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ABSTRACT 

Background Streptococcus pneumoniae is a leading infectious cause of child deaths worldwide. 

Pneumococcal conjugate vaccine (PCV) was first introduced in the US in the year 2000, and included 

the major seven pneumococcal serotypes (PCV7) causing invasive pneumococcal disease (IPD) there. 

Current PCVs include 10 or 13 of the more than 97 known pneumococcal serotypes. In Stockholm 

County, Sweden, PCV7 was introduced for infants born from July 2007, at 3, 5, and 12 months of age 

and in 2010 it was changed to PCV13. Uganda started national PCV10 implementation in 2014. 

Aims To study the effects of the introduction of PCV in the childhood vaccination program in 

Stockholm on incidence, serotypes and antibiotic resistance patterns of IPD, hospitalization due to 

severe sinusitis and pneumonia in children, and pneumococcal carriage. Also, to study pneumococcal 

carriage and serotype distribution in healthy children <5 years prior to PCV introduction in Uganda, 

and estimate the potential effectiveness of PCV. 

Methods All cases of IPD in Stockholm registered in the national mandatory reporting system from 

2005 to 2014 were included (n=2519). The pneumococcal isolates were characterized with serotyping 

(n=2336), including some with molecular typing and antibiotic resistance pattern. All hospitalizations 

from 2003 to 2012 in Stockholm, ICD-10 coded as sinusitis or pneumonia (N=678, 5051, 

respectively) in children, were collected from hospital registries. Nasopharyngeal pneumococcal 

isolates from children <5 years in Stockholm were collected at regular visits to Child Health Centers 

from 4 to 8 years after PCV introduction from 2011 to 2015 (N=916). Pneumococcal carriage was 

compared to carriage data in children attending day-care centers in 2004 (N=246), which was before 

vaccine introduction. OR for invasive disease potential of the pneumococcal isolates in carriage was 

calculated using data on IPD in all ages from 2011 to 2015. Nasopharyngeal carriage of pneumococci 

in children <5 in Uganda was assessed through collecting isolates at the Health and Demographic 

Surveillance Site in Iganga/Maygue districts (N=1761). 

Results We show that PCV introduction in Stockholm has been successful in decreasing the incidence 

of IPD, from 28.4 to 10.3 cases /100,000 children <2 years (RR 0.36, 95% CI 0.2-0.6) when 

comparing the time periods 2005-2007 to 2009-2014, Serotypes included in the PCV7 decreased from 

22.7 to 0 cases/ 100,000 in this age group (RR 0.0, 95% CI 0.0-0.1). The IPD incidence also decreased 

in older children and adults, excluding the elderly. However, PCV7 serotypes have decreased in all 

age groups. There was a decrease in hospitalizations due to severe sinusitis (RR 0.34, 95% CI 0.2-0.5) 

and pneumonia (RR 0.81, 95% CI 0.7-0.9) in children <2 years. A near elimination of most vaccine 

serotypes with a high invasiveness potential was seen in carriage. Emerging both in carriage among 

children and as cause of IPD (all ages) were instead non-vaccine types of lower invasive potential. 

Carriage data before PCV introduction in Uganda shows that vaccine serotypes were much less 

prevalent in children <5 years old (PCV10 for 42% and PCV13 for 54%) than what was observed in 

children <5 years old in Sweden before the PCV implementation (PCV10 63%, PCV13 82%), which 

may reduce potential vaccine effectiveness in Uganda. 

Conclusions PCV introduction in Stockholm has had a positive overall impact on pneumococcal 

morbidity in young children, and serotypes included in the vaccine are decreasing in IPD and carriage. 

PCVs have the potential to save many children’s lives in the coming years, both in Sweden and 

Uganda. The extent of the impact is still not known, as PCV effectiveness depends on factors such as 

pneumococcal serotype distribution in carriage before and after PCV implementation, the extent of 

serotype replacement in carriage as well as in IPD in different age groups following PCV, vaccination 

coverage, and the serotype content of future pneumococcal vaccines, which may cover more or all 

pathogenic serotypes.  
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LIST OF ABBREVIATIONS 

ACIP Advisory Committee on Immunization Practices (US) 

AOM Acute Otitis Media 
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type b and Hepatitis B combination vaccine 
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GVAP Global Vaccine Action Plan 

IRR Incidence Rate Ratio  

NT Non-typeable (NT) is a serotype that is not possible to define as a 

certain serotype in the methods used. 

NVT Non-vaccine type (NVT) is a pneumococcal serotype which is not 

included in a specified pneumococcal vaccine. 

MDG Millennium Development Goals 

IPD  Invasive Pneumococcal Disease 

OR Odds Ratio  

PCV Pneumococcal Conjugate Vaccine 

PPV Polysaccharide Pneumococcal Vaccine  

RSV  Respiratory Syncytial Virus  

SAGE  Strategic Advisory Group of Experts (WHO) 

SDG Sustainable Development Goals 

UN United Nations 

VPDI Vaccine Preventable Disease Incidence 

VT  Vaccine-type (VT) is a pneumococcal serotype which is included in a 

specified pneumococcal vaccine 

WHO World Health Organization  



DEFINITIONS 

Carriage 

prevalence 

Proportion of a population with nasopharyngeal pneumococcal carriage. 

Invasive 

pneumococcal 

disease (IPD) 

IPD is defined as disease with growth of pneumococcal isolates from a 

sterile location; either blood or cerebrospinal fluid (CSF) or bone, or any 

other sterile location in the body.  

Incidence rate (IR) IR is the occurrence of a disease event, being a case or hospitalization, per 

100,000 person-years of observation.  

Incidence rate ratio 

(IRR) 

IRR is the ratio of incidence rates. 

Invasive disease 

potential  

Invasive disease potential is measured as the odds ratio of the odds of a 

certain serotype causing invasive disease in a population, to the odds of 

the same serotype found in carriage during the same time and place.  

Lower respiratory 

infection  

Any infection in the respiratory tract below the larynx; for example 

pneumonia or bronchitis  

Odds ratio (OR) OR is the ratio between two odds, for example the odds of exposure 

among the cases to the odds of the exposure among the controls. Odds is 

the likelihood of an event occurring to the event of it not occurring. 

Pneumonia  WHO definition: cough and/or difficult breathing, and fast breathing 

(with or without fever) 

Pneumococcal 

carriage 

Pneumococcal nasopharyngeal carriage is defined as growth of 

pneumococcal isolates from the nasopharyngeal cavity.  

Pneumococcal 

disease  

Pneumococcal disease is disease caused by pneumococci. It may be 

invasive or not. Main diseases  are pneumonia, septicemia, meningitis, 

sinusitis, and acute otitis media. 

Serotype 

distribution  

Serotype distribution is the proportion of different serotypes, or the 

proportion of vaccine-types to non-vaccine types, in a given time period.  

Vaccine 

effectiveness 

Vaccine effectiveness is the ability of a vaccine to reduce the incidence of 

an outcome of interest in the “real world.” Depends on host factors, 

vaccine characteristics and match to circulation strains etc.  

Vaccine efficacy 

(VE) 

VE is the % reduction of incidence of a disease in a vaccinated group 

compared to an un-vaccinated group, under optimal conditions (RCT). 
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1 INTRODUCTION 

1.1 BACKGROUND 

1.1.1 Child survival 

Global child survival has been improved tremendously in the last decades. WHO estimates  

that 12.7 million children died before their 5th birthday in the world in 1990, while in 2013 it 

was estimated to be 5.9 million children (1). This is a decrease from 35,000 deaths per day to 

16,000, however, still an unacceptably high number. Lower respiratory disease, diarrhea, 

neonatal disorders and malaria are the most common causes of death in children (figure 1). 

Every minute six children die from pneumonia and diarrhea alone. The most important 

pathogens causing these child deaths are pneumococci for pneumonia and rotavirus for 

diarrheal disease (2). Lower respiratory infection was the main cause of life years lost in 

children less than five years old in 1990 and still in 2013. In all ages, it was the second largest 

cause of life years lost, after ischemic heart disease, in 2013 (2, 3). Measured instead in 

DALYs lost (disability adjusted life years), summing the burden of both mortality and 

morbidity in one measure, lower respiratory infection was the major cause of DALYs lost in 

1990 for all ages, but was in 2013 in third place after ischemic and cerebrovascular disease 

(4). In 2013, an estimated 2.7 million people (2.4-2.8) died from lower respiratory disease, 

and 900,000 of those were children less than 5 years of age (5, 6). Although viruses are the 

most common etiology of pneumonia among children, RSV 29% and influenza 17% of all 

episodes (7), a third of deaths due to pneumonia are caused by Streptococcus pneumoniae (7, 

8). 

Pneumococcal conjugate vaccines (PCVs), with a high potential to decrease global child 

mortality, are currently being rolled out in national vaccination programs in many low- and 

middle income countries. Pneumococcal disease is actually the vaccine preventable disease 

with the highest potential of decreasing child mortality, since measles mortality already has 

decreased by 75% in the last decades due to effective vaccines. 

Figure 1. Causes of death globally in children under five years of age in 2013 (2) 

 

HIV/AIDS

1%
Diarrhea

8% Lower 

respiratory 

infection

15%

Meningitis

2%

Malaria

10%

Measles

1%

Neonatal 

disorders

excl.pneumonia  

and diarrhea 

32%

Other 

communicable 

diseases

7%

Nutritional 

disorders

4%

Non-

communicable 

diseases 

14%

Injury

6%



 

2 

1.1.2 Pneumococcal disease burden  

Pneumococcal disease causes a range of illnesses, from severe invasive pneumococcal 

disease (IPD) such as meningitis, septicemia and invasive pneumonia to less severe 

respiratory mucosal infections such as otitis media and sinusitis (9). Pneumonia may occur 

either with or without bacteremia (10)(table 1).  

About 11.9 million episodes of severe pneumonia, and 3.0 million very severe pneumonia 

episodes occurred globally in children younger than 5 years in 2010 (11). An estimated 

18.3% of severe pneumonia cases are associated with Streptococcus pneumoniae (8). WHO 

estimated that 541,000 (95% CI 376,000-594,000) deaths in children less than 5 years were 

due to pneumococcal disease in 2008 (12). Out of these deaths, more than 50% occurred in 

Africa: 247,000 (95% CI 167,000-274,000), and 6,800 (95% CI 5,000-7,800) in Europe. 

Incidence and mortality due to pneumococcal disease is higher in low-income countries, and 

most deaths occur within Africa and Asia (8, 11, 13, 14).  

In Europe, the incidence of IPD for all ages varied between 20-174/100,000, with a mean 

annual incidence of 44/100,000 before the introduction of pneumococcal conjugate vaccine 

(15, 16). In the US and Australia, the IPD incidence pre-PCV was 28-214/100,000 (17). In 

Africa, IPD incidence varied between 60-797/100,000 (18-20) (table1). 

Children under five years of age and the elderly above 65 years of age are the age groups at 

highest risk for severe pneumococcal disease (16, 21). A recent systematic review of IPD in 

neonates estimated the incidence to 16/100,000 in high income countries as compared to 

370/100,000 in a study from a low income countries (22).  

People who are HIV positive are at a higher risk of morbidity and mortality due to pneumonia 

and to invasive pneumococcal disease, except if well-treated with anti-retroviral treatment (2, 

23). In HIV positive children under five, 64,900 (95% CI 44 500-72 800) deaths occurred, 

almost exclusively in Africa (12). Other risk groups are malnourished children and children 

with low birth weight (24).  

Case fatality rate in infants in low-income countries may reach 20% for pneumococcal 

septicemia and 50% for pneumococcal meningitis (25). In a recent study from South Africa, 

case fatality rates in children >15 years and adults were as high as among infants: 23% for 

pneumococcal septicemia and 55% for meningitis (26). In high-income countries pre-PCV, 

the case fatality rate for all ages was 5% for pneumococcal pneumonia, 20% for septicemia 

and 30% for meningitis (27-29). In another study in Europe, the mean annual case-fatality 

rate for IPD in children <5 year old was 7.4% (range 0.7-34) (16). 

Seasonal peaks of pneumococcal disease occur during winters. Pneumococcal co-infection 

with influenza increases the risk of mortality during influenza seasons (30). One explanation 

is that the co-infection of these respiratory pathogens damage the respiratory epithelium and 

decreases clearance of bacterial carriage and consequently increases the risk for invasive 

pneumococcal infection (31). 
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Table 1. Estimated pneumococcal burden in children in Europe and Africa (references in the table) 

 Invasive Pneumococcal Disease  Non-invasive Pneumococcal Disease 

 IPD age 

<2years 

No of cases 

/100,000 

Meningitis 

< 5 years 

No of cases 

/100,000 

Bacteremia 

<5 years 

No of cases 

/100,000 

Pneumonia  <5 

years 

with or without 

bacteremia 

No of cases 

/100,000 

Sinusitis < 5 

years all 

causes  

No of cases 

/100,000 

Acute otitis 

media < 

5years 

No of cases 

/100,000 

Europe 44 (range 

20-174)(15, 

16, 32) 

7.5 (range 

0.7-22)(16) 

31 (range 

31-49)(33) 

462 

(uncertainty 

range 359-

574)(33)  

200(34) 1,475(range 

1,470-

1,498)(35, 36) 

Africa 60-797(18-

20) 

10-48(33, 37, 

38) 

139 (range 

104-

174)(38) 

3,397 

(uncertainty 

range 2,643-

4,227)(33)  

- 5,702 

(range 

5,532-

5,875)(35, 36) 

 

Consequently, pneumococcal disease gives a high disease burden. This thesis explores the 

potential impact of PCVs on morbidity due to pneumococcal disease. However, firstly, a 

background explaining the larger policy framework, including UN development goals, the 

importance of a health system thinking while introducing a new vaccine in the childhood 

vaccination program and the need for an integrated approach, including to decrease 

pneumonia mortality.  

1.1.3 From Millennium Development Goals to Sustainable Development 
Goals 

The Millennium Development Goals (MDG) was an important UN framework for global 

health policy, and instrumental in the reduction of child mortality from 1990 to 2015. It was 

achieved by political commitment and by setting concrete goals and measuring progress with 

the help of monitored indicators by countries and regions (39). At the end of 2015, the MDG 

were exchanged for the Sustainable Development Goals (SDG 2015-2030). These new 

development goals have now been broadened to include many societal sectors, and are 

relevant for low-, middle- and high-income countries. The newly launched UN Sustainable 

Development Goal 3 (40) sets as a target the reduction of child mortality and “by 2030, end 

preventable deaths of newborn and children under five years of age, with all countries 

aiming to reduce neonatal mortality to at least as low as 12 per 1000 live births and under-

five mortality to at least as low as 25 per 1000 live births”. There is an ongoing debate in the 

global health community whether the SDG will be able to strengthen the health pillar in 

development, since health was represented in three of the eight MDG, and now only in one of 

the seventeen SDG (41). WHO argues that health is an integral part of many of the other 
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SDGs and has proposed indicators to follow the progress of this issue (42). In the report 

“Health in 2015: from MDG to SDG”, WHO points out the importance of a well-functioning 

health system for sustainable development (39). Of the thirteen SDG health goals, nine are 

measurable indicators, and the last four are means of implementing targets. One of these 

targets is related to vaccines and says: “Support the research and development of vaccines 

and medicines for the communicable and non-communicable diseases that particularly affect 

developing countries, provide access to essential medicines and vaccines.” WHO estimated 

that global vaccine coverage for three doses of diphtheria-tetanus and pertussis vaccine 

(DTP-3) was 86% in 2014, while only 31% for pneumococcal vaccine and 19% for rotavirus 

vaccines (43). 

Achieving high vaccination coverage requires a well-functioning health system that also 

covers disadvantaged and hard-to-reach areas. In the evaluation of the progress of the MDGs 

it was concluded that not enough attention had been focused on strengthening health systems 

and that there was too much focus on reaching targets instead of achieving equity (39). This 

means that although an overall indicator in a country may have a positive development, the 

poorest and most disadvantaged people may experience no improvement at all. Therefore one 

ambitious indicator in the SDG health goal is: “Achieving universal health coverage, 

including financial and risk protection, access to quality essential health care services and 

access to safe, effective quality and affordable medicines and vaccines for all.” 

1.1.4 Health systems  

A health system can be defined as “all organizations, people and actions whose primary 

interest and focus is to promote, restore and maintain health” (44). Strong health systems are 

fundamental to achieve good health for populations in any society as described in the WHO/ 

Alliance for Health Policy and Systems Research report from 2009 (44). The various health 

system building blocks in the model (figure 2) cannot operate alone, but need coordinated and 

connected interaction with the other blocks – a system. The conditions for health systems in 

low- and high-income countries are vastly different with regard to for instance health 

financing, access to human resources and service delivery. Weak health systems do not 

manage to deliver the needed health care, particularly to the poorest and most rural 

populations. Any added burden on a weak health system, for example the introduction of a 

new vaccine, may exhaust not only financial, but also logistical and human resources, and a 

health systems approach is therefore needed in any such decision.  

The introduction of new vaccines into child vaccination schedules has been proposed as a 

vehicle for strengthening health systems. However, this issue is complex and more research is 

needed in order to make appropriate adjustment necessary to get the most positive effects 

possible on immunization and health systems when introducing new vaccines as described in 

a recent SAGE report (45). The benefits for health systems of implementing new vaccines 

may include added resources for new refrigerators, roads built and strengthened logistical 

chains. The Global Alliance for Vaccine Initiative (GAVI) supports eligible countries in their 

efforts to introduce new vaccines by negotiating reduced vaccine prices and trying to identify 
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problems in the health system that need to be addressed before a vaccine is introduced, and 

also by providing support to countries by helping to make improvements in their health 

systems’ performance.  

