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ABSTRACT 
Asthma is a common chronic airway disease and about 235-300 million individuals of all 
ages are affected by the disease around the world. A precondition of asthma has been 
suggested to increase individual susceptibility to acute exposure from airborne irritant 
chemicals. In the health risk assessments of such chemicals, acute guideline values are 
derived to guide in preparedness and in emergency response, and to protect the general 
population, including susceptible subpopulations such as asthmatics. Experimental data on 
susceptible subpopulations are lacking for many chemicals and default inter-individual 
assessment factors (AFs) have been applied in the derivation of guideline values. However, 
the scientific basis for these default AFs in regard to asthmatics has been inadequate.   

The aims of this thesis were threefold. First, to study the extent to which experimental data 
regarding chemicals tested on asthmatics are included in the derivation of different sets of 
acute to short-term guideline values, and second, to determine whether there is a general 
difference in the airway response between healthy and asthmatic individuals, and whether 
current AFs for inter-individual variability provide sufficient protection for asthmatics. Last, 
to gain more knowledge on the susceptibility of asthmatics by measuring the airway response 
to chlorine in naïve and allergen-sensitized mice. 

In Paper I, the analysis of how asthmatics are considered in the derivation of Acute Exposure 
Guideline Levels (AEGLs) reveals that only 14 of 250 chemicals in the support documents 
had been tested on asthmatic subjects in experimental studies. A comparison between the 
AEGL support documents and nine other sets of acute to short-term guideline values shows 
that all of them were incomplete with respect to experimental data on asthmatics. In Paper II, 
experimental studies in which both healthy and asthmatic subjects were tested under the same 
conditions served as the basis for evaluating the lowest observed adverse effect 
concentrations (LOAECs) for healthy subjects and for asthmatic subjects. The ratios of these 
LOAECs were calculated and presented as estimated differential response factors (EDRFs). 
We found evidence of higher sensitivity among asthmatics (EDRF > 1) to 8 of 19 tested 
chemicals, and to 3 of 11 mixtures. Thereafter, concentration–response relationships 
confirmed the higher sensitivity of asthmatics to sulfuric acid and sulfur dioxide, and the 
Benchmark concentration (BMC) analysis of sulfur dioxide indicated a nine fold higher 
sensitivity among asthmatics. In Paper III, the consideration of asthmatics in the Derived No-
Effect Levels (DNEL), developed under the European Union (EU) registration, evaluation, 
authorization and restriction of chemicals (REACH) legislation revealed that only 14 
registered chemicals had been tested on asthmatics in experimental studies. Many of the 
DNELs for acute inhalation were higher than our estimated overall LOAEC or no observed 
adverse effect concentrations (NOAECs) in asthmatics, indicating a low or no safety margin. 
The experimental asthma model in Paper IV showed that exposure to 80 ppm of chlorine in 
naïve (but not OVA-sensitized) mice resulted in increased airway responsiveness and 
elevated numbers of neutrophils in the bronchoalveolar lavage fluid. Concentration-
dependent reductions in respiratory frequency were seen in both groups. These results do not 
support an increased susceptibility to chlorine among mice with induced eosinophilic airway 
inflammation. Exclusion of asthmatics in the derivation of acute to short-term guideline 
values may interfere with trustful and efficient health-protective actions. The use of an AF of 
10 when there is a lack of experimental data on asthmatics may be adequate to protect this 
subpopulation from the deleterious respiratory effects of airborne chemicals. 

 



 

POPULÄRVETENSKAPLIG SAMMANFATTNING 
Idag lever ungefär 235-300 miljoner individer med astma i världen och antalet har ökat de 
senaste årtiondena. Personer i alla åldrar och samhällsklasser drabbas och i Sverige har 
ungefär en av tio sjukdomen. Astma är en luftvägssjukdom som kännetecknas av 
inflammation i luftvägarna och episoder med svårigheter att andas, s.k. astmaattacker. Olika 
faktorer som fysisk ansträngning och exponering för allergener och luftburna kemikalier kan 
utlösa en astmaattack.  

Exponering för luftburna irriterande kemikalier kan ske på arbetsplatser, men allmänheten 
kan också exponeras i samband med transport- och industriolyckor. Hälsoriskbedömningar 
genomförs för att veta när man behöver vidta säkerhetsåtgärder i samband med exponering 
för kemikalier. Som ett led i riskbedömningen kan riktvärden beräknas. Riktvärden motsvarar 
den maximala kemikaliekoncentration vid vilken inga negativa hälsoeffekter uppstår hos 
individer, och de kan beräknas för olika exponeringsvägar, exponeringstider och för olika 
grupper i samhället. När det saknas information om hur en kemikalie påverkar astmatiker 
använder man data från friska försökspersoner eller försöksdjur. För att kompensera för den 
osäkerhet som detta innebär används en extra säkerhetsmarginal, en s.k. bedömningsfaktor 
eller säkerhetsfaktor.  

Syftet med den här avhandlingen var; 1) att undersöka om astmatiker är skyddade från akut 
exponering för luftburna kemikalier både på och utanför arbetsplatsen, 2) att studera hur stor 
skillnaden är i känslighet mellan astmatiker och friska individer när de exponeras akut för 
luftburna kemikalier, och, 3) att få mer kunskap om astmatikers känslighet genom att 
experimentellt studera hälsoeffekter från kemikalieexponering i en astmamodell på möss. 

För att ta reda på hur myndigheter och organisationer i olika länder och på EU-nivå har tagit 
hänsyn till astmatiker i framtagandet av hälsobaserade akuta riktvärden analyserades 
hälsoriskbedömningar i delarbete I och III. I delarbete II analyserades data från tidigare 
experimentella studier, gjorda på astmatiska och friska individer, för att ta reda på hur stor 
skillnaden är i känslighet mellan grupperna. I den experimentella modellen (delarbete IV) 
exponerades både möss med allergen-inducerad luftvägsinflammation och friska möss för 
klorgas i olika koncentrationer. Effekter på andningsfrekvens och lungfunktion samt 
inflammationssvar och lungskador analyserades.  

Resultaten visar att man inte tar tillräcklig hänsyn till astmatiker vid framtagandet av akuta 
riktvärden och att riskbedömare inte använder sig av alla tillgängliga experimentella data på 
astmatiker som underlag i hälsoriskbedömningar. Astmatiker visade sig vara känsligare än 
friska för 11 av 30 irriterande kemikalier och blandningar och de var upp till nio gånger 
känsligare än friska vid exponering för svaveldioxid. Den använda djurmodellen visar inte 
någon ökad känslighet mot klorgas hos djur med allergisk luftvägsinflammation. 
Expertgrupper och riskbedömare bör systematiskt ta astmatikers eventuella känslighet i 
beaktande i framtagandet av akuta riktvärden för luftburna ämnen. Utifrån våra data föreslår 
vi användandet av en säkerhetsfaktor på 10 för att skydda astmatiker när experimentella data 
fattas för denna grupp. 
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1 INTRODUCTION 
The focus of this doctoral thesis is to study asthmatics as a susceptible population in health 
risk assessment of airborne hazardous chemicals. 

Acute exposure to such chemicals can be linked to fires, accidental releases in workplaces, or 
to transportation accidents. Additional examples are natural disasters, chemical warfare, and 
terrorist attacks. The effects of acute exposure on the airways in humans may vary from mild 
discomfort to severe medical conditions or lethality. Several national and international 
organizations (e.g., the United States Environmental Protection Agency, which appoints the 
National Advisory Committee on Acute Exposure Guideline Values, NAC/AEGL) have 
developed health-based guideline values for acute to short-term exposure with the aim of 
protecting the general population, including susceptible subpopulations, against the adverse 
effects from acute exposure to irritant chemicals.  

When guideline values are determined, assessment factors (AFs, also called uncertainty 
factors or safety factors) are often used to compensate for the variation in susceptibility 
between species and between individuals. It has previously been found that there is a lack of 
knowledge regarding the consideration of asthmatics as a susceptible population in health risk 
assessments and that the scientific basis for AFs is inadequate. In addition, the number of 
experimental studies testing the effects of acute chemical exposure on asthmatic individuals 
is limited due to ethical and practical difficulties. Additional experimental studies are 
therefore needed to gain more information on the susceptibility of asthmatics. 

This thesis includes investigations on how asthmatics are included in the derivation of 
different sets of acute to short-term guideline values (Papers I and III), an extensive 
evaluation of the scientific basis for AFs to protect asthmatics (Paper II), and an experimental 
asthma model to investigate airway response following chlorine administration in mice 
(Paper IV). 

2 BACKGROUND 
2.1 ASTHMA 
Asthma is a chronic inflammatory airway disease with increased airway hyper-
responsiveness (AHR). The disease is often associated with a history of respiratory symptoms 
(e.g., wheezing, chest tightness, a shortness of breath, and coughing) and expiratory airflow 
limitation. Triggers such as exercise, allergen or irritant exposure, or poor adherence to 
medication may cause episodes that represent a change in symptoms and lung function from 
the patient’s usual status, i.e., asthma exacerbations. Severe exacerbations may be life 
threatening (Global Initiatives for Asthma (GINA) 2015). 

2.1.1 Prevalence  
According to the World Health Organization (WHO) and GINA, there are approximately 
235–300 million asthmatic individuals in the world and asthma is currently one of the most 
common chronic diseases (GINA 2015; WHO 2015). Increased urbanization will likely lead 
to an increase in asthmatics worldwide, but the nature of this relationship is, as of yet, unclear 
(Croisant 2014; Riedler et al. 2000; WHO 2015).  

The prevalence of asthma ranges from 1% to 18% in different countries and has increased 
among both children and adults over the past few decades. The increased prevalence has been 
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associated with that for other allergic diseases such as eczema and rhinitis (Masoli et al. 
2004); a trend observed over the past 40 years (Croisant 2014). Asthma accounts for 1 in 250 
deaths worldwide, with many of them due to suboptimal long-term medical care and a delay 
in obtaining help during an asthma attack, and these deaths are often preventable (Masoli et 
al. 2004).  

The economic cost of asthma is considerable both in terms of direct medical costs (hospital 
admissions and pharmaceuticals) and indirect costs (time lost from work, school, and 
premature death) (Bahadori et al. 2009; GINA 2015; Masoli et al. 2004). The costs are 
correlated with comorbidities, age, disease severity, and the level of asthma control (Bahadori 
et al. 2009). 

2.1.2 Causes and phenotypes 
The causes of asthma are not completely understood. Nevertheless, the strongest risk factors 
for developing the disease are a combination of a genetic predisposition with exposure to 
inhaled substances and particles that may irritate the airways or provoke allergic reactions. 
Examples of such substances and particles are indoor and outdoor allergens (e.g., house dust 
mites, pollution, pet dander, pollens, and molds), environmental tobacco smoke, chemical 
irritants in the workplace, as well as air pollution. Additional triggers are cold air, extreme 
emotional arousal (e.g., anger or fear), physical exercise, and certain medications such as 
beta-blockers, aspirin, and other non-steroidal anti-inflammatory drugs (WHO 2015). One of 
many barriers to reducing the burden of asthma involves environmental factors such as 
indoor and outdoor air pollution, smoking, and occupational exposures. These factors have to 
be identified and properly addressed (GINA 2015; Masoli et al. 2004). 

Asthma is a heterogeneous disease that is often divided into different phenotypes. More 
information on the most common phenotypes is presented in Table 1 (GINA 2015). There are 
several additional adult phenotypes of asthma. Some are related to triggers such as aspirin or 
non-steroidal anti-inflammatory drugs, environmental allergens, occupational allergens or 
irritants, menses, or exercise (Wenzel 2006). The severity level of asthma may change over 
months or years but the levels are often classified as mild intermittent, mild persistent, 
moderate persistent, or severe persistent disease (GINA 2015; Masoli et al. 2004).  

Table 1. The most common phenotypes of asthma (GINA 2015).  

Phenotype Description 
Allergic asthma Most common phenotype. Eosinophilic airway inflammation that often 

starts in childhood. 
Non-allergic asthma Can be present in adults. Sputum sometimes includes neutrophilic or 

eosinophilic cells. 
Late-onset asthma Non-allergic. Adults, especially women. 
Asthma with fixed airflow limitation Patients with long-term disease. Probably due to airway wall 

remodeling. 
Asthma with obesity Little eosinophilic airway inflammation but prominent respiratory 

symptoms. 
 

Most cases of asthma start in childhood from viral infections in the respiratory tract or 
exposure to cigarette smoke and other airborne pollutants that lead to a lymphocyte T-helper 
type 2 (TH2) immune response (Fahy 2013). TH2 secretes cytokines (interleukin (Il)-3, Il-4, 
Il-5, Il-9, Il-13, and granulocyte-macrophage colony-stimulating factor (GM-CSF)), which 
initiate a cascade of allergic inflammation such as TH2 cell survival, B-cell isotype switching 
to immunoglobulin E (IgE)-synthesis, mast cell differentiation and maturation, eosinophil 
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maturation and survival, and basophil recruitment (Holgate 2012). From this cascade, 
children with a pre-existing atopy, or specific genetic risk factors for TH2 inflammation 
regulators, or those children who have other less well-understood susceptibility will become 
asthmatic. Why TH2 immune responses are initiated during childhood and become persistent 
is not well understood (Fahy 2013). 

