tobacco 

plants[105] and yeast[106, 107].  Only mammalian cells expressed full-length 

hydroxylated collagen. All other expression systems are lack proline hydroxylation 

result in the production resulting in an unstable collagen that is readily degraded by 

proteolytic degradation[108].  In the yeast, Pichia pastoris, co-expression of prolyl 4-

hydroxylases with the collagen gene facilitates the production of stable collagen in a 
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recombinant manner[107, 109]. P. pastoris has been used to express type I, II and III 

collagen[110]. Recombinant human collagen-based artificial corneas have been made 

from both type I and III collagen. Both types of collagen showed similar mechanical 

properties and in-vivo biocompatibility in mini-pigs although type III implants were 

superior in optical clarity[111]. Type III recombinant human collagen (RHC) based 

artificial corneas have been tested in a Phase I clinical trial on 10 patients in Sweden. 

RHC was crosslinked with EDC/NHS and fabricated into implants. They were grafted 

into 10 patients. Nine patients had keratoconus while the tenth had a central corneal 

scar[44].  The implants promoted regeneration of corneal epithelium, stroma, and 

nerves from the patients’ endogenous cells. The grafted corneal implants have remained 

stable for four years without any rejection and without sustained immune suppression. 

At the 4-year follow-up (Fig. 1), the implanted cornea remained stably integrated into 

the host eye[112]. In vivo confocal microscopy showed that corneal cells had populated 

the implant (Fig. 2).  

 

Figure 1. Slit lamp biomicroscopy images of the corneas of all 10 patients transplanted with recombinant 

human collagen implants at 4 years post-operation (From Biomaterials. 2014 Mar;35(8):2420-7). 
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Figure 2. Typical in vivo confocal microscopic appearance of four-year post-operation, unoperated and 

normal corneas. (From Biomaterials. 2014 Mar;35(8):2420-7)  

One patient had undergone re-grafting as he could not be properly fitted with contact 

lenses for visual acuity. Histopathology of the neo-cornea obtained showed that it had a 

normal corneal structure, although a part of corneal implant still remained[113].  

To improve the functionality and increase resistance to enzymatic degradation in the 

severe disease condition, a new artificial cornea was developed using interpenetrating 

polymer networks (IPN) of collagen and phosphorylcholine. These implants were tested 

in mini-pig, guinea pig and rabbit models[114-116]. In that case 2-

methacryloyloxyethyl phosphorylcholine (MPC) was polymerized with poly(ethylene 

glycol) diacrylate (PEGDA) with the help of ammonium persulphate (APS) and 

N,N,N,N tetramethylethylenediamine (TEMED)[116].   

 

1.6 ARTIFICIAL CORNEAS BASED ON PEPTIDE ANALOGS OF 

COLLAGEN 

About 90% of the world’s visually impaired live in low-income nations[25]. Production 

and purification of RHC in yeast is an expensive process that makes the price of the 

artificial cornea unreachable to the most needy individuals. Therefore, an alternative 

that could replace RHC with the same physicochemical and biological properties would 



 

 12 

be a huge advancement. Collagen-like peptides (CLP) or collagen mimetic peptides 

have been developed as functional alternatives of collagen [117].  
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2 AIMS OF THIS PROJECT 

Artificial corneas have been developed as an alternative to donor human corneas and 

recently, our group has shown that implants based on recombinant human collagen 

have successfully promoted regeneration of corneal tissues and nerves in a small 

clinical trial. However, these implants are not amenable to grafting in patients with 

severe pathologies. We hypothesize that the structural integrity and mechanical 

properties can be enhanced in several ways, ranging from incremental changes by 

incorporation of a second network of materials, peptides to surface modification and 

surgical handling techniques. We also hypothesize that the functional properties of full-

length collagen can be replicated using shorter peptide analogs to collagen.   

The specific aims of this thesis were therefore to: 

• characterize the ultrastructural properties of collagen versus collagen-MPC 

cornea implants to understand how they can be improved 

• optimize the collagen-MPC formulation by enhancing the mechanical and 

chemical properties by examining the effects of a new epoxy-based crosslinker, 

and incorporation of laminin-derived cell adhesion peptides, YIGSR and 

IKVAV 

• optimize the functionality of collagen-MPC implants by surface modification 

using microcontact printing, and evaluating its performance as an implant by 

examining the effects of laser-cutting  in potential surgical use 

• evaluate a collagen-like peptide hydrogel as an analog to collagen-based 

hydrogels in vitro and in vivo 
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3 MATERIALS AND METHODS 

Please refer to Papers I-V for the detail description of the materials and methods used in 

this thesis.  