Figure 2. The building blocks of the health system - a dynamic architecture and interconnectedness. WHO 

framework. (44) 

1.1.5 Introducing new vaccines  

Introducing a new vaccine into a national childhood vaccination program is a multifaceted 

and complicated task that demands skilled people with multidisciplinary competences, from 

the fields of policy and science to logistics and communication. WHO published a report on 

principles and considerations for adding new vaccines to national immunization programs 

(figure 3) (46). It is a fourteen step process that resembles the health system framework by 

Don de Savigny et.al. described above (figure 2) but which also adds details to each step 

and points out the importance of knowing disease burden and its distribution in the 

population, as well as adverse events, monitoring and evaluation. The process is similar in 

low- and high income countries, regardless of differences in resources. However, evidence 

regarding vaccine efficacy and effectiveness is useful and important knowledge for both 

settings. The disease burden is often higher in low income countries which makes the 

potential impact of a vaccine easier to show. On the other hand, some population based 

surveillance systems in high income countries may make monitoring of effectiveness after 

implementation of a new vaccine more feasible, even though the vaccine preventable 

disease incidence is lower. Results from efficacy-, and even more so effectiveness 

evaluations, of vaccines do not always carry over between high and low income countries. 

Some vaccines, like rotavirus vaccines, have been shown to have a vaccine efficacy (VE) of 

40-60% in low income countries, while it has a VE of 80-90% in high income countries. 

The reasons for this lower VE are not fully understood, but may have to do with differences 

in intestinal flora, malnutrition, differences in food intake etc. Pneumococcal conjugate 

vaccines seem to have a more equivalent efficacy for the serotypes included in the vaccines 

in different contexts (25, 47). 
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Figure 3. Framework for adding new vaccines to national immunization programs, adapted from WHO 

2014 (46) 

 

1.1.6 Global Vaccine Action Plan - GVAP 
MDG4 

The Decade of Vaccines was endorsed by 194 member states at the World Health Assembly 

in May 2012. It contains an action plan called The Global Vaccine Action Plan (GVAP) and 

stretches from 2011 to 2020 (48). If the goals are reached it is estimated that between 24.6 

and 25.8 million lives will be saved before the end of the Decade of Vaccines.    

The goals of the GVAP by 2020 are to: 

 Achieve a world free of poliomyelitis; 

 Meet global and regional disease elimination targets (for measles, neonatal tetanus, 

rubella and congenital rubella syndrome); 

 Meet vaccination coverage targets in every region, country and community; 

 Develop and introduce new and improved vaccines and technologies; 

 Exceed the Millennium Development Goal (MDG) 4 target for reducing child 

mortality. 

The strategic objectives for the GVAP are. 

 All countries commit to immunization as a priority. 

 Individuals and communities understand the value of vaccines and demand 

immunization as both their right and responsibility. 

 The benefits of immunization are equitably extended to all people. 

Improved health of the 
population due to equitable 

access, high coverage, quality 
and safety of newly introduced 

vaccine into the vaccination 
program

1. Program 
objectives 
and targets

2.Target 
population 

defined 
+delivery 
strategy

3.Policy 

4. Financial 
considera-

tions

5. Situation 
analysis

6. National 
coordination 
mechanism

7. Vaccine 
procurement 
&distribu-

tion

8. Cold 
chain & 
logistics

9. Waste 
management 
& injection 

safety

10. 
Monitoring 

and 
evaluation 

11. Health 
worker 
training 

12. Disease 
burden 

surveillance

13. 
Adverse 

event 
monitoring 
& reporting 

14. 
Advocacy, 

communicat
ion& social 
mobilization



 

 7 

 Strong immunization systems are an integral part of a well-functioning health system. 

 Immunization programmes have sustainable access to predictable funding, quality 

supply and innovative technologies. 

 Country, regional, and global research and development innovations maximize the 

benefits of immunization. 

The Strategic Advisory Group of Experts (SAGE), WHO´s technical advisory group on 

immunizations, is monitoring the GVAP and in its last report from 2015 (49) Uganda was 

among the top ten countries with most children un-immunized against diphtheria-tetanus- 

pertussis (DTP-3). The other countries were India, Nigeria, Pakistan, Indonesia, Ethiopia, the 

Democratic Republic of Congo, the Philippines, Iraq and South Africa. Much effort is still 

needed to increase vaccination coverage of these older vaccines in these countries. 

The Global Alliance for Vaccine Initiative (GAVI) provides crucial support to low-income 

countries to introduce immunization using newer vaccines that are still underutilized. These 

are vaccines that may improve child survival, for example the rotavirus vaccines and the 

pneumococcal conjugate vaccines (13). GAVI, in view of the high pneumococcal disease 

burden and high pneumonia mortality, created the pneumococcal advanced market 

commitment, in collaboration with donors and the pharmaceutical industry, in order to 

support the development and production of affordable pneumococcal vaccines. The ambition 

was to prevent 7 million childhood deaths by the year 2013 (50). 

1.1.7 Streptococcus pneumoniae – the bacteria 

Streptococcus pneumoniae is a gram-positive, extra-cellular, facultative anaerobic bacterium, 

often called pneumococcus. It is identified in laboratories by its colony morphology, often 

crater-like and alfa-hemolytic, which is shown as a light halo around bacterial colonies as 

they grow on blood agar plates, due to the production of hydrogen peroxide by the bacteria. 

(figure 4). Pneumococcus is optochin susceptible and bile/deoxy chocolate soluble; this forms 

the basis for routine detection tests (51).  

Pneumococci are grouped according to immunological similarities into so-called serogroups. 

These serogroups are given a number, for example 19 or 23. The pneumococci are then 

further classified into serotypes based on their polysaccharide containing capsule, named with 

a letter, for example 19A or 23F. The serogroups and serotypes are identified based on 

reaction to specific antisera.  

Pneumococcal bacteria have several virulence factors that contribute to their pathogenicity 

that are also central to their capacity to cause disease. These include polysaccharides surface 

antigen included in the bacterial capsule, surface proteins (pneumococcal surface protein A 

(PspA), pneumococcal surface protein C (PspC), autolysin (LytA) and pneumococcal surface 

adhesion (PsaA), excreted proteins (IgA protease), and cytoplasmic proteins (pneumolysin) 

(30, 52). The mechanisms of these virulence factors are explained in the following list:   
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 PspA blocks the binding of complement component C3, thereby hindering the 

opsonisation and phagocytosis of the pneumococcal bacteria.  

 PspC mediates adherence of the bacteria to the cell of the epithelium of the host. It 

also binds IgA and factor H, further inhibiting the immune defense of the host.  

 Autolysin, LytA leads to cell wall auto-destruction so that intracellular cytoplasmic 

pneumolysin can be released.  

 Pneumolysin is a cytoplasmic toxin that binds to cholesterols in the cell wall of the 

host cells, opening the cell wall and thereby leading to the lysis of the host cell.  

 PsaA is an extracellular membrane protein that transports magnesium into the cell.  

 IgA protease targets human immunoglobulin A, which is important in the respiratory 

immune defense of humans.   

 Pili, filamentous surface structures, which are expressed on some, but not all 

pneumococcal isolates, seem to enhance bacterial adhesion and thereby help in 

colonization. 

However, the most important virulence factor in the pneumococcal bacteria is its 

polysaccharide capsule, which forms the outer surface layer. Un-capsulated pneumococci 

are normally not virulent, except in immunocompromised patients. The polysaccharides 

are covalently attached to the cell wall, and most are highly charged and highly anti-

phagocytic. The polysaccharide capsule defines which serogroup and serotype the 

pneumococcal bacteria belongs to.   

Figure 4. Pictures of alfa-hemolytic pneumococcal colonies on agar gel, optochin susceptibility and the 

pneumococcal formation as a diplococci.*  

 

*Pictures from freely available ppt presentations from the former PneumoADIP initiative 

(http://www.preventpneumo.org/about_us/).  

1.1.8 Pneumococcal serotypes  

To date, there are 46 known serogroups and 97 serotypes of pneumococcus identified (53). 

The serotype capsules are made up of repeated units of two or more monosaccharides, but 

may also be branched with side chains. The capsule thereby vary in thickness and ability to 

activate the complement pathways, and in ability to induce an antibody response, and 

therefore to resist phagocytosis (9). Consequently, the serotypes' association with invasive 

disease varies. Invasiveness does not always lead to high case-fatality. Some serotypes with 

high invasive disease potential cause low mortality and conversely, some serotypes with low 

http://www.preventpneumo.org/about_us/
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invasiveness may have a high case-fatality rate (54). Before vaccination with PCVs, 6-11 

serotypes caused more than 70% of all invasive pneumococcal infections (IPD) as described 

in a systematic review with data from 70 countries (14). The most common serotypes in IPD 

in descending order were: 14, 6B, 1, 23F, 5, and 19F. The disease caused by specific 

serotypes differs depending on which age groups they cause disease in, and in the clinical 

outcome (disease syndrome and severity). Serotypes also vary naturally with time and 

geography (55, 56). Some of the characteristics of selected serotypes are listed in table 2. 

Table 2. Characteristics of selected commonly isolated serotypes of pneumococci in invasive disease and 

carriage, and which vaccines (PCV) cover the different types. 

Serotype 

 

Vaccine-

type 

or non-

vaccine 

type* 

Mainly 

isolated 

in IPD or 

carriage or 

both 

Clinical importance and comments (references) 

4 PCV7 IPD Frequently causing septicemia (57) 

Found in both children and adults (58) 

6B PCV7 IPD Commonly isolated in acute otitis media (9) 

More commonly isolated from CSF than blood (9, 16) 

Commonly found in the youngest children (58) 

9V PCV7 IPD Found in both children and adults (58) 

14 PCV7 IPD Frequently causing septicemia and meningitis (38, 57) 

Commonly isolated in acute otitis media (9) 

Commonly found in the youngest children (58) 

18C PCV7 IPD Cause high mortality (59) 

More common in children than adults (ref) 

19F PCV7 IPD+Carriag

e 

Commonly isolated in acute otitis media (9) 

Commonly isolated in pediatric meningitis and bacteremia (16) 

23F PCV7 IPD+Carriag

e 

Frequently causing meningitis (60) 

Commonly isolated in acute otitis media (9)  

Elderly but also found in both children and adults (58) 

1 PCV10 IPD Frequently causing septicemia and severe pneumonia (57) 

Older children 2-4 years more common than infants (14) 

Affecting younger adults. High invasiveness but low mortality 

(59) Causing empyema (55)  

More common in low than in high income countries (9) 

5 PCV10 IPD High invasiveness (9) 

More common in children than adults (9) 

More common in Africa than in Europe (14) 

7F PCV10 IPD High invasiveness but low mortality (59) 

Found in both children and adults (58) 

3 PCV13 IPD Cause high mortality (59) 

Frequently causing middle ear infection and severe pneumonia 

(57) Causing empyema (55)  

Found in both children and adults (58) 

6A PCV13 IPD Cause high mortality (59) 

Frequently causing meningitis (60) 

19A PCV13 IPD Frequently causing middle ear infection (57) 

Causing empyema (55) 

10A NVT Carriage More commonly isolated from CSF than blood (9) 

11A NVT Carriage Cause high mortality in elderly and risk-groups (59) 

22F NVT Carriage+IP

D 

Cause meningitis in adults (61) 

* PCV7, 10 and 13 means that this serotype is included in respective pneumococcal conjugate vaccine (PCV), 

see table 3. NVT are not included in any PCV.  



 

10 

In general, serotype specific antibodies are protective, and immunity develops after an 

infection. There is a small degree of cross protection between certain similar serotypes, such 

as 6B and 6A (62). Between others, however, even within the same serogroup, little or no 

cross protection has been seen, for example 19F and 19A (63, 64). Certain serotypes, such as 

6B, 9V, 14, 19A, 19F, and 23F, are more commonly associated with antimicrobial 

resistance than others (55, 65). These serotypes are more often isolated from middle ear 

infections as compared to other serotypes, probably because they are carried for a longer 

period, with probable high exposure to antibiotics. This is as an effect of the common 

treatment of otitis media with antibiotics. Pneumococci in the upper respiratory tract 

mucosa are easily accessible to antibiotics (9).  

Capsular switch is a phenomenon whereby the pneumococcal bacteria change their capsular 

expression of serotype by a genetic shift of material. This has been suggested to be caused 

partly by selection under antibiotic pressure or pneumococcal vaccines, but is also part of the 

genius natural evolution of the pneumococcal bacterium (66, 67).  

1.1.9 Pneumococci – an interplay between carriage and illness 

Pneumococci are spread by aerosol, droplets or direct contact from person to person. Even 

though invasive pneumococcal disease is a severe disease, the pneumococcal bacteria may 

also merely cause asymptomatic colonization in the upper respiratory tract. Colonization is a 

prerequisite for invasive pneumococcal disease (figure 5). The pneumococcal bacteria attach 

to the epithelial cells of the nasopharyngeal mucosa and either stay as a harmless colonizer 

for days, weeks or months, or spread locally to the ears, sinuses, or via the respiratory tract to 

the lungs. The bacteria become more harmful if they penetrate the mucosal wall and enter the 

blood stream where they may cause septicemia and sometimes spread further via the blood 

stream to cause osteomyelitis or, if crossing the blood-brain barrier, cause meningitis (30, 

68).  

Carriage of pneumococci is both age and serotype dependent (9). Carriage is more prevalent 

under the age of five years, peaking in children from 1 to 3 years of age, ranging from 23-

85% of the children being colonized (25), while it is less than 10% among adults (30). 

Carriage prevalence have been shown to be higher in low- and middle income countries than 

in high income countries (69, 70). IPD is higher in populations with the high carriage 

prevalence in low- and middle income countries (33). Also, IPD incidence is highest in 

children under 2 years of age. The carriage stage may be considered to be the stage where 

humans build up their immunity against different pneumococcal serotypes (9, 71). This 

protective immunity is shown with a markedly lowered incidence of IPD after five years of 

age, which lasts until about the age of 65. 
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Figure 5. Progression and spread of pneumococcal bacteria (72, 73)* 

 
 
*Pictures from freely available ppt presentations from the former PneumoADIP initiative 

(http://www.preventpneumo.org/about_us/).  

 

1.1.10  Risk factors for pneumococcal disease  

One of the main risk factors for pneumococcal disease is age, both low and high. Children 

under the age of 2 years are at the greatest risk for severe disease, followed by age groups 

above 65 years, as mentioned earlier. Young children who spend time in crowded settings 

such as day-care centers are at higher risk of IPD. Boys, particularly those under 2 years, are 

at higher risk of invasive pneumococcal disease than girls (52, 74).  

Immunocompromised persons are at high risk of morbidity and mortality due to 

pneumococcal infection. This includes those infected with HIV, malignancies, or with lack of 

an anatomical or functional spleen. Individuals with sickle cell disease, diabetes or chronic 

heart, lung or liver disease are at higher risk of severe disease and complications due to 

pneumococcal diseases. There may also be recurrent pneumococcal diseases in patients with 

skull defects after fracture, patients with cerebrospinal leaks, patients with cochlear implants 

or with immunodeficiency (75, 76).  

In a recent systematic review of risk factors for mortality due to lower respiratory infection in 

low- and middle income countries, the following were associated with increased mortality: 

having very severe pneumonia, age below two months, underlying chronic diseases, HIV 

positivity, young maternal age, low maternal education, low socio-economic status, second-

hand smoke exposure, and indoor air pollution (77). Protective factors were immunization, 

and good antenatal practices (77). 

http://www.preventpneumo.org/about_us/
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1.2 MANAGEMENT OF PNEUMOCOCCAL DISEASE 

Protect, Prevent and Treat is a WHO/UNICEF slogan employed in the effort to increase the 

use of life-saving interventions against pneumonia and diarrhea in a program called Global 

Action Plan for the Prevention and Control of Pneumonia and Diarrhea (GAPPD) (78). This 

plan includes targets with precise indicators that are followed in all countries with a high 

burden of these two diseases. In 2009 the Global action plan for the prevention of pneumonia 

(GAPP) was launched, and from the year 2013 diarrhea was added to the plan. Preventive 

measures in focus in this plan are high coverage of vaccination, prevention and management 

of HIV infection, improvement of nutrition and breastfeeding, reduction of children born with 

low birth weight, and reduction of indoor air pollution (79). The plan also focuses on quality 

case management. Even though effective antibiotics exists, pneumococcal pneumonia is still 

estimated to cause nearly a fifth of all deaths in children under five years of age, and further 

preventive measures are clearly needed to limit the disease burden (80, 81). In 2013, Lancet 

published a series of articles on the epidemiology of pneumonia and diarrhea and what public 

health actions possible and needed (13, 47). This thesis focuses of the impact and potential 

impact of pneumococcal conjugate vaccines (PCV) on pneumococcal disease. The 

framework by Bhutta et. al. in figure 6, however, put the use of PCVs in a perspective, as one 

important piece in a larger plan of public health actions needed to lower mortality and 

morbidity due to pneumonia.  

Figure 6. Protection, prevention and management of pneumonia. Framework by Bhutta et al. adapted by 

Lindstrand. Interventions to address deaths from childhood pneumonia and diarrhea equitably: what 

works and at what costs? Lancet 2013 (47) 
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1.2.1 Prevention of pneumococcal disease 

Preventive measures, other than pneumococcal vaccination, include exclusive breastfeeding 

for six months. To avoid malnutrition, which is a major risk factor for pneumonia, it is crucial 

to give nutritious complementary feeding alongside continued breastfeeding as the infants 

adapt to eating solid foods. Vitamin A supplementation is important as it has an 

immunomodulatory effect and has been shown to decrease both incidence and mortality from 

pneumonia (47, 82).  

