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ABSTRACT 

Tissue generation during development and maintenance throughout life relies on the 

proliferation and sequential specification of a group of cells. Stem cells are defined by the 

properties of self-renewal (division to produce daughter cells equipotent to the mother) and 

differentiation (division where at least one daughter is of a more restricted potential). In 

adult systems, two additional states - quiescence, a dormant state of infrequent 

proliferation, and activation, a state of increased proliferation, are described. Regulation of 

these states is a key determinant of health and fitness on a tissue and organism level, as it 

ensures proper development and regeneration. The aim of this thesis is to investigate how 

another key system at the cellular level – regulation of ion availability – can modulate cell 

states of embryonic and adult stem cells.  

In paper I the effect of lithium chloride (LiCl) on juvenile mouse neural stem progenitor 

cells (NSPCs) from the subgranular zone (SGZ) of the hippocampus was investigated. 

Under maintenance conditions, treatment with LiCl increased NSPC proliferation, reducing 

the fraction of cells in G0/G1. Pre-treatment of NSPCs with LiCl prior to ionizing radiation 

(IR) exposure reduced DNA damage response activation, and attenuated the IR-induced G1 

block, restoring proliferation, although cell death was not reduced. 

In paper II the effect of ZD7288, a specific blocker of hyperpolarization-activated cyclic 

nucleotide-gated (HCN) channels, on mouse embryonic stem cell (ESCs) was examined. 

The blocker attenuated proliferation by extending G1 and S phases. This did not 

compromise pluripotency, but facilitated spontaneous serum-induced differentiation while 

reducing the efficiency of directed differentiation towards the neuronal lineage.  

In paper III expression of HCN family channels and effects of their inhibition in adult 

NSPCs were described. Hcn2 and Hcn3 are expressed throughout the NSPC hierarchy, but 

only functional in S and G2/M phases. HCN inhibition or knockdown attenuated 

proliferation due to a reversible G0/G1 accumulation which was accompanied by 

alterations in activation marker expression, metabolism, and the molecular clock network. 

A small molecular agonist of Rev-erb-α, a clock component, recapitulated the proliferative 

effects. HCN inhibition-induced G0/G1 block was shown to have a protective effect during 

IR exposure of juvenile mice, reducing apoptosis and maintaining proliferation.  

In conclusion, lithium, which is proposed to inhibit a number of enzymes by replacing 

magnesium as a cofactor, and HCN currents, which are involved in regulation of the 

electrochemical state of the cell, were shown to modulate stem cell state. This suggests that 

further investigation of these and other ionic modulators is warranted, both for therapy 

development and in the interests of basic science. 
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1 INTRODUCTION 

1.1 THE STEM CELL PARADIGM 

We all start life as a single cell and end it as a multitude. From a single fertilised egg the 

many cell types found in the adult body emerge. This phenomenon represents a fundamental 

difference between uni- and multicellular organisms, yet the molecular mechanisms deciding 

cellular birth and death are remarkably similar from yeast to human. While the lifecycle of 

even a unicellular eukaryote, such as yeast, already allows access to a number of cell fates 

(division, mating, apoptosis), the increased complexity of multicellular life requires the 

introduction of additional fate states, at least in some cells. Today’s answer to this conceptual 

challenge is introduction of a category of cells with greater developmental potential than 

mature somatic cells – the so called stem cells. These are cells possessing the two properties 

essential for making development (embryonic stem cells) and maintenance (adult stem cells) 

of multicellular life as we observe it possible: self-renewal and differentiation
1
.  

Self-renewal is the property of dividing to give rise to two daughter cells of which at least one 

has the same developmental potential as the original cell. This ensures the possibility of 

maintaining the stem cells population (in case of asymmetric division) while increasing cell 

number, or even expanding the stem cell pool (in case of symmetric division to two cells 

equipotent to the mother cell). Although not every stem cell will undergo self-renewal every 

time, it is a cardinal property of stem cells that under the right conditions they may do so. 

This property is essentially no different from regular division of adult cells – a fibroblast that 

will always be a fibroblast may divide to give rise to two fibroblasts of the same potential, 

which also can divide to give rise to fibroblasts. What makes self-renewal different from 

simple division is its tie to the second cardinal property of stem cells: differentiation. 

Differentiation is the property of having the potential to give rise to cells with a 

developmental potential distinct from, and more restricted than that of the original cell. This 

allows first the creation of the germ layers and distinct lineages, and finally the generation of 

terminally differentiated cells, either capable of division or that have exited the cell cycle. 

These cells can then develop the distinct cell physiology that allows them to be best suited for 

their role in the tissue and the organism.   

1.1.1 Stem cells in regeneration: quiescent, active, and differentiated  

While embryonic stem cell lineages are generally a transient fate state, in organs with 

substantial cell turnover, life-long self-renewal and differentiation of a progenitor population 
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is the primary source of new cells. This allows mature cells to be functionalized without 

compromising tissue turn over, since when the cells reach the end of their life cycle they are 

replaced through differentiation of newly divided cells higher up along the differentiation 

hierarchy. Studies of the blood system in adult mice were instrumental both in the initial 

definition and development of the stem cell paradigm. Many credit James Till and Earnest 

McCullough with the “discovery” of stem cells during their work on hematopoiesis
2
. Based 

on their findings that the blood system of a bone marrow-ablated host could be fully 

reconstituted, even in the long term, by some cells from the bone marrow of a donor, both the 

defining properties and the functional definition of stem cells in the blood system were 

formulated. Serving as a prototype in stem cell biology, the hematopoietic system is still one 

of the best understood and certainly most clinically relevant adult stem cell systems.  

Till and McCullough also reported equipotent cells that were long- or short-term repopulating 

based on the length of time during which they were able to sustain hematopoiesis. The long-

term repopulating cells were found to be label retaining, indicating low division frequency. 

This combination of high potency and low division frequency represents the state now 

commonly referred to as “quiescence”.  This concept is applicable in many adult stem cell 

systems and the quiescent and activated (proliferative) states are associated with expression 

or repression of particular genes. Well studied in the blood system, these genes, and even 

hematopoietic stem cell (HSC) properties, vary depending on the timing and location of 

hematopoiesis, indicating that stem cell state is an emergent property of intrinsic factors and 

environmental influence.   

Environmental factors (secreted and physical) that a stem cell experiences are often 

collectively called “the niche”. The niche is known to play an important role in regulating all 

aspects of stem cell behaviour. Both secreted and physical niche factors have been reported to 

regulate stem cell pool size
3
, and inherent proliferative properties. As an example, long-term 

repopulating HSCs in the liver, the site of fetal hematopoiesis in mammals, are more 

proliferative and express different surface markers than they do in the bone marrow, the site 

of adult hematopoiesis
4
.   Interestingly, the location of the HSC niche varies not only through 

development but also among species:  from kidney in fish, to bone marrow in birds. Perhaps 

most intriguingly, the HSC niche seasonally migrates between the bone marrow and the liver 

in some frogs
4,5

.  This diversity may reflect different functional requirements for the niche (e. 

g. accessibility of external cues, protection from damage), understanding which may be 

instrumental to mobilizing endogenous or using adult stem cells for therapy.   
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1.2 ADULT NEUROGENESIS 

The brain and the central nervous system (CNS) were long believed to exclusively be 

populated by non-proliferative cells, as there is no obvious ongoing turnover or need for 

regeneration, unlike in the blood system
6
.  This was questioned extensively in the 1960’s, 

when  Altman and coworkers published a number of papers showing proliferation in the adult 

brain and providing evidence of neurogenesis in the mouse and other mammals
7-9

.  Evidence 

of adult neurogenesis in humans only became available in 1998, when Eriksson and 

coworkers published their work identifying dividing cells in the brains of cancer patients
10

. 

At present, the two neurogenic niches most extensively studied in mammalian brains are the 

subgranular zone (SGZ) of the hippocampus, and the subventricular zone (SVZ) (see Figure 

1) of the lateral ventricle, with ongoing controversy regarding the existence of additional 

niches
11

. Although proliferative activity is more abundant in the SVZ in the mouse
12

, both 

niches are populated by cells which undergo division and give rise to new neurons. The SGZ 

produces granule neurons and astrocytes for the dentate gyrus, whereas SVZ gives rise to 

oligodendrocytes and to neuroblasts that migrate along the rostral migratory stream, 

becoming olfactory bulb interneurons
13,14

. The dynamics of neurogenesis have also been 

investigated, and the number of dividing cells as well as newly born neurons was shown to 

decrease with age both in mice
15,16

  and humans
17

.    

 

Figure 1: Neurogenic zones in the mouse brain. Modified from Genes and Development, 26 

(10), Hsieh J, Orchestrating transcriptional control of adult neurogenesis, 1010-1021 (2012) 

under the Creative Commons license.   

Unlike in other adult tissues, the main role of the proliferative progenitor compartment in the 

brain appears to be facilitation of plasticity, rather than tissue maintenance and replacement 

of exhausted cells. On a cellular level new-born neurons in the adult brain possess electrical 
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properties unique from those of mature neurons and can thus code information differently
18

. 

