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ABSTRACT 

Mycobacterium tuberculosis (Mtb), the aetiological agent of tuberculosis (TB) is the leading 

infectious cause of death globally. The outcome of Mtb infection is variable and depends on 

host, bacterial and environmental factors. Mtb has evolved into a number of lineages and sub-

lineages exhibiting phylogeographical population structuring and diverse clinical 

consequences after infection. The Mtb Uganda genotype is the commonest cause of 

pulmonary TB (PTB) in Kampala, Uganda. Prominent inherited host factors that determine 

the outcome of TB are human leukocyte antigens (HLA).  

To investigate the impact of Mtb genomic diversity and host HLA allelic variability on the 

clinical outcome of TB infection in Ugandan patients, the clinical and pathological outcome 

of Mtb Uganda genotype, and the association between HLA II alleles and PTB due to Mtb 

were studied. The Uganda genotype was found less frequently in extrapulmonary TB (EPTB) 

than previously reported in PTB in the same setting (Paper I), and tuberculous lymphadenitis 

patients infected with Mtb Uganda genotype were significantly less prone to have abdominal 

lymphadenopathy (Paper IV). This may imply that Mtb Uganda genotype has reduced 

potential to disseminate. 

A study of the evolutionary relationships and worldwide distribution of the spoligotypes of 

Mtb isolates from Ugandan patients with tuberculous lymphadenitis indicated an ongoing 

evolution of the Uganda genotype, with Uganda at the center of this evolution (Paper II).  

HIV negative patients with pulmonary TB and their genetically related healthy household 

controls were typed for HLA class II alleles (Paper III). The HLA- DQB1*03:03 allele was 

significantly less frequent in patients compared to healthy controls suggesting that the HLA- 

DQB1*03:03 allele may be associated with resistance to TB.  

To establish the cause and pathology of fatal mycobacterial disease, the mycobacteria and 

pathology associated with fatal TB were studied (Paper IV). One quarter of fatal 

mycobacterial disease was associated with non tuberculous mycobacteria (NTM). Pleural 

effusions were significantly associated with Mtb disease compared to NTM infection (Paper 

IV).   

To explore the potential use of the CD4+ and CD8+ T cell immunoprofile to diagnose 

tuberculous effusion, CD4+ and CD8+ T cells from pleural effusions were characterized. 

CD4+ T cells were significantly more abundant in individuals with TB, and the 

CD4+/CD8+T cell ratios were significantly higher in tuberculous pleural effusion compared 

to non tuberculous effusion, however this significance was lost after adjusting for age and 

ethnicity. Analysis of pleural fluid for the quantity of CD4+ and CD8+ T cells may be useful 

for establishing a diagnosis of TB in suspicious cases (Paper V). 

In conclusion, this thesis highlights the genetic diversity of Mtb with Mtb Uganda as the 

predominant genotype in EPTB patients in Uganda. Both NTM and Mtb are associated with 

fatal mycobacterial disease and the pathology findings are indistinguishable, though NTM are 

significantly less likely to cause pleural effusion. Mycobacterial genetic diversity together 

with host HLA variability may have clinical consequences. This can be exploited in 

designing TB diagnostic, management and prevention strategies. 
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1 INTRODUCTION 

 

1.1 TUBERCULOSIS 

1.1.1 Historical overview 

The infectious nature of tuberculosis (TB) was first demonstrated in 1865 by a French 

physician, Jean Antonie Villemin, who demonstrated that rabbits inoculated with TB 

organisms developed the disease. TB has afflicted man for centuries though its etiology and 

infectious nature was first described by Robert Koch in 1892 [1]. The earliest evidence was 

of pulmonary and spinal TB in a 5-year old Egyptian mummy in 3400 BC. In Europe, TB 

infected between 70 and 90% of the urban population in the late nineteenth century [2]. 

George Canetti first published the results from early studies on the nature of various types of 

TB lesions in man during the 1940s. Based on autopsies of 1500 TB patients performed 

during a 7-year period, Canetti described three different features from a large variety of 

human TB lesions based on: (i) the histopathologic features of the lesion. (ii) the number of 

acid-fast bacilli observed by microscopic examination and (iii) the number of culturable 

bacilli on egg medium. He categorized the three different types of lesions in man further into 

various subtypes: (i) lesions characterized by marked inflammation including vasodilatation, 

edema, fibrinous exudate, and an influx of lymphocytes, (ii) lesions characterized by a 

cellular influx of monocytes transforming into giant cells which are characteristic of a 

classical granuloma or tubercle and (iii) lesions characterized by necrosis and 

homogenization. Necrotic lesions may remain solid with very few bacilli, and evolve to 

sclerosis, or the caseum may soften with accompaniment of enormous bacillary load, which 

he associated with the onset of clinical TB.  

 

1.1.2 TB Globally 

The World Health Organization (WHO) declared TB a global emergency in 1993, with a 

predicted mortality of 20 million people in a decade [3]. In 2014 TB was ranked alongside 

HIV as the leading infectious cause of death, accounting for nine million new cases and 1.5 

million deaths globally, 400,000 of whom were HIV positive [4]. About one-third of the 

world's population (1.7 billion) is estimated by WHO to be infected with Mtb. More than half 

of TB patients live in Asia and Africa [5]. Uganda is one of the countries with the highest TB 

burden in sub-Saharan Africa, and ranks 15
th

 among the 22 high-burden countries. The 
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annual TB incidence in Uganda is 559 cases per 100,000 [6].  TB is the leading cause of 

morbidity and mortality in individuals with HIV in sub-Saharan Africa [7]. Mortality rates of 

up to 40% per year have been reported in HIV patients co-infected with Mycobacterium 

tuberculosis (Mtb) on TB treatment [8]. According to WHO, 1.2 million people (13%) of the 

9.6 million people who fell ill with TB in 2014 were co-infected with HIV [4]. A significant 

number of patients with AIDS will have active TB, because the AIDS virus has a profound 

and detrimental effect on the immune response which normally controls the mycobacterium  

[9-11]. 

 

1.1.3 Pathogenesis of TB 

The majority of Mtb infected individuals do not develop active disease for many years. TB 

re-emergence and spread is determined by i) infectiousness of the infecting person (number 

of bacilli expelled in air), ii) TB exposure duration, iii) host susceptibility, and iv) virulence 

of the pathogen. Though Mtb is the predominant cause of TB, other species of the Mtb 

complex including M. africanum, M. Canetti, M. bovis, M. bovis BCG, M. microti, M. caprae 

and M. pinnipedii [12-14] may also cause disease. After infection with Mtb, the majority of 

infected people remain asymptomatic (latent TB), the infection being controlled by the 

immune response and no clinical disease develops [15]. Mycobacterial disease is also caused 

by various species of non-tuberculous mycobacteria (NTM). 

The risk for developing progressive disease is 5% annually (for 5 years) following primary 

infection [16]. This risk is 1.91% annually (for 5 years) following re-infection [16].  The 

lifetime risk of developing clinical TB is 10%, this however increases to an annual risk of 

over 10% in HIV infected individuals [17, 18]. The risk of developing primary TB is lower in 

children than adults [16], while children have a higher likelihood of developing severe 

disseminated TB than adults. Young women have an increased likelihood to develop active 

TB following infection than men of the same age [19, 20].  

Tubercle bacilli are transmitted from person to person through aerosols, small droplet nuclei 

size 5µ, 1-3 bacilli per nuclei generated during coughing, singing, laughing and sneezing. 

These droplets are expelled and lose moisture by evaporation, leaving a solid nucleus. 

Coughing is the most efficient method of generating droplet nuclei [21].  Particles less than 

5µm filter through the ciliated epithelium and end up in the lung alveoli [22, 23]. In the 

alveoli, the tubercle bacilli encounter the alveolar macrophages. An inflammatory process is 

initiated at the site of primary infection whose magnitude depends on the host immune 
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genetics, extrinsic immune system insults and virulence of the invading tubercle bacilli [24]. 

Concurrently, there is systemic dissemination of bacilli to other regions of the lung and 

organs. At this stage, active TB disease may develop if there is sustained proliferation of the 

bacilli.  

 

1.1.4 Immune system and mycobacteria 

TB infection has five stages based on rabbit studies [25]. The first onset stage begins when 

the bacilli are inhaled into the alveoli and phagocytosed by the non-specifically activated 

alveolar macrophages with eventual destruction [26]. Bacillary destruction is partially 

achieved resulting in the second stage called symbiosis [25]. During this stage, the bacilli 

multiply and reside in the macrophage without causing any progressive disease [27-29], the 

number of macrophages also increases but do not kill the bacilli. Activation of tissue 

damaging delayed-type hypersensitivity (DTH) with resultant caseous necrosis terminates the 

symbiotic stage.   

Annual Reviews

 Figure 1. Primary TB: Illustration of the trafficking of Mtb antigen by dendritic cells to 

regional lymph nodes leading to initiation of adaptive immunity by Cooper AM et al [30]. 

Permission granted by Cooper AM et al and Elsevier publishers. 
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The third stage is the caseous stage characterized by bacillary caseation and extensive cellular 

destruction at the centre of the granuloma or tubercle called caseous necrosis. The fourth 

stage involves dynamic equilibrium of tissue destruction and immune activation response. 