As pneumococcal disease may evolve as a secondary infection after influenza and measles 

infection, vaccination against these diseases also helps to reduce the burden of pneumococcal 

disease (83). According to the framework above (figure 6) on the management of pneumonia, 

it is also important to include vaccination against H.influenzae type b in national vaccination 

schedules to prevent pneumonia, as it causes 16% of all pneumonia deaths (8, 47).  

Other known risk factors for pneumococcal disease such as tobacco smoke exposure and 

indoor air pollution, are two factors which are preventable risks for pneumococcal disease 

(84).  

1.2.2 Treatment of pneumococcal disease and antibiotic resistance  

Penicillin, discovered in 1928, has been used as the treatment of choice for pneumococcal 

disease since the 1940s (52). It was not until the 1970s that pneumococcal resistance towards 

penicillin started to appear, and since then, resistance has become widespread. Penicillin, a β-

lactam antibiotic, as treatment against meningeal pneumococcal disease with intermediate or 

fully resistant strains, needs to be replaced with another type of antibiotic. Non-meningeal 

disease may, however, still be treated with higher doses of penicillin. Another strategy is to 

combine different types of antibiotics. Antibiotic resistance against macrolides, trimethoprim, 

fluoroquinolones, and vancomycin is however increasing (27). In pneumococcal isolates from 

IPD cases in children <18 years of age in a European review from 2010, the proportion with 

penicillin G non-susceptible was 31% (range 0% in Sweden and Finland, to 48% in France) 

(16). IPD isolates in children <5 years old were resistant in 35% (range 7-53%) of cases for 

erythromycin and in 9% (range 0-36%) for cefotaxime or ceftriaxone, in the same review.  

In Sweden and the Nordic countries, antibiotic resistance is still at low levels (85). Penicillin 

is therefore recommended in treatment guidelines as first-line antibiotic of acute otitis media, 

sinusitis and community acquired pneumonia in Sweden (86). For community acquired 

pneumonia in children < 5 years old, the recommendation is penicillinV 20 mg/kg three times 

a day for seven days, or alternatively amoxicillin 15 mg/kg three times a day for five days. In 

a study in Uganda in 2008, 99% of pneumococcal strains carried by young children showed 

resistance towards trimethoprim sulphamethoxazole (co-trimoxazole), while 80% showed 

intermediate resistance towards penicillin (87). Co-trimoxazole was the first-line treatment 

for pneumonia at that time in Uganda, but recommendations subsequently changed to 

amoxicillin in 2010. WHO now recommends oral amoxicillin 40 mg/kg twice daily for 5 

days (3 days in low HIV endemic areas) for treatment of uncomplicated pneumonia, and for 
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severe pneumonia the recommendation is ampicillin 50 mg/kg or benzylpenicillin 50000 

units/kg IM/IV six times daily for at least five days, and gentamycin 7,5 mg/kg once a day for 

at least five days (88).  

Reducing antibiotic resistance is a global priority. Interventions to combat the spread of 

resistance include the development of better diagnostic tools to distinguish between viral and 

bacterial disease, decrease irrational antibiotic use, strengthening of hygienic routines, and the 

use of pneumococcal vaccines (89). The causal relationship between pneumococcal vaccines 

and decreased antibiotic resistance may be through a diminished burden of infections 

requiring antibiotics (otitis media and sinusitis) or by increasing pneumococcal vaccination 

coverage for serotypes carrying antibiotic resistance (90, 91). However, the opposite may 

happen if pneumococcal vaccines were to instead target less antibiotic resistant serotypes, 

which could lead to an increase in antibiotic resistant serotypes or clones (90).  

1.2.3 Pneumococcal vaccines 

There are two different principles behind the two available types of vaccines against 

pneumococcal disease: a vaccine containing only pneumococcal polysaccharides (PPV) and 

different protein-polysaccharide conjugate vaccines (PCV). Both types of vaccine have based 

their antigen content on the serotype specific polysaccharide capsule antigens and include 

different numbers of serotypes.  

Pneumococcal polysaccharide vaccine (PPV) 

The first PPV was introduced in the US in 1977 and included 14 serotype antigens, a so 

called 14-valent vaccine. In 1983 it was changed to a 23-valent vaccine. PPV is given as a 

single dose.  

The immune response to a polysaccharide vaccine is T-cell independent and therefore does 

not induce a memory T-cell function. Instead, immunity is antibody mediated and transient, 

and the activity of serotype specific antibodies and opsonisation decreases after about five 

years (92-94). PPV is effective in reducing invasive pneumococcal disease in 

immunocompetent patients (50% 95%CI 21-69% in age groups >65(95)), less so in 

immunocompromised patients, and a weak or no association has been shown for pneumonia 

in age groups older than 65 (93, 95). Response has been shown to a PPV23 booster dose 5 

years after the first PPV23 dose (96), and revaccination after 5 years is recommended in some 

countries, however there is a lack of data on revaccination effectiveness against IPD for 

healthy elderly persons. Revaccination has been tried, however, in immunocompromised 

patients (25). Furthermore, the vaccine does not induce a mucosal immunity, and therefore 

has no effect on carriage at all (94). Thus it does not contribute to herd immunity. Children 

under the age of two respond poorly or not at all to polysaccharide vaccines due to their 

immature immune system (92, 97). The advantage of the PPV is that it covers more serotypes 

than the PCVs. It is recommended in most high income countries to medical risk groups and 

persons older than 65, and there is increasing evidence that a combination of PCV and PPV is 
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advantageous for high risk groups (92). PPV23 includes all PCV13 serotypes, except 6A, and 

11 additional serotypes (table 3).  

Pneumococcal conjugate vaccine (PCV) 

PCV7, which includes seven serotypes, was first introduced in the US in the year 2000. In 

2009, two new PCVs were marketed, the PCV10 and PCV13, with their respective broader 

coverage of serotype protection. Serotypes included in the pneumococcal vaccines are called 

vaccine types (VT) and the other serotypes are called non-vaccine types (NVT). Here, the 

polysaccharide antigen of each included serotype is chemically bound to a protein carrier. 

This conjugated antigen-protein complex changes the immune response to a T-cell dependent 

response. The vaccine therefore induces an immune memory with a longer duration than the 

PPV and produces a booster response upon subsequent doses of the vaccine (97). The 

duration of protective immunity that is induced by the PCV is, however, not known. PCV10 

includes capsular antigens of 10 serotypes, within which 1, 4, 5, 6B, 7F, 9V, 14 and 23F are 

conjugated to a protein carrier Protein D, serotype 19F to diphtheria toxoid, and 18C to 

tetanus toxoid. Protein D is composed of the outer membrane protein for non-typeable H. 

influenzae, and a significant 33.6% decrease in overall incidence of otitis media, possibly due 

to Protein D, was shown in one earlier study of PCV10 impact (98). This added effect on 

otitis media incidence has also been shown in Australia (99). PCV13 includes capsular 

antigens of 13 serotypes all individually conjugated to a non-toxic diphtheria protein carrier 

CRM 197. Both PCV10 and 13 use aluminum phosphate as adjuvant. PCV13 is licensed in 

Europe for use in all ages, and PCV10 up to 5 years of age. Both vaccines are recommended 

to be given with three primary doses with at least four weeks between doses and a booster 

dose at least six months after the last primary dose (3+1 schedule). Vaccination scheduled 

with two primary doses, two months apart, and one booster dose six months later, may also 

be used (2+1 schedule). Both schedules show a good vaccine efficacy against IPD (100, 101). 

Children in older age groups are recommended fewer PCV doses depending on age and type 

of vaccine.  

In a systematic review from 2009, Johnson et al. showed that Africa and Asia (49 and 51% 

respectively) had the lowest PCV7 serotype coverage rates (14), meaning covering the IPD 

cases due to the seven serotypes included in the first PCV vaccine developed. Europe and 

North America had much higher PCV7 coverage rates, of 72% and 82% respectively, prior to 

PCV vaccination. In another review, serotype coverage for IPD in children <5 years old in 

Europe pre-PCV, ranged from 67-93% for PCV10 and 56-95% for PCV13 (16).  

Pneumococcal vaccination recommendations  

Since the year 2007, WHO recommends PCV vaccination for all children in the regular 

childhood vaccination program. The recommendations were changed from PCV7 to either 

PCV10 or PCV13 in 2012 (25). WHO states that countries with an under-five mortality of 

more than 50/1000 live births should make the introduction of the PCVs a “high priority”.  
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The US Advisory Committee on Immunization Practices (ACIP) recommends PCV13 for all 

adults >65 years old, followed after one year by a PPV23 (102, 103). It also recommends that 

all medical risk groups below 65 years of age who have had a PPV23 should take a dose of 

PCV13 followed within a year of a second PPV23 (102, 104). In Sweden, current 

pneumococcal vaccine recommendations are being updated, but the suggestion from the 

Public Health Agency includes that medical risk groups of all ages at higher risk of IPD and 

or complications due to IPD should obtain one PCV13 vaccine, followed by a dose of PPV to 

protect against a broader range of serotypes (105).  

Table 3. Vaccines against pneumococcal disease (9) 

Named Serotypes included 

in the vaccine 

Protein carrier Adjuvants and 

antigen content 

Brand name and 

company 

Licensed 

for ages 

PCV7 4, 6B, 9V, 14, 18C, 

19F, 23F  

CRM197 Aluminium 

phosphate 

Prevenar7, Pfizer < 5years 

PCV10 4, 6B, 9V, 14, 18C, 

19F, 23F, 1, 5, 7F 

H influenza protein 

D and tetanus and 

diphtheria toxoid 

Aluminium 

phosphate 

Synflorix, GSK ≤ 5 years 

PCV13 4, 6B, 9V, 14, 18C, 

19F, 23F, 1, 5, 7F, 

3, 6A, 19A 

CRM197 Aluminium 

phosphate 

Prevenar13, 

Pfizer 

All ages 

PPV23  4, 6B, 9V, 14, 18C, 

19F, 23F, 1, 5, 7F, 

3, -, 19A  

2, 8, 9N, 10A, 11A, 

12F, 15B, 17F, 20, 

22F, 33F 

- - Pneumovax23, 

Merck 

All ages > 

2years 

 

Future pneumococcal vaccines 

Concerns arise, due to serotype replacement after PCV implementation, to the long-term 

effects of vaccines that only cover a limited number of serotypes. There are new 

pneumococcal conjugate vaccines at various pre-licensure stages, including higher valent 

PCVs. One 15-valent that has passed the phase I and II trials, includes, apart from the 13 in 

PCV13, also 22F and 33F serotypes (106). 

Finally, and what many pneumococcal experts call for, is a protein based vaccine. Since they 

are directed towards antigens on the pneumococcal cell wall below the polysaccharide 

capsule, they are serotype independent (97). In children from 10 month of age there is 

evidence of a broad increase in immunity against pneumococcal disease, simultaneously 

covering many serotypes, suggesting a serotype independent immunity developing (97). 

Phase I and II studies in Europe and Africa, show initial safety and immunogenicity against a 
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pneumococcal histidine triad D (PhtD) and pneumolysin toxoid (pPly) protein based vaccine, 

also in combination with antigens of 10 serotypes (107, 108). PhtD is expressed on the 

pneumococcal surface and inhibit complement deposition and is important for host 

colonization and invasion. Pneumolysin is an exotoxin involved in bacterial autolysis and 

facilities intrapulmonary bacterial growth and invasiveness. Other interesting pneumococcal 

proteins in focus for vaccine development are pneumococcal choline-binding protein A 

(PcpA) and pneumococcal surface adhesion A (PsaA) (97). A protein sub-unit approach with 

combinations of common proteins is suggested a solution to minimize immune escape, which 

pneumococci is so capable of (109). Another possible approach is using whole cell vaccine 

technology and phase ½ trials are ongoing (110). Any of these candidate vaccines needs to be 

efficient not only on IPD but also on pneumococcal carriage. Close monitoring of vaccine 

escape is then needed to assess if it emerges against pressure conserved protein antigens (97).  

1.2.4 Experiences of conjugate pneumococcal vaccines worldwide 

Evidence from the clinical trials 

The Cochrane review of the efficacy of pneumococcal conjugate vaccines studied in six 

randomized controlled trials in Africa, US, Philippines and Finland with more than 57,000 

children receiving PCV7 and 56,000 placebo, concludes a good efficacy of PCV7 against 

IPD and x-ray confirmed pneumonia (111). The pooled vaccine efficacy (VE) in children <2 

years against VT-IPD was 80% (95% CI 58-90%), all-type IPD 58% (95% CI 29%-75%), x-

ray defined pneumonia 27% (95% CI 15-36), and clinical pneumonia 6% (95% CI 2%-9%). 

A non-significant decrease in overall mortality by 11% (95% CI -1%-21%) was shown 

(p=0.08) (111). A clinical trial in Gambia was stopped due to the shown efficacy of PCV on 

overall mortality decreasing by 16% (95% CI 3-28%) (20). 

A large double blinded RCT of PCV10 in Latin America in children (n=24000) showed a 

wide effect against pneumococcal disease from an infant 3+1 schedule after 23 months of 

follow-up. Vaccine efficacy (VE) was 22% (95% CI 7.7-34%) for bacterial community 

acquired pneumonia, 67.1% (95% CI 17-87%) for serotype confirmed acute otitis media, 

100% (95% CI 74-100%) for vaccine type IPD, and 65% (95% CI 11-86%) against any IPD 

(112). 

One randomized double blind, placebo-controlled trial has evaluated the effect of PCV13 on 

adults older than 65 years (n=84 495) on pneumococcal pneumonia (113). This so-called 

CAPITA study in the Netherlands showed a vaccine efficacy of 75% (95% CI 41-91%) 

against IPD due to vaccine-type strains, 44% (95% CI 22-62%) against vaccine-type 

community acquired pneumonia, and 45% (95% CI 14-65%) against vaccine-type non-

invasive, non-bacteremic community acquired pneumonia. No effect of the PCV13 on 

mortality was shown compared to the placebo group (113). 
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Effectiveness studies  

Experiences of PCVs in national childhood immunization schedules show a similar pattern of 

a rapid decrease of IPD incidence in vaccinated age groups, followed by a more slow 

decrease in unvaccinated age groups, a so-called herd effect. Feikin showed in a meta-

analysis of 21 surveillance site datasets from 16 high-income countries, that incidence of IPD 

in children <5 years old decreased the first year of the program to RR 0.55 (95% CI 0.46-

0.65) and remained stable for seven years. This overall decrease in IPD in children <5 years 

was mediated by VT-IPD decreasing annually to RR 0.03 (95% CI 0.01-0.10), but non-

vaccine type (NVT)-IPD increased to the 7th year RR 2.81 (95% CI 2.12-3.71). This, however 

did not counterbalance the positive VT effect. The meta-analysis also showed a decrease in 

VT-IPD in all other age groups within seven years after introduction, but a barely significant 

decrease in overall IPD due to increase in NVT-IPD (114). Fitzwater et al. reviewed the 

effect of PCV7 in nine high–income countries and found that incidence of VT-IPD in young 

children decreased with 79-97%, and the decrease in IPD of all-serotype was between 38-

80%. They also saw a decrease in hospitalization due to all-cause pneumonia by 13-65% and 

an impact of all-cause otitis media by between 13-42% (115). 

In a cluster randomized trial in Finland, PCV10 effectiveness was evaluated in children 3-18 

months using the schedules 3+1 or 2+1 (116). Of the 47,366 participating children, 30,527 

were assessed for effectiveness against IPD. Vaccine effectiveness (VT) for children <1 year 

after about 2 years of follow-up was 100% for children with 3+1 schedule and 92% for 

children with 2+1 schedule (116). Palmu et al. continued to study the vaccine effectiveness 

on clinically suspected IPD cases through national registry data excluding the laboratory 

confirmed cases. They observed a 71% (95% CI 52-83%) vaccine effectiveness after the 

diagnosis of the patients with suspected IPD were verified in medical records. They 

concluded that the incidence rate of laboratory confirmed IPD was markedly lower than the 

clinically suspected IPD incidence and that the true vaccine effectiveness is underestimated 

using only laboratory confirmed cases (117).  

PCV effect on carriage 

The overall pneumococcal carriage prevalence has, in most countries, not decreased 

significantly after PCV introduction. However, there is switch from VT to more dominance 

of NVT in the countries where this has been studied (115, 118-122). Carriage of VT 

pneumococcal serotypes was shown to be reduced in a recent systematic review by Fleming-

Dutra et al., for the PCV schedules of 2+0, 2+1, 3+0, and 3+1 (123). Another review 

including 16 RCTs by Nicholls, showed no change in VT carriage after the first one or two 

doses, but that the changes in decrease of VT and increase of NVT, appears only after the 

second dose at and after about 7 months of age (124).  
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Antibiotic resistance 

Following the introduction of pneumococcal conjugate vaccines, there has been a decrease in 

antibiotic resistance in serotypes causing IPD and in carriage (65). However, before the 

switch from PCV7 to higher valent conjugate vaccines, the antimicrobial resistant prone 

serotype 19A increased in, for example, the US and Israel (125, 126). 

Serotype replacement=replacement in disease? 

