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ABSTRACT 

The use of nucleic acid technology has been of great importance in life science research. In 

several clinical trials patients with genetic disease are treated with help of innovations based 

on oligonucleotide therapy. The use of it is unfortunately limited in efficacy due to e.g., variable 

stability of oligonucleotides in biological fluids and in particular poor delivery to the site of 

action. Numerous modifications, introduced to functionalize oligonucleotides improve their 

properties and help to overcome the limitation connected to their uptake.  

With this thesis, I present our development of novel bioconjugates and technologies for 

functionalization of oligonucleotides. In chapter 2 (paper I), the development of four different 

synthetic m3G-Cap (nuclear localization signals) constructs is described. We provide a 

protocol that allows the conjugation of these for derivatives to oligonucleotide using “click” 

reaction. As a result, novel bioconjugates equipped with constructs containing the m3G-Cap 

were synthesized for the investigation of nuclear delivery. 

Chapter 3 (paper II) describes the synthesis of two biotinylated linkers that can be conjugated 

to both peptides and oligonucleotides for labeling purposes. The multi-step synthesis of the 

linker is followed by conjugation to oligonucleotides that was carried out on solid support as 

well as to a peptide in solution. 

In chapter 4 (paper III), the research presented in paper I and II is combined to allow the 

visualization of m3G-Cap action. The biotin linkers were also conjugated with similar Cap 

constructs containing modifications of the triphosphate bridge. All bioconjugates were 

evaluated in cell assays for uptake and splice-switching and the results show that the minimal 

m3G-Cap-biotin construct should contain a trinucleotide in order to act as a nuclear transport 

signal. 

Chapter 5 gives an insight into unpublished data on the development of a linker that enable 

multiple functionalization of oligonucleotides (ONs) with several different biologically active 

entities. The synthesis of the linker, together with the first oligonucleotide conjugates prepared 

using the protocol is reported.  

In chapter 6 (paper IV), we describe the successful preparation of four different Zorro-LNA 

constructs with help of “click” chemistry. Their ability for DSI (double strand invasion) was 

tested and they proved to be able to invade into supercoiled DNA, providing a useful screening 

strategy when optimizing Zorro constructs directed against new anti-gene targets. 
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1 INTRODUCTION 

1.1 OLIGONUCLEOTIDE BASED THERAPEUTICS 

Biologically active nucleic acid based compounds are generating a strong interest in modern 

drug research. When designed accordingly, their unique features allow targeting specific sites 

responsible for many different diseases, including metabolic, infectious and genetic diseases. 

With their help we could individually tailor the treatment for each patient and thus maximize 

the benefit and minimize the harms of each medical therapy1. 

Oligonucleotides (ONs) are one example of such molecules. Therapeutics based on them are 

designed to hybridize targeted RNA or DNA and to regulate their function2. The type of the 

ON target molecule allows to classify them in to two groups: antisense oligonucleotides 

(AONs) that interact and form duplex with mRNA, microRNA or pre-mRNA and antigene 

oligonucleotides which enter the cell nucleus in order to form triplexes with double-stranded 

DNA (dsDNA).   

1.1.1 Antisense therapy 

In 1978 Zamecnik and Stephenson reported that a short oligonucleotide inhibits viral 

replication in cell culture3. They used single-stranded DNA-based oligonucleotides and called 

them antisense oligonucleotides for the first time. The field of antisense technology has rapidly 

developed with the invention of solid-phase synthesis methodology for preparation of 

oligonucleotides4. When the method became automatized libraries of compounds could be 

produced and evaluated in shorter time. Currently, AONs are undergoing several clinical trials 

for treatment of e.g., muscular dystrophy, asthma, diabetes, cardiovascular diseases, 

rheumatoid arthritis, Crohn’s disease, HIV or cancer5-7. 

AONs are short stretches of DNA or RNA, usually 8 – 50 nucleotides, which use Watson- 

Crick base pairing to bind a complementary target RNA2, 8. Their structures are commonly 

altered, as unmodified oligonucleotides are very unstable and easily degraded in biological 

fluids9. It is important to mention, that these modifications can also improve the target affinity 

of AONs and their uptake by cells which are common challenges for their therapeutic use10, 11.  

Nucleic acid analogues can be classified into three generations (Figure 1): 

 First generation – where the phosphate linkage is changed, 

 Second generation – contain modification on 2’- position of the sugar moiety, 

 Third generation – more diverse modifications of sugar rings and/or phosphodiester 

backbones. 

Modifications of the phosphodiester backbone was some of the first made to nucleic acids, 

where one of the non-bridging phosphate oxygens was replaced. The most widely used are 

phosphorothioates (PS) which not only increase biological stability of the ON (half-life 

extended up to 10h12-14) but when used as deoxyribooligonucleotides they also activate RNase 
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H cleavage of the target RNA (see below). In addition, the PS-ONs are reported to bind to 

plasma proteins, which increases their circulation time and therefore prevents them to be 

cleared from the organism easily. The main disadvantage of this modification is the poor 

specificity of the mRNA binding which could lead to problems with toxicity15. 

 

 

 

 

Figure 1: Basic nucleic acids and examples their modifications used in AONs. 

The new generation of nucleic acid analogues brought a major improvement compared to the 

first. It has been shown that introducing modifications at the 2’-O-position of the sugar may 

increase the binding affinity and reduce toxicity. The most important second generation ONs 

are 2’-O-methyl16 and 2’-O-metoxyethyl (MOE) RNAs. Their main drawback is the inability 

to activate the RNase H mechanism17, which lowers the efficiency of the treatment. This 

problem has been solved by introduction of a “gapmer” concept18, a construct where 2’-O-

AlkylONs flank the central, RNase H activating part, DNA-PS (“gap”). 
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The need for overcoming the limitations of the first and second generation AONs has driven 

researchers to prepare analogues with more extensive modifications including conformational 

restrictions as well as complete replacement of the ribose with different moieties. These third 

generation AONs include among others morpholino phosphoramidites (PMO)19, locked 

nucleic acids (LNA)20 and peptide nucleic acids (PNA)21. Although all of them demonstrate 

high affinity to the targeted RNA and are stable to nuclease degradation their duplexes with 

RNA are not efficiently recognized by RNase H.  

LNA is a particularly interesting analogue achieving very high target affinity22 thanks to its 

locked structure (bridging methylene carbon between 2’ and 4’ positions). This modification 

forces the nucleotide to be in north conformation and as a result the ON will resemble natural 

RNA in A-form23, 24. Other advantages of LNA are enhanced serum stability25, slower renal 

clearance26 and low toxicity26, 27. Similarly to 2’-O-AONs, LNA is a perfect tool for 

preparation of gapmers28-30. Its potential is also used in antigene therapy, discussed in chapter 

1.1.2. 

Antisense Oligonucleotide Mechanisms 

There are several ways in which oligonucleotides influence processes in the cell31. Some 

examples are presented in the Figure 2. The first approach (Figure 2a) represents the steric 

block of messenger RNA (mRNA) by an AON, via Watson-Crick base pairing3. This action 

is strengthened by modifications of ONs which enhance their binding to the mRNA target. 

Figure 2b illustrates the AON which after binding to mRNA recruits RNase H, thereby causing 

degradation of the mRNA. This type of action can be carried out by gapmers that consist of a 

DNA central part and outer modified AON “wings” allowing for more efficient RNA 

anchoring. A major advantage of a turnover mechanism compared to the steric block is that 

the dose of oligonucleotide used can be lower31. 

Another mechanism for mRNA cleavage is achieved via RNA interference (Figure 2c). Here, 

the siRNA (small interfering RNA) employs the RNA-induced silencing complex (RISC) in 

order to down-regulate the target mRNA32. 

MicroRNAs (miRNAs) presented in Figure 2d are small regulatory RNAs that at the end of 

biogenesis end up as single stranded RNA molecules on the RISC complex, which activates 

RNA interference and therefore degrades mRNA, in a similar mechanism as for siRNAs. If a 

complimentary oligonucleotide analogue binds strongly to the active strand of the miRNA, it 

cannot be loaded onto the RISC complex and regulation of gene expression is prevented. It 

has been reported that miRNA targeting ONs, even in submicromolar concentrations, rapidly 

enter cells and interfere with miRNAs33, 34. 

The RISC is also blocked in the next mechanism (Figure 2e). Here, the miRNA binding site 

on the mRNA is masked by an oligonucleotide analogue which prevents the mRNA 

degradation35. 
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The two last Figures 2f and 2g represent a separate group of ON therapy mechanisms, taking 

place in the cell nucleus and targeting pre-mRNA. The splicing can be manipulated in different 

ways e.g., via steric hindrance, forcing splicing to an alternative route, or by employing the 

trans-splicing factors that can recognize the splice site, thus enhancing splicing. Here only two 

types of splicing are illustrated. The first is exon exclusion, also known as exon skipping, 

where an unnecessary exon is excluded, allowing restoration of the reading frame and 

generation of a partially functional protein. Exon inclusion, on the other hand, the splice-

switching oligonucleotides are used as blocking agents to redirect the splice back to the correct 

splice sites. 

1.1.2 Antigene therapy 

DNA containing genetic information is found in the cell nucleus. It is responsible for 

development, reproduction and function of an organism and is therefore also a target for 

oligonucleotide therapeutics. The strategy where sequence specific ON is targeting dsDNA is 

called anti-gene therapy. 

The mechanism of action, carried out by a synthetic ON, consists of a few steps. Most common 

is that the target cell first engulfs the ON by endocytosis. After endosomal escape into the 

Figure 2: Schematic representation of how synthetic oligonucleotides influence processes in cells: a) steric block, b) 

recruitment of RNase H, c) RNA interference, d) binding to mRNA and blocking RISC, e) masking of miRNA binding 

site, e) exon skipping, f) exon inclusion. Reprinted by permission from Macmillan Publishers Ltd: Molecular therapy. 

Nucleic acids, Reference: 31, copyright 2012. 
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cytoplasm, it can also diffuse into the nucleus where it can bind to the target dsDNA and e.g., 

prevent transcription and formation of mRNA. When mRNA is less available the protein 

production is lower which should result in a lower concentration of protein and then lower 

activity. 

Antigene oligonucleotide therapeutics can be divided in different strategies. Some are built  

through triple helix formation (triplexes) with dsDNA (triplex forming oligonucleotides - TFO) 

or invade the duplex DNA, binding one of the strands with Watson-Crick interactions and the 

other using both Hoogsteen36 base pairing, thereby clamping the DNA. 

 

Triplex Forming Oligonucleotides (TFOs) 

The triple helix is formed, when the TFO attaches to the dsDNA via Hoogsteen base pairing, 

specific orientations of hydrogen bond. These can be in parallel or in antiparallel orientation. 

In parallel mode, when the TFO and a polypurine strand (R) are both in the 5’ → 3’direction, 

Figure 3: A: Parallel and antiparallel triplex compleses; B: Orientation of the three possible triplex motifs.  Maria Duca, 

Pierre Vekhoff, Kahina Oussedik, Ludovic Halby, Paola B. Arimondo The triple helix: 50 years later, the outcome Nucl. 

Acids Res. (2008) 36 (16): 5123-5138, by permission of Oxford University Press. 

A 

B 
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the TFO can bind via TC or GT motif (Figure 3). The triplexes formed in the TC motifs are: 

T:A*T and C:G*C+, where C+ stands for protonated cytosine. The protonation is a requirement 

for stable CGC triplets and makes the triplex dependent on slightly acidic conditions37. The 

parallel GT motifs are: C:G*G and T:A*T. The antiparallel orientation is obtained when the 

TFO is in the 3’→ 5’ direction and a polypurine strand in the 5’→ 3’ direction. Here the TFO 

binds also via GT- motif and a GA-motif, only this time the triplets are formed in the reverse-

Hoogsteen orientation. In the GT- motif the TFO forms C:G*G and T:A*T triplets and in the 

GA- motif C:G*G and T:A*A triplets. 