About 50% of adults with asthma and almost all asthmatic children have allergic asthma. In 
allergic asthmatics, IgE antibodies are present in the serum and/or skin-prick tests are positive 
for common allergens (Kudo et al. 2013). The numbers of CD4+ cells, producing Il-4 and Il-
5, are also increased in asthmatics with allergic asthma (Lambrecht and Hammad 2015). Il-13 
plays an important role in regulating airway inflammation. The TH17 and TH9 cell subtypes 
are also known to contribute to the inflammation, or to enhancing smooth muscle contraction, 
or stimulating mast cells (Kudo et al. 2013). Airway remodeling concerns the structural 
changes in the airway walls, which is an important cause of irreversible airway narrowing and 
airflow limitation. Airway remodeling is caused by repeated cycles of injury and repair and is 
a result of long-term inflammation. Studies also suggest that mechanical stresses from 
bronchoconstriction may lead to remodeling (Hirota et al. 2013).  

Non-allergic asthma usually develops in adulthood and neither TH2 cells nor IgE antibodies 
are present (Lambrecht and Hammad 2015). Non-allergic neutrophilic asthma is related to the 
TH17 immune response (Pelaia et al. 2015).  

It has been proposed that the term “endotype” should be used instead of “phenotype” to 
highlight the molecular heterogeneity of asthma and to target treatment at the molecular 
mechanism (Fahy 2013). The presence of the cytokines Il-4, Il-5, and Il-13, as well as 
eosinophils in the blood and tissue, determines if the endotype is defined as TH2-high or TH2-
low asthma (Lambrecht and Hammad 2015). However, the mechanisms involved in asthma 
endotypes other than the TH2-high endotype are not well understood (Fahy 2013). 

The cause of about 17% of all adult-onset asthma in the working population is thought to be 
due to occupational exposures (Toren and Bland 2009). Baur and colleagues (2012) conclude 
that the prevalence of irritant-induced occupational asthma (OA) is underreported. Brooks et 
al. (1985) identified the acute onset of hyperreactivity of the airways as being associated with 
exposure to strong irritants and named the illness “reactive airways dysfunction syndrome” 
(RADS) (Brooks et al. 1985). Baur et al. (2012) concluded that 47 different agents (e.g., 
chlorine, cleaning agents, and isocyanates) might cause RADS. However, the susceptibility 
of individuals with OA will not be investigated in this thesis. 

2.1.3 Diagnosis 
An asthma diagnosis is made by identifying the typical respiratory symptoms (e.g., wheezing, 
chest tightness, a shortness of breath, and coughing) and by the individual having a variable 
expiratory airflow limitation (GINA 2015). Ward and colleagues (2004) suggest, based on a 
questionnaire study, that there is an 89.4% chance that an asthma diagnosis is accurate.  

Physiological lung function tests (i.e., spirometry) measure how an individual inhales or 
exhales volumes of air as a function of time and the tests are applied when diagnosing asthma 
(Miller et al. 2005a). Some of the important spirometry tests are the forced vital capacity test 
(or FVC, the volume delivered during an expiration made as forcefully and completely as 
possible starting from a full inspiration), the forced expiratory volume in 1 second (or FEV1, 
the volume delivered during the first second of the FVC maneuver), and the peak expiratory 
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flow test (or PEF, the maximum speed of expiration). Measuring FEV1 is considered as a 
more reliable method for diagnosing asthma as compared to PEF because the results may 
differ between different PEF meters. The FEV1/FVC ratio is normally within the range of 
> 0.75–0.80 in adults and > 0.90 in children. Values lower than these suggest airflow 
limitation and can be identified from flow meters with age-specific predicted values (GINA 
2015).  

Reversibility testing with drug administration is commonly used to determine how the 
patient’s lung function can be improved with treatment (Miller et al. 2005a). Moreover, 
variations in improvement and/or a deterioration in the symptoms and lung function (during 
one day, day-to-day, visit-to-visit, seasonally) can be measured to confirm the diagnosis of 
asthma (GINA 2015). Repeated spirometry testing should be performed by the same 
examiner and the time of day should be within 2 h of previous test times (Miller et al. 2005b). 
The minimal important difference for an improvement or worsening of the FEV1 result based 
on the asthmatic patient’s perception of change is about 10%. Generally, in adults, an 
increase or decrease in the FEV1 result of > 12% or a change in the PEF reading of at least 
20% is considered as asthma (GINA 2015).  

The diagnosis of allergic asthma (or atopic status) can be determined by skin-prick testing or 
by measuring the level of antigen-specific IgE in the serum (GINA 2015). In addition, nitric 
oxide can be used as a marker to diagnose asthma since atopy is associated with increased 
levels of nitric oxide in exhaled breath. This method can also be used to verify the response 
and adherence to treatment and to predict asthma exacerbations (ATS 2005). 

Inhalation challenge testing induces airway obstruction, e.g., bronchoconstriction or AHR, 
and a positive challenge test can confirm the diagnosis of airflow limitation. The substance 
inhaled is usually histamine or methacholine (MCh) and they act directly and predominantly 
on the airway’s smooth muscle (Sterk et al. 1993).  

The patient can be challenged with exercise to make the diagnosis of exercise-induced 
bronchoconstriction (EIB). A bicycle ergometer or treadmill is often used (ATS 2000). An 
additional challenge test involves isocapnic hyperventilation with cold and/or dry air. The 
advantage of this method compared to exercise is the ability to investigate a dose–response 
relationship. Furthermore, it is moderately similar to the bronchoconstriction seen following 
inhaled MCh and histamine in asthmatic individuals (Sterk et al. 1993).  

2.1.4 Treatment and control 
At present, there is no cure for asthma but there are treatments available to control symptoms 
and the future risk of adverse outcomes. The treatments are mainly bronchodilators or anti-
inflammatory medications. Many individuals in the world do not have access to asthma 
medications or medical care. Ideally, better healthcare could be provided if we increased the 
economic wealth and improved the distribution of resources between and within countries 
(Croisant 2014). 

Asthma medications can be divided into three categories: controller medications, reliever 
(rescue) medications, and add-on therapies for patients with severe asthma. Asthma severity 
is assessed based on the level of treatment needed to control the symptoms and exacerbations. 
The asthma medications and asthma severity are described further in Table 2. The use of low-
dose inhaled corticosteroids (ICS) is very effective in reducing asthma symptoms and in 
reducing the risk of asthma-related exacerbations, hospitalization, and death (GINA 2015). 

4 



 

Table 2. Asthma medications and severity of the disease (GINA 2015). 

Severity of asthma 

Controller medications 
Regular use to reduce 

inflammation, symptoms, 
the risks of exacerbations, 

and changes in lung 
function. 

Reliever (rescue) medications 
As-needed relief of symptoms, 

(e.g., worsening asthma or 
exacerbations), or as short-term 
prevention for exercise-induced 

bronchoconstriction (EIB) 

Add-on therapies 
In case of persistant 

symptoms and/or 
exacerbations, despite 

use of high-dose 
controller medications 

Mild asthma 
(intermittent or 

persistent) 

Low-doseinhaled 
corticosteroids (ICS), 
leukotriene receptor 

antagonists, or chromones. 

Short-acting beta2-agonists 
(SABA)  

Moderate asthma 
(persistent) 

Low-dose ICS/long-acting 
beta2-agonist (LABA). SABA  

Severe asthma 
(persistent)  SABA 

High-dose ICS/LABA 
to prevent the risk of 
uncontrolled disease 

 

The European Respiratory Society/American Thoracic Society Task Force on Severe Asthma 
consider that only individuals with refractory asthma and those whom do not respond to 
treatment of comorbidities are considered “severe” asthmatics (Chung et al. 2014). In 
addition, there is a category called “untreated severe asthma” that applies to individuals from 
low-resource countries who do not have access to ICS and other medications (i.e., 
uncontrolled asthma with no access to controlled medication) (GINA 2015). 

The level of asthma control in an individual can be determined by the applied treatment, the 
disease processes, the genetic background, the environment or psychosocial factors. Poor 
symptom control is strongly associated with an increased risk of asthma exacerbations. Both 
symptom control (i.e., regular questioning) and the future risk of adverse outcomes (i.e., 
regular lung function assessments) are important and should be taken into account when 
choosing an asthma treatment and reviewing the patient’s treatment response (GINA 2015). 

It has been reported that approximately 50% of adults and children on long-term asthma 
treatment fail to take medications at least part of the time (Boulet et al. 2012). Treatment non-
adherence can be due to, for example, misunderstanding instructions, forgetfulness, cost, a 
perception that treatment is not necessary, or side effects. In addition, the patient may have 
difficulties using the inhaler (GINA 2015).  

Several studies have confirmed that it is possible to control the asthma disease in most 
patients regardless of the level of severity. Consequently, in recent years, some asthma 
guidelines include recommendations related to the level of asthma control rather than the 
level of severity (Papaioannou et al. 2015).  

2.1.5 Work exacerbated asthma  
The prevalence of asthma among workers may be similar to that among the general 
population (or somewhat lower, due to the hindrance that asthma presents to work). Among 
474 workers in Maine, 13.5% reported having asthma (either as diagnosed by a physician or 
on the basis of reported symptoms characteristic of this disease; Henneberger et al. 2003), a 
value that is relatively similar to the 10.9% reported by Masoli and colleagues (2004) for the 
entire population of the United States.  
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Asthma-related exposures in the work environment are less frequently addressed than in the 
home environment because the employer may or may not accept their responsibility or have 
the ability to control exposures (Wagner and Henneberger 2006). Several conditions at work 
can exacerbate asthma symptoms, for example, exposure to irritant chemicals, second-hand 
smoke, common allergens or dusts. Additional examples are emotional stress, temperature, 
and physical activity (Henneberger et al. 2011).  

Work-exacerbated asthma (WEA) has received less attention than OA, which is caused by 
work (Henneberger et al. 2011). The incidence of WEA among employed adults with asthma 
ranges from 8% to 25%, depending on the epidemiologic criteria utilized (Henneberger et al. 
2002; Saarinen et al. 2003; Tarlo et al. 2000). Individuals with WEA report more days with 
symptoms, seek more medical care, and have a lower quality of life as compared with adults 
with asthma unrelated to work (Henneberger et al. 2011). One consequence of WEA is 
leaving work either temporarily or permanently (Wagner and Henneberger 2006). 

Henneberger and colleagues (2015) showed that irritating agents have the strongest 
association with WEA and especially exposure to environmental tobacco smoke and 
inorganic dusts. An evaluation of workers’ claimed time lost at work during a 5-year period 
reveals that 72% of the asthma claims fulfilled the WEA criteria (Lim et al. 2014). The agents 
that caused WEA differed between the investigated industry groups, implying that both 
common and less common triggers should be targeted to reduce the duration and frequency of 
WEA.  

2.1.6 Animal models  
Due to ethical reasons, not all parameters can be investigated in experimental studies on 
humans and studies on the progression of diseases are complicated. Animals have similarities 
to humans and can be used in asthma research at a relatively low cost.  

Most animals, with the exception of cats (Reinero 2010; Venema and Patterson 2010) and 
horses (Herzberg et al. 2006), do not develop asthma naturally. However, several species 
such as mice, rats, guinea pigs, and rabbits can be used in experimental models to study 
asthma. However, a model is just a model, and it can never fully mimic human asthma. It can 
only be used to study what we already know, or to examine one asthma phenotype at the time 
(Persson 2002; Wenzel and Holgate 2006). 

Systemic and airway inflammation can be induced experimentally by exposure to allergens 
(e.g., the egg white protein ovalbumin (OVA), house dust mites, Aspergillus, cockroaches, or 
pollens). Chronic challenge protocols usually include repeated inhalation exposure to low-
level allergens for weeks or months (Kumar et al. 2008; Lloyd 2007), while acute allergen 
challenge protocols generally take place over several days. A chronic challenge involving 
allergens leads to airway remodeling, which is not present after acute challenges (Lloyd 
2007). Airway responsiveness is often studied in models with the use of a challenge with, for 
example, MCh, or carbachol (Säfholm et al. 2011). 

Currently, mice are the preferred animal species used as experimental models of allergic 
airway disease. The use of mice includes advantages such as a well-characterized genome 
and immune system, the availability of inbred and transgenic strains, short breeding periods, 
and relatively low maintenance costs (Glaab et al. 2007). 

6 



 

The most common mouse asthma model is the use of repeated intra-peritoneal injections of 
OVA with a TH2 adjuvant (e.g., aluminum hydroxide) to initiate immune activation followed 
by several challenges with an OVA aerosol to induce airway inflammation (Kips et al. 2003). 
A systemic CD4+ (TH2) immune response and eosinophilic airway inflammation can be 
experimentally induced in the BALB\c mice strain. This strain has an increased sensitivity to 
OVA, and sensitization leads to the formation of IgE antibodies in the serum, and increased 
numbers of eosinophils in the lungs (Fulkersson et al. 2005). In addition, AHR and airway 
remodeling can be studied in BALB\c mice (Lloyd 2007). 

The C57BL/6 mice strain can also be used in allergy models. BALB\c is often preferred since 
C57BL/6 mice do not develop AHR, and they exhibit a TH1-response instead of the TH2-
dependent allergic inflammation that is seen in humans. In addition, the inflammatory 
responses of the airway smooth muscle are higher in BALB\c mice compared to C57BL/6 
mice (Säfholm et al. 2011).  

Another common animal species used in asthma models is the guinea pig. The guinea pig is 
more similar to humans in regards to the anatomy of the lung (dichotomous), the anatomy 
and function of the airway smooth muscle, and mast cell distribution. Stimuli can induce a 
cough similar to that seen in humans. In addition, the release of histamine in the mast cells 
enables an early allergic reaction due to sensitization. Conversely, guinea pigs are not inbred, 
only a few strains are available, they are not as well studied as mice, and they have an axon 
reflex influencing the airways that is not present in humans (Canning and Chou 2008). 