The fifth stage is liquefaction and cavity formation characterized by extensive destruction of 

granuloma tissue due to enzymatic activity. From the alveoli, the bacilli may be released into 

the environment through coughing or may invade into the blood stream resulting in 

dissemination. During this innate phase, the granuloma has been shown to be the epitome of 

pathogenic mycobacterial expansion and systemic dissemination [31]. 

The bacillary multiplication is usually controlled until the development of adaptive immunity 

in 3 to 8 weeks after primary infection [32]. Macrophages and dendritic cells provide a link 

between innate and adaptive immunity through receptor mediated interaction with Mtb. 

Numerous receptors expressed on phagocytic macrophages bind mycobacteria before their 

uptake [33]. These include C-type lectin receptors (CLRs), scavenger receptors (SR) and 

complement receptors [33]. The recognition of pathogen-associated molecular patterns 

(PAMP) by specific pathogen recognition receptors (PRRs) is pivotal to the initiation and 

coordination of the host innate immune response [34]. 

The PRR mediated macrophage phagocytosis includes Toll-like receptors (TLRs), 

nucleotide-binding oligomerization domain (NOD-) like receptors (NLRs), and C-type 

lectins. The C-type lectins include mannose receptor (CD207), the dendritic cell-specific 

intercellular adhesion molecule grabbing nonintegrin (DC-SIGN) and Dectin [35]. Interaction 

between PRR and PAMP result in intra- cellular signaling culminating in production of 

immune mediating pro-inflammatory cytokines like IL -1β, TNF-α and IL-6 [35-37].  

Dendritic cells and infected macrophages traffic to the regional lymph nodes to present 

antigen to naïve T cells in association with MHC class I and II or CD1 molecules, priming 

them against mycobacterial antigens [38].  

The T cells are activated, undergo clonal expansion and acquire effector functions [39, 40]. 

The Mtb antigenic specific T cell subset that directs the cell mediated response against TB in 

order of decreasing importance are CD4+αβ T lymphocytes, CD8+αβ T lymphocytes, γδ T 

lymphocytes and CD1 restricted αβ T cells [41]. These T cells can produce cytokines, kill 

antigen expressing cells in case of cytolytic T lymphocytes (CTL) and mobilize and 

potentiate other leukocytes (in case of T helper (TH) cells) the effector T cells migrate to the 

primary infection site (Figure 1). The cytokines functionally potentiate the resident 

macrophages and induce recruitment of more macrophages to the site of inflammation. The 
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activated macrophages though more efficient in killing the bacilli, do not completely 

eliminate them. This primary infection may reactivate later in life, a process called 

endogenous reactivation. In early phase of TB infection, the bacteria laden macrophages may 

cross the alveolar barrier to cause systemic spread [22, 42]. 

The intracellular proliferation of Mtb bacilli, their spread to lymph nodes and systemic 

dissemination occurs before the development of the adaptive immunity. In the majority of 

hosts, a cell mediated immune response that develops 2-8 weeks after the infection controls 

multiplication of the bacilli. The activated T lymphocytes, macrophages, and other immune 

cells constitute granulomas (Figure 2) that control further replication and spread of the 

tubercle bacilli [43]. Most Mtb are killed in the caseating granulomas. 

Primary TB infection occurs in individuals previously unexposed to Mtb or its antigens [44]. 

In the majority of patients, the primary TB is inhibited resulting in a standoff between the 

Mtb bacilli and the host.  The primary TB lesion is a ghon focus comprising foci of central 

necrosis surrounded by epitheloid macrophages and lymphocytes. Although in majority of 

cases the primary tuberculous caseous lesions heal with fibrosis and scarring, caseous 

necrosis may enlarge and progress. The dendritic cell traffic the bacilli to regional lymph 

nodes resulting in caseating granulomatous lymphadenitis, or the bacilli may systematically 

disseminate to result in disseminated or miliary TB.  

 A tuberculous lesion will progress into active disease or regress depending on the virulence 

and burden of the tubercle bacilli and the capacity of the macrophages to inhibit the growth of 

the bacilli. The main types of tuberculous lesions comprising proliferative and exudative 

lesions are described [45]. The proliferative lesions are characterized by a cellular influx of 

lymphocytes, plasma cells, fibroblasts, macrophages and langhan giant cells, morphologically 

forming a granuloma, while the exudative lesion is characterized by necrosis and 

homogenization [45]. 

Liquefied pulmonary caseous lesions or caseating lymph nodes erode into the air passages 

progressing into a spectrum of disease ranging from small pneumonic foci to lobar or 

bronchopneumonia. The extent of the resulting disease depends on the quantity of aspirated 

caseum and bacilli. 
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Annual Reviews

 Figure 2. Granuloma structure as depicted by Phillips JA et al [33]. Permission granted by 

the author and Elsevier Publishers. 

 

1.1.5 Tuberculous pleural effusion 

The immunological response during the development and progression of TB pleuritis occurs 

in three stages. The first stage is mediated by the production of IL-8 and monocyte 

chemotactic peptide (MCP-1) by activated mesothelial cells which acutely recruit 

polymorphonuclear neutrophils (PMNs) and monocytes [46].  PMNs and monocytes respond 

by secreting key cytokines such as TNFα, and IL-6. 

The intermediate stage follows in which CD4+ helper cells and CD8+ cytotoxic cells 

dominate culminating into a CD4+/CD8+ ratio of about 4.3 [47]. Finally, inflammation 

persists resulting in a sustained CD4+/CD8+ cell response, persistent INF-ϒ release and 

granuloma formation.  
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1.1.6 Mtb and HIV co-infection 

HIV infection has a profound effect on the capacity to resist Mtb infection, and renders Mtb-

infected individuals susceptible to develop active TB [10, 11]. The hallmark of the HIV-

infection is the impairment of T cell functions and the ultimate loss of CD4
+
 T cells resulting 

in impaired ability of the host to mount an effective Mtb specific T cell response [11, 48-51]. 

Deficient maturation and function of CD8+ cytolytic T cells as well as deficient granuloma 

formation may reduce the control of latent TB [48, 52]. With regard to the innate immune 

response, several studies have addressed the ability of macrophages to control the growth 

and/or kill intracellular Mtb. However, data in this respect has been quite controversial [11]. 

 HIV infection is associated with impaired recruitment and function of macrophages to sites 

of TB infection resulting in deficient granuloma formation depending on the degree of 

immunosuppression [10]. HIV and TB infections fuel each other.  

 

1.1.7 Human leukocyte antigen 

One of the most intriguing aspects of this disease is that the outcome of an infection with Mtb 

is highly variable between individuals. There is evidence of multifactorial genetic 

predisposition in humans that influences the susceptibility to TB. The majority of infected 

persons (about 90%) will never develop the disease [53], the immune system apparently 

being capable of permanent containment of the infection. In the 10% of individuals who do 

develop active TB disease, this is usually after a latent interval that can vary from weeks to 

many decades. There is a whole spectrum of clinical presentations, ranging from subclinical 

to rapidly fatal and almost any organ can be involved. Evidence shows that there is 

multifactorial host genetic predisposition in humans that influences the susceptibility to TB 

[54].  

The adaptive immune system is regulated by the Major Histocompatibility complex (MHC), 

a locus on chromosome 6, of highly pleomorphic genes that encode for Human Leukocyte 

Antigens (HLA).  The MHC or HLA in humans comprises three sub-regions (Figure 3): the 

HLA class I region, encoding for HLA-A, -B, and -C antigens; the HLA class II region, 

encoding for HLA-DR, -DQ, and -DP antigens; and the HLA class III region, encoding for 

the second and fourth component of complement C2 and C4, factor B, tumor necrosis factors 

(TNF)-α and -β, heat shock protein 70, and 21-hydroxylase [55]. Class I and class II genes 

code for cell-surface glycoproteins that present antigenic peptides to CD8+ and CD4+ T cells 

respectively, and execute a pivotal function in the homeostasis of the immune response [56]. 
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Histocompatibility genes are inherited as a group (Haploid) from each parent, and are co-

dominantly expressed in each individual. A heterogeneous human being inherits one paternal 

and one maternal haplotype each with three Class I (A, B, C) and three Class II (DQ, DR DP) 

loci.  

In the class II locus, a person inherits a pair of HLA-DP genes (DPA1 and DPB1 genes which 

encode α and β chains respectively), a pair of HLA-DQ genes (DQA1 and DQB1 which 

encode α and β chain respectively), one gene of HLA- DRα (DRA1) and one or more genes 

of HLA DRβ (DRB1 and DRB3, DRB4, DRB5. 

HLA II present longer exogenous peptides ˃ 11 amino acid to CD4+ T Cells as compared to 

MHC I which present endogenous shorter peptides 8-10 amino acids [57] to CD8+ T Cells. 

The MHC class II is synthesized in the endoplasmic reticulum. Lysosomal proteases break 

down TB antigens into smaller peptides that bind with MHC class II. These peptide-MHC 

class II complexes are transported to the plasma membrane, where they are presented to 

CD4+ T cells. The T cell receptor recognition of the presented peptide initiates the generation 

of adaptive cellular immunity against TB [58]. Various HLA have been suggested to confer 

susceptibility or resistance to TB [59-61], and the genetic influence associated with the HLA 

system appears to influence the development of TB [61]. Much interest has focused on the 

HLA genes (notably the HLA-DR2 and HLA-DQB1 loci) that determine which 

mycobacterial antigens are presented to the helper T cells [62, 63]. 