 

Double Strand Invasion (DSI) 

When oligonucleotide therapeutics bind to one of the DNA strands via Watson-Crick 

interaction, the other strand is being displaced and as a result the DNA is opening up. Such a 

mechanism is recognized as double strand invasion. PNA and LNA are very important TFO 

modifications as they are suggested to use different pathways to invade dsDNA. Among these 

are duplex invasion and triplex invasion, where PNAs and LNAs bind homopurine sequences. 

A more complicated mechanism is double duplex invasion, using pseudo complimentary PNA 

and invader-LNA to bind overlapping sequences in both strands at the same time without self 

interaction38, 39. Another group of invading oligonucleotides are clamp ONs (bisLNA and 

bisPNA) that bind to dsDNA through a combination of Watson-Crick and Hoogsteen base 

pairing. Finally there are Zorro-LNAs which target two adjacent sites in both strands of DNA 

and due to their Z-shape structure the self-interaction is prevented40, 41. More about Zorro-LNA 

will be discussed in Chapter 6. 

 Antisense therapy Anti-gene therapy 

Target mRNA genomic DNA 

Target availability Easier to achieve Harder to achieve - dsDNA highly 

packed in chromatin 

Target sequence Hundreds to thousand copies 

available for AONs 

Available once or twice in the 

genome 

Mechanism of action Most efficient when RNase H or 

RISC involved 

Only blocks the transcription 

Table 1: Comparison of antisense and anti-gene therapy. 

1.2 BIOCONJUGATE PREPARATION - LINKING TECHNOLOGY FOR 
OLIGONUCLEOTIDES 

As mentioned, unmodified oligonucleotides are not stable in biological fluids and their delivery 

to cells is poor because of their polyanionic nature. Chemical modifications have delivered 
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some solutions to these problems but major improvement can be obtained with introduction of 

conjugation42-45. ON-conjugate synthesis is achieved by attaching entities (molecule with 

particular properties) to ONs using covalent bonds, both by chemical and enzymatic reactions. 

The properties of such oligonucleotide conjugates are depending on the type of moiety 

attached42 and can either improve properties that the ON already possess or give it completely 

new ones. 

Conjugation to ONs can take place on either the 5’- or 3’ terminus but also internally on the 

phosphodiester backbone, sugar or base. However, the 5’ and 3’ positions are easily accessible 

and therefore more straightforward for synthesis. 

While designing the synthesis and the structure of entities a few things need to be taken into 

consideration. Among those are: chemical compatibility of the ON with the moiety, 

accessibility of conjugation sites, linker length and type of covalent linkage. The most 

important thing one must bear in mind is to make sure that the attachment of an entity does not 

weaken or hinder the affinity of the ON for the target site. 

Numerous synthesis methods for preparation of oligonucleotide based bioconjugates can be 

categorized in many ways. One of them groups the approaches according to the medium used 

for their preparation: solid- or solution-phase44, 45. 

Solid-Phase Conjugate Synthesis 

In this synthetic methodology the oligonucleotide is bound to a support, e.g., CPG (controlled-

pore glass), and the conjugation can be performed with one or multiple steps and excess of 

reagents can be washed away before release from support. This makes purification less 

complicated and the procedure can often be automated on oligonucleotide synthesizer. If the 

entity is prepared in the form of either a phosphoramidite or an H-phosphonate, it could be 

conjugated to the ON in the course of the synthesis. This approach is commonly used with 

lipophilic molecules, fluorescent labels, dyes or PEGs which are commercially available as 

“ready-to-use” building blocks46.  

Another methodology used, mainly for conjugation of peptides or carbohydrates is called in-

line or stepwise solid-phase synthesis. Here, the product is obtained either by synthesizing the 

ON first, on the solid-support, followed by elongation with the moiety or vice versa46. It is 

possible to synthesize a branched linker or take advantage of commercially available ones. 

Some limitations of this method includes the choice of protecting groups for the moiety, which 

needs to be chemically compatible with the preparation and deprotection conditions used in the 

course of the synthesis. It is still a great option for creating large libraries of products, in a short 

time, that can be scanned for therapeutic properties. 

On-support fragment conjugation is quite similar to the stepwise solid-phase synthesis. The 

ON is still synthesized on solid support but the fragment conjugated to it is prepared separately 

and added when the moiety is fully prepared. This so called ”fragment” is equipped with a 

functional group, like an amine or carboxylic acid that reacts with a preattached linker on the 



 

8 

ON to create the covalent linkage. For amide formation, coupling reagents typically used are 

reagents commonly used in peptide synthesis, such as HBTU/HOBt or HBTU/NMM47-49. 

Interestingly, copper catalyzed 1,3-dipolar cycloaddition reactions are also utilized for 

fragment conjugations50 and microwave assisted conditions has been used to speed up the 

process51.  

Solution-Phase Conjugate Synthesis 

When oligonucleotides and entities are conjugated in solution they are prepared and purified 

separately. They are then both equipped with mutually reactive groups that can result in 

formation of a covalent linkage. Compared to the solid-phase approach, it is an advantage that 

the chemistry used in the preparation of the two fragments does not need to be compatible with 

each other since it is done separately. Fully deprotected oligonucleotides are typically only 

soluble in solutions with high water content, so one should, however, make sure that the moiety 

is soluble under these conditions. 

Examples of different solution-phase conjugations are grouped in the Table 2 below together 

with their most important characteristics. 

Amide and Thiourea Linkages 

 

 Formed via reaction of NH group 

(readily attached to 

oligonuclotides) with activated 

carboxylic acid or isothiocyanate 

groups in basic conditions 

 

Imine, Hydrazone and Oxyme Linkages 

 

 Nucleophilic addition on carbonyl 

group (present on ON) achieved 

via reaction of aldehyde with 

amino, hydrazine and aminooxy 

group respectivly44, 45, 52, in mild 

acidic conditions 

 Imine linkageformation is 

reversable but can be reduced to 

secondary amine 

 Zatsepin et al. reported an approch 

where promoiety is equipped with 

an aldehyde group and the ON 

contains amino, hydrazine or 

aminooxy group53 
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Disulfide, Thioether, Thiazolidine, Native Ligation 

 

 Reaction of thiol groups with 

others46: 

a) Disulfide – oxidative coupling of 

two thiol groups (one usually 

activated) 

b) Thioether – nucleophilic 

addition of a thiol to an electron-

deficient carbon (halogeno-

acetyl, acrylic, vinylic or 

maleimide group) 

c) Thiazolidine – reaction beween 

an aldehyde and a 1,2-

aminothiol group 

d) Native Ligation - used for 

conjugation of two unprotected 

peptides one with aC-termnal 

thioester and the other with an 

N-terminal cysteine 

Diels-Alder [4+2] Cycloaddition 

 

 Reaction between a diene with an 

electron-donating group and a 

dienophile carrying electron-

withdrawing group; the diene 

group is incorporated on the ON as 

it is stable during solid-phase 

preparation of the ON54 

Staudinger Ligation 

 

 Azide group reacting with 

phosphine at rt and in aqueous 

conditions55 

Table 2: Examples of linker technology for preparation of bioconjugates in solution phase44. 

 

1,3-Dipolar Cycloaddition (“Click”-Chemistry) 

“Click”- chemistry is a linking method that can be used both in solution and on solid support 

but since it is broadly used in this thesis the characteristics are discussed separately.  

Figure 4: Copper free and copper-catalyzed "click" chemistry. 
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The efficiency of joining of an alkyne and an azide under mild conditions, with Cu (I) catalyst, 

was first reported by Sharpless and his co-workers in 2002, who also coined the expression 

“click” chemistry, and the reaction since then revolutionized the chemistry world56. This easy-

to perform reaction is characterized by high chemoselectivity, which means that the two 

reagents involved in the process are only reacting with each other. The reaction can be 

accomplished in water giving a robustly ligated biomolecule in high yields. “Click”- reaction 

is also very versatile so both functional groups involved in the conjugation can often be placed 

on either molecule. Another advantage of the method is the reagents used. Their stability 

usually makes them resistant to hydrolysis over broad range of pH.  Additionally, they are also 

biorthogonal which means they are often inert to groups like amines and hydroxyls57. 

1,3-dipolar cycloaddition for formation of triazoles from azides and alkynes can be classified 

into two broad categories (Figure 4): copper free and copper-catalyzed reactions. In order to 

obtain reasonable rates in copper free chemistry the alkyne has to be strain-activates, i.e., the 

alkyne should be the part of a ring structure. This is exemplified by the reaction between 

dibenzocyclooctyne derivative (DBCO) and an azide group (Figure 4a). An advantage of this 

method is biocompatibility and that it is suitable for live cells and even animal studies. Copper-

catalyzed chemistry is the more common approach where the azide is conjugated with an 

alkyne in presence of a metal catalyst: copper (I)56 (Figure 4b). This method is very efficient, 

broadly used and has the advantage that it is regiospecific, i.e., only one isomer of the triazole 

product is formed. Since remains of copper reagent can cause biotoxicity special care must be 

taken to remove these if the product is to be used in biological experiments. In case of 

conjugates prepared on solid support this limitation can be overcome by washing with EDTA 

solution prior the cleavage of the conjugate from support. This way the copper amount can be 

reduced to the maximum limit for drinking water58. If RP-HPLC purification of the product is 

Figure 5: Proposed mechanism for copper-catalyzed cycloaddition. Reprinted with permission from J. Am. Chem. Soc., 2005, 

127 (1), pp 210–216, Copper (I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and 

Intermediates Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, Vsevolod V.; Noodleman, L. ; Sharpless, K. B.; Fokin, V. . 

Copyright 2005 American Chemical Society. 
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done, EDTA can be added prior to the run to ensure complete removal of the copper ions (the 

Cu EDTA complex elutes more or less with the void volume of the column).  

1.3 ENTITIES IMPROVING BIOCONJUGATE PROPERTIES 

Over the years, scientists have developed many types of compounds which were conjugated to 

oligonucleotides to overcome different biological barriers, and to improve their therapeutic and 

diagnostic properties. This chapter presents a brief overview of the available options. 

Fluorescent Labels 

Being able to observe the action of oligonucleotide during their action is an important feature 

when studying novel bioconjugates. Fluorescent labels conjugated to oligonucleotides allow us 

to have such insight. They can be incorporated either on the 5’- or 3’- terminus as well as on 

the sugar or the nucleobase. Both solution- and solid-phase are appropriate mediums to carry 

out the conjugation and modified solid supports containing a fluorescent label are nowadays 

commercially available.  These biomolecules cover very broad absorbance and emission 

wavelengths, ranging from UV-VIS to near infrared59.   

Fluorescent oligonucleotides play an important role in laboratory research, for example by 

helping to understand the mechanisms of RNA silencing by RNA interference. They are also 

used in clinics for DNA-based diagnostics such as Fluorescent In Situ Hybridization (FISH)60. 

They are also very useful tool for the Human Genome Mapping Project (HGMP)46. 

As an example Figure 6 represents two routes to obtaining conjugated fluorescent entities. The 

first one is a fluorescent molecule equipped with an azide handle making it possible to 

conjugate via “click” reaction. The other one is biotin, which is not fluorescent on its own but 

possess exclusive affinity to fluorescent streptavidin/avidin proteins. The complex they create 

is a basis for many important biotechnological applications including studies of cellular 

transport49. 

