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ABSTRACT 

Cardiovascular disease is the main cause of death in the world. The underlying cause in most 

cases is atherosclerosis, a chronic inflammatory disease. Subendothelial retention of 

lipoproteins triggers monocyte-derived macrophages and T-helper (Th) 1 cells to form lipid-

laden atherosclerotic plaques in the artery wall. The Th1 cells react to autoantigens from the 

ApoB protein in low-density lipoprotein (LDL) perpetuating the inflammation initiated by the 

innate immune reactions to modified lipoproteins. Other T-helper cells are also active in the 

lesions with regulatory T cells (Treg) limiting the injurious inflammation, while the effects of 

Th17 cells are less clear. 

The slow build-up of atherosclerotic plaques is asymptomatic, but eventually the plaque may 

cause symptoms. Plaque rupture or endothelial erosion induces thrombus formation that 

causes a heart attack or ischemic stroke. Advanced plaques usually contain large cholesterol-

rich necrotic cores. This determines plaque stability along with a stable cap formation by 

smooth muscle cells and collagen. Prevention of risk factors has reduced mortality, but there 

is still a need for novel therapies to stabilize plaques and to treat arterial inflammation. The 

aim for this thesis is to investigate T-cell responses to LDL and regulation of Th cells during 

atherogenesis. Genetically modified mouse models were used to study LDL-reactive T cells, 

mechanisms involved in Th cell differentiation, and the subsequent influence on disease 

development. 

Paper I shows how inflammatory signals from the atherosclerotic lesions contribute to Th17 

cell differentiation by means of IL-6 and transforming growth factor  (TGF-. Th17 cells 

produce IL-17A that promotes collagen synthesis by smooth muscle cells. This paper 

establishes a plaque-stabilizing role for Th17 cells and IL-17A, which is likely to operate in 

man and reduce incidence of myocardial infarctions. 

Paper II establishes that Tregs have a protective role in atherosclerosis by modulating lipid 

metabolism. Depletion of Foxp3+ Tregs during atherogenesis impairs lipoprotein uptake by 

unleashing liver inflammation that downregulates the very low-density lipoprotein (VLDL)-

regulating protein called sortilin. This leads to increased plasma cholesterol and development 

of large atherosclerotic plaques with lipid-filled necrotic cores. 

Paper III shows how LDL-reactive T cells survive clonal selection in the thymus, 

differentiate into T follicular helper cells (Tfh), and promote a protective B-cell response with 

anti-LDL antibodies. These antibodies mediate lipoprotein clearance and lower plasma 

cholesterol, which protects against atherosclerosis. 

All three papers presented in this thesis illustrate an intricate interplay between the immune 

system and lipoprotein metabolism, resulting in profound effects on atherosclerosis. These 

notions may lead to new therapies that stabilize atherosclerotic plaques through specific anti-

inflammatory actions that are mirrored by lipid-lowering effects. 
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1 INTRODUCTION 

1.1 THE IMMUNE SYSTEM 

The immune system protects us against foreign pathogens such as bacteria, viruses, parasites, 

and fungi [1]. When an infection occurs, the immune system fights the pathogen and clears 

the infection. A hallmark of immunity is a specific memory that distinguishes self from non-

self. The basis for this is antigen recognition. Physical and chemical barriers prevent potential 

pathogens from entering through the skin, lungs, and gut. Cells in these locations take an 

active part in the defense before the immune system is engaged and secrete antimicrobial 

peptides, produce mucus, and have cilia that impede infections. In addition, commensal 

bacteria exist in concordance with the host and prevent pathogens to take foothold [2].  

The immune system is commonly divided into an innate and an adaptive part. The innate 

system is fast, but unspecific and calls for the attention of the slower adaptive system that is 

specific. The two systems communicate with cell-to-cell interactions and soluble molecules 

such as chemokines and cytokines. Activation of the immune system leads to inflammation. 

In the 1st century, Celsus described four signs of inflammation: calor, dolor, rubor, and tumor 

(heat, pain, redness, and swelling) [3]. Later, functio laesa, the disturbance of function, was 

added as a fifth cardinal sign of inflammation [4]. Apart from infections, the immune system 

has an important function to maintain host homeostasis through tissue repair and tumor 

surveillance. When the infection is cleared, inflammation resolves by regulatory mechanisms, 

one being wound-healing [5]. 

1.1.1 The innate immune system 

The innate immune system recognizes common characteristics of pathogens [6]. This defense 

system is particularly present at sites where pathogens are expected, allowing a fast response 

to take place instantly when a pathogen eludes the first line of barrier defense. The innate 

immune system relies on pattern recognition receptors (PRR). These receptors are germ-line 

encoded and recognize pathogen-associated molecular patterns. Toll like receptors (TLR) on 

innate immune cells are PRRs that convey one of the first signals that start the immune 

response. These receptors belong to the most evolutionarily conserved and ancient part of the 

immune system [7]. Some TLRs recognize extracellular components of bacteria, such as 

lipopolysaccharides. Other TLRs are intracellular and control the endolysosomal 

compartment for invading viruses or intracellular bacteria [8]. Scavenger receptors are 

extracellular PRRs that recognize foreign material and initiate its internalization and 

destruction [9]. These receptors also take part in housekeeping duties in the body, such as 

clearing modified lipoproteins. 

Soluble PRRs circulate in the blood as part of the complement system. These proteins are 

ready to directly lyse cells or activate cellular components of the innate system [10]. This 

network of proteins recognizes pathogen surfaces. A reaction cascade forms complexes that 

attack and puncture the membrane of pathogens. The complement system also facilitates 
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phagocytosis of bacteria by opsonization [11], activates inflammatory responses, and helps in 

clearing immune complexes that consist of antibodies bound to antigen. 

Main cellular components of the innate immune system are monocytes, macrophages, 

granulocytes, mast cells, dendritic cells, and innate lymphoid cells. Monocytes and neutrophil 

granulocytes are phagocytic cells that are rapidly recruited to the site of infection. The initial 

inflammatory response consists of extravasation mediated by IL-1, tumor necrosis factor 

(TNF), and chemokines [12]. Endothelial cells upregulate adhesion molecules and circulating 

neutrophils and monocytes adhere to the endothelial surface and infiltrate the underlying 

tissue. Chemoattractants guide the infiltrating cells to the site of infection where the pathogen 

is attacked and ingested by phagocytosis [13]. The monocytes differentiate into macrophages 

after entering the tissue. Mast cells share common characteristics with basophil granulocytes, 

but reside locally in tissues close to potential infection sites. They express FcεRI receptors 

with high affinity for Immunoglobulin E (IgE) antibodies. IgE therefore coats mast cells. 

When antigen-specific IgE on the mast cell surface cross-links an antigen, a signal through 

FcεRI leads to degranulation and release of histamine as well as other pro-inflammatory 

mediators and enzymes. This occurs in a common allergic reaction when IgE antibodies are 

directed against an allergen [14]. 

Dendritic cells are professional antigen presenters and specialized in internalizing foreign 

antigens [15]. They patrol the tissue and take up potential pathogens that are then degraded in 

the phagolysosome and presented to T cells after migration to lymph nodes and spleen. Also 

macrophages act as antigen presenting cells (APC) and express MHC class II. Dendritic cells 

can be divided into three subgroups: classical, plasmacytoid, and monocyte-derived. 

Plasmacytoid dendritic cells are a rare subset that produce large amounts of type I interferons 

(IFN-/), which are important during virus infections [16]. 

Natural killer cells belong to the innate lymphoid cell family and are cytotoxic effector cells 

important for tumor surveillance and fighting viruses [17]. They identify and kill cells that 

have downregulated MHC class I to evade regular immune surveillance [18]. Other innate-

like lymphocytes are B1 cells, marginal zone B cells,  T cells, and natural killer T cells. 

These cells resemble adaptive immune cells, but usually reside in special compartments of 

the body ready to recognize and neutralize antigens or evoke immune reactions. The 

specificities of B1 cells and natural killer T cells are largely against evolutionary preserved 

antigens in pathogens, such as complex lipids [19]. 

1.1.2 The adaptive immune system 

The adaptive immune system acquires immunity against pathogens and remembers this initial 

recognition for later encounters with the same pathogen. It is called upon when the innate 

system is incapable of handling the intruding pathogen alone. The adaptive response requires 

gene rearrangements that store the antigen specificity within the genetic code. This makes the 

system slow with a response peak usually one or two weeks after the first encounter with a 

foreign pathogen, but memory makes the time shorter the next time the host encounters the 
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same pathogen. The secondary immune response is much faster, and the pathogen is usually 

handled before general symptoms arise. 

The adaptive immune system consists of lymphocytes developed from progenitor cells in the 

bone marrow. These cells carry either T-cell receptors (TCR) or B-cell receptors (BCR), 

which are epitope-specific antigen receptors. T cells with TCRs are the basis for the cellular 

immunity [20], and B cells with BCRs that can be secreted as antibodies, form the humoral 

immunity. T and B cells interact in an antigen-specific manner [21]. This potent system needs 

to be tightly controlled in order to avoid excessive tissue destruction when fighting an 

infection. The specificity of the lymphocytes ensures that the system only attacks infected 

tissues, and selection processes in the primary lymphoid organs eliminate self-reactive 

lymphocytes [22]. The neonatal period is especially important for these processes [23]. 

Selection might fail under certain conditions, which leads to uncontrolled immune responses 

against self-antigens. This occurs in autoimmune diseases, but there are a number of 

peripheral tolerance mechanisms that also limit the immune response to self-antigens. 

1.1.2.1 Humoral immunity  

The humoral immune response targets mainly extracellular microbes. B-lymphocytes release 

antibodies recognizing different protein, lipid, and carbohydrate antigens. B cells develop in 

the bone marrow, and their development in the bursa of Fabricius in birds has given them 

their name [24]. Conventional B cells, also called B2 cells, are derived from hematopoietic 

stem cells in bone marrow and fetal liver. A key regulator of B-cell development in the bone 

marrow is IL-7 [25]. This cytokine differentiates the hematopoietic stem cells into lymphoid 

progenitors, and it also has a key role later in the maturation process.  

Antibodies contain two antigen-binding fragments, which are formed by an immunoglobulin 

heavy chain and an immunoglobulin light chain. The heavy chains also form a crystallizable 

fragment (Fc) that binds various cellular receptors or complement proteins, which ensure that 

the antibody elicits an appropriate immune response when bound to antigen. Somatic 

recombination of the antigen receptor genes first occurs in the immunoglobulin heavy chain 

locus [26]. Recombination by the RAG-1 and RAG-2 proteins induces a unique receptor 

through the assembly of a variable (V), diversity (D), and joining (J) gene segment, with 

addition of untemplated nucleotides in the junctions. After the V(D)J recombination, the 

immunoglobulin heavy chain is expressed to form a pre-BCR. Cells with a functional pre-

BCR pass this positive selection process and move on to recombination of the 

immunoglobulin light chain locus.  

Before the B cells exit the bone marrow, a negative selection process occurs to identify self-

reactive cells [27]. Cells that pass the negative selection process can exit to the blood and 

circulate in secondary lymphoid organs as IgM+ immature B cells. Cells that fail the negative 

selection will undergo receptor editing of the immunoglobulin light chain. B cells presenting 

an altered BCR that remains autoreactive are eliminated. 
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Activation of B cells in secondary lymphoid organs depends on three signals: (i) recognition 

of the antigen by the BCR; (ii) interaction with T cells through MHC-TCR; and (iii) 

costimulatory receptors such as CD40L and cytokine stimulation such as IL-6, IL-21, B-cell 

activating factor, and a proliferation-inducing ligand. Activated B cells form germinal centers 

in order to develop high affinity BCRs through somatic hypermutation. This typically occurs 

in the white pulp in the spleen, where B cells interact with the antigen and Tfh cells. IL-4 and 

IL-21 from the Tfh cell provide survival signals to B cells presenting the highest affinity for 

the antigen. High-affinity B cells, with the best antigen-presenting capability, undergo clonal 

expansion, while lower-affinity B cells die. Germinal center B cells can be identified through 

the expression of CD95 and the GL7 ligand as well as by binding of peanut agglutinin. The 

antigen-binding fragment (Fab) of the BCR consists of three complementarity-determining 

regions (CDR). These regions have the highest frequency of mutations during somatic 

hypermutation. Activation-induced cytidine deaminase induces enzymatic mutations in these 

hypervariable regions, and an error-prone DNA polymerase repairs the segment causing 

modifications of the receptor [28]. 

The constant region of the immunoglobulin heavy chain defines the class of the antibody. 

Class switch recombination between different switch regions in the immunoglobulin heavy 

chain gene locus is determined by the cytokine milieu and changes the antibody isotype to 

IgA, IgE, or IgG. TGF- induces a switch to IgA that is secreted at mucosal sites. IL-4 

induces a switch to IgE that binds receptors on mast cells and is important in combating 

parasites. There are several IgG subtypes. IFN- gives an IgG3 switch in humans and an 

IgG2a switch in mice. IL-4 gives IgG1 and IgG4 in humans and IgG1 in mice. The isotype 

dictates the effector functions of the antibody [29]. The Fc-part of the IgG has different 

affinities for Fc-receptors and different abilities to activate the complement system. 

Differentiation of B cells can finally lead to plasma cells that secrete large amounts of 

antibodies [30]. Plasma cells express CD138, and long-lived plasma cells reside in the bone 

marrow. A small percentage of activated B cells differentiate into memory B cells, which are 

ready to be activated upon a new infection by the previously encountered pathogen. 

1.1.2.2 Cellular immunity 

T cells develop in primary lymphoid organs. Common lymphocyte progenitors in the bone 

marrow mature and are recruited to the thymus where they develop into naïve T cells [31]. 

The TCR resembles immunoglobulin [32] and uses RAG-dependent recombination to induce 

diversification and specificity to the receptor. An -chain and a -chain form the -TCR-

heterodimer. The TCR on  T cells similarly consists of a  and a -chain. Each - and -

chain consists of a constant region and a variable region with three CDRs. CDR3 is the most 

important region for antigen recognition. The -chain has an additional hypervariable area 

(HV4), but it does not take part in regular antigen recognition and is not considered a CDR. 

The TCR--chain is ontogenetically similar to the immunoglobulin heavy chain in the BCR, 

but lacks the Fc-part, and the TCR--chain is similar to the immunoglobulin light chain. The 



 

 5 

generation of the TCR starts with V(D)J recombination of the -chain locus. The generated 

-chain is paired with a pre -chain and if this pre-TCR is functional, the recombination 

continues with the -chain locus. The successful formation of a -chain also shuts down 

recombination of the second -chain locus, a mechanism called allelic exclusion. When the 

-TCR is successfully formed, the cell starts to express both CD4 and CD8 molecules, and 

enters the double positive phase of maturation in the thymus.  