OVA has been widely used as an allergen in animal models. This model mimics many 
specific features of allergic asthma but it has some drawbacks. OVA does not induce asthma 
in humans, sensitization via the respiratory tract is not possible, and chronic OVA exposure 
leads to tolerance, limiting studies of airway remodeling and of other features of chronic 
asthma (Stevenson and Birell 2011). 

The use of house dust mites instead of OVA has some advantages. Many human asthmatics 
have house dust mite specific IgE antibodies and the mechanisms behind sensitization via the 
respiratory mucosa can be studied. In addition, long-term exposure to house dust mites in 
animals can model chronic asthma and airway remodeling (Stevenson and Birell 2011). 

2.2 ACUTE EXPOSURE TO AIRBORNE CHEMICALS  
2.2.1 Health effects in humans 
The Chemical Abstracts Service RegistrySM database includes more than 104 million unique 
chemical substances and about 15,000 more are added each day (CAS 2015). Individuals can 
be acutely exposed to hazardous airborne chemicals from accidental releases in workplaces, 
from fires, or from transportation accidents. Similarly, acute exposure can occur from 
deliberate terrorist actions or chemical warfare. The negative health effects from acute 
exposure to airborne chemicals vary from mild discomfort to severe medical conditions or 
lethality.  

The subjective effects from exposure to airborne chemicals are often first apparent in the eye. 
Douglas and Coe (1987) measured the relative sensitivity of the human eye and lung by 
testing eight different gases and the threshold concentration was on average 1.5 times lower 
in the eye compared to the lung.  
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The sensory irritation pathway starts when local irritants interact with receptors of the 
nervous system (i.e., trigeminal nerve endings). A cascade of reflexes and defense 
mechanisms (i.e., eye blinks, coughing) follows and it involves local toxicity in the eyes and 
in the upper respiratory tract (nasal cavity, larynx/pharynx). Exposure at high concentrations 
or for long duration can lead to neurogenic inflammation and, eventually, to tissue damage. 
On the contrary, the tissue irritation pathway starts with the interaction of the local irritant 
with the epithelial cell layers of the eyes and the upper respiratory tract. The first response is 
adaptive changes and these are followed by inflammation and irreversible damage (Brüning 
et al. 2014).  

The use of nasal or oral breathing may influence the first contact site in the respiratory tract. 
Local effects in the upper respiratory tract are linked to sensory irritation and appear faster 
than those in the lower respiratory tract do, e.g., lung edema and inflammation (Brüning et al. 
2014). The nose is protective of the lower respiratory tract since it filters, humidifies, and 
heats inhaled air. In addition, the nose protects the gas-exchange regions of the lung by 
trapping inhaled particles, metabolizing airborne xenobiotics and absorbing water-soluble and 
reactive vapors and gases (Harkema et al. 2011).  

The route of exposure (e.g., inhalation), transport (e.g., nasal mucous, lipid membranes), and 
the target site (e.g., lower respiratory tract) are determined by the physiochemical properties 
of the chemical. Examples of such properties are volatility, reactivity, water solubility, and 
lipophilicity. In addition, the molecular structure and size (expressed as the mass median 
aerodynamic diameter (MMAD)) of the chemical are important. Aerosols of different sizes 
can be inhaled (< 100 µm), can enter the smaller airways (< 10 µm), and reach the alveoli 
(< 4 µm) (Brüning et al. 2014). Low water-soluble chemicals affect the alveoli, while high 
water-soluble chemicals mainly cause an effect in the upper respiratory tract. However, very 
high concentrations of water-soluble chemicals will also produce effects in the alveoli 
(Nowak et al. 2002). The locations of the effects from different chemicals in relation to water 
solubility are presented in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Locations of the effects from different substances in relation to water solubility. From Nowak and 
Hoeppe, Acute exposure to toxic agents. In Grassi C, et al.: Pulmonary diseases, ©1999, Reproduced with the 
kind permission of McGraw-Hill Education. All rights reserved.  
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2.2.2 Experimental studies with human individuals 
Exposure data that are relevant for health risk assessment of airborne chemicals often include 
epidemiological and/or inhalation experiments using animals and/or human subjects. 
Epidemiological studies represent real–life scenarios but include confounding factors–such as 
socio–economic status, smoking, additional chemical exposures and spirometry cannot be 
measured at a high frequency. Inhalation experiments on humans are performed in an 
environmentally controlled setting, often with the use of an exposure chamber (Figure 2).  

 

 

 

 

 

 

 

 

 

Figure 2: Human exposure chamber. Photo by Mia Johansson. 

Exposure–response relationships can be investigated in experimental studies by the use of 
spirometry measurements and subjective symptom questionnaires before, during, and after 
the exposure. Lower-, upper-, and non-respiratory symptoms are scored according to severity. 
Variations in airway response following changes in temperature, humidity, and exercise level 
(bicycle or treadmill) can be investigated. Subjects of different ages and subpopulations can 
be studied (Utell and Samet 1992). 

Subjects are exposed to the chemical while breathing in a mouthpiece, head dome, face mask, 
or in a chamber with or without a nose clip. In addition, tidal breathing can be applied, which 
includes an inhalation challenge with an aerosol either through a facemask or via a 
mouthpiece. Quiet tidal breathing at a spontaneous frequency is undertaken for 2 min using a 
nose clip. FEV1 is measured before the test and at 30 and 90 s after each inhalation. The 
maximal bronchoconstriction at a certain dose corresponds to the lowest value on FEV1 and 
the test ends when the FEV1 has decreased by 20% or more from baseline. The results are 
presented as the concentration of the aerosol (usually MCh or histamine) causing a 20% fall 
in FEV1 (PC20) (Sterk et al. 1993). Mouth-only inhalation in experimental studies can be 
considered as somewhat artificial because the natural human scrubbing system for substances 
in the nasal airways is bypassed (Proctor 1981).  

The use of human subjects in experimental settings has ethical considerations, especially in 
the case of susceptible subpopulations and/or children. For obvious reasons, humans cannot 
be harmed physically, psychologically, or emotionally. Informed consent must be given by 
all subjects and they should be allowed to stop their participation whenever they want to. The 
study group is often small and the exposure levels are low. In addition, the exposure duration 
is short, which is relevant to acute exposure scenarios but difficult to extrapolate to chronic 
exposure scenarios (Utell and Samet 1992).  
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Exposure to some chemicals may be complicated. For example, in studies on particle 
pollution, the variability in particle size affects the site of deposition (Utell et al. 1985). An 
additional example is that exposure to sulfuric acid in individuals with high levels of naturally 
occurring ammonia in their airways shows smaller effects compared to those with low levels 
of ammonia (Larson et al. 1977; Mariglio et al. 1983).  

2.2.3 Experimental studies with small animals 
Many risk assessment documents for airborne chemicals lack data from controlled 
experimental studies on asthmatic individuals. The number of studies is limited due to ethical 
and practical difficulties. In addition, the applied temperature, humidity, and workload in 
these studies may not represent real-life situations of humans. As a result, experimental 
studies must be supplemented with epidemiological and mechanistic studies including cells, 
tissues, or animal models (Bylin 1987).  

Environmentally controlled exposure conditions, concentration, and duration, together with 
biochemical, physiological, and histological examinations are possible to perform in rodents. 
However, unrealistic experimental designs will make the extrapolation between animal and 
human difficult (Utell and Samet 1992). Inhalation studies on rodents enable the use of higher 
exposure levels and more invasive methods for analyzing inflammatory and pulmonary 
effects from exposure to airborne irritants. Several risk assessment documents are based on 
data from inhalation studies on rodents. However, those data are mainly based on the 
response in healthy animals. 

Sensory nerves such as neuropeptide-rich C fibers are extensively innervated in both human 
and rodent airways (Nielsen 1991; Nielsen et al. 2007) and stimulation of the nasal trigeminal 
sensory nerves initiates a sensory irritation response in rodents. This is characterized by a 
decreased respiratory frequency due to a prolonged pause at the beginning of the expiration 
(Nielsen 1991; Vijayaraghavan et al. 1993). The concentration of a chemical irritant that 
induces a 50% depression in respiratory frequency, the RD50, is an important toxicological 
parameter, since it generally correlates with observations in humans (Alarie 1973). It can be 
used for the categorization of chemicals as irritants, and as a tool in the derivation of 
guideline values and occupational exposure limits (Bessac et al. 2008). Kuwabara and 
colleagues (2007) found a relationship between the RD50 in mice and the LOAEL for human 
sensory irritation based on studies of 26 chemicals, which supports the use of the RD50 
measure in the derivation of guideline values for the general population.  

Ventilation, lung volume, airflow, and gas exchange are common in humans and in most 
mammals. Changes in breathing patterns can be measured via non-invasive techniques with 
conscious animals. The least invasive technique, unrestrained barometric plethysmography, 
in which the parameter enhanced pause (Penh) can be measured, is the least precise method, 
and the use of this method has been questioned. There are other non-invasive techniques with 
restrained animals such as head-out plethysmography, double chamber plethysmography, and 
the forced oscillation technique. These techniques enable repeated exposures in many 
animals, and nearly natural breathing patterns, but only the airflow parameters can be studied. 
A calibrated pneumotachograph is connected to the head-out plethysmograph and respiratory 
flow can be measured. Disadvantages with this technique include the induction of stress, and 
that inhalation exposure results in both nasal and gastrointestinal uptake (Hoymann 2007). 
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Changes in lung mechanics can be measured via invasive techniques with anaesthetized 
animals. Invasive plethysmography in spontaneously breathing anaesthetized animals can 
either be repetitive (orotracheally intubated animals) or non-repetitive (tracheotomized 
intubated animals). Orotracheal intubation means that there is no stress, and the measurement 
of valuable parameters of resistance and compliance can be undertaken, with the inhalation 
exposure focused on the lungs, using sophisticated exposure apparatus. On the other hand, 
this method takes more time, is technically challenging, and it decreases the respiration. 

The use of the non-repetitive forced oscillation technique is the most invasive technique but it 
is also precise. The animal is anaesthesized, tracheotomized, and paralyzed, and placed in a 
small animal ventilator (flexiVent™ SCIREQ®). The animal does not experience stress, the 
inhalation exposure is focused on the lungs, and valuable parameters such as resistance and 
compliance can be measured both in the central and peripheral lung (Hoymann 2007). 

2.2.4 Species differences in lung anatomy and physiology  
Mice have a proportionally larger nasal surface area compared to humans and they are 
obligate nose breathers (Mizgerd and Skerrett 2008). The nose and upper respiratory tract 
have a scrubbing effect for particles and gas, which is bypassed in oral breathing. In addition, 
the upper respiratory tract differs in terms of epithelial cell types and numbers.  

The mouse lung consists of one left lung lobe and four right lung lobes, while humans have 
two on the left and three on the right. The lengths and diameters of the airways differ and one 
of the most important differences is the branching of the bronchi. It is asymmetric 
(monopodial) in mice, which leads to direct airflow to the lower respiratory tract. The 
symmetric (dichotomous) pattern in humans leads to increased susceptibility to depositions in 
the areas where branching occurs. In humans, and not in mice, bronchioles and alveolar ducts 
are present in the distal part of the airways. Mice have rapid clearance from the lung and 
more particles go to the gastrointestinal tract than to the lung lymph nodes, which is the 
where the slow clearance of particles occurs in humans (Warheit 1989).  

The ventilation rate (163 breaths/min) and heart rate (624 beats/min) are higher in the mouse 
compared to humans (12 breaths/min, 65 beats/min), which leads to differences in tidal 
volume and perfusion rates, as well as tissue volumes, and deposition and uptake (Davies and 
Morris 1993). 

2.3 HEALTH RISK ASSESSMENT 
2.3.1 The risk assessment process 
According to the WHO International Programme on Chemical Safety, risk assessment is “a 
process intended to calculate or estimate the risk to a given target organism, system, or 
(sub)population, including the identification of attendant uncertainties following exposure to 
a particular agent, taking into account the inherent characteristics of the agent of concern as 
well as the characteristics of the specific target system” (IPCS 2004, p. 14). 

The risk assessment process can be divided into four stages: hazard identification (HI), 
hazard characterization (HC) (or dose–response assessment), exposure assessment, and risk 
characterization (Figure 3). HI and HC taken together represent the hazard assessment in 
which possible adverse effects from exposure to a chemical are investigated. The outcome of 
the four stages in risk assessment is evaluated in the risk management stage where decisions 
related to risk reduction are made. Environmental health, economic, social, and political 
aspects are evaluated, as well as regulatory options (IPCS 2004; NRC 1994).  
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Figure 3. A simplified illustration of the risk assessment process including research which serves as basis for 
risk assessment (NRC 1994). 

2.3.1.1 Hazard identification 
Chemicals with the potential to cause adverse effects in an organism, system, or 
subpopulation are identified here. The circumstances behind exposure to these chemicals and 
the relevant exposure concentrations are evaluated and the link between negative effects and 
the chemical is characterized. Toxicological information on toxicokinetics (i.e., how the body 
absorbs, distributes, metabolizes, and eliminates chemicals) and toxicodynamics (i.e., the 
effects that chemicals have on the human body) are important, but data from monitoring, 
epidemiological and other experiments are also applied (IPCS 2004; NRC 1994; U.S. EPA 
2014). 