Lipophilic-Oligonucleotide Conjugates 

The cell membrane is a barrier that cells use to selectively regulate their environment. The 

phospholipid bilayers and proteins, which they are mainly made of, decide what is or is not 

allowed to enter. This largely hydrophobic border is very hard to cross for polyanionic 

Figure 6: a) fluorescent linker with "clickable" handle, b) biotin. 
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oligonucleotides and therefore the demand for lipophilic or amphiphilic transporters, 

supporting cellular uptake, is very high. The improvement can be achieved in two ways: by 

reducing the hydrophilic character of ON and/or by using the lipoprotein-mediated endocytosis 

pathway61, 62. 

Figure 7 shows one example of an uptake-enhancing, lipophilic molecule. The first report on 

siRNA silencing of an endogenous gene in vivo under physiological conditions was describing 

the use of a cholesterol conjugate63. 

Polymer-Oligonucleotide Conjugates 

Similarly to small lipophilic molecules, polymers are also used for oligonucleotide delivery64, 

65. Their greatest advantage is the ability to reduce toxicity and immunogenicity. The most 

popular polymer in pharmaceutical applications is PEG (polyethylene glycol), which is known 

to prolong circulation time by lowering renal filtration rates66, 67. It is also important to mention 

that using polymers can offer a presence of multiple potential attachment sites46. 

Carbohydrate-Oligonucleotide Conjugates 

Carbohydrates are a group of linkers for receptor-specific targeting. They can interact with 

proteins covering the cell surfaces which are able to recognize and internalize glycoprotein 

moieties through endocytosis. By conjugating specific sugars to ONs we can improve cell- and 

tissue-specific delivery68, 69.  

This group of bioconjugates has been reported to have potential in cancer treatment. An 

example here is hyaluronic acid, a linear polysaccharide, which is the main ligand for a 

transmembrane glycoprotein CD44 that is overexpressed in many cancers70. Hyaluronic acid 

conjugates of cancer drugs have been shown to exhibit increased uptake of ONs to cancer 

cells71 

Peptide-Oligonucleotide Conjugates 

An interesting group of entities improving oligonucleotide properties are highly cationic 

peptides that are able to cross cellular membranes72.  These are known as cell-penetrating 

peptides (CPPs) or peptide transduction domains (PTDs)73, 74 and typically of  5-40 amino acids 

(natural or non-natural) length. Many studies reported of cargo variety that CPPs were able to 

Figure 7: Example of a lipophilic entity, cholesterol, used in oligonucleotide conjugates to improve cellular uptake. 
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transport various cargos, among these are: peptides75, proteins76, plasmid DNA77, liposomes78, 

nanoparticles79 and oligonucleotides80.  

The association of ONs to a CPP can be achieved in different ways. If the oligonucleotide is 

neutrally charged both entities have to be covalently bound. In case of an ON carrying negative 

charges the molecules can also be connected via non-covalent interaction. Here, the peptide 

and ON are mixed in solution to form a complex that is further used. Overall, the uncharged 

oligonucleotides seem to give better results in conjugates with CPPs. The exact mechanism of 

CPPs uptake is not completely known. However, it is suggested that the peptides interact with 

anionic molecules like syndecans, present on the cell surface, which help them and their cargo 

to be internalize into the endosome81. No surprise that CPPs delivering the cargo to different 

organs including those usually hard to reach like the brain and the heart, have been recently 

reported82-84. Homing peptides are very promising group of delivery vehicles. They are 

carefully designed to target a specific cells or tissues85. 

Nuclear Localization Signals (NLS) 

The conjugates mentioned above focus on entering the cells through the cytoplasm 

andtargeting of specific tissues or cells, which is a complex problem to tackle. However, 

sometimes the therapeutic oligonucleotide must be delivered even further – to the cell nucleus. 

This task is not easy and if we picture the nucleus as a commander center of the cell, we can 

easily imagine that its defense system will be very high. The membrane protecting the nucleus 

is very selective and its pore size restricts the molecules diffusing independently to be no bigger 

than 40KDa. That leaves proteins, ribosomal subunits and larger nucleotides (e.g., plasmids, 

certain RNA etc.) oligonucleotide therapeutics outside and in need of a carrier that will enable 

the active transport. These carriers are known as Nuclear Localization Signals (NLS). ONs can 

enter via diffusion but additional active transport should increase nuclear concentration. 

The first and best characterized nuclear targeting signals are the classical nuclear localization 

peptides also referred to as sequences that contain one (monopartite) or two (bipartite) clusters 

of basic amino acids. The most studied example of a monopartite NLS peptide is described by 

Kalderon et al. and derived from the Simian Virus 40 (SV40) large T antigen which contains a 

cluster of 4-5 consecutive positively charged amino-acids86, 87 (sequence: PKKKRKV). 

Bipartite NLSs contain two interdependent, basic clusters that are built in the way that a smaller 

upstream cluster, containing just two lysine or arginine residues, is separated by a mutation-

tolerant linker from a downstream cluster that resembles a monopartite NLS88. The great 

example of this NLS group is nucleoplasmin where the two clusters required for nuclear 

targeting, are separated by 10-12 amino acids residues (sequence: 

KRPAATKKAGQAKKKKLDK)89. For the transport to happen two transport adapters are 

required: 1) importin-α that contains the NLS binding site and 2) importin-β, responsible for 

the docking of the importin-substrate complex to the cytoplasmic filaments of the nuclear pore 

complex (NPC) and the translocation through the pore88. Once the cargo-importin complex is 

inside the nucleus, RanGTP binds to importin-β leading to the release of cargo and dissociation 

of the complex. 
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The 2,2,7-trimethylguanosine cap (m3G-Cap), is a different type of NLS. It is naturally found 

in uridine rich, small nuclear ribonucleoproteins (U snRNPs), involved in pre-mRNA 

splicing90. The RNA part of the snRNPs consists mainly of U1, U2, U5 and U4/U6, out of 

which only U6 is not transcribed by RNA polymerase II and capped by an m7G-cap. The m7G-

cap is recognized by the cap binding complex (CBC) and transported to the cytoplasm where 

the snRNA associates with the survival of motor neurons (SMN) complex. When the complex 

accumulates the maturation events are promoted which ultimately leads to recruitment of 

methyltransferase Tgs1 that converts the m7G-cap to the m3G-cap91, 92. Subsequently, the m3G-

Cap is recognized by an adapter protein Snurportin 1 which then binds to importin-β for nuclear 

relocalization, where the final maturation of the snRNPs occurs93, 94. 

Moreno et al. has reported that use of the m3G-Cap as a synthetic RNA 5’-end-NLS signal 

increases the nuclear transport of oligonucleotides as well as of a larger cargo protein95. In his 

study the m3G-Cap was used as an adaptor for the nuclear transport of a biotin-streptavidin 

oligonucleotide complex, proving that 2,2,7-trimethylguanosine cap can promote nuclear 

transport.  The splice-switching was also reported to be enhanced by additional active nuclear 

transport.

Figure 8: Structure of the 2,2,7-trimethylguanosine cap. Pedro M. D. Moreno, Malgorzata Wenska, Karin E. Lundin, Örjan, 

Wrange, Roger Strömberg, C. I. Edvard Smith, A synthetic snRNA m3GCAP enhances nuclear delivery of exogenous proteins 

and nucleic acids, Nucleic Acids Res. 2009, 37(6):1925-35, by permission of Oxford University Press. 
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2 MODIFYING m3G-CAPS FOR UNIVERSAL 
ATTACHMENT TO BIOLOGICAL CARGOS (PAPER I) 

Delivering the oligonucleotide to the nucleus is of high importance, particularly with diseases 

like Duchenne muscular dystrophy (DMD), which have their origin in wrongly spliced pre-

mRNA. It is therefore essential that we learn as much as we can about the possible nuclear 

localization signals.  

The 2,2,7-trimethylguanosine cap, mentioned in the previous chapter, seems to be a most 

promising tool for promotion of the active transport of oligonucleotides from the cytoplasm to 

the nucleus. For preparation of oligonucleotide based bioconjugates, one could use existing 

capping methods where 5’-phosphonate is reacted with the activated m3G-pyrophosphate95, 96. 

Unfortunately, the same approach cannot readily be used in case of other cargos like proteins 

or PNAs. Also, introducing modifications on the cap itself may cause difficulties for the 

conjugation. 

A more universal system for attachment of caps was necessary. One that would allow us to 

efficiently prepare the conjugates time and subsequently evaluate under various conditions to 

find out more about m3G-Cap properties and structural requirements for transport. We decided 

to equip the m3G-Cap analogues with an azide handle to take advantage of the benefits that 

copper (I) catalyzed cycloaddition can bring. “Click” reactions, described in chapter 1.2, can 

be carried out in aqueous conditions which are essential for solubility of the triphosphate. 

Figure 9: Structures of m3G-Cap analogues (1-4) and the 5’- phosphorylated AUA trimer (5). Reproduced from Ref. 46 

with permission from The Royal Society of Chemistry. 
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Furthermore, the process is efficient in mild conditions, no protecting groups are needed and 

the azides and alkynes are themselves inert to biological molecules97. It could also be 

speculated that an additional, artificial linker may affect the binding affinity towards Snurportin 

1. Finally, [3+2] cycloaddition is a convenient form of synthesis as it can be easily scaled up 

for future animal experiments or clinical trials. 

We have synthesized four different, ready-to-use m3G-Cap constructs, each equipped with a 

functional azide group (Figure 9).  The first one (1) is the most simplified version, where 2,2,7-

trimethylguanosine is connected to adenosine via triphosphate bridge. The azide linker is 

attached to the 2’-position of the adenosine. Structure 2 is prepared with the thought that the 

2’-O-methyl group can possibly promote the binding to Snurportin 1 and therefore the 

“clickable” azide group is conjugated at the 3’-position. In this way the cap analogue resembles 

the native one slightly more. The construct 3, also based on 2’-O-methylated adenosine but in 

addition it has a 3’-phosphate as a part of a longer linker attachment. Ultimately, the closest to 

the natural one, m3G-Cap constructs 4 was synthesized. Here, 2,2,7-trimethylguanosine is 

connected via triphosphate bridge to an AUA sequence, where the 5’-end A and U are 2’O-

methylated and the azide linker is conjugated to the second A nucleoside at the 2’-O-position. 

We also prepared a control molecule – a 5’phosphorylated AUA trimer (Figure 9, structure 5), 

which can also be attached to various cargos. 

2.1 SYNTHESIS OF “CLICKABLE” m3G-CAPS 

Each of the constructs were prepared by several synthesis steps. Construct 1 was based on 5’-

monomethoxytritylated (MMTr) adenosine that was first alkylated at 2’-positionand then 

subsequently reacted with 2-azidoethylamine to give compound 698 (Scheme 1). Derivative 7 

was achieved by base protection with benzoyl group and detritylation.  This building block was 

also later used for the synthesis of m3G-Cap construct 4. Next, compound 7 was phosphorylated 

at the 5’-position (8) and the benzoyl group was removed with methanolic ammonia. In the 

final step compound 9 was reacted with m3G 5’pyrophosphorylimidazolide to give product 1.  

Scheme 1: Synthesis of m3G-Cap construct 1. i: THF, t-BuOK, 20 min, allyl bromoacetate r.t., 6 h, r.t.; ii: dry MeOH, 2-

azidoethylamine, 24 h, r.t. iii: benzoyl chloride, pyridine, overnight, r.t.; iv: 80% acetic acid, r.t., 2 h; v: (9H-fluoren-9-

yl)methyl H-phosphonate, DCM:Py 9:1, PvCl, r.t., 30 min; vi: I2, water, r.t., 10 min; vii: MeCN:Et3N 2:1, overnight, r.t.; 

viii: MeOH/NH3 sat., r.t. 50 h; ix: m3GppIm, MnCl2, N-methylmorpholine x HCl pH 7, 30 oC, 7 days; Adapted from Ref. 