S.aureus and S.pneumoniae are both common colonizers in the nasopharynx, and both give 

rise to serious disease. S. aureus causes skin infections, endocarditis and toxic shock 

syndrome (127). Since PCV decreases the VT pneumococci in carriage, there is rising 

concern that S.aureus will not only replace S. pneumoniae in the nasopharynx, but that it will 

rise as a cause of disease. This fear of replacement leading to replacement disease has mainly 

proved unsubstantiated (127). Studies from the randomized control PCV trials in the 

Netherlands show a shift in the microbiota of the nasopharynx, but the rise in S. aureus 

following PCV was transient and had disappeared by the age of 24 months (128). In post-

licensure studies there has been a reported shift in etiology of rhinosinusitis (129, 130) and a 

rise in incidence of empyema as a complication after pneumonia (131). This needs close 

monitoring as S aureus emerging may cause more complications and carry antibiotic 

resistance problems in treatment. 

Serotype replacement after PCV implementation resulting in increase in NVT pneumococcal 

serotype, may however, result in replacement disease if the emerging NVT carry a high 

invasiveness potential (132). It may also be that IPD disease will change in its clinical 

character or age of onset if the emerging serotypes expand in ages and in 

immunocompromised groups of individuals who are more vulnerable to disease by those 

NVT (132).  

Viral co-infection, for example between influenza and S. pneumoniae  is associated with 

pneumococcal pneumonia (133). PCV may therefore, as an additional benefit, decrease 

complicating pneumonia after influenza and other viral infections (83).  
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1.3 CONCEPTUAL FRAMEWORK 

Pneumococcal disease needs to be managed at many different levels in society and in the 

health care system, as explained in the background of this thesis. Pneumococcal vaccines is 

one intervention needed in an integrated approach. 

The current thesis focuses on pneumococcal disease and carriage, and explores the impact or 

the potential impact of pneumococcal conjugate vaccine in two very different contexts: 

Sweden and Uganda. 

The conceptual framework below outlines the domains, research questions, studies and 

papers included in the thesis: 

Figure 7. Conceptual framework of the thesis. 
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1.4 STUDY RATIONALE 

Pneumonia is the major cause of death in children worldwide. If the Sustainable 

Development Goals of an under-five mortality rate of less than 25 per 1000 live births is 

going to be achieved before 2030, a considerable renewed and combined effort is needed in 

all areas of protection, prevention and treatment from community to tertiary level health care 

in low-income countries. Vaccines are one of the most cost-effective interventions in public 

health. WHO and UNICEF have estimated that 2-3 million children’s lives are saved yearly 

due to vaccination against measles, diphtheria, tetanus, and pertussis (43). Higher coverage of 

equitably and safely distributed vaccines is therefore a priority. (47). 

Similarly to the new rotavirus and human papillomavirus vaccines currently being 

implemented at a global level, the pneumococcal vaccines do not cover all sero- and 

genotypes affecting humans. There are 97 different serotypes that may cause disease, varying 

in severity by age and risk groups. The ecological niche, or microbiota, in the nasopharynges 

of young children harbor and transmit disease. Since the PCVs only reduce 10 or 13 

serotypes in carriage and invasive pneumococcal disease, with a small degree of cross 

protection, inevitably there will be a new equilibrium of pneumococcal strains evolving after 

PCV immunization in children. With newer generations of PCVs covering more serotypes, 

we will see even greater effect on the nasopharyngeal microbiota and consequently effects on 

IPD and herd protection, and possibly on other infectious diseases. This so-called “ecological 

experiment” is important to monitor in order to give information for future vaccine choices 

and policies, as well as information concerning future need of treatments for the diseases that 

develop. 

Few places have the opportunity to do quality surveillance in population based studies on 

both carriage and IPD in the same population and at the same time. In Stockholm County, 

Sweden, this was possible, both pre-and post-PCV implementation. In the Health and 

Demographic Surveillance Site in Iganga/Mayuge districts in Uganda, we could do 

population based carriage studies pre-vaccination, and use this data to calculate the potential 

vaccine efficacy. 

Knowledge is still lacking from large, longitudinal population based studies on the 

effectiveness of PCVs in low-, middle-, and high-income countries, and on how to further the 

understanding on what is the long-term impact of an altered pneumococcal epidemiology, 

due to a change in the ecological niche. This is needed in order to further adapt vaccine 

policies and decrease mortality in children due to pneumococcal disease. This thesis 

addresses this lack of knowledge. 
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2 AIMS AND OBJECTIVES 

 

General Aim: 

To increase knowledge of the possible impact of pneumococcal conjugate vaccination on 

invasive pneumococcal disease, pneumonia, and sinusitis, as well as impact on carriage in 

healthy children 

 

Specific Objectives: 

To study the impact of the pneumococcal conjugate vaccine on pneumococcal carriage, on 

hospitalization trends and complications of pneumonia and sinusitis in children, as well as 

incidence, serotypes and resistance patterns of invasive pneumococcal disease (IPD), after 

introduction into the general vaccination program in Stockholm, Sweden  

To study pneumococcal carriage and serotype distribution in healthy children <5 years prior 

to PCV introduction in Uganda, and estimate the potential effectiveness of the PCV 

 

Research Questions: 

 What is the impact of the introduction of PCV on invasive pneumococcal disease 

(IPD) incidence, serotype distribution, and pneumococcal antibiotic resistance in 

Sweden? 

 What is the impact of PCV on hospitalisation trends and complications of pneumonia 

and sinusitis in children in Sweden?  

 How does the introduction of PCV drive changes in colonizing Streptococcus 

pneumoniae serotypes and resistance patterns in preschool children in Sweden?  

 Which pneumococcal serotypes colonized healthy children in rural Uganda before 

PCV introduction?  

 To what extent do available PCV cover the circulating serotypes in Sweden and in 

Uganda?  
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3 MATERIALS AND METHODS 

3.1 STUDY AREAS AND POPULATIONS 

Studies I to III were carried out in Stockholm County in Sweden and study IV was carried out 

in a Demographic and Health Surveillance site (HDSS) in Iganga/Mayuge districts in the 

southeastern part of Uganda.  

Stockholm County  

Stockholm County had a population of 2.2 million in 2015. Of these, 22% were under than 18 

years of age, and 7 % under five years (Statistics Sweden, www.scb.se). Stockholm, being the 

capital of Sweden, is mainly urban, but about half of its population lives in suburb 

municipalities. The total area of the Stockholm County is 6519 km2. Data for the three studies 

were collected from 2003 to 2015 in this region. PCV7 was introduced, free of charge, for all 

infants born from the 1st of July, 2007 at age 3, 5 and 12 months, concomitantly with the 

hexavalent vaccine (DTaP-polio-Hib-HepB) or pentavalent (DTaP-polio-Hib) offered at 

Child Health Centers. This was started 15 months before the inclusion of the PCV in the 

national child vaccination schedule. In January 2010, PCV7 was exchanged for PCV13. No 

catch-up vaccination of older children had been offered. If a child had started the vaccination 

series with PCV7 it was changed to PCV13 in the final doses.  

Health and Demographic Surveillance Site in Iganga/Mayuge districts 

The Health and Demographic Surveillance Site (HDSS) is located 112 kilometers from the 

Ugandan capital, Kampala. Its total area is 155 km2 out of which 90% is considered rural. 

There are 65 villages in the HDSS, with a population of 70,000 living in 13,000 households. 

11,000 children are under the age of five years, which is about 16% of the total population. 

As in most low-income country settings, the major cause of death in the HDSS, apart from 

death due to neonatal causes, are pneumonia, malaria and diarrhea (134, 135). There are 13 

health facilities and 121 pharmacies and private clinics serving the area. Our study IV was set 

in the pilot (2008), the baseline (2009) and the follow-up (2011) of a cluster randomized 

controlled trial cRCT that evaluated the impact of integrated community case management 

(iCCM) of malaria and pneumonia in children using antimalarials and antibiotics. In this trial, 

half of the villages were randomized to continue the national program with Community 

Health Workers (CHW) treating malaria in the villages and half of the villages to treat 

malaria, and additionally, pneumonia with amoxicillin. In April 2013, with the financial 

support of GAVI, PCV vaccination was launched in Iganga as the first district in Uganda. It 

was planned to be launched in other districts in a phased manner, but implementation has 

been delayed due to necessary preparations, such as cold chain systems, training of personnel, 

and storage capacity. PCV vaccination was therefore relaunched in January 2014 in 94 of the 

112 districts. It is given simultaneously with other vaccines (DTwP-Hib-HepB and oral polio 

vaccine (OPV)) at 6, 10 and 14 weeks, together with inactivated polio vaccine (IPV), also 
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administered at 14 weeks. Uganda uses the 10-valent PCV. The PCV10 vaccination coverage 

rate of three doses was estimated at 50% nationally in 2015 (136).  

The two study sites and populations represent a high- and a low-income country setting, very 

different in their health and demographic indicators (table 4).  

Table 4. Health and demographic comparison between Sweden and Uganda, estimated in 2014-2015 

Health or demographic indicator  Sweden*  Stockholm** 

County 

Uganda*  Iganga*** 

Mayuge 

Total Population (thousands) 9,800 2,200 37,700 93 

Under five mortality rate (deaths/1000 live 

births) 

3 - 66 114 

Total fertility rate (children/woman) 1,9 1.8 5,9 4.8 

Life expectancy at birth (years) 82 82 57 65 

Maternal mortality ratio (maternal 

deaths/ 100 000 live births) 

4 - 360 253 

Gross national income per capita (PPP# in 

USD) 

44,760 - 1370 - 

*WHO accessed January 2015: http://apps.who.int/gho/data/node.country 

** Center for Epidemiologic Statistics, Stockholm County 

*** HDSS data from 2014 collected at the surveillance site. Due to differences in data collection it may show 

inconsistencies in relation to nationally reported data to WHO. 

# PPP is the purchasing power parity 

Sampling  

In study I, all reported IPD cases in Stockholm County from 2005-2014 were included. In 

study II all hospitalized children with ICD-10 coded exit diagnoses of interest in Stockholm 

County from 2003-2012 were included (specified in paper II). In study III all consenting 

children (2011-2015) and parents (2014-2015) visiting one of the 23 Health Care Centers 

chosen to be geographically representative of the Stockholm County were included.  

Simple random sampling using probability proportionate to population size was only used in 

the HDSS in Uganda (IV). For the 2011 study, the sample size calculations of the cluster 

randomised trial were presented in the paper by Kalyango et al. (137).  

Study I was a cohort study of all reported IPD cases in Stockholm County from 2005 to 2014 

that had cultured pneumococcal isolates. Data on carriage in study I and III was collected 

prospectively from August 2011 to May 2015 in 23 of the largest Health Care Centers, 

chosen to geographically represent different areas of Stockholm County. For convenience and 

http://apps.who.int/gho/data/node.country
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out of respect for the work load of the centers, we collected samples one week at a time at the 

different centers during a week chosen by the center. Each center was visited once per 

semester, and there had to be a month’s interval between samples for a child to be sampled 

twice. In study III, IPD cases from Stockholm County in study I from August 2011 to 

December 2014 and an additional five months during January-May 2015, was used to 

calculate the invasive disease potential of colonizing pneumococcal strains.  

Study II was a retrospective hospital register study of all children hospitalized in Stockholm 

County due to pneumonia, sinusitis and empyema.  

Study IV consisted of cross-sectional surveys, with repeated collection of nasopharyngeal 

samples during a three year period, in healthy children under 5 years of age in 

Iganga/Mayuge HDSS. 

3.2 DATA SOURCES AND COLLECTION  

3.2.1 Mandatory reporting of IPD cases and strain collection (I) 

It has been mandatory to report all cases of IPD since 2004 in Sweden. Cases have to be 

reported both by clinicians and microbiological laboratories. The patient is reported with his 

or her national personal identification number, which makes it possible to merge the 

laboratory and clinical reports. It is entered into software called SmiNet, accessed only after a 

personal identification control of authorized health professionals. The County Council 

medical officer and the Public Health Agency have full access for surveillance at County and 

national level, respectively.  

Microbiological laboratories that performed the initial isolation of the pneumococcal strain 

sent the strains to the Public Health Agency of Sweden, Department of Microbiology, where 

serotyping and molecular typing were performed.  

3.2.2 Register data (II, IV) 

In study II, hospital registry data on discharge diagnosis was collected for all children 0-17 

years of age hospitalized for pneumonia, sinusitis and empyema. Consequently we identified 

all children whose discharge diagnoses (first or secondary diagnosis) were coded as bacterial 

pneumonia, sinusitis or empyema by a senior pediatrician. 

Pyelonephritis was used as the control diagnosis for general hospitalization trends. The 

diagnoses asthma, obstructive bronchitis, RSV infection and viral pneumonia were used to 

control that any change in bacterial pneumonia incidence was not due to a change in tradition 

of how to code a respiratory disease diagnosis. ICD-10 codes for all these diseases were 

identified. Data on age, gender and month of admission was recorded. 

In study IV, data on socio-demographic indicators was collected from the database of the 

HDSS in Uganda. All families in the HDSS area were visited every three months for data 

collection in order to update the database on socio-demographic indicators. All children in the 
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HDSS database had an individual identification number that was connected to the household. 

Data on age, gender of the sampled child, and wealth quintile (87) of the household was 

collected from the database.  

3.2.3 Questionnaires (I, III, IV) 

Questionnaires were used in study I, III and IV. In study I, questionnaires were sent to 

reporting clinicians for all IPD cases. The questionnaires for patients older than 17 years of 

age were included (N=790) for 2007-2013. To increase the completeness of the clinical 

information on children, medical records were also studied for all children with IPD below 18 

years of age. In study III all parents to participating children were asked questions on 

medical history and treatment, on-going or in the past. The questionnaire also included 

questions on risk factors for carriage such as having siblings, smokers in the family, lack of 

breastfeeding, having travelled abroad recently, as well as chronic illnesses. In study IV, 

questions focused on medical history and treatment. The answers were recorded, on paper 

during the 2008 and 2011 study and in personal digital computers during the 2009 study, by 

the research assistants during an interview. The questionnaire in 2008 and 2009 were nearly 

identical and limited to less than ten item, but the 2011 study questionnaire was a longer more 

comprehensive questionnaire since it also included in the evaluation of community health 

workers practice and performances and knowledge on malaria and pneumonia disease and 

intervention (137). 

3.2.4 Medical records (I, II) 

Clinical information and the diagnosis was verified in their medical records for all reported 

cases of IPD in children 0-17 years in Stockholm, between 2005 and 2014 (N=161) (study I). 

Information collected included chronic underlying disease, clinical development, 

microbiological results, diagnosis, treatment, and outcome in the form of mortality, recovery, 

or complications lasting more than three months.  

In study II we verified all cases of sinusitis through studying and checking the medical 

records of all cases for a correct clinical diagnosis (N=678). This led to an exclusion of 76 

cases due to incorrect diagnosis (skin infection, conjunctivitis or insect bite) or no clinical 

signs of sinusitis. We also validated 50 cases of pneumonia before and after PCV 

introduction. Concerning frequency of chest x-ray, chronic conditions, and severity, we found 

no major difference pre- and post PCV.  

3.2.5 Nasopharyngeal samples (I, III, IV) 

Nasopharyngeal samples were collected in Sweden and Uganda for study I, III and IV using 

two different methods.  

In Sweden, an electric suction machine was used to collect the nasopharyngeal aspirates. A 

thin catheter was inserted vertically in the nasopharyngeal cavity until it was stopped at the 

posterior wall of the nasopharynx, and a sound of mucus being sucked was heard. We used 

this because our target population was children 0-<5 years, and with 18% of the children 



 

 27 

being below 3 months of age, the suction tube was considered less painful. We also wanted to 

collect a large mucus sample to be able to divide the sample for future research. The mucus 

was divided into three tubes after being placed in three ml of NaCl, and the tubes were kept in 

a cool box at 5-8oC for a maximum of eight hours before arriving at the Microbiology 

Laboratory at Karolinska Institutet, Solna.  

In Uganda, due to covering a large area with unsure electricity supply as well as sampling 

children mainly from 6 months of age, nasopharyngeal swabs were used for specimen 

collection. The swab was introduced vertically in the nasopharyngeal cavity until it reached 

the posterior wall of the nasopharynx, then slightly turned and then removed and placed in a 

sterile Amies medium. They were kept at ambient temperature until arriving, within 12 hours, 

to the Microbiology laboratory of Makerere University Hospital.  

3.3 LABORATORY ANALYSIS  

Strain isolation 

To identify pneumococcal strains both in Sweden and in Uganda, colony morphology, α- 

haemolysis, optochin susceptibility, and deoxy chocolate/bile solubility were used. In 

Sweden, horse blood agar and chocolate agar were used when samples arrived in the 

Microbiologic Laboratory of the Karolinska University Hospital. In Uganda, the Department 

of Microbiology at Kampala University Hospital used sheep blood agar and chocolate agar 

for the initial identification of colonies. The next day colonies were identified and isolated on 

a blood agar plate with tests for antibiotic resistance.  

Antibiotic resistance  

MIC-values, the Minimal Inhibitory Concentration, for penicillin G using discs and Etests 

were used in studies I, III, and IV. In study III we also tested for antibiotic susceptibility 

using discs for erythromycin and clindamycin. In study IV antibiotic susceptibility testing 

was done, and the results were presented for the survey in 2008 (87). These will be presented 

elsewhere for the years 2009 and 2011. The EUCAST system of species-related breakpoints 

was used to classify isolates as sensitive, intermediate or resistant, S, I and R respectively. 

For penicillin G, the MIC breakpoint in mg/L was S≤0.06 and R>2. For erythromycin it was 

S≤0.25 and R>0.05. For clindamycin it was S≤0.5 and R>0.5. 