3.1 ETHICAL CONSIDERATIONS 

Paper IV 

Dr. Lucia Kuffova, University of Aberdeen, UK, performed the animal studies, had a 

permit from the Ophthalmic Research and Animal License Act (United Kingdom). 

Project license number was 60/3890. 

Paper V 

After ethical approval from the local ethical committee, Linköpings Djurförsöksetiska 

Nämnd (Dnr 52-15), and in compliance with the Swedish Animal Welfare Ordinance 

and the Animal Welfare Act, materials were implanted in the rats subcutaneously. 

After permission from Stockholms Norra Djurförsöksetiska Nämnd (N204/13), 

materials were transplanted into pig corneas.  

 

3.2 RHC-MPC ARTIFICIAL CORNEAL IMPLANT  

RHC used in for the papers was purchased from FibroGen Inc. (San Francisco, USA) 

and 3H Biomedical (Uppsala, Sweden). For making hydrogels, approximately 500 mg 

of RHC solution was buffered with 150µl of 0.625M 2-morpholinoethane sulfonic acid 

monohydrate (MES) buffer. MPC solution in MES was added into a syringe mixing 

system (Fig. 3) for through mixing.  

 

    Figure 3. Syringe mixing system             Figure 4. Jigs with 500 µm moulds 
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The MPC:RHC (w/w) ratio used was 1:2. PEGDA was then added (PEGDA:MPC 

(w/w) = 1:3). Calculated volumes of 4% (w/v) APS solution in MES and 2% (v/v) 

TEMED solution in MES were added sequentially (APS:MPC (w/w) = 0.03:1, 

APS:TEMED (w/w) 1:0.77). Calculated amounts of NHS (10% (w/v) in MES) and 

EDC (5% (w/v) in MES) solutions were added and the reactants were thoroughly mixed 

at 0oC (EDC:RHC-NH2 (mol:mol) = 0.4:1, EDC:NHS (mol:mol) = 1:1). The final 

mixed solution was immediately cast into cornea-shaped moulds (12 mm diameter, 500 

µm thick) (Fig. 4).  

In paper II, RHC-MPC hydrogels were made with slight modifications. Different 

RHC:MPC (w/w) ratios were used as 1:1, 2:1 and 4:1. EDC:RHC-NH2 (mol:mol) ratios 

were 0.3-1.5:1. APS:MPC (w/w) ratio was 0.015:1. For microcontact printing, 

RHC:MPC (w/w) ratio of 1:2 with EDC:RHC-NH2 of 0.4:1 was used.  

 

3.3 EPOXY-CROSSLINKED COLLAGEN HYDROGELS WITH 

INCORPORATED LAMININ PEPTIDES 

1,4-Butanediol diglycidyl ether (BDDGE), a bi-functional epoxy crosslinker, was used 

to crosslink an aqueous solution of type 1 porcine collagen (10% w/v) with the 

intention of enhancing the mechanical properties of the hydrogel by increasing its 

elasticity (Paper III). BDDGE was used alone to crosslink at basic pH and in the 

combination of EDC/NHS at acidic pH. The same syringe mixing system as above was 

used to thoroughly mix up the hydrogel components with sodium bicarbonate buffer for 

hydrogels made under basic pH conditions, and MES for the acidic conditions. For 

hydrogels prepared under the basic conditions, 1 molar equivalent (relative to the 

collagen lysine residues) of BDDGE was used. For acidic conditions, 0.4 molar 

equivalents of BDDGE were used together with 0.5 molar equivalent of EDC/NHS. 

The final products of both formulations were then cast into moulds and cured within a 

humidified chamber for 24 and 72 hours for the basic and the acidic conditions, 

respectively. Under the acidic condition, 0.3 molar equivalent Cu+ was used to catalyze 

the formation of the amide bonds with epoxides. YIGSR and IKVAV, small cell 

adhesive peptides derived from laminin were incorporated into the acidic hydrogel at 

0.001 molar equivalent concentrations to collagen amine, to increase cellular 

biocompatibility properties of the hydrogel.     



 

 16 

 

3.4 SYNTHESIS OF COLLAGEN-LIKE PEPTIDE (CLP) AND 

FABRICATION OF HYDROGEL 

3.4.1 Synthesis of CLP-PEG 

A 38 amino acid long CLP peptide, CG- (Pro-Lys-Gly)4(Pro-Hyp-Gly)4(Asp-Hyp-

Gly)4, was synthesized using a Symphony automated peptide synthesizer (Protein 

Technologies Inc., Tucson, AZ, U.S.A.) using standard fluorenylmethoxycarbonyl 

(Fmoc) chemistry. The resulting peptides were split from the resin by treatment with a 

mixture of trifluoroacetic acid (TFA), water and triisopropylsilane (TIS) (95:2.5:2.5 

v/v; 10 mL per gram of polymer) for 2h at ambient temperature. The CLP was then 

precipitated by the addition of cold diethyl ether, followed by centrifugation and 

lyophilization. Purification was done using reversed-phase High Performance Liquid 

Chromatography (HPLC) on a semi-preparative C-18 column (Grace Vydac, 

Helsingborg, Sweden). 