46 with permission from The Royal Society of Chemistry. 
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Scheme 2 illustrates preparation of m3G-Cap structure 2 which starts with alkylation and 

aminolysis of 5’-O-MMTr 2’-O-methylated adenosine to give 10. After the MMTr group was 

removed compound 11 was 5’-phosphorylated to give 12 and then m3G-Capped, in the same 

matter as 1, giving compound 2.  

Synthesis of analogue 3 is preceded by preparation of azidoalcohol 13, which was then coupled  

to 5’-O-MMTr-2’-O-methyladenosine 3’-H-phosphonate and oxidized to give compound 14 

(Scheme 3). 14 is then consecutively detritylated to 15, 5’-phosphorylated to 16 and capped 

resulting in product 3.  

Scheme 2: Synthesis of m3G-Cap construct 2. i: THF, t-BuOK, 20 min, allyl bromoacetate r.t., 6 h, r.t.; ii: dry MeOH, 2-

azidoethylamine, 24 h, r.t. iii: 80% acetic acid, r.t., 2 h; iv: (9H-fluoren-9-yl)methyl H-phosphonate, DCM:Py 9:1, PvCl, r.t., 

30 min; v: I2, , water, r.t., 10 min; vi: MeCN:Et3N 2:1, overnight, vii: m3GppIm, MnCl2, N-methylmorpholine x HCl pH 7, 

30 oC, 7 days; Reproduced from Ref. 46 with permission from The Royal Society of Chemistry. 

Scheme 3: Synthesis of m3G-Cap construct 3. i: DCM : Py 9 : 1, PvCl, 5 min; ii: compound 13, 20 min; iii: I2, water, r.t., 5 

min; iv: 80% acetic acid, r.t., overnight; v: (9H-fluoren-9-yl)methyl H-phosphonate, DCM : Py 9 : 1, PvCl, r.t., 40 min; vi: I2, 

water, r.t., 10 min; vii: MeCN : Et3N 2 : 1, overnight, r.t.; viii: m3GppIm, MnCl2, NMM x HCl pH 7, 30 oC, 7 days; 

Reproduced from Ref. 46 with permission from The Royal Society of Chemistry. 
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The most complex m3G-Cap structure 4 required initial preparation of the AUA trinucleotide 

for which we used H-phosphonate chemistry99-101. This means that compound 7 was fist 

couples to the previously prepared102, 103, 5’-O-MMTr 3’-H-phosphonate of 2’-O-

methyluridine and then N’-butyryl-5’-O-MMTr-2’-O-methyl adenosine 3’-H-phosphonate. 

Next, the trinucleotide 18 was 5’-phosphorylated to give 19 and deprotected with ammonia to 

“clickable” control substance 5, which after capping resulted in m3G-Cap structure 4. A more 

detailed description of different constructs synthesis is presented in Paper I.   

 

2.2 FUNCTIONALIZATION OF OLIGONUCLEOTIDE FOR CONJUGATION OF 
“CLICKABLE” CAPS 

At this point our cap analogues could be conjugated to various molecules by use of “click 

chemistry”. We were, primarily interested in conjugation to splice-switching oligonucleotides. 

The particular sequence has been used for splice correction in the HeLa-Luc 705 reporter cell 

line, containing a luciferase reporter construct, which has β-globulin 705 intron inserted into 

the luciferase ORF104. 

 

Scheme 4: Synthesis of m3G-Cap construct 4 and control 5. i: DCM:Py 9:1, PvCl, 10 min; ii: I2, water, r.t., 5 min; iii: 80% 

acetic acid, r.t., overnight; iv: DCM:Py 9:1, PvCl, 30min; v: I2, water, r.t., 10 min; vi: 80% acetic acid, r.t., overnight; vii: 

(9H-fluoren-9-yl)methyl H-phosphonate, DCM:Py 9:1, PvCl, r.t., 40 min; viii: I2, water, r.t., 10 min; ix: MeCN:Et3N 2:1, 

overnight, r.t.; x: NH3 aq. sat., r.t., overnight; xi: m3GppIm, MnCl2, NMM x HCl pH 7, 30 oC, 7 days; Reproduced from Ref. 

46 with permission from The Royal Society of Chemistry. 
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To allow the “click” reaction we needed to equip the ONs with the correct compatible 

functional group. From our previous studies, involving [3+2] cycloaddition, we learned that 

low concentration of reacting biomolecules requires a more active triple bond functionality to 

achieve sufficient conversion58. Therefore use of the (N-propynoylamino)-p-toluic acid 

(PATA) linker that possesses an electron-withdrawing carbonyl group adjacent to the triple 

bond would give a substantial advantage when conjugated to the ON (Figure 10). 

 Figure 11 schematically presents the stepwise synthesis of ONs conjugated to m3G-Cap 

structures. Functionalization of oligonucleotide with an alkyne linker, was performed on solid 

support, in a two-step procedure. First commercially available 2’-O-methyl-modified ON was 

5’-detritylated and then the 5’-aminolinker H-phosphonate58 was attached. Next, the 5’-amino 

linker was detritylated to enable the conjugation with pre-activated PATA (activation with 

HBTU and NMM in DMF for 30 min). Finally, the ON with the linked triple bond donor is 

deprotected and cleaved from support using methanolic ammonia at r.t., overnight. 

Theoretically, the “click” itself could also be carried out as a subsequent step on the solid 

support, before ammonia treatment but since, we, at the time, were not sure about the stability 

of the caps under these basic conditions we decided to perform this reaction in solution. For 

our conjugation we used crude alkyne ON, as PATA was observed to undergo partial 

degradation in the triethylammonium acetate buffer used for the HPLC purification. It is 

important to mention that reaction between functionalized cap and modified ON is carried out 

with an excess of cap. This is because we wanted the ON substrate to be more or less fully 

consumed, which also simplifies purification, since the product has a retention time close to 

the substrate oligonucleotide. 

Figure 10: Schematic representation of ON-m3G-Cap bioconjugates. i: 2-(N-(4-monomethoxytrityl)aminoethoxy)ethyl H-

phosphonate, Py, PvCl, 20 min, r.t.; ii: I2, water, Py; iii: 2% DCA, DCM, 2 min; iv: pre-activation of (N-Propynoylamino)-

p-toluic acid (PATA), HBTU, NMM, DMF, 0.5 h, r.t., v: addition of activated PATA to solid-supported ON, 2 h; vi: 

MeOH/NH3 sat., 18 h, r.t., vii: “click”: CuI, DIPEA, overnight, water/DMSO 9/1; Reproduced from Ref. 46 with 

permission from The Royal Society of Chemistry. 

Figure 11: Triple bond donor PATA. 
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2.3 CONCLUSIONS AND FUTURE PROSPECTS 

As a result of this study we prepared four different “clickable” m3G-Cap constructs and we 

have demonstrated that they can be “clicked” to modified oligonucleotides (Figure 12). These 

bioconjugates are being evaluated in biological assays but at the time of writing these are yet 

to be completed.  

As predicted introduction of modifications to the triphosphate bridge m3G-Caps significantly 

improves the stability against enzymatic degradation105. The successful preparation of the cap 

structures inspired also the collaboration with a scientific group from Poland which resulted in 

preparation of “clickable“ m3G-Caps that contain modifications in the triphosphate bridge106. 

To further explore the structural requirements for effective nuclear delivery the m3G-Caps were 

also conjugated to biotin linkers (described in Chapter 3) and evaluated for nuclear uptake of a 

streptavidin cargo that cannot enter into the nucleus by diffusion (Chapter 4).  

   

 

 

Figure 12: 18merON-m3G-Cap bioconjugates. Reproduced from Ref. 46 with permission from The Royal Society of 

Chemistry. 
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3 UNIVERSAL LINKER FOR BIOTINYLATION OF 
BIOLOGICAL TARGETS (PAPER II) 

Biotin plays an important role in modern biotechnology, which is mainly due to its exclusive 

affinity for fluorescent streptavidin and avidin. The unique complex they create is an excellent 

tool for studies of cellular transport or visualization of nuclear import95, 107. The affinity of the 

biotin–streptavidin interaction is extremely strong, with a dissociation constant (Kd) of 10−15 

M108-110. Biotin fits inside a ‘pocket’ (Figure 13) of the streptavidin protein, creating an 

enveloping effect which supplements the binding interaction.  

High interest in biotin lead to development of various derivatives that are currently available 

on the market. Biotin can be attached both to the 5’- and 3’- terminus of ONs as well as 

internally through a modified thymidine residue (Biotin-dT). Researchers can choose between 

biotin phosphoramidites, constructs containing two functional biotin groups that help to 

increase biotin–streptavidin binding affinity or biotin azides, which allow “click” conjugation 

to alkyne equipped oligonucleotides. 

In the approach presented here I am taking advantage of the benefits that “click” chemistry 

offers, especially since reported methods seemed to be more laborious111 or less universal112. 

An advantage is also that linkers prepared in this study are equipped with an activated alkyne 

functional group, achieved by conjugation of the formerly mentioned PATA moiety. The 

length of the linker was varied in order to test the minimum spacer requirement for the 

relatively deep streptavidin pocket, especially when larger molecules like oligonucleotides are 

attached to the biotin.  

3.1 SYNTHESIS OF BIOTIN LINKERS 

Synthesis of the shorter biotin linker (21, SBL) starts with conjugation of pre-activated 

commercial biotin (activation: HBTU, NMM in DMF, 30 min) with 4,7,3-trioxa-1,13-

tridecanediamine. The crude product 20 was purified with column chromatography on silica. 

It is important to mention that both product and substrate are not UV active, which made 

isolation somewhat more cumbersome and MS analysis of eluting fractions was used to 

evaluate the presence of product. After PATA was pre-activated (30 min, in DMF with HBTU 

Figure 13: Biotin in streptavidin pocket. From: Weber, P.C.,Ohlendorf, D.H.,Wendoloski, J.J.,Salemme, F.R., Structural 

origins of high-affinity biotin binding to streptavidin.1989. Science 243 (85-88) . Reprinted with permission from AAAS.  
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and NMM) 21 was added and reacted for 2 h. The need for high purity of the final linker led to 

the use of RP-HPLC (C-18 column and triethylammonium acetate buffers, pH 6.5) for the 

purification. 

During purification it seemed as if trimethylamine present in the buffer formed an adduct with 

PATA (M+ + Et3NH = 732.98, 10–15%), possibly due to Michael addition113. To decrease its 

formation, the heating generally used during HPLC purifications was avoided and buffers were 

changed to just water and acetonitrile. This led to complete absence of the adduct. 

With the second linker the spacer was designed to be not only longer but also to contain a UV-

active chromophore which would facilitate the detection of the conjugation products during 

TLC analysis. Therefore, in the first step of the synthesis monomethyl terephthalate was 

activated (in the same manner as biotin in case of SBL) and conjugated with commercial 4,7,3-

trioxa-1,13-tridecanediamine. After completion of the reaction the product 22 was purified 

using silica gel column chromatography and reacted with activated biotin (as described for 

synthesis of compound 21). Since the product of that reaction (23) is a methyl ester, aminolysis 

with 4,7,3-trioxa-1,13-tridecanediamine was possible. Compound 23 was simply dissolved 

with the excess of amine and left to react overnight at 44 °C. This led to the expected non-

symmetrical product 24 with one free amine which after conjugation with the triple bond donor 

PATA gave final product – long biotin linker (LBL, 25). The crude product was pre-purified 

by silica gel column chromatography but to obtain a high purity of the final product we used 

RP-HPLC in a similar manner as for the short linker. 