Serotyping 

Serotyping for all strains (both IPD (I) and carriage (III, IV)) was done by the Public Health 

Agency of Sweden. Serotyping was performed with a gel diffusion method, including 46 

serogroup antisera. Isolated pneumococcal strains were cultured overnight on blood agar 

plates, harvested and diluted in 1% dextrose broth supplemented with 10% horse serum (DS 

solution), and again cultured overnight. The samples were then centrifuged, and the resulting 

pellet was dissolved in MQ water. Droplets of sample and antisera were put on gel in 

separated wells and incubated until the next day. The gel plates were controlled for 

precipitation to decide the serogroup. Isolates that were of a serogroup with several serotypes 
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were further analyzed with relevant serotype antisera and factor sera. The Quellung reaction 

was used for serotyping when serotype had to be confirmed after the gel diffusion method. 

The antisera used came from SSI, the Danish Serum Institute, in Copenhagen, Denmark.  

Molecular typing methods 

Molecular typing methods were only used on selected isolates in study I to understand the 

genetic content of the isolates in addition to the identification of the outer polysaccharide 

serotype structures. The methods used were pulse-field gel electrophoresis (PFGE) and 

multilocus sequence typing (MLST).  

3.4 STATISTICAL METHODS 

Descriptive statistics 

Descriptive statistics of the study population, for example to show frequencies of 

pneumococcal carriage, antibiotic resistance, and pneumococcal serotypes, were conducted, 

and characteristics of the study participants were compared using chi-squared (2) or 

Fischer’s exact test statistics in all four studies. Fisher’s exact test was used to compare 

variables between different groups (in study III: carriers/non-carriers and VT/NVT). Bivariate 

analysis of individual characteristics (age, sex, vaccination status, history of illness and drug 

intake) and socio-economic factors (wealth quintiles) in relation to carriage of a resistant 

strain were also calculated using 2 statistics (categorical values and proportions) or ANOVA 

(multiple observations, tests any significant difference between for example years (study 

IV)). Two-sided p-values <0.05 were considered statistically significant.  

Incidence Rate and Incidence Rate Ratio 

Incidence rate ratios (IRR) and their respective 95% confidence intervals (CI) were also 

calculated to compare the pre- and post-vaccine periods in both study I and II. Incidence rate 

was first calculated using number of cases (IPD or hospitalizations) divided by the 100,000 

mid-year population per study year. Incidence rates from after PCV implementation were 

then divided with incidence rates before implementation to get the IRR.  

Trend analysis 

Trend analysis was used in study II to depict and analyze trends in hospitalization due to 

sinusitis, pneumonia and empyema before and after PCV implementation, excluding the 

years of introduction. Segmented regression analysis was applied to evaluate the monthly 

hospital admission rates (138, 139). Generalized linear models (GLM), assuming a Poisson 

distribution for the monthly admission rates, were fitted, while the Negative binomial 

distribution was preferred at the presence of over dispersion. Generalized additive models 

where used instead of GLM when necessary, in order to adjust for a seasonal effect. All 

models contained three basic parameters accounting for the pre-intervention trend, the change 

in level from the last pre-intervention point to the first post-intervention one and the 
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difference in trend between the two periods. The post-intervention trend and its standard error 

were derived from the combination of the first and third parameter. Correlograms were used 

to check for autocorrelation in the residuals, and the models were adjusted for first-order 

autocorrelation, when necessary. 

Univariate logistic regression was used in order to study trends in antibiotic resistance and 

changes in proportion of individual serotypes over time in study III. 

Simpson’s diversity index 

Simpson´s diversity index was used in study I and III to depict the diversity of serotype 

distribution. The Simpson’s diversity index D is interpreted as the probability of two 

randomly chosen cases being infected with different serotypes. So when the diversity D 

increases, the likelihood of two cases being infected with the same serotype decreases, taking 

into account the number of cases and the number of different serotypes identified in one year. 

An increased diversity of strains may indicate serotype replacement if new and previously 

non-vaccine types emerge as a cause of IPD (140).   

Multivariate analysis 

Multivariate logistic regression was performed to evaluate risk factors for pneumococcal 

carriage and to estimate its association with the variables in study III and IV, after adjusting 

for confounding. In study IV, variables with p-value<0.2, and in study III with p-values<0.5 

in the bivariate analysis, were tested in the multivariable model. Odds ratios (OR), p-values 

and 95% confidence intervals were calculated, and p-values of less than 0.05 were considered 

significant. 

Invasive disease potential  

Invasive disease potential was calculated for different serotypes in study III.  The following 

formula was used for the serotype specific odds ratio: OR = [ad]/[bc], where a was the 

number of invasive X isolates, b was the number of carriage X isolates, c was the number of 

invasive non-X isolates, and d the number of carriage non-X isolates. An OR of >1, with its 

95% confidence interval not including 1, indicated increased invasiveness while Holm’s 

method was used to adjust for the multiple comparisons (141).  
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3.5 SUMMARY OF METHODS  

Study focus Design and methods Study population 

and study sample 

Statistical analysis Years  

I. Invasive 

pneumococcal 

disease and 

carriage in 

Stockholm, 

Sweden before 

and after PCV 

introduction 

Population based cohort 

IPD cases by mandatory 

reporting system and collection 

of clinical data from medical 

records of children 0-<18 years  

Serotypes and clones of 

pneumococcal strains  

Comparing 3 years before and 

7 years after PCV  

All patients 

(n=2519) with 

IPD, all ages, in 

Stockholm 

County.  

Carriages strains 

N=260 before 

PCV N=647 after 

PCV of children 

<5 years.  

Incidence rates, 

Serotype distribution 

and trends,  

Simpsons diversity 

index 

Chi square of clinical 

data on the children 

IPD 

2005-

2014 

Carria

ge 

2004 

and 

2011-

2014 

II. Pneumonia 

and sinusitis and 

empyema 

hospitalization 

in children in 

Stockholm, 

Sweden before 

and after PCV 

introduction 

Population based retrospective 

hospital registry study of 

discharge diagnosis  

Comparison of 4 years before 

and after PCV introduction 

Validation of the diagnosis in 

all cases of sinusitis and in a 

sub-set of 100 cases of 

pneumonia 

All children 0-17 

years hospitalized 

due to sinusitis 

(n=678) or 

pneumonia 

(n=5018) or 

empyema (n=60) 

Incidence 

Incidence rate ratios 

Trend analysis 

Chi square  

2003-

2012 

III. Carriage in 

Stockholm, 

Sweden after 

PCV 

implementation 

Cross sectional study  

Nasopharyngeal aspirates and 

questionnaire data. 

All strains isolated from 

invasive disease, all ages in 

Stockholm. 

Children <5 years 

visiting Child 

Health Centers 

(n=3024) and their 

parents (N=787).  

 

Carriage prevalence 

Serotype distribution 

and PCV serotype 

coverage rates 

Chi square and logistic 

regression of risk 

factors for carriage 

Invasive disease 

potential 

2011-

2015 

IV. Carriage in 

Uganda before 

PCV 

implementation 

Cross sectional studies in a 

demographic and health 

surveillance site in south 

eastern Uganda  

NPH swabs and questionnaire  

HDSS socioeconomic data 

Children <5 years 

(N=1761) 

2008 n=150 

2009 n=587 

2011 n=1024 

Carriage prevalence 

Serotype distribution 

and PCV serotype 

coverage rates 

Chi square and logistic 

regression of risk 

factors for carriage 

2008, 

2009, 

2011 
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3.6 ETHICAL ISSUES  
 

Ethical approval for all the studies was given by the Central Ethics Committee (national)(I) 

and Regional Ethics Committee (Stockholm)(I, II, III, IV). Study IV was first approved by 

the Uganda National Council for Science and Technology following review by the 

Institutional Review Board of Makerere University School of Public Health. Written consent 

was obtained from all participants where nasopharyngeal samples (Study III and IV) and 

questionnaire data (study III and IV) were collected. In the study in Uganda, interviewers 

were recruited locally and the questionnaires as well as the interview and consent forms were 

written in Lusoga, the local language. In Sweden, consent forms and questionnaires were 

available in Swedish and English.  

It could be discussed whether to inform parents about the laboratory results of the 

nasopharyngeal carriage or not. Being a carrier of pneumococci in the nasopharynx may be 

part of the natural asymptomatic carriage and therefore not necessary or beneficial for parents 

to know about. However, being colonized with resistant pneumococci could guide future 

choice of antibiotics if the child turns ill shortly after being sampled. In Sweden, the families 

of the few children who carried pneumococci resistant to penicillin were contacted and 

reported according to the mandatory procedures to the public health authorities. In Uganda 

informing families in this way was not logistically possible. Another ethical consideration in 

Uganda was the set-up of the Health and Demographic Surveillance Site in itself. Residents 

of this area were subjected to all kinds of surveys in addition to the regular surveillance every 

three months. Community meetings with heads of villages and community health workers 

were conducted in order to explain the purpose of the study and promote awareness of the 

signs and symptoms of pneumonia and the importance of treatment. Verbal consent was also 

obtained from village and district leaders. The local leaders were instrumental in explaining 

the purpose of the study in order for the study participants to be able to make an informed 

decision on whether or not to participate.  
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4 RESULTS 

4.1 INVASIVE PNEUMOCOCCAL DISEASE  

The main aim of study I was to evaluate the impact of the pneumococcal conjugate vaccine 

on incidence, serotypes and resistance patterns of invasive pneumococcal disease (IPD) after 

introduction in the general vaccination program in Stockholm County, Sweden  

In total there were 2529 cases of IPD in all ages notified in the mandatory reporting system, 

and over 90% of the isolates were serotyped (N=2336) from 2005-2014. We showed a good 

PCV effect on IPD for children <2 years (N=91). Incidence of IPD decreased from 28.4 to 

10.3 cases /100 000 children <2 years of age (RR 0.36, 95% CI 0.2-0.6) overall and for the 

vaccine-types included in the PCV7 from 22.7 to 0 cases/100,000 children (RR 0.0 95% CI 

0.0-0.1) comparing the time periods 2005-2007 to 2009-2014. However, in children <2 years 

old, the vaccine types not included in the 13-valent vaccine increased (RR 7.1, 95% CI 1.7-

30).  

All medical records of children <18 years old were studied in order to verify the clinical 

diagnoses (N=161). There was a significant decrease in meningitis (RR 0.43, 95% CI 0.2-

0.9), septicemia (RR 0.32 95% CI 0.1-0.8) and rhinosinusitis (RR 0.11 95% CI 0.02-0.5), but 

not in pneumonia with bacteremia in children <2 years (RR 0.76, 95% CI 0.3-2.1). In 

children 5-<18 years there was a significant decrease only in pneumonia with bacteremia (RR 

0.30, 95% CI 0.1-0.8).  

One vaccine failure occurred in a one year old boy who had received two doses of PCV (6B). 

In post-PCV period, 95% of children aged 1-<2 years and 47% of children between 2-<5 

years old were fully vaccinated with three doses of PCV. Data on vaccination status was 

available for 97% (36/37) of children 0-<2 years and 93% (14/15) of children 2-<5 years. In 

children 5-<18 years, no one of those with available vaccination data (33%, 5/15) had been 

vaccinated with PCV. 

A decreased incidence of IPD was also shown in older children 2-<18 years (RR 0.39, 95% 

CI 0.2-0.7, p=0.002) and adults 18-<65 years (RR=0.62, 95% CI 0.5-0.7). However, in adults 

65 years and older the overall rate of IPD remained unchanged (RR 0.90, 95% CI 0.8-1.0), 

due to an expansion of NVT. For the age group ≥80 years the overall IPD incidence was also 

comparable to the pre-PCV period (RR 1.04, 95% CI 0.8-1.3).  

There was a significant decrease in PCV7 serotypes in all ages. All specific PCV7 serotypes 

except 4 and 18C, decreased after PCV7 vaccination in IPD compared to pre-vaccination. 

However, serotypes 4 and 18C decreased significantly during the PCV13 period, compared to 

pre-PCV7. Serotype 3 increased significantly among adults, especially older persons, despite 

being included in the PCV13, which was due to a clonal expansion of two preexisting clones. 

Of the 6 extra serotypes in PCV13 only 7F decreased significantly after PCV13 introduction 

in IPD in all ages. Among non-vaccine serotypes, type 8 decreased significantly post-PCV13 

compared to pre-PCV, while the majority of the largest NVT increased significantly, 
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particularly after the PCV13 implementation. Two other preexisting clones expanded as well, 

in 22F in IPD and 11A mainly in carriage, but also in invasive isolates. Of the NVT, 23A, 

10A, 22F and 33 F increased significantly post-PCV13 compared to pre-PCV in IPD.  

The diversity of serotype strains in IPD as measured by the Simpson index of diversity 

increased significantly (p<0.001). 

Overall the susceptibility to penicillin was unaltered after vaccine introduction among IPD 

isolates (4.4% before as compared to 6.0% after had a reduced susceptibility to penicillin G, 

p=0.84). There was an increase in the proportion of strains with decreased susceptibility to 

penicillin G in PCV7 serotypes, from 5.5% pre-PCV to 26% post-PCV13 (p<0.001). 

Incidence rates of IPD were used as the standard measure for best comparability between 

studies. To understand the magnitude of the IPD decrease in the different age groups in a 

population of 2 million inhabitants, the mean number of annual cases/age group is used (table 

5).  

Table 5. Mean annual number of reported IPD cases per age group in Stockholm County before (2005-

2007) and after (2012-2014) PCV introduction (population 2.2 million).  

 

 

 

 

 

 

 

 

*Population data from Statistics Sweden: www.scb.se 

4.2 SINUSITIS AND PNEUMONIA  

The aim in study II was to estimate the effect of the pneumococcal conjugate vaccine on 

hospitalization trends and complications of sinusitis, pneumonia and empyema in children 

after introduction in the general vaccination program in Stockholm County, Sweden.  

During the study period 2003-2012, there were 678 children with severe sinusitis, 5018 

children with pneumonia coded as bacterial, and 60 children with empyema, hospitalized and 

registered at any of the four hospitals treating children in the Stockholm County. The year of 

introduction of PCV (2007-2008) was excluded from analysis. The years were counted from 

July to June, to include the winter season in the study year.  

Age 

groups 

(years)  

Mean annual 

number of cases 

2005-2007  

Mean annual 

number of cases 

2012-2014  

Total mid-year 

population in each 

age group in 2014* 

0-<2 15 6 50 090 

2-<18 9 3 416780 

18-<65 144 92 1377070 

65+ 103 117 345100 
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Hospitalizations due to sinusitis decreased significantly in children aged 0-<2 years, from 70 

to 24 cases/100 000 (RR=0.34, p<0.001), when comparing incidence rates from before the 

implementation, 2003-2007, to after PCV implementation, 2008-2012 (figure 8). The time 

trend analysis for sinusitis showed a significantly decreasing month to month trend in the 

post-intervention period for children 0-<2 years and 2-<5 years (p=0.018 and 0.004, 

respectively). There was also a drop in incidence from the last month pre-PCV to the first 

month post-PCV, however not significant (p=0.055). 

Figure 8. Incidence of hospitalization due to sinusitis by age group in children in Stockholm County 2003-

2012* 

 

*The arrow marks the year of PCV7 introduction 

Hospitalizations for pneumonia decreased significantly in children aged 0-<2 years, from 450 

to 366/100,000 (RR=0.81, p<0.001) and in those aged 2-<5 years, from 250 to 212/100,000 

(RR=0.85, p=0.002) comparing incidence rates before, with those after PCV implementation 

(figure 9). Trend analyses showed increasing month to month hospitalization rates for 

pneumonia in children 0-<2 years old pre-PCV. There was however a significant drop in 

hospitalization rates from the last month pre-PCV to the first month post-PCV in children 0-

<2 years (p=0.002) and a decrease in month to month hospitalization rates due to pneumonia 

coded as bacterial in children aged 2-<5 years old post-intervention (p=0.02).  

Figure 9. Incidence of hospitalization due to pneumonia coded as bacterial by agegroup in children in 

Stockholm County 2003-2012*  

 

*The arrow marks the year of PCV introduction 
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Hospitalization for empyema did not increase in any of the three age groups. The total 

number of hospitalized children due to empyema was low (N=60).  

As a control for changes in hospitalization trends we collected data on a control disease not 

related to pneumonia (pyelonephritis). There was a significant increase in hospitalizations 

due to pyelonephritis in children <2 years (p=0.03) and 5-<18 (p=0.002) (figure 10). In the 

time trend analysis the month to month trend remained stable for these age groups both in the 

pre- and post-vaccine time. 

Figure 10. Incidence of hospitalization due to the control diagnosis pyelonephritis in children in 

Stockholm County 2003-2012*  

 

*The arrow marks the year of PCV introduction 

To study if our results were due to changes in habits of physicians to mark diagnosis that 

were related to pneumonia coded as bacterial over the study period, we also collected data on 

hospitalization trends for viral pneumonia, asthma/obstructive bronchitis and respiratory 

syncytial viral infection. An increasing trend was found in the number of hospitalizations due 

to viral pneumonia in children<2 years (p=0.01) and respiratory syncytial virus (RSV) in all 

age groups (p=0.001) (figure 11). For viral pneumonia, however, the increase (from N=70 to 

115 cases/year) was not considered in the same magnitude as the decrease of the number of 

pneumonias coded as bacterial (N=914 to 836 cases/year).  