The solution of CLP and 8-Arm PEG-Maleimide was mixed at the molar ratio of PEG-

Maleimide:CLP=1:5. After 4 days of continuous stirring the mixture was dialyzed 

through a dialysis membrane (12-14,000 molecular weight, Spectrum Laboratories, 

Inc., CA, US). After dialysis, the solution was lyophilized to obtain solid CLP-PEG.  

3.4.2 Fabrication of hydrogel 

To fabricate corneal implants, 500mg of 12% (w/w) CLP-PEG was taken into a 2ml 

glass syringe. Calculated volumes of NHS and then EDC were added to the syringe 

mixing system we used previously. Depending on the molar equivalent ratio of EDC to 

the amine of CLP-PEG, three different types of hydrogels were made; CLP-PEG-NH2: 

EDC=1:0.5, CLP-PEG-NH2: EDC=1:1 and CLP-PEG -NH2: EDC=1:2. The molar ratio 

of EDC: NHS was 1:1. As a negative control of in-vitro biocompatibility, hydrogels 

were made by 8-Arm PEG-Maleimide and 8-Arm PEG-Thiol together at a molar ratio 

1:1 at 37oC. CLP-PEG-NH2: EDC=1:2 was used for further characterizations and 

animal studies.    
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3.5 CHARACTERIZATION 

Structural and optical properties of the RHC-MPC corneal implants were examined in 

Paper I, using transmission electron microscopy (TEM), X-ray scattering, spectroscopy, 

and refractometry.   

Light transmission, refractive index and water content of the implants were measured. 

Thermal stability of the materials was measured by differential scanning calorimeter 

(DSC, Q20, TA Instruments, New Castle, UK). Tensile strength, elongation at break 

and elastic modulus was measured (not as a part of the Quality control for clinical use) 

by Instron machine (Biopuls, High Wycombe, UK). Fourier transform infrared 

spectroscopy (FTIR, VERTEX 70, Bruker, Billerica, MA, USA) confirmed the 

presence of different functional groups present on the surface of the materials.  

The feasibility of using femtosecond laser assisted cutting for RHC-MPC hydrogels 

was tested, to determine whether the hydrogels were amenable to the laser-assisted 

surgical grafting of corneal hydrogel implants.  

To confirm the conjugation of CLP with PEG-Maleimide, 1H NMR spectra was 

measured using an Oxford 300 MHz (Varian, CA, US) spectrometer at room 

temperature. CLP was dissolved in D2O (1mg/0.1ml) whereas CLP-PEG and 8-Arm 

PEG-Maleimide was dissolved in C2D6OS (1mg/0.1ml) (Paper V).  

Triple helicity of CLP-PEG was confirmed using circular dichroism (CD) on a 

Chirascan CD Spectrometer (Applied Photophysics Ltd, Surrey, UK). CLP-PEG was 

dissolved in water at a concentration 0.5% (w/v). The solution was scanned at a range 

of wavelengths from 180 to 260nm at 25oC, and its ellipticity, θ (mdeg) was recorded 

(Paper V). 

 

3.6 COLLAGENASE STUDY 

Enzymatic degradation of hydrogels was performed using collagenase from 

Clostridium histolyticum (Sigma-Aldrich). Small pieces of hydrogels were placed in 

5U/ml collagenase solution in 0.1M tris-HCL (pH 7.4) containing 5mM CaCl2. The 

hydrogels were incubated at 37oC and the collagenase solution was changed at every 8 

hours. The gels were weighed at specific time pauses after removal of surface water. 
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The enduring mass of the hydrogels was traced as a function of time, comparative to 

their original hydrated weight. 

Residual mass % = Wt / Wo % 

Wt is the weight of hydrogel at a certain time point, and Wo is the initial weight of the 

hydrogel. 

 

3.7 CELL CULTURE 

Human corneal epithelial cells (HCEC) and GFP-HCEC (green fluorescence protein-

tagged Human corneal epithelial cells) were used to evaluate the proliferation of cells 

on the hydrogels. Cells were maintained in KSFM supplemented with epidermal 

growth factor (EGF) and bovine pituitary extract (BPE) at 37oC incubator. Images of 

cultured cells were taken at different time point by using fluorescence microscope 

(AxioVert A1, Carl Zeiss, Göttingen, Germany). Tissue culture plate (TCP) was used as 

a positive control for culturing HCEC.  