Cortical thymic epithelial cells (cTEC) express MHC class I and II. These molecules 

associate with self-peptides and interact with the T-cell precursors [33]. In a positive selection 

process, more than 90% of the immature thymocytes undergo apoptosis due to lack of affinity 

to MHC. The remaining cells with TCRs, with the ability to bind MHC, survive, and the 

continued expression of CD4 or CD8 is decided in this process. Depending on their TCR 

interaction with MHC class I or II, the cells develop into CD8-single positive or CD4-single 

positive T cells, respectively. These molecules are important co-receptors of the TCR-

complex and take part in intracellular phosphorylation during T-cell activation [34]. 

Medullary thymic epithelial cells (mTEC) control the negative selection crucial for T-cell 

tolerance induction. These cells express the autoimmune regulator (AIRE) transcription 

factor, which enables expression of tissue-restricted antigens (TRA) [35]. Peptides from these 

TRAs are loaded on MHC, while exogenous loading pathways are hampered. This allows a 

screen and elimination of T cells that recognize self-peptides. Each TRA is only expressed by 

a minor subset of mTECs. The single positive thymocytes perform a thorough scan of several 

mTECs over a 5-day period in the medulla. Dendritic cells and cTECs also participate in the 

negative selection process. The TCR signaling strength decides the fate of the cells [36]. The 

majority of high affinity single positive cells undergo apoptosis. Natural Tregs develop from 

cells with intermediate TCR signaling strength that upregulates Foxp3. Tregs maintain 

homeostasis and prevent immune reactions to self-antigens. Autoimmunity may occur when 

this central tolerance mechanism fails. The cells with low TCR signaling do not recognize 

self-peptides and mature into conventional naïve T cells.  

The TCR heterodimer has only a short intracellular part and needs to form a complex with 

CD3, which transmits the TCR activation signal intracellularly. The signal transduction starts 

a cascade of kinases and phosphatases leading to phosphorylation of Zap70, which attracts 

phospholipase C-. Next, transcription factors are activated. Nuclear factor of activated T-

cells (NFAT) is released in the nucleus and starts transcription of a broad range of genes such 

as IL-2. IL-2 is needed for long-term T-cell activation and proliferation [37]. 

The priming of naïve T cells occurs in secondary lymphoid organs and is MHC-dependent 

[38]. Several TCR-MHC complexes need to signal simultaneously to activate the T cell, 

while adhesion molecules stabilize the interaction between the T cell and APC. The TCR-

MHC interaction provides the first activation signal. The T cell also needs costimulation from 

ligands such as CD80 and CD86 expressed by the APC. These molecules ligate the 

costimulatory molecule CD28 on the T cell. This gives the second activation signal and 
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allows the T cell to initiate cell division and upregulate CD25, a high-affinity IL-2 receptor 

[39]. IL-2 is crucial for maintaining T-cell activation and drives clonal expansion. The T-cell 

production of IL-2 forms an autocrine loop [40]. This is the third signal that is needed for T-

cell activation, along with cytokines provided by the APC, crucial for the activation and 

differentiation into effector T-cell subsets (Fig. 1). 

CD8+ cytotoxic T cells screen nucleated cells for the presence of intracellular pathogens. 

Cytoplasmic proteins are digested in the proteasome and loaded on MHC class I, which is 

then transported to the cell surface. If the cell presents peptides on MHC class I that are 

identified as foreign, e.g., damaged self-peptides or derived from intracellular bacteria and 

viruses, the cell is killed. Damaged self-peptides are more common in tumor cells, and CD8+ 

T cells prevent tumor development. Normal self-peptides are tolerated through the thymic 

education process and are not recognized by the CD8+ T cells in the periphery. MHC 

molecules in man are called human leukocyte antigens (HLA). Three separate loci encode 

MHC class I: HLA-A, HLA-B, and HLA-C. The homologues in mice are H2-D, H2-K, and 

H2-L. MHC class I consists of an -chain linked to the non-polymorphic protein, -

microglobulin. The -chain contains a peptide-binding groove that fits an 8-11 amino acid 

long peptide. The groove needs to be occupied to stabilize the complex. Another domain of 

the -chain recognizes the CD8 co-receptor of the TCR complex and restricts MHC class I 

activation to CD8+ T cells. CD1d is another antigen presenting molecule that resembles 

MHC class I, but presents glycolipids to natural killer T cells. 

Dendritic cells, B cells, and macrophages are primarily responsible for presentation of 

extracellular antigens. These cells internalize microbes and foreign material by endocytosis. 

Internalized proteins are degraded in lysosomes and peptides generated in this process 

associate with MHC class II. The peptide-MHC complex is then transported to the cell 

surface where T cells can recognize the potential antigen. Humans have three MHC class II 

loci: HLA-DP, HLA-DQ, and HLA-DR. These loci contain polymorphic genes that ensure 

efficient antigen presentation of a broad range of peptides. The mouse homologues are H2-M, 

H2-A, and H2-E with the latter usually called IA and IE since they were initially named 

immune response genes. The MHC class II molecule consists of an -chain and a -chain, 

where a peptide groove is formed between the chains. The fitted peptides are usually 15 

amino acids long, but there is no steric hindrance for longer peptides. Similar to MHC class I, 

only complexes with a bound peptide are stable on the cell surface. The -chain contains a 

domain binding CD4, which restricts MHC class II presentation to CD4+ T-helper cells.  

1.1.3 T-cell subsets 

Naïve T cells express high levels of the surface molecule CD62L, a homing receptor for the T 

cells to enter secondary lymphoid tissues. CD62L binds glycosylation-dependent cell 

adhesion molecule-1 expressed in high endothelial venules. When a T cell finds its antigen, it 

differentiates into an effector T cell, proliferates, and secretes cytokines. CD4+ T cells 

differentiate into T-helper cells, and cytotoxic T cells are differentiated from CD8+ T cells. 
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The activated T cell downregulates CD62L and upregulates the cell adhesion molecule 

CD44, a marker for effector/memory T cells. Central memory T cells express both CD62L 

and CD44, together with CCR7, and are retained in the secondary lymphoid organs [41]. T 

effector/memory cells that lack CCR7 expression migrate to tissues. Integrins on their cell 

surface recruit them to inflammatory sites where the endothelium expresses adhesion 

molecules, such as vascular cell adhesion molecule-1 (VCAM-1). The threshold for 

reactivation of effector T cells in the periphery is lower than for naïve T cells. 

 

Figure 1. T-helper cell differentiation. Antigen is presented by a dendritic cell to a naïve CD4+ T-helper cell, 

which gets activated and differentiates into different subsets depending on the local cytokine milieu. Th1 cells 

are important for immunity to viruses, intracellular bacteria, and parasites. Th2 cells are important for immunity 

to extracellular parasites, including helminths. Th17 cells are important for immunity to extracellular bacterial 

and fungal infections. Tregs are involved in regulation of immunity and tolerance mechanisms. Tfh cells help B 

cells. 

1.1.3.1 Cytotoxic T cells 

CD8+ cytotoxic T cells are important in fighting viruses, intracellular bacteria, and tumor 

cells. They release perforin, granzymes, and granulysin when they identify an infected cell. 
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These cytotoxins enter the targeted cell, which lead to apoptosis through serine protease 

activity. Cytotoxic T cells can also induce cell death through FAS ligand expression that 

binds CD95 (also known as FAS receptor) on the target cell.  

1.1.3.2 T-helper 1 cells 

CD4+ T-helper cells can differentiate into different subsets depending of factors in the local 

milieu. The properties of Th1 and Th2 cells were the first to be described [42]. Th1 cells fight 

intracellular bacteria, viruses, and protozoa. Differentiation is driven by IL-12 and IFN- and 

leads to expression of the transcription factor T-bet encoded by the TBX21 gene. T-bet is a 

Th1 specific transcription factor that controls the hallmark cytokine of Th1 cells, IFN- [43]. 

IFN- can inhibit viral replication directly, but can also cause delayed type hypersensitivity 

and is associated with several autoimmune disorders [44, 45]. It upregulates MHC class II on 

APCs and activates pro-inflammatory responses of macrophages. Th1 cells can also provide 

help to B cells through CD40L expression and promote IgG isotypes efficient in 

opsonization. 

1.1.3.3 T-helper 2 cells 

Th2 cells are specialized in fighting extracellular parasites and cause eosinophilic 

inflammation. The influence of IL-4 on activated T cells leads to expression of the 

transcription factor GATA3, which induces differentiation to the Th2 lineage, while 

suppressing Th1 pathways [46]. This leads to production of IL-4, IL-5, and IL-13. IL-33 can 

also induce expression of these Th2-related cytokines [47]. Th2 cells are important for the 

humoral immune system and promote class-switching and production of neutralizing 

antibodies. Th2 cells are responsible for allergic inflammation, such as asthma, through the 

effects of IL-4 on B cells that promote IgE antibody production [48]. 

1.1.3.4 Th17 cells 

A third important subset of T-helper cells was named Th17 cells for their ability to produce 

IL-17 isoforms [49, 50]. IL-6 together with TGF- induces Th17 cell differentiation [51]. IL-

23 has an important role in the expansion and survival of Th17 cells. IL-1 and TNF can 

further amplify Th17 differentiation. A specific isoform of retinoic acid-related orphan 

receptor gamma in T cells (RORt) orchestrates Th17 cell differentiation [52]. Activated 

Th17 cells are specialized in fighting extracellular bacteria and parasites. Their signature 

cytokine is IL-17A, but also IL-17F, IL-21, and IL-22 are produced. IL-17A has pro-

inflammatory actions. It induces local CCL20 expression, a chemoattractant that recruits 

more Th17 cells to the site due to their expression of the CCL20-chemokine receptor CCR6 

[53]. Several studies have implicated involvement of Th17 cells in autoimmune diseases like 

multiple sclerosis, psoriasis, and rheumatoid arthritis [54-56]. Recently, IL-17A has been 

reported to have fibrogenic properties with an important role in wound-healing and liver 

fibrosis [57, 58]. 
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1.1.3.5 Regulatory T cells and peripheral tolerance mechanisms 

Tregs are important in immune homeostasis. Investigations initially described a suppressor 

activity that could restrain activation and proliferation of T cells [59]. The mechanism was 

difficult to pinpoint until CD25 was identified as a cell-surface marker of cells carrying this 

activity [60]. The cells could then be purified and studied in detail. Forkhead box P3 (Foxp3) 

is the key regulatory transcription factor of Tregs [61]. Mutations in the FOXP3 gene leads to 

the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) in 

humans [62] and mice with a mutation in the Foxp3 gene also suffer from fatal autoimmunity 

[63]. Natural Tregs develop in the thymus and circulate in the body to prevent reactivity of 

the immune system to self-antigens. Tregs can also be induced in the periphery by activation 

in the presence of TGF- and IL-2. Tregs secrete the anti-inflammatory cytokines: TGF- 

and IL-10, with TGF- influencing neighboring T cells to become induced Tregs [64]. 

Suppressive mechanisms include IL-2 deprivation that leads to apoptosis of the effector T 

cells [65]. Tregs also have various cell-mediated suppressive mechanisms and can decrease 

costimulation and antigen presentation by APCs [66]. Type 1 regulatory T (Tr1) cells are 

Treg-like cells, but lack Foxp3 expression. They mainly reside in the gut and have the ability 

to produce large amounts of IL-10, which makes them important in mucosal tolerance. IL-10 

inhibits presentation of antigens, decreases expression of costimulatory molecules, and blocks 

cytokine and chemokine secretion [67]. 

T-cell activation in the absence of pro-inflammatory mediators may lead to induced tolerance 

in the periphery. APCs that are not activated by, e.g., TLR ligation, express low levels of 

costimulatory molecules. The recognition of its antigen without costimulation promotes T-

cell anergy. Anergic T cells are unable to mount a normal immune response against their 

antigens even though presentation may occur with costimulation later. Tolerogenic dendritic 

cells are specialized in presenting self-peptides to induce antigen-specific Tregs. Their 

functionality is suggested to be mediated through cytokine secretion, such as IL-10 and TGF-

, and lack of costimulation [68]. In addition, indoleamine 2,3-dioxygenase (IDO) activity in 

tolerogenic dendritic cells leads to production of tryptophan metabolites that inhibit activated 

T cells. 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is expressed on activated T cells to 

reduce the immune response and to restore homeostasis after clonal expansion. It binds to 

CD80 and CD86 on APCs and prevents their binding of the costimulatory molecule CD28 

[69]. Tregs constitutively express CTLA-4, and it is critical for their ability to suppress 

immune responses [70]. Programmed cell death protein 1 (PD-1) is also an important 

inhibitory surface receptor on T cells. It binds PD-L1 and PD-L2 and prevents excessive T-

cell activation and autoimmunity [71]. All these mechanisms act together to regulate the 

immune response, but immune tolerance is not indefectible. There are several examples of 

autoreactive T cells that escape control and cause autoimmune disorders. 
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1.1.3.6 T follicular helper cells 

Tfh cells are a distinct subset of antigen-experienced T-helper cells that are specialized to 

assist follicular B cells in their formation of germinal centers [72]. Tfh cells depend on IL-6 

and IL-21 to activate their lineage-specific transcriptional profile with Bcl-6 as the 

transcriptional master regulator [73]. Tfh cells secrete IL-21, which provides proliferative 

signals to activated B cells and also forms an autocrine loop during the Tfh cell 

differentiation. After antigen recognition, the Tfh cell upregulates CXCR5 to home to 

germinal centers. Through expression of CD40L, the cells trigger and maintain germinal 

center reactions. The ligation of CD40 on B cells by CD40L activates activation-induced 

cytidine deaminase that drives somatic hypermutation and causes antibody class-switching.  

1.2 ATHEROSCLEROSIS 

Cardiovascular disease is the main cause of death in the world, with ischemic heart disease 

and stroke accounting for one in every four deaths worldwide [74]. Atherosclerosis is the 

underlying cause in most cases. The disease progresses slowly with chronic inflammation and 

a build-up of lipid-laden plaques in large- and medium-sized arteries. Atherosclerosis 

typically remains unnoticed over several decades until a rupture of the plaque elicits 

thrombus formation that occludes the vessel and leads to ischemic tissue damage. 

1.2.1 The pathogenesis of atherosclerosis 

A normal artery consists of an intima layer with endothelial cells and sparsely distributed 

smooth muscle cells, a media layer with smooth muscle cells and elastic lamellae, and a 

surrounding adventitial layer with loose connective tissue [75]. An intimal accumulation of 

LDL offsets atherosclerosis development. Already in young adults, coronary atherosclerosis 

is evident as fatty streaks [76, 77]. The proteoglycan-binding and retention of LDL in the 

subendothelial space is the initiating event [78]. The trapped lipoproteins are biochemically 

modified by proteases and lipases, leading to aggregation and increased proteoglycan binding 

[79]. Oxidative modifications by myeloperoxidase, lipoxygenase, and reactive oxygen 

species lead to formation of oxidized LDL (oxLDL) that could elicit an innate inflammatory 

response [80]. 