On a tissue level, newly generated neurons form new synapses, modifying existing neural 

circuitry
19

. When looking at the level of cognitive function and behaviour in the mouse, 

neurogenesis contributes to both short- and long-term memory. Olfactory bulb neurogenesis 

is believed to be important for short-term memory and olfactory learning
20,21

, while 

neurogenesis in the hippocampus is important for long-term memory formation and pattern 

recognition
20,22

. Adult neurogenesis has also been suggested to be involved in mood 

regulation and hippocampal neurogenesis was shown to be necessary for function of a 

number of antidepressants
23,24

. Intriguingly, neurogenesis was also shown to be increased in 

response to damage, such as due to epileptic seizures
25

 and stroke
26

, in line with a more 

conventional role of tissue repair and regeneration for the neurogenic pool. 

With the homeostatic and potentially injury repair functions of adult neurogenesis in mind, a 

number of clinical interventions are possible. Transplantation or activation of endogenous 

neural precursors into an injured brain is a potential strategy. This has been tested in 

Parkinsonian patients who received fetal cell transplants
27

. Additionally, modulation of 

proliferation to affect mood disorders may in fact be current practice already, as a number of 

antidepressant therapies are hypothesized to function through inducing proliferation
28,29

.  In 

patients experiencing loss of neurogenic potential an alternative clinical strategy is 

preservation or enhancement of the proliferative pool to improve cognitive outcomes. This is 

particularly relevant for when the injury is a side effect of therapy, such as what is seen in 

treatment of pediatric brain cancers
30

. Adults who had suffered from brain cancer as children 

were found to have reduced neurocognitive abilities, with degree of impairment proportional 

to dose of radiation received
31

. Given that postnatal neurogenesis is highest at younger ages, 

it has been proposed that irreversible damage to the proliferating progenitor pool may 

underlie the impairments observed later in life
32

. Strategies to address this have included 

stimulating neurogenesis after the event
33

, as well as neuroprotective neoadjuvant 

treatments
34

, including the well-known mood stabilizer, lithium
35

.  

1.2.1 Stem cell hierarchy in the adult mouse brain 

Neural cells originate from the ectodermal layer of the embryo, which forms the neurotube 

made up by neuroepithelial cells, a symmetrically and rapidly dividing population of early 

neuronal progenitors.  Neuroepithelial cells are further specified to become radial glia cells, 

which continue to divide symmetrically, self-renewing until the onset of neurogenesis. As 

neurogenesis commences radial glia cells start to divide asymmetrically giving rise to 
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intermediate progenitor cells that go on to further differentiate to neurons. Following 

neurogenesis, gliogenesis is initiated, and when that nears its close, radial glia cells start to 

divide symmetrically, exhausting their pool
36,37

. Neurogenesis in gyrencephalic species (e.g. 

sheep, primates) involves additional intermediate cell types, necessary to build up the many 

cortical layers that are not found in the most commonly studied lissencephalic animals 

(mouse) discussed here
38

.  

It is not entirely clear which neurogenic cells in the embryonic developmental cascade give 

rise to adult neural stem progenitor cells (NSPCs). It has been suggested that SGZ NSPCs are 

generated late during gestation in the ventral hippocampus and migrate to their eventual 

location by birth
39

, whereas SVZ NSPCs are generated in situ and simply remain quiescent 

until the end of neurogenesis
40

.  Postnatally, the neurogenic cascade in the SVZ (see Figure 

2A) starts with the mostly quiescent, radial glia-like type B cells, located close to the 

ventricular wall projecting a cilium into the ventricle. These cells express the GFAP and stem 

cell marker SOX2 and persist over a long time. The transit-amplifying type C cells occupy 

the same niche, but are further away from the ventricle, proliferate much more, and give rise 

to type A cells, which are the migrating neuroblasts destined to become neurons
41

.  In the  

 

Figure 2: (A) In the SVZ 

NSPC hierarchy starts with 

type B cells, transit amplifying 

type C cells, and type A 

neuroblasts. (B) in the SGZ 

radial type I are followed by 

transit amplifying type II cells 

and type 3 neuroblasts. 

Modified from Genes and 

Development, 26 (10), Hsieh J, 

Orchestrating transcriptional 

control of adult neurogenesis, 

1010-1021 (2012) under the 

Creative Commons license. 

 

 

 

SGZ (see Figure 2B), type I cells represent the main progenitor population and, similar to 

radial glia during embryonic neurogenesis, have projections spanning the entire granule cell 

layer. Like type B cells in the SVZ, they express GFAP as well as SOX2. There are also type 
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II cells that are less similar to radial glia than type I cells, due to lack of GFAP expression and 

a shortened morphology, but that still express SOX2. There is significant debate regarding 

their identity in relation to type I cells, with some arguing that they are more restricted 

progeny, while others believe the two cell types represent interconvertible pools
19,42

. Finally, 

the SGZ also contain intermediate progenitors that undergo symmetrical division to give rise 

to neural cells without further proliferative potential
43

.  Currently, identification of the various 

NSPC types relies on their position and morphology in vivo, as well as expression of a 

number of characteristic markers, of which SOX2, GFAP, Prominin1, and Nestin are 

associated with the most potent cell type (type B and type I). 

SVZ and SGZ NSPCs are usually isolated for in vitro culture as neurospheres, by dissecting 

out the relevant anatomical brain region, dissociating the tissue and growing the resulting cell 

in a defined media supplemented with fibroblast growth factor (FGF) and epidermal growth 

factor (EGF), which have been shown to support NSPC expansion. Bulk cultures from both 

neurogenic regions have been shown to exhibit stem cell properties, as they are self-renewing 

and multipotent, giving rise to neurons, astrocytes and oligodendrocytes in vitro
44,45

. In vitro 

differentiation of clonal SVZ-derived cells initially indicated bipotentiality only, with only 

neuronal and glial progeny observed
46

, and more recently, it has been suggested that clonally 

SVZ NSPC can only give rise to neurons
47

. This is in line with in vivo reports of single 

lineage differentiation of SVZ precursors, which also suggested their rapid exhaustion once 

proliferation is initiated
48

. Similar controversy applies to the SGZ, where there are reports of 

both exhaustion
49

 and cycling between active proliferation and quiescence
50

. These disparate 

findings leading to the use of the term “stem progenitor cell”, as they bring up the questions 

of whether NSPCs are bona fide stem cells very tightly controlled by their niche, or represent 

separate progenitor populations with limited stem cell potential. However, work showing that 

in vitro cultured SGZ NSPCs give rise to SVZ-specific cell types in vivo
51

 when transplanted 

into the SVZ argues for the former.  

1.2.2 Cell cycle in NSPCs 

Cell cycle control in NSPCs involves the canonical cell cycle machinery and follows the 

usual order of G1-S-G2-M, but with a prominent G0, especially in vivo.  While G0 is the 

quiescent phase when cells are neither undergoing not preparing for division, G1 and G2 are 

growth phases when the cells are preparing for DNA synthesis and for cell division, 

respectively. The entire process is regulated by sequential activation of cyclin-dependent 
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kinases (CDKs) and transcription of specific genes, and involves three checkpoints, at G1/S 

transition, in G2, and in M phase (see Figure 3). 

 

Figure 3: Cyclical activity of cyclins and CDKs regulates progression of somatic cells 

through the cell cycle. Reprinted from Current topics in developmental biology, 104, 

Tsubouchi T, Fisher A. Reprogramming and the Pluripotent Stem Cell Cycle. 223-241 (2013) 

with permission from Elsevier. 

Cyclins D (D1/D2/D3) are regulated by mitogen signalling and together with CDK4 and 6 

regulate G1 progression by phosphorylating the retinoblastoma protein (Rb), releasing it from 

binding E2F. Once sufficient E2F is available, cyclins E and A are transcribed and the cell 

cycle proceeds when cyclin E-CDK2 phosphorylation of Rb reaches critical levels, passing 

the so called “restriction point” and committing the cell to division. CDK2 then cooperates 

with cyclin A to phosphorylate DNA synthesis machinery as the S-phase progresses. With the 

end of S-phase, CDK2 is replaced with CDK1, which cooperates with cyclin A and the G2/M 

cyclin B to phosphorylate G2/M targets. Once the M-phase is complete and the cell has 

divided, the cell cycle machinery is reset to the start and cyclin D starts to build up in 

response to mitogen signalling, if cycling is continuous. The activity of CDKs is regulated 

not only by the availability of cyclins, but also by their subcellular localization, degradation, 

and inhibition by cyclin-dependent kinase inhibitor proteins (CKIs). CKIs include INK4 

proteins (p15, p16, p18, and p19) that regulate CDK4 and 6 activity and G1 progression, and 

the Cip/Kip family (p21,p27,p57) that regulate CDK activity in both G1 and G2, and DNA 

synthesis directly (in the case of p21)
52,53

.   

Expression of CKIs is most notably regulated by p53, which is upregulated in response to 

DNA damage and is the main effector in the G1 DNA damage checkpoint. In response to 

DNA damage during G1, p53 upregulates CKI expression, preventing G1/S progression and 

inducing G1 arrest.  It can also play a role in G2 DNA damage response, where p53-induced 

p21 expression can inhibit CDK1. G2/M progression is abrogated if DNA damage is present 
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even in the absence of p53, due to the action of checkpoint kinases 1 and 2 (Chk1 and Chk2).  