In Paper III, HCEC was seeded on different hydrogel and MTS was done to examine 

the proliferation of the cells. To evaluate the effect of incorporation of laminin peptides, 

HCECs and rodent hybrid dorsal root ganglia- neuroblastoma cells (NDC)[118] cells 

were seeded on peptides containing hydrogels and proliferation was measured over 

time.  

 

3.8 IMMUNOHISTOCHEMISTRY 

For immunohistochemistry (Paper II) HCECs were cultured on hydrogels for four days. 

Then cells were fixed, permeabilization and block. Cells were incubated with anti-

proliferating cell protein Ki67 antibody (Sigma–Aldrich, MO, USA), anti-focal 

adhesion kinase (FAK) antibody (Abcam, Cambridge, UK) and anti-integrin beta 1 

(integrin β1) antibody (Abcam, Cambridge, UK) followed by incubation with 

secondary antibody, Alexa Fluor-594 (Invitrogen, Oregon, USA). A confocal 

microscope (LSM700, Carl Zeiss, Göttingen, Germany) was used to visualize and 

capture the images.  
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3.9 IN VIVO BIODEGRADATION 

All materials of 10mm diameter and 500um thick were implanted subcutaneously into 

three Albino Wistar rats (Charles River, USA) after anesthetized with Isoflurane (5% 

for induction and 2% for maintenance). The subchronic effect of the implants and 

overall biodegradation was evaluated according to the ISO 10993-6 (International 

organization of standardization, Tests for local effects after implantation, Biological 

evaluation of medical devices, Geneva, Switzerland) guideline. For implantation, two 

small incisions were made paravertebrally on the backs of the each rat. Implants were 

inserted, and the wound was closed with 2-3 interrupted sutures. After 90 days, the 

animals were euthanized, and the implanted materials were removed from the host 

together with surrounding tissue for histopathological analyses. 

 

3.10 IN VIVO IMPLANTATION OF CORNEAL CONSTRUCTS IN ANIMAL 

CORNEAS  

With a license from Home Office, UK, RHC-MPC implants were tested for their ability 

to tolerate the adverse environment within mice with HSK corneas. Mice were infected 

with HSV-1 viruses at six weeks before implantation and had developed HSK.  1.5mm 

diameter of hydrogels was grafted into corneas that had HSK and retained using 

continuous sutures.   

RHC-MPC corneal implants were also tested in corneas of mini-pigs. With ethical 

approval (N204/13) from the regional animal experimental ethics committee in 

Stockholm (North), RHC-MPC & CLP cornea shape materials (500µm thick and 

6.5mm diameter) were transplanted into the cornea of Göttingen mini-pigs (Ellegaard, 

Denmark). A Swedish Medical Products Agency contract research laboratory, Adlego 

Biomedical AB, 75103 Uppsala, Sweden, conducted the entire experiment (Study plan: 

AB13-32). Two groups of four female mini-pigs in each group, aged 5-6 months at the 

beginning of the procedure were grafted with corneal implants comprising RHC-MPC 

crosslinked with EDC/NHS and CLP-PEG. Prior to the surgery, animals were 

anesthetized with isoflurane (0.5-3%, IsoFlo vet, Abbott Laboratories, UK) in oxygen 

and air. Tetracain 1% eye drop (Chauvin Pharmaceuticals Ltd, UK) was applied on 

ocular surface as topical anesthesia. Each pig cornea was cut circularly with a trephine 
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to a depth of 500um and 6.50mm diameter, and the corneal bottom was manually 

dissected and removed. Then implant material was cut with a 6.75mm diameter 

trephine and placed on the surgically removed corneal wound bed, as in deep lamellar 

keratoplasty (DLKP). All implants were covered with the human amniotic membrane 

(HAM) (St:Erik’s Eye Hospital, Stockholm) and the implants were kept in place using 

overlying sutures. Upon completion of the surgery, antibacterial and anti-inflammatory 

ophthalmic suspensions (3mg/ml dexamethasone and 1mg/ml tobramycine, Alcon, 

Sweden) were administered. The maintenance dose was 1 drop, 3 times daily for 5 

weeks.  The unoperated eye of each pig served as a control.  

