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”Almost all aspects of life are engineered at the molecular level, and without understanding 
molecules we can only have a very sketchy understanding of life itself.”  

- Francis Crick 

 
  



 

 



 

 

ABSTRACT 
In the last decade we have seen a tremendous development in the omics area (genomics, 
transcriptomics, proteomics etc.), making high throughput methods increasingly cost-
effective and available. The development in RNA-sequencing technology now enables us to 
sequence whole transcriptomes of hundreds or even thousands of samples or single cells 
simultaneously in only a few days. With the ability to quickly create millions of reads for 
thousands of genes in thousands of samples comes a computational challenge of how to make 
sense of the data. Due to the use of short sequencing reads, duplicate genes, biased base 
composition and repetitive regions in the genome, reads might not be uniquely assignable to a 
single gene. This problem can be solved either by computationally assigning multi-mapping 
reads to the most likely position, or excluding these reads and normalizing gene expression 
for the uniquely mappable positions in a gene. In paper I, we describe a software application 
for efficiently finding and storing the mappability data for every position in the genome, for 
subsequent use in normalization of RNA-seq data. 

When the first drafts of the human genome were published in 2001, it became clear that the 
majority of our DNA does not consist of protein-coding genes. Since then, a multitude of new 
functional non-coding RNA species have been discovered, but also transcription of seemingly 
non-functional RNA from open chromatin regions, such as promoter upstream transcripts 
(PROMPTs). In paper II, we decipher the physical interactions between the exosome 
complex, the NEXT complex and the cap-binding complex, and the role each complex has in 
targeting PROMPTs for degradation. 

In early embryonic development, having a mechanism for starting different developmental 
programs in a different set of cells is essential for multi-cellular organisms to develop. In the 
African clawed frog, Xenopus laevis, this mechanism involves sorting maternal RNA to 
different hemispheres of the oocyte, which will later be inherited asymmetrically to the cells 
in the developing embryo. The zygotic expression starts only after 12 cell divisions, and at 
the early stages the maternal RNA control the development. In paper III, we use de novo 
transcriptome assembly to get a good annotation of X. laevis in the absence of a fully 
assembled genome. We then use single cell RNA-sequencing to study the RNA sorting and 
search for sorting motifs in the 2-16 cell stage embryo. 

An advantage of full length RNA-sequencing is the possibility to study alternative splicing 
alongside expression estimates. Spinal muscular atrophy (SMA) is genetic disease, 
characterized by progressive loss of somatic motor neurons. The disease is an effect of the 
loss of the SMN1 gene, which is only partly compensated for by the orthologous SMN2 gene 
since it is less efficient in producing full-length SMN protein. SMN is involved in 
spliceosome assembly, and even though it is ubiquitously expressed it specifically affects a 
subgroup of somatic motor neurons. In paper IV, we try to elucidate why some motor 
neurons are resistant and other vulnerable in the disease, by looking at both gene expression 
and splicing differences in a mouse model of SMA. 



POPULAR SCIENCE SUMMARY IN SWEDISH 
EN STUDIE I GENUTTRYCK 

DNA är cellernas genetiska instruktionsbok som innehåller all information som behövs för att 
tillverka de komponenter som cellerna behöver för att fungera. Alla celler i vår kropp 
innehåller samma DNA (med några få undantag, som röda blodkroppar som inte innehåller 
DNA alls i sin mogna form) och informationen är skriven i en kod av fyra olika nukleotider, 
förkortade A, T, C och G. Trots det har olika celler vitt skilda funktioner i kroppen, som till 
exempel cellerna i ögats hornhinna som kan detektera ljus och sända informationen till 
hjärnan, nervceller som kan känna av omgivningen, lagra minnen, och kontrollera våra 
musklers rörelser, hjärtceller som kan kontrahera rytmiskt och simultant för att skapa våra 
hjärtslag, och tarmens celler som utsöndrar enzymer för att bryta ner näringsämnen i mat. 
Denna variation är möjlig eftersom alla instruktioner inte läses av, uttrycks, i alla celler 
samtidigt.  

Informationen i DNA:t är uppdelat på mindre enheter, gener, ungefär som en kokbok är 
uppdelad i enskilda recept. När en gen läses av kopieras instruktionerna till en RNA molekyl 
(liknande DNA), som antingen kan ha en egen funktion i cellen, eller används som en 
instruktion för att skapa proteiner. Proteiner har många olika funktioner i cellerna, som att 
katalysera kemiska reaktioner, bygga upp strukturer som cellskelettet, och att kontrollera 
vilka gener som uttrycks. Proteiner består av långa kedjor av aminosyror. Protein-kodande 
RNA kallas ”messenger RNA”, eller mRNA, och innehåller en kod som motsvarar sekvensen 
av aminosyror i det blivande proteinet. RNA kan också ha funktioner i sig själv, till exempel 
mikroRNA (miRNA) som kan hindra uttryckta gener från att översättas till protein, medan 
transfer RNA (tRNA) används för att känna igen mRNA sekvens och översätta dem till rätt 
aminosyra. Det finns också många delar av vårt DNA som uttrycks och producerar RNA med 
en hittills okänd funktion.  

I min avhandling har jag studerat identiteten och kvantiteten av RNA i olika typer av celler 
för att förstå mekanismer som kontrollerar genuttryck i embryo-utveckling, som respons på 
en sjukdom (spinal muskelatrofi, SMA), och som generella regulatoriska mekanismer i celler. 
Metoden jag använt kallas RNA-sekvensering, som innebär att man fångar upp och 
analyserar allt RNA i ett prov med celler. För att kunna läsa RNA-sekvensen omvandlar man 
den först till DNA (kallat cDNA), fragmenterar detta till kortare sekvenser, och kopierar upp 
dem i tillräckligt många kopior för att möjliggöra detektion. Sedan använder man en 
teknologi som genom kemiska reaktioner låter oss läsa koden av sekvenserna, och på så sätt 
kan vi avgöra vilka RNA-molekyler man hade i provet, och i vilka proportioner de fanns. 

Min första artikel beskriver en beräkningsmetod för att förbättra analysen av RNA-
sekvenseringsdata som jag implementerat till en mjukvara. Metoden kompenserar 
beräkningarna av genuttryck i situationer där man inte kan avgöra vilken gen en kort RNA-
sekvens kommer ifrån för att sekvensen inte är unik för denna gen.  



 

 

 

I artikel nummer två beskriver jag analysen av ett protein-komplex som bryter ner RNA. En 
viktig funktion hos komplexet tycks vara att bryta ner icke-kodande RNA som mest troligt 
inte har en funktion i cellen. Genom att slå ut olika proteiner i komplexet, antingen en och en 
eller i kombinationer av två och två, och studera hur det förhindrade nedbrytningen av RNA 
på olika sätt kunde vi avgöra de specifika funktionerna av de olika proteinerna i komplexet. 
På så sätt vet vi mer om hur nedbrytning av vissa typer av icke-funktionellt RNA 
kontrolleras. 

I den tredje artikeln studerar jag hur RNA sorteras till olika positioner i ett grod-embryo i 
dess tidiga utvecklingsstadier. Embryot uttrycker inga egna gener under denna tid i 
utvecklingen, istället sorteras det RNA som fanns i äggcellen till olika positioner för att 
senare kontrollera vilken typ av celler som ska bildas i dessa positioner. Genom RNA-
sekvensering kunde jag hitta ett antal sorterade RNA:n som inte var kända sedan tidigare, 
samt identifiera delar i sekvensen av de sorterade RNA-molekylerna som fungerar som 
sorterings-signaler. RNA-sortering är en intressant mekanism att studera eftersom den har 
viktiga funktioner i embryo-utveckling, och även har en funktion i nervceller i vuxna 
individer. 

Den fjärde artikeln behandlar genuttrycks-skillnader i nervceller som en effekt av spinal 
muskelatrofi (SMA). SMA är en ärftlig sjukdom där man saknar en av generna (SMN1) för 
att skapa proteinet SMN. Människor har även en gen-kopia, SMN2, som skapar samma 
protein, men på grund av en skillnad i sekvensen är den mindre effektiv på att skapa det 
funktionella proteinet. Sjukdomen tar sig uttryck i nedbrytning av motoriska nervceller, vilket 
resulterar i muskelsvaghet och muskelatrofi. Motorneuronen som styr ögat tycks dock vara 
skyddade från nedbrytning. I detta projekt studerar vi en mus-modell av SMA för att förstå 
vad som gör att vissa motorneuron bryts ned, medan andra är skyddade. Vi har i nuläget hittat 
ett flertal gener som påverkas i unika mönster för varje celltyp, men projektet pågår 
fortfarande, och vi behöver både sekvensera mer prover och utföra mer analys innan vi kan 
dra övergripande slutsatser. Vi hoppas på att hitta genuttryck som har en skyddande 
mekanism i de motorneuron som inte påverkas av sjukdomen, och på så vis hitta nya 
potentiella terapier för SMA. 

I mina projekt har jag till största del bedrivit grundforskning, det vill säga forskning som 
syftar till att utöka vår kunskap inom cellbiologi och hälsovetenskap utan att ha en specifik 
terapi eller medicin som mål. Upptäckter från grundforskningen i biologi utgör en viktig 
grund för vår förståelse av biologiska system, en kunskap som kan visa sig viktig för 
tillämpad forskning i framtiden.  
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1 THE CENTRAL DOGMA AND BEYOND 
 

1.1 MACROMOLECULAR BUILDING BLOCKS OF THE CELL 

Essentially all eukaryotic cells 
contain 3 important types of 
macromolecules that exert the 
function of the cell: DNA, 
RNA and proteins. DNA and 
RNA consist of chains of 
nitrogenous bases on a 
backbone of either 
deoxyribose (DNA) or ribose 
(RNA). The combination of a 
base, a ribose or deoxyribose 
molecule and a triphosphate 
molecule is called a 
nucleotide. In DNA, the four 
bases of the genetic code are 
Adenine (A), Thymine (T), 
Guanine (G) and Cytosine 
(C), while RNA has Uracil 
(U) instead of thymine. The 
bases have an interesting property of complementarity, where adenine can form hydrogen 
bonds with thymine or uracil, while guanine forms hydrogen bonds with cytosine (Fig 1). In 
1953, the structure of DNA was published by James Watson and Francis Crick, based on the 
X-ray diffraction data from Rosalind Franklin (Watson"&"Crick"1953). They showed that 
this complementarity of bases caused DNA to form a double stranded helical structure, with 
one strand complementary to the other (Fig 1).  

 

Just like RNA and DNA, proteins are also made up of long chains of smaller molecules, in 
this case amino acids, bound together by covalent peptide bonds (a fairly strong bond with 
shared electrons between the amino acids). Each protein is folded into a specific 3 
dimensional structure to be able to exert its function. There are 20 amino acids with different 
inherent properties – 10 of them polar and thus hydrophilic (water-soluble), and the other 10 
non-polar and hydrophobic (water in-soluble). The polar amino acids can have a positive or 
negative charge, or be uncharged. Due to these different properties, they can form weak, non-
covalent, bonds to each other and support the 3D structure of the protein. For example, 
positively charged amino acids can form an ionic bond with negatively charged ones and 
uncharged polar amino acids can form hydrogen bonds to each other. The importance of the 

 

Figure 1. The structure and molecular building blocks of RNA and DNA 
(User:Sponk / Wikimedia Commons / CC-BY-SA-3.0).!
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3-dimensional structure can be exemplified by enzymes requiring certain amino acids to 
come together in a catalytic “pocket” where chemical processes can be aided, by the ability to 
make long fibres that provides the structural cytoskeleton of the cell, or by proteins that 
requires hydrophobic residues on their outside to allow them to stay in the cells fatty lipid 
membrane, while having a hydrophilic inside able to transport water soluble particles into or 
out of the cell. In other words, the structure is important for both activity, location, and 
physical properties of proteins (Alberts 2004). 

 

1.2 THE SEQUENCE HYPOTHESIS AND THE CENTRAL DOGMA OF 
MICROBIOLOGY 

In 1958, Francis Crick presented the idea of the Central Dogma in Microbiology as well as 
the Sequence Hypothesis (Crick 1958). The essence of the Central Dogma was the transfer of 
information from DNA to RNA and finally to protein, including also self-replicating potential 
of DNA and RNA. At this time, proteins were known as the most important functional units 
of the cells, providing diverse functions such as structure (e.g. keratin, providing structure to 
skin, hair and nails) and enzymatic activity for accelerating, catalysing, chemical processes 
(such as lipases breaking down fat), while the DNA was known as the carrier of genes, the 
heritable material, and thus containing instructions for making proteins. It was clear that the 
3-dimensional structure of proteins was important for their function, but how proteins were 
synthesised and how the structure was achieved was still largely unknown and debated. Crick 
proposed that the 3-dimensional structure was in fact a consequence of the linear sequence of 
amino acids in proteins, and that this linear sequence was coded for in the DNA. This 
sequence hypothesis stood in contrast to a theory by Linus Pauling, that it was the structure 
rather than the sequence of protein that was encoded for in the genetic material (Strasser 
2006), which had been a prevalent theory until that time. The role of RNA as a messenger, 
conferring information from DNA to protein was also discussed in Cricks review, and 
although the evidence for it was meagre, he also predicted the existence of transfer RNAs 
(which he called adapters) that helped translating the messenger RNA code into protein 
sequence (Crick 1958). 