Figure 11. Incidence of hospitalization due to the control diagnosis respiratory syncytial virus (RSV) in 

children in Stockholm County 2003-2012*  
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4.3 PNEUMOCOCCAL CARRIAGE IN SWEDEN  

The aim of study III, and partly of study I, was to determine the impact of the pneumococcal 

conjugate vaccine on pneumococcal carriage, its serotype distribution and resistance patterns 

after introduction in the general vaccination program in Stockholm County, Sweden. Study 

III was done between 4 and 8 years after the introduction of PCV7. PCV7 was exchanged for 

PCV13 in 2010. 

In total, 3024 children and 787 parents were included and sampled in this cross-sectional 

study, on regular visits at 23 Child Health Centers in Stockholm County between August 

2011 and May 2015. Among these, 907 children and 27 of the parents carried pneumococci. 

Study I included the first three years of this carriage study, from August 2011 to July 2014 

(N=647 isolates). 

Carriage prevalence of pneumococci in children <5 years between 2011 and 2015 was 30% 

in total. Carriage prevalence were remained stable over the four years. However, there was a 

continued serotype replacement, with a shift from VT to NVT serotypes taking place during 

the study period (P=0.04). The percentage of NVT increased from 85% at the start to 94% at 

the end of the study period. 

In study I we showed that there was a change in serotype distribution from VT to NVT 

comparing data from day-care centers in 2004 with data from August 2011 to July 2014 in 

carriage. Hence, most of the serotype replacement had already taken place before the start of 

carriage study III.  

The top ten serotypes in proportion of all serotypes in the pre- and post PCV period is 

presented in table 6 for both IPD cases and carriage. In the pre-vaccine period most serotypes 

in both IPD and carriage were PCV13-VT, except serotypes 8 and 18F in IPD, and 16F in 

carriage. In the post PCV period, 5 of 10 top ten serotypes were PCV13-VT, but only one of 

10 in carriage.  

Table 6. The top ten serotypes in invasive disease in all ages compared to carriage in children in 

descending order. (PCV13 serotypes in bold), Stockholm, Sweden, 2005-2015 

 Before PCV After PCV  

IPD all ages 2005-

2007 and 2011-

2015 

14, 9V, 7F, 4, 6B, 23F, 3, 8, 18F, 19F, 

19A 

3, 22F, 7F, 19A, 4, 9N, 23A, 14,11A, 8 

Carriage  in 

children 2004 and 

2011-2015 

19F, 6B, 6A, 23F, 14, 18C, 3,16F, NT, 9V 11A, 35F, 23A, 21, 15B, 23B, 6C, 19A, 

33F, 35F 

The diversity of serotype strains in carriage as measured by the Simpson index of diversity 

increased, however, non-significantly (p=0.06). 
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The major serotypes represented in colonizing pneumococcal isolates were all NVT: 11A, 

23B, 35F, 21, 15B and 15C. The most prevalent VT was 19A, but that serotype decreased 

during the study period from 2 to 0% (p=0.02). In 2015, there were no 19F nor 19A neither in 

carriage nor in IPD in Stockholm, showing the effectiveness of PCV13 on these serotypes. 

Serotype 3 was the most common serotype in IPD of all ages, 2011-15, 14% (117/824). All 

but three of these IPD cases occurred in adults and serotype 3 carriage in children was also 

rare 0.3% (3/916).  

No significant change in antibiotic resistance against penicillin G, erythromycin nor 

clindamycin was found. Antibiotic resistance levels were low relative to the situation 

internationally. 

Risk factors for pneumococcal carriage were age 3 months-<3 years, day-care and open day-

care attendance, having travelled abroad last year, and having siblings (all P<0,001).  

Invasive disease potential was significantly increased (OR>1) for four NVT; 22F, 9N, 8 and 

12F, however they represented only 3.6% (33/916) of the total number of carriage isolates in 

children. The majority of the NVT, however, 66% (525/799), had a significantly lower 

invasive disease potential (OR<1).  

4.4 PNEUMOCOCCAL CARRIAGE IN UGANDA  

The main aim in study IV was to show the pneumococcal carriage and the serotype 

distribution in healthy children <5 years of age prior to PCV introduction in Uganda. The 

secondary aim was to evaluate to what extent the available PCVs cover the circulating 

serotypes.  

In total 1761 children under five years of age were included, 150 in 2008, 587 in 2009 and 

1024 in 2011. 1723 children had a valid nasopharyngeal sample taken, and out of those 957 

were identified as carrying pneumococci. The total nasopharyngeal pneumococcal carriage 

prevalence was therefore 56%. Carriage prevalences were 59%, 56% and 55% in 2008, 2009 

and 2011, respectively. The highest carriage prevalence were found in the age group 6-11 

months. 

Out of the 957 pneumococcal isolates 852 (89%) were serotyped. The most common 

serotypes were 19F, 23F, and 6A. 75 children had 2 serotypes isolated. The most common 

non-vaccine serotypes were 29, 13, and 34. 

The proportion of serotypes found among healthy children less than 5 years that are covered 

by PCV10, the vaccine included in the national vaccination program, was 42%. The serotype 

coverage for PCV13 was 54%. The proportions of non-vaccine PCV13 serotypes were 47, 45 

and 46% in 2008, 2009 and 2011, respectively.  



 

38 

5 DISCUSSION 

5.1 MAIN FINDINGS 

The main finding was that PCV in Stockholm County has been successful in reducing both 

the incidence of IPD and hospitalization due to severe sinusitis and pneumonia in vaccinated 

groups. IPD incidence also decreased in unvaccinated age groups, except in the elderly (65 

years and older). This effect seems to be mediated by the near elimination of most vaccine 

serotypes with high invasiveness in carriage, in children less than five years of age. Emerging 

in both IPD and carriage were instead non-vaccine types of pneumococci, mainly with lower 

invasiveness: a so called serotype replacement. Serotype diversity increased in IPD and 

carriage due to new emerging clones, likely affecting future vaccine strategies. 

Carriage data before PCV introduction in Uganda showed that the PCV vaccine serotypes 

were much less prevalent in young children than they were in children before the PCV 

implementation in Sweden, which may potentially affect vaccine effectiveness in Uganda.  

5.1.1 Pneumococcal morbidity before and after PCV introduction 

Our results show a reduced incidence of IPD in vaccinated children (0-<2 years), in older 

unvaccinated children (2<18 years) and adults (18-<65 years), but an unaltered incidence in 

the elderly (>65 years) after vaccine introduction (Study I). Severity of clinical IPD was 

unchanged in children. Non-vaccine pneumococcal types in IPD increased. IPD caused by 

PCV13 types 3 and 19A increased post PCV7 vaccination, and new expanding 

serotypes/clones were identified in IPD after PCV13 was introduced.  

The vaccine effectiveness, measured as reduction in IPD incidence, for all serotypes for 

children <2 years old was 64% (RR 0.36, 95% CI 0.2-0.6)(-18 cases/100 000) in Stockholm, 

Sweden. This effectiveness was rapid in this age group and as already observed after the 

PCV7 period (2009-2010), the risk of IPD was reduced by 60% (RR 0.40 95% CI 0.2-0.7). 

The PCV effect in Stockholm is similar to most European countries such as Norway, 

Denmark, England, and Germany (142-146). The PCV7 effectiveness in North America and 

Australia was even better, with incidence reductions in vaccinated younger children ranging 

from 73-85% (115).  

In young children, meningitis, rhinosinusitis and bacteremia decreased significantly as causes 

of IPD, but bacteremic pneumonia did not. Other countries have reported significant decrease 

in pneumococcal meningitis after PCV (61, 147), but a recent study from the US did not 

observe any decrease in pneumococcal meningitis after the change from PCV7 to PCV13 

(148). Our study is to our knowledge the only study that has specifically shown a significant 

decrease in sinusitis as underlying focus of IPD in children after PCV introduction. Most 

studies report only on the IPD outcomes: meningitis, bacteremia and bacteremic pneumonia. 

The verification of all diagnoses of children with IPD in Stockholm from 2005-2014 (N=161) 

strengthens the validity of our results. Additionally, hospitalization due to sinusitis, and 

pneumonia coded as bacterial, was shown in study II to be reduced by 19% and 66% 
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respectively. Based on a number of clinical parameters it was concluded that the children had 

the same clinical severity (days of treatment, proportion in intensive care, fever, CRP, etc) in 

the pre- and post PCV period. These clinical parameters were statistically compared 

individually between the pre- and post PCV time periods.  

Initially, data was analyzed with the PCV7 and PCV13 periods together, but later we 

conducted separate analyses of two years of PCV7 use and four years of PCV13 use. This 

gave us useful insights into how individual serotypes are responding to PCV. There were no 

cases of the additional six PCV13 serotypes in the final years of the study in children <2 

years old, showing that PCV13 gives protection against all included serotypes. 

In children 2-<18 years of age the decreased risk of IPD after the PCV7 period was non-

significant, possibly due to a lack of power. After the PCV13 period, a significant decrease in 

RR for IPD in ages 2-<18 years was observed which was almost as high (RR 0.39 95% CI 

0.2-0.7) as that for the children <2 years (RR 0.36 95% CI 0.2-0.6). It seems therefore that 

herd effects may be expected, but only after a few years'  time, as seen in the UK (149). Also, 

nearly half of the children 2-<5 years were fully vaccinated in the post-PCV period 2008-

2014.  

The absence of herd protection for the population >65 years of age of our study in Sweden, 

resulting in no impact on overall invasive disease, could be explained by an increase in non-

vaccine serotypes, but also by the six additional serotypes in PCV13 still causing IPD cases 

in this age group. This was a surprising result because in many other countries, there has been 

a considerable decrease in IPD also in the elderly, for example in the US, UK and in Norway 

(149-151). In Quebec however, there was a non-significant increase in IPD incidence in 

people >60 years of age (152). The herd effect of PCV in older age groups therefore seem 

context dependent (132). One plausible explanation may be that the non-PCV13 serotypes 

spreading in the Swedish context cause IPD more easily in the elderly. Another explanation 

might be that the time of observation was not long enough to show a herd effect in Sweden in 

the elderly, compared to other countries. In the meta-analysis by Feikin et.al. from 16 

countries it was reported that it took seven years before a barely significant decreased RR for 

IPD in adults 18-49 years of age and those >65 years of age was shown. Even if VT IPD 

decreased significantly already after five years of PCV use in children, this was 

counterbalanced by an increase in NVT (114). In Stockholm, Sweden, the RR was not 

compared yearly but for time periods, before (2005-2007), after PCV7 (2009-2010), and after 

PCV13 (2011-2014) respectively. The study in Stockholm continued seven years after the 

PCV introduction (1 year of introduction (2008), 2 years of PCV7 and 4 years of PCV13), but 

still the overall IPD incidence did not change. 

Another reason for delayed or low PCV herd effect in the elderly may be fewer 

intergenerational social interactions in Sweden compared to other countries studied. 

However, results show that the PCV7 serotypes decreased in IPD for ages >65, by 55% 

(RR0.45 (95% CI 0.3-0.6) after the PCV7 period and by 85% (RR0.15 95% CI 0.1-0.2) after 

the PCV13 period. NVT increase in IPD increased however, and this indicated a herd effect 



 

40 

of the PCV rather than absence of contacts with vaccinated children or due to a natural 

serotype fluctuation. 

One could argue that vaccinating children should be done for their benefit only, without 

necessarily focusing on the effect of vaccinating children on other age groups. PCV 

effectiveness is naturally most often measured in vaccinated children, but in a high income 

country, with low child mortality due to pneumonia or other pneumococcal diseases, the 

number of cases and incidence of IPD in the ages >65 years far outnumbers that of young 

children (table 5). Any measurement of the cost-effectiveness of PCV vaccination in children 

thus needs to include the herd effect on other age groups as this will influence the results 

(153, 154). An recent example of this is a cost-effectiveness study in Australia, post-

implementation 2005-2010, that concluded that the PCV childhood vaccination program had 

averted about 5,900 hospitalizations and 160 deaths from IPD in all ages (155). The 

Australian vaccination program was however not cost-effective unless the herd effect of non-

invasive pneumonia deaths in the elderly was included in the analysis. 

Preliminary Swedish national IPD data from 2015 show a continued decrease in cases <5 

years with 23 cases in 2015 (n=35 in 2014), but an increase to 1314 cases in all ages (1160 

cases in 2014) (data from the Public Health Agency of Sweden). This trend demands further 

close surveillance. The gain in IPD incidence among children may be outnumbered by the 

emergence of IPD cases due to NVT in the elderly.  

Hospitalization due to sinusitis, pneumonia or empyema 

PCV7/PCV13 vaccination led to a 66% decreased risk of hospitalization due to sinusitis and a 

19% decreased risk of hospitalization for pneumonia in children aged 0-<2 years, when 

comparing four years before with four years after vaccine introduction. A decreased risk of 

pneumonia hospitalizations in children has been shown in other countries, but the decreased 

risk of hospitalization due to sinusitis had to our knowledge not been documented in a 

population-based study previously.   

Other studies have indicated that PCV will likely have an impact on sinusitis, since between 

20-40% of cases are estimated to be caused by pneumococci (156, 157). A study from the US 

showed no change in rates of outpatient visits from 1998-2007 in the US (158). In 2015, 

however, another study from the US also showed a decreased hospitalization rate due to 

rhinosinusitis. It also reported a slightly increased complication rate requiring surgical 

procedures in children, and the average age at hospitalization due to rhinosinusitis increased 

from 5 to 6 years after PCV7 (159). Both in the US and in Sweden the decreased 

hospitalization rate for rhinosinusitis occurred soon after PCV introduction. This effect is 

most probably due to a decrease in the VT included in the PCV7/13 in carriage, which then 

spreads locally to the sinuses. Unfortunately, we had no laboratory data available to confirm 

this hypothesis in our study. In study I it was however confirmed that invasive pneumococcal 

disease due to rhinosinusitis decreased significantly in children <2 years of age (160). The 

impact on the rates of complications needs to be further explored if, as suggested by other 
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studies (132), there is a replacement with other bacteria such as S. aureus as a cause for 

sinusitis. It might be that S. aureus is responsible for some of the increased complication rates 

seen in the US, but that still needs to be confirmed.  

In our low-mortality context, we estimated that 715 hospitalizations for pneumonia in 

children <2 years and 644 children 2-<5 years were prevented during the four years of 

observation post-PCV. It was estimated that 393 hospitalizations due to sinusitis in ages 0-<2 

years and 121 cases in ages 2-<5 years were prevented during the period of observation. This 

constitutes a considerable public health impact. Even if the decrease in incidence of 

hospitalization due to bacterial pneumonia after PCV was lower compared to the effect on 

hospitalization due to sinusitis, this effect may have a more significant public health impact, 

particularly if the results are transferable to low-income countries.  

The results of the trend analysis on pneumonia hospitalization indicate that the decrease is 

due to the PCV introduction, as explained by the rapid decrease in pneumonia hospitalization 

after PCV introduction in children <2 years and a significant month to month decrease in 

children 2-<5 years old in the post-intervention years. It seems plausible that PCV first 

protects the vaccinated age groups and then provides a herd effect, combined with the fact 

that the vaccinated younger cohort grows older and becomes included in the older age 

groups.   

An increase of empyema, as suggested in some post-PCV7 implementation studies (29, 131), 

could not be shown in our study. While there was an increasing trend of hospitalization with 

empyema, it was not significant, and a beta-error due to lack of power can not be ruled out. In 

the UK, empyema increased before PCV implementation, but remained stable after its 

introduction (161). A possible explanation for an increase in empyema complications is that 

other bacteria or serotypes, more prone to cause empyema, may emerge following 

pneumococcal VT decrease in the population. Serotypes 1, 3 and 19A, often seen in 

empyema, were not part of the first conjugate vaccine PCV7 (55). 

This study adds to the evidence that PCV vaccine (PCV7/PCV13) prevents severe 

rhinosinusitis and pneumonia hospitalization in children, with implications for global child 

survival. 

5.1.2 Pneumococcal carriage before and after PCV, comparing Sweden with 
Uganda 

Carriage after PCV in Sweden 

The shift from vaccine types (VT) to non-vaccine types (NVT) was nearly completed four 

years after introduction of the PCV vaccination and this serotype replacement continued to 

evolve from 4 to 8 years after PCV7 introduction in Stockholm County. At the end of the 

study only 6% of the serotypes in carriage in young children were of VT.  

There is agreement in the scientific community that PCV gives rise to serotype replacement 

in carriage (132, 162, 163) as also shown in study III. It is less common to compare carriage 
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prevalence with population-based IPD incidence in the same time period. These data were 

available in Sweden, enabling an estimation of invasive disease potential of emerging NVT. 

Invasive disease potential is defined by the proportion of a certain serotype in IPD as 

compared to the proportion present in carriage. It was reassuring that the majority (66%) of 

the emerging NVT in carriage in Stockholm had lower invasive disease potential and only 

3.6% had a significantly increased invasiveness potential. The emerging NVT serotypes in 

carriage in the Swedish context were mainly 22F and 9N. While 12F and 8 had even higher 

OR for invasiveness potential, it was rare to find them in carriage (0.1%). 24F has emerged 

post-PCV in several European countries, but was not identified in Stockholm (164-166). 

Invasiveness disease potential was also studied in France, and results similar to the Swedish 

ones were found, i.e. low OR for invasiveness for most NVT (164). 24F and 12F were the 

only NVTs with high invasiveness potential in France. In Alaska, invasive ratios of 

pneumococcal isolates in carriage did not change pre- and post PCV, but 66% of serotypes 

had high invasiveness (167). Other studies have used case:carrier ratio or attack rates to 

measure invasiveness of serotypes (168, 169). A study from Finland built a model to predict 

the optimal serotype composition in a given context, based on serotype distribution and 

case:carrier ratios (170). The study suggested that a new PCV vaccine should contain the 

serotypes 22 and 9N. This could also be concluded from the results in study III, since these 

serotypes were the ones most prevalent NVT in IPD and both had a high invasive potential in 

Sweden 2011-2015. 