3.2 BIOTINYLATION OF OLIGONUCLEOTIDES AND PEPTIDE ON SOLID 
SUPPORT AND IN SOLUTION 

After successful preparation of the linkers, the study of successful “click” reaction in solution 

and on solid support was initiated. For this purpose conjugation was performed with the biotin 

Scheme 5: Synthesis of short biotin linker (SBL) carrying the activated triple bond donor PATA. 

Scheme 6: Synthesis of long biotin linker (LBL) carrying the activated triple bond donor PATA. 
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linkers with two oligonucleotides on solid support and with a peptide in solution. The choice 

of the biologically active substrates was (Table 3): 

 commercially obtained 18mer 2’-O-methylated ON (the same used in experiments 

presented in Chapter 2),  

 commecially synthesized 14mer, also 2’-O-methylated additionally containing two 

LNA-A building blocks for improvement of hybridization of the oligonucleotide 

 a C-myc derivied peptide suggested to have cell penetrating properties and modified 

with an azido group. 

All precursors of these substrates were purchased still attached to the solid support and the 

process of functionalizing them into “clickable” molecules is presented in Figure 14 and 15 

respectively. 

Biotinylation of ONs relied on stepwise conjugation starting with attachment of an aminolinker 

to the 5’position of the ON. Next, the MMTr group was removed from the linker under mild 

acidic conditions and the unprotected amino group was conjugated with pre-activated 2-(2-

azidoethoxy)ethoxyacetic acid. Finally, CuI catalyzed Hüisgen dipolar [3+2]-cycloadditions 

with biotin linkers containing the triple bond donor were carried out. This was followed by 

ammonia treatment to remove the complete bioconjugates from support. The high degree of 

Figure 14: Schematic representation of biotinylation procedure for oligonucleotides on solid support. A: Deprotection of 5'-O-

DMTr followed by reaction with 2-(N-(4-monomethoxytrityl)aminoethoxy)ethyl H-phosphonate, Py, PvCl, 20 min, r.t.; I2, 

water, Py; 2% DCA, DCM, 2 min; B: pre-activation of azido acid, HBTU, NMM, DMF, 0.5 h, r.t., and addition of activated 

azido acid to solid-supported ON, 2 h; C: “click”: CuI, DIPEA, overnight, water/DMSO 9/1;  

Figure 15: Schematic representation of biotinylation procedure for peptides. A: Deprotection of N-terminal Fmoc protecting 

group (20% piperidine in DMF); B: reaction with 2-(2-azidoethoxy)ethoxyacetic acid (pre-activated with HBTU and NMM 

in DMF, 0.5 h, r.t.), DMF, 2 h, r.t.; C: 90% TFA, 4% TIS, 4% H2O, 2% 3,5-dioxo-1,8-octanedithiol, 4 h, r.t.; D: “click”: CuI, 

DIPEA, water/DMSO 9/1, overnight. 
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conversion, as evidenced by HPLC analysis of the desired crude products, is presented in 

Figure 16. 

As mentioned, conjugation of biotin linkers to a peptide was accomplished in solution after the 

peptide substrate was modified with an azido group on solid support48, 58. The procedure of 

converting commercially purchased molecules into “clickable” ones is quite straightforward. 

It requires the solid supported peptide to be first deprotected at the N-terminus and then 

conjugated with pre-activated 2-(2-azidoethoxy)ethoxyacetic acid. The cleavage from support 

was performed using standard conditions with trifluoroacetic acid (TFA) cocktail and purified 

with HPLC. This is in many cases desired but it is likely that the crude material can also be 

used directly. The peptide was then readily converted into a biotin conjugate using copper-

catalyzed cycloaddition. 

Substrate Conditions Biotin 

Linker 

Product MS calc/found 

18merRNA(2’-OMe) oligonucleotide 

5’-CCUCUUACCUCAGUUACA-3’ 
Solid-Phase SBL 6796/6798 

14merRNA(2’-OMe/LNA) oligonucleotide 

5’-AAAUGUAACUGAGG-3’ 

Solid-Phase LBL 6031/6032 

Azido- (C-myc) 

N3-L-GAAKRVKLD 
Solution Phase LBL 2111/2112 

Table 3: Summary of substrates and products used for preparation of biotin linkers. SBL- short biotin linker, LBL- long biotin 

linker, A- LNA-A building block. 

3.3 CONCLUSION AND FUTURE PROSPECTS  

New tools for visualization of transport are always in demand, especially since they can expand 

the scope of possible applications. Having more options to choose from when labeling 

biologically active molecules may only be to our benefit. Many biotin tags are already available 

on the market. However, linkers prepared in this project give alternatives for molecules with 

properties that restrict them to carry only azide functional groups. Arming biotin with a new 

Figure 16: HPLC chromatograms of crude products: A) crude 18mer (2'-OMe) ON, B) crude reaction mixture of the synthesis 

of 18mer (2'-OMe)-BIOTIN conjugate. 
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activated click tag provides an additional universal method for scanning potential therapeutics 

and development of novel versatile technologies. 

An example of successful application of the synthesized linkers is presented in the following 

chapter where labeling of bioactive macromolecules (m3G-Cap derivatives) allow us to learn 

more about their properties. 
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4 INVESTIGATING STRUCTURAL REQUIREMENTS FOR 
m3G-CAP PROMOTED NUCLEAR DELIVERY (PAPER III) 

In the previous studies complementary building blocks were prepared. These can be conjugated 

together in order to assess biological function. Biotin linkers are the excellent tools for labeling 

and observing the transport of a meaningful cargo. The m3G-Cap derivatives, on the other hand, 

are promising devices for improved nuclear delivery and addition of a fluorescent label enables 

visualization of the action. Putting these two pieces of the puzzle together creates a useful 

bioconjugate for evaluation of minimum structural requirements for retained nuclear transport 

ability in vitro. This information can help us to improve therapeutic effects at lower doses by 

achieving higher nuclear concentrations via active transport. 

In addition to the m3G-Cap analogues presented in chapter 2, clickable caps prepared in 

collaboration106, that contain modifications of the triphosphate bridge were evaluated. This 

kind of alteration is done to improve the resistance of the caps to specific and non–specific 

enzymatic degradation, like e.g., by NUDIX pyrophosphatase that have recently been reported 

as a decapping agent for modified RNA114.  The Dcp2 enzyme targeting primarily 

monomethylguanosine (m7G) capped RNA, was also shown to hydrolyze m3G-capped snRNA, 

as a part of a quality control mechanism114, 115. Several modifications have been demonstrated 

to protect capped oligonucleotides against enzymatic degradation106, 116-122. Examples of these 

are β-phosphorothioate, α,β- and β,γ-methylenebisphosphonate and α,β- and β,γ-

imidodiphosphate groups into the triphosphate bridge. These and other modifications have 

displayed significant improvements of cellular half-life of exogenously delivered capped-

constructs105, 123. For instance, the methylene group introduced between α and β phosphonates 

Figure 17: Structures of m3G-Cap analogues. 
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in the m3G-Cap analogue, offers a significant increase of the half-life in 10% serum as well as 

substantial protection against decapping in the cytosol. Methylene modification is one of the 

modifications introduced in the triphosphate bridge that was tested below. Another one is the 

introduction of an imidodiphosphate into the bridge (Figure 17). 

The group of biotin tags used for this study has also been expanded by addition of a much 

longer linker compared to the ones prepared in Paper II. PEG biotin linker (PEGBL) was 

synthesized by functionalization of commercially purchased Biotin-PEG(23)-NH2 with pre-

activated PATA, giving a “clickable” terminal alkyne group (Figure 18). 

To prepare the m3G-Cap–biotin constructs copper-catalyzed cycloaddition was carried out 

overnight in a solution of tert-butanol/water (1:1). When reaction completion was confirmed 

by HPLC and MS the crude products were purified by RP-HPLC using a linear gradient of 

TEAA buffers. 

4.1 BIOLOGICAL EVALUATION 

The novel bioconjugates were evaluated in cell assays after incubating them with Streptavidin 

–Alexa 488 (STV-488), which is an excellent tool for studies of active nuclear delivery 

primarily due to its size. On its own the molecular weight of STV is approximately 56 KDa, 

and after creating a complex with our biotinylated product the mass rises up to 60-70 KDa, 

which is clearly above the threshold for passive diffusion through the nuclear pores. The newly 

prepared complexes were than transfected into U2OS cells by PULS in protein transfection 

agent and after six hours the cells were analyzed by fluorescent microscopy. 

Figure 19 depicts the extensive variety of biotinylated cap structures ranging from the 

adenosine based ones with different linker length and modifications on the triphosphate bridge 

(39-46) to more complex molecules with an AUA sequence (47-49). Additionally, the non-

capped controls are also presented (Figure 20, 50-51). However, only cells treated with 

compound 47, prepared from cap derivative 33 and LBL (37), displayed a signal from the 

nucleus in the form of speckles (Figure 22). This would suggest that having the natural 

Figure 18: Structures of biotin linkers used in the study. 
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trinucleotide AUA after the triphosphate bridge is the necessary minimum requirement for 

nuclear transport.  

Due to this not completely unexpected result it is no surprise that the shorter modified caps also 

did not promote nuclear uptake. Modified caps raised high expectations after demonstrating 

improved resistance to enzymatic degradation as well as good binding to snurportin105, 118. Most 

modified caps tested here are apparently too short, since at least an additional trinucleotides is 

required for nuclear transport. It is then more of a surprise that the methylenemodified cap 48, 

which fulfills the trinucleotides requirement, did not reveal any nuclear localization. As even 

the short caps can bind efficiently to snurportin105 but still fail to promote nuclear delivery, it 

is evident that binding to this protein is not the only parameter that matters and it is possible 

that interaction of the capped cargo-snurportin complex with importin β is quite sensitive to the 

additional oligonucleotide stretch as well as to structural changes imposed by modifications.  

Another interesting observation is that the long biotin linker PEGBL (38) did not improve the 

properties of the bioconjugate. Construct 49 only showed some minor activity. It is possible 

that its length reduced the availability of the m3G-cap due to steric hindrance and decrease the 

efficiency of nuclear transport. 

Figure 20:  Biotinylated cap derivative controls. 

Figure 19: Biotinylated cap derivatives. 
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Further on, following the results obtained with fluorescent microscopy we wanted to confirm 

if the signal obtained with bioconjugate 47 indeed originates from the cell nucleus. For this 

purpose we ran confocal microscopy experiments, comparing biotin-m3G-Cap 47 with control 

50. The result is presented in Figure 21 where on the left the confocal microscopy picture is 

shown and on the right the processed image with the defined nuclear volume and the signal 

coming from STV-Alexa488 within that volume. The STV complex with m3G-capped ON 

conjugate 47 displays a clear signal from the nucleus while the STV complex with control 50 

does not. Further analyses indicated that in 47-SVT some aggregates seem to form within the 

nucleus near the edge of the volume implying that there could be some interference with the 

nuclear transport and thus room for further improvement. 

 

Bioconjugate 47 Control 50 

Figure 22:  Zoomed image of cap-biotin conjugate 47 (Figure 19) and cap-biotin conjugate 50 (Figure 20, control) treated 

cells. Nuclear region of the cells were marked with a white arrow. Nuclear transport is evaluated by the Alexa-488 signal 

from the nucleus. 