In response to the trapped and modified lipoproteins and at sites in the arterial tree with 

turbulent blood flow, endothelial cells start to express adhesion molecules, such as VCAM-1 

[81, 82]. Circulating monocytes and other leukocytes are recruited to these sites. The 

infiltrating monocytes differentiate into macrophages in response to M-CSF and GM-CSF 

produced by endothelial cells [83]. The monocyte-derived macrophages are a major cell 

population in atherosclerotic plaques and can proliferate locally [84, 85]. They express 

scavenger receptors, of which scavenger receptor class-A and CD36 have been identified to 

be the most important for uptake of modified LDL [86]. Scavenger receptors are not 

downregulated in response to intracellular cholesterol accumulation. The continued 

engulfment of lipids leads to macrophage foam cell formation [87]. The large and foamy cells 

are trapped within the arterial intima and have compromised migratory capacity [88]. 
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1.2.1.1 Risk factors 

The Framingham heart study started in 1948 with the aim to identify preventable risk factors 

for cardiovascular disease. After 6 years follow-up, elevated blood pressure, 

hypercholesterolemia and left ventricular hypertrophy were identified as independent 

predictors of risk for developing coronary heart disease [89]. Later, cigarette smoking, lack of 

exercise, obesity, diabetes, and low HDL levels were identified as risk factors.  

Inflammation was associated with myocardial ischemia through measurements of the acute 

phase reactant, C-reactive protein (CRP), in plasma [90]. Later it was recognized that 

elevated CRP levels, as an independent risk factor, could predict future cardiovascular events 

[91, 92]. Clinical symptoms of atherosclerosis typically do not arise until later in midlife 

illustrating how age is an important risk factor [93]. Lesion development is influenced by 

environmental factors, such as diet, but atherosclerosis is not a modern disease. It has existed 

in several ancient cultures with disparate eating habits [94]. Previously, males have been 

assumed to be at greater risk to develop cardiovascular disease. This is contradicted by 

current mortality statistics that show a small predominance of female deaths by 

cardiovascular disease [95]. Genetic factors are important for atherosclerosis and genome-

wide association studies have identified several single nucleotide polymorphisms linked to 

increased risk for coronary artery disease [96]. The most robust genetic association is located 

in the chromosome 9p21 locus and has been implicated in trans-regulation of interferon 

signaling [97]. Some of the other identified loci are also linked to inflammation, but the 

associations are weak in comparison to other inflammatory diseases. This probably reflects a 

complex and multifactorial origin of the genetic contribution to atherosclerosis. 

1.2.1.2 Symptoms of atherosclerosis 

As the atherosclerotic plaque grows, it becomes more and more complex. Fatty streaks 

develop into fibro-fatty lesions that become advanced plaques. Plaques might even grow into 

a large stenosis that narrows the lumen. This could impair blood flow with symptoms such as 

angina pectoris or intermittent claudication. Plaque rupture or endothelial erosion may also 

occur. This leads to exposure of thrombogenic material, such as tissue factor, collagen, and 

phospholipids. Platelets rapidly aggregate, with ensuing coagulation, and thrombus 

formation. This blocks the blood flow and causes ischemia and tissue damage. Thrombus 

formation in a coronary artery may lead to myocardial infarction, and a peripheral thrombus 

may lead to gangrene. If a rupture occurs in a plaque located in a carotid artery, a stroke may 

be the consequence due to cerebral embolism. 

1.2.1.3 Plaque stability 

Plaque ruptures are estimated to account for around 70% of coronary thrombosis events [98]. 

The remaining 30% emphasize the importance of other mechanisms for clinical disease. 

Endothelial erosions are defined as the absence of endothelial lining leading to an acute 

thrombus formation without signs of cap rupture [99]. The underlying intima is usually rich 

in smooth muscle cells and proteoglycan matrix. Importantly, observations indicate that 
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endothelial erosions are becoming more frequent and modern pharmaceutical treatments with 

statins might drive this change [100, 101]. New successful therapies probably need to prevent 

both rupture and erosion or be given to substratified risk groups for either of these conditions. 

Large and complex plaques contain a core with dying cells, both apoptotic and necrotic, 

cholesterol crystals, and other extracellular material. The necrotic core is covered by a fibrous 

cap, and at the shoulder regions of the plaque, accumulation of immune cells, such as T cells, 

are seen [102]. Symptoms of atherosclerosis typically arise when the cap fails to withstand 

the pulsatile force from the blood pressure and superficial fissures are formed, usually near 

the edges of the plaque [103]. Plaques vulnerable to rupture are characterized by a thin 

fibrous cap, a large lipid-filled necrotic core, and on-going inflammation [104, 105].  

Smooth muscle cells and collagen have a central role in plaque stability. TGF- stimulates 

extracellular collagen maturation and positively regulates collagen synthesis by smooth 

muscle cells [106, 107]. Mature collagen provides mechanical strength to the fibrous cap. 

IFN- is a powerful destabilizing agent and inhibits smooth muscle cell differentiation and 

proliferation as well as collagen production and maturation [106, 108, 109]. Matrix 

metalloproteinases degrade collagen fibers and promote plaque vulnerability [110]. As an 

illustration, mast cells that are commonly found at sites of plaque rupture, release proteases 

that degrade matrix and activate matrix metalloproteinases [111]. Atherosclerotic 

calcification usually provides stability to the plaques, but when the calcification occurs in 

small nodules, it adds instability. The latter is seen as spotty calcifications with 

ultrasonography and is associated with cardiovascular events [112]. Plaque stability can be 

estimated with imaging methods, such as ultrasonography, but there is a need for better 

techniques with higher resolution.  

1.2.2 The immune response in atherosclerosis 

Atherosclerosis is a chronic inflammatory disorder, although the contribution of cholesterol 

to the disease has been the main topic in the public debate [113]. The link between 

cholesterol and atherosclerosis became evident in 1913 when Nikolay Anichkov fed 

cholesterol to rabbits and investigated their aortas [114]. In 1856, Rudolf Virchow laid forth a 

hypothesis about how inflammation may initiate plaque formations in the arterial wall [115]. 

In support of this, recent knowledge has connected atherosclerotic cardiovascular disease 

with other inflammatory diseases. Patients with rheumatoid arthritis, psoriasis, or systemic 

lupus erythematosus all have increased risk for myocardial infarction [116, 117]. Low-grade 

inflammation, such as periodontitis, also gives an increased risk [118].  

Associations between infections and atherosclerosis have led to a hypothesis about an 

infectious cause of atherosclerosis. Chlamydia pneumoniae could accelerate experimental 

atherosclerosis [119], but the effect depends on several factors [120] and antibiotics do not 

benefit coronary artery disease patients [121]. In addition, germ-free mice can develop 

atherosclerosis [122], but this study is far from conclusive. Taken together, there is no causal 
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link between an infectious agent and atherosclerosis. Instead, evidence points to 

atherosclerosis being an autoimmune disorder.  

After the discovery of immune cells in atherosclerotic plaques using monoclonal antibodies 

[102], a great focus has been put on inflammation in cardiovascular research. This has led to 

major findings regarding the pathogenesis of atherosclerosis as well as new therapies such as 

drug-coated stents used for percutaneous coronary interventions. These metal stents are 

coated with an immuno-suppressive drug, such as rapamycin, which also inhibits 

proliferation of smooth muscle cells and decreases the restenosis frequency [123, 124]. Low 

dose aspirin is used clinically for platelet inhibition and not as an anti-inflammatory drug. For 

other anti-inflammatory drugs, e.g., cortisone and non-steroid anti-inflammatory drugs, 

adverse effects make them unsuitable for long-term treatment of cardiovascular 

inflammation. There is a need for more specific treatments. Several new anti-inflammatory 

treatments are under development [125], and hopefully a range of drugs will become 

available in the future. 

1.2.2.1 Innate immune activation in atherosclerosis 

In vitro studies have shown that oxLDL promotes innate immune activation in macrophages. 

In atherosclerotic lesions, macrophages have nuclear factor -light-chain-enhancer of 

activated B cells (NF-B) translocated to their nuclei as a sign of innate immune activation 

[126]. Macrophages in the plaques express various TLRs. Modified LDL and products 

thereof might be endogenous ligands to TLR2 and TLR4 [127, 128]. Other ligands, both 

endogenous and exogenous for TLRs expressed by macrophages have been suggested as well 

[129]. The downstream signaling molecule of several TLRs, Myd88, confers an important 

pro-atherosclerotic signal, but also transmits IL1- and IL-18 signals [130]. 

Lysophosphatidylcholine and oxidized non-esterified fatty acids generated during LDL 

oxidation by lipoprotein-associated phospholipase A2 could also activate the innate immune 

system [131]. All these events are likely to be important factors that initiate and contribute to 

the maintenance of the inflammation in the forming lesions. Nonetheless, preventive 

measurements against innate immune activation with anti-oxidants or selective lipoprotein-

associated phospholipase A2 inhibition have failed to show benefit in patients [132-134]. 

Cholesterol crystals form in foam cells and can activate the NLRP3 inflammasome, leading 

to IL-1 release [135, 136]. The NLRP3 inflammasome contains leucine-rich repeats that 

sense intracellular danger signals. The activated inflammasome recruits caspase-1 that 

cleaves the pro-form of IL-1 to its functional and releasable form. This provides a clear link 

between cholesterol metabolism and innate immune activation. Inhibition of IL-1 to prevent 

cardiovascular events, is currently under evaluation in clinical trials [137]. The released IL-1 

acts on smooth muscle cells to produce IL-6 [138], which in turn signals to the liver to 

produce CRP [75]. 

Innate immune cells, such as neutrophils, mast cells, natural killer cells, and natural killer T 

cells have been suggested to play important roles during atherogenesis, but are minor 
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populations in the plaques in comparison to macrophages and CD4+ T cells. In 

hypercholesterolemic mice, neutrophils are recruited during the initiation of atherosclerosis, 

but they are not present at later stages [139]. Mast cells may play a role in plaque stability 

with their matrix degrading enzymes [111]. Natural killer cells and natural killer T cells 

aggravate atherosclerosis, possibly due to IFN- release [140, 141]. Natural killer T cells that 

produce IL-10, may on the other hand, limit disease development [142].  T cells do not 

seem to impact atherosclerosis [143, 144]. Taken together, several small populations of innate 

immune cells play significant roles at different stages of disease development, but the main 

innate immune effector cell type in the plaques is macrophages. 

1.2.2.2 Adaptive immune activation in atherosclerosis 

HLA-DR is expressed by several cell types in the atherosclerotic plaque and presents antigen 

to CD4+ T cells [145]. Genome-wide association studies have implicated associations 

between MHC and coronary artery disease [146]. The regulation of MHC expression has also 

been associated with myocardial infarctions [147], and certain HLA haplotypes are associated 

with either increasing risk or conferring protection, although the associations are weak [148]. 

MHC class II expressing cells, together with the significant number of T cells present in the 

atherosclerotic plaques at all stages of the disease, form the basis of the adaptive immune 

response in atherosclerosis [80]. 

Dendritic cells are found in atherosclerotic plaques and in the adjacent adventitia [149]. They 

take up plaque-derived antigens and migrate to lymph nodes where they display these 

antigens to a large number of naïve T lymphocytes [150]. Autoantigens derived from the 

LDL particle have been shown to be important for atherosclerosis. The frequent presence of 

anti-oxLDL antibodies shows that B cells react to oxLDL [151]. In general, these antibodies 

are more prevalent in coronary artery disease patients than healthy controls [152]. As oxLDL 

is a complex particle with disparate properties and large heterogeneity, it harbors many 

potential epitopes of which lysophosphatidylcholine, phosphorylcholine, and different 

peptides from Apolipoprotein (Apo) B100 have been identified [153-155]. Anti-oxLDL 

antibodies can be either IgM or IgG, implicating that an isotype class-switch takes place, 

which, in turn, indicates T-cell help. Indeed, T cells from humans with atherosclerosis 

recognize LDL components presented by APCs [156]. 

Heat shock protein (hsp) 60/65-reactive T cells have also been isolated from atherosclerotic 

plaques [157, 158]. Autoantibodies against hsp60/65 have been reported to be pathogenic, 

mediating cytotoxicity to endothelial cells, and evoking fatty streak formation [159, 160]. 

Heat-shock proteins are highly conserved, from bacteria to man, and produced in response to 

stressful conditions, such as hemodynamic strain and inflammation. Substantial antibody 

cross-reactivity exists between human hsp60 and the hsp60/65 counterparts in Chlamydia and 

Mycobacteria, which possibly explains these microbes’ association with atherosclerosis. 

Induced mucosal tolerization to hsp65 protects against experimental atherosclerosis [161], but 

regular immunization against hsp65 could also induce such effect [162]. Further studies are 

needed to disentangle the role that heat shock proteins play as autoantigens. Other 
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immunogens that have been implicated in atherosclerosis are Apo-H (previously known as 

2-glycoprotein I) [163] and aldehyde-modified extracellular matrix proteins [164]. 

Vaccination against modified LDL confers a clear protective effect in experimental 

atherosclerosis models [165-168]. Proposed protective mechanisms include both cellular and 

humoral immunity as well as natural IgM antibodies [169]. Studies have focused on 

oxidation- or malondialdehyde-modified epitopes in LDL, but one of the initial findings was 

a superior protection by immunization with native LDL [166]. Protection from 

atherosclerosis can also be achieved through vaccination with native peptides from the ApoB-

protein in LDL [170, 171]. Some protocols designed to induce mucosal tolerance implicate 

ApoB-specific Tregs with TGF- and IL-10 secretion to confer the protection [172-174]. 

Dendritic cell vaccination that promotes development of ApoB-specific Tregs confirms this 

notion [175]. In humans, anti-oxLDL IgG levels in plasma are associated with coronary 

artery disease, while IgM levels show the inverse relationship [176].  