2.3.1.2 Hazard characterization 
HC involves the qualitative, and wherever possible, quantitative characterization of the 
relationship between exposure to a chemical and the severity of the adverse effect. A dose–
response (referred to as concentration–response in this thesis) assessment should be included 
and it describes how the likelihood and severity of responses are connected to the exposure 
concentration of a chemical. Uncertainties connected with the concentration–response 
relationships are, e.g., the intensity and pattern of exposure, and differences in susceptibility 
such as age, lifestyle, pregnancy, or pre-existing diseases. Extrapolation from the effects in 
animals to human health effects and of high-dose responses to low-dose responses are also 
addressed here (IPCS 2004; NRC 1994). 

The most sensitive adverse health effect is identified: the so–called point of departure (POD). 
The no observed adverse effect concentration (NOAEC) has traditionally been used as the 
POD in the derivation of guideline values in health risk assessment. However, the NOAEC 
approach has been seriously criticized and an alternative mathematical model, the Benchmark 
dose approach (referred to as the Benchmark concentration in this thesis, BMC), was 
therefore proposed as preferable by Crump (1984). Toxicological findings reported as quantal 
or continuous data can be applied to the BMC approach. A critical effect size (CES) of 5–
10% is usually applied to the BMC analysis of quantal data. The CES can be modified for 
continuous data to the percentage change in response relative to background or to a range of 
responses (Sand et al. 2008).  
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2.3.1.3 Exposure assessment 
Exposure assessment is the estimation and measurement of hypothetical or actual exposures 
to chemicals in humans. The intensity, frequency, and duration of the exposure are 
determined. The assessment ideally includes sources, routes, and uncertainties related to the 
exposure, as well as real and potential pathways. Scenarios can be created to estimate 
exposure and modeling is often applied. Exposed populations and susceptible populations are 
also characterized (IPCS 2004; NRC 1994). 

2.3.1.4 Risk characterization 
Here, the outcome of the risk assessment and a discussion of the uncertainties associated with 
estimates of risk for the studied population should be presented in a transparent and 
consistent way. Information from the previous three stages is implemented in a qualitative or 
quantitative estimate of the risk of negative health effects in individuals exposed to the 
chemical of concern. The results should be expressed clearly, assumptions and uncertainties 
are stated, reasonable alternative interpretations are identified, and scientific conclusions 
should be separated from policy judgements (IPCS 2004; NRC 1994; U.S. EPA 2014). 

2.3.2 Acute to short-term guideline values for inhalation exposure  
2.3.2.1 Guideline values aimed at the protection of the general population in emergency 

settings 
The worst industrial accident to date occurred in Bhopal, India, on December 3, 1984. 
Methylisocyanate leaked out from a pesticide plant and killed more than 2000 individuals. Up 
to 200,000 people were injured or disabled (Jasanoff 1988; first presented in Lepkowski 
1985). A need for guideline values to define safe exposure levels became apparent. The 
American Industrial Hygiene Association (AIHA) derived the guideline values Emergency 
Response Planning Guidelines (ERPGs). The U.S. National Research Council and the U.S. 
Environmental Protection Agency (U.S. EPA) later developed the Acute Exposure Guideline 
Levels (AEGL) (Rusch et al. 2000). 

Both sets of values are used for emergency response planning, preparedness, and as guidance 
to those responsible for risk management decisions in cases of accidents with a sudden 
release of hazardous airborne chemicals. They target the general population, including 
susceptible subpopulations. The AEGL program includes the derivation of three threshold 
levels above which the following toxic effects are predicted: AEGL-1: mild and reversible, 
such as discomfort, irritation, or asymptomatic non-sensory effects; AEGL-2: irreversible, 
long lasting, or escape impairing; and AEGL-3: life threatening to health or death. Similar 
threshold levels have been developed for the ERPG program (i.e., ERPG-1, ERPG-2, ERPG-
3) with the exception that odor is included as a threshold effect for ERPG-1. The AEGL 
values are derived for five different exposure durations (10 min, 30 min, 1 h, 4 h, and 8 h) 
while the ERPG values are derived for 1 h of exposure (AIHA 2008; NRC 2001). 

Additional examples of values for emergency response are the Dutch intervention values for 
dangerous substances, the U.S. Department of Energy’s Temporary Emergency Exposure 
Levels (TEEL) and the European Centre for Ecotoxicology and Toxicology of Chemicals 
(ECETOC’s) Emergency Exposure Indices (EEIs) (Craig et al. 2000; ECETOC 1991; Wood 
et al. 2006). In addition, the EU-funded project ACUTEX developed a methodology for 
deriving Acute Exposure Threshold Levels (AETLs) in 2006 with the aim of them being 
implemented in the Seveso II Directive and constituting a complement to other acute 
guideline values (Wood et al. 2006).  
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2.3.2.2 Guideline values aimed at the protection of workers in occupational settings  
Occupational exposure limits (OELs) are derived to protect healthy workers from negative 
health effects related to exposures during their working lifetime (8 h per day, 40 h per week). 
Similarly, 15-min short-term exposure limits (STELs) or other acute to short-term guideline 
values—representing peaks, ceilings, or time-weighted averages of exposures—are set to 
protect workers. These values are generally not aimed at determining how to protect 
individuals in emergency situations but rather to protect them during normal workdays.  

The American Conference of Governmental Industrial Hygienists (ACGIH) developed the 
first set of OELs called “maximum allowable concentrations” in the 1940s, today known as 
the Threshold Limit Values (TLV®) (ACGIH 2015). Many countries developed their own 
OELs in the 1970s and the European Commission Member States started adopting proposed 
values from the Scientific Committee on Occupational Exposure Limits (SCOEL) in 1991 
(SCOEL 2013). Some OELs are legally binding (e.g., OELs in various countries) while 
others are indicative (e.g., ACGIH-TLV®). SCOEL has developed both legally binding and 
indicative OELs. Not all OELs are health-based but rather are derived from the influence of 
economic or technical factors (Deveau et al. 2015). 

2.3.2.3 Derived No-Effect Levels (DNEL)  
The European regulation REACH (EC 1907/2006), concerning the registration, evaluation, 
authorization, and restriction of chemicals, entails major change in the approach to the 
regulation of industrial chemicals. A key part of the evaluation is the determination of 
Derived No-Effect Levels (DNELs) (i.e., the levels of exposure below which no adverse 
health effects in humans are expected to occur). Registrant companies are required to provide 
DNELs for all substances they manufacture and/or import in quantities of more than 10 tons 
per year. To date, two of the three deadlines for registration have expired (the third being in 
2018) and the extensive effort expended by registrants is illustrated by the 51,920 dossiers 
covering 13,441 unique substances that were submitted by September 15, 2015. Selected 
information from these dossiers, including the DNELs themselves and summaries of the 
toxicological data on which these are based, is available in the European Chemicals Agency 
(ECHA) database of registered substances (www.echa.europa.eu) (ECHA 2012a). 

The procedure by which DNELs should be derived is outlined in Chapter R.8 of the ECHA 
guidance for REACH obligation-holders (ECHA 2012b). These values should consider 
relevant populations (workers, consumers, and other individuals liable to be exposed 
indirectly via the environment, as well as certain susceptible and/or vulnerable groups, such 
as pregnant women and children), the duration of exposure (long- and short-term/acute), the 
routes of exposure (inhalation, oral, and dermal), and the type of toxic effects (local or 
systemic). DNELs for acute inhalation are generally based on minutes to a few hours of 
exposure, with REACH specifying a routine duration of 15 min for workers (ECHA 2012b, 
pp. 102–104). In the case of consumers, the ECHA guidance defines a daily dose as that 
resulting from 1–24 h of exposure, with peak levels of exposure lasting from minutes to hours 
(ECHA 2012b, p. 8). 

2.3.3 Assessment factors 
AFs (also called uncertainty factors or safety factors) are used in health risk assessment to 
compensate for the variation in biological variability and uncertainty between animals and 
humans, and between average humans and susceptible individuals. In addition, extrapolations 
from short-term to long-term exposure durations and from data on LOAECs to NOAECs are 
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applied, and from an insufficient to a sufficient database (Dankovic et al. 2015). In addition, 
modifying factors are used to account for other uncertainties, e.g., exposure scenarios or from 
an interplay between the areas above.  

2.3.3.1 Susceptible individuals 
The susceptibility to chemical exposure observed in human individuals depends on age, body 
weight, genetic background, and health status (e.g., pre-existing diseases). Small children 
(especially fetuses, infants, and juveniles) are often considered more susceptible because they 
consume more food, water, and oxygen in relation to their body weight, and they are in the 
process of maturation. In addition, they spend more time outdoors compared to adults and it 
is known that they get specific damage from, for example, alcohol, smoking, and 
pharmaceuticals (Eckhardt 2014). The effects from ambient air pollutants have been shown to 
be most pronounced during the first year of life (Götschi et al. 2008). In the respiratory 
system, cellular differentiation, proliferation, and physiological function change postnatally 
and while the child is growing. For example, 80% of the alveoli develop postnatally. 
Consequently, their response to environmental exposures is most likely different from that 
seen in adults. However, more knowledge on the susceptibility of children is needed (Dietert 
et al. 2000). For obvious ethical reasons, the susceptibility to chemical irritants in children is 
difficult to investigate experimentally. de Pee and colleagues (1991) discovered similar 
airway responses between asthmatic and non-asthmatic children and adults after a challenge 
with MCh (de Pee et al. 1991).  

2.3.3.2 Inter-species and inter-individual assessment factors 
The genetic variability is large between humans and animals, which makes species 
extrapolation difficult. Animal data can be extrapolated to humans by the use of an allometric 
equation scaling factor = (kg (humans) / kg (animal species))^0.25 (Kalberlah and Schneider 1998b). 
A factor of 7 for differences between mice (30 g) and humans (70 kg) has been suggested by 
the ECHA (ECHA 2012b, p. 24).  

Lehman and Fitzbugh (1954) introduced an AF of 100 to account for uncertainties and 
variabilities between animals and humans (an inter-species AF of 10) and within the human 
population (an inter-individual AF of 10). Many risk assessors and organizations have 
adopted this AF of 100 and subdivided it into two AFs of 10 to account for inter-species and 
inter-individual variability (Dourson and Stara 1983; Renwick 1991, 1993; U.S. EPA 1988, 
1993). Dourson and Stara (1983) showed that these default values are protective against the 
average chemical. There are variabilities in the relationship between the exposure dose and 
target dose (toxicokinetics, TK), and between the target dose and adverse effect 
(toxicodynamics, TD), and these often represent two equal parts of the AF of 10 (100.5 × 100.5, 
i.e., 3.16 × 3.16). Renwick (1991, 1993) proposed a subdivision of the default AF of 10 into 4 
(TK) and 2.5 (TD) based on observations of higher toxicokinetic than toxicodynamic 
differences from experimental studies. This approach is applied by, for example, the WHO 
(IPCS 2005). Falk-Filipsson and colleagues (2007) suggest the use of 4.5 to account for TK 
variability and a higher factor in the case of susceptible subpopulations. The TD for 
variability is suggested as 3.2, leading to a default inter-individual AF of at least 15 
(4.5 × 3.2). 

The applied default inter-individual AF varies between guideline values and between values 
for the working and general population. The European REACH legislation proposes default 
AF values of 5 and 10 (ECHA 2010), the Dutch TNO (the Netherlands Organization for 
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Applied Scientific Research) 3 and 10 (Hakkert et al. 1996), and the ECETOC 3 and 5 
(ECETOC 2003). An AF for the general population of 25 was suggested in a report by the 
German Federal Institute for Occupational Safety and Health and the German Federal 
Environmental Agency (Kalberlah and Schneider 1998), while the NRC suggests a default 
AF of 10 in the derivation of AEGLs (NRC 2001). 

2.3.3.3 Chemical-specific assessment factors for inter-individual variability 
Data-derived AFs, or so-called chemical-specific assessment factors (CSAFs), have been 
proposed as an alternative to default AFs when sufficient data are available (Dourson et al. 
1996; IPCS 1994). Physiologically based pharmacokinetic (PBPK) modeling can be used as a 
tool for deriving such factors. PBPK modeling can also be used in the extrapolation between 
different routes of exposure (ECHA 2012b) and it has been used for species-to-species 
extrapolation and time-scaling in the development of AEGLs (Bruckner et al. 2004). In 
addition, AFs that are specific for a mode of action or pathway have also been proposed to 
allow, e.g., human variability in Phase I metabolism. They constitute an intermediate between 
the chemical-specific and the default AFs (Dorne and Renwick 2005).  

Slob (2002) has proposed the use of Benchmark concentration (BMC) analysis to estimate 
AFs for subpopulations. To estimate an AF, the critical effect concentration (CEC, or critical 
effect dose, CED) identified for subpopulation A can be divided by the CEC for 
subpopulation B. This AF estimate is more exact than measuring the difference in the 
NOAECs between two subpopulations, since the CEC is defined as the concentration needed 
for the pre-determined CES. The CES is the change in an endpoint that is considered to cause 
non-adverse health effects (Slob 2002).  

2.3.3.4 Extrapolation between LOAEC and NOAEC data 
When NOAEC data are not available as the POD for the derivation of acute to short-term 
guideline values for inhalation exposure, extrapolation may be needed from a LOAEC to a 
NOAEC value. In addition, the available LOAEC data may not be sufficient for BMC 
analysis and the use of an AF may be needed. Based on an extensive evaluation of LOAEC-
to-NOAEC ratios, an AF of 6 has been suggested to be protective for 95% of the population, 
while an AF of 10 is protective for 99% (Alexeeff et al. 2002). Dourson and Stara (1983) also 
implied that an AF of less than 10 could be used for LOAEC-to-NOAEC extrapolations for 
mild effects.  