The mini-pigs were examined at 3, 6, 9 and 12 months post-operation. Clinical 

examinations conducted at these times included slit lamp biomicroscopy (using a Kowa 

SL-15 Portable Slit Lamp, Kowa company, Ltd., Aichi, Japan), Schirmer’s tear test, 

intraocular pressure (IOP; measured using a Tonovet Tonometer, Icare Finland Oy, 

Finland), corneal touch sensitivity using aesthesiometry (measured using a Cochet-

Bonnet aesthesiometer, Handaya Co., Tokyo, Japan), corneal thickness measurement by 

Handy Pachymeter SP-100 (Tomey, AZ, USA), and in vivo confocal microscopy 

(IVCM; using a Heidelberg HRT3 Rostock Cornea Module, Heidelberg Engineering 

GmbH, Dossenheim, Germany). The McDonald-Shadduck scoring system was used to 

score results of the slit lamp evaluation[119]. IVCM images were used to analyze 

different cell types, tissue structure, and density of nerve[120].  

At 12 months post-operation, the animals were euthanized with an overdose of 

pentobarbital (Allfatal vet 100mg/ml, Omnidea, Sweden). Both operated and control 

unoperated corneas were harvested for further evaluation.  

 

3.11 BIOCHEMICAL ANALYSIS ON EXCISED PIG CORNEAS  

Biopsies (3 mm) from within the operated area and from unoperated control corneas 

were collected for biochemical analyses.  Samples were suspended in 10 mM HCl.  

Pepsin (Sigma Aldrich, USA) was added to a final concentration of 1 mg/mL from a 10 

mg/mL stock solution prepared just before use.  The samples were digested with pepsin 

at 2-8°C for 96 hours, and the soluble fraction was recovered by centrifugation. An 

aliquot of the pepsin soluble fraction was mixed with NuPAGE 4X LDS sample buffer 
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(Life Technologies), denatured at 75°C for 8 minutes and analyzed on a 3 - 8% Tris-

acetate gels under non-reducing conditions or 4 -12% Bis-Tris gels (Life Technologies) 

under reducing conditions.  Proteins were visualized by staining with Gelcode Blue.  

Precision Plus Markers and porcine skin type I collagen were used as molecular weight 

standards.  To determine whether there were quantitative differences in the amounts of 

type I and type V collagens in operated and unoperated corneas, densitometric scans of 

the stained gels were made to obtain relative numerical units using a GE Healthcare 

Image Quant 350.  ANOVA or pairwise t-tests were performed to determine statistical 

differences using GraphPad Prism 5.  
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4 SUMMARY OF THE RESULTS 

4.1 CHARACTERIZATION OF RHC-MPC IMPLANTS  

4.1.1 Physical and mechanical characterization 

RHC-MPC hydrogels had a refractive index of 1.334, which is very similar to the 

hydrated human cornea and identical to that of water. These hydrogels transmitted 92% 

of incident light with 500nm wavelength spectra. Wide-angle X-ray scattering showed 

the uniaxial orientation of collagen throughout RHC-MPC.      

Formulations with a 2:1 ratio of RHC:MPC were optimal for fabrication of implants. 

Changes in MPC content did not change the properties of the hydrogels mechanically. 

Increased collagen content increased the tensile strength of the RHC-MPC hydrogels 

but resulted in overall stiffer and less elastic constructs.   

The thermal degradation temperature of RHC-MPC hydrogels was lower than human 

cornea but far above than usual body temperature. FTIR analysis confirmed the IPN 

formation showing the peaks for both collagen and MPC of the surface of the implants, 

which resemble by the increased stability against collagenase degradation.  

4.1.3 In vivo compatibility 

RHC-MPC implants were transplanted in herpetic mice model (Paper IV) and the 

results showed that implants remain in the host for 22 days whereas allograft got 

rejection by day 15-post operation. 

In paper V, the subcutaneous study in rat showed that the RHC-MPC materials did not 

trigger the immune reaction against the materials. Implantation into pig corneas showed 

stable integration with infiltration of corneal cells in the materials. Biochemical analysis 

of excised cornea confirmed the presence of α1 and α2 of collagen type 1; and α1 of 

collagen type V. 
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4.2 SURFACE MODIFICATION OF RHC-MPC IMPLANTS  

The microcontact printing had only a minor effect on the optical properties of the 

hydrogels. The percentage of transmitted light measured for implants with 30µm stripes 

was 99% with a backscatter of 1.7%; while the 200µm striped samples showed light 

transmission of 96% and backscatter of 0.6%. Atomic force microscopy (AFM) 

analysis showed that the printed areas did not affect the overall surface properties of the 

implants. The height difference between patterned and unpatterned areas was 

negligible. 