 

To a large extent, both the sequence hypothesis and the central dogma still holds true today. 
In the early 1960’s, the genetic code was deciphered by Marshall Nirenberg and his team, an 
effort that he was awarded the Nobel prize for in 1968 (Nirenberg 2004). Thanks to his work, 
we know now that proteins are encoded for in the DNA in the form of 3-nucleotide long 
codons. Out of the possible 64 combinations of trinucleotides, 61 corresponds to a specific 
amino acid, meaning that there is a degeneracy, and several codons code for the same amino 
acid in some cases. The remaining 3 codons code for transcription termination (Nirenberg et 
al. 1966). The genetic information from protein-coding genes is first copied, transcribed, 
from DNA into messenger RNA (mRNA). Transcription is controlled by transcription factors  
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that recognize a promoter sequence upstream 
of the sequence of the gene itself. 
Transcription factors recruit the transcription 
machinery, including the RNA polymerase 
that copies the DNA sequence into the 
complementary RNA sequence. The mRNA 
is then transported to the cytoplasm where it 
is translated into protein by the ribosomes. 
The translation is mediated by transfer RNAs 
(tRNAs), which carry specific amino acids to 
the ribosome depending on the 3 nucleotides 
in their anticodon site, and builds the protein 
sequence by base pairing to the mRNA (Fig 
2) (Alberts 2004).  However, this is a 
simplified description, and the sequence 
hypothesis and central dogma does not tell 
the whole story.  

 

1.3 PRE-MRNA PROCESSING 

The relationship between DNA sequence and protein sequence is not as simple as just a 3 
nucleotide to one amino acid code. In fact, 95% of the sequence of human protein-coding 
genes does not contribute to producing amino acid sequence (Venter et al. 2001; Lander 
2011). Before the mRNA is transported to ribosomes and translated, they go through a series 
of processing steps. The beginning of the mRNA that is transcribed first, called the 5´ end, is 
capped, which means that a guanine nucleotide modified with a methyl group is added to this 
end. The other end, the 3´ end, is polyadenylated, i.e. a tail of multiple adenine nucleotides is 
added. These modifications are thought to promote transport to the cytoplasm, promote 
translation, and also increase the stability and prevent degradation (Alberts 2004). Another 
processing step is splicing which essentially means that the splicing machinery, a complex 
consisting of both proteins and RNA, cut out chunks of the RNA and then join the ends of the 
remaining pieces back together. The spliced out regions are called introns, while the 
remaining regions are called exons (Gilbert 1978). Splicing occurs in essentially all 
eukaryotes (organisms with a cell nucleus), with the only known exception being a 
nucleomorph, an intracellular symbiont of algae, with a tiny genome (Lane et al. 2007). In 
prokaryotes (bacteria and archaea) on the other hand, only a few instances of splicing have 
been found with introns that are either self-splicing and excises themselves without the use of 
a splicing machinery (Edgell et al. 2000), or spliced with the splicing endonuclease that in 
eukaryotes is dedicated to splicing tRNA (Watanabe et al. 2002; Yokobori et al. 2009; 
Calvin & H. Li 2008). The prevalence and length of introns increase with the complexity of 
the organism, with unicellular eukaryotes exhibiting the shortest introns while vertebrates 

 

Figure 2. Transcription and translation of mRNA 
(User:Sverdrup / Wikimedia Commons / CC-BY-SA-3.0) 
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(organisms with a spine and skeleton) have the longest ones. How splicing evolved is not 
completely understood – some scientists subscribe to the idea that accumulation of introns 
occurred to allow for increased evolutionary complexity by providing alternative gene 
products from one gene, and the possibility of creating new genes from combinations of 
exons. Another theory is that introns occurred because of a lack of selective pressure due to 
the populations of multicellular organisms not being large enough to eliminate occurrence of 
introns (Rogozin et al. 2012). In either case, it is clear that introns do increase the organismal 
complexity by increasing the number of possible gene products. The reason for this is that the 
splicing pattern of a single gene is not necessarily constant. Many genes have several 
alternative splicing patterns, were different introns are included or excluded, resulting in 
different final versions, isoforms, of the mRNA being produced. In fact, over 90% of the 
human genes are subjected to alternative splicing (E. T. Wang et al. 2008). Using different 
exons can have a very direct effect by changing the sequence of the protein produced. For 
example, in the genes in the major histocompatibility complex (MHC), alternative splicing is 
important to generate diversity for antigen recognition in the immune system (Gamazon & 
Stranger 2014). Another example is the enzyme A2 beta which changes substrate specificity 
upon splicing (Ghosh et al. 2006). In many cases though, alternative splicing results in a loss 
of protein-coding potential. Interestingly, in fruit flies, alternative splicing of the Sxl gene is 
essential for sex determination, where the male version includes an exon that prevents the 
protein from being expressed (Salz 2011).  

 

1.4 ALTERNATIVE SPLICING 

Regulation of alternative splicing is a complex process involving a multitude of different 
factors. The splicing reaction itself is performed by the spliceosome, a large complex 
consisting of multiple protein and RNA components. The spliceosome recognizes three 
splicing signals consisting of specific sequences patterns, motifs, in the pre-mRNA. Two of 
these, the 5´ and 3´ splice sites mark the exon-intron boundaries on both sides of an intron, 
while the third, the branch point is internal to the intron. The sequence motifs are quite 

 

Figure 3. Co-
transcriptional mRNA 
processing. Capping occurs 
soon after transcription. 
Splicing factors bind to the 
emerging 5' splice site and 
branch point and the 
intron is excised before 
transcription terminates 
(Wong et al. 2014). 
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loosely defined in metazoans (multicellular animals), i.e. there are many variations in the 
sequence of these splicing signals between exons in the same species (Y. Lee & Rio 2015). 
As a consequence, some “strong” splice sites have a greater affinity for the spliceosome and 
will more frequently result in splicing than “weak” sites (Koren et al. 2007). However, there 
are other factors determining the splicing pattern at a given time. Apart from the splicing 
signals, there are also motifs in both exons and introns that work as splicing enhancers or 
splicing repressors by attracting repressive or activating factors (Y. Lee & Rio 2015). More 
and more evidence suggests that most splicing in eukaryotes occurs co-transcriptionally, i.e. 
before transcription of the gene is completed (Fig 3), which also has functional implications 
on splicing. There is evidence showing physical interaction between RNA polymerase II 
(RNAP II) and splicing proteins, which can be altered by post-translational modifications to 
RNAPII, suggesting that it has a function in recruiting splicing factors. The rate of 
transcription has also been implicated in alternative splicing, where a slower transcription 
elongation can lead to more efficient splicing at weak splice sites. This complexity in splicing 
regulation allows for flexibility and increased complexity in the gene products produced. 
However, the system is also sensitive to perturbations, as mutations in the different RNA 
motifs can disrupt the normal splicing patterns (Merkhofer et al. 2014). One example is the 
mutation of a splicing enhancer in the SMN2 gene transforming it to a splicing repressor 
(Cartegni & Krainer 2002; Kashima & Manley 2003), which has important implications in 
Spinal Muscular Atrophy that we discuss in paper IV. 

 

1.5 COUNTING GENES 

The central dogma assumed that DNA was the carrier of genetic information, RNA was a 
means of transferring the information, and proteins were the functional units of the cell. This 
was still the predominant idea in the early 2000’s, when the sequencing of the human genome 
was nearing completion. At this time a betting pool, Gene Sweepstake, was initiated at a 
Genome Sequencing and Biology meeting in Cold Spring Harbor Laboratory in 2000 where 
scientists entered their guess on the number of genes that would be found in the human 
genome (Choi 2003). The genome of the roundworm Caenorhabditis elegans and the fruit fly 
Drosophila melanogaster had already been sequenced, and the gene counts were around 
18,500 and 13,500 respectively. Although many – including James Watson, one of the 
scientists behind the structure of DNA – were surprised that the fruit fly had fewer genes than 
the less complex roundworm, scientists were still expecting the gene count in humans to be 
vastly larger to reflect the complexity of human physiology (Watson 2001). Bets in the 
betting pool averaged around 61,000 genes, with many going up to over 100,000 (Choi 
2003). However, to everyone’s surprise, the protein-coding potential of the genome turned 
out to be much less than expected. At the end of the competition only 24,847 protein-coding 
genes had been identified, partly by applying prediction algorithms to genomic sequence. 
Today, only 21,990 of these have been validated as protein-coding (known protein-coding 
genes retrieved from Ensemble database 2015-12-04). The human genome consists of around 
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3 billion base pairs, and only ~25% of these are contained within protein-coding genes, and 
that is including the intron sequence – the protein-coding exonic sequence compose only 
about 3% of the genome (Venter et al. 2001; Hangauer et al. 2013). C. elegans on the other 
hand has 27% exonic and 26% intronic sequence in its 95.53 million base pair genome (The 
C elegans Sequencing Consortium 1998), while D. melanogaster has 20% exonic and 17% 
intronic sequence in a 120 base pair genome (Adams 2000). What is the remaining 75% of 
the human genome doing?  

 

1.6 NON-CODING RNA - REDEFINING THE CONCEPT OF A GENE 

Only a few years after Cricks predictions of RNA based “adapters”, they were identified as 
transfer RNAs and their structure and sequence solved (Holley et al. 1965). Ribosomal RNA 
(rRNA) was also known at this point, although one was not certain whether it was translated 
or not. These were the first known RNAs that are not translated into proteins, but instead 
exert a function in the cell in RNA form. The small nuclear RNAs (snRNAs) involved in 
splicing were found in the late 1970’s (Murray & Holliday 1979). Although a few other non-
coding (i.e. not coding for protein) RNA species were found during the subsequent decades, 
not much attention was paid to this group until after the human genome sequence was solved 
in the early 2000’s, and it stood clear that protein-coding genes only made up a minority of 
the sequence in the human genome (Eddy 2001). After this, it became evident that the view 
of genes mainly as protein-coding units needed to be revised. The research on non-coding 
RNAs has bloomed since then, and many new species has been found (Makarova & 
Kramerov 2007). In human, there are now over 23,000 annotated non-coding RNAs 
(ensemble database, not including pseudogenes), and they make up a diverse group regarding 
size, structure and function. For example, micro RNAs (miRNAs) are short (22 base pair) 
double stranded molecules that regulate mRNA expression, by base pairing to a 
complementary target mRNA and inhibit translation or induce degradation. Piwi-interacting 
RNAs (piRNAs) is another type of short, inhibitory RNA, but instead of targeting mRNA it 
silences transposons, mobile DNA elements that essentially parasitize on our genome 
(Makarova & Kramerov 2007). The small nucleolar RNAs (snoRNAs) are slightly longer, 
60-300nt, and function by modifying other RNA (rRNA, snRNA and mRNA) post-
transcriptionally (Mattick & Makunin 2006). The long non-coding RNAs (lncRNAs) are in 
itself a diverse class, with the common denominator that the transcripts are long (>200nt). 
Some of them are expressed at distinct locations distant from protein-coding genes, while 
others are antisense transcripts, transcribed from the complementary strand to the protein-
coding DNA, and yet others originate from introns of protein-coding genes. One of the first 
identified lncRNA was Xist, which is essential for inactivating one of the X-chromosomes in 
females of placental mammals. Interestingly, Xist itself has an antisense transcript, Tsix, 
which negatively regulates the expression of Xist. In general, lncRNAs are often involved in 
altering the chromatin state, mostly in a repressive manner to inactivate transcription from 
particular regions of DNA (Kung et al. 2013). 
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In the last few years, several studies has shown that around 85% of the human genome is 
transcribed across a diverse collection of tissues (Djebali et al. 2012; Hangauer et al. 2013), 
although it has been debated whether some of the very low expression is actually functional 
(J. Wang et al. 2004; Pertea 2012). A large portion of this transcription constitutes intronic 
sequence or known non-coding genes, but there is still some dark matter in the RNA world 
that remains to be understood. One example of this is the transcription that occurs at the 
initiation site of transcription, the promoter, called promoter upstream transcripts 
(PROMPTs). PROMPTs can be transcribed in either sense or antisense direction with respect 
to the downstream gene, and they are fairly unstable and quickly degraded by the exosome 
complex (Preker et al. 2008). For most PROMPTs, no function has been found, except for a 
few cases where the PROMPTs down regulate expression of the downstream gene when their 
degradation is inhibited (Lloret-Llinares et al. 2015). Possibly, this transcription is only an 
inevitable consequence of recruiting the transcriptional machinery to the gene, and the 
machinery not being able to specifically transcribe only in the direction and strand of the 
actual gene. Another similar case is the enhancer RNAs (eRNAs). Enhancers are genomic 
elements that aid in transcription activation by binding to transcriptional activator proteins 
and bringing them to the promoter of a gene. They are often found at a distance from the gene 
itself, and come into physical contact with the promoter by looping the DNA (Alberts 2004). 
In 2010, Kim et al. discovered that DNA at active enhancer regions are being transcribed in a 
bi-directional manner, i.e. on both the forward and reverse strand but in opposite direction, 
starting from the centre of the enhancer (Kim et al. 2010). They found that the eRNA 
expression was correlated with the mRNA expression of the corresponding regulated gene 
and hypothesized that the transcription only occurs when enhancers are bound to active 
promoters. However, they could not deduce if this transcription had a biological importance, 
and if so, if it was the act of transcription that was important to keep the chromatin in an 
active state or if the transcripts themselves where functional. Recent studies have shown 
evidence of eRNAs serving a functional role in stabilizing the enhancer-promoter looping 
(W. Li et al. 2013; Hsieh et al. 2014) and that transcription of eRNAs precedes that of 
transcription at the target promoter upon cell transition intitation (Arner et al. 2015), 
suggesting eRNAs could have a functional role in transcription regulation. 

 

A big portion of vertebrate genomes consists of transposable elements, or transposons, 
popularly called jumping DNA because of its inherent ability to move around in the genome. 
In humans, 45% of the DNA consists of remnants of these transposable elements, although 
most have lost the ability to “jump” due to mutations in their sequence (Pace & Feschotte 
2007). There are two classes of transposons: retrotransposons that move by first being 
transcribed to RNA, and then reverse transcribed back into DNA and inserted at a new 
position in the genome, and DNA transposons that move by “cutting and pasting” its DNA 
sequence without an RNA intermediate. Two common types of retrotransposons are the Long 
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Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). 
LINEs are transposable elements that also codes for the reverse transcriptase needed to 
transcribe it back to DNA (Alberts 2004), while SINEs lack the reverse transcriptase gene 
and utilizes that expressed by LINEs (Makarova & Kramerov 2007). These genes have been 
mainly considered as “selfish DNA”, essentially parasites on the vertebrate genome. 
However, it has been found that the transcripts of a type of primate specific SINE, the Alu 
elements, are involved in regulating other genes both on a transcriptional and alternative 
splicing level (Dridi 2012). Thus, the vertebrate genome contains a very diverse repertoire of 
genetic material, and although some of it still seems like “junk” DNA, more and more 
functionality is continuously being discovered. 