Bioconjugate 47 

Control 50 

Figure 21: Confocal microcopy analysis of the cells treated with complexes constitutive of STV-Alexa488- and m3G-Cap –

biotin conjugates (47 and 50). Left panel shows the confocal image whereas the right panel shows the defined nuclear volume 

and the STV-Alexa488. 
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4.2 CONCLUSIONS AND FUTURE PROSPECTS 

Preparation of the novel biotin-m3G-Cap structures not only assured us that the methodology 

is useful for the creation of bioconjugates, but probably more importantly allowed us to study 

and understand some of the aspects that need to be considered when using these nuclear 

localization signals. With the result obtained we know now that the minimum requirement for 

active nuclear transport is equipping the m3G-Cap construct with at least an additional 

trinucleotide. However, we are aware that this story does not finish here and that additional 

experiments need to be carried out and different construct need to be prepared to fully 

comprehend the mechanism. We suspect that additional nucleotides added after the 

trinucleotide will be even more efficient in promoting the nuclear uptake of the cargo. After 

optimizing the ideal length of the oligonucleotide attached to the cap we should come back to 

the idea of modifications on the triphosphate bridge and test if their presence can improve the 

overall process. 

Another interesting idea to investigate is attachment of most promising m3G-Cap derivative 47 

to various alternative cargos and observe how well these are transported. For that purpose a 

multiple linker, as discussed in Chapter 5 could allow the attachment of an m3G-Cap derivative 

and a fluorescent dye to the same molecule, would be handy. 

When it comes to future prospects for m3G-Cap derivatives, strictly from a synthesis point of 

view, there are few aspects that might be worth considering. The idea of automation of cap 

attachment would be of great benefit as preparing caps on solid support could lead to straight 

assembly during oligonucleotide synthesis. The optimized methodology would give us a 

chance to prepare more constructs in a shorter time, which in turn helps in scanning of more 

potential conjugates resulting in learning more about this NLS.  

Furthermore, speeding up the overall synthesis would be very advantageous, not least to allow 

the preparation of constructs in shorter time. To try this, one could use microwave irradiation 

in the “click” reaction leading to cap constructs, of course under conditions where caps are not 

being degraded. It is likely that successful development in this direction will significantly 

shorten preparation of “clickable” conjugates. 
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5 MULTIPLE FUNCTIONALIZATION LINKER (MFL) 
ENABLING ATTACHMENT OF SEVERAL DIFFERENT 
ENTITIES TO ONS (UNPUBLISHED RESULTS) 

The possibilities and combinations for preparation of ON therapeutics seem to be endless, 

however the question of how to deliver the oligonucleotide to the site of action still does not 

have a clear answer. We seem to have almost all tools in our hands, like the therapeutic ON, 

entities that will deliver it into the tissue/cell and/or nucleus as well as potential signals for 

tissue specificity but to put all these functionalities together is a most demanding task. This is 

where the idea of a universal multiple functionalization linker (MFL) emerged.  

One thing that seemed clear while designing the linker was to equip it with a functional group 

that would allow the use of “click” conjugation of desired entities. This methodology has 

already proven its efficiency several times before. Additionally, not only we have previously 

synthesized “clickable” derivatives for this purpose as well as in house methods to prepare 

azides and triple bond donors, but there are also many ready-to-click biologically active 

molecules that are commercially available. With that in mind, literature was browsed to learn 

what modifications have been studied to introduce the azido and alkyne functional group to 

oligonucleotides. A large variety can be found, however most of them focus on alteration of 

the nucleotide itself, which can later serve as building blocks during oligonucleotides 

synthesis124, 125. As presented in Figure 23 different positions are used to introduce the required 

functional groups. Among them we can distinguish introduction of triple bond or azide at the 

2’, 3’and 5’–positions of the nucleoside51, 126, 127. Modifications are also often introduced at the 

nucleobase128-131. A different approach is preparation of scaffolds based either on amino 

acids/cyclic peptides132, 133 or carbohydrates derivatives134. 

Two of the articles, in particular drew my attention. Bouillon et al. have presented a method 

where solid-supported DNA was functionalized with three H-phosphonate monoester units51. 

These where then converted to alkyne moieties and clicked with galactosyl azide using 

microwave irradiation (MW) to shorten the reaction time135. The method is suitable for multi-

labeling of oligonucleotides with the same tag for example to enhance the visualization or 

Figure 23: Overview of different positions used for the attachment of azides or alkynes. Red arrows - attachment point for 

terminal azide and alkyne residues only. B - nucleobase. From Gramlich P. M., Wirges C. T., Manetto A., Carell T. 

Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction.; Angew Chem Int Ed 

Engl. 2008;47(44):8350-8, provided by John Wiley and Sons. 



 

 33 

uptake (when several units are attached). A substantial advantage here is the use of MW that 

improved not only the reaction time but also the overall yield. 

A most interesting approach was also presented by Carell and his group130, 136.  They attached 

alkynyl side chains to the 5-position of pyrimidines or to the 7-position of 7-deazapurines to 

enable versatile labeling of DNA. As the oligonucleotides are synthesized the modified 

nucleotides are introduced and some of them carry a protecting groups like trimethylsilyl 

(TMS) or tri-iso-propylsilyl (TIPS) on the alkyne. After the synthesis is completed the non-

protected triple bonds can be clicked directly on support followed by removal of TMS group 

with mild acidic conditions or during cleavage from support. Once the second label is clicked 

on the oligonucleotide the TIPS group is displaced in solution to allow the third cycloaddition 

reaction. Although, this methodology has some limitations137, 138, it is a substantial 

breakthrough and DNA constructs with three different entities were prepared with yields of 

about 50%. A year after Valverde et al. screened a range of commonly used alkyne protecting 

silyl groups to check their compatibility with iterative copper catalyzed 1,3-cycloaddition. 

Their results suggest that TIPS/triethylsilyl (TES) or tert-butyldiphenylsilyl (DPS)/TES 

protecting schemes are effective for multiple successive “click” reactions133. 

These two examples are efficient for the attachment of multiple entities to an oligonucleotide 

and they both have one important feature in common – their “clickable” functional groups or 

masked precursors are incorporated in the oligonucleotide during ON synthesis on soild 

support. The only obvious drawback is that incorporation into bases as well as internally into 

the oligonucleotide sequence may hamper the function of the ON.  

The modification that we wanted to prepare is based on a slightly different approach. Our 

design was an independent molecule which would be conjugated at the 3’ or 5’-terminus to 

avoid interference with the ON sequence of therapeutic significance.  

5.1 DESIGN AND SYNTHESIS OF A MULTIPLE FUNCTIONALIZATION LINKER 
(MFL) 

While planning the structure of our multiple functionalization linker (MFL) we set some goals 

that should be fulfilled: 1) the linker should possess a clickable functional group to give an 

Figure 24: Sequential modification of DNA proposed by Carell et al. . From Gramlich P. M., Wirges C. T., Manetto A., 

Carell T. Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction.; Angew 

Chem Int Ed Engl. 2008;47(44):8350-8, provided by John Wiley and Sons. 
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attachment point for efficient conjugation of biologically active entities, 2) straight forward 

attachment to 5’ oligonucleotide position, preferably via H-phosphonate or phosphoramidite 

chemistry and 3) an additional functionality where, if desired, another linker unit can be 

attached. As we also wanted to carry out the entire process of multiple conjugation on an 

oligonucleotide that is attached to solid support, it was important that the linker’s chemistry is 

compatible with that.  

As starting point for synthesis of the linker Fmoc (fluorenylmethyloxycarbonyl) serine methyl 

ester was chosen. The remaining free OH group was protected with MMTr and the crude 

product 52 was purified by flash column chromatography. The Fmoc group was then removed 

to give 53 and aminolysis of the methylester was performed with 2-(2-aminoethoxy)ethanol, 

in absence of solvent and at 45 oC. After purification, 54 was reacted with pre-activated triple 

bond donor PATA resulting in a product with the correct mass. Although, the phosphonylation 

reaction with salicyl chlorophosphite was also successful, the column purified final product 

gave a mixture due side reactions of the added PATA group, most likely related to what we 

observed before with this activated triple bond. 

p-(N-propynoylamino)toluic acid (PATA) was our linker of choice when preparing conjugates 

requiring triple bond donor. Thanks to its unique structure it allows the “click” reaction to be 

efficient also at low concentration, where standard triple bonds gave virtually no results. It has 

a handle for attachment to oligonucleotides carrying aminolinkers and is UV visible, which is 

convenient upon preparation and purification. The synthesis is also very straightforward. In 

just one step reacting propynoic acid and aminomethylbenzoic acid we obtain the final product 

PATA in high purity. An additional advantage is that the starting materials are inexpensive, 

which means that the cost for the reagent is quite low. The linker can be made in a relatively 

large scale (grams, rt and column chromatography) and is stable upon storage58. Unfortunately, 

the reactivity of PATA has also caused some problems. In many cases when base has been 

present we have observed side reaction, which is most probably due to Michael addition to the 

Scheme 7: Synthesis of multiple functionalization linker (MFL) using PAMBA. 
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conjugated triple bond. These problems were observed on several occasions, e.g., during HPLC 

purification with use of TEAA buffers or deprotection with aqueous ammonia at 50 oC. The 

moment this became an obstacle for the synthesis of an MFL we decided to change the structure 

of PATA, preserving it best features but avoiding the possibility of Michael addition. 

The PAMBA linker (4-((2-(prop-2-yn-1-yloxy)acetamido)methyl)benzoic acid) is very similar 

to PATA but the triple bond is not conjugated to the carbonyl function. The triple bond is 

somewhat less activated. However, a recent comparison of reaction rates for different alkynes 

in “click” cycloadditions suggested that electron withdrawal by the oxygen, connected to the 

propynyl group, should give sufficient reactivity. Before the new molecule was used in the 

synthesis of MFL, it was tested under two different conditions: 1) it ability to perform the click 

reaction, which was successful and 2) its stability in basic conditions, which also gave a positive 

result. Since both results were positive we proceeded and coupled with compound 54. After 55 

was purified it was reacted with diphenyl phosphite in dry pyridine to give the multiple 

functionalization linker 56 in 63% yield (Scheme 7).  

5.2 CONJUGATION OF LINKER AND “CLICK” REACTION ON SOLID-
SUPPORTED OLIGONUCLEOTIDE 

Schematic representation of the linker attachment to oligonucleotide and the “click” reaction 

on support are illustrated in Scheme 9. In a way it is almost a cyclic procedure. The cycle, 

attachment of the linker unit, “click” reaction, deprotection can be performed multiple times 

and equip the oligonucleotide with multiple different entities. 

The general procedure for synthesis began with placing the solid-supported ON in Eppendorf 

tube and washing it extensively with methanol (MeOH), acetonitrile (MeCN) and 

dichloromethane (DCM). To deprotect the ON from the DMTr group, 3,5% DCA solution in 

DCM was used. The support was then washed repeatedly with DCM and then a mixture of 

MeCN-pyridine (3:1), to prepare it for the introduction of the MFL. Next, the linker in 

anhydrous pyridine was added to support followed by 1.5 eq pivaloyl chloride (PvCl) dissolved 

in anhydrous MeCN (30 mM solution) and the reaction mixture was shaken for 5 min. After 

this time, the coupling solution was removed and the support was washed with MeCN-pyridine 

(3:1) to ensure removal of remaining reagents. In the following step the solid-supported crude 

product was oxidized with iodine in pyridine/water for 15 min. The support was then washed 

extensively with pyridine/water (9:1), MeCN and DCM. Next the MMTr group, protecting the 

hydroxyl group of the multiple linker was removed with 3.5% DCA solution in DCM. The 

support was subsequently washed repeatedly with DCM and MeCN, to prepare it for the 

“click” reaction. The desired azido-modified molecule (e.g. peptide or fluorescent label) was 

dissolved in a 1:1 mixture of tBuOH:H2O and added to the support followed by N,N-

Scheme 8: Synthesis of PAMBA linker. 
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diisopropylethylamine (DIPEA) and copper iodide (CuI) and the reaction was left shaking for 

24 h. Next day, the conjugation solution was removed and the support washed with 1:1 

tBuOH:H2O, EDTA solution, MeCN and DCM. Then, depending on the desired product, the 

final is either cleaved from the support with methanolic ammonia or subjected to another round 

of the conjugation steps, which first includes addition of another MFL unit. 