Analysis of the patterns showed that the highest number of cells was found on the 

200µm patterned strips. However, immunohistochemical analysis showed the highest 

expression of integrin β1, FAK, and Ki67 at 30µm patterned stripes. 

 

4.3 EPOXY CROSS-LINKED COLLAGEN HYDROGELS  

4.3.1 Physical and mechanical characterization 

BDDGE crosslinking under basic conditions allowed the formation of collagen 

hydrogels. Under acidic conditions, both BDDGE and EDC/NHS were needed for 

gelation. The optical and thermal properties were similar for both BDDGE and 

EDC/NHS crosslinked hydrogels, but the denaturation temperature increased for 

BDDGE hydrogels compare to EDC/NHS crosslinked control hydrogels. The 

mechanical properties differed between the acidic, and basic BDDGE crosslinked 

hydrogel. Hydrogels made under of acidic conditions showed 147% elongation at break 

while that made under basic conditions showed 14.02% elongation. Results from 

femtosecond laser assisted cuts revealed that BDDGE crosslinked hydrogel could cut 

precisely using the laser.  

4.3.2  In vitro biocompatibility 

Cell proliferation was decreased in BDDGE crosslinked hydrogels. However, upon 

adding laminin peptides, YIGSR increased proliferation of HCEC while IKVAV 

increased NDC proliferation.    
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4.4 CLP-PEG HYDROGELS  

4.4.1 Physical and mechanical characterization 

1H NMR spectra of 8-Arm PEG-Maleimide and CLP-PEG confirmed the conjugation 

of CLP with PEG-Maleimide. Peaks at 6.5-6.6 at PEG-Maleimide spectra attributed to 

the proton attached to the -C=C- group of Maleimide on PEG. CD of CLP-PEG showed 

the triple helix characteristic with a positive peak at 221nm at 25oC. CLP-PEG was 

possible to crosslink with EDC/NHS and formed the stable hydrogel that holds the 

structure of the artificial cornea. CLP-PEG hydrogels were >90% transparent and water 

content was also over 90%. CLP-PEG hydrogels were completely resistance to 

collagenase degradation at high concentration of EDC.  

4.4.2  In vitro biocompatibility 

In vitro biocompatibility of the hydrogels was tested against HCEC and result showed 

that no cytotoxicity of the materials with the confluence of cells within 5 days at the 

initial of 5000 cells on 96 well place.  

4.4.3 In vivo compatibility 

Results from the subcutaneous study revealed that, up to 12 weeks of transplantation, 

CLP-PEG showed complete biocompatibility without inflammation and fibrosis. 

Artificial corner made from CLP-PEG implanted in mini-pig and examined over 12 

months at GLP facilities. In-vivo confocal microscopy showed corneal cells growth in 

the materials including subepithelial nerve. Biochemical analysis on the excised corneas 

showed the presence of type I and V collagens in quantities resembling those of the 

untreated control corneas as well as RHC-MPC benchmarks.  
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5 DISCUSSION  

5.1 PHYSICAL AND MECHANICAL PROPERTIES 

Optical characterization performed in Paper I was crucial for using RHC-MPC as a 

corneal implant, and the results showed the implants were as transparent or more 

transparent than human corneas. The reasons for being transparent are high water 

content, narrow aligned collagen fibers and a uniform refractive index. Being cell-free, 

RHC-MPC implants were also found to be transparent to UV light that is unlike to 

normal human cornea, which is populated by cells. In particular, the corneal epithelium 

absorbs UV light and thereby protects the inner components of the eye against 

potentially harmful UV rays. These results suggest that patients transplanted with RHC-

MPC implants should use UV protection during the early stages of regeneration until 

they become populated by in-growing endogenous host cells.  In Paper II, SEM results 

suggested that RHC-MPC hydrogels had a lamellar organization of collagen fibrils with 

interpenetrating networks that were more closely mimics the microstructure of the 

native cornea than RHC alone. 

5.1.1 In vivo biocompatibility in animal models 

Previously, it was shown that incorporation of MPC into RHC hydrogels allowed the 

implants to withstand in-growth of neovascularization in rabbit models of alkali 

burns[115]. More recent reports show that MPC has anti-inflammatory properties[121, 

122]. Incorporation of MPC into the RHC implant also enhanced the mechanical 

properties of the implants. Although the stability of RHC-MPC implants was increased 

in case of enzymatic degradation, the overall strength of the implant remains far weaker 

than native cornea[123]. The lower mechanical strength could be accounted for by the 

absence of proteoglycans, the absence of Bowman’s membrane, the small diameter of 

aligned uniaxial collagen fibrils and the overall low concentration of collagen within the 

hydrogel.  