The HLA system is a highly polymorphic biological system. The HLA system is a T cell 

restriction component associated with regulation of immune-responsive and immune-

suppressive genes [64]. Antigen-specific T cell responses require the presentation of 

processed peptides in context of MHC class I and class II cell-surface glycoprotein. Proteins 

encoded by class II MHC genes mediate the recognition of the antigen by regulatory T cells 

and are associated with immune recognition and response [65]. 
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Major histocompatibility complex

CLASS II                              CLASS II                                                 CLASS III    CLASS I

DP            DM              DQ              DR                      C4A     C4B       Bf           C2       TNF-α TNF-β

αβ αβ β α β β β α

LMP-2 TAP-1 LAP-7 TAP-2

B C E A H G F

Figure 3.  Genomic structure of the Major Histocompatibility Complex region 

 

Although an association between TB and HLA has been reported in many populations, 

results are inconsistent, the HLA associations with the different Mtb genotypes have not been 

explored and no studies have been done in the African population.  Studies using serology 

methods reported an increase of HLA-DR2 in TB [66-68]. 

 

1.1.8 Clinico-pathological features of TB 

The clinical outcome of TB infections depends on a number of factors: i) host factors 

including immune status, age, sex, co-existing diseases and nutrition and ii) pathogen factors 

like virulence of infecting bacilli and host- bacilli interaction. 

More than 85% of all tuberculous infections are pulmonary only, while the remaining 15% 

are extra-pulmonary or both pulmonary and extra pulmonary [69]. One important factor for 

the clinic-pathological outcome of the disease is HIV co-infection. One previous study of TB 

on patients with advanced HIV disease [70] revealed variable disease manifestations 

comprising  38%  pulmonary involvement alone, 30% extra pulmonary sites alone while 32% 
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showed both extra pulmonary and pulmonary manifestations. Extrapulmonary dissemination 

of TB disease increases with declining immune status [71]. 

 

Table 1. Clinical feature of TB with and without HIV [72].  

 

 HIV negative HIV positive 

Constitutional symptoms Common in both groups 

Extrapulmonary disease 0-30% 60% 

Pulmonary features   

Sub-apical disease Common Uncommon 

Cavitation Common Uncommon 

Lower lobe involvement Rare Common 

Diffuse or miliary Rare Common 

Diffuse or miliary Rare Common 

 

In a majority of people infected with tubercle bacilli, the disease is controlled resulting in a 

subclinical primary lesion (Figure 4) undetectable by chest X-ray but adequate to produce a 

tuberculin reaction. Progression of this primary lesion is halted by development of a delayed 

type hypersensitivity (DTH) reaction and cell mediated immunity (CMI). Secondary TB 

occurs as a result of reactivation of a primary tuberculous lesion or from exogenous source in 

individuals previously exposed to Mtb antigens [73]. 

Post primary TB develops from the exudative reaction and is typically restricted to the upper 

lobes of the lung. The exudative reaction is followed by a lipid pneumonia phase in which 

there is localized accumulation of foamy histiocytes in the alveoli at the periphery of the 
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upper lobe of the lung [74, 75] The alveoli increasingly become foamy and eventually 

degenerate leaving lipid debri [76]. 

Annual Reviews

 Figure 4. Pathogenesis of pulmonary TB as per Cooper AM et al [30]. Permission granted by 

Cooper AM et al and Elsevier publishers. 

 

Endobronchial TB with consequential bronchial obstruction is a constant clinical and 

pathological feature of post primary TB [77, 78]. Lipid pneumonia may progress to caseous 

pneumonia following necrosis [77, 79-81]. This necrosis is acellular, homogenized and 

associated with a marked increase in acid fast bacilli [80].The alveolar septa also undergo 

necrosis. 
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1.1.8.1  Pulmonary TB 

The systemic signs and symptoms include fever, night sweats, anorexia and weight loss [82]. 

The local symptoms include chest pain and cough which is the commonest local 

manifestation of TB. Cough may be initially unproductive but as inflammation and tissue 

necrosis ensues, it becomes productive. Occasionally patients may present with haemoptysis. 

Haemoptyisis may arise from a ruptured dilated vessel (Rasmussen’s aneurysm) in a 

tuberculous cavity wall, tuberculous bronchiectasis or erosion into an airway 

(broncholithiasis). 

 

1.1.8.1.1 Radiological features 

Radiological abnormalities are common in TB; however in HIV infection a normal X-ray is 

common. In primary TB, the abnormal radiological lesions are seen as middle or lower lung 

zone infiltrate associated with ipsilateral hilar lymphadenopathy. Secondary TB typically 

presents with radiological abnormalities in the upper lobe occasionally with cavitation. Hilar 

and mediastinal adenopathy is rare in immunocompetent adults but common in children. As 

the disease progresses, the infected material may spread through airways to produce patchy 

bronchopneumonia or may be aspirated downstream to produce bronchopneumonia. The 

parenchymal caseous lesion may erode into blood vessels and disseminate systemically as 

miliary TB. In HIV/AIDS patients, the radiological abnormalities depend on the degree of 

immunosuppression [83], and may present with both typical and atypical chest radiograph 

pattern, though patients with CD4+ T lymphocytes counts less than 200 cells/µl are likely to 

present with atypical radiographic appearance of pulmonary TB [83]. In more advanced HIV 

disease, atypical findings become more common, and lower lung zone infiltrates and intra-

thoracic adenopathy are common. Previous studies based on genotyping Mtb isolates showed 

similarities in radiological features between patients with primary TB and those with 

reactivated TB [84, 85]. Therefore, the prediction of the radiological appearance of TB does 

not depend of the duration between the acquisition of the infection and development of 

disease. The independent predictor of radiological appearance may be integrity of the host 

immune response, severely immune compromised patients tend to manifest with primary TB, 

whereas immune competent patients tend to have reactivated forms[84, 85]. 
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1.1.8.1.2 Primary pulmonary TB  

Radiologically primary PTB manifests as four main entities: lymphadenopathy, parenchymal 

disease, miliary disease and pleural effusion. 

Lymphadenopathy: Radiological feature of lymphadenopathy is detected in 96% of children 

and 43% of adults [86]. Lymphadenopathy is typically right sided and unilateral in the hilum 

and right para-tracheal region (Figure 5). In a third of cases, lymphadenopathy may be 

bilateral. Any lymph node greater than 2 cm is suggestive of active disease [87]. 

Parenchymal disease: At radiology, parenchymal disease in primary TB manifests as dense, 

homogeneous opacity predominantly in the lower and middle lobes. It can be distinguished 

from bacterial pneumonia on the basis of radiological evidence of lymphadenopathy. 

Miliary disease: Miliary TB clinically manifests in 1% to 7% of patients with all forms of TB 

[88]. It is more commonly seen in children, malnourished, individuals on immune 

suppressants, elderly and immune compromised person [88]. The classic radiological 

manifestation is evenly distributed small 2-3mm nodules randomly distributed throughout 

both lungs with intra and interlobular septal thickening [86], with slight lower lobe 

predominance. 

Pleural effusion: Pleural effusion occurs in one fourth of patients with primary TB and 18% 

of post primary TB [86]. Pleural effusions are usually observed in association with 

parenchymal or nodal disease, though occasionally they may be the only radiological finding 

indicative of PTB in approximately 5% of adults [89]. 

 

1.1.8.1.3 Post primary TB 

 Secondary or post primary TB refers to reactivation with or without re-infection of TB. The 

radiological features of primary and post primary TB may overlap. At radiology, the common 

manifestations of secondary TB include parenchymal disease, airway involvement and 

pleural extension. 

The earliest manifestation of parenchymal disease is patchy, poorly defined consolidation 

particularly in the apical or posterior segments of the upper lobe or superior segments of the 

lower lobe [90, 91]. 
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Figure 5. Para-tracheal lymph nodes. Photo Wamala D. 

 

 

 

Figure 6. Cavitation. Photo Wamala D. 

 

Cavitation affects about 50% of patients with post primary TB (Figure 6). The cavities have 

thick irregular walls. These cavities are usually multiple and may resolve to result in 

emphysematous changes or scarring. Lymphadenopathy and pneumothoraces manifests in 

5% of patients with post primary TB [91]. Tuberculous pleurisy is more common in primary 

TB than post primary TB [91]. 
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1.1.8.2 Extrapulmonary TB 

Extrapulmonary TB arises as a result of contiguous spread of Mtb bacilli to adjacent 

structures like pleura or pericardium, or by lympho-haematogenous spread during primary or 

chronic disease.  

 

1.1.8.2.1 Potential pathways for TB dissemination 

It is well established that Mtb can migrate from its primary infection site to the lymphatic and 

blood circulatory system. However the mechanism to achieve this is not clear.  