5.3 MULTI-SUBSTITUTED OLIGONUCLEOTIDE CONJUGATES – SUMMARY 
OF SUCCESSFULLY PREPARED CONSTRUCTS 

Before the first oligonucleotide construct was prepared several optimizations of the linker 

attachment step were done. To improve the solubility of the compounds the reaction was 

carried out in MeCN-pyridine (3:1). Initially both MFL and PvCl were dissolved in this mixture 

but partially due to solubility and partially due to the stability of PvCl this was changed. The 

MFL was dissolved in one part of pyridine and added to the resin, followed by PvCl in three 

parts of MeCN. This gave a “cleaner” crude product as analyzed by HPLC and led to an 

increase in overall yield. In addition, the amount of PvCl used also had an influence on the 

efficiency of the coupling. The initial use of 5 eq (to ensure dry conditions and complete 

conversion in a short time) resulted in additional by-products and therefore somewhat 

suppressed the yield of the desired oligonucleotide conjugate. Reducing the PvCl to 3 eq gave 

a slight improvement and use of 1.5 eq clearly generated less side products and more desired 

product. 

With these improvements introduced the first multiple-entities-oligonucleotide construct was 

prepared. Initially, the short non-charged PLG peptide in N-acetylated form (this tripeptide also 

known as MIF was reported to be a blood-brain barrier penetrating peptide139) was used as a 

Scheme 9: Preparation of oligonucleotide bioconjugates with versatile biologically active entities using multiple 

functionalization linker – reaction scheme. 
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model for later reactions. The preparation of the clickable form (N-

acetylProLeuGlyNHCH2CH2N3 or AcMIF-N3) is achieved in a single coupling of the 

acetylated peptide with azidoethylamine58. The idea behind preparation of a first model 

conjugate was to observe how the process is develops for each addition and if there are stages 

that still require some optimization. The first attempt was not as clear due to poor purity of the 

commercially obtained 18mer 2’-OMe oligonucleotide. However, when the solid-supported 

oligonucleotide was synthesized in our lab (the same sequence as the purchased one) the results 

were really good. The three units of linkers were attached one by one and each conjugation 

Figure 25: A: Structure of product 57 the 2’-OMeRNA18mer equipped with three multiple linkers with AcMIF peptides 

attached to each linker, B: HPLC chromatograms of crude products after different steps towards preparation of product 57, 

from bottom to top: ON with only linker attached, ON with one linker with AcMIF attached, ON with two linkers each with 

an AcMIF attached, ON with three linkers each with AcMIF attached. 
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step was followed by “click” reaction with AcMIF-N3 according to the above described general 

procedure. Figure 25A shows the structure of the final trisconjugated compound (57).The mono 

and bisconjugated ONs were also prepared in a similar fashion and the overall syntheses were 

remarkably clean as evidenced by HPLC profiles of crude materials shown in Figure 25B. The 

correct structure of each construct was confirmed by mass spectrometry and it is also clearly 

visible how the time of retention (tR) increases for each additional unit.  

After confirming that the multiple functionalization linker can fulfil its function the next test 

was if addition of other entities with different properties and solubility can cause some 

problems in the developed procedure. Two different constructs based on the same ON were 

synthesized: 1) with a fluorescein derivative that can serve as a labeling tag (Figure 26) and 2) 

a 14mer tumor cell-targeting CPP (target: osteosarcoma- U2OS cell line)140, 141 (Figure 27). As 

both results were positive and the correct mass of products was confirmed it was encouraging 

to prepare oligonucleotide bioconjugates with two or three different biologically relevant 

entities.  

Several attempts were done in order to achieve the diverse conjugations which gave knowledge 

on how to design the synthesis of desired compounds. The conclusions and considerations 

drawn from these attempts are described later in this chapter but for the moment let’s focus on 

the constructs that were successfully synthesized. First an ON conjugate containing a peptide, 

a sugar and a fluorescent label (product 60) was prepared. MFL was coupled to the 18mer 2’-

O-methyloligoribonucleotide, followed by 1,3-dipolar cycloaddition with the N-acetylated 

peptide MIF azide. Next, another linker unit was attached and “clicked” with an acetylated 

mannopyranoside equipped with azide handle. Finally, after the third MFL unit is attached the 

bulky fluorescein azide derivative is “clicked” to result in ON triple conjugate 60 after 

deprotection. 

The second triple conjugate (61) was prepared in similar manner. Apart from the AcMIF 

peptide and sugar derivative it is also equipped with a muscle-homing peptide ASSLNIA 

(purchased still on resin and equipped with an azide handle by microwave assisted coupling of 

2-(2-azidoethoxy)ethoxyacetic acid to the N-terminus). This peptide has been shown to display 

a 9- to 20-fold increase in affinity to muscle cells142, 143 and is therefore a potential targeting 

Figure 26: A: Structure of product 58 2’-OMeRNA18mer equipped with multiple functionalization linker and fluorescent 

label, B: HPLC chromatogram of product 58. 
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signal for therapeutics focused on diseases of the heart and skeletal muscles such as muscular 

dystrophies. 

Figure 30 presents the third oligonucleotide multiconjugate 62, prepared with help of the 

multiple functionalization linker. The difference here is that an m3G-Cap construct is attached 

in the last step of the synthesis. In this particular case the ON-construct was cleaved off support 

after the third linker unit was added and the “click” reaction with the Cap was carried out in 

solution. Product 62 is particularly interesting, since to my knowledge, it is the first presented 

multiple signal where three different classes of biomolecules (peptide, sugar, oligonucleotide 

with triphosphate bridge/Cap) were clicked on the same ON scaffold. This conjugate opens the 

door to the study of various combinations of signals with joint action that have not been tested 

yet. 

Figure 27: A: Structure of product 59 2’-OMeRNA18mer equipped with MFL and a peptide targeting U2OS cell lines, B: 

HPLC chromatogram of crude product 59. 
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Figure 28: A: Structure of product 60 2’-OMeRNA18mer equipped with three multiple functionalization linkers and an 

AcMIF peptide, a mannopyranoside and a fluorescent label respectively, B: HPLC chromatogram of purified product 60 

(mass of the additional peak corresponds to the mass of the product). 
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Figure 29: A: Structure of product 61 2’-OMeRNA18mer equipped with three multiple functionalization linkers and an 

AcMIF peptide, a mannopyranoside and an ASSLNIA peptide respectively, B: HPLC chromatogram of purified product 61. 
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5.4 CONSIDERATIONS AND CONCLUSIONS ON HOW TO DESIGN THE 
OLIGONUCLEOTIDE BIOCONJUGATES USING MULTIPLE 
FUNCTIONALIZATION LINKER   

The oligonucleotide bioconjugates presented in the previous chapter are the result of several 

experiments which helped in understanding how to benefit most from the multiple 

functionalization linker. In this part of my thesis the part of the study that was not successful 

but still gives a valuable insight into the possibilities and limitations of the methodology, is 

presented.  

Preparation of an oligonucleotide construct possessing both the previously presented 

fluorescent label and the U2OS-targeting CPP failed, despite the observations made during the 

course of the synthesis that indicated successful attachment of the MFL. Repeating the 

experiment and testing the reaction progress both after the first “click” and after the synthesis 

was completed, revealed full conversion of substrate after the “first” cycle but analysis of the 

Figure 30: A: Structure of product 62 2’-OMeRNA18mer equipped with three multiple functionalization linkers and an 

AcMIF peptide, a mannopyranoside and an m3G-Cap respectively, B: HPLC chromatogram of purified conjugate 62. 
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crude final product gave quite inconclusive results. We realized that we had not thought about 

the fact that we actually “clicked” on a compound containing a free hydroxyl and the lack of 

success could be assigned to that. This hydroxyl group, present on the fluorescent label, is an 

attractive site for the next MFL unit added right after. Clearly the clickable entity used, should 

not contain a free hydroxyl unless it is the last entity added. 

 Trying to improve the procedure experiments were performed with use of the ASSLNIA 

peptide, which possesses two free hydroxyl groups (Figure 31). After attaching the first MFL 

unit followed by “clicking” the peptide, an additional step with capping of the peptide was 

performed by adding a 4:1 solution of pyridine:acetic anhydride to the resin and stirring for 30 

min. This should acetylate the OH groups and prevent their reaction with the next MFL. After 

extensive washing another linker unit was coupled, oxidized and the MMTr group was 

deprotected before the whole construct was cleaved off support. Unfortunately, the HPLC 

analysis presented in Figure 32 clearly shows that the capping step was not successful and after 

checking the MS of individual peaks not only product but also product with one and two 

additional MFLs were detected. 

 

Conclusions and Future Prospects 

The observations made while working with ASSLNIA peptide were somewhat disappointing. 

However, there are several possibilities to get past this hurdle and it is not unlikely that the 

conditions for capping can be optimized. Being able to carry this out as one of the consecutive 

steps in solid-phase synthesis would make the methodology more versatile and elegant, not 

least considering the option of automating the method in the future. Another alternative would 

be to acetylate the free hydroxyl groups before the peptide or any other entity is “clicked” to 

the solid-supported oligo-construct. This is quite possible but requires additional handling.  

Use of fully protected peptides would of course remove any limits of peptide sequence for the 

above procedure as they can also be prepared in different ways. One example is by use of a 2-

chlorotrityl resin. Peptides can be cleaved off this resin within an hour with 

hexafluoroisopropanol (HFIP)-DCM (1:4) with all protecting groups intact144. Addition of a 

“clickable” azide handle would definitely be compatible and many interesting peptides 

prepared with this methodology could be later used with the multiple functionalization linker. 

Figure 31: ASSLNIA peptide possessing two free hydroxyl groups. 
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However, care must be taken in choice of protection to ensure that its removal leaves the 

oligonucleotide intact and is also compatible with the ammonia treatment used for cleaving the 

ON from support.  

Another worthwhile effort would be to shorten the time of the conjugate synthesis. The answer 

here could be the use of microwave irradiation for the 1,3-dipolar cycloaddition reaction, as 

proposed by Bouillon el al51. His suggestion of performing the reaction at 60oC for 20 min is 

very tempting considering that in the present study 24h for each “click” step was used to make 

sure that the reaction is complete. Even if this could be shortened somewhat it would not be 

close to the potential time gain one could get by use of microwave conditions. If the entities 

used for preparation of oligonucleotide-based bioconjugate are not harmed by MV it could 

mean reduction of the time for complete synthesis with days. 

Investigating further possibilities of MFL use is highly interesting. It is designed to enable the 

combined effect of many useful entities, which were invented and investigated before but never 

observed working together. Such prepared constructs have a strong potential to deliver the 

oligonucleotide therapeutics to the site of action. The constructs that have already been 

prepared and other similar ones should now undergo biological evaluation. The methodology 

could even be automated and used for scanning of various combinations of biologically active 

entities. A substantial advantage of the MFL is its versatility which means that it could be used 

for diverse targets and in many different ways. One idea could also be preparation of Zorro-

LNA constructs, described in Chapter 6, where they could serve as a non-nucleotide linker. 