 

1.7 LOCALIZATION OF RNA 

Adding to the complexity, RNA can also be localized to different sites or substructures of the 
cell. After transcription, mRNA is transported from the nucleus to the cytoplasm, where it is 
translated into protein. The transport through the nuclear membrane is aided by 5´ cap 
binding proteins (CBP20 and CBP80). However, the translation can take place at different 
locations in the cytoplasm. Many mRNAs are specifically transported to the endoplasmic 
reticulum (ER), an organelle consisting of a network of membranes, which is responsible for 
lipid synthesis and protein secretion. The mRNAs translated at the ER consists largely of 
secreted proteins, transmembrane proteins, and proteins serving a function in the ER itself 
(Chen et al. 2011). Other mRNAs localize to the mitochondria, the cells metabolic centres 
and energy factories, and these have been shown to encode proteins important for 
mitochondrial functions (Corral-Debrinski et al. 2000). Together this suggests that mRNA 
localization has a function in producing the protein product at the right location in the cell. 
Other types of RNAs, such as the non-coding RNA Xist never leaves the nucleus at all, since 
its function of transcriptional silencing is exerted in the nucleus. 

 

RNA localization can also serve more cell type specific functions in certain cells. An example 
of this is RNA localization in oocyte (egg cell) formation in some organisms, like the fruit fly, 
Drosophila melanogaster, and the African clawed frog, Xenopus laevis. Here, RNA localize 
to different sides of the oocyte, which will later determine the axis of the embryo and the 
identity of the cells inheriting the localized RNA. Both protein-coding and non-coding RNAs 
have been shown to localize in the oocytes, and in X. laevis the non-coding Xlsirt RNAs that 
localize to the vegetal pole even have a role in directing localization of other RNAs (Kloc & 
Etkin 1994).  Neurons also have a specific localization pattern, where some mRNAs are 
transported to and translated in the axon. The RNA of the CREB protein is one example, 
which has been shown to be translated in the axon upon extracellular stimulus and the protein 
is subsequently transported to the nucleus where it triggers a transcriptional response (Cox et 
al. 2008). 
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The mechanism of targeting RNAs to different locations in the cell is complex and not fully 
understood. The transport can be either active and involving motor protein transporting the 
RNA along the microtubule cytoskeleton, or take place by passive diffusion and entrapment 
at the target site. In either case, there needs to be some kind of “zipcode”, motif, in the RNA 
to target it to different sites. For a few RNAs, a region required for sorting has been 
determined, however in most cases it is not a case of one simple motif, but rather a cluster of 
several short motifs.  How the region is recognized for localization, i.e. possible importance 
of the spacing of motifs or secondary structure, is not fully understood. 

 

There are RNA binding proteins (RBPs) that can recognize and bind to specific RNA 
localization motifs, though they are usually not exerting the function alone but rather in 
complexes with other proteins and sometimes also non-coding RNAs. RNA can also be 
localized to granular structures containing proteins and several different RNA molecules in 
multiple copies, which are then localized in a coordinated fashion. Although a few cases have 
been thoroughly examined and mapped out, in most cases the full picture of which 
combination of proteins coordinates localization and how they recognize their target RNAs is 
not known (Blower 2013). 

 

1.8 CREATING CELL DIVERSITY FROM ONE GENOME 

Assuming that the sequence of A, T, G and C, and subsequently sequence of amino acids 
were the only thing coding for the cells functionalities would make it hard to explain the 
diversity of different cell types in multi-cellular organisms such as ourselves. The genetic 
code that is inherited from our parents is also inherited from cell to cell as our body develops, 
and each cell will contain the same DNA (with the exception of rare novel mutations, 
specialized cell types such as red blood cells that do not contain DNA, or germ cells that only 
contains half of the genetic material). Still, different types of cells in our body have very 
different functions – from the light sensing cells of the retina to rhythmically contracting cells 
of our hearts, to excretory cells of the gut producing enzymes digesting food, to the diverse 
set of nerve cells in our brains capable of relaying information about the environment, 
controlling our movements and storing information. 

 

The reason why this differences can occur is that while the DNA sequence is the same across 
cells, the RNA and protein populations are not. Each cell has its specific sets of genes being 
expressed, i.e. translated into RNA and protein. The master regulators of expression are the 
transcription factors, a set of proteins with DNA binding domain. The DNA binding domains 
of different transcription factors (TFs) recognize different sequence motifs controlling 
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transcription, both at promoters close to the transcription start site of genes, and at enhancers 
that can occur up to 1 million base pairs (bp) away from the promoter. Transcription factors 
usually have a set of genes that they activate, and can thus start and maintain whole programs 
of transcription. However, each cell must know what transcription factors to express in the 
first place to give the cell its specific identity. Moreover, to enable renewal of the cell 
population in a tissue or its growth during embryogenesis, the cells need a way of inheriting 
cellular identities without altering the DNA sequence. This form of inheritance is called 
epigenetic inheritance, and is defined as a self sustained mark that can be transferred to 
daughter cells after division, and has an effect on gene expression. Epigenetic mechanisms 
can be trans-acting, i.e. originate from one site on the genome and exert its function at 
another site. The most common example of this mechanism is transcription factors that are 
self-propagating, i.e. regulates itself by a positive feed back loop, as well as regulating other 
genes controlling the cell state. Alternatively, cis-acting epigenetic mechanisms act at to 
regulate the site of the inherited trait. One example of a cis-acting epigenetic mark is the 
silencing of one of the X-chromosomes in female mammals by Xist expression from the same 
chromosome (Bonasio et al. 2010). Another example is DNA methylation of repetitive 
regions that serve to keep the region silenced (Jones 2012). The DNA is wound around 
protein complexes called histones, and different covalent modifications of histones have also 
been shown to be associated with different transcriptional states, although a stable inheritance 
has not been shown, and there is no evidence of the modification being causal to activation or 
silencing (Schübeler 2015).  

 

The first epigenetic marks are established during embryonic development to initiate 
differentiation of cells towards specific fates. The initial establishment of an epigenetic state 
is usually exerted by transient expression of differentiation factors that initiates expression of 
other self-propagating factors (Bonasio et al. 2010). However, although epigenetic marks are 
inheritable from a cell to its progeny, they are not static, and as development proceeds, marks 
are lost and gained to increasingly specialize cells for certain functions. It is even possible to 
reverse the whole epigenetic state of a fully differentiated cell and revert it back into a stem 
cell state by adding a specific set of transcription factors, creating so called induced 
pluripotent stem cells (iPSCs) (Takahashi & Yamanaka 2006), a discovery that was awarded 
with the Nobel prize to Shinya Yamanaka and John Gurdon in 2012. 

 

1.9 POST-TRANSCRIPTIONAL AND POST-TRANSLATIONAL 
MODIFICATIONS 

Apart from the complexity in regulating expression explained above, there are more layers 
regulating the function of the final gene products. There are post-transcriptional 
modifications exerted on both protein-coding and non-coding RNA, some of them by 
trimming the RNA to create a functional product, such as for miRNAs and tRNAs. Another 
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type of modification, RNA editing, change the RNA sequence itself, and can in case of 
mRNA alter the composition of the final protein (Gott & Emeson 2000). There is also control 
exerted after translation – chemical modifications of proteins can also alter the function 
and/or structure of the protein. Phosphorylation for example is a common way of switching 
proteins enzymatic function on or off (Johnson 2009), while lipidation (covalent attachment 
of a lipid) allows the protein to locate to and interact with the cell membrane (Hentschel et al. 
2015).  

 

1.10 SUMMARY 

Taken together, the regulatory principles discussed in this chapter shows that the complexity 
of gene regulation in vertebrate cells are much more complex than could be imagined at the 
time the central dogma was postulated. There are still many aspects that are not fully 
understood. With the advent of new high throughput technologies, studying genomics, gene 
expression and protein abundances at a global level is becoming increasingly affordable and 
available, although we still have a long way to go before we completely understand the 
relationship between all the regulatory mechanisms controlling cell identity and behaviour. 

 

In this thesis, three out of four papers are global studies of RNA expression in different 
biological contexts, while the fourth (paper I) describes a useful tool for analysing high 
throughput transcriptomics data. Why is it interesting then to study RNA expression, when 
these molecules are often intermediate steps to a final functional product? One simple reason 
that RNA is more widely studied than proteins is simply that the technology for high 
throughput transcriptomics measurements has advanced quicker than that of proteomics. As I 
will discuss in the next section, it is possible to determine the sequence and quantity of nearly 
the whole RNA population in a biological sample. Although mRNA levels and protein levels 
are not perfectly correlated (Vogel & Marcotte 2012), studying mRNA abundance will still 
give an idea of the protein population in a cell.  However, there are also questions that can 
only be answered with RNA level data – those regarding regulatory principles of expression. 
In paper II we studied the principles of expression and degradation of PROMPTs, which can 
of course only be determined on RNA-level, since they have no protein product. In paper III 
we study differential localization of RNA in the Xenopus laevis early embryo, a crucial 
mechanism for patterning the embryo at later stages. Finally, in paper IV we study both 
transcriptional and splicing effects in a disease model to understand the disease progression. 
Splicing effects might not be detectable at all at the protein level, since alternative splicing 
can lead to transcripts incapable of producing protein. 
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2 SEQUENCING 

2.1 READING AND DECIPHERING THE CELLS INSTRUCTION BOOK 

After the structure and composition of DNA was solved in 1953, and the key to deciphering 
the genomic code was identified in the early 1960’s, the next big question was – how do we 
read the code written in the DNA? 

 

Already in the early 50’s, a method for determining protein sequence was developed, where 
the N-terminal amino acids were sequentially cleaved off and identified by their chemical 
properties (Edman et al. 1950). However, sequencing DNA was more difficult. The protein 
sequencing method was already laborious and time consuming, and could not be employed 
on peptides longer than 50-60 amino acids. DNA is generally much longer, and the 
nucleotides are much more chemically similar to each other, so the same methods as for 
amino acids could not be used. In addition, no enzymes that cleaved DNA at base-specific 
sites were known at the time (Hutchison 2007). It took until 1965 before the first nucleotide 
sequence was solved, which was that of tRNA (Holley et al. 1965). Sequencing at this time 
was done using a digestion-based method, where the RNA was partially digested from one 
end, and the sequence was determined by studying the size and composition of the shorter 
fragments produced using a method called 2D-diffraction (Sanger et al. 1965). The first 
complete genome, that of the bacteriophage MS2, was sequenced using this technique in 
1976 (Fiers et al. 1976).  

 

In 1977, Fred Sanger developed a technique that was a major breakthrough for the 
sequencing field. His method utilized the DNA polymerase, and instead of sequencing by 
digestion the method employed a sequencing-by-synthesis approach (Sanger et al. 1977). 
The method was based on providing the DNA polymerase with both normal nucleotides 
(deoxynucleotide triphosphates, dNTPs) and nucleotides blocked at the 5´ end, making them 
unable to bind additional nucleotides and they would therefore terminate the DNA synthesis 
after being incorporated. By adding the modified nucleotide at a much lower concentration 
compared to the un-modified ones, short DNA sequences, oligonucleotides, of different 
lengths would be synthesized before randomly incorporating a modified base. The 
synthesized DNA fragments were separated by size using gel electrophoresis, a method based 
on loading molecules on a polyacrylamide gel and applying current, which causes the 
molecules to move at speeds negatively proportional to their size. In the original protocol, 
four different reactions were performed, with one of the four nucleotide modified in each, and 
each loaded separately on the gel to enable identification of which nucleotide each fragment 
ended with (Sanger et al. 1977). This method, popularly called Sanger sequencing, became 
widely used, and subsequently improved by using modified nucleotides labelled with a 
different fluorescent dye for each base to enable performing the whole reaction in only one 
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tube (Fig 4a). The fluorescent label allowed for automatic detection, and machines were built 
that would run many samples in parallel and perform automatic fluorescence detection. 

 

When the human genome project started, Sanger sequencing was still the predominant 
method. To enable sequencing of the vast amount and length of the human DNA sequence, 
“shotgun” sequencing approaches were used. These approaches involved fragmenting the 
DNA into shorter pieces, cloning them into bacterial artificial chromosomes (BACs), which 
are were inserted into bacteria where they could be amplified by the bacteria’s replication 
system. This approach was necessary since the sequencing machines had a limitation of how 
long reads it could sequence, and amplification was needed to have enough input material to 
enable detection. The human genome project started as an academic initiative, with many 
labs across the world dividing the work between them (Lander et al. 2001). However, a 
competitive effort to sequence the human genome was initiated by Craig Venter and his 
company Celera Genomics, which employed a less laborious but more computationally 
challenging method to assemble the genome. The threat of Celera getting there first and 
patenting the human genome sequence sped up the effort by the academic non-profit 
organization, and in 2001 both groups published their first drafts of the human genome in 
Science and Nature respectively (Lander et al. 2001; Venter et al. 2001). 