2.3.3.5 Extrapolation between exposure durations 
Fritz Haber and Ferdinand Flury proposed the use of the formula c × t = k (Haber’s law) to 
describe the airway response from war gases in terms of exposure concentration and exposure 
time (duration) (Shusterman et al. 2006). Ten Berge and colleagues (1986) used raw data 
from exposures to airborne irritant chemicals to investigate the concentration–time 
relationship. They conclude that rather than using c × t = k, the term cn × t = k (with n ≠ 1) is 
preferable for predicting mortality and that the value of n varied between 1 and 3 for 90% of 
the chemicals evaluated. Schusterman and colleagues (2006) evaluated the concentration–
time relationship in human experimental studies on ammonia, chlorine, formaldehyde, and 1-
octene. Their findings suggest that extrapolation from short to longer exposure times with the 
use of Haber’s law may overestimate the risk of sensory irritation, while the opposite 
extrapolation (from long to shorter exposure times) may lead to an underestimation of risk. 
Both Haber’s law and cn × t = k (with n ≠ 1) have been applied in the derivation of guideline 
values in health risk assessments (Shusterman 2006). 
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2.3.4 Asthmatics as a susceptible subpopulation 
Several risk assessment programs address susceptible subpopulations such as children, the 
elderly, and pregnant women. In addition, individuals with genetic and metabolic disorders or 
pre-existing diseases are sometimes mentioned as susceptible subpopulations. The AEGLs 
(U.S. EPA and NRC), Reference Exposure Levels (REL, California Office of Environmental 
Health Hazard Assessment, OEHHA), and the Provisional Advisory Levels (PAL, U.S. EPA 
National Homeland Security Research Center, NHSRC) have specifically included asthmatic 
individuals in the definition of susceptible populations to be included in the derivation of 
guideline values (NRC 2001; Denton and Hickox 1999; Young et al. 2009). Young and 
colleagues (2009) have also investigated the difference in response between healthy and 
asthmatic individuals based on a few experimental studies. 

The potential susceptibility of asthmatics has been investigated in relation to the derivation of 
National Ambient Quality Standards for the air pollutants nitrogen dioxide, ozone, and sulfur 
oxides (EPA 2007, 2008, 2009; Goodman et al. 2013, 2015). In addition, several 
experimental studies have been performed on asthmatics using an exposure chamber with the 
aim of investigating the susceptibility of asthmatics to air pollutants and other airborne 
chemicals. Several meta-analyses and evaluations including asthmatics exposed to single 
chemicals are available (Folinsbee 1981; Johns et al. 2010; Hesterberg et al. 2009; Goodman 
et al. 2009; Utell 1985; Johns and Linn 2011).  

There is an awareness of the potential susceptibility of asthmatics, but the inclusion of this 
subpopulation in the derivation of acute to short-term guideline values has not been 
investigated previously, and a recommendation of an AF for asthmatics has not been 
available. In addition, the difference in susceptibility between healthy and asthmatic 
individuals has not been investigated by extensively analyzing controlled experimental 
studies on chemical exposure. 
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3  AIMS 
The overall aim of this thesis was to provide knowledge that can ensure adequate protection 
of the general population, including susceptible subpopulations such as asthmatics, during 
sudden releases of hazardous airborne chemicals via a contribution to scientifically sound and 
internationally harmonized guideline values.  

 
The specific aims of the studies were: 

I. To investigate if and how asthmatics are included in the derivation of acute to short-
term guideline values and to what extent experimental data including asthmatic 
subjects are applied to the derivation. In addition, to identify data gaps and 
inadequacies and to present a database of experimental studies that can constitute a 
key to supporting the selection of inter-individual AFs for chemicals with irritant 
properties.  
 

II. To evaluate the experimental basis for AFs that are intended to take inter-individual 
variability in susceptibility to irritant chemicals into account. First, we attempted to 
identify any general differences between healthy and asthmatic individuals with 
respect to airway response to short-term exposure, and, thereafter, to determine 
whether the AFs currently employed for inter-individual variability are adequate for 
asthmatics by using the information available on four chemicals that have been 
examined extensively. 

  
III. To investigate the extent to which experimental observations on asthmatic subjects 

are taken into consideration in connection with the registration process under the EU 
REACH regulation, and to determine whether asthmatics are provided with adequate 
protection by the DNELs for acute inhalation exposure.  
 

IV. To explore the use of OVA-sensitized mice as a model for asthmatics and to 
investigate whether such mice are more susceptible to inhaled chlorine in terms of 
effects on their respiratory frequency, lung mechanics, and inflammatory markers. 
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4 METHODS 
This is a summary of the methods used in this thesis. For further detailed information, the 
reader is referred to the method sections in Papers I–IV. 

4.1 IDENTIFICATION OF HEALTH RISK ASSESSMENT DOCUMENTS AND 
GUIDELINE VALUES 

The basis for choosing AEGL values to analyze in Paper I was due to their specific aim of 
protecting the general population, including susceptible subpopulations, such as asthmatics, 
from mild effects following acute exposure to hazardous chemicals (NRC 2001). In addition, 
the full technical support documents (TSDs) were publicly available online, which facilitated 
the evaluation of the inclusion of asthmatics in the derivation of AEGL values. Nine 
additional sets of acute to short-term guideline values were chosen based on the target 
population (four aimed at the general population, five aimed at the working population) and 
accessibility to the support documents (publicly available online, as books, or as loose-leaf 
documents).  

In Paper III, the DNELs for local effects from acute/short-term inhalation exposure were of 
interest, since such effects are observed in asthmatics. The full dossiers (i.e., support 
documents) of the DNEL values were neither publicly available on the ECHA website 
(http://echa.europa.eu) nor upon request from the ECHA, which compromised our analysis of 
how the DNELs were derived. However, the ECHA database of registered substances 
contained DNEL values and toxicological information concerning their derivation (the AFs 
applied, references to all experimental studies) and the harmonized and notified 
classifications for each substance were listed in the ECHA classification and labeling (C&L) 
inventory. 

4.2 COMPILATION OF DATABASES ON HUMAN EXPERIMENTAL STUDIES 
The compiled databases of experimental studies in Papers II–III are based on references 
found in risk assessment documents in Paper I and on hits from computerized searches in 
scientific literature databases (Figure 4). In addition, complementary searches in Google 
scholar of specific articles that were not accessed through the scientific databases were useful. 
The names of specific authors were applied as search terms. These, together with the use of 
risk assessment documents, were good complements to the use of medical subject heading 
(MeSH) terms and key words when searching for experimental data.  

Only human experimental studies involving environmentally controlled exposure to a single 
substance (and mixtures in Paper II) via a mouthpiece, head dome, face mask, or in a 
chamber with or without a nose clip were identified. Epidemiological studies on air pollution 
or studies in occupational settings where exposure was not adequately defined were excluded. 
Furthermore, investigations in which subjects with OA were exposed to the sensitizing 
chemical were also excluded. 

Additional criteria for reliability and quality were applied to the identified experimental 
studies. These included well-documented and scientifically sound methods and data 
published in peer-reviewed journals. The same data published in two separate papers was 
regarded as a single study. The environment had to fulfill the criteria of having a normal 
room temperature (18–25ºC) and normal humidity. The subjects were not allowed to be 
current smokers, have pre-existing diseases other than asthma, have severe asthma, or have 
an occupational or other history of heavy exposure to irritating or sensitizing air pollutants.  
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All of the identified experimental studies were compiled into different databases that were 
categorized according to the different aims of the papers (Figure 4). The chemical involved 
and its concentration and duration of exposure, together with the experimental design and 
exercise conditions were recorded. The number of subjects, the definition of asthma, age, 
gender, smoking habits, and eventual use of corticosteroids were also noted.  

Figure 4. The overall strategy applied for collecting experimental studies including asthmatic individuals (and 
healthy individuals) and the development of the databases in Papers I–III. Arrows symbolize the use of 
experimental studies that were identified in previous papers. The number of studies is indicated with an “n”. The 
statuses of the subjects (asthmatic/healthy) investigated in each database are presented together with the number 
of chemicals. 

4.3 INVESTIGATING THE CONSIDERATION OF ASTHMATICS IN RISK 
ASSESSMENT 

The AEGL TSDs (n = 176, corresponding to 250 chemicals) were categorized into: 1) 
documents with experimental data, 2) documents with explicit statements on asthmatics, and 
3) documents including no explicit statements on asthmatics. In the second part, 15 chemicals
from category 1 (experimental data on asthmatics) were analyzed in 9 additional sets of acute 
to short-term guideline values. The support documents were further classified by the 
inclusion of experimental data on asthmatics: 1) used as key studies, 2) cited in the 
conclusion, 3) included in the reference list, and 4) no inclusion of studies. A database with 
all of the identified experimental studies on asthmatics in Paper I was created (Figure 4). 

The chemicals in Papers I and II that had been tested on asthmatics (Figure 4) were searched 
for in the ECHA database of registered substances and the inclusion of such data was 
investigated in more detail in the toxicological information that was provided on the ECHA 
website (http://echa.europa.eu). 

To identify additional studies on asthmatic subjects, our previous databases in Papers I and II 
were complemented with a computerized literature search and an examination of substances 
with a harmonized classification of H335: a respiratory irritant under the Classification, 
Labelling, and Packaging (CLP) Regulation (http://echa.europa.eu). 
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Asthma studies found in the ECHA database of registered substances were compared to this 
new compilation of studies. The DNEL values were compared to the overall NOAECs and 
the overall LOAECs that were estimated for each chemical. In addition, the DNEL values for 
local effects following acute/short-term exposure of both workers and the general population 
were compared to the ten health-based guidelines described in Paper I.  

4.4 ESTIMATION OF LOAECS, NOAECS AND DIFFERENTIAL RESPONSE 
FACTORS 

The term “weight of evidence” (WOE) has been applied to health risk assessments for more 
than 60 years (Weed 2005). Klimisch et al. (1997) developed quality scores for each 
experimental study (e.g., acceptable, unacceptable, adequate, limited), which have been used 
by risk assessors, such as the REACH registrants, in the derivation of the DNELs in the 
ECHA database of registered substances (www.echa.europa.eu).  

Recommendations for improving WOE evaluations in risk assessments were developed at a 
workshop and presented by Rhomberg and colleagues (2013). The recommendations are 
based on an evaluation of 50 different frameworks and are divided into four different phases 
related to: 1) causal question definition and data selection, 2) a review of individual studies, 
3) data integration and evaluation, and 4) drawing conclusions based on interferences (for
more information, see Rhomberg et al. 2013). 

Several of these recommendations were applied to our WOE approach in Papers II–III. In 
Part 1 of Paper II, a LOAEC for each endpoint included in an experimental study was 
separately estimated for healthy and asthmatic individuals. Estimation of LOAECs and 
NOAECs for asthmatic subjects, only, was made in Paper III, in a similar manner to that in 
Paper II.  

The factors that the WOE approach was applied to in Papers II–III were the number of 
studies, the duration of exposure (very short exposures were considered inconclusive), the 
type of outcome, and the number of subjects (a higher weight was given to studies involving 
more subjects). In addition, the definition of asthma and the documentation of asthma therapy 
were considered. The effects induced by exercise were controlled for by considering the 
response. The type of outcome for the LOAEC included statistically significant changes in 
pulmonary function, levels of inflammatory markers, and/or symptom scores. The pulmonary 
function parameters of FEV1 and specific airway resistance (SRaw) were considered more 
relevant than other parameters were if the LOAECs (Papers II and III) or NOAECs (Paper 
III) from different studies were in disagreement.

In Part 1 of Paper II, an estimated differential response factor (EDRF) was calculated as the 
ratio between the LOAEC in healthy individuals and the LOAEC in asthmatics for each 
endpoint. Then an overall EDRF was estimated for each chemical tested, taking all endpoints 
and different studies into account. In cases where a LOAEC could not be identified in healthy 
subjects, the ratio between the NOAEC in healthy subjects and the LOAEC in asthmatics 
were calculated and noted with a greater-than sign. There is a certain amount of subjectivity 
involved in combining all studies on a chemical to derive an overall EDRF. Overall EDRFs 
were considered inconclusive if the study did not meet our criteria or if the LOAECs were not 
determined for either asthmatic or healthy subjects. 
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4.5 CONCENTRATION-RESPONSE AND BENCHMARK CONCENTRATION 
ANALYSES 

In Part 2 of Paper II, four chemicals (nitrogen dioxide, ozone, sulfuric acid, and sulfur 
dioxide) were selected for concentration–response relationship analyses based on studies in 
which healthy and asthmatic subjects were tested either under the same conditions or in 
separate studies. These chemicals were chosen because of the large number of human studies 
that have been performed with them. Group-wise data on FEV1 and SRaw were extracted 
from the identified studies, since individual details were usually lacking. The percentage 
change in FEV1 and SRaw was determined by deriving the values after exposure from the 
baseline values.  

A Benchmark concentration (BMC) analysis was performed on SRaw data from five studies 
involving exposure to sulfur dioxide (breathing at rest from the mouth only). The 
concentration–response curves were fitted to the data by employing subject status (asthmatic 
or healthy) as a covariant. A CES of 20% SRaw was used, according to the definition of a 
“small” but clear response (U.S. EPA 2007, 2008b, 2009). Here, we considered observations 
on the pulmonary function of each individual subject exposed to sulfur dioxide (at rest while 
wearing a nose clip) rather than group data. The BMC curve fitting was carried out with a 
nested set of exponential and Hill models (Slob 2002) using the R package PROAST version 
32.2 (Slob and Cotton 2012) in the R version 2.15.2 (R Core Team 2012).  