 

 

  

Figure 32: HPLC chromatogram showing the result of the experiment where free hydroxyl groups of ASSLNIA peptide were 

to be capped to prevent the multiple linker attacking these sites; A – product: 18mer MFL(ASSLNIA)MFL, B – product with 

one additional multiple functionalization linker, C – product with two additional multiple functionalization linkers.  
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6 “CLICK” ZORRO-LNA AS A TOOL FOR SCANNING THE 
DOUBLE-STRAND INVASION (DSI) REQUIREMENTS 
(PAPER IV) 

Silencing of specific genes by targeting double strand DNA with oligonucleotides is one of the 

methods with potential for therapeutics. The task for an anti-gene agent is still not easy as it 

must cross both the plasma membrane of the cells as well as the nuclear membrane and 

subsequently find its way through chromatin to find its target41. A high affinity of binding, 

achieved via Watson-Crick base-pairing, and possibly additional interactions, is also of great 

importance together with sequence specificity towards the target DNA. Locked nucleic acids 

(LNAs) have often been used in these strategies as they not only possess the above mentioned 

properties but also can invade super-coiled dsDNA under physiological pH and salt 

conditions22. 

Zorro-LNA is a class of anti-gene oligonucleotides known for almost a decade. It is suggested 

that due to its Z shape it has the potential to specifically bind to neighboring sites on opposite 

strands of a duplex DNA40. Zorro-LNAs are typically prepared by using LNA/DNA mixmer 

ONs (Zorro “arms”) connected to each other via nucleotides or a non-nucleotide based linker. 

The group of my co-supervisor, Professor Edvard Smith, has been working with different Zorro 

constructs, developing and testing various options for assembling the two “arms” mainly in 

order to improve double strand invasion (DSI) but also to ease the synthesis of the required 

constructs. Originally, the Zorro-LNA consisted of two LNA/DNA mixmers attached to each 

other through a 7-nucleotide, complimentary linker region. However, despite the success in 

interaction with the DNA, the potential intra-molecular binding between bases in the linker 

region and bases in the arms was a troublesome limitation. To overcome this problem in the 

next design the Zorro was prepared in the form of a single stranded–ON, where the two arms 

were covalently connected.  The complex, referred to as “single-stranded Zorro” (ssZorro) was 

smaller in size which should be an advantage as small LNA-based constructs have been 

reported as more efficient29, 145. The ssZorros were even better in strand invading the DNA than 

the first generation Zorros that consisted of two strands that hybridized. However, their 

synthesis was laborious and required both 3’- and 5’-phosphoramidites of unmodified and LNA 

building blocks. Reversed amidites for DNA are commercially available but the LNA 

counterparts have to be synthesized in house prior to synthesis of the constructs, which is 

particularly laborous146.  

6.1 PREPARATION OF “CLICKABLE ARMS” AND “CLICK” ZORRO-LNA 

A simplified and universal method for preparation of Zorro-LNA would be highly 

advantageous and would to allow preparation of the arms in the form of “building blocks”. 

Such an approach would make it easier to screen various Zorro- constructs for: 1) the best 

DNA/LNA sequence combination and 2) different lengths of the conjugated arms. 
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With the experience in hand an obvious choice was to utilize Cu (I) [3+2] catalyzed 

cycloaddition to prepare “Click-Zorro-LNAs” where the arms are first equipped with an alkyne 

and azide functionality, respectively, and then linked by formation of a triazole (Scheme 11)147. 

The functionalization of the “clickable arms” was done on solid support using the commercially 

obtained oligonucleotide mixmers, which were first 5’-detritylated (Scheme 10). Next, the 5′-

Scheme 11: Schematic representation of Click-Zorro preparation. 

Scheme 10: Schematic representation of parallel stepwise in situ synthesis of “clickable oligonucleotide arms” followed 

by their conjugation. i: 2% DCA, DCM, 2 min; ii: 2-(N-(4-monomethoxytrityl)aminoethoxy)ethyl H-phosphonate, Py, 

PvCl, 20 min, r.t.; iii: I2, water, Py; iv: 2% DCA, DCM, 2 min; v: pre-activation of azido acid or (N-propynoylamino)-p-

toluic acid (PATA) with HBTU, NMM in DMF, 0.5 h, r.t., then addition of their activated form to solid-supported ON, 2 

h; vi: MeOH/NH3 sat., 18 h, r.t., vii: CuI, DIPEA, overnight, water/tBuOH (dipolar cycloaddition [3 + 2] of ON-PATA 

with ON-N3). Reproduced from Ref. 147 with permission from The Royal Society of Chemistry. 
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amino modifier: 2-(N-(4-monomethoxytrityl)aminoethoxy)ethyl H-phosphonate, which has 

previously been proven to give high yields, was coupled to the ONs with the help of PvCl100. 

After oxidation of the intermediate H-phosphonate, the MMTr group on the aminolinker is 

removed to prepare the solid-supported ON for conjugation with the pre-activated triple bond 

donor PATA and the azido-acid (2-(N-(4-monomethoxytrityl)aminoethoxy)ethyl H-

phosphonate respectively. Finally, the two modified mixmers are cleaved off support with 

methanolic ammonia at r.t overnight. The “click” reaction could theoretically be performed 

with one ON on solid support, but to avoid potential complication, due to the polarity of 

deprotected ONs, we decided to carry out the “click” reaction in solution. The purification of  

Name Sequence of Zorro arm Crude intermediate 

D1 CCCtCCtcTTtcTTCa D1 azido 

D4 TgCcCCtCCtcTTTcTTCa D4 azido 

U1 GgCACccATgCgcTgA U1 PATA 

U3 cAacAaGcaCggCctC U3 PATA 

D3 TtgCcAgaCtcTgCc D3 azido 

D2 CccCagCcaCccTctG D2 azido 

U2 GgaAacCtcCctAaG U2 PATA 

 

Table 4: Nucleotide sequence of Zorro arms and the modifications added for preparation of “clickable” intermediates. Azido 

= 2-(2-(2-azidoethoxy)ethoxy)acetate acid, PATA = (N-propvnylamino)-p-toluic acid. LNA monomers in uppercase, DNA in 

lower case. Reproduced from Ref. 147 with permission from The Royal Society of Chemistry. 

Entry Name Overlap* Sequence 

1 Z2BS-1 1 

 

2 Z2BS-4 4 

 

3 Zi5-2 2 

 

4 Zi5-3 3 

 

5 Z-2ON 1 
 

6 Z-2HEG 1 
 

 

Table 5: Zorro constructs used in the study: Entry 1-4 “Click-Zorro-LNA”, entry 5, 6 Zorro-LNA controls. * bases 

overlapping the two arms when the construct is bound to its dsDNA target. Reproduced from Ref. 147 with permission from 

The Royal Society of Chemistry. 

each arm is neither desired (degradation of PATA mentioned in previous chapters) nor required 

as reacting equal amounts of both clickable oligonucleotides gave effective conjugation. For 
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the same reason the methodology can also be considered as time- and cost-efficient as only the 

final Zorro-construct is purified with HPLC. The sequence and modifications introduced to the 

individual arms are presented in Table 4 and the structures of “Click-ZorroLNAs” synthesized 

are shown in Table 5 (Entry 1-4). 

6.2 INVESTIGATION OF “CLICK” ZORRO-LNA DOUBLE-STRAND INVASION 

The general procedure for analyzing the double-strand invasion involves incubating the target 

plasmids with potential candidate constructs at 37oC and collecting samples at specific time 

points. The strand invading capacity of each sample is then determined using S1 nuclease, an 

enzyme capable of cleaving ssDNA, as used in previous Zorro-LNA studies41. 

Sequence overlap influence on the DSI 

As the influence of the base overlap of Zorro-LNA arms was not thoroughly investigated before 

we decided to first incubate unlinked D1+U1 (sequences corresponding to Z2BS-1) and 

D4+U1 (sequences corresponding to Z2BS-4) together with plasmid pN252BS for 8, 24, 48 

and 72h at 37oC and intracellular physiological salt and pH conditions. The results of the study, 

obtained at 1µM concentration are presented in Figure 33. They show clearly that the extended 

overlap does not hamper the strand invasion as the readings are about the same for the unlinked 

D4+U1 as the control 2-ON Zorro (Z-2ON was reported previously). Additionally, each 

individual arm was also tested separately under the same conditions which led to an interesting 

outcome: the ON D4 was quite efficiently invading on its own giving a result comparable to 

the D1+U1, whereas the individual arms D1 and U1 were not productive. 

 

 “Click-Zorro-LNA” influence on the DSI 

To evaluate the double strand invasion of the “click-Zorro-LNA” we incubated constructs 

Z2SB-1 and Z2SB-4 together with the plasmid and compared with the previously reported Z-

2HEG and Z-2ON as controls. Both tested Zorros have invaded DNA at both 1 μM and 3 μM 

Figure 33: Extent of DSI achieved by unlinked Zorro-arms, alone, in combination and in comparison with the old Z-2ON 

as a control. Reproduced from Ref. 147 with permission from The Royal Society of Chemistry. 
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concentrations. However, they were clearly less efficient then the Z-2HEG construct and 

slightly worse than with the Z-2ON. After 72 h the Z-2HEG gives 75% DSI at 3 μM, while the 

“Click”-Zorros give about 40–45% (Figure 34A). It is, however, important to notice that the 

invasion for the “Click”-Zorros is steadily increasing with time. At lower concentration the 

differences are more visible (Figure 34B). 

It can be concluded that the flexibility of the HEG linker could be of importance for the invasion 

process. However, having the advantage of the fast and convenient synthesis that “click-Zorro-

LNA” offers is an interesting option for preparation of compound libraries that can be scanned 

for their activity towards various targets. We suggest that the two approaches can be combined 

for development of new anti-gene ONs, which would mean that when a promising construct is 

found a construct with similar length and hydrophobicity could be prepared using reverse 

amidites and HEG linkers.  

Additionally, the new PAMBA linker presented in the previous chapter could replace the 

PATA to give some additional flexibility to the Zorro structure. The multiple linker could also 

be an attractive tool for “clicking” the two arms together.   

Tandem Zorro-LNAs 

In previous Zorro studies only a single construct was targeting two neighboring sites. This 

situation is not quite realistic if we look at a genomes existing in nature that rarely possess 

suitable repeat sequences. For this reason we decided to synthesize two different “click-Zorro-

LNAs”, Zi5-2 and Zi5-3 (with 2 and 3 bases overlap between the arms respectively) which 

were supposed to bind side by side in the genome. Before incubation the corresponding sites 

were inserted into the pN25 plasmid replacing the old sequence. 

Figure 34: “Click-Zorro-LNA” in comparison with Z-2ON and the best of the earlier synthesized single stranded Zorros, 

Z-2HEG: A – at 3 µM concentration, B – at 1 µM concentration. Reproduced from Ref. 147 with permission from The 

Royal Society of Chemistry. 

A B 
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Comparing the results to the previous reports where two identical sites were targeted by a single 

constructs, the DSI was reduced when two different Zorros were used to bind adjacent sites. 

The invasion extend did, however, increase steadily with time (Figure 35).  

 

 

  

Figure 35: The extent of DSI achieved with a combination of the two different ZorroZi5-2 and Zi5-3 against the new target at 

2 µM concentration. Reproduced from Ref. 147 with permission from The Royal Society of Chemistry. 
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