The protective effect of antibodies could be: (i) neutralization of the pro-inflammatory 

properties of oxLDL, (ii) inhibited scavenger receptor uptake of oxLDL by foam cells, or (iii) 

Fc-mediated clearance of the particles [177]. Clearance of circulating particles would lower 

plasma cholesterol levels. An inverse association between serum cholesterol and oxLDL 

antibody titers in humans supports this notion [178]. This association has also been reported 

in LDL-vaccinated animals [168], and several other immunization studies show a decrease in 

total plasma cholesterol [179-181]. In addition, atheroprotection and LDL reduction are also 

seen in passive immunizations of hypercholesterolemic mice [182]. These studies have 

proposed that the protective mechanism to be neutralization of oxLDL [168, 182], inhibition 

of scavenger receptor uptake by foam cells [179, 181], or modulation of cellular immune 

responses [179, 180]. Reduction of LDL cholesterol mediated by anti-LDL antibodies seems 

to be a protective mechanism that has been overlooked or downplayed. Most studies have 

focused on modified LDL immunizations and disregard the clear protection from vaccination 

with native LDL [166, 180]. Together with the frequently seen autoantibodies against native 

ApoB peptides in humans [155], this suggests that adaptive immune responses to native LDL 

have a central role in atherosclerosis. 

Interestingly, the atherosclerosis-associated immune response is not restricted to the intimal 

plaques and draining lymph nodes. Microvessels, lymphatics, and small conduits are formed 

that open a communication between the plaque and the adventitia [183, 184]. The media layer 

is normally immune-privileged, possibly through IDO expression [185], but tertiary lymphoid 

organs are formed in the adventitia located underneath the advanced plaques [183, 186, 187]. 

This is an interaction site for dendritic cells, B cells, and T cells. In these tertiary lymphoid 

structures, B cells are activated by antigens derived from atherosclerotic plaques and form 

germinal centers. More studies are needed to elucidate the specificity of the adaptive immune 

cells in these locations since aortic tertiary lymphoid organs seem to be of substantial 

importance for atherosclerosis development [188, 189]. 
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1.2.2.3 B cells in atherosclerosis 

B cells are only occasionally detected in the atherosclerotic plaques [102, 190]. A protective 

immunity mounted by B cells in spleen has been established through splenectomy and B cell 

transfer experiments in atherosclerotic mice [191], and this immunity is supported by effects 

seen in mice lacking B cells [192]. In addition, an increased risk to die from myocardial 

infarction is evident in splenectomized patients [193]. In contrast, B-cell depletion using anti-

CD20 antibodies was reported to protect against experimental atherosclerosis [194, 195]. 

Indications of a beneficial effect on endothelial dysfunction exist in humans treated with anti-

CD20 antibodies [196]. However, it should be considered that treatment with anti-CD20 only 

targets conventional B2 cells, and the mechanistic understanding of how these cells promote 

the disease remains largely elusive. B1 cells and antibody-producing plasma cells are 

unaffected by anti-CD20 treatment and could thus confer a protective effect. B1 cell transfer 

protects against atherosclerosis with production of germ-line encoded natural antibodies 

[197]. Especially the T15-idiotype, which is important to fight Streptococcus pneumoniae, 

has been suggested to have a beneficial effect during atherogenesis [154]. The proposed 

mechanism is molecular mimicry between the microbe and oxLDL. Indeed, pneumococcal 

vaccination protects against experimental atherosclerosis by blocking oxLDL uptake and 

lowering plasma cholesterol [181]. However, mice with a specific abrogation of T15-idiotype 

natural antibodies do not have increased atherogenesis [198]. Several different IgM 

antibodies with oxLDL reactivity probably have overlapping effects.  

Similar to S. pneumoniae, apoptotic cells are immunogenic and share oxidation-specific 

epitopes with oxLDL particles [199]. Humoral immunity against these oxidation-specific 

epitopes occurs naturally and protects against atherosclerosis. The protective effect can be 

strengthened through apoptotic cell immunization, which lowers plasma cholesterol [200]. 

Possibly, IgM against (ox)LDL provides protection through neutralizing pro-inflammatory 

epitopes and by inhibiting scavenger receptor-mediated uptake, while anti-LDL IgG lowers 

cholesterol through immune complex formation.  

1.2.3 T cells in atherosclerosis 

Activated T cells are a significant cell population in atherosclerotic plaques [201, 202]. These 

T cells are antigen-experienced memory cells bearing evidence of an oligoclonal expansion 

[203, 204]. Mice with severe combined immunodeficiency, lacking both T and B cells, have a 

reduced development of atherosclerosis [205], and transfer of LDL-specific CD4+ T cells to 

these mice severely aggravates the disease [206]. A specific lack of CD4+ T cells inhibits 

atherosclerosis development [207, 208], although the Cd4-/- mouse model is far from optimal 

and still contain MHC class II restricted T cells [209]. CD8+ T cells do not have a major 

impact on experimental atherosclerosis in hyperlipidemic mice [144, 208], and are a minor 

population in comparison with CD4+ T cells, especially in mouse models of atherosclerosis. 

Treating Apoe-/- mice with a ligand for the costimulatory molecule CD137 increases CD8+ T-

cell recruitment to the plaque and promotes atherosclerosis [210]. CD8+ Tregs may also 

influence atherosclerosis development [189]. Nonetheless, CD4+ T-helper cells are the main 
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adaptive effector cells in the atherosclerotic plaques. These T-helper cells react to peptide 

fragments from the ApoB100-protein in LDL when presented on MHC class II [156, 211].  

Opposite to the innate response, oxidation of LDL blunts T-cell activation and possibly 

destroys the epitope. In immunized mice, several clones with an MHC class II restricted 

reaction to native LDL were shown to carry a TCR with the -chain TRBV31 [211]. The 

mice were humanized in regard to their LDL particles, which made induction of an 

autoimmune response to human lipoproteins possible. Blocking the TRBV31+ T-helper cells 

by vaccinating against a TRBV31-derived peptide protects from atherosclerosis [211]. 

Clearly, LDL-reactive T cells exist both in humans [156] and mice [211], but are difficult to 

assess experimentally. Immunization protocols can expand these T cells, but their actions are 

then influenced by the adjuvant in the vaccine preparation. The different effects of CD4+ T-

helper cell subsets on atherosclerosis are discussed in detail below. 

1.2.3.1 Th1 cells in atherosclerosis 

Th1 cells secrete IFN- and this cytokine promotes monocyte infiltration, macrophage 

activation, and foam cell formation. IFN- also advances Th1-differentiation in synergy with 

IL-12. In human atherosclerotic plaques, a predominance of a Th1 immune response can be 

observed, and T cells isolated from human plaques respond in a Th1-fashion ex vivo [156, 

212]. The pro-atherosclerotic effect of Th1 cells has been shown in several animal 

experiments. IFN--deficient mice [213-215] and knockout mice of the Th1-trancription 

factor T-bet [216] have reduced atherosclerosis development. These studies also confirm the 

strong effect of IFN- on stimulating antigen-presentation with upregulation of MHC class II 

as well as the ability of IFN- to inhibit smooth muscle cell proliferation and expression of -

smooth muscle actin, effects that were initially described in [108, 145, 217, 218]. These 

effects make the plaque more vulnerable to rupture, the key event responsible for clinical 

manifestations of atherosclerosis, such as myocardial infarction and ischemic stroke. In 

conclusion, most evidence points to atherosclerosis being a Th1-driven disease, with a 

multitude of pro-atherosclerotic effects mediated by IFN-. However, several other cells in 

the plaque, such as macrophages and natural killer T cells, also have the ability to produce 

IFN-. The relative contribution of IFN- in the plaques from these cells compared to Th1 

cells is not clarified [140, 219, 220]. 

1.2.3.2 Th2 cells in atherosclerosis 

From the classical dichotomy of dividing T-helper cell subsets in Th1 and Th2, it is clear that 

Th1 cells are more frequent in atherosclerotic plaques, with Th2 cells much less common 

[212]. Severe hyperlipidemia could switch the balance toward a Th2 phenotype in Apoe-/- 

mice, but the impact of this on atherosclerosis is uncertain [221]. Compound-knockout mice 

have been used to assess the separate effects of Th2-related cytokines. Most studies of IL-4 

point toward a disease promoting effect [222, 223], while IL-5, IL-13, and IL-33 may limit 

the disease development [169, 224, 225]. The protective mechanism of IL-5 could be 

mediated through its stimulation of natural antibody production by B1 cells. A single 
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nucleotide polymorphism in the IL-5 locus is associated with human coronary heart disease, 

corroborating the experimental findings [226]. Nonetheless, Th2 cells are infrequent in 

human atherosclerotic plaques and have an undecided importance. 

1.2.3.3 Th17 cells in atherosclerosis 

The impact on atherosclerosis by Th17 cells has been difficult to assess clearly. Th17 cells 

are a minor population in the plaques [227], and IL-17A, the signature cytokine of Th17 cells, 

is also produced by other cells, e.g., mast cells and neutrophils [228]. Several experimental 

studies have described conflicting effects on atherosclerosis development. Publications 

investigating IL-17A deficient Apoe-/- mice have reported increased [229], decreased [230], 

or no effect at all on lesion size [231]. A proposed explanation was an upregulation of the 

family member gene IL-17F in the absence of IL-17A, but neutralization of IL-17F in the IL-

17A deficient animals did not impact atherosclerosis [231]. The different effects might be 

attributed to different effects of IL-17A at different stages of the disease development and 

other parameters.  

The use of anti-IL17A neutralizing antibodies and other methods of IL-17A blockade have 

shown more coherent results with a reduction in lesion size [232-234]. Conflicting results 

have been reported and are suggested to be due to different antibodies and treatment 

protocols [235, 236]. In accordance with the results of a proatherogenic role for IL-17A, 

knocking down the IL17-receptor leads to less atherosclerosis [237, 238], and administering 

recombinant IL-17A promotes the disease [232]. These various effects of IL-17A have been 

reported to be mediated through both pro- and anti-inflammatory cytokines, effects on 

chemokines, matrix metalloproteinases, and adhesion molecules. Interestingly, 

proatherogenic conditions and oxLDL might induce Th17 cell differentiation [239].  

Apart from the various reports on lesion size, investigations of plaque composition and other 

experimental evidence point toward a plaque-stabilizing role for IL-17A [229, 231]. In 

response to acute coronary syndrome, Th17 cell percentage and IL-17A cytokine production 

are elevated in the blood [240]. Patients without this response due to low IL-17A levels in 

sera have a higher risk for recurrent cardiovascular events [241]. This supports the notion of 

IL-17A’s involvement in plaque stability and prompts for a study that establishes this 

connection mechanistically. Such explorations were undertaken in paper I of this thesis. In 

summary, experimental evidence points toward a complex role of IL-17A in atherosclerosis 

with diverse effects on different cell types in a multifaceted interplay with other cytokines. 

1.2.3.4 Tregs in atherosclerosis 

Minor populations of Foxp3+ Tregs are found in atherosclerotic plaques at all stages of the 

disease [242]. In experimental atherosclerosis, Treg number in lesions may vary [243], but 

Tregs have an important role to decrease inflammation and disease progression. Depletion of 

Tregs with anti-CD25 antibodies increases atherosclerosis in Apoe-/- mice [244]. Dendritic 

cell vaccination that evokes a cytotoxic response specifically to Foxp3+ T cells repeats this 

finding [245]. Transfer of Tregs is protective [244, 246] and similarly, expanding the Treg 
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population by using experimental protocols reduces atherosclerosis [247-249]. Treg 

expansion has been shown to induce regression of atherosclerosis [250] or create a plaque 

stabilization effect [251]. Antigen-specific Tregs may have an important protective role 

during atherogenesis as indicated by experimental vaccination studies [173, 174, 252]. 

Several studies have pointed out an important role for the anti-inflammatory cytokine IL-10 

during atherogenesis with its ability to prevent disease progression [253-255]. The other 

Treg-associated cytokine, TGF- has a more complex role being a potent regulatory cytokine 

with diverse effects. Posttranscriptional and posttranslational modifications regulate TGF- 

activity [256]. For immune cells, TGF- regulates differentiation, tolerance, and proliferation. 

Disrupting TGF- signaling in T cells leads to large, inflamed lesions in Apoe-/- mice [257]. 

However, the role of TGF- in atherosclerosis lesion development is not conclusive [258, 

259]. Various outcomes regarding atherosclerotic burden are evident when studying the 

general effect of TGF- without targeting a special cell type [260-264]. Nonetheless, all these 

studies agree on a plaque stabilizing effect of TGF- with stimulation of collagen production. 

Tregs and their effector molecules have been implicated in the regulation of cholesterol 

metabolism. Overexpression of IL-10 lowers VLDL and LDL [265] and Il10-/-xApoe-/- mice 

have elevated LDL levels [255]. In addition, Treg expansion in a regression model associates 

with reduced serum cholesterol [251]. Altogether, experimental evidence indicates that Tregs 

protect from atherosclerosis by dampening inflammation, with a possible involvement in the 

stabilization of plaques and regulation of serum cholesterol. 

1.2.3.5 Tfh cells in atherosclerosis 

In atherosclerosis, Tfh cells are not well-characterized. Tfh cells provide help to B cells, and 

both pro- and anti-atherosclerotic effects of B cells have been reported. Tertiary lymph 

structures in the proximity of the aorta contain germinal center B cells and effector T cells 

likely to be Tfh cells [183]. These lymphoid structures have been suggested to protect against 

atherosclerosis development [188]. Conversely, pro-atherosclerotic effects of Tfh cells have 

been suggested [189]. Further studies are needed to elucidate the mechanisms of action and 

effect of Tfh cells on atherosclerosis.  

No comprehensive report on the effects and role of IL-21 in atherosclerosis exist to this date. 

The exploration of Tfh-cell specificity, preferably isolated from tertiary lymphoid structures 

adjacent to the plaques, will be of great interest to understand Tfh function. Investigations 

into the specificity and effector functions of B cells are also crucial for the interpretation of 

the role that Tfh cells play in atherosclerosis. 

1.3 LIPID METABOLISM 

All living organisms continuously consume energy, mainly in the form of adenosine 

triphosphate (ATP), to maintain structure and run biological processes. ATP is synthesized 

during oxidation of carbohydrates, lipids, and proteins. Cholesterol is one of the most 

abundant lipids in cells of higher eukaryotes constituting of up to 25% of the cell membrane 
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[266]. Cholesterol has a rigid and hydrophobic structure contributing to membrane stiffness 

and cholesterol-rich microdomains within the cell membrane are important for 

transmembrane receptors and their signaling [267]. Metabolites of cholesterol, such as 

steroids and vitamin D, are important cell signaling molecules. Bile acids are also derived 

from cholesterol and important in forming micelles with dietary lipids to promote intestinal 

uptake. Of the cholesterol in the body, approximately 30% is derived from de novo synthesis 

and 70% is absorbed from the diet [268]. This relationship varies depending on genetic 

factors and diet.  

All nucleated cells can synthesize cholesterol from Acetyl-CoA through the mevalonate 

pathway. The rate-limiting step is the conversion of hydroxymethylglutaryl CoA (HMG-

CoA) to mevalonate by HMG-CoA reductase. The lipid-lowering statin drugs inhibit HMG-

CoA reductase and reduces incidence of cardiovascular events in primary prevention to high-

risk individuals [269] and in secondary prevention to coronary heart disease patients [270]. 