Cell cycle stalling in response to DNA damage allows repair or induction of apoptosis to 

safeguard genomic integrity in the daughter cells, and is regulated by the ataxia telangiectasia 

mutated (ATM) and Rad3-related (ATR) proteins. The final checkpoint is the mitotic spindle 

checkpoint in the M-phase, which ensures correct chromosomal segregation during division. 

If the mitotic spindle and chromosomes are not correctly assembled, the cells stall due to 

mitotic arrest deficient 2 (Mad2)-mediated inhibition of cell-division cycle protein 20 

(Cdc20), resulting in inhibition of the anaphase-promoting complex (APC/C), which would 

otherwise be driving the cell cycle forward by ubiquitination and degradation of cell cycle 

machinery
52,54

.  

1.2.3 Quiescence and activation in NSPCs 

The more intriguing and unique aspect of NSPC cell cycle regulation is the regulation of 

G0/G1 balance. Early studies examining neurogenesis in the adult brain using anti-mitotic 

drug identified that the majority of NSPCs in vivo are quiescent in the G0 cell cycle phase
41

. 

Recent reports are suggesting that although not mitotically active, quiescence is not a passive 

state and presence of signalling is necessary for its maintenance
55

. WNT signalling has been 

shown to regulate quiescence
56

, as does γ-aminobutyric acid (GABA) signalling through the 

GABAA receptor, the absence of which resulted in NSPC reactivation following irradiation 

injury
57,58

. Prominin1, a hallmark of NSPCs, is expressed in primary cilia, known for acting 

as signalling centres, and is also characteristic of quiescence
59

. In fact, Prominin1 expression 

coupled with lack of epidermal growth factor receptor (EGFR) expression is commonly used 

to identify quiescent cells
60

, with the absence of EGFR highlighting their low dependence on 

mitogens.   

In line with this, quiescent cells have been shown to have altered metabolic requirements
61

, 

be resistant to mitochondrial perturbations
62

 and have gene expression signatures consistent 

with glycolytic metabolism
63

.  A number of cell-intrinsic parameters, such as expression of 

lineage-related transcription factors (SOX2, REST
64

, OLIG2
65

, ASCL1
66

), the nuclear 

receptor TLX 
67

, circadian regulator PER2
68

, epigenetic modifiers (NFIX
69

, DNMT3a
70

), and 

cell cycle machinery (CHD7
71

, p27
72

) have been linked to regulation of the stem cell pool and 

the balance between quiescence and activation. Niche factors such as growth factor signaling 

through FGF2 and bone morphogenic protein 4 (BMP4)
73

 and vascular contact
74

 have also 

been implicated in maintenance of quiescence and activation. Unfortunately, the mechanisms 
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of interconversion between the two pools and, in particular of quiescence induction, are still 

poorly understood, highlighting the need for further study. 

1.3 EMBRYONIC STEM CELLS 

Mouse embryonic stem cells (ESCs) were first isolated and cultured in 1981 from the inner 

cell mass of the preimplantation blastocyst at embryonic day 3.5 (E3.5), or the epiblast at 

E4.5, and represent cells of the late pre-implantation blastocyst
75

 (see Figure 4). A similar cell 

type can be derived from early human pre-implantation blastocysts that are the by-product of 

in vitro fertilization, although these cells represent a developmentally distinct cell type. In 

normal development, ESCs give rise to the three embryonic germ layers – mesoderm, 

endoderm, and ectoderm, making all the adult tissues of embryonic origin. In vitro, they can 

be maintained indefinitely (as they express telomerase and are not subject to telomere 

shortening) without losing their stem cell properties, provided they are cultured under 

permissive conditions.  

 

Figure 4: Early development of the mouse. Embryonic stem cells are derived from and 

correspond to E3.5 or E4.5 the pre-implantation blastocyst.  Reprinted from Current topics in 

developmental biology, 107, Posfai E, Tam OH, Rossant J. Mechanisms of pluripotency in 

vivo and in vitro. 1-37 (2014) with permission from Elsevier. 

The ability of ESCs to be cultured long term is remarkable not only because they are not 

transformed, but also because unlike adult stem cells, which persist for many years in vivo, 

they usually represent a very transient state in mouse development. An exception exists in 

diapause – a facultative stalling of mouse embryo development at an about 130 cell stage 

induced by metabolic restriction, such as lactation of the mother
76

. At this time, metabolic 

processes such as glycolysis, in the cells of the blastocyst are downregulated
77

, and autophagy 

has been proposed to take place in some cells to generate nutrients for the others
78

. The 

process is proposed to be regulated by microRNAs
79

 and results in G0/G1 stalling
80

 and 

major alterations in cell metabolism
76

, resembling quiescence of adult stem cells. Recent 

work comparing transcriptional profiles of diapaused and developing blastocysts has in fact 
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identified E4.5 as the active stage most similar to that seen in the diapaused epiblast
81

, 

suggesting that in vitro cultured ESCs should also be capable of reaching the diapaused state, 

but the conditions necessary for reaching it are only just beginning to be described. 

ESC are fascinating for many reasons, not the least of which being their extensive 

proliferative capacity and ability to generate most mature cell types, given the proper 

inductive cues. As with many cell types, identification of conditions permissive of efficient in 

vitro maintenance and expansion is critical for allowing both basic and applied research using 

ESCs. Generation of knockout mice, which has become a cornerstone of biological research, 

has been based on ESC technology for many years now and is one example of the usefulness 

of ESC as tools. This process has been significantly facilitated by the development of defined 

culture methods, which use small molecule inhibitors to generate uniform populations of 

undifferentiated ESCs
82

. However, the final goal remains to develop this cell type for 

regenerative medicine. A decade ago a breakthrough in stem cell biology was made by the 

team of Shinya Yamanaka, who developed the technology for reverting mature cells to the 

ESC stage by induction of a set of key genes linked to ESC identity
83

, drawing this goal 

closer. However, clinical use of ESC-based technology will still require, at the very least, 

efficient and well-defined protocols for stem cell differentiation as well as culture, and 

adaption of them to human cells.  

1.3.1 Stemness and differentiation in embryonic stem cells 

Embryonic stem cell state is characterized by self-renewal and the ability to differentiate to 

all somatic cell types (pluripotency). As such, the gold-standard functional test to determine 

stem cell capacity in ESCs is aggregation with or injection into a developing blastocyst, 

which should result in chimeric embryos with ESC contribution to all germ layers. The key to 

ESC identity lies in the expression of the core pluripotency transcription factors: OCT3/4, 

SOX2, and NANOG. Expression of these genes endows ESCs with their characteristic 

properties: clonogenicity (ability of a single cell to give rise to a colony) and pluripotency 

(ability to give rise to cells of all embryonic germ layers). Insufficient expression of these 

genes, on the other hand, results in ESC differentiation even under maintenance conditions, 

and in the case of OCT3/4, even overexpression perturbs pluripotency
84

. These transcription 

factors function by regulating their own and each other’s expression, and cooperatively bind 

peripheral targets that are also involved in pluripotency maintenance, making the network 

even more robust. They also bind the promoters and repress the expression of differentiation 

inducers, such as GATA6 which drives the first in vivo differentiation event – the formation 
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of the primitive endoderm
85

. Conclusive proof of this is the ability of the core pluripotency 

factors to induce the ESC state in mature cells when overexpressed during the process of 

reprogramming, giving rise to induced pluripotent stem cells (iPSCs)
83

. This technology has 

been extended to human cells
86

, and has initiated discussions of comprehensive human 

leukocyte antigen (HLA)-based donor cell line biobanking initiatives that would provide 

nation-wide coverage and near-universal access to future stem-cell based therapies with 

minimal immunological complications
87

. 

Efficient maintenance of the pluripotent state in vitro was traditionally achieved by culture in 

media supplemented with leukemia inhibitory factor (LIF)
88

 and serum (with BMP4 believed 

to be the key molecule)
89

, that have more recently been replaced by two small molecule 

inhibitors: one targeting mitogen-activated protein kinase (MEK) and the other targeting 

glycogen synthase kinase 3 (GSK3)
82

. The role of MEK inhibition in this culture protocol is 

to inhibit FGF signalling, which is responsible for initiation of differentiation already at the 

level of the inner cell mass, where it is essential for giving rise to the differentiated hypoblast 

along with the pluripotent epiblast
90

.  FGF signalling is endogenous to ESCs, which produce 

FGF4 and express the FGF receptor, and the knockout of Fgf4 results in impaired 

differentiation to both ectoderm and mesoderm lineages
91

, suggesting that it plays a role in 

creating the heterogeneity necessary to allow exit from pluripotency and induction of lineage 

specification. The role of GSK3 inhibition is less clear, although the majority of its effect is 

believed to be related to activation of WNT signalling. Activation of WNT signalling through 

genetic perturbation of GSK3 phosphorylation-mediated β-catenin degradation showed a 

dose dependent inhibition of differentiation
92

, although other effects of GSK3 inhibition, such 

as increase in colony forming ability and c-Myc expression were not recapitulated
82

.  