Haematogenous dissemination is a vital step in the pathogenesis of extrapulmonary TB. The 

bacilli traverse across the alveolar epithelial membrane by direct invasion and lysis of the 

epithelial cells. Mtb is capable of replicating intraepithelially and spread from cell to cell 

through the epithelial monolayer [92, 93]. There is evidence that Mtb is cytotoxic and causes 

cell necrosis which facilitates bacterial cell to cell spread [94, 95]. Bacterial cytotoxic factors 

have been identified in cellular modules. Early secretory antigenic target 6kDa (ESAT-6) and 

culture filtrate protein 10kDa (CFP-10) encoded by RD1 genes have been linked to 

macrophage and pneumocyte cytolysis [96-99]. Mycobacteria bind to sulphated 

glycoconjugates on epithelial cells using haemoglobulin binding haemagglutinin adhesion 

(HBHA) [100]. Mtb is also capable to invade and proliferate within endothelial cells [101]. 

Dissemination of Mtb is facilitated by mononuclear phagocytic cells, which traffic Mtb 

across alveolar walls [102]. 

A number of factors including the innate and adaptive immune response influence 

mycobacterial dissemination and development of extrapulmonary TB [103]. Dissemination of 

TB frequently occurs in people with single nucleotide pleomorphism in genes that encode for 

TLR-2 and Toll-interleukin 1 domain containing adaptor protein (TIRAP), a protein that 

mediates signals from Toll-like receptors activated by macrophages [104, 105]. Lipomannan 

and the 19kDa lipoprotein are agonists of TLR-2 pro-inflammatory cytokine signaling [106]. 

Extrapulmonary TB follows organ seeding with Mtb from mucosal or lympho-

haematogenous spread. Mucosal spread occurs especially in pulmonary TB patients with high 

bacillary loads. In chronic cavitary TB disease, highly infectious respiratory secretions that 

bathe the upper respiratory mucosa and gastrointestinal tract facilitate TB spread to laryngeal 

or gastrointestinal tracts respectively. Tuberculous pleurisy is the result of a delayed 

hypersensitivity response to Mtb antigen that gain access to the pleural space after rupture of 

a sub pleural caseous focus or tubercle bacilli access into the pleural cavity [107]. 
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1.2 THE PATHOGEN 

Host and environmental variables are important variables that determine the TB disease 

outcome. However, it is becoming evident that pathogen determinants and their interaction 

with the host and environment are important in the understanding of the pathogenesis of TB 

[108].  

Previous studies have clearly demonstrated the restriction of certain Mtb complex species to 

particular hosts and localities, Mtb, the primary causative agent of human TB; M. africanum, 

the main causative agent of human TB in West Africa [109]; M. bovis, which is responsible 

for bovine TB, M. microti, which is a pathogen of voles and rarely infects humans [110, 111]; 

M. canettii, an Mtb strain isolated from the horn of Africa [12, 112]; M. pinnipedii, also 

known as the seal bacillus [113-115]; and M. caprae which is primarily isolated from goats 

[116]. 

Previous observations also strongly suggest that clinical strains of Mtb vary in their virulence 

and immunogenicity [108, 117, 118], and these variations in pathogenesis of the various 

genotypes of Mtb have been associated with phenotypic consequences [119]. Some Mtb 

virulence factors may subvert the host innate immune response and augment the bacterial 

replication and pathogenicity.  Macrophages infected with an Mtb strain which caused an 

outbreak in Leicester, UK produced less protective IL-12p40 and more anti-inflammatory IL-

10. Mtb Beijing lineage strain HN878 caused several outbreaks of TB in Houston, Texas, 

USA between 1995 and 1998. This strain was found to cause rapid death in 

immunocompetent mice[120], while in rabbits it caused increased Mtb dissemination, more 

severe TB clinical manifestations and higher bacillary load [121]. The hyper virulence of 

HN878 was associated with inability to induce Mtb-specific T cell proliferation and IFN-γ 

production by the spleen and lymph nodes of infected mice. HN878 was also associated with 

2- to 4-fold lower levels of TNF-α, IL-6, IL-12 [120].There is also evidence to show that the 

early interaction between Mtb and the host depends on the Mtb lineage of the infecting strain 

[122].  

 

1.2.1 Mtb complex and Mtb genomic diversity 

Mtb genomic evolution has been attributed to mutation, deletions and transposition of 

chromosomal regions [126]. Through genetic characterization, various lineages or genotypes 
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of Mtb have been demonstrated (Figure 7) [127-130].  The Mtb complex comprises seven 

human-adapted distinct lineages which show strong phylogeographical population structuring 

[119]. The different lineages are associated with specific geographical areas (Figure 8) [131-

136].  For Mtb, more recent studies have further shown that specific genotypes are restricted 

to particular geographical areas, a phenomenon referred to as geographical sub-structuring 

[128, 137]. In addition, some genotypes of Mtb have been reported to be associated with TB 

affecting different organs in the host [138]. Despite high homology of the genome of Mtb 

complex members, these observations strongly suggest variations in pathogenicity of the 

various genotypes. In a study to assess differences in virulence between Mtb genotypes, a 

marked difference was observed in survival, lung bacterial load, lung histopathology, and 

cellular immune responses after infection of mice with different isolates from a spectrum of 

Mtb complex genotypes [54, 139].  

 

 

 

Figure 7. Evolutionary pathway of tubercle bacilli highlighting loss of DNA as shown by 

Brosch et al [123]. Permission from Diane Sullenberger Executive Editor, PNAS.  
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Figure 8. Distribution of the 5 lineages among the different regions of the world by 

geographic origin of the patients, picture by Perrin et al [124] based on data from Reed et al 

[125]. With permission from Pascale Perrin and Elsevier limited.  

 

Mtb genotypic diversity has been associated with variable clinical outcomes. The Mtb 

Beijing genotype can elude the host innate immune system which may explain why this 

genotype is associated with haematogenously disseminated disease[140] The Euro-American 

or East African lineages were significantly less associated with extrapulmonary TB [141]. 

Studies in Vietnam indicated that the East Asian/Beijing and Indo-Oceanic lineages were 

significantly more likely to cause disseminated TB than the Euro-American lineages and East 

Asian/Beijing and Indo-Oceanic lineages induced more macrophage TNF-α and IL-1β than 

the Euro-American strains in experimental models [122]. 

The Mtb complex, the aetiological agent of TB exhibits genomic diversity comprising seven 

phylogenetically related lineages [142].  Lineage 2 and lineage 4 (Euro American) are the 

most geographically widespread lineages [119]. The Euro-American Lineage is most 

prevalent in Europe and in the Americas. The Euro-American Lineage comprises 10 
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sublineages, each characterized by large sequence genomic deletions, namely RD 115, 

RD122, RD174, RD182, RD183, RD193, RD219, RD724, RD726 and RD761. The 11
th
 

group has no RD deletion (the so-called H#&Rv-like) [133]. The Euro-American lineage 

characteristically exhibits spoligotype deletion of spacer 33-36 in the DR locus [143, 144]and 

comprises the major families T, Haarlem, Latin American-Mediterranean (LAM), S and X, 

including a total of 34 subfamilies. 

By the phylogeny scheme proposed by Gagneux and colleagues [128], RD724 defines a 

major sub division within the Euro-American lineage of Mtb. Given the geographical long 

term predominance of RD724-positive Mtb in Kampala over the past two decades [145], the 

findings suggest that these strains may be specifically adapted to a Central African human 

host population, Ugandans included. These findings together with other studies [128, 132, 

135] indicate that each of the major lineages of Mtb have evolved to most efficiently transmit 

within an original human population. Some degree of co evolution has occurred as a result of 

long term association between Mtb complex and its human host [146].  

Previous studies have revealed a strong phylogeographical population structure exhibited by 

the human-adapted Mtb complex, with different lineages associated with particular 

geographical regions [132, 133, 136, 147-149].  In a study to determine the Mtb lineages of 

isolates from PTB patients from four continents, the distribution of Mtb lineages and 

sublineages varied by geographic region, Euro-American sublineage RD724 predominated 

among African region participants, whereas Euro-American other than RD724 predominated 

among non-African region participants. Previous literature suggests that distinct Mtb 

complex phylogenetic lineages cause disease in individuals of a particular genetic 

background. 

Mtb strains have adapted to original human populations, epidemiological studies suggest that 

different phylogenetic lineages of MTC might have adapted to different human population 

[146]. Studies have shown low levels of anti-TB drug resistance among the T2 MTC lineages 

[150]. Success of MTC lineages has been correlated with hypo-inflammatory phenotype in 

macrophages probably depicting their virulence [117, 119]. Previous work show that 

Lineages 2-4 exhibited a lower early inflammatory response compared to lineages 1 and 6 

[151]. This implies increased virulence of lineages 2-4(Euro-American lineage) and may 

explain their global dominance over other strains.  A delayed inflammatory response implies 

increased virulence and may be associated with successful predominance of these strains. 
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 With evidence of phylogeographical structuring of Mtb [128], it is no longer feasible to 

consider TB as a homogenous disease, but rather a spectrum. With increasing evidence that 

strain-to-strain variation can have important phenotypic consequences, phylogeographical 

strain variation might affect the development of new diagnostics, drugs, and vaccines [152]. 

This, therefore, may have both clinical implications as far as patient management and future 

diagnostic product design are concerned. 

Studies using single nucleotide polymorphisms (SNP) as molecular typing tool revealed a 

higher genetic diversity among Mtb complex than previously assumed, with potential 

variation in pathobiological phenotype outcome [153, 154]. 