Statins typically decrease plasma cholesterol by around 30%. The lipid-lowering effect is not 

mainly caused by a reduction in biosynthesis of cholesterol, but a concomitant upregulation 

of LDL receptors in the liver [271, 272]. 

Cholesterol esterification with addition of a fatty acid residue makes the cholesterol molecule 

more hydrophobic. Cholesterol esters fit less well in the cell membrane and form intracellular 

lipid droplets. The cholesterol synthesis, uptake, and processing is controlled by sterol 

regulatory element binding proteins (SREBP) [273]. SREBPs are sterol-sensing transcription 

factors that are activated to increase cellular cholesterol levels through uptake and de novo 

synthesis of cholesterol.  

The main lipid content in food is triglycerides that consist of a glycerol molecule and three 

fatty acid residues. Fatty acids exist in a saturated form with the maximal amount of 

hydrogen bound to the carbon backbone and in unsaturated forms with carbon double bounds 

in the tail structure. Triglycerides cannot pass through cell membranes, and they need to be 

broken down by lipases into free fatty acids and glycerol. In adipocytes, they are assembled 

into triglycerides again, and this is the main form of energy stored in the body.  

1.3.1 Lipoproteins 

The lipid transfer system that handles and distributes cholesterol in the body is tightly 

regulated. Hepatocytes in the liver orchestrate lipid metabolism and distribute cholesterol-rich 

lipoprotein particles around the body. Lipoproteins consist of a shell with a structural protein 

non-covalently linked to phospholipids and unesterified cholesterol and a core with 

cholesteryl esters and triglycerides. The various lipoproteins are classified according to their 

density (Table 1). Normal plasma cholesterol levels in humans are <5.0 mmol/l, and usually 

levels >6.0 mmol/l are classified as hypercholesterolemia. Total triglyceride levels are 

recommended to be below 1.7 mmol/l. Guidelines for risk assessments take several risk 

factors in consideration to determine suitable intervention [274]. Dyslipidemia refers to the 

presence of elevated levels of one or several fractions of plasma lipids. 
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Table 1. The characteristics of the main lipoprotein classes [275]. 

Particle Main apolipoprotein Main component Size (nm) Density (g/ml) 

Chylomicron B48, C, E Triglycerides 100-1000 <0.95 

VLDL B100, C, E Triglycerides 30-80 0.95-1.006 

IDL B100, E Triglycerides and cholesterol 25-35 1.006-1.019 

LDL B100 Cholesterol 18-25 1.019-1.063 

HDL A1, A2 Protein 5-12 1.063-1.210 

1.3.1.1 Chylomicrons 

Dietary cholesterol and triglycerides are taken up in the gut and packaged by enterocytes into 

chylomicron particles. The structural protein of chylomicrons is ApoB48. Through RNA 

editing, the full-length ApoB100 protein is not expressed in the gut. Forty-eight percent of the 

sequence is translated due to a stop codon. The shortened ApoB48 lacks the C-terminal LDL-

receptor binding domain of ApoB100. Nascent chylomicrons, up to 1000 nm in diameter, are 

released in the lymphatic system and eventually enter the blood via the left thoracic duct. 

ApoCII in the chylomicrons activates lipoprotein lipase (LPL) when the particles arrive to 

capillaries [276]. LPL is synthesized in peripheral tissue such as skeletal muscles and adipose 

tissue. It hydrolyzes triglyceride-rich lipoproteins in the lumen of capillaries bound to 

glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 

(GPIHBP1) on the endothelial surface. This releases free fatty acids that are taken up by the 

adjacent tissue. The chylomicron particle continuously shrinks in size to become a remnant 

particle with a size of 30-50 nm. ApoCII dissociates from the particle, while Apolipoprotein 

E (ApoE) instead is acquired from plasma. ApoE mediates clearance of the chylomicron 

remnants by hepatocytes.  

During the fed state, chylomicron synthesis and LPL activity are high, as they are stimulated 

by insulin. This leads to storage of free fatty acids in the adipose tissue. In the fasted state, 

both chylomicron synthesis and LPL activity are low. The mobilization of stored triglycerides 

in the adipose tissue is mediated by adipose triglyceride lipase and hormone-sensitive lipase 

[277]. The liver has its specific hepatic lipase, which also hydrolyzes triglycerides and makes 

lipoprotein particles denser.  

1.3.1.2 Very low-density lipoproteins and low-density lipoproteins 

Hepatocytes repack cholesterol in VLDL particles that are secreted in circulation and 

distributed to muscles and adipose tissue. ApoB100 is the structural protein of these particles. 

Being 4563 amino acids long, it has an mRNA transcript larger than 14 kilobases [278]. 
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Human livers express the full-length ApoB100 solely, while mice could have up to 65% 

edited mRNAs [279]. Microsomal triglyceride transfer protein allocates lipids to synthesized 

ApoB100 protein. The formed VLDL particles are 30-80 nm in diameter and rich in 

triglycerides. After secretion in the circulation, lipolysis shrinks the particle-size to form 

intermediate-density lipoprotein (IDL) particles. LDL particles are formed through the 

continued lipolysis in circulation. Other apolipoproteins, present in VLDL and IDL, 

dissociates from the particle, and makes ApoB100 the sole apolipoprotein of LDL. LDL is 

the main lipoprotein that delivers cholesterol to peripheral cells.  

The ApoB protein contributes to innate immunity through protecting against invasive 

Staphylococcus infections [280]. A peptide fragment derived from ApoB has also been 

identified to convey pro-inflammatory signals and trigger platelet activation [281, 282].  

1.3.1.3 High-density lipoprotein (HDL) 

Cholesterol is transported back to the liver through reverse cholesterol transport. ApoA1 is 

formed in the liver and secreted in the blood. In the periphery, ApoA1 docks to cholesterol 

exporters on cells, loads up with cholesterol, and transports it back to the liver. ABC 

transporter A1 (ABCA1) controls the rate-limiting step in HDL formation. It forms discoidal 

HDL, which is further loaded with intracellular lipids by ABCG1, and the particle reaches a 

spherical diameter size of 5-12 nm. The spherical change is mediated by lecithin-cholesterol 

acyl transferase that esterifies free cholesterol. Foam cells have their excessive cholesterol 

stored as esters in lipid droplets. The impaired cholesterol efflux of these cells can partly be 

due to inflammation [283]. 

The cholesterol that reaches the liver is directly secreted to the bile or metabolized to bile 

acids, and then secreted. This secretion is ABCG5/8-dependent. The bile is excreted in the 

small intestine. From there, cholesterol can either be reabsorbed or further excreted in the 

feces. The reabsorption pathway forms an enterohepatic cycle. The absorption of cholesterol 

from the gut is incomplete, and usually around 50% of the dietary cholesterol is excreted. 

Cholesterol-ester transfer protein (CETP) in the blood can shuffle cholesterol from HDL to 

other lipoproteins. This counteracts reverse cholesterol transport. Drugs that specifically 

inhibit CETP increase HDL-cholesterol, but do not reduce risk for cardiovascular events 

[284]. This has led to doubts whether raising HDL will ever translate into a therapy against 

cardiovascular disease in humans [285]. Another lipid transfer protein found in human 

plasma is phospholipid transfer protein (PLTP). It transfers phospholipids from triglyceride-

rich lipoproteins to HDL. By this, it regulates the HDL particle size. 

1.3.2 Regulation of lipid metabolism 

The liver is the main organ regulating lipid metabolism, accounting for around 70% of the 

LDL uptake from plasma. LDL receptors are, however, present on most cells, and mediate 

uptake through endocytosis of lipoproteins carrying ApoB100 or ApoE proteins [286]. LDL 

receptors are regulated by SREBPs. When SREBPs sense a lack of cholesterol in the cell 
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membrane, they translocate to the nucleus and activate gene transcription of LDL receptors 

and cholesterol synthesis-related genes [273]. The APOE gene is polymorphic and exists in 

three major alleles in humans, APOE2, APOE3, and APOE4. ApoE2 and ApoE4 proteins 

have lower affinity to the LDL receptor than ApoE3, leading to slower clearance of 

chylomicron remnants. Especially APOE4 is associated with hyperlipidemia and 

atherosclerosis development [287]. 

Other receptors important for hepatic uptake of LDL are low-density lipoprotein receptor-

related protein 1 (LRP1), VLDL-receptor, sortilin, and scavenger receptor B type I (SR-BI). 

LRP1 is ubiquitously expressed, although most abundant in vascular smooth muscle cells, 

hepatocytes, and neurons. It mediates endocytosis of ApoE-containing lipoproteins. The 

interaction also leads to cell signaling, mediating an anti-atherosclerotic effect in vascular 

smooth muscle cells by maintaining the vascular wall organization [288]. The VLDL receptor 

is another LDL receptor family member, but it is usually not present in the liver. In Paper II, 

we report an upregulation of the mRNA level in the liver of Ldlr-/- mice after depletion of 

Tregs. If this results in increased protein expression remains unknown. The main function of 

the VLDL receptor is to mediate uptake of ApoE-containing lipoproteins in the periphery.  

Sortilin is a multi-ligand receptor encoded by the SORT1 gene. In the liver, it targets pre-

secretory degradation of nascent VLDL particles. Reports have also indicated sortilin to 

function as a cell surface receptor that binds ApoB-containing lipoproteins [289]. The SORT1 

locus is strongly associated with serum lipoprotein levels as well as myocardial infarction in 

genome-wide association studies [290]. Heparan sulfate proteoglycans are present in the 

extracellular matrix and on the cell surface where they act as endocytosis receptors mediating 

uptake of various macromolecules, including lipoproteins. Syndecan-1 belongs to this family 

and clears ApoE-VLDL particles in the liver [291]. Yet another receptor that can mediate 

hepatic uptake of lipoproteins is SR-BI, mainly targeting HDL particles [292]. 

Proprotein convertase subtilisin/kexin 9 (PCSK9) is a serine protease that regulates recycling 

of LDL receptors. This is an interesting target for a new class of lipid-lowering drugs that 

increases the LDL receptors in the liver by inhibiting PCSK9. Gain-of-function mutations in 

the PCSK9 gene are described to cause autosomal dominant hypercholesterolemia [293]. 

PCSK9 is produced in the liver and secreted in the circulation. It binds to the LDL receptor 

and targets it for degradation, preventing its re-use and therefore lowers the total amount of 

receptors present on the cell surface. This reduces cholesterol uptake by the liver and thus 

increases plasma cholesterol. Monoclonal PCSK9 antibodies have shown notable lipid-

lowering effects with administration once per month [294].  

As discussed in the lipoprotein section, apolipoproteins are fundamental regulators of lipid 

metabolism. ApoCIII is an important component of ApoB-containing lipoproteins [295]. It 

blocks the clearance of triglyceride-rich lipoproteins, opposing the effects of ApoE.  
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1.3.2.1 Nuclear hormone receptors sensing lipids 

Liver X receptors (LXR) are important intracellular cholesterol sensors that regulate the 

cholesterol efflux pathway transcriptionally [296]. LXRs are activated by oxysterols. In 

macrophages, LXRs control reverse cholesterol transport and protect against foam cell 

formation. Activating these transcription factors inhibits inflammatory gene expression, 

mainly by negative regulation of NF-B. Synthetic LXR agonists can inhibit experimental 

atherosclerosis [297], but LXR activation also induces hypertriglyceridemia through effects 

on hepatocytes.  

Bile acid formation is controlled by the farnesoid X receptor (FXR). When FXRs sense a 

reduced return of bile from the gut, the enzyme, cholesterol 7 alpha-hydroxylase (CYP7A1) 

is activated and bile production is increased [298]. On the contrary, retinoid X receptors 

(RXR) can downregulate CYP7A1 and bile acid synthesis. RXRs also downregulate the re-

absorption of cholesterol in the gut. To make this regulation more intricate, LXRs, FXR, and 

RXRs form heterodimers to regulate transcription in response to their various ligands. 

Fatty acid metabolism is controlled by peroxisome proliferator-activated receptors (PPAR). 

They form heterodimers with RXRs and regulate gene transcription of key enzymes in fatty 

acid and triglyceride metabolism, e.g., LPL. Endogenous PPAR ligands are free fatty acids 

and eicosanoids. Three main forms exist, PPAR, PPAR and PPAR. They have slightly 

different roles with differences in tissue distribution. PPARis important in the liver and in 

muscles. The hypolipidemic fibrate drugs activate PPAR and affect a range of steps in the 

lipid metabolism through lowering LDL and triglycerides, but mainly by raising HDL by 

transcriptionally regulating ApoA1 [299]. These drugs are used as a complement to statins 

and have been shown to lower non-fatal myocardial infarctions, but not all-cause mortality 

[300].  

PPAR is important in adipocytes and controls lipid storage. Thiazolidinediones, more 

commonly known as glitazones, target and activate PPAR, which increases insulin 

sensitivity and lowers glucose levels. A common polymorphism in the PPARG gene 

decreases the risk of insulin resistance and protects against diabetes [301]. PPAR is also 

involved in cellular differentiation. It induces an alternatively activated macrophage 

phenotype that is anti-inflammatory and is involved in tissue repair. Agonists of PPAR and 

PPAR can limit experimental atherosclerosis though inhibition of foam cell formation [302]. 

PPARis expressed in many tissues. Agonists to PPARcan protect against experimental 

atherosclerosis through effects in macrophages and anti-inflammatory actions in 

atherosclerotic plaques [303]. 

1.3.2.2 Inflammatory-mediated regulation of lipid metabolism 

Inflammation is linked to metabolic disorders such as obesity, diabetes, and cardiovascular 

disease. Combinations of abdominal obesity, elevated blood pressure, raised plasma 

triglycerides, low HDL, and reduced glucose tolerance is diagnosed as metabolic syndrome, 
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which is associated with cardiovascular disease [304]. During evolution, immunity has 

developed to mount strong responses against pathogens. Metabolism has, at the same time, 

evolved to store surplus energy in adipose tissue for periods of starvation. In modern society, 

starvation and infections are lesser problems than they were during the early evolution of 

mankind. This provides grounds for inapt reactions by both the immune system and 

metabolism. 

Interestingly the fruit fly, Drosophila, has a common organ serving as adipose tissue, liver, 

and hematopoietic system [305]. Thus, there is an evolutionary link between the immune 

system and metabolism. A lot of immune cells still reside in the human liver, e.g., liver 

macrophages known as Kupffer cells, and during fetal life, hematopoiesis occurs here. The 

interconnections between inflammation and metabolism are crucial for the immune system to 

mobilize energy for its response during infections. All forms of inflammation increase energy 

expenditure. Conversely, malnutrition or overnutrition can cause aberrant immune responses. 