 

 

Figure 4. Workflow of (a) Sanger 
sequencing and (b) second 
generation sequencing. (Shendure & 
Ji 2008) 
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2.2 SECOND GENERATION SEQUENCERS 

Even with the approach of Craig Venter, the process of assembling the human genome was 
long and resource demanding. With the increasing interest in genomic data, multiple new 
techniques were developed in the early 2000’s, and the second generation of sequencing 
started to emerge. The new technologies provided a much higher throughput by massively 
parallelizing the sequencing. This was achieved by eliminating the gel electrophoresis step, 
and instead keeping the DNA fragments stationary while decoding the sequence step by step, 
allowing many sequencing reactions to take place in parallel on a small surface (Fig 4b). The 
first publicly available second-generation sequencing method was the 454 pyrosequencing. 
With this method, the DNA is fragmented and each short fragment is bound to a micro-bead 
where it is amplified in place by polymerase chain reaction (PCR), and each bead will in the 
end be covered with multiple copies of the same single stranded DNA sequence (Fig 5a). The 
beads are then transferred to a plate containing micro-wells, holding only one bead each. A 
sequencing-by-synthesis approach is then employed, where the plate is flooded with one type 
of base at a time. As bases are incorporated ATP is produced from pyrophosphate, which acts 
as a substrate for an enzyme that produces a luminescence signal, which in turn can be 
detected to deduce where the base was incorporated.  

 

Figure 5. Clonal 
amplification of next 
genereration 
sequencing libraries. 
(a) Emulsion PCR 
used in 454 and 
SOLiD sequencing. (b) 
Bridge amplification 
used in Illumina 
sequencing. (Shendure 
& Ji 2008) 

 

Solexa, now acquired by Illumina, developed another massively parallel sequencing-by 
synthesis method. In this method, the DNA fragments are attached to a glass slide where they 
are locally amplified into clusters of the same fragment (Fig 5b). By adding all four 
fluorescently labelled bases simultaneously, which are reversibly blocked from elongation at 
the 5´ end, one base is incorporated at each cluster at a time. After identifying the base, both 
the blocking and the fluorescent label are removed to enable next cycle to proceed. The 
SOLiD technology (Sequencing by Oligonucleotide Ligation and Detection) also appeared 
around the same time, and uses a ligation based technology combined with a micro bead PCR 
method (Heather & Chain 2015). These new technologies dramatically increased the 
throughput of sequencing – where the Sanger sequencing machines could sequence hundreds 
of fragments at a time, the new methods sequenced millions. The major drawback compared 
to the Sanger sequencing is that these methods generally produce shorter read lengths, 
typically between 35-400bp, which is compensated for with more sophisticated and efficient 
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computational tools to enable assembly of whole genomes. Today, sequencing of a human 
genome at a 30x depth can be performed in only a few days and at a cost of only $1000 on 
Illuminas HiSeq X Ten system, compared to the $2.7 billion dollars and decade spent to 
sequence the first human genome, opening up for potentials to use the method for clinical 
applications.  

 

2.3 THIRD GENERATION SEQUENCERS 

There is not a clear consensus on what defines the third generation sequencers. Some define it 
as single molecule sequencing, where the SMRT platform from Pacific Biosciences is 
included. In this method, an array of nanostructures called zero mode waveguides (ZMW) is 
used, where one DNA polymerase molecule is attached to the bottom of each ZMW. As the 
polymerase copies a DNA strand and incorporates fluorophore tagged bases, a signal can be 
read at the bottom of the well. The ZMWs are designed so that their diameter is smaller than 
the wavelength of the laser used for detection, which causes the light to decay exponentially 
as it passes through, and detection only occurs at the very bottom (Fig 6a). This technique 
makes it possible to detect signal from a single molecule, instead of having to amplify it into 
a cluster of identical sequences to enable detection (Heather & Chain 2015).  

 

Others count the SMRT platform to the 2nd generation sequencers, because it utilizes a DNA 
polymerase enzyme that copies the sequence in order to read it, while a true third generation 
sequencer should read the original DNA molecule itself. The third generation sequencers 
(according to this definition) that are under development today all utilizes either biological 
nanopores (i.e. naturally occurring and protein based) or solid-state nanopores (synthetically 
manufactured by materials such as silicone and graphene). The pores are embedded into a 
lipid layer, similar to the cell membrane, and by applying a current to the membrane ions are 
transported through the pore. The current over the membrane can be measured, and when a 
DNA molecule is threaded through the pore each nucleotide will disrupt the ion transport to a 
different degree, and can be measured by a change in current (McGinn & Gut 2013). Oxford 
Nanopore Technologies (Fig 6b) were the first to have a nanopore sequencer on the market, 
one of which is a USB sized portable device. The quality of the nanopore sequencing is not 
yet at the same level as the second generation sequencers, but the technology is still being 
developed and holds a great promise for the future (Heather & Chain 2015).  
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Figure 6. Third 
generation sequencing 
technology. (a) SMRT 
platform from Pacific 
Biosciences. (b) 
Nanopore DNA 
sequencing. (Heather 
& Chain 2015) 

 

 

2.4 GENE EXPRESSION QUANTIFICATION  

The simplest method for measuring RNA abundance is northern blot, a gel electrophoresis 
method with quantification measured by strength of staining has been around since 1977 
(Alwine et al. 1977). In the 1990’s, more sophisticated gene expression methods started 
emerging, with the first one being quantitative real time PCR (qPCR), an extension of the 
PCR (polymerase chain reaction) method. PCR is a method for amplifying DNA in a test 
tube without inserting the DNA into a living organism (such as bacteria). It is done by 
iterative cycles of denaturing DNA into single strands, annealing of a short complementary 
primer sequence to prime it for transcription, and transcribing the DNA using a bacterial 
DNA polymerase, thereby generating multiple copies of a specific original sequence 
determined by the primers. In qPCR, a fluorescent signal proportional to the amount of DNA 
produced at each cycle is generated, and by determining at which cycle it reaches a threshold 
level an estimation of the amount of starting material can be made (Higuchi et al. 1992; 
Higuchi et al. 1993; Wittwer et al. 1997). The same method can be performed on RNA by 
first enzymatically reverse transcribing it into single stranded DNA (called cDNA, for 
coding DNA), and it is then called reverse transcription qPCR, or RT-qPCR. This method is 
quite sensitive at detecting relative abundances, but it is not very high throughput (Mutz et al. 
2013). 

 

A more high throughput method came out in the mid 90’s, where quantification was done on 
a microarray format with short oligonucleotides representing sequences from different genes 
were bound at specific coordinates of the array. The cDNA was tagged with fluorescent 
labels, and by measuring the strength of fluorescence in different spots one could estimate the 
initial abundance of RNA. One microarray approach, cDNA microarrays, used cDNA as 
probes on the microarray chip, and was used for differential expression by using two different 
colours of fluorophores and comparing the intensities (Schena et al. 1995). The cDNA arrays 
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were usually customized by research labs for their specific application, causing large 
variability between array experiments (Woo et al. 2004). Oligonucleotide arrays on the other 
hand use short oligonucleotides (~25nt) that are synthesized in place on the array, with 
several oligos representing each gene (Allison et al. 2006).  This approach was 
commercialized by Affymetrix, creating an array with less array-to-array variability and can 
thus be used to compare expression levels between samples although only one sample is 
hybridized to each chip (Woo et al. 2004). The early versions of oligonucleotide arrays were 
limited to known annotated genes, and usually only detected the 3´ of mRNA.  However, the 
complexity of arrays have evolved over the years and now includes possibilities to detect 
expression across the whole transcript using exon arrays (Kapur et al. 2007) and even un-
annotated genes using tiling arrays with oligos covering the whole genome  (C. Lee & Roy 
2004; Moore & Silver 2008; Bertone et al. 2005). The latest versions of transcriptome arrays 
also contain oligos spanning splice junctions (fact sheet for Affymetrix GeneChip® Human 
Transcriptome Array 2.0). 

 

During the first generation sequencing era, sequencing the whole RNA population of cells for 
quantification measures was not feasible. There was a method called Serial Analysis of Gene 
Expression (SAGE) for extracting short fragments (around 10bp) from the 3´ end of cDNA, 
ligating them together and quantify by sequencing. However, this method was very limited 
by the short read length. With the advent of 2nd generation sequencing technology, whole 
transcriptome sequencing became a viable option for gene expression studies, and in 2007 
and 2008 the first whole transcriptome sequencing studies were emerging using the Illumina 
or 454 pyrosequencing technology (Weber et al. 2007; Torres et al. 2008; Sugarbaker et al. 
2008; Marioni et al. 2008; Morin et al. 2008).  

 

The greatest advantage that RNA-sequencing has over microarrays is the ability to produce 
reads across the full length of transcripts, and allow for detection of previously unknown 
genes or splice forms. Although tiling arrays can also be used for this purpose, they might 
have problems with achieving full genome coverage and still avoiding cross-hybridization 
artefacts (Malone & Oliver 2011). Microarrays can also be sensitive to single nucleotide 
polymorphisms (SNPs) i.e. differences between the reference genome and the one used for 
expression studies. A mismatch between the oligonucleotide and the gene sequence can 
weaken the hybridization to the chip, and give a misleading low expression value (Hutchison 
2007). Using RNA-sequencing there will be no loss in signal due to SNPs, but possibilities of 
SNPs will instead need to be accounted for in the alignment strategy to identify RNA-seq 
reads. Also, RNA-sequencing allows for studies of transcriptomes of organisms without an 
annotated genome. 
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There is a problem faced by whole transcriptome RNA-sequencing that is not encountered by 
microarrays or genome sequencing – that of the highly abundant ribosomal RNA. Ribosomal 
RNAs are highly expressed, especially in rapidly dividing cells, and can make up around 80% 
of the total RNA content of a cell (Lodish et al. 2000). Since the expression levels of rRNA 
is usually not of much interest, strategies needs to be employed to avoid rRNAs taking up 
most of the sequencing power, and leaving very poor resolution for the rest of the 
transcriptome. To avoid this, two different approaches are commonly used. Ribosomal RNAs 
are not polyadenylated, i.e. they lack the tail of adenines at its end, while mRNA and many 
lncRNAs are. This fact can be exploited to “fish” out only the polyA+ fraction of the 
transcriptome using complementary oligo dT primers as bait, and discarding the rest. Another 
approach is to use oligos matching ribosomal sequence to bind and remove the rRNA. Both 
these methods are employed after RNA purification from the cells, and usually use oligos 
bound to small magnetic beads. By using a magnet to capture the beads, the bound RNA can 
be separated from the unbound RNA that is still in solution (O'Neil et al. 2013). 

 

The library preparation protocol for RNA-sequencing is similar to that of DNA sequencing, 
except for the initial rRNA removal or polyA+ enrichment step mentioned above, and the fact 
that the RNA needs to be reverse transcribed into cDNA. However, the sequencing machines 
were designed with genome sequencing and genome assembly in mind, where a coverage of 
30x billions of nucleotides is a desirable output. For RNA-sequencing, the number of reads 
produced by a unit in the sequencing machines, such as a lane in an Illumina flow cell, is 
usually vastly more than what is needed for gene expression measurements. To allow for 
higher efficiency and reduced cost of RNA-sequencing, it is therefore common to multiplex 
by giving each sample a unique nucleotide barcode that will be present in every fragment of 
the library, and let several samples run on the same lane. The DNA barcode is also 
sequenced, and is subsequently used to computationally assign the sequenced read to the 
sample of origin. 

 

2.5 SINGLE CELL RNA-SEQUENCING 

A classical RNA-sequencing protocol requires fairly high amount of input RNA, 100 
nanograms in the case of Illumina sequencing. To obtain this mass of RNA, tens of thousands 
of cells need to be used for input. Due to this constraint, RNA-seq has traditionally been 
performed on bulk tissue samples, or on cells grown in cell culture to increase the volumes. 
The problem with this approach is that the gene expression obtained will be an average over 
the cells in the input sample, and in both tissue and cell culture the cell population is often not 
homogeneous. Therefore, this approach risks drowning out signals from rare cell populations, 
or creating false co-expression patterns between genes that are actually expressed in different 
cell types. In some cases it is possible to sort different cell types from each other to get a 
more homogeneous sample, but this requires that each cell type one wants to capture has 
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known genes expressed that distinguishes it from the others and that it can be sorted by, 
which is not always possible. 

 

In the recent years, several new methods have been developed to circumvent this problem 
and enable sequencing from single cells. Since single cells contain so little RNA, the 
development of single cell sequencing has been a quest of assuring as little loss of RNA as 
possible in the library preparation, and robustly amplifying the cDNA to a level where it can 
be detected with the 2nd generation technology. To prevent loss of RNA in the library 
preparation, the single cell methods aim to perform the reaction in the same test tubes as 
much as possible, since there is a risk of loosing some RNA to the test tube or the pipette 
with every transfer. For this reason, the RNA purification step is omitted as well as the polyA 
enrichment and ribosomal depletion, and the RNA is directly reverse transcribed from the cell 
lysate. To avoid sequencing rRNA, PCR primers containing an oligo dT sequence is used to 
amplify only polyadenylated RNA. Unfortunately, this means that all non-polyadenylated 
RNAs are lost, and there is not yet any single cell method that can capture these RNAs. 

 

To achieve an RNA amount high enough for sequencing, different methods uses different 
approaches for amplifying the library. The most common approach is to use PCR, which is 
straight forward, fast and can be used on low input material. Amplification with PCR can bias 
the sample for RNA with higher content of G and C nucleotides and shorter transcript 
lengths, but this effect can be minimized by choosing an appropriate enzyme for the reaction 
(Dabney & Meyer 2012). However, PCR amplification is exponential since it can use the 
newly synthesized strand as a template for further amplification. Another method is in vitro 
transcription, where RNA is transcribed from cDNA. This method has the advantage that the 
amplification is linear, but the problem is that it is slow and requires a large amount of 
starting material. CEL-seq is based on in vitro transcription and solves the input problem by 
barcoding the samples at the 3´ end before pooling them and amplifying them together 
(Hashimshony et al. 2012). Since the barcode is added to the full-length transcript before 
amplification and fragmentation, it is only available in the 3´ most fragments, so this method 
is highly 3´ biased. 