1.2.2 Phylogeography of Mtb Uganda genotype 

In a study of a global collection of strains of Mtb specific deletions [128], TbD1 deleted 

strains were grouped into three families: the East-Asian (RD105-deleted), the East-African-

Indian (RD750-deleted) and the largest lineage, the Euro-American, with several deletions 

defining various sub-lineages. Among these Euro-American sub-lineages, strains collected 

from central Africa (3 from Uganda, 2 from Rwanda, 2 from Burundi and 2 from Central 

African Republic) were deleted for RD724. In Uganda, 139 strains that formed the 5 largest 

clusters of 344 spoligotypes from Kampala were analyzed at four loci: RD105, RD711, 

RD724 and RD750 [155]. All the strains evaluated were deleted for RD724 but conserved for 

the other three regions, confirming the predominance of a spoligotype and RD724-defined 

Mtb lineage in Kampala [127]. 

Mtb Uganda genotype has dominated in Kampala periurban region for over two decades 

[145]. Previous studies have revealed that Mtb Uganda genotype is the predominant cause of 

TB in Kampala, Uganda [127], but no evaluation has been done of its immunopathological 

phenotypic characteristics 

1.2.3 Molecular typing of mycobacteria 

MTBC comprises seven mycobacterial species causing TB, of which Mtb is a major 

causative agent of TB. Members of the Mtb complex share identical 16SrRNA sequence and 

nucleotide identity higher than 99.9% [156]. A number of molecular techniques have been 

developed over the past decade to characterize Mtb complex species and strains. 

Polymorphism of genomic DNA of Mtb complex has been exploited to differentiate clinical 

isolates [157].  
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The most popular molecular method used to differentiate MTBC was DNA finger printing by 

southern blotting of genomic DNA using a mobile entity IS6110 as probe [158]. Restriction 

fragment length polymorphism (RFLP) is based on variation in copy numbers and the 

differential genomic location of insertion sequence IS6110 and was previously the gold 

standard for Mtb complex genotyping [159]. IS6110-RFLP has limitations that include low 

reproducibility between different laboratories and requirement of large amount of good 

quality DNA. This has motivated the development of several PCR-based typing methods like 

spoligotyping that requires little DNA. 

Spoligotyping (spacer oligotyping) is a simple, cheap and quick PCR based method used to 

simultaneously detect and type Mtb exploiting previously observed polymorphism at the Mtb 

direct repeat (DR) locus [160]. This locus is composed of 36-base pairs (bp) DR interspersed 

with non-repetitive spacer sequences 34 to 41bp long [160]. Strains have variable numbers of 

DR and presence or absence of particular spacers [161]. In spoligotyping, DR region are 

targets for in vitro DNA amplification. The amplicons variable spacers are then visualized 

after hybridization to multiple spacer oligonucleotides covalently bound to a membrane and 

data digitalized.  

Genomic deletion analysis of regions of difference (RD analysis) has been used in 

supplementation with spoligotyping phylogenetic lineages [132, 133, 162, 163]. 

 

 

2 THE PRESENT INVESTIGATION 

 

2.1 PROBLEM STATEMENT 

Previous pulmonary TB studies have shown the predominance of Mtb Uganda genotype in 

urban Uganda [127, 164]. However, a comparison of the clinical, radiological and 

pathological features of the Uganda genotype strains with other genotypes of Mtb as well as 

their association with specific HLA types in the human population has not been studied. The 

role of the pathogen in the pathogenesis of EPTB and the clinical consequences of Mtb 

genomic diversity has not been fully explored.  This knowledge would be locally relevant in 

developing suitable vaccines and formulate locally appropriate disease prevention policies. 

The knowledge will also be valuable in patient management and prognostication. 
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2.2 THESIS AIMS 

The main goal of this thesis was to gain an insight in the pathogenesis and clinico-

pathological features of infection caused by Mtb Uganda genotype and other circulating non-

Uganda genotypes, with the hypothesis that Mtb Uganda genotype causes clinical 

pathological presentations different from those of other circulating Mtb strains. 

Specifically the aims are: 

 To study how the clinical, radiological and pathological features of disease caused by 

the Uganda genotype compare with other genotypes of Mtb in Uganda (Paper I). 

 To study the phylogenetical structure of Mtb isolated in patients with tuberculous 

lymphadenitis (EPTB) and how it differs from that of pulmonary Mtb isolates 

previously studied  (Paper II). 

 To identify HLA II DQ and DR alleles that may confer resistance or susceptibility to 

Mtb in general and Mtb Uganda genotype in Ugandan patients (Paper III). 

 To study the contribution of the different types of mycobacteria to mortality 

associated with mycobacterial disease (Paper IV). 

 To explore the diagnostic potential of CD4 T/CD8+ T Cell ratios in pleural 

tuberculous effusions (Paper V). 
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2.3 METHODS 

Table 2.  Summary of studies and methods used. 

 Main aim Study population  Specimen Diagnostic methods Genotyping 

Paper 1 To study the clinical, radiological and 

pathological features of disease 

caused by the Uganda genotype and 

other genotypes of Mtb in Uganda 

283 patients with 

lymphadenopathy 

FNA of lymph 

nodes 

Clinical, radiological 

assessment 

Cytopathological 

analysis, ZN and culture  

Spoligotyping 

RD analysis 

Paper 2 To investigate the phylogenetical 

structure of Mtb isolate in patients 

with tuberculous lymphadenitis   

121 patients with 

tuberculous 

lymphadenopathy 

FNA of lymph 

nodes 

ZN and culture Spoligotyping 

RD analysis 

Paper 3 To identify HLA II DQ and DR 

alleles in Ugandan patients with TB 

43 PTB 

42 healthy 

household controls 

Blood and 

sputum 

ZN and culture 

PCR based sequence 

specific oligonucleotide 

primers 

SpoligotypingRD 

analysis 

Immunogenetic 

typing 

Paper 4 To study the contribution of the 

different types of mycobacteria to 

mortality associated with 

mycobacterial disease 

49 mycobacteria 

culture positive 

autopsy cases with 

suspected TB 

Autopsy tissue 

biopies 

Pathological analysis. 

ZN and culture 

 

Spoligotyping 

RD analysis 

Study V To explore the diagnostic potential of 

CD4 T/CD8+ T Cell ratios in pleural 

tuberculous effusions 

35 TB patients  

43 non-TB controls 

Pleural effusion 

 

Culture and 

histopathological 

analysis 

Immuno-

cytochemical 

double staining. 
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2.3.1 Study area, patients and samples 

The studies were performed at Mulago Hospital Complex. Mulago Hospital is the National 

Referral Hospital with the largest number of TB patients. It also runs a Fine Needle aspiration 

clinic to which patients suspected to have extra-pulmonary tuberculosis lymphadenitis are 

referred from medical or surgical units.  

The laboratory studies for study I, II, III and IV were done in the Makerere University 

College of Health Sciences, Microbiology and Pathology Laboratories. The FNAs and 

autopsies were done in Mulago Hospital. Study V was conducted in Mulago-Kampala 

Hospital (patients) and Karolinska University Hospital, Huddige (Controls). 

Patients and samples are summarized in Table 2, and recruitment plan of patients in Figure 9. 

 

 

TB suspect (Mulago 

Hospital))

Lymphadenopathy-

FNAC

Patient

Lymphnode

ZN +ve/-ve

Culture

(+ve)

Genotype  

Spoligotyping

Post mortem 

subjects

Autopsy 

Examination 

ZN+ve/-ve

Culture –ve

(Excluded)

Culture –ve

(Excluded)

Clinical exam

HIV test

Radiology

CD4

HLA

Cytopathology

Blood Sugar

Haematology

tests
Clinical 

Findings

Recruitment Plan

 

Figure 9. Recruitment plan of patients for studies I, II and IV 

 

The ethical approval for all studies was granted by the Institutional Review Board of 

Makerere University College of Health Sciences. Written informed consent was obtained 
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from all enrolled study participants or their legal guardians including permission to use their 

samples’ isolates. 

2.3.2 Abdominal ultrasound scans  

Scans were performed with a MedisonSonoAce 9900 ultrasound machine (Seoul, Korea) 

using a 7.5mHz convex probe and a 7.5 mHz linear probe. The presence of abdominal 

lymphadenopathy was considered significant if there were more than three lymph nodes or at 

least one lymph node 12 mm or more in size. Lymph nodes were sought in the paraaortic 

region, the porta hepatis region, the mesentery and the splenic hilum. The role of abdominal 

ultrasound in diagnosis of extrapulmonary or disseminated TB was previously evaluated, and 

a significant correlation was found between abdominal lymphadenopathy and active TB as 

diagnosed by smear or culture [165],  thus abdominal ultrasound was found valuable in 

diagnosing  EPTB [166].  

2.3.3 Chest x-ray  

Posteroanterior chest x-ray was done in all TB cases and was performed with patients in 

standing posture and holding their breath, using a Schimadzu machine (Shimadzu-Japan), 

with the patient´s chest positioned 150cm away from the x-ray tube. The chest X-ray was 

considered abnormal when it showed any of the following: lobar/segmental consolidation, 

cavitation, fibronodular lesions, pleural effusion, hilar and/or mediastinal lymph nodes, linear 

interstitial disease or miliary disease. 