Infiltrations by immune cells are seen in the adipose tissue during obesity, and similar to 

cardiovascular disease, the metabolic syndrome is characterized by a local chronic 

inflammatory process with elevated systemic inflammation markers such as CRP [75].  

Hypertriglyceridemia is observed during acute infections [306]. The cytokine, TNF, 

mobilizes energy from adipose tissue and muscles, leading to cachexia, along with 

leukocytosis [307]. Initially, TNF was described to block the activity of LPL [308], but the 

functionality has been shown to be more complex [309]. Similar to TNF, 

lipopolysaccharides, and the inflammatory cytokines IL-1, and IL-6, increase plasma 

VLDL-triglycerides [309]. This is attributed to increased hepatic lipogenesis and reduced 

clearance by lower LPL activity. Specific induction of hepatic inflammation by activation of 

NF-B in hepatocytes has been shown to increase VLDL production [310].  

Mobilization of cholesterol is of less importance in acute inflammation, with accordingly 

smaller effects of inflammation on plasma cholesterol levels. Nonetheless, the cellular 

cholesterol content is important for rapidly proliferating cells, such as T cells, with their need 

to synthesize new cell membranes [311]. In addition to these effects, inflammation 

downregulates the cellular lipid sensors, RXRs, LXRs, and PPARs, thereby loosening the 

tight control of lipid metabolism [309].  

The effects on lipid metabolism by chronic inflammation are more complex. Dyslipidemia is 

often seen in rheumatoid arthritis, but several mechanisms are likely to contribute to the 

elevated cardiovascular risk in these patients [312]. Systemic lupus erythematosus is more 

distinctly associated with a pro-atherogenic lipid profile and with an elevation of VLDL 

levels [313]. Various TNF blocking drugs that are commonly used to treat rheumatoid 

arthritis have been shown to both increase and decrease plasma lipids [314]. The treatments 

are nonetheless efficient in reducing inflammation and patients with rheumatoid arthritis 

under treatment with these drugs have a lower incidence of cardiovascular events [315]. 
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Alterations of gut microbiota have been linked to metabolic syndrome, cardiovascular 

disease, and type 2 diabetes [2]. Gut microbiota promotes obesity through assisting intestinal 

uptake of nutrients and increasing LPL activity, which in turn cause triglyceride storage in 

adipose tissue [316]. At the same time, gut microbiota can reduce cholesterol absorption 

through a reduction in bile acid release [317]. This is achieved through FXR antagonism with 

subsequent CYP7A1 downregulation [318].  

Short-chain fatty acids, consisting of less than six carbon atoms, are important microbial 

products in the intestinal tract and can affect immune cells. Interestingly, Th1, Th17, and 

Treg cell differentiation is influenced by short-chain fatty acids [319, 320]. Moreover, gut 

microbiota can cause formation of trimethylamine-N-oxide in response to digestion of red 

meat [321]. This accelerates atherosclerosis and provides an explanation why red meat 

consumption is associated with cardiovascular disease. The increased atherosclerosis is 

suggested to be mediated by upregulated scavenger receptors on macrophages and impaired 

reverse cholesterol transport [321]. Diet, genetic factors, and the immune system can all 

influence the microbiome [2], and numerous mechanisms exist by which microbiota regulate 

host metabolism, reflecting its great diversity. 

In conclusion, the connections between immunity and metabolism are vast. Acute 

inflammation induces hypertriglyceridemia, but the effects of chronic inflammation on 

metabolism are unclear with several mechanistic links missing. The papers in this thesis 

illustrate how such links can be methodically explored in well-controlled in vivo models in 

conjunction with isolated in vitro systems. Translational approaches can further consolidate 

experimental findings. In this way, important crosslinks between immunity and metabolism 

could be identified. T cells orchestrate the immune system, but notions also suggest them to 

control metabolism [322]. Detailed mechanistic information on how various T cells affect 

lipid metabolism remains to be discovered, which in turn may unravel drug targets. A novel 

treatment that both decreases chronic vascular inflammation and corrects a perturbed lipid 

metabolism is likely to be useful to limit atherosclerosis and its devastating symptoms.  

Subendothelial retention of lipoproteins triggers the inflammatory process that leads to 

atherosclerotic plaque formation. T cells in the plaques perpetuate inflammation, but several 

questions regarding the pathogenesis of atherosclerosis remain to be clarified. The 

autoimmune component in the disease development is poorly understood, antibodies 

connected to the disease have unresolved actions, and the actual role for LDL-reactive T cells 

in atherogenesis needs to be defined. The investigation of these aspects possibly harbors 

unexpected therapy targets. For instance, T-helper cell subsets are suggested to have 

detrimental roles for plaque stability. Th1 cells promote lesion development and destabilize 

plaques. Circumstantial evidence in the literature suggests opposite effects by both Tregs and 

Th17 cells. A mechanistic understanding of these processes is needed to draw correct 

conclusions from such reports. In the future, this could hopefully lead to a specific treatment 

for stabilization of vulnerable plaques prone to rupture. 
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This thesis attempts to answer how different T-helper cell subsets affect atherosclerosis 

development and plaque composition. The papers included illustrate the roles that three 

separate T cell subsets — Th17, Treg, and Tfh cells — play in atherosclerosis development. 

All three subsets were surprisingly shown to have major impacts on lipid metabolism by 

separate mechanisms. 
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2 AIMS 

The studies included in this thesis aimed to investigate T-cell specificity and regulation in 

atherosclerosis.  

The specific aims were to: 

I. Investigate the effects of increased TGF- signaling in T cells on atherosclerosis. 

II. Define the role that Foxp3+ Tregs play in atherosclerosis. 

III. Examine the role that LDL-reactive T cells play in atherosclerosis. 
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3 METHODOLOGICAL CONSIDERATIONS 

3.1 MOUSE MODELS 

C57BL/6 is the most commonly used inbred mouse strain to study atherosclerosis, and it is 

used as the genetic background for the majority of genetically modified strains [323]. This 

strain was established in the 1920’s [324], and its genome was published in 2002 [325], only 

one year after the human genome. Experiments in mouse models have several benefits. The 

colonies reproduce fast, housing is space-efficient, and inbreeding reduces experimental 

variability. The model also allows for genetic manipulations, such as targeted gene deletions 

and insertion of transgenes.  

C57BL/6 mice develop a Th1-biased immune response, while other mouse strains such as 

BALB/c are more Th2-prone. BALB/c mice are resistant to atherosclerosis, but if their 

immune response is Th1-skewed through genetic manipulation, atherosclerosis could be 

induced [326]. Wild-type mice, such as C57BL/6, are nonetheless relatively resistant to 

atherosclerosis. They have most of the circulating cholesterol in HDL, and complex 

atherosclerotic lesions are not formed even when fed a high-fat and high-cholesterol diet. 

Hyperlipidemic mice, such as Apoe-/- on the C57BL/6-background, are therefore used as 

experimental models of atherosclerosis [327]. The ApoE protein is mainly produced by 

hepatocytes and macrophages and is taken up by chylomicrons. The lack of ApoE impairs 

hepatic uptake of remnant particles and severely perturbs lipid metabolism. In Apoe-/- mice, 

circulating cholesterol is predominantly in VLDL particles, and the mice develop complex 

atherosclerotic plaques on a standard chow diet. ApoE is also involved in the development of 

myeloid cells [328], and since this may influence immune reactions, we chose to use Ldlr-/- 

mice for studies of atherosclerosis included in this thesis. 

Ldlr-/- mice mimic the development of atherosclerosis seen in humans with familial 

hypercholesterolemia (FH) [329]. The Ldlr-/- mice need a Western type diet to develop 

atherosclerosis [330]. The LDL receptor recognizes ApoB100 or ApoE and mediates uptake 

of LDL particles through endocytosis. As mentioned before, LDL receptors are fundamental 

for liver clearance of LDL from circulation. This makes bone marrow transplantation into 

Ldlr-/- recipients a useful tool in experimental atherosclerosis. The effect of the transplanted 

hematopoietic cells on atherosclerosis development can be assessed in the hyperlipidemic 

Ldlr-/- chimeras. 

Human APOB100-transgenic Ldlr-/- (HuBL) mice carry the full-length human APOB100 

gene [78, 331]. Codon 2153 of the APOB100 gene inserted in these mice has been converted 

from leucine to glutamine to prevent the formation of ApoB48 in the liver and gut [332]. 

Mice producing such humanized lipoproteins develop hypercholesterolemia and 

atherosclerosis on a standard chow diet, but the development of complex atherosclerotic 

plaques takes at least six months [333]. The development of hypercholesterolemia on a low-

fat diet is likely due to overexpression of human ApoB or decreased receptor-mediated 

uptake of the humanized particles. A large fraction of circulating plasma cholesterol is held in 
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LDL particles. This gives HuBL mice a more human-like dyslipidemic lipoprotein profile 

compared to Apoe-/- and Ldlr-/- mice. In addition, HuBL mice allow studies of human ApoB as 

an autoantigen, which may facilitate translation aspects of findings into human disease. 

The atherosclerosis-prone mouse strains mentioned above develop complex atherosclerotic 

plaques with shared features of human disease. However, the mouse models are fairly 

resistant to plaque rupture with ensuing myocardial infarction. Atherothrombosis is 

sporadically detected and experimentally challenging to assess [334-336]. Special models of 

plaque rupture have been developed, but the experimental field lacks a reliable and 

reproducible model for assessment of plaque stabilizing agents. 

To study T cells influenced by increased TGF- signaling, a mouse model that targeted the 

TGF--inhibitory molecule Smad7 was used. Through the Cre-lox technique, conditional 

gene deletions are possible. Specific recombination at LoxP-sites is induced by a Cre 

recombinase expressed under a tissue-specific promoter [337]. In the Smad7-flox mice, 

created for this project, the promoter, exon 1, and exon 2 of the Smad7 gene are flanked by 

LoxP-sites. Crossing the Smad7-flox strain with a CD4-Cre expressing mouse conditionally 

deletes the Smad7 gene in T cells. Bone marrow transplantation into Ldlr-/- mice was used to 

study atherosclerosis development [338]. The results are presented in Paper I. 

To study the effects of Foxp3+ Treg depletion, the DEREG (depletion of regulatory T cells) 

mouse model was employed. It expresses a fusion protein of the human diphtheria toxin 

receptor and enhanced green fluorescent protein (eGFP) under the control of the Foxp3 

promoter [339]. Bone marrow was transplanted into Ldlr-/- mice to study atherosclerosis 

development. Mice are naturally unaffected by diphtheria toxin [340]. A selective depletion 

of the human diphtheria toxin receptor-expressing Foxp3+ T cells was achieved through 

administration of diphtheria toxin. This does not affect CD25+ T effector cells, as CD25-

depleting antibodies do. CD25-depletions, which have been used to study Treg function 

[244], are therefore not optimal and do not reproduce the autoimmune phenotype seen in 

scurfy and DEREG mice [63, 339]. The results from the Foxp3+ Treg depletion in 

atherosclerosis are presented in Paper II. 

To investigate T-cell specificity in atherosclerosis, three new TCR transgenic strains were 

generated that were reactive to human LDL. Previously, a panel of T-cell hybridomas had 

been created from mice immunized with human LDL particles [211]. TCR cDNA was cloned 

from three of the hybridomas reactive to human LDL and ApoB100 protein. These TCRs 

were subcloned under the CD2 promoter and used for production of transgenic mice. The 

mice strains from these three hybridomas were named: BT1, BT2, and BT3 and all expressed 

the -chain TRBV31 together with the -chain TRAV12, 4, and 14, respectively. A 

population of around 8% TRBV31+ T-helper cells exists in wild-type mice. This should be 

compared to the population of over 90% TRBV31+ T-helper cells in the BT strains. Exposing 

the transgenic T cells to their antigen, human LDL, evoked a strong response with 

proliferation and IFN- secretion. The effect on atherosclerosis was assessed in Paper III.  
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Different diets were used to study atherosclerosis in the mouse models. Table 2 describes the 

main differences, with the “Standard American diet” used as an example of food 

consumption in the Western world [341]. The main dietary component that dictates 

development of atherosclerosis in Ldlr-/- mice is cholesterol content [342]. A 1.25% 

cholesterol diet was used to rapidly induce atherosclerosis in the bone marrow transplanted 

Ldlr-/- mice. In HuBL mice, 0.15% cholesterol diet was used to study atherosclerosis 

development. Mice used for breeding or used as cell donors were fed standard chow, a low-

fat diet that does not correspond to food intake by humans (Table 2). 

Table 2. Comparison of different diet compositions. 

Diet Energy 

(kcal/g) 

Carbohydrates 

(kcal %) 

Protein 

(kcal %) 

Fat   

(kcal %) 

Cholesterol 

(w/w) 

Nordic nutrition recommendations - 45-60 10-20 25-40 - 

Standard American diet 4.8 50 15 35 0.07% 

Standard chow 3.0 72 17 11 0.02% 

Western diet 3.7 41 16 44 0.15% 

High fat diet 4.5 40 20 40 1.25% 

3.2 EXPERIMENTAL METHODOLOGY 

Standard methods were used to assess T-cell phenotypes. T-cell proliferation was assessed as 
3H-thymidine incorporation and cytokine secretion was analyzed in supernatants. Flow 

cytometry analysis was used to discriminate between cell populations. Intracellular staining 

of transcription factors and cytokines was performed to separate T-helper cell lineages. 

Quantification of atherosclerosis was done at several locations in the vascular tree. Cross-

sections from the first millimeter of the aortic root were stained and used for quantification of 

atherosclerotic burden [343]. This method leaves several sections available for 

immunohistochemical evaluation of plaque composition [344]. En face preparations allow 

quantification of lipid-laden plaques in the rest of the aorta. Disease burden in the innominate 

artery can also be quantified by the use of carefully pinned specimens. Typically, only the 

aortic arch with branches was used for en face preparation, and the thoracic and abdominal 

parts were saved for RNA purification. 

Blood sampling was done through tail vein bleeds or post-mortem cardiac puncture. Since 

CRP is expressed at very low levels in mice and does not act as an acute phase reactant [345], 

serum amyloid A was used as an inflammation marker in the mice studies. Other cytokines 

were analyzed with enzyme-linked immunosorbent assay [346] or cytometric bead array. 
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LDL was prepared from plasma through a two-step ultracentrifuge purification, which 

isolates plasma lipoproteins with a density between 1.019 g/ml and 1.063 g/ml [347]. LPL 

activity was measured in post-heparin plasma. Heparin releases LPL to the blood through 

interference of LPL’s interaction with GPIHBP1. Lipoprotein production was assessed after 

inhibition of LPL with tyloxapol and subsequent measurements of plasma triglycerides. To 

distinguish chylomicron- from VLDL production, 3H-glycerol was injected intravenously 

simultaneously with an olive oil gavage with 14C-trioleate. Radioactivity from tritium in 

plasma was assessed as a measurement of VLDL particles assembled in the liver. 