4.6 AIRWAY RESPONSE TO CHLORINE IN NAÏVE AND SENSITIZED MICE  
Fifty-six BALB/C OlaHsd female mice were divided into four naïve groups and four OVA-
sensitized groups. One of four concentrations of chlorine was applied: 0, 5, 30, and 80 ppm, 
for 15 min at day 16. All mice were weighed prior to any treatment (i.e., at day 0, 7, 13, 14, 
15, 16, and 17). The experimental design is presented in Figure 5. Ethical approval for the 
study presented in Paper IV was received from the Regional Ethics Committee on 
animal experiments in Umeå, Sweden. 

Figure 5. Experimental design for naïve (top) and OVA-sensitized mice (bottom). 
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The OVA aerosol challenges were performed in a Battelle exposure tower with regular nose-
only tubes, while the nose-only tubes during chlorine exposures were connected to a 
pneumotograph to enable the online recording of respiratory frequency (head-out 
plethysmography) (Figures 6A-B). Prior to the chlorine exposure, each mouse was guided 
gently into the tube through a latex rubber collar that was placed around the neck to hold the 
body in position and to produce a tight system that facilitated the recording of the respiratory 
frequency.  

Twenty-four hours after chlorine exposure, the mice were anaesthetized by pentobarbital 
sodium (i.p.) and paralyzed by pancuronium to avoid spontaneous breathing. AHR was 
measured by inhalation of MCh at increasing doses of 0, 25, 50, and 100 mg/ml via a small 
animal ventilator (flexiVent™, SCIREQ®) apparatus (Figure 6C). Respiratory resistance 
(RRS), respiratory compliance (CRS), Newtonian resistance (Rn), peripheral tissue resistance 
(G), and peripheral tissue elastance (H) were obtained. 

 

Figure 6. Experimental methods for inhalation exposure used in Paper IV. A Battelle exposure tower with nose-
only tubes for A) the ovalbumin challenge and B) chlorine exposures (plethysmography). C) Small animal 
ventilator (flexiVent™, SCIREQ®) for lung-mechanic measurements. Photos by Mia Johansson.

In order to confirm the allergic immune sensitization in the mice, OVA-specific IgE 
antibodies were measured in the serum. Blood was sampled by orbital sinus venipuncture on 
anaesthetized mice. The total number of leukocytes in the bronchoalveolar lavage fluid 
(BALF) was counted manually, and differential cell counts of pulmonary cells (macrophages, 
neutrophils, lymphocytes, and eosinophils) were made in duplicate using standard 
morphological criteria, and by counting 300 cells per cytospin preparation in a blinded 
manner.  

Ten cytokines and chemokines were analyzed: CCL11 (Eotaxin), CXCL1 (KC), CXCL9 
(MIG), CXCL10 (IP-10), CCL3 (MIP-1α), IL-1b, IL-6, IL-10, TNF-α, and TGF-β. In 
addition, the right lung lobe from lavaged mice was stored in 4% formaldehyde prior to 
embedding the samples in paraffin. Lung sections were stained with haematoxylin and eosin 
for histopathological examination.  

The results in Paper IV are presented as the arithmetic mean ± standard error mean (SEM), 
and there were 7 animals in each group, except in the OVA-sensitized group that was 
exposed to 0-ppm chlorine (6 animals). Graphpad Prism (version 5.0 Graphpad Software 
Inc., San Diego, CA, US.) was used. Statistical significance was defined as p < 0.05. 

A) B) C) 
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When recording the respiratory frequency during chlorine exposure, we experienced noise in 
the data, which yielded abnormally high values. Barrow and colleagues (1977) describe how 
a short period of increased respiratory frequency and some body movements can be expected 
at the start of chlorine exposure (each lasting 10 to 20 s), and that additional peaks will be 
seen during the exposure due to transient body movements. The noise was filtered out by the 
use of cut-off values (lower = 1 breath/min, upper = 400 breaths/min) (Figure 7). For values 
within the cut-off-range, we calculated the median respiratory frequency during air exposure 
(0 to 10 min) and during chlorine exposure (11 to 25 min) separately. The first minute of 
chlorine exposure (minute 10–11) was excluded due to body movements and the delay in 
response to chlorine. The percentage change following chlorine exposure compared to air 
exposure was calculated: (medianCl2/medianair-1)*100.  

 

Figure 7. Example: A recording of respiratory frequency in a naïve mouse. Exposures consisted of baseline air 
(0–600 s), 30-ppm chlorine (600–1500 s), and air (1500–1800 s). We applied cut-off values of 1–400 
breaths/min. 
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5 RESULTS AND DISCUSSION 
Further detailed results and discussion sections are included in Papers I–IV. 

5.1 IDENTIFICATION OF ASTHMATICS IN HEALTH RISK ASSESSMENT 
5.1.1 Policy statements 
The inclusion of asthmatics as a susceptible subpopulation in the derivation of acute to short-
term guideline values was investigated in Papers I and III. The standing operating procedures 
(SOPs) for AEGL clearly includes asthmatics as a susceptible population (Table 3). The 
methodology for the French Acute Toxicity Threshold Values (VSTAFs) clearly states that 
hypersensitive populations such as asthmatics are not included in their target group (INERIS 
2007, 2009). The inclusion of asthmatics in the methodology of guideline values aimed at the 
general population is presented in Table 3. 

Table 3. Acute to short-term values for the general population in emergency settings. 

Guideline values Organization Target population 

Acute Exposure Guideline 
Levels (AEGL) 

US National Research Council 
and Environmental Protection 
Agency (NRC/EPA) 

“[G]eneral public, including susceptible subpopulations, such as 
infants, children, the elderly, persons with asthma, and those with 
other illnesses” (NRC 2001, p. 3). 

Emergency Response 
Planning Guidelines 
(ERPG)  

American Industrial Hygiene 
Association (AIHA) 

“[S]hould not be expected to protect everyone, but should be 
applicable to most individuals in the general population. In all 
populations, there are hypersensitive individuals who will show 
adverse responses at exposure concentrations far below levels at 
which most individuals normally would respond” (AIHA 2008, p. 14). 

Minimal Risk Levels 
(MRL) 

US Agency for Toxic 
Substances and Disease Registry 
(ATSDR) 

“Conditions that may enhance susceptibility to adverse health effects 
include age, sex, genetic composition, nutritional status, and pre-
existing disease conditions. UFs of 10 are usually used to derive 
MRLs protective of these sensitive subpopulations” (Pohl and Abadin 
1995). 

Reference Exposure Levels 
(REL) 

California Office of 
Environmental Health Hazard 
Assessment (OEHHA) 

“[B]oth individuals at low risk for chemical injury as well as 
identifiable sensitive subpopulations (highly susceptible or sensitive 
individuals) […] asthmatics are frequently identified as a sensitive 
group” (Denton and Hickox 1999, p. 13). 

French Acute Toxicity 
Threshold Values (VSTAF) 

French National Institute for 
Industrial Environment and 
Risks (INERIS)  

 “[G]eneral population excluding susceptible and hypersusceptible 
individuals” (INERIS 2009, p. 14).  

No information concerning asthmatics was included in any of the reviewed methodologies of 
the occupational short-term values and limits presented in Table 4. However, the DFG states 
that variations in the potential sensitivity of individual employees should be considered. On 
the other hand, the SCOEL and ACGIH specifically state that their values concern healthy 
workers, i.e., asthmatics are presumably excluded.  

Table 4. Acute to short-term values aimed at protection in occupational settings. 

Guideline values Organization Target population 

Dutch Expert Committee on 
Occupational Standards (DECOS)  Health Council of the Netherlands 

“[H]ealth-based recommended occupational exposure limit 
for the concentration of the substance in workroom air” 
(DECOS 2000, p. 4). No further details are included.  

Maximum Concentration at the 
Workplace (MAK) 

German Research Foundation 
(DFG) 

“The diverse sensitivities of individual employees (as 
determined by age, constitution, nutrition, climate, etc.) are 
taken into consideration in the establishment of MAK 
values” (DFG 2014, p. 14).  

Scientific Committee on 
Occupational Exposure Limits 
(SCOEL) 

European Commission 

“Groups at higher risk in relation to a specific compound 
will be identified in the corresponding recommendation and 
available information provided, but the OELs are 
established for healthy workers” (SCOEL 2013, p. 16).  

Swedish Occupational Exposure 
Limits (SE-OELs) 

Swedish Work Environment 
Authority (SWEA) Workers. No further details are included in AFS (2011). 

Threshold Limit Values (TLV®)  
American Conference of 
Governmental Industrial 
Hygienists (ACGIH) 

“[W]orkers who are normal, healthy adults” (ACGIH 
2015). 
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The inclusion of asthmatic individuals in the derivation of DNELs is indirectly implied in the 
ECHA guidance: “it may be necessary to identify different DNELs for each relevant human 
population (e.g. workers, consumers and humans liable to exposure indirectly via the 
environment) and possibly for certain vulnerable subpopulations (e.g. children, pregnant 
women)” (ECHA 2012b, p. 2). “The AFs for DNELs may deviate from the default values. 
For example, susceptible subpopulations may be assigned a higher AF than the default value, 
and conversely, if the point of departure is based on a study population including susceptible 
individuals (e.g., asthmatics), a reduced intra-species AF may be appropriate” (ECHA 
2012b, p. 160). 

5.1.2 Other potentially susceptible subpopulations 
There are additional subpopulations, besides asthmatics, with potential susceptibility to 
irritant chemicals. Several experimental studies were identified in Papers I–III and these are 
presented in Table 5. The focus of this thesis is on asthmatic individuals, and subjects of all 
ages were investigated, even though children and the elderly are often thought to be more 
susceptible. Data from a few experimental studies with such individuals (> 8 and < 89 years 
of age) were included in Papers II and III, since the observed effects from studies performed 
on these groups did not differ from those in young to middle-aged adults. However, the 
potential age-related susceptibility as well as other susceptible subpopulations have to be 
investigated in more detail to derive appropriate inter-individual AFs.  

Table 5. Experimental studies with potentially susceptible subpopulations found during the development of 
Papers I–III. 

Potentially susceptible subpopulation References 
Healthy elderly Bedi et al. 1988, 1989; Dreschsler-Parks 1987, 1989, 1990, 1995; Linn et 

al. 1982; Koenig et al. 1993; Reisenauer 1988; Gong 1997; Bauer et al. 
1988; McManus et al. 1989; Rondinelli et al. 1987; Morrow et al. 1992; 
Gong et al. 2005 

Patients with chronic obstructive pulmonary 
disease (COPD) 

Linn et al. 1982, 1983, 1985a, 1985b; Kerr et al. 1978, 1979; Vagaggini et 
al. 1994, 1996; Morrow et al. 1989; Kulle et al. 1982; von Nieding et al. 
1973, 1980; Gong et al. 2005; Morrow et al. 1992; Bauer et al. 1988; Solic 
et al. 1982; Kehrl et al. 1985; Gong et al. 1997  

Allergic adults without asthma Linn et al. 1987; Sheppard et al. 1980; Tam et al. 1988; Koenig et al. 
1982a, 1987; Jörres et al. 1996; Holtzman et al. 1979; McDonnell 1987 

Hypertensive subjects Gong et al.1998  
Children: healthy, asthmatic, or allergic  Avol et al. 1985, 1987, 1989, 1990; McDonnel 1985; Koenig et al. 1980, 

1981, 1982b, 1985, 1987a, 1987b, 1988a, 1988b, 1988c, 1989, 1990; 
Magnusson et al. 1992, 1993; Oldigs et al. 1991; Salome et al. 1996; Linn 
et al. 1995, 1997 

Ozone-sensitive but otherwise healthy Schelegle et al. 1989; Folinsbee and Hazucha 2000; Frampton et al. 1997; 
1993; Torres et al. 1997 

Healthy smokers Kerr et al.1975; Helleday et al. 1994 
Tobacco smoke-sensitive atopic asthmatics Menon et al. 1991, 1992; Stankus et al. 1988 
Gene polymorphisms Yang et al. 2005 

 
5.2 CONSIDERATION OF ASTHMATICS IN HEALTH RISK ASSESSMENT 
In Paper I, about 85% of all chemicals in the AEGL program were defined as respiratory or 
eye irritants and asthmatics might be considered as a susceptible subpopulation in the 
derivation of these values. About 70% of the AEGL TSDs lack any explicit statement 
concerning asthmatic individuals (Figure 8). The reason for not including statements on 
asthmatics in the TSDs is not obvious. Either no information was found on experimental 
studies involving this subpopulation or asthmatics are not expected to be more susceptible 
due to, e.g., non-irritating chemicals (only 15% of the chemicals). A statement related to the 
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interpretation of asthmatics as potentially susceptible or not would have increased the 
transparency of the AEGL derivations. 

Figure 8. Inclusion of asthmatics in the AEGL technical support documents (n = 176) in Paper I. 

It is stated in the AEGL SOP that an inter-individual AF (i.e., intra-species uncertainty factor) 
of 10 should be applied in cases where data are not available on the most susceptible 
population. It is also stated that an AF of 3 can be used if the inter-individual variability is 
expected to be small (NRC 2001). In Paper I, we found that an AF of 3 was applied in a few 
cases, but not in all, to compensate for a lack of data on asthmatics. A default AF is needed, 
e.g., for the chemicals evaluated by the AEGL committee that had irritation as the critical 
effect, but no data on asthmatics.  

Only 15 different chemicals in the AEGL program were identified as having been tested on 
asthmatics in experimental studies. The corresponding support documents for these chemicals 
were further analyzed in nine additional sets of acute to short-term guideline values. The 
inclusion of key data on asthmatics in the other acute to short-term guideline values for the 
general population varied: ERPG (7 out of 12 documents), MRL (3/5), REL (8/11), and 
VSTAF (0/10).  