Major progress in defining protocols for ESC differentiation has also been made. Whereas 

differentiation in general is easily achieved through withdrawal of maintenance factors (LIF), 

induction of particular cell identity is often a lengthy process of multistage differentiation, in 

many cases closely mimicking development and using complex components, such as stromal 

cells, which are not compatible with eventual clinical use
93

. Significant progress is being 

made, and the development of a clinically-compatible differentiation protocol for retinal 

epithelium
94

 has resulted in one of the first ever ESC-derived cell products entering clinical 

trials
95

. However, many differentiation protocols still rely on modulation of kinase or receptor 

activity with often costly peptides and proteins, often of non-human origin, although efforts 

are being made to address this
96

.  
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1.3.2 The unique ESC cell cycle and self-renewal 

Given the speed of proliferation necessary to accommodate the growth seen in the first days 

of development, it is not surprising that the architecture of ESC cell cycle is drastically 

different from that of mature cells. In vivo, cell cycle length at the developmental stages 

corresponding to ESCs has been estimated at 9.1-11.5 hours
97

, while ESC doubling times 

under standard culture conditions vary between 8 and 12 hours
98,99

, although they have been 

reported to increase to over 30 hours in serum-free culture
99

. In comparison, many mature 

cells do not proliferate, and generation times for commonly cultured mature cells, such as 

mouse embryonic fibroblasts, are reported to be around 19 hours
100

. The observed shorter 

generation time in ESCs is due to shortening of both G1 and G2 growth phases, with ~60% of 

cell cycle spent in S-phase, as opposed to ~16-20% of cycling time devoted to S-phase in 

mature cell types
98

.  

 

Figure 5: ESCs have a unique cell cycle characterized by constitutive activity of cycling and 

CDKs. Reprinted from Current topics in developmental biology, 104, Tsubouchi T, Fisher A. 

Reprogramming and the Pluripotent Stem Cell Cycle. 223-241 (2013) with permission from 

Elsevier. 

This is possible due to radically altered activity of cell-cycle machinery and absence of 

checkpoints. In somatic cells, progression through the cell cycle is tightly regulated to ensure 

conditions are right for the next phase of the cell cycle to occur.  As described above (see 

Figure 3), this is coordinated by successive activation of CDKs by their cyclin partners, 

which are sequentially expressed and promptly ubiquitinated and degraded, ensuring kinase 

activity is restricted to the proper cell cycle phase
52

.  In ESCs this oscillatory behaviour is 

lacking (see Figure 5), with constitutive CDK2, cyclin A and cyclin E activity
98

, geminin 

expression, which blocks DNA replication under normal conditions
101

, and attenuated APC/C 

oscillations
102

. The usual checkpoints that are present in the cell cycle of somatic cells are 

also absent. The restriction point is absent from ESC, where Rb is in a phosphorylated state 

throughout the cell cycle
103

. Consistent with this, serum starvation does not result in cell cycle 
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arrest
104

 indicating that mitogen signals are dispensable for ESC proliferation. p16 fails to 

inhibit the CDK6-CycD3 complex
105

  further indicating a lack of a G1/S checkpoint. 

Induction of checkpoints associated with DNA damage and resulting in p53-induced cell 

cycle arrest, leads instead to loss of pluripotency, as translocation of p53 to the nucleus 

downregulates Nanog expression in ESCs
106

. Similarly, activation of the mitotic checkpoint, 

which is functional in ESCs, does not result in apoptosis as in somatic cells
107

, a G2/M 

accumulation and impaired apoptosis were also seen upon CDK1 inhibition in human 

ESCs
108

.  

The role of this altered cell cycle architecture in pluripotency maintenance is debated, but the 

prevailing view is that a link exists. G1 length has been most discussed in this context, as 

differentiation is accompanied by G1 lengthening
109

, while reprogramming to a pluripotent 

state both requires and results in G1 shortening
110,111

. Additionally, findings that 

differentiation factors are preferentially expressed in G1
112

, and the G1/S inhibitor p27 plays 

a role in repressing Sox2 during differentiation
113

  further link cell cycle control in G1 and 

pluripotency maintenance.  In complete contradiction, it has also been reported that extension 

of G1 by exogenous expression of p21 and p27 did not compromise pluripotency under 

maintenance or differentiation conditions
114

, although the same authors later reported 

improved differentiation when G1 lengthening was induced by culture in low serum 

conditions
115

. 

1.4 THE ROLE OF IONS AND THEIR REGULATION IN EUKARYOTIC CELLS 

Whether in vivo or in vitro, cells exist in an aqueous environment which allows diffusion of 

nutrients, signalling molecules, and wastes to and from the cell, thus sustaining cellular 

metabolism.  While the cell membrane is permeable to water, it is not permeable to many of 

the molecules and ions found in the interstitial fluid. In fact, concentrations of many ions and 

metabolites inside and outside of the cell are unequal, often differing by multiple orders of 

magnitude
116

. Sodium (Na
+
) and potassium (K

+
) are the most differentially distributed 

intracellular ions, each with an over 10-fold difference in cytoplasmic and external 

concentrations. This gradient is used to drive nutrient transport
117

, regulate cell volume
118,119

, 

and in signalling, by allowing rapid changes in the cell’s electrical properties. Whether 

directly or through their downstream targets, Na
+
 and K

+
 currents influence multiple aspects 

of cellular physiology including cell division
120

 and differentiation
121

.    

In addition to Na
+
 and K

+
, concentrations of other metal ions are also tightly controlled in the 

cell. Calcium (Ca
2+

) can directly influence protein function by inducing conformational 
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changes upon binding, and is used as a messenger and as a cofactor in processes such as 

vesicular transport
122

. It has been well established as a regulator of differentiation
123

, 

apoptosis
124

, and neuronal firing
125

. The temporal dynamics of fluctuations in Ca
2+

 

concentration, and not just the absolute concentration, have also been shown to have a 

regulator role.  

Somewhat less well-understood are the regulatory functions of metals such as magnesium 

(Mg
2+

), iron (Fe
3+

), zinc (Zn
2+

), copper (Cu
2+

), and manganese (Mn
2+

). Their concentrations 

are tightly regulated in the cell and they are known to be essential cofactors for essential 

cellular processes, such as adenosine triphosphate (ATP) utilization (Mg
2+ 126

), ATP 

production in the mitochondria (Fe
3+ 127

), detoxification (Cu
2+

, Zn
2+

, and Mn
2+ 128

), and 

transcriptional regulation (Zn
2+ 129

). In fact, presence of exogenous ions, such as lithium or 

lead, can have significant effects on development and cell physiology due to competitive 

inhibition of enzymes through replacements of their endogenous ionic cofactors.  Despite 

their clear importance, study of these ions is complicated by difficulties in detection and lack 

of specificity for any eventual clinical applications. Although little is known about the 

regulation of these ions, a number of successful attempts at modulating intracellular ion 

concentrations to achieve cell fate effects by varying cell media compositions have been 

made 
130,131

, reflecting that the role of ions in cellular physiology is becoming increasingly 

appreciated. 

1.4.1 Ion channels in proliferation and differentiation 

Ion channel activity has been suggested to regulate proliferation already in the 1950’s, when 

it was observed that non-proliferative cells had lower resting membrane potential than 

proliferative cells
132

  and membrane potential varied during cell cycle progression
133

. This 

was further supported by the findings of Cone that hyperpolarization of dividing cells induced 

arrest
134

, while depolarization of even post-mitotic neurons induced their proliferation
135

. 

Since then ion channels, in particular K
+
 channels, have been linked to cell cycle progression, 

both due to their cell-cycle phase-specific expression and function
136,137

, and the ability to 

manipulate proliferation via ion channel inhibition
138-140

. Ca
2+

 channels
141

  and chloride 

channels
142

 have also been implicated in cell cycle progression in multiple cell types, as has 

the Na
+
-K

+
 ATPase, which is proposed to be responsible for G1 hyperpolarization

143
.
 

Ion channel control of stem cell proliferation has also been shown. While it may not be as 

surprising for NSPCs, which although not electrically active mature to be electrically active 

cells, it is even the case for ESCs. Regulation of ESC proliferation by ligand-gated ion 
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channels has previously been reported
144

, with activation of the GABAA receptor carrying a 

chloride current resulting in accumulation of cells in the S phase. Similarly, it induced 

quiescence in NSPCs
145

. Block of L- and T-type Ca
2+

 channels was shown to attenuate ESC 

proliferation, with T-type channel block resulting in an accumulation of cells in G1 and G2/M 

cell cycle phases and differentiation
146

.  L-type channel block caused a reduction in BrdU 

incorporation and cell numbers
147

, which is compatible with an induction of differentiation 

reported for these channels
148

. Similarly, block of tetraethylammonium (TEA)-sensitive K
+
 

channels induced an accumulation of ESCs in G0/G1 and compromised pluripotency
149

, 

while block of the hyperpolarization-activated cyclic nucleotide-gated (HCN) K
+
 channel 

family resulted in S-phase accumulation of ESCs with uncharacterized effects on stem cell 

fate
150

.  