Radioactivity from radiocarbon in plasma was assessed as a measurement of chylomicrons 

produced in the gut. 

3.3 BIOBANK OF HUMAN ATHEROSCLEROTIC PLAQUES 

The Biobank of Karolinska Endarterectomies (BiKE) was established in 2001 as a 

collaborative research effort between the vascular surgeons at Karolinska University Hospital 

and the Experimental cardiovascular research unit at Karolinska Institutet. The biobank 

consists of carotid plaques from patients undergoing carotid endarterectomies at Karolinska 

University Hospital [348]. Patients usually present themselves with symptoms such as minor 

stroke, transient ischemic attacks or amaurosis fugax, but also asymptomatic patients are 

operated. Carotid endarterectomy is recommended in cases with more than 70% stenosis as 

determined by ultrasonography. The atherosclerotic specimens were snap frozen, followed by 

RNA purification, and subsequent gene transcription analysis with chip arrays [349]. This 

biobank was interrogated to correlate mRNA levels in Paper I.  
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4 RESULTS AND DISCUSSION 

4.1 IL-17 STABILIZES ATHEROSCLEROTIC PLAQUES 

Paper I investigates the effect of increased TGF- signaling in T cells on experimental 

atherosclerosis using a genetically modified mouse model. The increased TGF- signaling 

was achieved through T-cell specific gene deletion of the signaling molecule Smad7, an 

intracellular inhibitor of TGF- signal transduction. This led to differentiation of naïve T-

helper cells into Th17 cells in the pro-inflammatory context of atherosclerosis (Fig. 2). IL-6 

mRNA was expressed in the aorta as a response to hyperlipidemia and innate immune 

activation. IL-6 protein was also found in the draining lymph nodes where the conversion to 

Th17 cells occurred. Since no upregulation of IL-6 mRNA was observed in these lymph 

nodes, a plausible explanation is that IL-6 is drained to this location from the atherosclerotic 

plaques. TGF- is abundantly available in the aorta [258], and TGF- and IL-6 jointly 

differentiated the naïve T cells into Th17 cells.  

 

Figure 2. Schematic illustration of an atherosclerotic plaque. Lipoproteins infiltrate the arterial wall and initiate 

an inflammatory response with IL-6 production. Dendritic cells take up antigens in the plaque and migrate to 

draining lymph nodes where they present antigens to naïve T cells. In the present study, the T cells had a genetic 

predisposition to increased TGF- signaling by the lack of the negative feedback molecule Smad7. Together 

with IL-6 present in draining lymph nodes of the aorta, the T cells differentiated into Th17 cells. These cells 

migrate back into the lesion where they secrete IL-17A that stimulates smooth muscle cells to produce collagen, 

thereby stabilizing the fibrous cap, which could prevent ruptures. 

A stable fibrous cap was formed on top of the atherosclerotic lesions, and this effect was 

linked to IL-17A. In human carotid plaques, associations between IL-17A and markers for 

stable plaques were found. We could further show that IL-17A directly stimulates collagen 

production in vascular smooth muscle cells. Low levels of IL-17A in serum are associated 

with recurrent myocardial infarctions [241]. This corroborates our findings and suggests that 
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IL-17A is important for plaque stability in clinical disease. New treatments that neutralize IL-

17A in conditions such as psoriasis might therefore be hazardous.  

When the inflammation resolves, wound healing is initiated. Re-organization of the tissue 

occurs by replacement of the immune cells with tissue-resident cells and extracellular matrix. 

Trapped immune cells, with a low migratory capacity, characterize the atherosclerotic plaque 

[88]. The resolution of inflammation is compromised, and wound healing is restricted to the 

build-up of a stable cap. Smooth muscle cells migrate to form a layer underneath the 

endothelium where they proliferate and produce collagen, mainly of types I and III. IL-17A 

stimulates this process with induction of collagen type I synthesis. This process reflects IL-

17A’s function to form granulomas around pathogens and confine infections spatially [350]. 

However, in some organs such as the liver, the fibrogenic properties of IL-17A could be 

detrimental [58]. Local fibrogenic effects are beneficial for the stability of atherosclerotic 

plaques, but therapeutic stabilization would need a highly specific drug target, since off-target 

effects, such as liver fibrosis, are not acceptable. The option of local delivery to vulnerable 

plaques could be a futuristic possibility. The currently used local delivery method with drug-

coated stents is not suitable. A major problem is restenosis after a percutaneous coronary 

intervention with placement of a stent. The desired effect is to inhibit smooth muscle cell 

proliferation in these cases, and IL-17A would probably do the opposite. 

The IL-17 signaling pathway is operative in several tissues, and many cell types express IL-

17 receptors. Downstream signaling includes general inflammation pathways such as 

mitogen-activated protein kinases [351]. Indeed, we demonstrated that extracellular signal-

regulated kinase inhibition led to reduced collagen synthesis. The transcriptional regulation is 

mainly mediated through CCAAT/enhancer-binding proteins. The potential for IL-17 as a 

plaque stabilizing therapy, with such broad actions, is small, sharing limitations with TGF-

, even though the fibrogenic signal strength is less. 

In Paper I, an interesting difference in lipoprotein metabolism was observed (Fig. 3). 

Increased amounts of chylomicron remnants were detected in postprandial plasma. LPL and 

hepatic lipase had normal activity, and the hypertriglyceridemia was lessened in the fasted 

state. This indicates that synthesis, rather than catabolism of triglyceride-rich lipoproteins, 

was mediating the effect. The phenotype presented itself only during the last weeks of the 

experimental period and was not a result of the increased IL-17A signaling, as neutralization 

of IL-17A indicated. Thus, the stabilization of the plaques with a thicker cap and more 

collagen was independent of the effect on chylomicrons. The phenotype is nonetheless 

interesting in regards to the selective deficiency of Smad7 in T cells. To evaluate the effect, 

further studies of cholesterol turnover, with a closer examination of bile-mediated triglyceride 

uptake, are needed. 
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Figure 3. Assessment of Chylomicron and VLDL production. In this experiment, LPL was inhibited by 

tyloxapol injected intraperitoneally, then the mice were injected with 3H-Glycerol intravenously and received a 

100 µl olive oil gavage with 14C-trioleate. (A) Total triglycerides were measured in plasma at baseline, and after 

30, 60, 90, 120, and 300 minutes. Open circles represent Ldlr-/- controls and closed circles Smad7-deficient bone 

marrow chimeras (n=5). (B) 3H radioactivity in plasma as a measurement of VLDL production by the liver 

(DPM=Disintegrations per minute). (C) Chylomicron accumulation in the plasma, measured as 14C radioactivity, 

derived from the trioleate in the olive oil gavage mixture.  

The initial hypothesis of the project postulated that Smad7-deficient T cells would increase 

Treg differentiation. However, raised Treg levels were not observed in the spleen of these 

animals. Smad-dependent signaling is not of major importance for thymic differentiation of 

natural Tregs [36]. Increased Foxp3 mRNA levels in inguinal lymph nodes suggested a minor 

induction of peripheral Tregs. This effect was not seen in the para-aortic lymph nodes. In this 

location, the augmented TGF- signaling in T cells led to Th17 cell differentiation. Th1 cell 

differentiation was at the same time impaired. A previous study has investigated the opposite 

conditions. Disruption of TGF- signaling in T cells induces Th1 cell differentiation and 

promotes atherosclerosis [257]. This experiment contrasts with the present study and sheds 

light over a possible equilibrium existing between Th17 cells and Th1 cells in regard to 

plaque stability. Th17 cells stabilize plaques, while Th1 cells do the opposite. 

4.2 REGULATORY T CELLS CONTROL LIPID METABOLISM 

In Paper II the role of Foxp3+ Tregs in atherosclerosis was assessed by depleting this cell 

type specifically (Fig. 4). This led to the development of large atherosclerotic plaques, but the 

plaques did not contain signs of increased inflammation and expansions of uncontrolled 

effector T cells as expected. The number of T cells per lesion area was similar to controls and 

both macrophages and APCs were decreased in the plaques in spite of an observed 

monocytosis in the blood. The large plaque size was linked to elevated plasma cholesterol in 

VLDL particles. This was further associated with a downregulation of sortilin in the liver. 

Sort1 expression, encoding sortilin protein, is negatively regulated by Atf3 [353], a 

transcription factor under inflammatory control. In the liver, a concomitant increase of TNF 

and IFN-, pro-inflammatory cytokines, was observed on the mRNA level. Sortilin acts as a 

lipoprotein-regulating receptor in the liver [289]. The decreased sortilin levels led to delayed 

clearance of VLDL particles that instead were deposited in the vessel wall. Thus, depletion of 

Tregs both contributes to hypercholesterolemia and atherosclerosis through its effects on 

VLDL turnover. The SORT1 locus has the strongest identified association with LDL-
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cholesterol in humans [354].  Pathways that increase sortilin expression in the liver could 

potentially be targeted as treatments for dyslipidemia. Possibly, an anti-inflammatory drug 

that affects the sortilin pathway in the liver would lower plasma VLDL-cholesterol, which 

may lead to decreased atherosclerosis.  

 

Figure 4. Schematic illustration of a Foxp3+ Treg that expresses a human diphtheria toxin receptor (DTR), 

which enables specific depletion of this cell type by administration of diphtheria toxin (DT). Tregs normally 

keep inflammation and autoreactive responses at bay. When depleted, the inflammation-responsive gene Atf3 

was upregulated in the liver causing downregulation of sortilin. Sortilin lowers plasma VLDL by acting as a 

receptor on the cell surface on hepatocytes and by decreasing release of nascent VLDL particles. The increase in 

plasma VLDL, mainly caused by delayed VLDL clearance, led to accelerated atherogenesis. The immune 

activation in the plaques was similar to controls, but the plaques had a large necrotic core with cholesterol 

crystals. Potentially, these large and lipid filled plaques are more vulnerable to rupture. In case of rupture, the 

blood comes in contact with thrombogenic material in the core and a thrombus forms that occludes the vessel. 

Interestingly, the delayed clearance of VLDL particles led to an increased activity of LPL and 

hepatic lipase. The lipase activity made the circulating VLDL particles triglyceride poor, 

which was reflected by a decrease in plasma triglycerides. Increased PLTP activity was also 

observed. PLTP shuffles phospholipids from VLDL to HDL, and a small increase of 

triglyceride-containing HDL particles was accordingly seen in the Treg depleted mice. How 

these factors contribute to atherogenesis in this model is unknown. The elevation of VLDL-

cholesterol was the main identified driving factor for atherosclerosis development in this 

model. This implicates that Tregs have an important role in controlling VLDL during 

homeostasis. The atherosclerosis process in Ldlr-/- mice is greatly influenced by VLDL-

cholesterol levels [355]. The use of this mouse model in the present study might exaggerate 

the impact that VLDL has on atherosclerosis. Additional atheroprotective mechanisms of 
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Tregs, apart from controlling lipid metabolism, could likely be identified in other models of 

atherosclerosis. Importantly, this study did not target antigen-specific Tregs that could have 

anti-inflammatory actions locally in the arterial wall. Overall, the actions of antigen-specific 

Tregs, such as LDL-reactive ones, remain to be elucidated and enhancements of their specific 

immune modulatory effects might be potential treatments for human disease. 

4.3 LDL-REACTIVE T CELLS LOWER PLASMA CHOLESTEROL 

In Paper III we could assess T-cell specificity in atherosclerosis by the use of three new 

TCR transgenic strains reactive to human LDL. Through crossbreeding to HuBL mice that 

express human APOB100, we examined the role of LDL-reactive T cells in atherosclerosis. 

The autoreactive and LDL-specific T cells were not completely deleted in the thymus, and 

some clones survived (Fig. 5). These cells assisted B cells that were reactive to LDL, which 

in turn, formed germinal centers, and produced anti-LDL antibodies. The antibodies formed 

immune complexes with LDL in the blood and increased lipoprotein clearance. This lowered 

plasma cholesterol levels and protected against atherosclerosis. Correlations between immune 

complexes, cholesterol, and lesion size suggested that these factors were dependent of each 

other. 

 

Figure 5. Schematic illustration depicting the thymus with its selection process to delete auto-reactive T-cell 

clones. Some ApoB-reactive T (BT) cells bypass the selection process and differentiate into Tfh cells in the 

spleen. The Tfh cells activate B cells reactive to LDL. In response to this, B cells form germinal centers and 

further differentiate into plasma cells. High-affinity anti-LDL IgG antibodies are secreted in the circulation, 

where the antibodies bind their antigen, LDL, forming immune complexes. This lowers LDL-cholesterol levels 

in plasma and protects from atherosclerosis. 
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Adoptive transfer experiments confirmed the notion of an atheroprotective humoral anti-LDL 

effect induced by LDL-reactive T cells. The injected CD4+ T cells differentiated into Tfh 

cells in the spleen. These LDL-specific Tfh cells induced a strong B-cell response with 

plasma cell differentiation and antibody production. The produced anti-LDL IgG antibodies 

formed immune complexes with circulating LDL particles and lowered plasma cholesterol 

levels. Transfer of plasma with high anti-LDL IgG titers from the injected mice could also 

induce increased LDL clearance in a separate batch of HuBL mice. 

The initial clearance of IgG-immune complexes is usually driven by Fc-dependent uptake in 

macrophages in the liver and spleen [356]. Hepatocytes could also directly bind IgG-immune 

complexes [357] and mediate the clearance of cholesterol seen in the present study, with 

excretion to the bile and gut. This pathway would be therapeutically interesting to explore. As 

more antigen-antibody complexes are formed, some of them are deposited in vascular beds, 

predominately in small arteries and renal glomeruli [1]. This activates the complement 

system, recruits neutrophils, and, as a consequence, leads to tissue damage. It is currently 

unknown if anti-LDL immune complexes induce any adverse effects. The main findings in 

our experiments were reduced plasma cholesterol levels and protection against 

atherosclerosis. 

In Paper III, we could show that ApoB is a tissue-restricted antigen with expression in the 

thymus, possibly controlled by AIRE or other means. To define precise mechanisms involved 

in the clonal deletion of ApoB-reactive T cells, the regulation of thymic APOB100 expression 

needs further evaluation. If ApoB expression were under AIRE-control, an interesting 

experiment would be to cross BT1xHuBL mice to AIRE-deficient animals. The negative 

selection of ApoB-reactive T cells would then be constrained from birth and onwards. 