The five sets of values for occupational settings included key studies on asthmatics in some 
of their support documents: SCOEL (3/10), TLV® (2/13), and DECOS (1/6). The MAK and 
the SE-OEL programs had no key studies with data from asthmatics. It has to be noted that 
SE-OEL documents only provide a scientific basis for setting the OELs, but that the SWEA 
does not derive the actual values. It seems that persons with asthma might be included to 
some extent in the derivation of acute to short-term guideline values, despite the lack of 
explicit policy statements regarding them. The inclusion of asthmatics varies in relation to the 
aim of the acute to short-term values, i.e., the general population versus occupational settings. 

The database of experimental studies (n = 170) in Paper I consists of those found in the 
AEGL program (2/3 of all studies) and those found only in the nine other programs (1/3 of all 
studies). These observations reveal that literature coverage in any of the programs were 
generally incomplete in relation to experimental data on asthmatics.  

Results from both Papers I and III point to insufficient use of experimental data in the 
derivation of guideline values. Only 2.6% of the 269 substances identified as respiratory 
irritants by the harmonized classification of the CLP Regulation were found to have been 
tested on asthmatic subjects. The ECHA database of registered chemicals included only 14 
chemicals of the 22 known by us to have been tested directly on asthmatic subjects. Nine 
more chemicals were identified as reaction products or structural analogues. For 10 of the 23 
(14+9) chemicals, experimental findings on asthmatics were either key or, more often, 
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supporting data. Thus, in many cases, relevant data on asthmatics appear to have been 
disregarded by the registrants. In this context, the REACH registrants more closely resemble 
the risk assessment programs that derive STEL values than those that derive guideline values 
for the general population (Paper I).  

The DNEL values, investigated in Paper III, were neither systematically higher nor lower 
than the other ten sets of acute to short-term guideline values, and the worker DNELs were 
even similar to the SCOEL values. Previous observations show that long-term-inhalation 
DNELs for workers may be either much lower or much higher than the corresponding 
national 8-h OELs, but that they are generally similar to the SCOEL values (Nies et al. 2013; 
Schenk et al. 2015).  

Overall, in Paper III, guideline values for workers, including the DNELs and the five 
investigated sets of values, were shown to be generally higher than those for the general 
population. As demonstrated previously, discrepancies between values may not only arise 
from different target populations and availability of data, but also from differing criteria for 
data selection and evaluation, the methodology employed, and risk assessing experience 
(Öberg et al. 2010; Schenk 2010). Öberg and colleagues (2010) provide evidence for 
deviations between the AEGL and ERPG values that may hamper effective risk management 
and communication during a sudden unintentional or intentional release of chemicals (Öberg 
et al. 2010). In addition, analyses of the inclusion of asthmatics (Papers I and III) demonstrate 
that the guideline values for occupational settings are not suitable for the protection of the 
entire population. However, it could be questioned as to why persons with asthma are not 
included, given the high prevalence of asthma in the whole population, and that the 
exacerbation of asthma is clearly an adverse health effect. We argue that asthmatics should be 
taken into consideration both in emergency and occupational settings.  

The DNELs for both workers and the general population were higher than the derived overall 
LOAEC for two chemicals and were set close to or higher than the estimated overall NOAEC 
for eight chemicals, indicating small safety margins. The DNEL values were close to or 
higher than our estimated overall LOAECs, indicating that they may not be sufficient for the 
protection of asthmatics.  

The absence of or the very low safety margins may lead to asthmatics experiencing 
exacerbations during a regular workday or even in common situations as consumers. DNELs 
are not meant for rare exposures, but rather for exposures that are repeated during working 
life or a lifetime. One obvious question is whether such low safety margins are acceptable in 
connection with such long timeframes. Moreover, the subjects in the 114 studies investigated 
in Paper III were considered to have mild asthma, so the LOAEC and NOAEC values may be 
inappropriate for individuals with severe asthma. Although Paper III covered few chemicals it 
should be noted it included all chemicals with asthma data registered in the ECHA. 

Mielke and colleagues (2005) discuss the inclusion of susceptible subpopulations in the 
derivation of AEGL values. No single subpopulation is expected to be susceptible to all 
chemicals, but these have to be identified, and the risks have to be quantified (e.g., by the use 
of an AF). Further, they discuss how large proportion of the whole population should be 
protected (i.e., 95% or 99%). In this thesis, none of the guideline values discussed in Papers I 
and III are intended to protect hyper-susceptible groups. In this context, hyper-susceptible 
responders are characterized as those individuals exhibiting very rare and therefore 
unpredictable effects that are generally discontinuous with the known range of expected 
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responses. The inclusion of 99% of the population in the derivation of acute to short-term 
guideline values may not be a realistic or desirable goal and perhaps a coverage of about 95% 
is preferable. 

5.3 QUANTIFICATION OF THE DIFFERENCE IN SUCEPTIBILITY BETWEEN 
HEALTHY AND ASTHMATICS 

5.3.1 Estimated overall LOAEC and overall NOAEC values 
LOAEC values were estimated for 103 experimental studies in Paper II, and both LOAEC 
and NOAEC values were estimated for 114 studies in Paper III. However, many chemicals 
did not have data that were relevant for LOAECs or NOAECs. A failure to establish either of 
them often resulted from exposure to too narrow a range of concentrations (which may all 
elicit or fail to elicit a response) and/or to a lack of statistical power due to a limited number 
of subjects. It was not possible to establish a LOAEC for several of the studies, and the only 
or the highest concentration tested was defined as the NOAEC. 

The studies included the endpoints of sensory irritation, the impairment of pulmonary 
function, or hyper-reactivity from bronchial challenge testing. Sensory irritation is often used 
as the critical effect for setting AEGL-1 values. The impairment of pulmonary function is 
considered more severe and serves as a basis for AEGL-2 values. Both sensory irritation and 
the impairment of pulmonary function were most important for our determination of 
LOAECs and the overall EDRF.  

5.3.2 Estimated differential response factors  
In Part 1 of Paper II, the estimated LOAEC values for the 103 identified experimental studies, 
including 19 chemicals and 11 mixtures/combined exposures, were used to estimate the 
overall EDRFs. Furthermore, there is substantial uncertainty involved in the estimation of 
EDRFs based on LOAECs, which are strongly influenced by both the number of subjects and 
test concentrations. LOAEC-based EDRFs are often uncertain or inconclusive, mainly due to 
a lack of data, the inclusion of only a few subjects in the available studies, and extensive 
inter-individual variability. 

 

 

 

 

 

 

 
Figure 9. Chemicals classified by the overall EDRF, which expresses the relative response in healthy and 
asthmatic individuals. 

Sixteen of the 30 chemicals/mixtures were each investigated in one study only. The overall 
EDRFs (i.e., derived for each chemical) are presented in Figure 9. If a single study was 
judged to be of high quality, it was used as the basis for the overall EDRF, but otherwise, the 
overall EDRF was regarded as “inconclusive.” Half of the chemicals and mixtures evoked no 
response at any concentration that was tested and the overall EDRFs were therefore 
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“inconclusive.” On the other hand, the highest difference between healthy and asthmatic 
individuals was seen in an experimental study with sulfur dioxide, where asthmatics were 5 
times more susceptible (Sheppard et al. 1980). Young et al. (2009) derived EDRFs for six 
substances (i.e., EDRF 1–5), which are similar to ours, although these investigators selected a 
single key study (or two) for each chemical, involving healthy and/or asthmatic individuals, 
as the basis for their calculations. 

5.3.3 Concentration-response and Benchmark concentration analyses 
Nitrogen dioxide, ozone, sulfuric acid, and sulfur dioxide were included in 61 of the 103 
studies in Paper II, Part 1, and were selected, based on these numerous data, for the 
comparative analysis of concentration–response relationships in Part 2. In total, 476 separate 
sets of data on these chemicals were retrieved, following additional computerized literature 
searches, and the comparative analysis was based on the data sets that included FEV1 and/or 
SRaw (n = 262). 

All concentration-response relationships were based on exposures performed during exercise. 
It was evident that the response in asthmatics was higher than in healthy individuals 
following exposure to sulfur dioxide and sulfuric acid. On the contrary, no differences were 
observed between the groups following ozone exposure. Exposure to nitrogen dioxide 
resulted in responses in asthmatics, but similar effects were seen already under control 
exposure to filtered air, suggesting that the effects were induced by exercise rather than by the 
chemical. 

LOAEC values are highly sensitive to the concentrations tested. Pronounced inter-individual 
variability at any concentration will result in higher LOAEC values, since these are based on 
pairwise comparisons with control data. For that reason, the BMC approach to comparative 
analysis of concentration–response relationships is preferred. No such analysis of 
experimental findings on healthy and asthmatic subjects has, to the author’s knowledge, been 
reported previously. The BMC analysis of sulfur dioxide resulted in an EDRF of 9 (Figure 
10), which is higher than an EDRF of 3–4 as suggested by Young et al. (2009). 

  

 

 

 

 

 

 

 

 

 

Figure 10. Benchmark concentration analysis of the specific airway resistance response in asthmatic 
(triangles) and healthy (circles) individuals following acute exposure to sulfur dioxide in a chamber at rest 
(Adopted from Paper II, ©The authors). 
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5.3.4 Adjustment for variability in experimental data 
Human experimental studies involving a controlled environment and study population reduce 
confounding factors. Despite the advantage of controlled conditions, the studies are not 
performed according to good laboratory practice (GLP) or other guidelines, and there will 
always be variability in the experimental design, within each individual and within the 
asthmatic or healthy group. We adjusted for several factors when selecting experimental 
studies to reduce this variability and retrieve comparable data of high quality in Papers II and 
III. However, the mentioned factors will still contribute to uncertainty in the EDRF 
estimations and concentration–response analyses in Paper II, and in the LOAEC and NOAEC 
estimations in Paper III. 

Humans, as compared to rodents, are not inbred, and they differ in biological aspects such as 
their genetics and hormonal levels. In addition, there might be a risk of bias in terms of diet, 
socio-economic status, or lifestyle—factors that were not controlled for in Papers II-III. The 
American Thoracic Society (2000) reports that bronchial responsiveness from MCh or 
histamine is increased by exposure to environmental antigens, occupational sensitizers, air 
pollutants, cigarette smoke, chemical irritants, or by having a respiratory infection. Bronchial 
responsiveness is decreased through the intake of medications, chocolate, or caffeine-
containing drinks (ATS 2000). Pulmonary function data from the chemical exposures in 
Papers II–III are likely also affected by these factors. 

The personnel and experimental set-up differ both between and sometimes within the studies. 
In addition, the studies were published within a range of almost 60 years (1952–2011), which 
may result in variability in the asthma diagnoses, ethical considerations during the exposures, 
and the methods used. 

Nasal breathing is present in most adults (80–90%) at rest, but shifts to oronasal breathing 
during exercise, when the minute ventilation rises to between 30 and 40 L/min (Kleinman 
1984). Asthmatics are more likely than healthy subjects are to perform oronasal breathing 
even at rest (Chadha et al. 1987). Between 70–80% of all asthmatic individuals will have an 
exacerbation from exercise provocation, although it is not very sensitive in clinical situations 
(Sterk et al. 1993). In Part 2, Paper II, separate concentration–response relationships were 
made for exercising subjects (bicycle or treadmill) breathing oronasally and through the 
mouth only, but the outcome did not differ. The level of exercise workload (i.e., breathing 
ventilation of 20–70 L/min) was not differentiated and this variation may have affected the 
results. To adjust for exercise-induced effects we included exposure to filtered air as a 
control.  

The lung size in women is generally smaller than in men and children have an even smaller 
size, which may affect their response following the inhalation of chemicals. Most studies 
included adult men and women between 18 and 54 years of age. A few studies with 8–17-
year-old children or the elderly aged 60–89 were included in Papers II–III since their pattern 
of effects did not differ from the available experimental findings on younger and middle-aged 
adults. 

The variability in the duration of exposure may influence the response to chemicals and it 
varied between 5 min and 8 h in the identified studies. However, replacement of the factor 
“concentration” by “concentration*time” in the concentration–response graphs in Paper II 
produced results that were similar to those for concentration–response. However, according 
to the SOP for the AEGL values, “With respect to mild sensory effects, they are generally not 
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cumulative over a range of exposures of 10 min to 8 h. Hence, the same AEGL-1 value may 
be assigned to all AEGL-specified exposure periods. […] In the case of certain sensory 
irritants, the AEGL values may be constant across all AEGL time periods, because this 
endpoint is considered a threshold effect, and prolonged exposure will not result in an 
enhanced response. In fact, individuals may adapt or become inured to sensory irritation 
provoked by exposure to these chemicals over these exposure periods such that the warning 
properties are reduced” (NRC 2001, p. 108). In addition, the AEGL support document for 
sulfur dioxide states that most of the bronchoconstriction caused by this substance occurs 
within 10 min and both the AEGL-1 and -2 values are therefore held constant across the 
exposure durations (NRC 2010).  

Another limitation with human experimental studies is the difficulty in obtaining a large 
sample of subjects, which is due to technical and economic reasons. This leads to low 
statistical power and thus the variability among the subjects may be high. The small group of 
subjects may not represent the whole population or subpopulation (Bylin 1987). In our 
databases of experimental data, the number of subjects varied from 4 to 66, except for five 
studies involving 135–786 healthy individuals. 