When transplanted into HSV mice (Paper IV), RHC-MPC implants survived 7 days 

longer than allograft although this difference was not significant due mainly to the 

small sample size. However, this result indicates implants were at least comparable to 

allograft to stand against the hostile environment in HSV cornea.   
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In Paper V, implantation of the RHC-MPC hydrogels into rats confirmed that the 

implants were fully biocompatible. When implanted into the corneas of mini-pigs, there 

were fine blood vessels found in early post-operation condition but these retreated by 6 

months post-operation. By 12 months post-operation, the initially cell-free corneal 

implants became populated by epithelial and stromal cells. They were also reinnervated. 

 

5.2 MICROCONTACT PRINTING ON RHC-MPC HYDROGELS  

Microcontact printing (µCP) has been used to integrate biologically active 

macromolecules onto the surfaces of solid substrates without the loss of their 

activity[124, 125]. Microcontact printing has been mainly described as patterning on 

hard surfaces such as glass, silicone (e.g. polydimethylsiloxane (PDMS)) and silicon 

oxide, polystyrene, PMMA (polymethylmethacrylate) and gold[124-126]. In Paper II, 

we achieved reproducible µCP on thick, highly hydrated RHC-MPC hydrogels, using 

fibronectin, as “ink”. Fibronectin is a large glycoprotein present in the basement 

membranes of the corneal epithelium[127]. Cell attachment to fibronectin has been 

shown to trigger β1 integrin-FAK signaling to initiate proliferation of metastatic lung 

cancer cells [128] and in our case, HCECs. Expression of β1 integrin, FAK and Ki67 

was upregulated in cells growing on 30 µm stripes over broader 200 µm stripes or 

unpatterned surfaces. This showed that the width of the patterned fibronectin stripes 

was able to influence cell behavior.   

 

5.3 BDDGE CROSSLINKED HYDROGELS 

Epoxy-containing crosslinkers such as BDDGE have been shown to crosslink collagen 

producing hydrogels. In this thesis, crosslinking porcine type 1 collagen with BDDGE 

resulted in hydrogels with enhanced elastic properties. BDDGE can crosslink at acidic 

pH in the presence of a catalyst as mentioned in other published report; Cu (Copper) 

catalyzes the formation of secondary amine bond when epoxide reacts with amine[129]. 

BDDGE was used to crosslink collagen at acidic condition together with a secondary 

crosslinker, EDC/NHS. As an alternative approach, BDDGE was used to crosslink 

collagen at basic pH as isoelectric point of collagen lysine is basic, which facilitates the 
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crosslinking reaction through amine and epoxide[129, 130]. IKVAV and YIGSR, 

laminin peptides were incorporated into the hydrogel in acidic condition to enhance the 

cell attachment and proliferation, as they improve the cellular response of the 

biomaterials[131]. IKVAV showed increased neuronal cell viability and 

differentiation[132]; and YIGSR showed improved cell attachment[133] together with 

enhance collagen synthesis in human dermal fibroblasts[134]. In our case, like other 

published reports, IKVAV and YIGSR enhanced NDC and HCEC proliferation, 

respectively.  

 

5.4 CLP-PEG HYDROGELS 

O’Leary and co-workers (2011) described a 36 amino acid peptide, Pro-Lys-Gly)4(Pro-

Hyp-Gly)4(Asp-Hyp-Gly)4 that mimics collagen fibrils[135]. However, that peptide was 

only able to self-assemble into a soft hydrogel. For translational to clinical application, 

we needed a more robust hydrogel. We modified the O’Leary collagen-like-peptide by 

the addition of two extra amino acids – a glycine and a cysteine to allow covalent 

attachment to an 8-armed polyethylene glycol maleimide (PEG). The resulting CLP-

PEG hydrogels were transparent and mechanically strong enough for grafting into host 

corneas. The implants showed stable and functional integration into the corneas of 

mini-pigs. Corneal epithelial and stromal tissue as well as extracellular matrix 

components and nerves had grown into the implants. The CLP-PEG hydrogels were 

therefore able to function, as successful scaffolds that promoted regeneration, just like 

implants made from RHC. For translation into clinical application, the use of fully 

synthetic CLP-PEG hydrogels will avoid potential problems such as transmission of 

viruses and other pathogens. As substitutes of RHC, CLP-PEG is potentially easier to 

handle and would allow for future functionalization.  
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6 CONCLUSION AND FUTURE PERSPECTIVES 
 

This thesis describes the results from interdisciplinary research, combining biomaterials 

research, tissue engineering and biology to find out a solution for corneal blindness. 