 

The single tagged reverse transcription (STRT) method also adds the sample barcode at the 
reverse transcriptase step but to the 5´ end instead of the 3´ end, and will thus yield a 5´ 
biased library. An advantage of adding the barcode this early is that the remaining reactions 
can be performed on a pool of multiple samples, which makes it easier to produce many 
libraries simultaneously (Islam et al. 2012). Also, STRT has been coupled with the use of 
unique molecular barcodes (UMIs), which essentially means that each primer will contain a 
random 5 bases long sequence, 5-mer, in addition to the sample specific barcode. Since it is 
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unlikely that two reads originating from two different molecules of the same mRNA will by 
chance have the same UMI, the UMIs can be used to estimate an original molecule count and 
compensate for PCR amplification bias (Islam et al. 2014). 

 

The disadvantage of STRT and CEL-seq is that they are limited to either 5´ or 3´ coverage. 
They also have rather low sensitivity – according to a recent study STRT captures only 
12.8% of the expressed genes (Macosko et al. 2015). A method published from our lab, 
Smart-seq2, enables whole length mRNA sequencing by amplifying and fragmenting the 
cDNA before addition of barcodes. In this way, fragments along the whole length of 
transcripts are sequenced. Having the sequence of full-length transcripts is valuable, since it 
enables detection of different splice variants, and also possibilities to detect SNPs and 
mutations. This method also has greater sensitivity, achieving a gene detection rate around 
50% (Picelli et al. 2013; Picelli et al. 2014). 

 

Single-cell sequencing has led to many new discoveries that was not possible using bulk 
RNA sequencing, such as cellular heterogeneity within tumours which might be important for 
treatment strategies (Patel et al. 2014) and discovery of a rare cell type in the intestine (Grün 
et al. 2015). 

 

2.6 SPATIALLY RESOLVED SEQUENCING 

The next challenge in sequencing is to enable spatial resolution of the information, i.e. to 
determine the location of RNA molecules within a tissue or even within a cell. This field is 
currently developing fast, event though it has yet to reach the throughput of conventional 
sequencing methods. The current approaches for spatial RNA measurements are either 
imaging based or sequencing based. The imaging based methods use fluorescently labelled 
DNA probes complementary to a target sequence. The challenges with imaging is that a 
single fluorescent probe bound to a single RNA molecule does not give enough signal to 
allow for detection, and that multiplexing is limited to the number of fluorophores available 
with non-overlapping wavelength spectra. A way to amplify the signal of an RNA is to 
hybridize multiple probes to each RNA molecule as in single molecule in situ hybridization 
(smFISH) (Femino et al. 1998), or even hybridizing a scaffold probe that itself allows for 
hybridization of several labelled probes as in branched DNA fluorescence in situ 
hybridization (bDNA FISH) (Battich et al. 2013). Another approach is to first reverse 
transcribe the RNA, and then use a so called pad-lock probe (Nilsson et al. 1994), which will 
become circularized when binding to the right target and can then be amplified by rolling 
circle amplification into a long chain of copies that can be detected by labelled probes. To 
enable greater multiplexing, smFISH can utilize multiple fluorophores for one RNA 
molecule, either by looking for a specific signature of colour combinations, or by performing 
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several sequential hybridizations with specific colour signatures for one RNA in each cycle 
(Lubeck & Cai 2012; Lubeck et al. 2014).  

 

Sequencing based spatial transcriptomics can be achieved by capturing RNA from individual 
regions or cells while recording their original position in the tissue, create a sequencing 
library per region and perform conventional second generation sequencing on the samples. 
The transcriptome profiles can then be mapped back to create a spatial map of expression. In 
paper IV we utilize laser capture microdissection to retrieve RNA profiles from specific 
positions in mouse brain. Another method for retrieving spatially resolved samples, 
microtomy sequencing, is based on sectioning replicates along different axis, sequencing 
whole sections, and then create a 3D map of the tissue (Combs & Eisen 2013; Junker et al. 
2014; Okamura-Oho et al. 2012). Transcriptome in vivo analysis (TIVA) uses an approach 
were mRNA capture is photoactivated in a controlled way in an individual cell (Lovatt et al. 
2014).  

 

Another approach is to actually perform the sequencing in situ, in the tissue itself, as done in 
in situ RNA-seq (Ke et al. 2013) and fluorescent in situ RNA sequencing (FISSEQ) (J. H. 
Lee et al. 2014). These methods involve a rolling circle amplification step to get sufficient 
template for detection, and then employs a sequencing-by-ligation approach similar to SOLiD 
sequencing (Crosetto et al. 2015). 
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3 ANALYSIS OF RNA-SEQUENCING DATA 

3.1 WHAT IS EXPRESSED? 

Today, using the 2nd generation sequencing methods, the sequencing itself is the fastest and 
easiest step of the workflow. Performing RNA sequencing, or other types of sequencing, will 
generate large text files with millions of short sequence reads, and you are then left with the 
challenge of identifying the expressed genes, quantifying the expression, and finding 
meaningful information among the thousands of expressed genes. 

 

The first step of analysis is finding out where each read came from, which is traditionally 
done by aligning the reads to the reference genome, if there is one available. There are several 
different sequence aligners that have been developed for the purpose of short read alignment. 
However, some of these aligners were built as an extension of aligners designed to align 
DNA to a genome, and as a result were not very efficient in mapping spliced RNA-seq reads 
(Trapnell et al. 2009). The aligner STAR, which stands for Spliced Transcript Alignment to a 
Reference, was developed to improve both speed and accuracy of alignment, especially for 
spliced reads (Dobin et al. 2013).This is the most tested and efficient RNA-seq mapper to 
date, which we have chosen as basis for our RNA-seq alignments.  

 

3.2 HOW MUCH IS IT EXPRESSED? 

When the reads have been mapped to the genome, the next step is to determine the expression 
level of the expressed genes. This problem turns out to be more complex that it sounds. First 
of all, we have to decide what we want to estimate with our gene expression calculations – 
are we looking for the absolute number of molecules, or is it sufficient to estimate the relative 
proportions of RNA within the sample? Each cell will have a certain number of RNA 
molecules at the point in time when we choose to sequence it, which are produced from a 
subset of genes, and the number of RNA molecules from each gene will be different. The 
rationale behind studying RNA expression in the first place is the assumption that the level of 
expression of a certain gene tells us something about how important the gene product is for 
the cell at this time. So, ideally, we might want to know the exact number of RNA molecules 
of each type that were present in this cell. At least when performing single cell sequencing 
this is desirable, while for bulk sequencing it has less meaning since even if we knew the 
exact number of cells in the sample, the measure would still be an average across cells. 

 

However, achieving an absolute molecule count is not trivial. As I discussed in the single cell 
sequencing section, the STRT method (Islam et al. 2012; Islam et al. 2014) attempts to do 
this by using unique molecular barcodes (UMIs) to weed out PCR duplicates from actual 
copies of transcripts. If the method had a perfect sensitivity, this would work, but since it only 
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captures 15% of all reads the sampling will create a lot of noise that is hard to control for, and 
lowly expressed genes can be lost.  

 

An alternative metric to estimate is the proportional abundance of each transcript in the cell, 
i.e. the percentage of the cells RNA molecules that comes from each gene. A measure of the 
proportional abundance is more attainable, since the unintentional subsampling of RNA that 
occurs due to loss of RNA in sequencing protocols should still conserve the initial proportion 
between molecules, at least for the medium and high expressed genes that do not risk getting 
lost altogether in the subsampling. The true proportional abundance would thus be the 
number of molecules of a transcript, divided by the total number RNA molecules in the cell. 

 

To estimate this abundance, we have to remember that in case of full-length RNA 
sequencing, the RNA is fragmented into shorter pieces and a long RNA molecule will 
therefore yield more reads than a short one. The raw read counts for a gene will therefore 
need to be normalized for the length of the transcript. The next issue is that of read depth. 
Since the sequencing library is amplified by PCR, the number of reads we sequence is not 
related to the original number of molecules but rather arbitrary and depends on experimental 
set up and technical variation. This means that the read depth also has to be accounted for 
when estimating transcript abundance. 

 

A commonly used metric for RNA abundance is RPKM (Reads Per Kilobase per Million 
mapped reads), suggested by Mortazavi et al. (Mortazavi et al. 2008). It is calculated as 
follows:  

 

!"#$! = !
!!×10!
!!×!

 

 

where Cg is the read count in the gene, Lg is the length of the gene, and N is the total read 
count in the sample, thus normalizing for both transcript length and read depth. A similar 
version of this is FPKM, Fragments Per Kilobase and Million mapped reads. The use of 
“fragments” instead of reads allows the use of paired end data, where one fragment is 
represented by one or two read “mates” depending on if they were both mappable to the 
genome. However, the N that is used for normalization in these methods does not accurately 
reflect the total transcript abundance, but is confounded by the length of the expressed 
transcripts. Another metric, Transcripts Per Million (TPM), which takes this into account, is 
now gaining in popularity. For TPM, the count of each transcript is first divided by the 
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transcript length, just as for RPKM. These length-normalized values are then summarized for 
all genes to generate a better estimator of total transcript abundance in the sample, and the 
normalized value for each gene is divided by this factor. It is calculated as follows: 
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!
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!!!∈!

 

 

where C and L are as before the counts and length for the genes, and G is the set of genes 
analysed. TPM is a better estimator for the true relative abundance of a transcript, and also 
has the advantage that it gives a more intuitive comparison between samples since the sum of 
all TPMs will always be 1 million, and as long as the same genes are studied across samples 
it will also give the same average TPM per sample (B. Li et al. 2010; Wagner et al. 2012).  

 

Another challenge with calculating expression levels is that even the C and L in these 
equations are not absolute, due to the different splice forms of a gene. Since the same gene 
can be expressed including and excluding different exons and terminating at different sites, 
and often exists in several splice forms in the same cell, the length will depend on which 
exons are actually expressed, and to what level. For the same reason, the counts are not 
straight forward either, since a read mapping to a specific place in the genome can still belong 
to several different isoforms of the gene. We do not want these type of reads to be counted 
multiple times (once for each isoform), so computational strategies need to be employed to 
determine which read to assign to which isoform, and which exons to use for length 
normalization. Also, when using short reads there might be regions in genes which are not 
uniquely mappable, which could be adjusted for either by eliminating multimapping reads 
and reducing the effective transcript length by the unmappable region or adjusting the count 
value to a computationally estimated value. I will discuss this further in the results for paper 
I.  

 

3.3 WHAT IF THERE IS NO SEQUENCED GENOME? 

If the genome sequence is not known, but there is an available set of transcript sequences, 
these can be used for expression quantification. RSEM (B. Li & Dewey 2011), Sailfish 
(Patro et al. 2014), Salmon (Patro et al. 2015) and Kallisto (Bray et al. 2015) are specifically 
designed to use transcriptome sequence as a basis. When mapping to a transcriptome, 
multimapping is an even bigger issue than in genomic mapping, since isoforms of the same 
gene will inevitably contain some overlapping regions. These programs determine the 
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likelihood of a read coming from a certain transcript, and estimate the expression value of 
transcripts based on this. Salmon and Kallisto use k-mer based approaches to speed up the 
calculations, meaning they find the possible origins of shorter subsequences (length k) of the 
read and combines the k-mer information to calculate the probability of origins. Sailfish uses 
a lightweight alignment approach to find a chain of super-maximal exact matches (SMEMs) 
or maximal exact matches (MEMs) for a read, meaning there is no pre-defined k-mer length, 
instead the algorithm finds the maximal matches, i.e. a match such that adding another base 
to the k-mer will cause a mismatch (Patro et al. 2015; Bray et al. 2015; Patro et al. 2014; B. 
Li & Dewey 2011). 

 

If the available transcriptome is inadequate, another option is to assemble a transcriptome 
from RNA-seq data. Creating a transcriptome from polyA+ enriched RNA-seq data requires 
much less sequencing depth and computational power than assembling a whole genome, 
since only the spliced coding sequence is present. It presents a different challenge though in 
resolving the sequence of different splice forms, and unlike genome data the sequencing 
depth of individual genes will vary depending on expression level. Transcriptome aligners 
have been developed specifically for this purpose, and in paper III we assemble a 
transcriptome from paired-end RNA-seq data from Xenopus laevis early development using 
Trinity (Grabherr et al. 2011).  

 

3.4 WHAT IS THE DIFFERENCE IN EXPRESSION? 

The goal of gene expression analysis is often to determine the differences in expression 
between different conditions, for example comparing healthy to disease. To enable 
comparison one first has to ensure that the two libraries are scaled properly to be comparable. 
As described above, the read abundance for a transcript depends on the length of the 
transcript, the sequencing depth and the general composition and quantity of RNA molecules 
in the sample. The sampling of a transcript depends not only on its own properties, but also 
on the abundance of other transcripts, and expression changes in highly expressed genes can 
change the sampling of lowly expressed genes. Generally, RPKM or TPM values are not 
used in differential expression analysis, since transcript length does not matter when the 
comparison is made for the same gene between samples. Instead, differential expression 
packages use other normalization strategies to account for library depth and composition. 
Here I will discuss three common programs that I have some experience with, DESeq, edgeR 
and Cuffdiff.  

 

DESeq calculates the read count ratio for each gene compared to the total read count, and, 
assuming most genes are not differentially expressed, they use the median-of-ratios as a 
scaling factor (Anders et al. 2012; Love et al. 2014). edgeR instead uses weighted trimmed 
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means of M values (TMM), where the M-values are log ratios of library size normalized 
expression values between the samples. The genes with highest M-values and highest average 
read counts are trimmed away before calculating a weighted average of M values, which is 
then used as a normalization factor (Robinson & Smyth 2008; Robinson et al. 2010). 
Cuffdiff uses a similar method to DESeq, but performs a scaling first within conditions and 
then between conditions (Rapaport et al. 2013).  