It must be remembered that not all serotypes causing IPD appear in carriage. In 2005-2006 in 

Stockholm, IPD in the age group 0-<2 had a PCV10 and PCV13 serotype coverage of 81% 

and 93% respectively. However, the PCV10 and PCV13 coverage in carriage in children <5 

years was 63%, and 82% respectively in 2004. 

There is a concern that there will be a decreased benefit of PCV with time due to a nearly 

complete decrease in VT in carriage and, to a lower extent, in invasive pneumococcal disease, 

and also an expansion of NVT in carriage and disease that will out-number the decrease in 

VTs. However, both modeling studies and effectiveness studies show continued overall 

benefits of PCV in Europe and the US (163, 171). There is a discrepancy with more serotype 

replacement in both carriage and disease in Europe compared to in the US (16, 118, 150). 

The reasons for this difference in magnitude of replacement is not known. In indigenous 

populations in Alaska and Australia there is also a more pronounced serotype replacement, in 

both disease and carriage, than in the general population in those countries (172, 173). 

Replacement in disease after PCV introduction, with increasing incidence of pneumococcal 

meningitis in children 5-15 years, was shown in France during a period of low vaccination 

coverage of PCV7 (174). Following high coverage of PCV13, this worrying trend in France 

disappeared. This shows the importance of how well the PCV program is implemented. In 

contrast to France, the US reached a high coverage of PCV7 within a few years. This 

program included a catch-up vaccination for children <5 years, which resulted in a fast and 

beneficial herd effect in other age groups (150, 175). The extent of the serotype replacement 

in carriage and disease has yet to be determined for the African continent after PCV rollout.  
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Carriage before PCV in Uganda 

Nearly half of the serotypes colonizing healthy children (46%) in Uganda were serotypes not 

covered by any of the current PCVs. The serotype coverage rate was 42% for the 10 

serotypes in PCV10, which is the vaccine currently being implemented in Uganda. Carriage 

data before PCV introduction in Uganda shows that PCV vaccine-types were much less 

prevalent in young children (PCV10 42%, PCV13 54%) than it was in children before the 

PCV implementation in Sweden (PCV10 63%, PCV13 82%), which may potentially affect 

vaccine effectiveness in Uganda.       

Serotype distribution pre- and post-PCV is studied as a proxy for the expected effect of PCV 

on IPD and mucosal infection and it may provide information on the expected PCV 

prevention due to herd effects (176). Laboratory based active surveillance for IPD or hospital 

based electronic registries are generally lacking in low-income countries, and as a result cross 

sectional carriage data for the evaluation of PCV program effectiveness is more feasible to 

accomplish (177).   

In a systematic review of low- and lower-middle income countries, carriage prevalence of 

pneumococci and other bacteria (H. influenza, M. catarrhalis, S. aureus, N. meningitides) 

were studied (69). Of the included studies, 38 were from African countries and 21 from Asian 

countries. The carriage prevalence of pneumococci varied between 20% and 93%. In our 

study in Uganda, the mean pneumococcal carriage prevalence was 56%, over the three years 

studied. The most common serotypes carried in the systematic review were 6A, 6B, 19A, 19F 

and 23F, but also 14 and 11A. In the African studies, between 36% and 56% of the carried 

serotypes in children less than 5 years were of PCV7-types, between 37-56% for PCV10 and 

50-64% for PCV13. Our study in Uganda shows similar results for PCV10 serotype 

coverage, 42%, and 54% for PCV13 respectively. The most frequently isolated pneumococci 

were 19F (16%), 23F (9%), 6A (8%), 29 (7%) and 6B (7%), similar to the systematic review 

except NVT 29 being more prevalent, and 19A was only seen in the last year of the study at a 

prevalence of 2.7%. 

The potential of saving childrens' lives with PCVs is higher in African countries, where the 

disease burden is higher, compared to Europe, even if VT serotypes are not as prevalent in 

Africa compared to pre-PCV Europe. Data on the impact of PCV in African countries has 

however up to now been scarce. In six West African countries a recent review on IPD 

serotypes showed a PCV10 serotype coverage of 68% overall, varying from 51-80%, except 

in Burkina Faso which had 39% (178). In East Africa an IPD surveillance network in 2009 

published a study showing a IPD serotype coverage rate for PCV7 of 56% in children 6-29 

months (179) while in Uganda, IPD serotype coverage was 56% for PCV7, 58% for PCV10 

and 79% for PCV13. This difference in PCV serotype coverage in carriage, which was lower 

in our study, can partly be explained by serotype 1 and 5 which are rarely seen in carriage but 

accounted for 30% of the cases of bacteremia and 18% of the cases of meningitis (179). In 

Sweden there was also a discrepancy in serotype coverage when comparing IPD with 
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carriage, consisting of a pre-vaccination difference of 18% for PCV10 and 11% for PCV13 

respectively (study I). 

In a randomized controlled trial in children aged 6-51 weeks in the Gambia, the effect of the 

PCV9 candidate vaccine showed an all-cause mortality decrease by 11% (95% CI 3-28%), 

and for each case of IPD prevented, 15 cases of radiologically confirmed pneumonia were 

prevented (20). This trial also showed a 50% (95% CI 21-69%) overall VE for IPD incidence, 

from 380/100 000 in the placebo group to 190/100000 in the PCV9 group. In rural Gambia, 

pre-PCV coverage for IPD of PCV10 and PCV13 serotypes was 26.6% and 46.8% 

respectively in carriage in children < 5 years (180). In a RCT in South Africa of the PCV9 

candidate vaccine, vaccine efficacy was 85% for first episode of vaccine-type IPD for HIV 

negative children, but only 63% for HIV positive children (181). These were however results 

from an optimal trial situation, and in real life, poorer vaccination coverage, lack of 

timeliness and completeness of PCV schedules, will likely reduce the effectiveness.  

A few effectiveness studies post-PCV implementation are beginning to show promising 

reductions in IPD incidence in low- and middle income countries (176, 182-184). South 

Africa implemented PCV7 in 2009, in a 2+1 schedule at 6 weeks, 14 weeks, and 9 months 

respectively, and they have a nationally active laboratory based surveillance system that 

allows post-PCV impact surveillance (176). The vaccination coverage for three doses of PCV 

was 90% in 2011 and 99% in 2012 (185). In an ecological study comparing reported IPD 

cases in pre-PCV with post–PCV periods, rates of IPD in children <2 years decreased 69% 

(95% CI 65-72), from 55 to 17 /100 000, including a PCV7 serotype decline of 89% (95% CI 

86-92)(184). This reduction in IPD reported is similar to what we showed in our high income 

setting (study I) in the same age group.  

A population based surveillance study in the Gambia, five years after PCV13 introduction, 

showed a 55% decreased incidence of IPD in children 2-23 months old, from 253 to 113 per 

100 000 population. The decrease was due to an 82% (95% CI 64-91) reduction in PCV13 

serotypes (182). In Brazil, where PCV10 vaccination was implemented in 2010, IPD 

incidence in children 2-23 months d decreased by 44% (95% CI 16-72%); however the extra 

three serotypes in PCV13 increased in all ages, while IPD incidence increased in adults aged 

18-<65, and as much as 79% (95% CI 62-97) in cases >65 years of age (183).  

Effects of herd immunity protection by PCVs in adults in low- and middle- income countries 

is not well known due to scarce data on adult pneumococcal disease burden for different age 

groups and countries (19). However, in South Africa, the rates of PCV7 serotypes declined 

by 57% (95% CI 50-63%) in adults aged 25-44 in the national laboratory based active 

surveillance study, comparing pre-vaccine years with post-PCV year 2011-12 (184).  

Vaccine effectiveness studies in African countries must take into account the HIV epidemic, 

both when it comes to the elevated pneumococcal disease burden and potential vaccine 

efficacy, in treated or un-treated people (176). In South Africa, a pre-PCV study has shown 

that the rate of acquisition of new serotypes in carriage was no different for mothers that were 
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either HIV positive or negative, 18.9% and 19.5% respectively, but that PCV7 serotypes were 

acquired more often by HIV-infected mothers (10% versus 6.4% p=0.03), and PCV7/13 

serotype acquisition by mothers was associated with carriage of those serotypes in children. 

Therefore the authors suggested that there is a reservoir of PCV serotypes in HIV positive 

mothers which could delay the vaccine effectiveness in high HIV settings (186). The VE for 

IPD in HIV-infected children shows some conflicting results (176, 184, 187). However, most 

likely the benefit of PCV in HIV-infected populations will be greater that in HIV un-infected 

ones due to the higher disease burden in this group, and even more so if the HIV-infected 

people are undergoing ART treatment (132). Also, PCV13 decreased VT carriage in both 

HIV infected (OR 0.32) and un-infected (OR 0.37) children in Soweto (188).  

Cost-effectiveness studies before and after the introduction of a new vaccine are important 

due to competing costs when resources are scarce (46). To introduce the PCV in Gambia, at 7 

USD/dose, was estimated to raise the implementation cost of a fully vaccinated child by 45% 

(25 USD)(189). Uganda has a health budget of about 59 USD per capita per year (190). With 

the GAVI negotiated prices, a cost-effectiveness study in Uganda estimated that PCV could 

save 10 796 lives, and prevent 94 071 IPD cases of S. pneumoniae, without counting the non-

invasive pneumococcal burden, and could be cost saving with a gain of 0.6 million USD in 

direct medical costs (190). The results remained highly cost-effective even at the non-GAVI 

subsidized price of 3.5 USD. A 42% reduction in the number of cases and deaths due to 

invasive pneumococcal disease was estimated, which seems reasonable in comparison to the 

effectiveness studies mentioned from the Gambia, South Africa and Kenya.  

Our results of a moderate PCV serotype coverage in Uganda should definitely not discourage 

its use, however it may help in choosing between different PCVs.  

5.2 METHODOLOGICAL CONSIDERATIONS 

How to show the real public health impact of PCV?  

The randomized placebo controlled trial, preferably double blinded, is the gold standard for 

evaluating vaccine efficacy in pre-licensure trials. It needs to be used in phase II to III trials in 

order to show the safety and efficacy of a new vaccine before licensing (191). The 

randomized controlled trials are labor-intensive and costly and focus on a few and pertinent 

outcomes for a vaccine, comparing vaccinated and un-vaccinated groups (192). Post-

marketing studies following the large scale implementation of a new vaccine are important 

for determining the effectiveness of the vaccine in a natural population and to monitor rare 

side-effects that could not be found during the licensing process. The real public health 

impact of a vaccine may also be demonstrated through these kinds of studies. 

Comparing some of the newer vaccines, like PCVs, with the older vaccines in the Expanded 

Program on Immunization (EPI) schedule, the well-defined end-point of a laboratory 

confirmed case is more seldom, or sometimes not at all, obtainable. PCVs were developed to 

protect against IPD, but this is only the tip of the iceberg of the disease burden of 

pneumococcal bacteria. Meningitis, septicemia and bacteremic pneumonia may be 
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underdiagnosed due to difficulties in pneumococcal bacterial growth. Furthermore, 

pneumococcal bacteria are isolated from only a small percentage of pneumonia cases and 

from an even smaller one in otitis media. There is a large potential to also protect other un-

vaccinated older age groups from pneumococcal disease through PCV vaccination of 

children. Therefore, in order to measure the real public health impact of PCV we need to use 

proxy measures of the real effectiveness (193). Gessner et al. argues that the vaccine 

preventable disease incidence (VPDI) per 1000 person-years should be used (194). They 

argue that PCV has a higher vaccine efficacy than rotavirus vaccine (particularly in low-

income countries), but that the VPDI is higher for rotavirus vaccines against severe diarrhea, 

as compared to PCV against meningitis or severe pneumococcal pneumonia. They also 

discuss the use of vaccine probes to evaluate unknown disease burdens (for example 

influenzae) following implementation of another vaccine (example PCV) (195).  

Another example of the wider public health impact of PCV is its effect on hospitalization due 

to influenza as seen in for example the US (196), and decrease in respiratory syncytial viral 

(RSV) disease during a PCV trial in South Africa (83). PCV appears to have an impact on 

other infections, indicating that co-infection of pneumococci and viral diseases lead to more 

severe diseases (83, 197).  

This thesis does not intend to demonstrate the full public health impact of the PCV 

implementation in Sweden, but attempts to go beyond looking solely at the impact on IPD in 

the vaccinated groups by including the impact of PCV on IPD for all age groups. A decrease 

in sinusitis and pneumonia hospitalization in vaccinated and un-vaccinated children is also 

demonstrated and the dynamics of carriage is studied to further explain the herd effect of the 

vaccine.  

Study design 

A retrospective (or historical) cohort study design was used in study I. The cohort was the 

whole population residing in Stockholm County from 2005 to 2014. In this population all 

reported cases of IPD were included. A case was defined as a positive pneumococcal 

bacterial culture from a sterile compartment, such as the blood, cerebrospinal fluid (CSF) or 

bone. In a cohort study the exposure (vaccination in this study) is usually measured at the 

start of the study and then the cohort is followed for the outcome (disease). This may be very 

costly, particularly if the studied disease is rare. We collected data on risk factors and clinical 

outcomes retrospectively for the IPD cases by submitting a questionnaire to reporting 

clinicians and validating the medical records of all children with IPD from 2005 to 2014. 

Incidence rates were calculated using mid-years population size per age group obtained from 

Statistics Sweden. It could be argued that Stockholm is not a closed cohort and that people 

move in and out during the year, and might fall ill away from Stockholm, thereby not 

contributing to the statistics. One limitation in this study was the low response rate on the 

clinical questionnaire including data concerning PPV or PCV exposure for the adults (54% in 

2007 and 79% in 2009-13). By contrast, our data for children was complete since all medical 

records were accessible. Additionally, the County Medical Officer´s Office contacted all 
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families by phone to complete the vaccination data for each child. Another limitation is that 

the detection and thereby frequency of IPD cases recorded depends on the habit of taking 

samples of blood and CSF for bacterial culture by the clinicians. Clinicians confirmed that no 

major shift in sampling habits had taken place over the study period, but no denominator data 

on the total number of samples taken was available. Generally the disease severity of invasive 

pneumococcal disease calls for the taking of blood cultures, but the true number of cases 

might be underestimated through the exclusion of the less severe cases. It is believed that 

blood sampling is more frequently done in for example the US (150), which could be one 

explanation as to why the incidence of IPD pre-PCV was much higher than in for example 

Sweden or Norway (142, 198). Of importance to our study, though, is that blood sampling 

habits seem not to have changed pre- and post PCV. The decrease in incidence of IPD is 

therefore probably not due to less samples collected, which, although it cannot be excluded, 

no strong evidence exists for.  

An ecological study design was used in study II. In ecological studies, groups of people are 

compared in relation to an outcome. These studies are useful for generating a hypothesis 

based on a correlation between a phenomenon and an outcome. In our study it was the 

introduction of the PCV and the hospitalization of children due to pneumonia or sinusitis. In 

ecological studies, causal links cannot be made and it may be difficult to examine potential 

explanations for the findings (199). A difference in the selection of cases between study II 

and study I was that all IPD cases were laboratory confirmed cases (I), but no firm case 

definitions for bacterial pneumonia, empyema or sinusitis existed in the discharge diagnosis 

(II). To avoid over-interpretation of our correlations we also searched for alternative 

explanations to various hospitalization patterns, looking at unrelated diagnoses 

(pyelonephritis) and related respiratory diseases (asthma, obstructive bronchitis and viral 

pneumonia). We also validated all cases of sinusitis in children in the medical records and a 

sub-sample of 50 medical journals of children hospitalized due to pneumonia before and after 

PCV introduction. The validation of the pneumonia cases showed similar rates of x-ray and 

clinical parameters indicating that the diagnosis of pneumonia coded as bacterial was 

similarly determined before and after PCV. Despite this there was an increase in the 

hospitalization of viral pneumonias and RSV after PCV implementation as compared to 

before. One explanation for this may be the increased use of viral diagnostic tests at the 

pediatric hospitals. There may have been more children in the pre-vaccine era classified as 

having bacterial pneumonia rather than viral pneumonia which may have caused us to 

overestimate the true effect of PCV on bacterial pneumonia hospitalizations. The ecological 

study design does not exclude this possible misclassification between pneumonia coded as 

bacterial or viral or RSV, which is why the results must be interpreted with caution.   

The pneumococcal carriage studies III and IV were of cross-sectional design. Cross-sectional 

studies may measure the prevalence of a disease and always measure exposure and effect at 

the same point in time. In cross-sectional studies it is however not possible to evaluate which 

came first: exposure or outcome. Natural fluctuations and clonal expansion in pneumococcal 

carriage and IPD (study I, III and IV) may of course be the results of other factors such as 
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antibiotic treatment practices, immunization coverage rates of influenza and PPV vaccine in 

the elderly and PCV in children and risk groups. However, questionnaire data in studies III 

and IV was used to evaluate factors affecting carriage, such as vaccination status (III), 

antibiotic use and socio-demographic data.   