Biomaterials based on collagen, the major ECM component of the human body have 

been successfully stimulating tissue regeneration in clinical trials. Collagen derived 

from animal or human cadaveric sources, however, suffer from batch to batch 

heterogeneity and carry a risk of pathogen transmission. We avoided these problems by 

developing implants based on RHC: 

 

In particular, our optimized RHC-MPC implants stimulated the regeneration of corneal 

epithelium, stroma, and nerves in mini-pig corneas as well as corneas of HSK mice.  

These RHC-MPC implants were amenable to cutting with a femtosecond laser, and also 

to microcontact printing.  

 

Nevertheless, like native collagen, RHC is large, relatively inert and difficult to handle, 

leading to the development of a range of CLPs. A comparison of the versatility and 

functionality of CLP-PEG analogs showed that these hydrogels were comparable to that 

of full-length collagen as scaffolds for promoting regeneration in vivo in mini-pigs.   

 

I feel extremely fortunate to be a part of these interesting projects, and I am hopeful that 

these works will be helpful for removing the word blindness due to corneal disease. I 

also wish these works will be able to bring back light to millions of unprivileged people 

throughout the world.                  
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7 MY SCIENTIFIC CONTRIBUTION 
 

There is a colossal gap between the supply and demand for the good quality human 

donor corneas to replace diseased or damaged ones. I started the cornea research with 

the eagerness to solve the donor shortage problem by using artificial corneas. During 

the process, I have both optimized and developed new artificial corneas for future 

clinical use to combat conditions that are currently difficult to treat or deemed 

untreatable.  

 

For my thesis, I had optimized the RHC-MPC formulation that is now in clinical 

evaluation (ClinicalTrials.org identifier NCT02277054). I have also enhanced the 

mechanical properties of these implants by improving the elasticity using a BDDGE 

crosslinker. This resulted in a new version of the artificial cornea that would be more 

suturable and therefore easier for the surgeon to handle during transplantation.  

 

The production cost of RHC in yeast in a recombinant way is very expensive which 

ultimately increase the production costs of the artificial corneas made from these 

materials. In this thesis, I have developed an alternative artificial cornea that is made 

using collagen-like peptides. This fully synthetic implant will ultimately reduce the 

production cost of each artificial cornea. This will allow for potential scaling-up and 

large scale manufacturing of cost-efficient artificial corneas that can in the future be 

used to treat patients in developing nations.     

 

I feel extremely privileged to be a part of these challenging projects, and I am hopeful 

that these implants developed during the course of my Ph.D. work will help eradicate 

blindness due to corneal disease. My goal is to bring back light to millions of unsighted 

people worldwide, and in particular, those who are underprivileged and who would 

benefit from the scale-up of cost-effective artificial corneas.          
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8 POPULAR SUMMARY  
 

The cornea is an important part of the eye for vision. It is optically clear and functions 

like a window to the eye, letting light into the interior for vision. Corneal diseases are 

one of the major causes of blindness throughout the world. The main treatment still 

today for cornea blindness is the replacement of the diseased or damaged cornea with a 

human donor cornea by transplantation. However, the number of available donated 

corneas is severely limited compared to the demand in most countries. Even if donor 

corneas were readily available, cornea transplantation is not always successful as 

reactivation of diseases can occur after transplantation and can cause problems to the 

transplanted cornea. In addition, corneas with severe pathologies that include 

inflammation are often at high risk of rejection of the corneal grafts. As an attempt to 

solve the cornea shortage or rejection problem, an artificial corneal implant was being 

developed in this thesis. Crosslinked collagen and phosphorylcholine together were 

used to develop a transparent, hydrated implant with the shape and size of a human 

cornea. Collagen was used as the main ingredient because the human cornea is made up 

of mostly collagen. When transplanted into mini-pig corneas, the newly developed 

corneas were stable. The cells of the epithelium and stroma and nerves had regrown 

into the implants. The newly regenerated corneas showed functionality that approached 

that of normal corneas. We were also able to surface modify the materials using a 

printing technique. We printed stripes with a protein named fibronectin, and showed 

that thin stripes grew faster than thick stripes and unmodified surfaces. Although 

recombinant human collagen-based implants work well, its production is difficult and 

expensive. In addition, collagens are large and inert entities. In this thesis, we developed 

collagen-like peptide based corneal implants, which were easy and inexpensive to 

produce. The artificial cornea made from short peptide analogs of collagen was well 

tolerated in mini-pig corneas and promoted in-growth of host cells into the implants.  

The cells proliferated and produced new extracellular matrix to form a new cornea. Our 

all findings appear to be promising as potential implants to treat blindness and 

supplement the shortfall of human donor corneas.   
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