Recent publications have suggested that modulation of cellular electric properties can be an 

instructive factor in stem cell differentiation: optogenetic stimulation improved neural and 

neuronal differentiation of ESCs
151

, activation of Ca
2+

-activated potassium channels resulted 

in enrichment in cardiac pacemaker cells
152

, and block of L-type Ca
2+

 channels, known to 

have an instructive effects on NSPC proliferation and differentiation
153

, was shown to restrict 

ESC differentiation to non-mesodermal lineages
148

. Curiously, when L-type Ca
2+

  channels 

were blocked with a different compound, differentiation to cardiomyocytes, a mesodermal 

lineage, was improved
154

, underlining the importance of further characterization of ion 

current effects on stem cell fate. 

1.4.2 Lithium 

Lithium is a metal that is already well established in the clinic. First introduced by John Cade 

for the treatment of manic patients in 1949
155

, it has been a cornerstone of therapy and the 

target of extensive study, as deciphering its mechanism of action could be key to 

understanding psychosis. Its effects are however not limited to behaviour. Patients treated 

with lithium and responding to treatment were shown to have increased grey matter volume 

in the prefrontal cortex, which was not present in the non-responders
156

. In line with this, 

lithium enhanced proliferation of hippocampal neural progenitor cells in the mouse both 

under homeostatic
157,158

 and radiation injury conditions
35

. Outside the brain, lithium treatment 

is known to increase neutrophil and reticulocyte counts
159

, and has been shown to affect 

osteoblastic differentiation in vitro
160

. Interestingly, while reportedly only resulting in a mild 

increase in heart defects in humans
161,162

, lithium can severely dysregulate embryonic 
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development, resulting in excessive endomesoderm formation in Xenopus laevis
163

, and 

defective patterning in zebrafish and mouse embryos
164,165

.   

Despite many known effects and many proposed modes of action with experimental support, 

there is no consensus on which molecular pathway is responsible for mediating lithium 

action. The most discussed pathways are the inositol and GSK3β pathways. Lithium is 

reported to inhibit inositol monophosphatase (IMPase ) with an inhibitory constant 

(concentration achieving 50% inhibition, Ki) of 0.8mM
166

 and inositol polyphosphate 1-

phosphotase (IPPase) with Ki=0.3mM
167

, two enzymes critical in inositol metabolism, by 

replacing their cofactor Mg
2+

. This results in reduced availability of the second messenger 

inositol-1,4,5 triphosphate (IP3) which is a major mediator of extracellular signals and lies 

upstream of protein kinase C (PKC). Alternatively, lithium has been reported to inhibit the 

transcription of the sodium/myo-inositol cotransporter 1 (SMIT1), a Na
+
 coupled inositol 

transporter
168,169

, also resulting in lower inositol availability. The fact that levels of inositol in 

vivo are not affected at therapeutic lithium concentrations argues against this as the major 

pathway through which lithium acts.  In the GSK3β pathway, lithium inhibits GSK3 β, also 

by competing with magnesium
170

, resulting in accumulation of β-catenin and dysregulation of 

WNT signalling, which is a key regulator of multiple cellular processes, including patterning 

during development and cell fate.  Conflicting reports regarding behaviour of GSK3β 

knockout mice and the fact that lithium-induced mouse embryogenesis defects were not 

mediated by WNT signalling argues against GSK3β-WNT axis as the major effector of 

lithium action.    

Some less commonly discussed targets of lithium have also been described, many in 

metabolic pathways. Bisphosphate 3'-nucleotidase 1 (BMPT1), an enzyme in the sulfate 

metabolism pathway which compromised protein synthesis when knocked out
171

, is inhibited 

by lithium with Ki of 0.153 mM
172

. In the glycolysis and glycogenesis pathway, fructose 1,6-

bisphosphatase
173

 has been suggested to be inhibited, while glucose 1,6-biphosphate 

synthase
171

 enzymatic activity was greatly slowed down by lithium. In line with this, earlier 

work showed that rate constants for reactions catalyzed by  lithium-bound 

phosphoglucomutase was 4x10
8
 times slower than when the enzyme is bound to its usual 

cofactor magnesium
174

. In cell systems, treatment with lithium has been linked to inhibited 

glycogen synthesis in astrocytes
175

, and long term lithium treatment in vivo resulted in 

reduced glycogen content in rat livers
176

 and perturbed brain metabolite concentrations when 

examined over the 8 hours post injection
177

.  
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1.4.3 Hyperpolarization-activated cyclic nucleotide-gated (HCN) family 

channels 

Electrochemical changes on a cellular level are essential for cardiac pacemaking, muscle 

contraction, and neural processes. This is accomplished by the concerted action of gated ion 

channels, which taking advantage of the electrochemical gradients of some ion species 

existing between the cytoplasm and interstitial fluid, facilitate rapid and drastic changes in the 

electrical properties of cells. The heart is perhaps the best known example of this. Opening of 

voltage-gated sodium channels causes rapid Na
+
 influx and cell depolarization, which 

deactivates the channels and activates other voltage gated channels sensitive to 

depolarization. Influx of Ca
2+

 and efflux of K
+
 through these channels restore membrane 

potential to below activating voltage of the Na
+
 channels that initiated the event, giving time 

for Na
+
-Ca

2+
 exchanger (NCX) and the Na

+
-K

+
 ATPase to restore the ion balance. The 

current that then drives partial depolarization allowing the entire event to happen again, is the 

“funny” current (If, also known as Ih) carried by HCN4, one of the members of the HCN 

channels family
178

.   

Activation at hyperpolarized potentials is a unique feature of this channel family, which 

consists of four channel isoforms, activating at different voltages and differentially modulated 

by cyclic adenosine monophosphate (cAMP)
179

. The channels are permeable to Na
+
 and K

+
 

and to a much lesser degree to Ca
2+

, but generally conduct inward Na
+ 

currents due to the 

electrochemical gradient of the ion. The four isoforms have different tissue distribution, with 

HCN1 and HCN2, which have the fastest kinetics, expressed in the CNS and the heart, while 

HCN3 and HCN4 are expressed in selected regions of the heart and CNS, as well as in other 

organs, such as the lung, liver, and muscle
180

. Interestingly, the channels assemble into 

tetramers, which can be composed of multiple isoforms, giving rise to a wide range of 

conductance and activation properties. Channel function is also modulated by trafficking
181-

183
 , auxiliary subunits

184,185
, phosphatidylinositol 4,5-bisphosphate (PIP2)

186
, and G-protein 

coupled receptors
187

. 

In addition to cardiac rhythm generation, HCN function is implicated in many neuronal 

functions, ranging from mood regulation to regulation of circadian pacemaking and 

learning
188

. In non-excitatory cells, a pro-apoptotic effect of HCN2 has been described
189

, and 

the channels have been reported to regulate the proliferation of ESCs
150

. The channels can be 

blocked by cesium chloride (CsCl), and due to significant interest in modulation of HCNs in 

epilepsy and cardiac arrhythmias, a number of small molecule inhibitors have been 

developed. ZD7288 is one of the most specific and commonly used HCN inhibitors
190,191

, 
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although this has recently been put into question
192

. An elegant way of targeting the brain 

while avoiding cardiac effects is being explored by developing drugs targeting the interaction 

of HCNs with their auxiliary subunit TRIP8b
193

 which is not expressed in the heart. 

  



 

 27 

2 AIMS 

The aim of this thesis was to investigate the action of ionic modulators on stem cell state. 

More specifically, the following three sub-aims were defined: 

I. For lithium chloride, an ionic modulator with well-investigated non-ionic downstream 

effector pathways, to investigate the proliferative and anti- apoptotic effects on in 

vitro cultured juvenile mouse neural stem progenitor cells in the context of ionizing 

radiation.  

II. For ZD7288, an inhibitor of the hyperpolarization-activated cyclic nucleotide-gated 

(HCN) channel family, to investigate the effects on stem cell state in a well-defined, 

robust, in vitro stem cell system (mouse embryonic stem cells). 

III. To investigate effects of HCN inhibition on the proliferative state of mouse neural 

stem progenitor cells and identify potential downstream effector pathways underlying 

cell state effects.        
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3 MATERIALS AND METHODS 

Please refer to the materials and methods sections of the included papers for detailed 

descriptions of experimental procedures, techniques, and reagents used.   
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4 RESULTS AND DISCUSSION 

4.1 PAPER I: LITHIUM INCREASES PROLIFERATION OF HIPPOCAMPAL 

NEURAL STEM PROGENITOR CELLS AND RESCUES IRRADIATION-

INDUCED CELL CYCLE ARREST IN VITRO 

Cancer therapy involving irradiation of brain tissue in juvenile patients is associated with 

reduced cognitive performance later in life. One of the mechanisms proposed to mediate this 

effect is irreparable damage to the neural stem progenitor cells (NSPCs) in the developing 

brain, which are then not able to sustain proper development. Lithium chloride (LiCl), an 

antipsychotic drug with a long history of use in the clinic has been suggested to be a 

promising candidate for neuroprotection. This paper investigates the effects of lithium on 

mouse NSPCs in vitro, focusing on the cell physiology and outcomes following drug 

treatment and ionizing radiation (IR) exposure. To reflect the clinically relevant population, 

juvenile (post-natal day 8) mice were used for NSPC preparation. The SGZ, which is the site 

responsible for cognitive development in humans and likely affected in cancer patients, was 

chosen as the anatomical site from which NSPCs were isolated. 