2.3.4 Immunocytochemistry of pleural fluid 

Thoracocentesis was performed for all patients with pleural effusion and symptoms of TB, 

including evening fevers, unintentional weight loss, cough and night sweats. Five ml of the 

pleural fluid was taken for cytology and immunocytochemistry, and a pleural biopsy was 

obtained. The biopsy was fixed in 4% buffered formalin, dehydrated in graded alcohol, 

embedded in paraffin, cut and stained with haematoxylin/eosin and ZN stain. 

The pleural fluid was centrifuged at 1000 rpm, making four slides of each sample with the 

cytospin technique. Three of these were stained with Diff Quick and according to 

Papanicolaou and ZN, respectively. The forth slide was fixed overnight in a PEG/ethanol 

fixative (60 g polyethylene glycol 1500, 500 mL ethanol, 500 mL methanol and 1000 mL 

distilled water). The slides were then stored at -20°C for later immunocytochemistry. 
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Immunocytochemical double staining was carried out using the Leica Bond Immunostaining 

Instrument III. CD4 + cells were immunostained using the Bond polymer refine detection kit 

and CD8+ cells were immunostained with the Bond polymer refined red detection kit (Leica 

Biosystem Newcastle Ltd, Newcastle, UK). Briefly, the cytospin slides were fixed in 4% 

buffered formalin for 30 minutes and rinsed in PBS. Antigen retrieval was performed with 

citric acid buffer (pH 6) at 98°C for 5 minutes. The primary antibody to CD4 (NCL-L-CD4-

368, Novocastra, diluted 1:400) was then added and left to react for 30 minutes, followed by 

a secondary antibody 15 minutes. Endogenous peroxidase was blocked with H2O2for 10 

minutes with the peroxidase is attached via an antibody-polymer complex. Bound CD4 

antibodies were then visualized with diaminobenzidine (DAB)/H2O2for 10 minutes. Presence 

of the CD8 epitope is then demonstrated by 15 minutes incubation with the primary antibody, 

(Anti-human CD8clone C8/144B, M7103, DAKO, Copenhagen, Denmark, diluted 1:100), 

followed by incubation with a secondary antibody labelled with alkaline phosphatase for 20 

minutes, developing the reaction products according to the kit with Fast Red as chromogen. 

Slides were then counterstained with haematoxylin, dehydrated and mounted. Positive 

lymphocytes were counted manually. 

After immunocytochemistry analysis, CD4+, CD8+ and CD4+/CD8+T lymphocytes were 

determined in pleural effusions from patients with and without tuberculous pleural effusion 

(TPE) in order to establish a potential role for CD4+/CD8+ T cell ratio in establishing a 

diagnosis of TPE.  

2.3.5 Fine needle aspiration 

FNA was performed on consenting participants fulfilling inclusion criteria. Under aseptic 

conditions, the lymph node was immobilized with left hand to entirely access it while the 

right hand was used to aspirate. Using a 23G cutting needle and a 2 ml syringe lymph node 

aspiration was done with constant suction in a fan like fashion until the material appeared in 

the hub. The suction was then released, the needle withdrawn an. Lymph node aspirates were 

cultured for mycobacteria and cytologically analysed for features of TB including granuloma 

formation, necrosis, presence of AFBs as previously described [167].  

2.3.6 HLA Allele Typing  
Peripheral venous samples (4ml) were collected in EDTA vacutainers and stored at -80C. 

Plasma and peripheral blood mononuclear cell (PBMCs) were prepared according to 

standard techniques. DNA was extracted using a DNA purification kit, Epicenter 
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Biotechnology and was quantified to ascertain its presence using a GeneQuest as per the 

manufacturer’s instructions. (Model Number CE2302), and confirmed per extraction batch by 

agarose gel electrophoresis and bioimage visualization. 

HLA Class II typing by sequence-specific oligonucleotide probe hybridization was performed 

on the products. To analyze for the presence of a given allele, polymerase chain reaction 

sequence (PCR) for HLA- DR and DQ alleles was performed [168, 169] using an MJ-96 well 

thermocycler. Flanking sequences were amplified using alleleic primers based on a sequence-

specific oligonucleotide primers (SSP) principle. This was done using the One lambda Micro 

SSP DNA Typing kit according to the kit manufacturer’s instructions. The PCR-SSP 

methodology is based on the principle that completely matched oligonucleotide primers are 

more efficiently used in amplifying a target sequence than a mismatched oligonucleotide 

primer by recombinant Taq polymerase.  Primer pairs are designed to have perfect matches 

only with a single allele or group of alleles.  Under strictly controlled PCR conditions, 

perfectly matched primer pairs result in the amplification of target sequences (i.e., a positive 

result) while mismatched primer pairs do not result in amplification (i.e., a negative result).  

2.3.7 Post mortem procedure 

A complete body postmortem examination was performed on each of the subjects to study 

the pathological features of the inpatients suspected to have died of TB. The examination was 

performed within 24hrs after obtaining consent to avoid autolysis and delay in burial. All 

relevant information was reviewed before performing the postmortem examination including 

written clinical history, laboratory results and radiology. After external examination, careful 

attention was paid to ensure aseptic technique. Culture samples were collected in situ 

immediately after entering the bodies using sterile scalpel and forceps. Different sets of 

instruments were used for each culture. En masse (Letulle) evisceration was done followed 

by organ dissection and weighing as described [170]. Organs and regional especially matted 

caseating lymph nodes were inspected for disease, and representative tissue samples taken. 

Lungs were examined fresh for extent of disease by cutting sequentially along the arteries, 

airways and veins following the McCulloch and Rutty method [171]. Culture samples were 

put in sterile container containing 5ml of distilled sterilized water and transported on ice to 

the mycobacteriology laboratory at Makerere University School of Biomedical science. 
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2.3.8 Tissue analysis 

Samples for histopathology were taken from the lung, the spleen, the liver, lymph nodes, 

kidney, adrenals, brain and pancreas. All histopathology tissues were fixed with 10% formal 

saline, sectioned, dehydrated with graded alcohol, and cleared with xylene. The tissues were 

then embedded with paraffin wax to produce tissue paraffin blocks from which 4µm tissue 

sections were cut. The tissue sections were stained with haematoxylin and eosin (HE) for 

morphological analysis. Tissue sections were screened for AFB after staining with 

flourochrome (auramine) and ZN stains. Diagnosis of mycobacterial disease in the tissue 

sections was based on HE histological findings including chronic granulomatous 

inflammation, caseous necrosis and AFB positivity on ZN and auramine-rhodamine tissue 

staining.  Diagnostic criteria for NTM diagnosis in tissue samples was based on recognition 

of mycobacterial histopathologic features and positive NTM growth on tissue culture [172]. 

2.3.9 Mycobacterial identification and genotyping 

2.3.9.1 Culture and species identification 

In the mycobacteriology laboratory clinical samples were homogenized and disinfected with 

sodium hydroxide containing N-acetylcysteine prior to inoculation into Mycobacteria Growth 

Indicator Tube (MGIT 960) liquid culture for six weeks and on solid Loewenstein Jensen 

media for up to eight weeks culture. Once the culture was declared positive, preliminary 

smears were made and stained with ZN and Auramine-Rhodamine stain to confirm the isolate 

as AFB.   

DNA was harvested from growth following standard protocols [159] (Reagents from Sigma 

life Science, USA). DNA was the extracted from the cultured mycobacteria isolate following 

standard protocol [173, 174].  Isolates were identified by performing polymerase chain 

reaction (PCR)  using 16s reverse and 16s forward primers (Integrated DNA Technologies) 

targeting the 16s rRNA region with a conserved sequence typical for the genus Mycobacteria 

[175-177]. The Capilia TB assay (TAUN, Numazu, Japan) was used to distinguish Mtb 

complex  isolates from NTM [178], as per manufacturer’s instructions [179].  Mtb complex  

isolates were additionally identified by amplification of the insertion sequence IS6110 using 

an in-house PCR with aid of reverse and forward IS6110 primers (Integrated DNA 

Technologies).  Gel bands  of approximately 500 bp signified positive results [180]. 
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2.3.9.2 Spoligotyping 

Molecular characterization was done of Mtb isolates using DR analysis and spoligotyping 

following standard protocol [175, 181] and manufacturer’s instructions (reagents from 

Ocimum Biosolution, custom Master Mix from ABgene).  Spacers were visualized on film as 

black squares after incubation with streptavidin-peroxidase and ECL chemiluminescence 

detection reagents (RPN 2105 Amersham, GE Healthcare Bio-sciences). The spacer 

hybridization patterns were converted into binary and octal format as previously described 

[182]. The 43-digit binary code was converted to 15-digit octal code (base 8, having the digits 

0-7) [182]. The binary codes of the isolates were entered into the SITVIT2 database of the 

Pasteur Institute of Guadeloupe and assigned specific shared international spoligotype 

signatures (SIT) according to the SITVIT2 database [183].  