We tried to minimize differences between the asthmatic and healthy groups by excluding 
studies performed during pollen season (not always stated), outside of room temperature and 
normal humidity, and by separating studies performed at rest from those including exercise. 
The exclusion of studies outside of normal room temperature (18–25ºC) was based on a study 
by Bethel et al. (1984) where asthmatics had a significantly larger response in lung function 
following exposure to cold temperatures than at normal room temperature.  

The AF applied to acute to short-term guideline values is not intended to protect 
hypersensitive subpopulations, and studies on individuals with severe asthma were therefore 
excluded. At the same time, studies without a stated severity level were included and there 
might be variability in the definition of “mild” asthma between studies. On the contrary, Linn 
et al. (1987) show that there were no significant differences between mild and 
moderate/severe asthmatics following exposure to sulfur dioxide at different concentrations, 
which implies that the severity level of asthma may not contribute much to the variability.  

Variability in lung function and bronchial responsiveness within the group of asthmatics is 
apparent, both over time within one individual, and between individuals at any point in time 
(Bylin 1987). Corticosteroid treatment has long-term effects that might underestimate the 
sensitivity among asthmatics. In most studies, but not all, asthmatics were not allowed to use 
this treatment for weeks or months prior to the experimental exposure. According to GINA 
(2015), the inclusion of subjects with mild asthma in studies is based on the assumption of 
appropriate asthma treatment usage. At the same time, studies require subjects to restrain 
from the use of treatment prior to the exposure, which leads to uncontrolled symptoms. For 
this reason, it would have been preferable to have categorized subjects by the treatment used, 
and not by the severity level of their asthma (GINA 2015).  

Additional limitations with human subjects in experimental studies are erroneous self-
reporting of treatment use, smoking habits, and their history of asthma. In addition, the 
subject may not be aware of existing exercise-induced asthma, allergies, or other pre-existing 
diseases.  
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5.1 AIRWAY RESPONSE TO CHLORINE IN NAÏVE AND SENSITIZED MICE  
In Paper IV, all mice that had been immunized and challenged with OVA had an increased 
number of eosinophils in their BALF, increased levels of IgE in their serum, and clear signs 
of lung injury from the histopathological examination. These effects were not seen in naïve 
mice.  

It can be argued that OVA is not an allergen to which humans naturally become sensitized 
and that the inflammation is too high as compared to humans. The percentage of eosinophils 
in BALF is 40–80% in OVA-sensitized mice and 1–3% in human individuals (Fulkersson et 
al. 2005). Chronic allergen challenges with low levels of house dust mites, Aspergillus, 
cockroaches, or pollens have been suggested to be preferable, since these allergens are more 
physiologically relevant than OVA, and since chronic, and not acute, challenges lead to 
airway remodeling that is somewhat similar to that seen in human asthmatics (Kumar et al. 
2008; Lloyd 2007). In spite of this, one must remember that models are just models, and even 
though mouse models do not fully mimic asthma in humans, they are still able to provide 
more knowledge on the disease (Persson 2002; Wenzel and Holgate 2006). Every model has 
its strengths and weaknesses (Kips et al. 2003) and the advantages with OVA are its 
availability, the controlled administration dosage, and that it is relatively well defined (Kumar 
et al. 2008). Swedin and colleagues (2010) showed that an intranasal challenge with OVA in 
BALB\c mice caused more AHR and inflammation (mainly eosinophils and macrophages) as 
compared to an inhalation challenge to OVA aerosol. Therefore, the use of intranasal 
challenges in Paper IV would probably have resulted in even higher levels of eosinophils in 
the OVA sensitized animals. 

The changes in respiratory frequency following exposures to chlorine in concentrations of 0, 
5, 30, and 80 ppm were similar between naïve and OVA-sensitized mice. The RD50 values 
were slightly above 5 ppm, and this has—to the best of our knowledge—not been determined 
in BALB/c mice previously. The size of the RD50 values for chlorine observed for other 
mouse strains are quite similar to 5 ppm, indicating a low inter-strain variability in terms of 
irritation (Barrow et al. 1977; Gagnaire et al. 1994; Morris et al. 2005).  

For mice, it has been empirically observed that, on average, 0.03 times the RD50 in mice 
corresponds to the 8-h TLV®-TWA for substances with sensory irritation properties (Alarie 
1981). It may be of interest to note that 0.03 times the approximate RD50 value of 5 ppm 
identified in Paper IV, i.e., 0.15 ppm, is in line with the NOAEC in asthmatic human subjects 
of 0.4 ppm (D’Alessandro et al. 1996) as well as the AEGL-1 value of 0.5 ppm (NRC, 2004). 
The applied method to filter out the noise in the respiratory frequency data (described in more 
detail in Methods, Chapter 4.6) may have affected the percentage change following chlorine 
exposure. However, the abnormal responses obtained in the unfiltered data are not 
physiologically possible in mice and some kind of filter is therefore needed. It is perhaps 
worth discussing if the chosen upper cut-off value of 400 breaths/min is accurate, since 
applying a lower cut-off value will result in a larger change between chlorine and air 
exposure, and the opposite will be true after applying a higher cut-off value. The RD50 of 
about 5 ppm in Paper IV is therefore more of an estimation with considerable uncertainty. In 
addition, the acclimatization period of 10 min applied to all mice prior to recording the air 
(baseline) exposure might have been too short. 

A significant decrease in body weight during the first 24 h was observed in both naïve (5.7%) 
and OVA-sensitized (2%) mice after exposure to 80-ppm chlorine. The decrease in naïve 
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mice was a clear concentration-dependent effect. However, the variation in weight in mice 
may be high due to the impact of food and water intake, as well as excretion through urine 
and feces. Therefore, small effects in terms of weight should be addressed with caution.  

Interestingly, a clear increase in AHR and in the cellular infiltration of neutrophils (Figure 
11) was seen in the naïve, but not in the OVA-sensitized mice, after exposure to 80-ppm 
chlorine. These differences between groups indicate that individuals with a neutrophilic 
asthma phenotype might be more sensitive to chlorine exposure compared to individuals with 
an eosinophilic asthma phenotype, but additional studies are needed to confirm this 
hypothesis.  

Bogaert and colleagues (2011) observed that OVA sensitization in C57BL/6 mice with the 
adjuvant aluminum hydroxide produces a TH2 inflammation, while Freund’s adjuvant 
produces a TH1 and TH17 inflammation, which is more similar to neutrophilic allergic asthma 
in humans. The use of Freund’s adjuvant for OVA sensitization in C57BL/6 mice may have 
been a preferred approach with which to study the inflammatory response to chlorine in Paper 
IV. However, as stated previously, C57BL/6 mice do not develop AHR and do not show as 
high an inflammatory response in their airway smooth muscle as BALB\c mice do (Säfholm 
et al. 2011). The use of Freund’s adjuvant in OVA sensitization of BALB\c mice may not 
result in neutrophilic asthma since this strain develops a TH2 inflammatory response. 

Figure 11. Analysis of neutrophils in bronchoalveolar lavage fluid from naïve and OVA-sensitized mice 
following exposure to various concentrations of chlorine. (Arithmetic mean ± SEM, n = 7, except for OVA-
sensitized mice exposed to 0-ppm chlorine, n = 6). 

The AHR was investigated in a ventilator (flexiVent™ SCIREQ®) 24–30 h after exposure to 
chlorine and 40–46 h after the final OVA exposure. It can be argued that the applied exposure 
protocol is not relevant to the expected response in a real-life emergency scenario with acute 
exposure to chlorine. In that sense, a preferred approach would have been to measure AHR in 
the flexiVent™ apparatus during chlorine exposure (instead of using MCh), but this was not 
possible due to the corrosive damage chlorine would produce on the apparatus. In addition, 
AHR measurements in the flexiVent™ apparatus are an invasive method with obligatory 
euthanization post-procedure, and the analyses of inflammatory cells and cytokines would not 
have been possible, since these responses are delayed.  

The recordings of breathing frequency during chlorine exposure became a valuable 
complementary method to the AHR measurements in regards to evaluating the effects on 
lung function. No experiments have—to the best of the author’s knowledge—been performed 
with both naïve and OVA-sensitized mice using the combination of head-out 
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plethysmography and MCh provocation. Inhalation studies with chlorine have been 
performed previously using naïve (Jonasson et al. 2013) and OVA-sensitized BALB/c mice 
(Hox et al. 2011). In addition, several experiments with chlorine have been performed using 
naïve mice from other strains (Alarie 1981; Barrow et al. 1977; Chang et al. 2012; Gagnaire 
et al. 1994; Hoyle et al. 2010; Morris et al. 2005; Tuck et al. 2008).  

The exposure duration and chlorine concentration used varied between Paper IV (15 min at 
80 ppm), Jonasson et al. (2013) (15 min at 50 and 200 ppm), and McGovern et al. (2015) (5 
min at 100 ppm), but all studies reveal increases in AHR and neutrophil infiltration 24 h after 
chlorine inhalation in naïve BALB\c mice. McGovern and colleagues (2015) observed that 
after the depletion of neutrophils with antibodies directed against granulocyte receptor-1 or 
Ly6G, there was no recruitment of neutrophils to the airways, and the AHR was decreased 
during MCh challenges. Both types of antibodies caused decreases in RRS and Rn, but not in 
G and H, and they conclude that the presence of neutrophils is a major player in terms of the 
oxidative burden in the airways (McGovern et al. 2015). This may explain the lack of AHR in 
mice with eosinophilic airway inflammation (OVA-sensitized) exposed to 80-ppm chlorine in 
Paper IV. 

No chlorine-related increases in cytokine and chemokine levels from BALF were observed in 
samples from either naïve or OVA-sensitized mice. The findings of changes in cytokines and 
chemokines by Jonasson et al. (2013) could not be confirmed in Paper IV, indicating that the 
chosen time point (24 h after exposure) might have been too late to detect a transient 
induction.  

Jonasson et al. (2013) demonstrate that injuries in naïve BALB\c mice were restricted to the 
larger airways following the inhalation of chlorine (200 ppm for 15 min). Hoyle and 
colleagues (2010) found consistent damage in the large airways in naïve FVB\N mice 
exposed to 100-ppm chlorine gas for 60 min, but detached epithelial cells were not visible 
deep into the lung. McGovern and colleagues (2015) found neutrophils in the airway lumen 
in male BALB\c mice 6 h and 24 h after 100-ppm chlorine gas exposure for 5 min.  

The lack of chlorine-dependent findings in histopathology from both groups in Paper IV 
might be due to the relatively low chlorine concentration (80 ppm). Chlorine hydrolyzes upon 
contact with the mucus in the upper respiratory tract (nose) and in the tracheobronchiolar 
region (Yadav et al. 2010), indicating that only small amounts of chlorine reached the 
alveolar region where most of the histological sections were performed.  
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6 CONCLUSIONS  
In conclusion, the results from Papers I-IV showed that: 

I. More than two thirds of the AEGL TSDs lack data or even comments about 
asthmatics, and experimental data from asthmatics are referred to for only 15 
chemicals. A comparison of the support documents for these 15 chemicals from 
AEGLs and 9 additional sets of acute to short-term values reveals that asthmatics are 
frequently disregarded in both emergency and occupational settings. Available data 
on asthmatics should be considered carefully in the derivation of guideline values, and 
if such data are lacking, this should be indicated explicitly in the case of respiratory 
irritants.  
 

II. Although the available data on individual chemicals are often inconclusive, overall, 
the experimental findings on inter-individual variation provide support for the use of 
an AF of 10 to estimate the level of exposure below which respiratory symptoms and 
the impairment of pulmonary function are not likely to occur in the general 
population, including asthmatics. 
 

III. REACH registrants do not routinely take asthmatics into consideration when setting 
acute/short-term DNELs, which may result in values that are inappropriately high for 
this subpopulation. Several of the acute/short-term inhalation DNELs investigated 
exceed or are close to the estimated NOAEC and/or LOAEC values for asthmatics, 
indicating no, or low safety margins. Updated ECHA guidance concerning 
susceptible subgroups in connection with the setting of DNELs may improve the 
derivation of these values.  

 

IV. At 80-ppm chlorine, increases in both airway responsiveness and the number of 
neutrophils in BALF were evident in naïve mice, but not in OVA-sensitized mice. 
Concentration-dependent reductions in respiratory frequency were seen in both 
groups. The animal model, which represents a phenotype of eosinophilic airway 
inflammation, did not show any increased susceptibility following exposure to 
chlorine. 

 

Overall conclusion:  

Exclusion of asthmatics in the derivation of acute to short-term guideline values may interfere 
with trustful and efficient health-protective actions. The use of an AF of 10 when there is a 
lack of experimental data on asthmatics may be adequate to protect this subpopulation from 
the deleterious respiratory effects of airborne chemicals. 
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7 FUTURE RESEARCH  
Further research is needed to draw safer/more definite conclusions regarding the 
susceptibility of asthmatics. Here are some suggestions:  

 Perform high-quality experimental studies including both healthy and asthmatic 
subjects to obtain more precise AFs for asthmatics. Such studies should be designed 
to determine NOAECs and LOAECs for both healthy and asthmatic subjects and 
preferably be performed at rest in order to avoid exercise-induced effects. 
 

 Gain more mechanistical information related to if and how the asthma phenotype is 
an important factor for increased susceptibility to irritant chemicals. 
 

 Explore Ex vivo and in vitro methods either as a complement or as a substitute for 
experimental studies with human and animal subjects. For example, Guinea-Pig 
Precision Cut Lung Slices (PCLS) and Air Liquid Interface (ALI) might be used both 
as screening tools for identification of chemicals which asthmatics have an increased 
susceptibility to, and to provide more mechanistic knowledge about inter-individual 
differences.  
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