In studies III and IV, we performed repeated cross-sectional studies in the same population 

using simple random sampling in Uganda and a geographically representative sample in 

Sweden, which allowed us to study the longitudinal trend of carriage in these two 

populations. In both these studies we also collected information through questionnaires and 

also via the HDSS data base in Uganda on risk factors and sociodemographic indicators. A 

limitation of the study in Uganda was that although we used a random sampling and a similar 

questionnaire over the three years of the study, there were many differences in the study 

population over the three years (age, wealth quintiles, ill in the last 2 weeks, and symptoms 

during those weeks) (IV). This may be due to the fact that we did not use exactly identical 

questionnaires or survey methods during the period of study. Seasonal effects may have 

influenced the variance in the sampled children’s data, e.g. disease burden. There was a 

school holiday during the last cross sectional year which might explain the lower percentage 

of included children that year. The studied population size varied from 150 to 587 to 1024 

children between 2008, 2009 and 2011 respectively. To meet the requirements of the larger 

group of children studied, more field workers were recruited and may have asked the 

questions in the questionnaire differently. The population in the HDSS area is used to field 

workers asking questions, and there may also be a desirability bias of wanting to answer 

affirmatively to questions. This may for instance have led to an overestimation of the disease 

burden, if more respondents said that their children had been ill in the last two weeks than 

what was really the case. When it comes to the main outcome the pneumococcal carriage, the 

rates remained stable over the three years. So even if sampling and methods differed slightly 

across the study years, the serotype distribution probably reflects a representative sample in 

the child population in the area.  

The study of carriage (study III) at Child Health Centers in Stockholm during four years, 

starting four years after PCV introduction, utilized standardized methods, and all data 

collection was done by the same five nurses, who had all received the same training and level 

of supervision.   

In this thesis three out of four studies were population-based (study I, II and IV). This means 

that cases are sampled from the whole population at risk, allowing us to calculate incidence 

rates of disease. In study I and II we collected cases from mandatory reporting registries for 

IPD, and discharge diagnosis registries for sinusitis and pneumonia, from all available 

hospitals caring for children in Stockholm County. Children not residents of the Stockholm 

region were excluded (III). In study IV it was population based since all sampled children 

were registered in the HDSS data base and had an equal chance of being sampled. However, 

not everyone sampled was at home at the time of the survey. This limitation could have made 

the study population less representative, if for example certain maybe less ill travelled less. 
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Study III was not population based because the included Child Health Centers were not 

chosen randomly but rather chosen in order to be geographically representative of Stockholm, 

and in addition only large centers were included. Thus, the consenting parents may not be 

representative of the whole study population.  

Selection bias:  

Selection bias is a systematic error in epidemiology (199, 200). This is different from the 

random errors due to chance in the sampled subjects. Random errors can usually be corrected 

with a larger sampled base using a calculation of sample size with accurate assumptions. 

Selection bias, however, arises from procedures for selecting cases or factors that influence 

participation in a study so that the characteristics of the study subjects included are not the 

same as for those not included.  

The risk of selection bias was most obvious in the carriage study in Sweden (study III). 

Families were offered to participate in the study following their regular visits at the Child 

Health Center. Before consenting they had received information about the study through 

posters posted weeks in advance at the Child Health Center and had received flyers informing 

about the study either at an earlier visit or in the mail. Then we asked the pediatric nurse to 

explain the purpose of the study, or at least to inform parents that they could get more 

information from the study research nurses. Unfortunately, due to the time constraints of both 

parents and nurses at the centers, we were not able to estimate the drop-out rate. We do not 

know how many actually read the information given. Parents who do not vaccinate their 

children may also be more hesitant to participate in a study concerning vaccines. However, 

the vaccination coverage for PCV is as high as 97% and very few actually do refuse. Our 

vaccination coverage rates in the study matched the population coverage. One risk we 

anticipated was that parents from higher educational levels would be more willing to 

participate. Indeed, the results show a selection of participants with higher level of education 

than the general population in Stockholm (study III). There is a pattern of higher antibiotic 

use in populations with lower socioeconomic status which may affect the pneumococcal 

carriage. However, travelling abroad was a risk factor for carriage in our study and this may 

be more common in wealthier population groups. Consequently, it is unclear how this 

selection bias may have affected the serotype distribution results. 

Another potential risk of selection bias is missing data in the HDSS database in Uganda 

(study IV). Populations in the area that are squatters without a legal homestead may not be 

registered and therefore not sampled. There may also have been data missing on the age of 

some of the children registered in the database of the HDSS. However, experience of using 

the HDSS database shows that this is probably a minor problem and should not have affected 

the overall results. In study IV there is also the potential selection bias that some 

pneumococcal strains were more sensitive and selectively died during the transport from 

Uganda to Sweden.  
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Information bias  

Information bias is caused by the collection of incorrect information (200). This can lead to 

misclassification of for example categorical variables. In a study when two groups are 

compared, such as study IV, with both ill and healthy study subjects, information on exposure 

or disease may have been systematically collected differently in the two groups. This may 

affect the interpretation of the results.  

A classic example of an information bias is the recall bias. This is when two groups being 

studied, for example cases and controls, recall exposure differently. For example, a case 

might be keener to remember a certain exposure. In the study IV we used two a week recall 

for self-reported symptoms of illnesses and treatment. In study III we used longer recall – up 

to a year of illnesses, antibiotic treatments, travels, and hospital care.  However, in both these 

studies, the participants did not know if they had the outcome (carriage), so the answers and 

therefore the results were probably not affected.  

In study II there was a problem with a misclassification of the cases already described in the 

section of the study design (ecological) relating to the possible increased use of PCR, thereby 

leading us to believe that PCV decreased pneumonia hospitalization when in reality it could 

be misclassified disease. We think this misclassification may have affected the results, but we 

do not know not to what extent. Even if all 45 viral pneumonia cases per year had been 

classified as bacterial pneumonia, instead of viral, the incidence of pneumonia coded as 

bacteria would have increased from 366 to 385, but there would still have been a significantly 

decreased risk of hospitalization (RR 0.86, 95% CI 0.78-0.94). Our results pointing to a 19% 

decrease in hospitalizations due to pneumonia in vaccinated young age groups are also 

similar to other studies in different contexts (115, 201). ICD coding of discharge diagnoses, 

as used in study II, may lead to a risk of misclassification in any context. The classification of 

pneumonia becomes more accurate if it is confirmed with through x-ray. In study II this was 

controlled in the subsample where close to 100% of the hospitalized children were x-rayed. 

Therefore, we still believe that the classification was as good as it could be despite this 

chosen study design. Generally, the clinical definition of viral and bacterial pneumonia is 

difficult. High priority is put into research, to be able to diagnose and distinguish between 

viral and bacterial pneumonia and consequently prescribe antibiotics only to the cases who 

really need them, both in high, middle and low income countries (47, 81). 

In study II we did not collect data on sinusitis treatment in out-patient clinics, only in in-

patient clinics. If sinusitis patients were treated with oral antibiotics as outpatients to a larger 

extent post-PCV, there would be an information bias. This bias would be due to a change in 

treatment habits rather than a true decrease because of the exposure to PCV. No information 

from the active clinical colleagues on the research team however indicated that this was the 

case. It is also highly unlikely that such a change happens without an official change in 

treatment policy and concomitantly with the introduction of a vaccine.  
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Another information bias in study II was the lack of individual vaccination status for cases. 

This is rarely noticed in medical records and there was no national register available at the 

time of the study.  

In study II we also excluded all H1N1 cases from the viral pneumonia group due to the 

mandatory reporting of all cases of pandemic flu since 2009. This lead to a disproportional 

increase in the reported number of cases. Including them would have given an overestimation 

of the incidence of influenza, or at least made it impossible to compare the viral pneumonia 

incidence over the study years.  

Confounders 

Confounder means that the effect of the exposure is mixed with the effect of another variable 

(200). This may in the extreme case be that the exposure has nothing to do with the outcome 

but rather that the outcome just happens to vary with another variable that has the actual 

effect in the outcome. A confounder must therefore be associated with the disease and also 

with the exposure, but it must not be an effect of the exposure. Logistical regression used to 

control for variations in risk factors in carriage was used to control for confounding in study 

III and IV.  

A confounder we were not able to control for in study I was the use of PPV, since we had no 

individual data in the Stockholm region on the vaccine coverage of PPV in recommended 

risks groups; adults over 65 years, and persons of all ages with chronic conditions with 

increased risk of IPD or complications due to IPD. From 2009 to 2015, between 7,000 –

15,000 vaccinations with PPV were performed yearly in these risk groups, with no trend for 

either increase or decrease (County Medical Officer Åke Örtqvist, personal communication). 

Before the influenza pandemic of 2005-2008, the vaccination coverage with PPV was 

approximately two-four times as high, i.e. around 30 000 doses per year, but we lack the 

exact numbers. Although there were fewer vaccinated post than pre-PCV, the duration of 

protection of PPV makes it difficult to know if this would have had any impact on our results.  

Generalizability 

Generalizability has to do with the results being representative of the whole group of the 

population studied. Despite the methodological considerations listed above, this thesis 

contains three out of four population based studies and all four have a large sample size. All 

studies in Sweden were carried out on a defined population over a number of years, and 

include IPD and other morbidity data as well as carriage data – all pointing to the vaccine 

having an impact. A strength of study IV in Uganda was the use of random sampling to draw 

a representative sample from the population. 

The use of risk difference vs risk rate ratio   

Finally, the work on this thesis has been consistently filled with the question of how to 

present before-after PCV data. In study I incidence rate ratios was used. In study II we chose 

to present the data in two different ways, using trend analysis and incidence rate ratios. Trend 
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analysis has the advantage of it being visually easy to actually see a change in incidence at 

the time at and after exposure of the PCV. In table 7 some of the observed measures of 

impact of PCV implementation is presented for Sweden and the potential impact is estimated 

for Uganda.  

Table 7. Different measures of vaccine effectiveness using data from Stockholm, Sweden (Study 1) and 

estimated impact in Uganda in children < 2 years of age. 

Measure of effect on invasive 

pneumococcal disease  

Stockholm, Sweden, 

results from study I  

Uganda (estimated 

potential impact) 

Assumptions in 

Uganda 

Incidence rate ratio  0.36 (95% CI 0.2-0.6) 0.58 42% serotype PCV 

coverage (190) 

Incidence rate difference 18.1 cases/ 100,000 105 cases/100,000 Pre-IPD incidence 

estimated at 

250/100,000 
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6 CONCLUSIONS 

Pneumococcus is currently the most important specific cause of child mortality. 

Pneumococcal conjugate vaccine (PCV) has a potential to alleviate at least a part of the 

pneumococcal disease burden. However, as this thesis points out, the current level of serotype 

coverage of PCVs limits their impact.  

 After PCV introduction in Stockholm County, there has been a decline in IPD 

incidence due to meningitis, septicemia and rhinosinusitis in vaccinated age 

groups <2 years, as well as for bacteremic pneumonia in older children and 

septicemia in adults <65 years (I) 

 Overall IPD incidence in the elderly did not decline due to an emergence of 

non-PCV13 vaccine-types (I) 

 Antibiotic resistance levels in carrige and IPD remained low after PCV 

introduction in Stockholm county (I, III) 

 After PCV introduction in Stockholm County there was a decline in 

hospitalizations due to sinusitis and pneumonia in vaccinated age groups 0-<2 

years old, as well as in older un-vaccinated children 2-<5 years old (II) 

 The shift from vaccine types (VT) to non-vaccine types (NVT) was nearly 

completed four years after introduction of the PCV vaccination and this 

serotype replacement continued to evolve from 4 to 8 years after PCV7 

introduction in Stockholm County. 

 Nearly half of the serotypes colonizing healthy children (46%) in Uganda were 

serotypes not covered by any of the current PCVs. The serotype coverage rate 

was 42% for the 10 serotypes in PCV10, which is the vaccine currently being 

implemented in Uganda. 

 PCV serotype coverage in children under 5 was much higher in Sweden than in 

Uganda prior to PCV introduction (I, III, IV). Therefore, vaccine effectiveness 

in Uganda may not become as high as in Sweden (IV) 
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7 IMPLICATION FOR POLICY, PRACTICE AND 
RESEARCH 

This thesis has attempted to answer a few research questions on the PCV impact on 

pneumococcal morbidity and carriage in Sweden and the potential impact in Uganda. The 

results may have implication for some of the policy, practice and research issues listed below:  

Policy and practice: 

 In Uganda, and in Sweden, the serotype distribution may be used to inform 

choices in PCV policies and future vaccine development.  

o In Sweden, future PCV is recommended to include NVT of high 

invasiveness potential: 22F, 9N, 8 and 12F, but also the NVT 33F, 23A 

and 11A due to their presence in both carriage and IPD. 

o In Uganda, PCV13 will offer a larger serotype coverage than the chosen 

PCV10. 

 It is important to also carry out longitudinal surveillance studies on the impact 

of PCV in Uganda and other low-income countries where the disease burden 

and mortality is higher and PCV effectiveness data is scarce. 

 Pneumcooccal conjugate vaccines could be included in policies to decrease 

antibiotic resistance. 

Research: 

 What is the perfect equilibirum in pneumococcal carriage and IPD, will it really 

be of advantage to eliminate all-type pneumococci in the nasopharyngeal niche? 

What kind of viral or bacterial pathogens will then develop and thrive? 

 For how long will present antibiotics and vaccines be effective against 

pneumococcci? Will serotype replacment over time out-number the PCV gains 

in vaccine-type disease for vaccinated and/or un-vaccinated populations?  

 More research is needed to understand mechanisms and how to positively 

impact the microbiota of the nasopharynx in ways to diminish disease. 

 What other measure than PCV can be put in place to decrease IPD? Is it 

possible to administer asymptomatic bacteria on the mucosa of the nasopharynx 

to outnumber the invasive pathogens?  

 Are contact patterns/social context between generations important for 

pneumococcal disease transmission and the impact of PCV?  
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8 POPULÄRVETENSKAPLIG SAMMANFATTNING 

Barnadödligheten har minskat från 12,7 miljoner barn under fem till 5,9 miljoner per år sedan 

1990. En ökad vaccinationstäckning mot mässling, stelkramp, difteri, kikhosta, och polio gör 

att mellan 2-3 miljoner barns liv räddas varje år. Den vanligaste enskilda sjukdomen som 

dödar flest barn under fem år, runt 900 000 per år, är lunginflammation. Många av dessa 

dödsfall beror på en bakterie som heter pneumokocker. Pneumokocker orsakar även andra 

allvarliga infektioner som hjärnhinneinflammation och blodförgiftning och mindre allvarliga 

som öroninflammation och bihåleinflammation. Sedan år 2000 finns ett vaccin mot 

pneumokocker som är effektivt även för barn under två år. Denna typ av vaccin, som kallas 

konjugerat pneumokockvaccin (PCV), rekommenderas av Världshälsoorganisationen för alla 

länder sedan år 2007. På senare år har PCV implementerats snabbt även i låg och 

medelinkomstländer. Men PCV vaccinationstäckningen är globalt på ungefär 31% och 

kunskap saknas hur effektiva PCV blir och vilka sekundära effekter de kan ge.  

Pneumokocker delas in i över 97 serotyper beroende på ytstrukturer på bakteriekapseln. Bara 

10 av dessa serotyper stod för 70% av alla fall av allvarlig pneumokocksjukdom innan PCV 

fanns. Man har utvecklat PCV så att de innehåller 10 eller 13 av de serotyper som gav mest 

och allvarligast sjuklighet. Vaccinerna är nästan bara effektiva mot serotyperna som ingår. 

Förutom att skydda barnet mot sjukdom mot dessa serotyper så minskar även bärarskapet. 

Detta betyder att vaccin serotyperna försvinner från nichen där de normalt finns och sprids, 

nämligen bakom näsan på yngre barn. Detta bidrar till att minska smittspridningen i 

omgivningen, men istället kan andra serotyper ta plats bakom näsan på barn och sprida andra 

sorters pneumokocker, sk serotyps-byte. PCV ges inom barnvaccinationsprogrammet i 

Stockholms län sedan 2007 och det implementeras i Uganda sedan år 2014. För att ta reda på 

effekten av PCV i Stockholms län, och den potentiella effekten av PCV i Uganda, gjorde vi 

uppföljning av alla fall av allvarlig pneumokocksjukdom, samt alla sjukhusbehandlade fall av 

barn med lunginflammation och bihåleinflammation i Stockholm och dessutom studier på 

pneumokockbärarskap på barn under fem år i både Stockholm och Uganda.  

I Stockholm visades en 64%-ig minskad risk för allvarlig pneumokocksjukdom för barn 

under 2 år, men även en minskad risk för ovaccinerade äldre barn och vuxna, s.k. flockskydd, 

när man jämförde perioder innan och efter PCV. Flockskyddet av ovaccinerade sträckte sig 

dock inte till äldre över 65 år eftersom serotyper som inte ingår i vaccinet ökade så mycket att 

sjukligheten totalt inte påverkades. Dessutom visades en 66% minskad risk för 

sjukhusinläggning pga allvarlig bihåleinflammation och 19% minskad risk för 

lunginflammation. Den goda effekten kan delvis förklaras av ändrad bakterieflora i bärarskap 

hos barn, där de serotyper som ingår i vaccinet har utbytts mot mindre allvarliga serotyper 

som inte ingår i vaccinet. I Uganda såg vi en mycket lägre PCV serotypstäckning bland 

bärarskap hos barn under fem år, 42% jämfört med 63% innan PCV i Sverige. Men eftersom 

pneumokocksjukligheten och dödligheten är högre i Uganda uppskattas ändå värdet av PCV i 

Uganda bli betydande.  

Avhandlingen bidrar med kunskap om PCVs effekt i Sverige och dess potentiella effekt i 

Uganda och kan bidra till val av vaccin och vaccinationspolicy i framtiden. 
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