4.1.1 Lithium has a concentration-dependent effect on NSPC proliferation 

To characterise the effects of LiCl on NSPCs, cells  were adapted to in vitro culture by 

neurosphere formation for 4 days, following which they were dissociated to a single cell 

suspension and exposed to 0,1, or 3 mM LiCl in standard media.  

Analysis of sphere size 24 and 48 hours following treatment initiation found increased sphere 

volume in 3 mM LiCl treated cultures as compared to control at both time points (increases of 

≈3.7 fold and ≈3.2 fold, respectively), reflecting larger cell numbers. 1 mM LiCl treated 

cultures also showed a trend toward increased sphere volume.  While this could be due to 

altered rates of cell death, levels of both apoptosis and necrosis were found to be similar in 3 

mM LiCl treated and control cells. To investigate possible cell cycle effects, cell cycle 

distribution of treated and control cells was examined by flow cytometry analysis of DNA 

content at 12, 24, 48, 72, and 96 hours post treatment initiation. While there was no effect at 

12 hours, the G1 fraction was reduced while the S fraction was increased in the cultures 

treated with 3 mM LiCl at all later time points. The G2/M fraction in LiCl treated cells was 

reduced compared to control at 24 hours, but increased at 48 hours following treatment. 

Similar trends were seen in 1 mM LiCl treated cultures. S-phase findings were confirmed by 

increased bromdeoxiuridin (BrdU) incorporation at 48 hours. Unaltered frequencies of cells 
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staining positive for glial (GFAP) and neuronal (MAP2) markers indicate that LiCl treatment 

was not associated with differentiation. 

These findings support the previous reports that lithium increases proliferation of NSPCs, 

where GSK3β inhibition causing activation of WNT signalling was implicated in the 

response. They are also in line with reports of lithium-induced proliferation in other cell 

types. The observed changes in the G1 fraction may reflect altered cell cycle dynamics and a 

shorter G1, activation of previously quiescent cells, or some combination of these two effects.  

4.1.2 Lithium protects NSPCs from irradiation, recruits them into 

proliferation following IR-induced G1 arrest and reduces DNA damage, 

but does not affect apoptosis.  

To investigate potential neuroprotective effects of LiCl, NSPCs grown in vitro were treated 

with 0, 1, or 3 mM LiCl for 12 hours, following which cultures were exposed to 0 or 3.5 Gy 

of IR and allowed to form spheres in the same medium. IR treated cells formed smaller 

spheres than sham irradiated cells, with effects of radiation clear at all time points analysed 

(up to 72 hours) and significantly more drastic in the cells that were not pre-treated with 

lithium. While sphere volume in non-treated irradiated cells was ≈7.5 fold smaller than in 

sham irradiated cells, the reduction was only ≈2 fold in the cells that were pre-treated with 3 

mM LiCl. Similar effects were observed at 24 hours and with lower (1 mM) LiCl 

concentration.  

BrdU incorporation rates indicated that proliferation after irradiation remained higher in the 

3mM LiCl treated than untreated cells, although it was lower than in 3mM LiCl treated sham 

irradiated cells. Interestingly, the proliferative differences were more pronounced in the 

irradiated cultures due to very low proliferation in the non-LiCl treated group. In fact, 

irradiation induced a significant G1 and G2 accumulation in both pre-treated and non-treated 

culture at the expense of the S-phase fractions. LiCl-treated cells recovered quicker, with 

more cells entering S than in the control cultures already at 24 hours after irradiation. To test 

if reduced DNA damage could underlie the recovery, levels of γ-H2AX staining, a marker of 

DNA damage, were examined 30 min after irradiation in treated and control cells. 3 mM LiCl 

treated cells were found to have on average 13 % lower staining intensity, suggesting a more 

limited extent of DNA damage.  Finally, effect of treatment on cell death was examined. 

Staining for Annexin-V, a marker of apoptosis, and quantifying the subG1 DNA fraction 

indicated that LiCl treatment did not affect apoptosis or necrotic cell death. 
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Although LiCl treatment did not prevent IR-induced cell death, as was suggested 

previously
194

, it did reduce IR-induced DNA damage, or at least the extent of response. This 

did not abolish, but rather attenuated the G1 accumulation seen after irradiation in the LiCl 

pretreated cells, which returned to proliferation faster than the non-pretreated cells. It is 

possible that this is due to lower rates of DNA damage, faster DNA repair, or more 

worryingly, leaky DNA damage checkpoints. It is interesting that the G2/M fraction in the 

LiCl pretreated cells remained elevated for up to 72 hours following irradiation. A potential 

explanation of this could be differential activation of DNA damage pathways in cells at 

different stages of the cells cycle, or impaired clearing of γ-H2AX foci due to reduced protein 

kinase B (Akt) activation
195

 following lithium effects on the inositol pathway.      

In summary, we found that LiCl induced NSPC proliferation under homeostatic conditions, 

and attenuated IR-induced DNA damage response and G0/G1 stalling. Although treatment 

did not reduce levels of cell death, cell numbers in treated cultures were increased due to 

increased proliferation.  

4.2 PAPER II: ZD7288, A BLOCKER OF THE HCN CHANNEL FAMILY, 

INCREASES DOUBLING TIME OF MOUSE EMBRYONIC STEM CELLS 

AND MODULATES DIFFERENTIATION OUTCOMES IN A CONTEXT-

DEPENDENT MANNER 

The unique cell cycle properties of pluripotent stem cells have been linked to their identity 

and postulated to be essential for pluripotency maintenance. ZD7288, an inhibitor of the 

HCN channel family, has previously been reported to modulate cell cycle progression in 

mouse embryonic stem cells (ESCs), however the effects of this compound and the cell cycle 

perturbation it caused on cell fate were not described. This paper investigates the cell cycle 

dynamics and cell fate of mouse ESCs treated with ZD7288.  

4.2.1 ZD7288, an HCN channel blocker, reduced ESC proliferation by 

increasing doubling time due to extended G1 and S phases 

ESCs cultured in maintenance media with the addition of ZD7288 were found to be 

significantly fewer after 4 days of culture, with a reduction in cell number of over 50% as 

compared to control culture conditions, accompanied by only a disproportionally small 

reduction in viability, in line with the previously described action of the compound
150

. 

Similarly, cells plated at subclonal densities and cultured in the presence of the compound 

formed significantly smaller colonies (27 vs 44 cells per colony in treated and control cells, 
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respectively). Reduced cell numbers could be explained by fewer proliferating cells or longer 

cell cycle. G0 is usually absent from ESCs, but to ensure that all cells were in active cell 

cycle, cells were stained for KI-67, a marker of active proliferation. As expected, no 

differences were observed, suggesting that the cell cycle was longer in ZD7288 treated cells. 

Based on these cell number observations, doubling time for treated cultures was calculated to 

be ≈37 hours, as compared to ≈28 hours for control cells, in line with previous reports
99

.   

To examine what accounted for the increased cell cycle length, we performed DNA content 

analysis using flow cytometry. This showed a significant increase in the fraction of cell in S-

phase (37.6 % in control, 41.8 % in treated) and a corresponding decrease in G2/M phase 

(28.3 % in control, 23.4 % in treated) in the treated cultures.  Taken together with the 

calculated doubling time, this corresponds to an increase in the length of G1 and S phases in 

response to ZD7288 treatment.  This was in contrast to what had previously been reported. 

Previous report by Lau et al
150

  indicated an accumulation in S-phase with a compensatory 

decrease in the G1 fraction, indicating an increase in the length of S-phase only. Interestingly, 

the cell cycle length in the previous publication was much shorter than in the present one, 

possibly due to difference in culture conditions. Lau et al
150

 used serum-based, whereas this 

study used serum-free media, and it has previously been reported that ESC doubling time 

varied between 13 and 34 hours depending on media formulation, with serum-free medias 

resulting in longer doubling times. 

4.2.2 DNA replication is altered in ZD7288 treated cells  

Surprisingly, the number of 5-ethynyl-2´-deoxyuridine (EdU) incorporating cells, a marker of 

cells in S-phase, appeared to be lower in treated cultures when examined using flow 

cytometry. This was puzzling because the number of S-phase cells was increased in treated 

cultures based on DNA content quantification, prompting us to take a closer look at the at 

EdU incorporation pattern. EdU staining pattern was distinctly different in the treated cells, 

which formed a single wide peak, instead of the two peaks corresponding to positive and 

negative cells usually seen, and observed in the control.  