 

After normalization, the task is to perform a statistical test to determine for each gene if the 
expression difference is significant or not. Both DESeq and edgeR assumes that the data 
follows a negative binomial distribution, where the variance ν is defined as ν = µ + αµ2, 
where µ is the mean and α is the dispersion factor. Since the sample size is usually small 
(typically 3-5 replicates) in RNA-seq experiments, estimating a gene-wise dispersion value is 
quite unreliable. Therefore, edgeR uses either a common dispersion value that is the same for 
all genes, or a moderate tag-based dispersion, where the dispersion is calculated per gene and 
then “squeezed” toward the common dispersion value (Robinson & Smyth 2007). DESeq on 
the other hand calculate a dispersion estimate across genes with similar expression values. In 
DESeq2, this method is replaced by calculating gene-wise maximum likelihood estimations 
(MLE) of dispersions, fitting a curve to these values, and shrinking the gene-wise dispersions 
estimates toward the line (Love et al. 2014). Cuffdiff calculates the variance similar to 
DESeq for single isoform genes, while a mixture model of negative binomial is used for 
multi-isoform genes. DESeq and edgeR use a Fisher exact test adapted for negative 
binominal distributions to test for differential expression, while Cuffdiff uses a t-test.  

 

Since the differential expression tests are done once per gene, i.e. thousands of times, using 
the p-value for significance would by chance give us a high number of false positives. 
Therefore, a correction needs to be employed to account for the multiple hypothesis testing. 
The methods mentioned above includes correction methods such as Benjamini-Hochberg 
correction to control this so called type I error (Rapaport et al. 2013). 

 

Single-cell sequencing is often used for an unbiased analysis and de novo cell type discovery 
in tissue. The nature of this type of data is that there are no known biological conditions 
assigned to each sample, and the identity must instead be derived from the RNA-seq data. 
Recently, Brennecke et al. presented a method to enable discovery of differential expression 
patterns without prior knowledge of cell identities. It is based on modelling the technical and 
biological variation, and reporting the genes with a variance exceeding the expected 
biological variation (Brennecke et al. 2013). This method has proven very useful when de 
novo classifying cells, as these highly variable genes can subsequently be used for clustering 
the single cell samples and discovering subgroups within the population. 
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3.5 VISUALIZING DIFFERENCES 

Due to the many variables (i.e. genes) describing each data point (sample or cell), visualizing 
the differences requires specialized techniques.  One common way of visualizing differences 
between groups of cells is principal component analysis (PCA). It is based on reducing the 
dimensions of the multivariate dataset to 2 or 3 dimensions, which can easily be visualized. 
The basic principle of PCA is to find the direction of greatest variability within the 
multidimensional data, and using this direction as the first “component” to be plotted on the 
first axis. The next component is found as the most variable directions perpendicular to the 
first, and the next perpendicular to both, and so on. In addition to PCA, there are other 
dimensionality reduction methods specifically designed for visualization of omics data. One 
of them is t-distributed stochastic neighbour embedding (t-SNE), which is a non-linear 
dimensionality reduction creating a visualization better able to distinguish between sample 
clusters (Van der Maaten & Hinton 2008). Another method, monocle, provides a 
dimensionality reduction specialized on visualizing an axis of differentiation. It finds the 
longest path through a minimum spanning tree in the data set and thereby creates a trajectory 
of pseudotime in the data (Trapnell et al. 2014)."

 

3.6 WHICH ISOFORM IS EXPRESSED? 

The splicing pattern of a gene can make a difference between creating a functional protein or 
a non-functional one, or even between the RNA being translated or degraded. Thus, splicing 
patterns are important to study to fully understand the relationship between what is 
transcribed and how the cell functions. To determine which exons are excluded or included in 
a transcript, special types of reads are important to study: 

1. The splice junction reads that map across two exons, providing information about 
which exons are physically connected. 

2. The reads mapping across exon-intron borders, signalling that an intron is included. 

These types of reads are essential to determine how exons are connected to each other. 
Therefore it is important that the aligner used performs well with spliced reads. However, the 
reads mapping within exons are also important for estimating the levels of 
inclusion/exclusion of specific exons in comparison to the surroundings. Splicing analysis 
can be done with an exon centric, isoform centric or splicing event centric approach. Isoform 
centric refers to estimating the levels of known annotated isoforms of a gene, while the exon 
centric approach focuses expression levels of each exon separately, and can therefore detect 
novel splice forms. Event centric methods focuses on known splicing events, e.g. detecting 
inclusion levels of an exon known to be skipped in some isoforms. There is a multitude of 
splicing software programs, but not all of them are designed to detect splicing differences 
between conditions, a feature that is useful to understand splicing effects of disease states or 
cell type differences. Some commonly used software with the ability to detect differential 
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splicing are Cufflinks/Cuffdiff, DEXSeq and MISO. DEXSeq (Anders et al. 2012) use an 
exon centric approach, which estimates the reads mapping to “counting  bins” consisting of 
whole or part of exons (in case an exon has alternative splice sites, it is split into several 
counting bins). A generalized linear model is then calculated for each gene, including factors 
representing baseline expression, as well as factors representing the effect of the sample 
condition on both gene expression and coverage of the counting bin. DEXSeq is based on a 
similar model as DESeq, assuming a negative binomial distribution and calculating 
dispersion estimates by sharing information between similarly “expressed” counting bins. 
Differential exon usage is tested with the null hypothesis that none of the conditions affects 
exon usage, and one test is performed per counting bin. This method provides information of 
which exons are excluded or included, but cannot tell anything about how the exons are 
connected or the specific splice forms present in the sample. Junction-mapping reads are not 
used to connect exons, instead they are split between their corresponding counting bins. 

 

 MISO (Katz et al. 2010) on the other hand uses both an isoform centric and event centric 
approach. In the event centric approach, each event represents two alternative outcomes of 
splicing, such as exon exclusion/inclusion, intron exclusion/inclusion, mutually exclusive 
exons and differential 3´ or 5´ splice sites. One of the alternative outcomes will be denoted as 
the “exclusion” event, and the other as the “inclusion” event. The number of reads 
exclusively supporting either the exclusion or inclusion event, such as junction reads or reads 
falling within an alternative exon, are used to estimate an inclusion level of the specific event.  
The advantage of this method is that it provides information on which splicing donors and 
acceptors are connected. However, the downside is that it uses a Bayesian statistical approach 
for alternative splicing measurements without providing a means to use biological replicates. 
Another limitation is that the comparison of events is always binary, i.e. there is no room for 
comparing for example 3 different alternative splice sites in the same exon simultaneously.  

 

Cuffdiff estimates isoform level differential expression by default, and can thus be used for 
both differential expression and differential splicing analysis. Isoform level expression is 
calculated by using both reads exclusive to an isoform and those common between isoforms 
to calculate create a probability score of the expression level for each of the possible isoforms 
(Trapnell et al. 2010; Trapnell et al. 2013). 
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4 AIMS 
 

The over all aim of my thesis work was to increase the understanding of regulatory principles 
at the RNA level in development and disease, and to improve upon the methodologies used 
for analysis of RNA sequencing. 

 

The specific aims for each study were: 

Paper I: 

• To provide an efficient method for normalizing for lack of mappability in genes, 
flexible enough to allow to work across the span of commonly used read length. 

• Analysing the mappability of different genomic regions, to guide appropriate read 
length choices for different sequencing applications. 

Paper II: 

• Decipher the roles of the exosome complex, NEXT complex and cap-binding 
complex in degradation of PROMPTs and other assumingly non-functional transcripts 

Paper III: 

• Map the sorting patterns of maternal RNA in the early Xenopus laevis development 
and finding motifs in the RNA sequence that signals for sorting to specific locations 

Paper IV: 

• Deciphering the protective effect in somatic motor neurons resistant to degradation in 
Spinal Muscular Atrophy (SMA). 

• Gaining knowledge on the mechanism behind SMA progression by studying both 
expression and splicing effects of the disease. 
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5 RESULTS AND DISCUSSION 

5.1 PAPER I: MINIMUM UNIQUE LENGTH ANALYSES WITH MULTO 

 

Typical RNA sequencing experiments uses read lengths of 25-150 basepairs, and the length 
used for a particular experiment can depend on several factors. First, the choice of sequencing 
technology will dictate what lengths are possible, and usually there is a standard length that is 
commonly used with that technology. Second, choosing to multiplex your sample by adding 
barcode indexes will also have an effect, since some of the reagents that would have been 
used for sequencing your input fragments will instead be used for reading index sequence. 
And finally, it is a question about cost versus benefit of sequencing longer reads, since longer 
reads will be more expensive.  

 

Since our genomes consists of a code of only 4 different base pairs and 3.3 billion bases, it is 
impossible for all short segments of the genome to be unique. Each substring, k-mer, of 
sequence, with k being the length of the sequence, can occur in 4^k different combinations. 
Theoretically, this could mean that a 16 base pair sequence would be sufficient to create a 
genome unique at every position (4^16 ≈ 4.3 billion bases) However, this is not the case, 
because of several different effects creating biases in the genome; most genomes have a bias 
for more G-C or more A-T content, and there are duplicated genes and repetitive regions 
which all further increases the chances of the same k-mer occurring multiple times. This 
means that sequencing short reads will pose a challenge when trying to identify the gene of 
origin for some reads.  

 

I was working on a project where the lack of mappability of some reads could potentially 
cause a very problematic bias in the analysis, because I was looking at read coverage at small 
regions overlapping the exon-intron junction. We had sequenced RNA from nuclear and 
cytoplasmic RNA separately, and were aiming to study splicing dynamics using the nuclear 
fractions were intronic sequence could still be present in pre-mRNAs. To elucidate if the 
splicing occurred co-transcriptionally, we studied read coverage at regions overlapping the 
splice-junction (i.e. were reads went across the exon/intron borders) of both the 3´ and 5´ end 
of introns, and in nearby intronic regions of the same size (Fig 7). When looking at such 
limited regions, and trying to compare the expression between regions of the same gene, it 
was crucial that the reads within them were correctly mapped and that un-mappable regions 
were not considered as empty in the analysis.  
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Of course, this is also an important issue when estimating expression levels on whole genes 
from RNA-seq data with short reads. Different software for gene expression quantification 
has different approaches to solving this problem. ERANGE and Cufflinks both use 
computational methods to predict the origin of multimapping reads from all its possible 
positions. ERANGE bases the prediction on the amount of uniquely mapping reads to the 
same genes (Mortazavi et al. 2008). The problem with this methods is that it assigns reads to 
a region based on the mappability of other reads, and when the number of mappable positions 
in that region is low to start with, this kind of prediction does not help much. Cufflinks 
employs a similar method, but utilizes both uniquely mapping and multimapping reads to 
create a probability score of the expression level for each gene (Trapnell et al. 2010). 
Another way to solve the problem is to only normalize by the number of mappable positions 
in the gene (E. T. Wang et al. 2008; Pan et al. 2008; S. Lee et al. 2011). However, as stated 
above, the number of mappable positions will vary depending on the read length used. In my 
case there were available files containing mappability information for a few specific read 
lengths, but the length I was using was not represented, and I did not want to use an 
approximation in case it affected the data. 

 

At this time it was not really known how much the non-unique reads affected the outcome of 
gene expression analysis. I set out to create a tool for producing uniqueness information 
across all useful read lengths that could subsequently be used for normalizing RNA-seq data, 
both for whole genes and smaller regions, and to study how the mappability of short reads 
affected RNA-seq data analysis.  

 

In paper I, we describe the software MULTo (Minimum Unique Length Tool) that I created 
to improve uniqueness normalization and analysis. Essentially, the program makes use of the 
range of numerical values a single byte in a binary file can take on, i.e. 0 to 255. MULTo will 
go through every position in a genome and iteratively analyse k-mers of different length until 
the shortest unique k-mer is found, and store this number k as a byte in a binary file. One file 
per chromosome will be created, and the position of the byte in the file translates to the 
starting position of the k-mer in the chromosome. In this way, we could efficiently store 

Exon 1 Exon 2

5’ exon-intron 
junction

3’ exon-intron 
junction

5’ proximal 
intron region

3’ proximal 
intron region

Figure 7. Short regions overlapping exon-intron junctions and intronic regions of the same 
size were used to study splicing kinetics. 
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detailed mappability information across a wide range of possible read lengths in a compact 
format. The MULTo suite also contains a program for querying specific regions for 
uniqueness, either at a range of read lengths or at one particular read length. The program was 
also incorporated into our in house expression estimation software, rpkmforgenes (Ramsköld 
et al. 2009), to enable automatic normalization of only the unique length of genes. 

When analysing the uniqueness information across different read lengths, we found a 
dramatic increase in mappability as read lengths for single read sequencing were increased 
from less than 70% of genes having 90% unique positions at 20bp to 83% having 90% 
unique positions at 50bp. Increasing the read length to 100 only increased this figure by a few 
percentage points, while using paired end sequencing gave a much better over all mappability 
regardless of length. We could also show that different genomic regions had different degree 
of mappability, with enhancers and promoter regions being among the most unique, while 
intergenic regions (without identified genes) showed the least uniqueness. Together, this 
information can serve as a useful guide when choosing read length for different sequencing 
applications. 

 

When comparing my normalization method to ERANGE and Cufflinks, we found that both 
ERANGE and Cufflinks produced a less robust compensation than ours for non-unique 
positions when there was a large proportion of the gene that was not mappable. We could 
also identify a problem with Cufflinks overestimating the expression of short genes. 

 

Taken together, I have in this project provided both a useful tool for uniqueness analysis and 
uniqueness compensation in sequencing data, as well as an in depth analysis of uniqueness 
that can be used to guide choices on read length for different sequencing approaches.  
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5.2 PAPER II: THE EXOSOME COMPLEX AND RNA DEGRADATION 

 

RNA degradation is an important part of gene regulation at many levels. The lifetime of an 
mRNAs will determine how long the protein is produced, and how quick the cell can change 
the protein level in response to extrinsic or intrinsic signals. Degradation is also important for 
removal of intron sequence, and for quality control by removing or processing defective 
RNAs. There are several different RNA degradation machineries, some degrading from the 
3´ or 5´ end (exonucleases), others that cut RNA internally (endonucleases) (Houseley & 
Tollervey 2009). The exosome complex is an important degradation machinery containing 
3´-5´ exonucleases. It is present in both the nucleus and cytoplasm, and targets several 
different RNA species for degradation, including degradation of mRNA in the cytoplasm 
(Raijmakers et al. 2004). 