2.3.9.3 Region of difference (RD) analysis  

Mtb complex isolates were typed using a PCR based typing method [175] which depends on 

chromosomal region of difference (RD) deletion loci. The patterns of amplification products 

are visualized by agarose gel electrophoresis. RD 9 confirmed that the cases were Mtb and 

ruled out other species, RD4 and RD 14 ruled out M. bovis, the RD724 deletion is 

characteristic of Uganda genotype. 

2.3.9.4 Identification of Uganda genotype 

The Uganda genotype, a sublineage of the T2 lineage, was identified by deletion of  RD724 

on RD analysis [184], and absence of spacers 33-36 and spacer 40 and/or 43 on spoligotyping 

[185, 186].  

2.3.10 Statistical methods  

Paper I Crude and multivariable logistic regression analysis was used to explore clinical, 

radiological and pathological features of Mtb Uganda genotype compared with those of M.tb 

non-Uganda genotype. Independent sample t-test was used to compare means of continuous 

variables. 

Paper II. Spoligotyping data were digitized and analyzed with the BioNumerics software, 

version 5.0 (Applied Maths, Kortrijk, Belgium). 

Paper III, Fisher’s exact test was used to find associations between the patients belonging to 

certain HLA types and the risk of clustering with “Mtb Uganda genotype”. P-values 

were adjusted for multiple comparisons using the Benjamini and Hochberg method. 
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Paper IV. Univariate and multivariate data analysis was performed and logistic regression 

models were used to adjust for confounders like age, sex and HIV status. Chi square and 

Fisher’s exact test were used. The independent-samples t test was used to analyze quantitative 

data for a two sample case to compare means.  

Paper V. The utility of the test to distinguish the TPE from the non-tuberculous effusions was 

monitored by ROC plot. Comparisons of group means were performed with the Student’s t-

test. A two-by-two contingency table test with Yate’s correction for continuity was used to 

evaluate a possible correlation between the proportions of CD4+ reactive cells and patient 

group. The differences between TPE and non tuberculous effusion CD4:CD8 T Cell ratios 

were adjusted for confounders using linear regression. 

 

3 RESULTS AND DISCUSSION 

 

3.1 PAPER I  

The study population comprised patients presenting with clinical features of TB and 

peripheral lymphadenopathy. Mtb genotyping was done using spoligotyping and RD analysis 

of Mtb culture isolates. 

283 patients with superficial lymphadenopathy were enrolled. Of those 150 (53%) lymph 

node aspirate cultures turned out negative, 121 were culture positive for Mtb, 9 samples were 

ZN positive but culture negative, 6  samples were contaminated, and six samples were culture 

positive for mycobacteria other than Mtb. 

Mtb Uganda genotype, a member of the T2 Euro-American lineage, was the predominant 

genotype isolated from Uganda patients with tuberculous lymphadenitis, accounting for 46% 

of all cases. This frequency was lower in comparison to the 70% prevalence of the Uganda 

genotype seen in PTB patients in the same setting [127].  

Tuberculous lymphadenitis patients infected with Uganda genotype strains were significantly 

less prone to present with abdominal lymphadenopathy (p = 0.014) than those patients 

infected with non-Uganda strains (Table 3), even after adjusting for confounding factors 

including age, sex and HIV co-infection (p = 0.046). Abdominal lymph node enlargement 

was itself significantly associated with abnormal chest X-ray findings (p = 0.027) (Table 4).
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Table 3. Clinical and immunopathological parameters of patients infected with Uganda 

genotype and those infected by non-Uganda genotypes of Mtb. 

Patient characteristics Uganda/Non-Uganda  

n (%) 

Crude Adjusted 

OR (95% CI) P-value OR (95% CI) P-value 

Clinical presentations      

    Fever less than 6 months 39(70%)/44 (69%) 1.0 (0.5-2.3) 0.916 1.1 (0.5-2.5) 0.870 

    Night sweats 43(77%)/55(86%) 0.5 (0.2-1.4) 0.200 0.5 (0.2-1.4) 0.213 

    Cough 27(48%)/30(46%) 1.1 (0.5-2.2) 0.821 1.4 (0.7-3.1) 0.435 

Radiological Presentations      

    Abnormal Chest X-ray 20(43%)/27(47%) 0.8 (0.4-1.8) 0.624 0.8 (0.4-1.9) 0.644 

    Abdominal lymphadenitis 21(38%)/39(60%) 0.4 (0.2-0.8) 0.014 0.5 (0.2-1.0) 0.046 

Lymph node Pathology      

    Single site lymphadenitis 34(62%)/32(50%) 1.6 (0.8-3.4) 0.197 1.4 (0.6-2.9) 0.435 

    Generalized lymphadenitis 5(9%)/11(17%) 0.5 (0.2-1.5) 0.204 0.7 (0.2-2.1) 0.474 

    Lymph node ≥ 4 cm 15(28%)/28(45%) 0.5 (0.2-1.0) 0.055 0.6 (0.3-1.3) 0.157 

    Necrosis 52(93%)/61(94%) 0.9 (0.2-3.6) 0.827 0.8( 0.2-3.4) 0.741 

    Giant cells 28(50%)/25(38%) 1.6 (0.8-3.3) 0.203 1.3 (0.6-2.8) 0.569 

    Macrophages 53(95%)/58(89%) 2.1 (0.5-8.7) 0.290 1.5 (0.4-6.9) 0.577 

    Granulomas 47(84%)/46(71%) 2.2 (0.9-5.3) 0.091 1.9 (0.8-4.8) 0.196 

    ZN positive smear 29(52%)/42(65%) 0.6 (0.3-1.2) 0.152 0.7 (0.3-1.5) 0.348 

Adjusted* = Adjusted for Age, Sex and HIV status; OR = Odds ratio, Cl = Confidence 

Interval. Logistic regression. 
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Table 4. Association of abdominal lymph node enlargement with features indicative of TB 

dissemination (i.e. generalized lymphadenopathy, abnormal chest X-Ray, AFB positivity 

and absence of granuloma). 

 

 Abdominal  

Lymphadenopathy  

n = 60 (49.6%) 

Non-Abdominal  

lymphadenopathy  

n = 61 (50.4%) 

P-Value 

Generalized Lymphadenopathy: 

Present 30 (57%) 23 (43%) 

0.170 

Absent 20 (39%) 19 (30%) 

Granuloma: 

Present 46 (50%) 47 (50%) 

0.960 

Absent 14 (50%) 14 (50%) 

Abnormal findings on Chest X-ray: 

Present 30 (64%) 17 (36%) 

0.027 

Absent 24 (41%) 34 (59%) 

AFB smear positivity: 
(ZN or fluorochrome stain) 

Positive 39 (65%) 29 (47%) 

0.053 

Negative 21 (35%) 32 (53%) 

Chi-square test. 
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In line with these findings, lineage 4 (Euro-American lineage), to which Uganda genotype 

belongs, has been associated with pulmonary TB [105], while the East Asian/Beijing and 

Indo-Oceanic lineages were significantly more likely to cause disseminated TB [105]. 

Lineage 4, to which the Uganda sub-lineage belongs shows enhanced transmissibility in 

human populations [117, 119]. 

 

3.2 PAPER II 

Lymph node isolates from the 121 patients with tuberculous lymphadenopathy in study I 

were further analysed by spoligotyping. and the evolutionary relationship and worldwide 

distribution of the spoligotypes was assessed (Fig 10). The isolates were exclusively Mtb and 

lineage 4, also known as the Euro American lineage, was the predominant cause of EPTB in 

Uganda, As shown in paper I the Uganda genotype was the predominant genotype, although 

at a lower frequency than in studies of PTB in the same setting. The spoligotypes were in 

most cases similar to those causing PTB with the exception of SIT420 and SIT53 that 

predominated in this study but are mainly lacking in other studies of PTB.  

Exploring the Mtb diversity is essential in appreciating the clinical manifestation and 

pathogenesis of the disease as well as the rationale for development of new diagnostic 

strategies. The phylogenetical analysis and the study of the worldwide distribution of 

clustered spoligotypes indicate an ongoing evolution of the Uganda genotype, with Uganda at 

the center of this evolution. 
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Fig 10. Phylogenetical analysis illustrating evolutionary relationships between Mtb 

spoligotypes in Kampala, Uganda (n=121 isolates). (A). Minimum Spanning Tree (MST) 

constructed on all isolates. Separations between the nodes represent the number of strains 

shared by a given spoligotype pattern. The links between nodes indicate the distance (darker 

and bolder lines mean a unique change whereas finer gray lines, continued, dotted or dashed, 

indicate more changes). (B). Spoligoforest tree drawn as a hierarchical layout; and (C) 

spoligoforest tree drawn using the Fruchterman-Reingold algorithm. Loss of spacers is 

represented by directed edges between nodes, and the arrowheads point to descendant 

spoligotypes. Solid black lines link patterns that are very similar, i.e. loss of one spacer only 

(maximum weight being 1.0), while dashed lines represent links of weight comprised 

between 0.5 and 1, and dotted lines a weight less than 0.5. 
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3.3 PAPER III 

In this matched case control study, HLA class II (HLA-DR and -DQ) allele frequencies in TB 

patients were compared with those in healthy, ethnically and geographically matched 

controls. 

Two groups, patients and controls were recruited. HIV-negative patients (n=43) were selected 

from newly presenting ZN smear positive patients. Controls (n=32) were recruited from 

people previously exposed to TB having neither signs /symptoms of TB nor ever developed 

clinical signs of TB visiting the same facility for minor complaints. 