Potential causes of this alteration could be intra-S phase stalling, reduced DNA replication, or 

reduced availability of the EdU nucleotide. To investigate the possibility of intra-S-phase 

stalling, cells were staged as “early” or “late” S-phase based on EdU incorporation pattern 

following visualization using confocal microscopy. The fraction of “early” phase cells was 

similar in both conditions (55.7 % in control and 53.3 % in treated culture), suggesting 

altered EdU availability or slower DNA replication, which would be in line with the observed 
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prolonged S-phase transit time. It is possible that the two proposed scenarios are linked, with 

reduced nucleoside availability hampering replication. Alternatively, ion concentrations are 

known to affect DNA tertiary and quaternary structure, altered sodium or potassium 

concentrations due to HCN inhibition could induce structural changes attenuating replication 

speed. Finally, DNA replication speed varies during S-phase
196

, and the observed effect may 

be related to modulation of a mechanism involved in DNA replication speed regulation. 

4.2.3 Treatment with ZD7288 decreases colony formation frequency but 

does not alter expression of the core pluripotency genes and effects 

cell differentiation in a context dependent manner 

 To test the effects of cell cycle perturbation on pluripotency, cells were plated at subclonal 

density to test clonogenicity and self-renewal. The number of colonies formed per well was 

much lower in the treated condition, and more colonies had rough edges, which could be a 

sign of differentiation. To test this, cells were stained for the various markers of pluripotency 

(SSEA1, OCT3/4, SOX2, NANOG, and ALP activity), with no significant changes detected.  

Similarly, no changes in pluripotency marker expression were detected on an RNA level. To 

functionally test maintenance of pluripotency in ZD7288 treated cultures, treated cells were 

re-plated and both colony formation rates and colony morphology were restored to control 

levels. A possible explanation for the observed effect is altered attachment/cytoskeletal 

dynamics, which could affect both the propensity of the cells to attach and form colonies and 

cellular morphology on colony borders.  

To functionally test the effects of ZD7288 on the other cardinal stem cell property – 

differentiation, ESCs were induced to differentiate either spontaneously in fetal bovine serum 

(FBS) –containing media with LIF withdrawal, or toward the neural lineage as per defined 

serum-free protocol. Spontaneous differentiation was potentiated by ZD7288 addition, with 

more pronounced downregulation of the pluripotency markers and upregulation of most 

lineage markers. Surprisingly, neural differentiation did not benefit from ZD7288 addition, 

with similar levels of expression of most pluripotency factors in control and treated cells, and 

a less efficient induction of 2 of the 3 ectoderm markers tested. These findings suggest that 

the action of ZD7288 in differentiation is context dependent. This is rather similar to the 

difference in cell cycle effects between the previous and current reports. Intriguingly, one of 

the most striking differences is also similar – serum-containing media. Although the 

underlying mechanisms of these differences are unclear, this work adds to the weight of 
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evidence that extending G1 does not necessarily result in differentiation, at least not if the 

G1-S ratio is maintained
197

. 

In summary, we found that ZD7288, an inhibitor of the HCN channel family, reduced ESC 

proliferation by extending G1 and S residence time. This did not compromise cell identity, 

with treated cell maintaining pluripotency and the ability to differentiate to all lineages. 

Differentiation in FBS-containing media was facilitated by the compound, while directed 

differentiation to neuroectoderm in defined media was less efficient in its presence.  

4.3 PAPER III: HYPERPOLARIZATION-ACTIVATED CYCLIC NUCLEOTIDE-

GATED CHANNELS MODULATE ACTIVE PROLIFERATION AND 

METABOLISM, AND MAINTAIN MOLECULAR CLOCK OSCILLATIONS IN 

ADULT MOUSE NEURAL STEM PROGENITOR CELLS 

Data from recent sequencing studies attempting to define genes specific to the activated and 

quiescent stem cell states have indicated that a number of ion channels are differentially 

expressed in the two pools, with members of the HCN family on the list. Taken together with 

the established fact that voltage gated potassium channels are involved in cell cycle 

regulation, and data from other stem cells systems, including Paper II above, this work set out 

to investigate a potential role for HCN family channels in adult mouse NSPC proliferation.  

4.3.1 HCN2 and 3 are expressed throughout the NSPC hierarchy with their 

function restricted to the proliferative (S and G2/M) phases 

Gene expression analysis with qRT-PCR indicated that Hcn2 and Hcn3 were expressed in 

both bulk primary SVZ NSPCs, and in all populations of NSPCs sorted according to 

GFAP::GFP intensity, believed to correspond to different levels in the NSPC differentiation 

hierarchy, including type B and C cells. This was promising, as HCN3 was the isoform 

previously reported to modulate ESC proliferation, confirmed in paper II, and was identified 

as part of the quiescent stem cell signature in data from Codega et al
198

.  While expression of 

HCN3 was not confirmed on a protein level due to technical limitations, HCN2 co-stained 

BrdU+/SOX2+ NSPCs in tissue sections from the SVZ and SGZ.  To further verify channel 

expression, function was assessed with electrophysiology. The typical hyperpolarization-

activated current (Ih), sensitive to the specific blocker ZD7288, could be recorded from some, 

but not all NSPCs. 

To investigate the basis for non-uniform presence of Ih, cells were cell-cycle sorted based on 

DNA content. This showed that while no cells in the G0/G1 cell cycle fraction carried the 
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current, the current was present in many S, and the majority of G2/M cells. Correspondingly, 

HCN2 staining intensity was found to be higher in those cell cycle phases as ascertained by 

flow cytometry, and differential channel localization was observed in the three cell cycle 

phases by confocal microscopy. The association of HCN function with the proliferative 

phases further supported the hypothesis that the channel could be implicated in the regulation 

of proliferation.  

4.3.2 Inhibition of HCN channel activity attenuated NSPC proliferation due to 

a reversible G0/G1 block in vitro and its effects extend in vivo 

Culture of primary SVZ NSPCs in the presence of ZD7288, an HCN channel inhibitor, 

resulted in smaller neurosphere size, while block of HCN function with different 

concentrations of its inhibitors ZD7288, Zatebradine, or CsCl resulted in lower SVZ NSPC 

number as determined by a viability assay.  To ensure the difference in cell numbers was not 

due to cell death, as HCN has been reported to regulate apoptosis
189

, levels of activated 

caspase-3 and the subG1 fraction of cell cycle were quantified. No significant induction of 

cell death was observed. Moreover, EdU incorporation was significantly reduced (by 46%) in 

treated cells 24 hours after treatment initiation.  The proliferative effects were confirmed on a 

genetic level with si- and shRNA. Rather conflictingly, siRNA showed that HCN2 but not 

HCN3 knockdown reduced cell numbers, while shRNA, showed that knockdown of either 

gene was sufficient to see a reduction in proliferating cells. This could be due to different 

potency of knockdown, but regardless, confirmed the expectation that HCN activity is 

involved in regulation of NSPC proliferation.  

To further investigate the effect of HCN inhibition on the cell cycle, DNA content analysis of 

treated and untreated cells was performed, indicating an increase in G0/G1 cell cycle fraction 

accompanied by a reduction in the S and G2/M. To further identify whether it was G0 or G1 

that was affected, cells were stained for KI-67, which showed an increase in cells no longer in 

active proliferation, as indicated by loss of KI-67 marker expression. This was further 

supported by increased survival of ZD7288 treated NSPCs upon long term (48 hours) 

exposure to the genotoxic agent arabinofuranosyl cytidine (Ara-C), and the full reversibility 

of the induced proliferative block upon washout. The reversibility of the proliferative effect 

distinguished the observed block as quiescence, as opposed to senescence.   

Importantly, similar effects on proliferation (reduction in proliferation by BrdU 

incorporation, phospho-histone 3 (a marker of M-phase) expression, and KI-67 expression) 

were seen in vivo in both SVZ and SGZ when animals were injected with 4mg/kg of ZD7288. 
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This was not accompanied by induction of apoptosis, with onset of action observed at 24 

hours and complete attenuation of the effect at 72 hours, further supporting reversibility.  

4.3.3 Transcriptome analysis identified alterations in expression of cell 

cycle regulators, metabolic enzymes, and members of the molecular 

clock in treated cells, while NSPC identify marker expression was not 

altered  

Transcriptome analysis confirmed that treated cells were not undergoing differentiation, as 

expression of key NSPC regulatory genes Sox2, Pax6 and Msi1 was similar in treated and 

untreated cells, and expression of differentiation genes was not induced by treatment. 

Markers of quiescence and activation, on the other hand, were altered. Nestin and Ascl1, both 

implicated in activation and stem cell proliferation, were downregulated on an RNA level, 

while western blot for EGFR indicated that the receptor was downregulated on a protein 

level. Inhibition of proliferation was further confirmed by reduced expression of many 

positive cell cycle regulators in treated cells, while some negative regulators of proliferation 

were upregulated. p21 and p27 canonical inducers of cell cycle arrest, were upregulated on an 

RNA, but not protein level, suggesting a novel mechanism for induction of quiescence in 

response to HCN inhibition. 

Gene Ontology (GO) term enrichment analysis of differentially expressed genes identified 

metabolism as one of the major gene categories altered in treated cells. Enzymes involved in 

glycolysis were strongly downregulated. To complement this analysis and look at metabolism 

more functionally, we analyzed metabolite abundance. Levels of glycolysis intermediates, 

lactate, and amino acids were found to be significantly altered, confirming a metabolic 

perturbation as either the mediator or a consequence of the effects of HCN inhibition.   