 

The promoter upstream transcripts (PROMPTs) are a species of RNA thought to be non-
functional. Only a few instances has been shown where PROMPTs are associated with gene 
regulation (Lloret-Llinares et al. 2015), though causality has not been proven. They are fairly 
quickly degraded by the exosome complex, suggesting that the reason for expression might 
be simply because the transcription machinery has been recruited and is not specific enough 
to transcribe only the gene. In humans, the trimeric NEXT complex, consisting of hMTR4, 
RBM7 and ZCCHC8, has been shown to aid in exosomal degradation of PROMPTs. The 
NEXT complex had in turn been shown to associate with the arsenic resistance protein 2 
(ARS2) and the cap binding complex (CBC) consisting of cap-binding proteins CBP20 and 
CBP80, which we together denote the CBCA complex.  

 

In paper II, we examine the physical interaction between the exosome, the NEXT complex 
and the CBCA complex by affinity capture mass spectrometry (ACMS), study their RNA 
binding profile by RNA immunoprecipitation (RIP) and elucidate the function of the subunits 
by studying effects of single or combinatorial knockdowns of the constituent proteins and 
analysing the transcriptional effects.  

 

At the time when I got involved in this project, Jensen lab had already performed the ACMS 
and RIP analysis. The ACMS analysis proved a physical interaction between CBCA and 
NEXT complexes together with the zinc-finger protein ZC3H18 (this combined complex is 
hereafter called CBCN) and of CBCN to the exosome, and by RIP they had found that CBCN 
bound specifically to PROMPTs and U1 snRNA. To assay the function of each constituent 
protein, a single and combinatorial knockdown approach using siRNA was employed. Using 



 

 37 

qPCR for known PROMPTs and snRNAs, a synergistic effect on PROMPT accumulation 
between some of the combinatorial knockdowns compared to the single knockdowns could 
be detected, and through chromatin immunoprecipitation (ChIP) assay of RNA polymerase II 
in these regions they found evidence of a read-through-transcription effect.  

 

They now wanted to test the whole transcriptome effects of the knockdowns, and performed 
ribosome-depleted, strand specific RNA-seq on these samples. My contribution to this 
product was the analysis of this RNA-seq dataset, by building a dynamic program to analyse 
the expression profile in different regions for the different knockdown samples. This proved 
to be an interesting task, with quite specific challenges to solve. 

 

First of all we needed to determine which regions to look for PROMPT expression. This 
might seem straightforward – as can be understood by the name this transcripts are located 
upstream of promoters of expressed genes. The problem is that many genes have several 
alternative promoters and alternative transcription start sites. By choosing a site downstream 
of the true active promoter would mean that the “PROMPT” region we are looking at 
overlaps with the expressed gene itself. Choosing one too far upstream could mean that we 
are actually missing the first part of the PROMPT. Another challenge was cases when 
upstream genes were close enough to the promoter to fall into the presumptive PROMPT 
region.  

 

I solved both problems by simply filtering out transcription start sites (TSS) with annotated 
exons within the upstream 5000bp. This would remove both those with upstream TSS of the 
same gene, or overlap with other genes. This means that we always used the furthest 
upstream TSS. To determine if this TSS was actually active, we used transcript level RPKM 
calculations and filtered for the TSS that had an accompanying transcript that reached an 
expression threshold (RPKM >= 4 was used in the paper).   

 

We wanted to get a coverage profile around the transcription start sites that could be 
comparable across samples. Since our RNA-seq data was sequenced by paired-end 
sequencing, it was not straight forward which regions to count as covered. We could 
potentially have filled in the sequence between the two mates and counted that also to the 
coverage. However, we decided that the comparison would be fairer if we only used the 
actual reads to not bias for fragment length differences or artificially introduce coverage in 
introns. When the fragment was so short that the two mates overlapped, we only counted the 
overlapping region once. 
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To be able to compare the coverage profiles from different samples to each other we also had 
to normalize for read depth. This also proved to be non-trivial for reasons that were very 
specific to this dataset. By disturbing exosome function and impairing RNA degradation we 
actually affected the transcriptome profile as a whole. While mRNAs seemed unaffected, 
many non-coding RNAs were present at higher abundance in the knockdowns. Normally, we 
would normalize to all reads that mapped to any exon, but for this dataset this could not be 
done. Instead we normalized only to the reads mapped to mRNA exons to avoid biasing the 
values (Fig 8). 

 

Figure 8. MA-plots of a double knockdown sample (hRRP40 + CBP80) vs control. (a) When normalizing to all 
mapped reads, the RPKM values are underestimated for protein-coding genes in the knock-down sample. (b) 
Normalizing by only reads mapped to mRNA makes the RPKM values more comparable between the samples.  

 

In the end, the analysis resulted in the coverage plots that can be seen in figure 7 and 
supplementary figure 4 and 5 in paper II. We could show that the read-through-transcription 
profile was general for PROMPTs when knocking out the CBCA component CBP80 or 
ARS2, suggesting that CBCA has a role in transcription termination of PROMPTs. To get 
accurate read-through profiles for histones we filtered away histones with overlapping 
annotations downstream of the 3´ end. 

 

Initially, the transcriptome project was intended to become a stand-alone publication. 
Therefore, we planned to do more in depth studies of the RNA-seq data and study how 
enhancer RNA and other interesting regions in the genome was affected by the perturbations 
of the exosome and its interaction partners. Therefore I implemented functions to also study 
bi-directional transcription and performing the appropriate filters and normalizations. The 
script also contains option for plotting different RNA biotypes separately (one could for 
example choose to study PROMPTs only at lncRNAs). However, the transcriptome story was 
in the end combined with the ACMS, RIP and ChIP data to create a more comprehensive 
study, and the remaining analysis is not yet used.  
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5.3 PAPER III: MRNA SORTING IN EARLY STAGE X. LAEVIS EMBRYOS 

 

Although all vertebrates go through stages of embryonic development that are similar in 
many aspects, such as having the same three germ layers that further on develop into the 
same kinds of tissues across all organisms, the very early events after fertilization can be 
quite different. The African clawed frog Xenopus laevis has a clear polarization already in the 
oocyte, in which some specific RNAs and proteins are sorted to the animal pole or vegetal 
pole. There is evidence that many of these sorted RNAs are kept in their respective pole as 
the oocyte is fertilized and the embryo starts to divide (Freeman et al. 2008; Horvay et al. 
2006; MacArthur et al. 2000). In the early stages there is no or little transcription from the 
embryonic genome, so lingering maternal RNAs constitute all the instructions to these cells 
up until the embryo has gone through around 12 divisions (Langley et al. 2014). 

 

In this project we wanted to study the sorting of maternal RNA and if possible identify 
potential sorting signals at single cell resolution by performing single cell RNA sequencing 
on individual blastomeres at the 2-16 cell stages. Since there is no genome assembled for 
Xenopus laevis, we first assembled a transcriptome to use as basis for subsequent RNA 
abundance estimations.   

 

To reconstruct the X. laevis transcriptome, we performed paired-end sequencing on pooled 
whole embryos from 3 different stages (1-cell stage, 512-cell stage and stage 10.5). I 
performed transcriptome assembly using both the genome guided and de-novo assembly 
functions in the Trinity suite (Grabherr et al. 2011) as well as cufflinks (Trapnell et al. 2010). 
Downstream of this analysis, I used “Program to Assemble Spliced Alignments” (PASA), 
which is designed to create comprehensive gene annotations from cDNA sequences (Haas et 
al. 2003). I combined the two Trinity transcriptomes with the cufflinks transcriptome and 
publicly available X. laevis cDNA sequences from UniGene when running PASA.  This 
approach was especially helpful in creating longer transcript assemblies using the different 
inputs, however I found that when it came to grouping the transcripts into genes it often made 
mistakes, perhaps because of the fragmented state of the genome. When identifying the 
transcripts by aligning them to known annotations from different species using BLAST 
(Camacho et al. 2009), two transcripts from the same “PASA gene” would sometimes align 
to different annotated genes. I decided to primarily trust the BLAST alignments, and the 
assemblies with sufficient alignment scores to the same gene or a homologue were 
considered transcripts of the same gene. I translated the gene names of all BLAST hits to the 
official name of the Xenopus laevis or the closely related Xenopus tropicalis homologue to 
have a consistent annotation. 
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Xenopus laevis is pseudotetraploid, i.e. it has 4 copies of each chromosome originating from 
two different ancestral species. This constitutes an extra challenge when trying to assemble 
and annotate its genome and transcriptome. In this study, I chose to disregard the possibility 
of genes from different ancestral chromosomes having different sequences as to simplify the 
challenge of annotation. When using my assembled transcriptome as a basis for gene 
expression analysis for single cell RNA-seq data, I only used the transcripts that I could 
assign a known gene name with high confidence. My transcriptome reconstruction improved 
the length of most previously annotated genes, and added 1,711 genes that were not 
previously named in the UniGene database, which makes this carefully annotated 
transcriptome a useful resource for the Xenopus laevis research community. 

 

To deepen our understanding of mRNA sorting in early embryonic development, we 
sequenced single cells from 2-16 cell stage that were each carefully annotated by their exact 
position in the embryo. Since the Xenopus laevis embryo has a clear dorsal and ventral side 
already from fertilization, we were expecting to see some differences in mRNA sorting along 
the dorsal ventral axis. There are also proteins known to localize to the dorsal side, like 
dishevelled (Dsh) and beta-catenin (Houston 2012; Miller et al. 1999). In our single cell 
RNA-seq data, we observed a slight preference for known vegetal RNAs to be more 
concentrated in the vegetal-dorsal side at 4 cell and 8 cell stages, but this pattern did not hold 
true in the 16 cell stage were we could find no significant difference at all between vegetal-
ventral and vegetal-dorsal cells. This is in line with the results of recent single cell studies 
using qPCR in Xenopus laevis (Flachsova et al. 2013) and RNA-seq in Xenopus tropicalis 
(De Domenico et al. 2015), which could not see a difference at 8-16 cell stage. However, 
when using a more unbiased approach to find the top variable genes within embryos, we did 
find a group of genes that clustered more tightly together in subsets of vegetal pole cell, 
although this subset was not specifically localized to ventral or dorsal side in the embryos. 
Surprisingly, considering its lack of specific localization, the set contains RNA for dorsal 
determinants such as Sybu and Wnt11. The group is generally enriched in germ plasm RNAs, 
suggesting the tight clustering will subsequently lead to a high concentration of these RNA in 
the future germ cells. 

 

We wanted to know more about the mechanisms behind RNA sorting in the frog embryo, and 
if there was a common sorting signal among the vegetal or animal pole RNAs. There are 
some well-known short motifs that appear in the 3´UTRs of known vegetal genes, such as the 
R1 motif (UGCAC) in Nanos1 E2 (WYCAC) and VM1 (YYUCU) in VegT and Gdf1 and 
these generally appear in clusters of multiple instances (W = A or C and Y = U or C). Betley 
et al. hypothesized that it was this clustering of short repeats that was important for 
localization, and with their own software REPFIND, they found that vegetally localized 
transcripts were enriched for CAC-containing repeats. In our study, we used both REPFIND 
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and a short motif discovery program, Weeder (Pavesi et al. 2001), to search for motifs in the 
3´UTRs of the vegetally enriched RNAs in our study. We could confirm both CAC-
containing motifs and instances of the R1, E2 and VM1 in the vegetal RNA. However, not all 
vegetally sorted RNA had CAC-containing clusters, and not all RNAs with CAC-clusters 
were sorted to the vegetal pole. Therefore there are clearly additional sorting signals, which 
are not detectable with these methods. One possibility could be that it is the secondary 
structure rather than the sequence itself that determines the location. Most studies have found 
that RNA binding proteins require single stranded RNA for motif recognition (Ellis et al. 
2007; Ray et al. 2013), however the secondary structure could serve another function by 
hiding motifs in double stranded sequence to prevent some RNAs from being sorted (X. Li et 
al. 2010). The secondary structure is hard to predict completely from whole transcripts, or 
even 3´UTRs, since the sequence is so long that there will be multiple ways it can base pair to 
form secondary structures. One possible approach, suggested by Li et al., is to instead take all 
possible secondary structures into account and calculate an overall predicted accessibility 
value at each segment of the sequence (X. Li et al. 2010). Another challenge is to solve the 
case of RNAs that are sorted but do not have the motif. One reason for the lack of consensus 
motifs could be that these RNAs require binding by several RNPs with different motifs, 
which are on their own not strong enough to be detected. Understanding the sorting 
mechanisms in such cases would probably require some more experimental work, such as 
performing a pull-down assay of the specific RNA and identify the proteins bound to the 
RNA with western blot or mass spectrometry (Marín-Béjar & Huarte 2015). Although the 
laborious methods in the latter approach is beyond the scope of this study, testing for motif 
accessibility due to secondary structure could provide a good complement to our study. We 
are also planning to validate the localization of some of the novel sorted genes we discovered 
by RNA FISH to strengthen our conclusions.   
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5.4 PAPER IV: TRANSCRIPTOME PROFILING OF SPINAL MUSCULAR 
ATROPHY (SMA) 

 

Spinal Muscular Atrophy (SMA) is a motor neuron disease, characterized by a progressive 
loss of somatic motor neurons, and the most common genetic cause of infant death, with a 
prevalence of 1-6 out of 10,000 live births. It is a monogenic disease, caused by a loss or loss-
of-function mutation of the Survival Motor Neuron 1 gene (SMN1). The protein product of 
SMN1, the SMN protein, is involved in assembly of the splicing machinery. In mouse 
models, it has been shown that a complete loss of SMN protein is embryonic lethal, but in 
humans a gene duplication has resulted in a paralogous gene, SMN2, with almost identical 
sequence to SMN1, which partly compensates for the loss of SMN1. The two genes differ by 
5 nucleotides (Monani"et"al."1999), one of which is a C to T nucleotide transition in exon 7. 
Even though this transition does not affect the amino acid sequence, it still has a substantial 
effect since it disrupts a splicing enhancer and causes alternative splicing of the gene 
(Cartegni"&"Krainer"2002;"Kashima"&"Manley"2003). In SMN2, exon 7 is skipped in over 
90% of the processed mRNAs, leading to the production of a truncated and unstable SMN 
protein (SMNΔ7) (Ruggiu"et"al."2012). The disease is graded from I to IV, with grade I onset 
occurring before 6 months of age with a life expectancy of 2 years, while grade IV presents in 
adulthood with only mild muscle weakness symptoms (Munsat" &" Davies" 1992). The 
severity of the disease is negatively correlated with the copy number of SMN2 in the patient 
(McAndrew"et"al."1997). 