There was a negative correlation between the HLA- DQB1*03:03 allele and susceptibility to 

TB (P = 0.003) indicating that this allele may confer protection against TB in the study 

population Even after correction for multiple testing the absence of the HLA-DQB1*03:03 

allele in all TB patients was still found significant. 

The more common HLA II alleles isolated here were not associated with TB susceptibility or 

resistance may imply that the Mtb bacilli and the local host have undergone a genetic co-

evolution to ensure that the Mtb pathogen thrives and persist in the local population. The 

HLA II DQB1:03:03 allele which apparently confers protection against TB are few meaning 

probably that they are new emerging alleles in the community. Host-pathogen co-evolution 

favors Mtb pathogens that avoid presentation by the most common HLA molecules in the 

host population, this results in selection for the host with rare HLA alleles conferring 

resistance to the Mtb pathogen. The frequency of rare but protective HLA alleles will 

increase whereas the dominant HLA alleles will become less frequent resulting in dynamic 

polymorphism [187, 188]. Unfortunately Mtb pathogens mutate faster than the MHC of their 

host [189]. 

The finding of a negative correlation between the HLA- DQB1*03:03 allele and 

susceptibility to TB (P = 0.0025) indicate that this allele may confer protection against TB in 

the study population. This is supported by previous observations that an effective immune 

response in terms of IFN-γ production was elicited when peptide T1, a component of CFP-10 
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was presented to CD4 T cells in the context of DQB1*03 [190]. CFP-10 is a potent T cell 

antigen that is recognized by many individuals infected with Mtb [190]..  

 

MHC polymorphism imposes a limitation of developing a universal vaccine against 

infectious diseases, because an effective T cell response is dependent on an individual MHC 

phenotype [191]. Knowledge of the HLA types present in a target population and the 

particular epitopes that are restricted by these HLA types enables synthesis of optimally 

immunogenic MHC-based vaccines [192], specifically tailored  for the target population 

[193]. The anti-Mtb immune response is a bias towards CD4+ T cells [194]  viewed as 

crucial for anti-Mtb immune responses.  

 

3.4 PAPER IV 

In an autopsy study of patients (n=49) with presumptive TB who were culture positive for 

mycobacteria at autopsy a majority of cases (75%) were caused by Mtb, of which 16 (55%) 

were Uganda genotype. In 25% of patients NTM were identified. Although the 

histopathological findings in most TB cases were severe, 38 (76%) of the patients that were 

diagnosed with TB on autopsy had not been diagnosed before death. As expected 

extrapulmonary TB was significantly more prevalent among patients with HIV than among 

those without, while cavitating TB lung disease was significantly less prevalent among 

patients with HIV. Histopathology was similar in TB and NTM patients, although NTM 

patients had significantly reduced tendency to cause pleural effusions.   

The genus Mycobacterium comprises more than 120 species including human pathogens 

[195]. Mtb is considered to be the principal cause of mycobacteriosis in humans [24]. 

Although speciation of the NTM isolates could not be performed, the results indicate that 

some NTM species may contribute to mortality. NTM has also been reported as an important 

cause of mortality in the United States with a significant increase in NTM related death from 

1999 through 2010 [196]. In the same study, pleural effusions were not significantly 

associated with NTM. This is in agreement with a previous study in Taiwan in which 

tuberculous pleural effusion was significantly more associated with PTB than NTM 

pulmonary infection [197]. Also in Portugal and Brazil an increase in NTM infections has 

been observed [198].  
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NTM in general cause clinical disease in individuals with acquired and inherited 

immunodeficiency disorders. However, in this study we found mycobacteriosis due to NTM 

not only in HIV positive patients but also in HIV negative patients. Previous studies have also 

reported mycobacteriosis due to NTM in HIV negative patients [199].  

The pathological findings at autopsy were similar in patients infected with Mtb and those 

infected with NTM, though pleural effusion was significantly associated with Mtb infection. 

NTM in general exhibit low virulence and pathogenicity compared to Mtb, with a low 

tendency to elicit an immunological reaction needed to generate a pleural effusion.  

The presence of AFB in ZN stained smear or tissue may signify preliminary diagnosis of Mtb 

infection but can also represent NTM [200]. A positive AFB test is thus not specific for Mtb 

complex [201-203].  Mtb is the leading cause of infectious morbidity due to bacterial 

pathogen globally. Mortality in our case was mainly attributed to late or missed TB diagnosis. 

The diagnosis of disseminated and extrapulmonary TB is quite elusive because of the lack of 

classical features of TB. It is important for physicians to have a high degree of TB suspicion 

in patients present with pyrexia of unknown origin. Early diagnosis is pivotal to strategies 

designed to reduce transmission and morbidity due to Mtb. NTM should also be identified in 

all patients with mycobacterial infection because of the clinical implications associated with 

NTM. In comparison to Mtb NTM require a more prolonged course of therapy with a 

combination of drugs [204].  

3.5 PAPER V 

Thirty-five adults suspected of having TB and 43 control subjects without TB but with 

pleural effusions from other causes were recruited. The diagnosis of TPE was established 

when the ZN stain or Lowenstein-Jensen culture was positive for TB or when granuloma 

were shown in the pleural biopsy. 

Pleural fluid CD4+ T cells were significantly more abundant in individuals with TB and TPE 

patients had a significantly higher CD4+/CD8+ ratio compared to non-TB patients and 

controls at unadjusted analysis. However age and ethnicity were found to be important 

confounders and the CD4+/CD8+ T cell ratio varied considerably among those with TPE.  

Analysis of pleural fluid for the quantity of CD4+ and CD8+ T cells may be useful for 

establishing a diagnosis of TB in suspicious cases.  The gold standard for diagnosis of TPE is 

detection of Mtb in pleural fluid or pleural biopsy specimens by microscopy or culture. In 
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pleural tissue biopsy, one needs to demonstrate granulomatous inflammation along with 

AFB. The diagnostic yields of pleural effusion is 12 -70% for culture [205-207] and 65 -82% 

for histological examination [208-211], but pleural biopsy is expensive in most of low 

resource countries.  

Previous studies have assessed the use of serum CD4+ and CD8+ immunoprofile in 

diagnosing TPE. The typical pathogenesis model involves a rupture of sub-pleural caseous 

foci followed by a delayed hypersensitivity reaction to Mtb antigens [212-214]. Previous 

work has established that there are distinct differences between the circulating immune 

profile and the pleural fluid in HIV/TB patients [215].  The TPE is generated from a localized 

immune response occurring in the lung; hence analysis of the peripheral blood may not be 

representative of the host immune response, particularly at the acute stage of disease. 

Evidence shows that immune cells sequester to the lung during TB [216-220]. In conclusion 

this study indicates that the CD4+/CD8+T Cell immunoprofile may be used to discriminate 

between TPE and non-TPE though the sensitivity may be reduced by confounders like age 

and ethnicity.  

 

4 CONCLUDING REMARKS AND REFLECTIONS ON 
LEARNING OUTCOMES 

This thesis set out to explore the influence of strain genomic diversity, and in particular the 

Mtb Uganda genotype, on the clinical phenotypic outcome of infection with Mtb in Uganda. 

The studies here further support the dominant role of the Uganda genotype in the ongoing TB 

epidemic in Uganda.  

The finding that Mtb Uganda genotype was less frequent in EPTB cases than previously 

described in PTB patients in Uganda [127], in combination with the observation that 

tuberculous lymphadenitis patients infected with isolates of Mtb Uganda genotype were 

significantly less prone to have abdominal lymphadenopathy may indicate a reduced ability 

of Mtb Uganda genotype to cause extrapulmonary disease. Since efficient Mtb transmission 

depends on lung damage, bacterial genotypes that are more prone to cause pulmonary disease 

may transmit more efficiently and tend to be dominant. 

There was a negative correlation between the HLA II DQB1:03:03 allele and susceptibility to 

PTB, even after correction for multiple testing, indicating that this allele may confer 
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protection against PTB in the study population. The dominant HLA II alleles were not 

associated with TB susceptibility or resistance implying that the Mtb bacilli and the local host 

have undergone a genetic co-evolution to ensure that the Mtb pathogen thrives and persists in 

the local population.  

The study adds more evidence to previous observations that genetic diversity within Mtb has 

clinical and phenotypic consequences. This has practical consequences for designing 

diagnostic and drug susceptibility testing molecular methods, and for the use of current 

antibiotics. Knowledge of the locally prevalent HLA profiles could be used in designing 

locally customized effective HLA based vaccines. Analysis of pleural fluid for the quantity of 

CD4+ and CD8+ T cells may be useful for establishing a diagnosis of TB in suspicious cases. 

The work has increased awareness of the importance of molecular methods in the 

management of TB among physicians, and has built both technical and human capacity in 

molecular diagnostic methods. The molecular methods I learned here will be extended to 

improve the diagnostic accuracy of cancer and cancer gene mutations at the Pathology 

Department in order to offer personalized oncology treatment.  

As Mulago Hospital prepares for a renal transplant program, this work has demystified 

immunogenetics and has generated protocols for the new hospital Transplant and 

Immunogenetics laboratory.  
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