When a more narrow approach was taken GO enrichment analysis was run on genes shared 

between the quiescence signature published by Codega et al
198

 and those altered in response 

to ZD7288. “Rhythmic processes”, containing many genes known to be components of the 

molecular clock network (Per1, Per2, Cry1, Cry2, Nr1d1 and Nr1d2 (Rev-Erb-α and ), 

Timeless and Tipin),  was the most significantly enriched term. To test functional significance 

of the observed change, luminescence from Per2-driven luciferase was recorded in adherent 

NSPCs and SVZ explants with and without ZD7288 in the media. In line with observations 

of deregulation on the transcriptional level, clock oscillations were abolished upon HCN 

inhibition.  In light of the previous reports of clock function regulating proliferation in other 

stem cell systems
199,200

, we tested whether ZD7288 effect could be phenocopied by activation 
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of Rev-Erb- α, the most upregulated component of the clock network identified in our dataset. 

Treatment of NSPCs with the Rev-Erb- α agonist SR9009 resulted in reduced proliferation, 

suggesting its involvement in mediating the effect of HCN inhibition. Interestingly, 

hippocampus hyperproliferation was reported in Rev-Erb- α knockout animals
201

, supporting 

its function as a regulator of proliferation in NSPCs. It has also been reported to be inhibited 

by lithium
202

, representing an alternative pathway for proliferative increase seen in paper I. 

Although it is not clear if or how the observed changes in metabolism and the molecular 

clock are related, recent publications have reported metabolic perturbations in the kidneys of 

clock-null animals
203

. 

4.3.4 Pre-treatment of juvenile mice with ZD7288 and a neuroprotective 

effect, reducing the deleterious effects of ionizing radiation. 

Following up on work in paper I, neuroprotective potential of HCN blockade was tested in 

an animal model of ionizing radiation (IR)-induced NSPC damage. Juvenile animals (post-

natal day 8) were treated with ZD7288 (8 mg/kg) 24 hours prior to exposure to 2Gy of IR. 

Animals were sacrificed 6 hours following exposure and levels of proliferation and cell death 

were examined in the neurogenic areas (SGZ and SVZ). The levels of apoptosis as seen by 

activated caspase-3 staining were significantly reduced, and proliferation as measured by 

BrdU incorporation was similar in treated and untreated animals. No cell cycle analysis was 

performed, as in paper I, to assess potential additional stalling of cells in G0/G1, but similar 

proliferation rates in both irradiated and non-irradiated animals suggest that proliferation was 

not affected by IR, possibly due to the fact that the most sensitive cells were in proliferative 

arrest due to ZD7288 treatment, and thus protected from IR damage and the apoptosis that 

would have followed. An alternative explanation of HCN inhibitor action could be related to 

calcium influx-induced apoptosis, in which HCN2 was previously implicated. 

To test whether there may be a therapeutic window with HCN inhibition, and a similar 

protective effect would not be observed for cancer cells, 17 patient-derived cancer stem cell 

lines were tested for growth response following culture in media containing 0-49 µM 

ZD2788. Across all lines there was no change in viability signal to any of the tested inhibitor 

concentrations, suggesting that HCN has no proliferative effect in cancer stem cells. As the 

cell line tested were of human origin, while all other work had been done on murine cells, to 

ensure the observed lack of effect was not due to species differences, proliferation kinetics in 

response to ZD7288 treatment were tested in human fetal neural stem cells (hfNSCs) and 

human glioma-initiating cancer stem cells (giCSCs). Confirming the viability test results, the 



 

38 

number of EdU positive giCSCs did not change in response to ZD7288, while proliferation of 

hfNSCs was  inhibited resulting in fewer EdU incorporating cells, as observed earlier in 

mouse NSPCs. The differential response of cancer and tissue stem cells to HCN inhibition 

could reflect abnormal cell cycle regulation in cancer cells
204

, but also disrupted clock 

function, which has been reported previously
205

. Finally, alterations in metabolism, a 

hallmark of cancer
206

, is also a possible explanation of observed differences. 

In summary, HCN2 and HCN3 are expressed in mouse NSPCs with function restricted to the 

S and G2/M phases. Their inhibition inhibited proliferation inducing a reversible G0/G1 

accumulation accompanied by changes in markers of quiescence/activation and cell cycle, but 

not stem cell identity. This was accompanied by downregulation of glycolysis and changes in 

metabolite levels, as well as abolition of molecular clock oscillations due to upregulation of 

negative clock components. An agonist of the peripheral clock component Rev-erb-α could 

mimic the proliferative effects of HCN inhibition. This effect could be confirmed in both 

proliferative regions in vivo, and resulted in reduced cell death in juvenile animals pre-treated 

with ZD7288 prior to IR exposure. 
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5 CONCLUSION AND FUTURE DIRECTIONS 

The work in this thesis showed that: 

I. Lithium induces proliferation of juvenile mouse NSPCs in vitro, and although it 

does not reduce apoptosis, it protects them from IR-induced DNA damage, and 

induces their return to proliferation following G1 block 

II. Treatment of mouse embryonic stem cells with the HCN blocker ZD7288 

attenuates their proliferation by extending their cell cycle, specifically in the G1 

and S phases. Treatment does not compromise pluripotency under maintenance 

conditions, but can facilitate differentiation in a context-dependent manner. 

III. HCN2 and HCN3 are expressed in NSPCs and functional in the S and G2/M 

phases. Block of their activity reduces proliferation in vivo and in vitro by 

inducing a reversible cell cycle block in the G0/G1 phase, which exhibits many 

features of quiescence: reducing glycolytic metabolism, downregulating markers 

of activation, and maintenance of NSPC identity. Ih current block also disrupts 

oscillations of the molecular clock, with modulation of the clock component Rev-

erb-α having similar effects on proliferation. 

IV. HCN activity can protect NSPCs from genotoxic stress both in vitro and in vivo, 

and attenuates IR-induced apoptosis in vivo. HCN inhibition may have the 

potential to be developed into a neuroprotective therapy for pediatric cancer 

patients.    

Additional work exploring the mechanisms behind these finding and investigating their 

potential translation to the clinic is needed. The work presented here makes a case for 

modulation of ion-dependent processes as an in-point for cell state regulation. Modulation of 

ion availability as a co-factor (in the case of lithium effects) or ion trafficking (in the case of 

HCN inhibition) have both been shown to be viable strategies for regulation, although the 

downstream mechanisms and exact targets of each intervention remain to be elucidated. An 

interesting area of overlap is metabolism, which is regulated in a circadian manner both on a 

whole-organism and on the cell level
207

, and is known to regulate stem cell dynamics, both in 

adult stem cell systems
208,209

 and in the embryo through diapause and reprogramming
210,211

.  

It is however unclear how the metabolic and circadian regulatory systems relate to each other 

and proliferation – are these parallel processes that can exert proliferative control? Is one 

process subservient to the other? Are perturbations in one system just a side effect of the 
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deregulation of the other? The effect observed in ESCs in paper II, if mediated in a similar 

fashion to the NSPC effect in paper III, would put metabolism at the top of the hierarchy, 

and circadian perturbations as a side effect, because ESCs lack a circadian clock
212

. It is 

unclear how well this would generalize to somatic cells, as ESCs also lack conventional cell 

cycle control. To more appropriately address this question, it would be interesting to test how 

the effects of HCN inhibition observed in paper III would change in BMAL1-deficient mice, 

which lack circadian rhythmicity
213

, but not the usual somatic cell cycle machinery. To more 

closely examine the interaction of HCN-inhibition, metabolism, and proliferation, it would be 

interesting to follow up the work in paper II on proliferative slow down of ESCs with further 

experiments looking at metabolic effects in that cell system. ESCs are a relatively 

homogenous and robust cell system, while still relevant in a developmental context, making 

them a good platform for research into fundamentals of cellular physiology.  

This thesis also investigated two very different approaches to neuroprotection – temporary 

attenuation of proliferation (paper III) and a combination of DNA damage protection and 

induction of proliferation to overcome cell loss due to IR treatment (paper I). In addition to 

developing compounds and techniques for more precise delivery of active compounds to 

injury site, this work could be followed-up by investigations into how these two interventions 

may be combined to improve outcomes. Pre-treatment with an HCN inhibitor in combination 

with acute or follow-up treatment with lithium may be a worthwhile approach to 

neuroprotection, taking advantage of both strategies to overcome IR-induced damage. Since 

significant additional work would be needed to characterize such a regiment, lithium is likely 

a more promising first approach for clinical tests of neuroprotection due to its fairly well 

understood toxicity profile. However, long-term implications of lithium use should first be 

more thoroughly investigated. Deregulation of proliferation can lead to tumorigenicity, 

especially in combination with genotoxicity and stress, which NSPCs face following IR 

treatment. Ideally, development of therapy should be guided by mechanistic insights into the 

mode of action of both lithium and HCN inhibition, until then, the empirical approach should 

not be overlooked. 
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