 

Although SMN1 is ubiquitously expressed across all human tissues, the pathology is 
restricted to the motor system. Somatic motor neurons of the spinal cord are especially 
vulnerable to low SMN levels, and there is also evidence that satellite cells, a muscle 
progenitor, may contribute to the muscle pathology (Iascone"et"al."2015). However, motor 
neurons are most likely driver of the disease, as muscle does not require high levels of SMN 
protein (Iyer"et"al."2015) while SMN is required for motor neuron function (McGovern"et"al."
2015). Somatic motor neurons innervating different structures in the eye on the other hand 
are resistant to the disease (Comley"et"al."2015;"Kubota"et"al."2000), which enables the use 
of eye-tracking devices as a communication aid for advanced stage patients (Comley"et"al."
2015;"Kubota"et"al."2000).  

 

In this study, we used a mouse model of SMA I to study RNA expression and splicing effects 
during disease progression in different motor neuron groups. The aim of the project was to 
identify protective gene expression changes within resistant motor neurons and potentially 
damaging gene responses in the vulnerable neurons to better understand disease progression 
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and cell type specificity in SMA. Future experiment aim to modulate possible protective 
and/or damaging gene responses in vitro and in vivo to test their therapeutic potential. 

 

Since mice only have one SMN gene, the mouse SMA model carries a transgene for two 
copies of human SMN2 and of SMNΔ7, while the endogenous Smn1 gene is knocked out (Le"
et" al." 2005). In this mouse model, the pups do not appear symptomatic until 5 days after 
birth, but the therapeutic window to rescue the animals from disease by restoring SMA levels 
falls within the first postnatal week (Le"et"al."2011;"Lutz"et"al."2011), and the life span is 
about 13 days (Le"et"al."2005). Therefore, we chose to study vulnerable and resistant somatic 
motor neurons from postnatal day 2 and 5, to elucidate the mechanistic of the disease onset in 
the mouse model. 

 

We used cells from lumbar spinal cord and facial nucleus (CN7) to represent the vulnerable 
population, and the oculomotor (CN3) and trochlear (CN4) nucleus of the eye as well as the 
hypoglossal nucleus (CN12) innervating the tongue as a resistant population (Comley"et"al."
2015). As controls, we also used visceral (non-somatic) motor neurons from the dorsal vagus 
nerve (CN10), and non-cholinergic red nucleus neurons (RN). Since not all of these cells 
have known unique marker genes, it was not possible to get a pure cell population using 
fluorescence activated cell sorting (FACS). Instead, we used laser capture microdissection 
(LCM) to outline and extract these anatomically distinct cellular populations of interest from 
fixed tissue slides. We picked and pooled around 150 cells of each type from each animal, 
and performed RNA-seq using Smart-seq2. A disadvantage of using LCM for sample 
acquisition is that it is hard to avoid some degree of RNA degradation in this process. Since 
Smart-Seq2 captures polyadenylated RNA, only the 3’ most fragments of degraded mRNA 
will be included in the sequencing data.  However, despite having a clear 3’ bias in our 
samples, we still managed to get read coverage across the whole gene body of mRNAs.  

 

I decided to use DESeq2 (Love" et" al." 2014) for the differential splicing analysis. I had 
previously seen that edgeR was prone to give too high significance to lowly expressed genes, 
when the expression difference was low in magnitude but high in fold change. DESeq on the 
other hand had shown too poor sensitivity in the past, which I hoped would have been 
improved in the new release. However, I found that the independent filtering and Cook's 
distance filtering options added to DESeq2 caused problems with detection of our positive 
control gene, Smn1. The independent filtering is a way for DESeq2 to enrich for genes that 
are more likely to be differentially expressed by ranking them on mean expression, and then 
iteratively estimating the number of significant genes obtained after multiple testing 
correction when removing differently sized quantiles of genes from the lowest ranked set. 
This approach seems to backfire in our data and we are left with only the 90th quantile of 
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genes in some samples, which effectively meant a threshold base mean read count of 250 
reads. I think the approach is generally problematic – although it does filter in an unbiased 
way, it assumes that getting a higher number of significant genes is always better, which is 
not the case if some of these are false positives.  

 

The Cook’s distance filter in DESeq2 is intended to remove strong outliers if the sample has 
more than 6 replicates, or remove the whole gene from analysis when there are 6 or less 
replicates. DESeq2 also uses a log2 fold change (LFC) shrinkage algorithm to reduce the 
problem of getting high fold changes and consequently high significance for lowly expressed 
genes. The samples from SMA mice would sometimes have one replicate with 3-10 reads 
mapping to Smn1, possibly from mismapping of SMN2 reads, while the remaining samples 
had 0 reads. These cases would both cause the Cook’s distance filter to remove the gene due 
to outliers, and to cause very strong fold change shrinkage. The latter seems to be a problem 
that occurs specifically when one condition has zero expression in most replicates, and 
adding a pseudo-count of one read to all genes eliminated the problem. 

 

Hence, we customized our use of DESeq2 to run without independent filtering and without 
Cook’s distance filtering. Instead, we removed all genes with zero count across all samples 
and added a pseudo-count of 1 read to the remaining genes before running the differential 
expression algorithm. With this approach, down regulation of our positive control gene Smn1 
in the SMA mice was highly significant in all cell types, suggesting that the method is 
performing well. 

 

We could distinguish distinct transcriptional profiles for each neuronal subtype and using 
principal component analysis we discovered that CN7, CN12 and spinal motor neurons 
clustered together, while resistant CN3/4 clustered separately. Comparing the expression 
between healthy and SMA neurons produced a surprisingly low number of genes commonly 
regulated across cell types in response to the disease. We could not find any candidate 
“protective” genes that were common across the resistant cells but not the vulnerable ones, 
and neither could we find any “risk” genes in common to only vulnerable cells.  To 
understand which genes are involved in disease vulnerability and disease we will need to do a 
more in depth analysis taking both basal gene expression levels and expression changes upon 
disease into account. We did find Cdkn1a, a cell cycle factor also implicated in apoptosis, up-
regulated in disease across all somatic neurons, and a subcomponent of the spliceosome, 
Snrpa1, up-regulated in most somatic neurons.  
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Since SMN is involved in splicing, we also wanted to investigate whether we could detect 
splicing changes as an effect of the disease. Due to the degraded state of RNA in our samples, 
we were not sure if this was at all possible. I first tried using DEXSeq (Anders"et"al."2012), 
which is based on an exon level analysis that they call differential exon usage (DEU). In this 
method they calculate the exon usage by comparing the read count in each exon to the read 
count in the whole transcript, and by comparing these relative numbers across conditions they 
determine the differential exon usage. However, it soon turned out that this method was not 
feasible for this data set, because of its 3’ biased profile. DEXSeq had a tendency to 
overestimate DEU when the coverage of an exon is low, which in our dataset created a false 
positive DEU bias toward the 5’ end. Instead I used MISO (Mixtures of Isoforms), which is 
focused on splicing events rather than individual exons, and uses reads that exclusively 
support a specific splice form (both exon reads and and spliced reads) to calculate a probable 
inclusion level of the two alternative splice forms in the event (Katz"et"al."2010). I found that 
the sequenced read depth coverage in individual replicates was not enough to get a satisfying 
amount of these exclusive type of reads for splicing analysis. We therefore pooled all 
replicates from the same condition to get more power in the analysis.  

 

From the splicing analysis, we could confirm a previously known splicing change in SMA – 
an increased inclusion of an alternative exon in Uspl1. A previous study reported a reduced 
inclusion level of SMN2 exon 7 in vulnerable spinal MNs compared to resistant non-MNs in 
the spinal cord, and hypothesized that this could be the cause of their differential sensitivity 
(Ruggiu"et"al."2012). However, our data, comparing multiple somatic MN groups with non-
MNs, indicates that this is not the cause of differential vulnerability among MN groups or 
between MNs and non-MNs. The inclusion levels were roughly the same (1-4%) across all 
cell types. In general, the majority of alternative splicing events due to SMA were cell type 
specific, just as the differential expression response. 

 

This study is still on going, and with a third time point (P10) we hope to be able to say more 
about the progression of the disease and when the most important events occur. There is need 
for a more in depth splicing analysis to determine if there are functionally important changes 
in splicing that might contribute to the disease. It would be valuable to find protective factors 
downstream of SMN in the resistant motor neurons, as this could open up for potential new 
therapies.  
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6 SUMMARY AND FUTURE PERSPECTIVES 
 

The high throughput sequencing technology has opened up for a new world of discoveries, 
where global gene expression, mutations, DNA or RNA binding profiles, and chromatin 
conformation can be studied. The new studies are reinforcing a very complex picture of 
vertebrate gene regulation, where transcription, splicing, RNA degradation, DNA 
methylation and chromatin modifications seem to be functionally closely intertwined, 
although cause and effect is not trivial to elucidate. Evidence from RNA-sequencing studies 
has shown that although a very low proportion of the genome is protein coding, most of it is 
still transcribed, in some cases to create functionally important non-coding RNAs, and in 
other cases most likely as a consequence of RNA polymerase recruitment to the region (such 
as PROMPTs). A large proportion of the transcribed sequence also consists of intronic 
sequence, and although the introns are not functional themselves, the exon-intron structure is 
important for providing an increased layer of complexity by means of alternative splicing. In 
paper IV, we used RNA-sequencing to understand how a splicing difference in SMN2 
compared to SMN1 affects gene expression and splicing to create pathological phenotypes in 
somatic motor neurons in Spinal Muscular Atrophy, where SMN1 is lost. Due to 
technological advancements in RNA-sequencing, this could be done in small samples of only 
a single cell type per sample even when the cell type was rare and did not have known unique 
marker genes, and on full-length RNA rather than 5' or 3' tags. Thus, we could examine both 
expression and splicing differences between vulnerable and resistant cell types.  

 

There are several promising therapies for SMA under development with different approaches 
to treating the disease. One approach involves using antisense oligonucleotides that target the 
splicing silencer in SMN2 exon 7, to increase its efficiency at producing full length SMN. 
ISIS-SMNRx is a drug using this approach that is currently in phase III clinical trials. A 
problem with the SMN-dependent therapies might not be only be effective when used early in 
the disease as suggested by the early therapeutic window in the mouse model. Therefore, 
studies like ours to determine the downstream effects can be important for finding therapeutic 
targets that can be addressed later in the progression. There are also promising SMN-
independent drugs under development like Olesoxime, a small molecule that may act to 
protect mitochondria from cellular stress, which has been shown to have a protective effect in 
SMA. This drug is also in phase III clinical trials. A good approach might be to combine 
SMN-dependent and -independent approaches for an effective therapy (Tisdale & Pellizzoni 
2015). 

 

With the study in paper II we have increased the understanding of the connection between 
transcription and degradation for non-functional RNA, by combining several high throughput 
technologies like mass spectrometry, RNA-sequencing and chromatin- and RNA 
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immunoprecipitation. These kind of combinatorial studies are important to get a systematic 
view of how regulation is exerted, and I think this is something that is desirable to pursue in 
the field, in order to ultimately understand functionality at both the RNA and protein level.  

 

It is also evident that there are nucleotides sequences in both DNA and RNA that provides 
recognition signals for DNA and RNA binding proteins rather than coding for the final 
product. These signals regulate functions such as expression initiation of DNA, and 
localization, splicing and other processing steps of RNA. However, the identity of 
localization signals in RNA has proven more difficult to study than expected, as we discuss in 
paper III, probably reflecting that specificity of contact surfaces of RNA are formed from 
both the sequence itself, possibly base modifications and its secondary structure. To decode 
the rules for this regulation would require a combination of RNA-sequencing with pull-down 
assays for RNA binding proteins, and predictions of availability based on secondary 
structures.   

 

Although RNA sequencing has allowed for tremendous progress in the understanding of gene 
regulation, it has its limitations. One such limitation is that of short read lengths, which 
complicate the identification of the origin of reads. In paper I we presented a method for 
handling this problem to avoid bias in gene expression estimation. Although this method is 
useful for assuring a robust normalization, it has its limitations when it comes to highly 
repetitive genes, or genes with highly similar paralogues, which might not be possible to 
estimate based on only uniquely mapping reads.  The uniqueness information rendered by the 
program and presented in the paper can also be useful for guiding choices of read length in 
different sequencing applications. 

 

Novel sequencing technologies are enabling spatial resolution for RNA-sequencing, either by 
barcoding reads by position and conventional sequencing, or by performing the sequencing 
reaction in situ. However, there is still a limitation in the current technologies regarding the 
temporal aspect of gene expression. This information is not available since RNA is sampled 
at a distinct time point, which kills the cells and prevents further investigation of the same 
cell. Therefore, dynamics of gene expression can only be indirectly inferred from looking at 
the range of states in a collection of states instead of directly observed in a single cell. To my 
knowledge, there are currently no technologies that enable high throughput live imaging of 
gene expression. The next big challenge in the omics field is to develop technologies that 
allow for getting high throughput data on protein, RNA and DNA level simultaneously from 
single cells, and preferably while preserving spatial and temporal information.  
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