Atherosclerosis development would unravel peripheral tolerance mechanisms or the lack 

thereof. Interestingly, the liver has a special role in peripheral tolerance and expression of 

proteins in the liver can by itself induce immunological tolerance [358]. Such tolerance to 

ApoB is seemingly not active in atherosclerosis with LDL-reactive T cells present in the 

plaques [156]. Speculatively, the local plaque environment breaks the tolerance to ApoB.  

Paper III uses TCR-transgenic mice with expression of a re-arranged TCR under control of 

the CD2-promoter. This infers some differences to the physiological clonal selection in the 

thymus [359]. Nonetheless, the use of this humanized mouse model identified important 

central tolerance to LDL. In a previous study, which corroborates our findings, the induction 

of neonatal tolerance to oxLDL led to clonal deletion of LDL-reactive T cells and reduced 

atherosclerosis development [360]. The central tolerance in the present study did not consist 

of a substantial induction of natural Tregs, and this might reflect the affinity of the 

investigated T-cell clone or the transgenic construct. Further studies are needed to clarify this 

notion. The adoptive transfers clearly suggested that induced LDL-specific Tregs play a 

minor role, judged by their low frequency. The main tolerance mechanisms identified were 

instead central clonal deletion and peripheral anergy. These mechanisms acted together with 

the humoral response to LDL to protect against atherosclerosis.  
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BCR activation is dependent on cross-linking several receptors on the B-cell surface. How 

this is achieved with ApoB as antigen is not known. LDL particles contain a single ApoB100 

molecule, and there is logically only one epitope per particle. This differs from the oxidation 

specific epitopes in the lipid moiety of LDL particles. A single epitope per particle would 

prohibit cross-linking of BCRs and clustering of receptors, important factors for the 

downstream signaling [361]. Particulate antigens are usually excellent for B-cell mediated 

antigen presentation, but an avidity threshold tightly regulates the BCR-mediated 

internalization [362]. Several epitopes per particle are needed to reach this threshold. 

Speculatively, aggregation and fusion of LDL particles are crucial to exceed the avidity 

threshold for BCR activation. Two LDL-aggregating enzymes are interesting in this context, 

phospholipase A2 and sphingomyelinase [79]. These enzymes are implicated in 

atherosclerosis both with activity in the vessel wall and by enhancing retention of lipoproteins 

by increasing proteoglycan binding [131, 363]. The present study provides clear in vivo 

observations of B-cell activation against ApoB100. The involvement of aggregated 

lipoproteins in this process is a highly interesting avenue for further investigations.  

4.4 CONCLUDING REMARKS 

Atherosclerosis is a chronic inflammatory disease containing both innate and adaptive 

immune reactions. The autoimmune component includes T cells that react to peptide 

fragments of ApoB100. During atherogenesis, T-cell activation leads to Th1 differentiation 

under the influence of pro-inflammatory mediators such as IL-12. Tolerance mechanisms, 

with induction of Tregs, are at the same time hampered. Under certain circumstances, 

differentiation into Th17 cells occurs by the influence of TGF- and IL-6. Effector T cells 

patrol the body and may undergo reactivation with cytokine production when they encounter 

their antigen in the plaques. Th1 cells contribute to destabilization of the plaques that make 

them vulnerable to rupture. On the other hand, Th17 cells promote plaque stability through 

IL-17A’s effects on smooth muscle cells and collagen synthesis. Tregs have an important role 

to control inflammation and autoimmune responses throughout the body. Uncontrolled 

inflammation in the liver leads to delayed lipoprotein clearance and dyslipidemia. A 

protective humoral immunity against LDL can counteract such deviations and lower plasma 

lipoprotein levels through antibody-mediated clearance of particles. This response requires 

help from LDL-reactive T cells. The role for these cells is therefore dual, both activating a 

pro-inflammatory response with perpetuation of the inflammation in the vessel wall as well as 

evoking a protective B-cell response in the spleen.  

LDL particles and inflammatory cells are major components of atherosclerotic plaques. 

Numerous interactions between lipoproteins and immune cells throughout the body may 

influence atherosclerosis development. This thesis gives three examples of the intricate 

interplay between the immune system and lipid metabolism: (I) Augmented TGF- signaling 

in T cells increases chylomicron levels, (II) Tregs regulate sortilin expression in the liver, and 

(III) anti-LDL antibodies mediate clearance of LDL. These interconnections should be 

interesting to explore further with a therapeutic objective. 
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Paper III provides unique insights into how LDL-reactive T cells act in atherosclerosis. 

Adoptive transfers identified differentiation into Tfh cells and unraveled a major 

atheroprotective humoral response with production of lipid-lowering antibodies. This effect 

has been observed in previous vaccination studies that induced LDL-reactive T cells, but 

been dependent on immunization protocols and other factors. When the effect has been 

observed, it has been downplayed. Importantly, vaccine adjuvants skew T-helper cell 

differentiation. We could monitor adoptively transferred T cells without such conditions. The 

BT1xHuBL cross in Paper III provided an unprecedented model system of LDL-

autoimmunity, and the protective anti-LDL humoral response was strong also in this model.  

Emerging evidence suggests that non-modified LDL could suffice for both innate and 

adaptive immune activation in atherosclerosis. The innate immune system could be activated 

by cholesterol crystals through inflammasome activation [135, 136], and by ApoB-derived 

peptides [281]. Similarly, the adaptive immune responses to LDL recognize native peptides 

from ApoB100 [155, 211]. In line with this, treatments that target modifications of LDL has 

so far been disappointing [132]. Nonetheless, there are factors that remain undetermined such 

as, how could native LDL activate B cells and why is cellular immune tolerance 

compromised in the atherosclerotic plaques? Further studies are needed to explore the 

possibility of local factors in the plaques that may mediate a break of tolerance. A window for 

oxidative modifications has been suggested in which LDL particles have pro-inflammatory 

properties, but still contain intact epitopes that activate LDL reactive T cells [80]. However, 

other LDL modifications might be of importance, e.g., aggregation of LDL for B-cell 

activation. ApoB-derived peptides are commonly presented by APCs [364], but under which 

conditions this lead to T-cell activation, pathogenic Th1 cell differentiation, or induction of 

anti-inflammatory Tregs remain to be determined.  

Cardiovascular disease is the main killer in the world, and new preventive measurements are 

required, e.g., a drug treating cardiovascular inflammation. The pathogenic inflammation in 

the vessel wall should be specifically targeted without affecting host defense or tumor 

surveillance. Targeting adaptive immunity with T-cell based treatments or vaccinations are 

attractive options [365]. The identification of disease-relevant epitopes in ApoB100 could 

open up possibilities for highly specific vaccine therapies. The properties of the epitopes will 

decide if therapies could be generalized or need to be personalized in accordance with HLA 

haplotype and other factors, which are, both genetic and environmental. As a start, the 

epitopes for the investigated TCR transgenic strains described in this thesis will be exactly 

mapped within the ApoB100 protein. 

As a final summary, this thesis provides mechanistic understanding of how three T-helper 

cell subsets indirectly counteract the Th1-driven inflammation in atherosclerosis: (I) Th17 

cells stabilize plaques, (II) Tregs control VLDL turnover, and (III) LDL-specific Tfh cells 

induce lipid-lowering antibodies. 



 

 41 

5 ACKNOWLEDGEMENTS 

I would like to thank everyone that contributed to the work during my PhD studies. Here I 

mention some that deserve special recognition. 

Göran Hansson, my supervisor. Thank you for guiding me in the pursuit of a PhD degree. I 

am very grateful for your supervision and support. Discussions with you at meetings and 

lunches are always rewarding. Your lab is fantastic and I feel very lucky to conduct research 

in it. The projects you assigned to me have been challenging but feasible. I have learnt so 

much during these years and grown as a person (+20 kg). Your vast knowledge and 

enthusiasm for science have inspired me to work hard and this has paid off. 

Daniel Ketelhuth, my co-supervisor, you are a role model in so many ways and you have 

always been there for me with practical advice. Göran and you formed an excellent 

supervising team. Thanks for all fun trips to conferences and inspirational music suggestions 

such as Angels Cry, Accident of Birth, and Coma Rage. It has been great to see your 

development into an excellent research team leader and I am sure that the future will hold 

plenty of exciting scientific discoveries for you and your team. 

Our lab technicians, Anneli Olsson, Linda Haglund and Ingrid Törnberg, you are 

fantastic! Thanks for all your help throughout the years. I would like to acknowledge Ingrid 

and Anneli for the immense work you have done with genotyping our genetically modified 

mice. My spreadsheet of genotypes has over 4,000 mice listed when I write this, which equals 

to over 10,000 PCR reactions. Ingrid has done 9,037 regular PCR reactions and Anneli has 

done 1,878 qPCR reactions for my projects. Linda has been very helpful with 

immunohistochemistry. I have 232 sections beautifully stained by her of which many are 

analyzed for the papers included in this thesis. Thank you Linda for being a great friend and 

sharing fun times outside the lab. André Strodthoff of course needs to be thanked. Your 

expertise in foresting, handball and heart sectioning is much appreciated. You have been 

cutting 228 aortic roots for me, for which I am greatly thankful. 

Our lab administrator, Ann Hellström, thank you for taking care of all the administrative 

work in the unit during my PhD studies, and I think Linda Berglund, our new administrator, 

will continue to run things as smoothly. 

Several people have contributed with additional supervision during my PhD studies. John 

Andersson, you helped me getting started in the lab with a project inherited from Anna-

Karin Robertson. I am indebted to both of you. Maria Klement with your lipid and cloning 

expertise, you were essential for Paper III, and I hope we will get some good publications out 

of our combined efforts. Stephen Malin, you raised the academic standard by joining the 

group. Thank you for feedback regarding my projects. Sara Lind Enoksson, you motivated 

me greatly with your methodological skills and immunological intellect. Gabrielle Paulsson-

Berne, thank you for scientific advice and keeping order in the lab.  



 

42 

I want to thank all present and past members of the Experimental Cardiovascular Research 

group, all of whom have contributed to the combined work that has led to the findings 

presented in this thesis. I am very grateful to have had the possibility to work amongst these 

great scientists that contribute to world-leading cardiovascular research. Andreas 

Hermansson, your work has been inspiring for me throughout my PhD studies, although 

your presence was limited to my first year in the lab. Other people present at the time I started 

in the lab were Anna Lundberg, Hanna Agardh, Daniela Strodthoff, Lasse Folkersen, 

David Xinghua Zhou, Karl Gertow, Yuri Sheikine, Olga Ovchinnikova, Jonas Persson, 

Edit Nagy, and Daniel Johansson, all of you made lab work a lot of fun. Norbert Gerdes 

and Roland Klingenberg already had left the lab when I started and I am thankful for the 

opportunity to work with you anyhow. Robert M. Badeau, thank you for bringing me aboard 

your team of lipoprotein clearance investigations. I had a lot of fun during these experiments, 

which included Stefan Nilsson, a remarkable scientist and bench presser. A large steak at 

Bronco’s is a perfect way to finish a well-performed experiment. Thanks to John Pirault for 

excellent crepes, friendship, and a lot of fun moments. Thanks to Peder Olofsson for good 

collaboration and to Leif Söderström, always positive and dedicated to many things, e.g., 

contrabass, CD137, and bench pressing. During the years, several other people have joined 

the group, Martin Halle, Tinna Christersdottir, Glykeria Karadimou, and Reiner 

Mailer, all of which have shared some of the fun in lab with me, thank you.  

I would like to thank Daniel Ketelhuth’s research team and especially Kostas Polyzos with 

whom I had the great opportunity to collaborate. It has also been a pleasure working with 

Martin Berg, Roland Baumgartner, and Maria J Forteza in the lab. Maria, it is great to 

see that working with me did not dispirit you during your first stay in the lab. 

I would like to thank Magnus Bäck and his translational cardiology unit, especially for the 

gym tickets in the US. Andrés Laguna Fernández, thanks for the feedback on presentations, 

all motivation, Spanish spices, and fun times outside the lab. Marcelo Petri, thanks for the 

dissertation advice. Miguel Carracedo, thanks for all the fun moments in the gym. Quit the 

excessive run practice and you will become very strong. I would like to thank Silke Thul for 

fun times and acknowledge your guinea pigs. Hildur Arnardottir, thanks for teaching me 

the importance of SPMs. 

Stephen’s team with Monica Centa, Katrin Habir, Albert Dahdah, and Kajsa Prokopec. 

Thank you for all help with protocols and antibodies.  

Thanks to the team led by Zhong-Qun Yan, it has been fun working with your students 

Xiao-Ying Zhang, Yajuan Wang, Jingyi Ren, and Xintong Jiang, always friendly and 

prepared to teach me some Chinese customs. Your abilities to learn Swedish are astonishing.  

Thanks to the present group leader of the cardiovascular research group Per Eriksson and to 

the president of KI Anders Hamsten. It has been fun to work with your group members 

Hanna Björck, Valentina Paloschi, Alexandra Bäcklund, Rona Strawbridge, and Jesper 

Gådin.  



 

 43 

I would like to thank the students that have been doing projects within the group; it is always 

nice with fresh ideas and new energy. Thanks to Ali Ismail that helped immensely in the 

TCR project. Jasmin Barimani, Stina Virding, Kathryn Mooneyham, Teodora 

Andonova, Ingvill Harbitz Ellertsen, and Grégoire Jeanson, you have all been fun 

company in the lab and some of you kept me company in the gym as well, which has been 

very appreciated. 

The animal house staff has been tremendously helpful during these studies. Sandra Olsson, 

Joline Larsson, Rebecca Gahn, Selam Assefa, Jessica Lundgren, Anna-Lena 

Gustafsson, Michelle Gustafsson, Melanie Cremer, and others at AKM. Kenth 

Andersson, Torunn Söderberg, Margareta Hagelin, and Anna-Karin Persson at MTC. 

You take good care of our mice and make life so much easier for us researchers. 

The work environment has been excellent on CMM floor 3 thanks to all great people sharing 

the lab space here. I would like to thank Ulf Hedin for good career advice in the gym. Thanks 

to Linnea Eriksson and Silvia Aldi for making use of leftover materials. Marita Wallin, 

thanks for fun chats and company in the gel room. CMV group, it has been a pleasure to 

share lab with you. Thanks to Vanessa Wilhelmi, Abdul-Aleem Mohammad, Sharan 

Ananthaseshan, Helena Costa, Anna Martinez Casals, Alice Assinger, Lynn Butler, and 

Ewa Kurzejamska for fun lunch company and activities outside the lab. Thanks to KC 

Yaiw, you are a very inspiring researcher and always helpful regarding any method. Åsa 

Wiktorsson, thank you for the yoga inspiration. Thanks to Björn Gustafsson and Mona 

Ahmed for research discussions. Albert Busch, thank you for the encouragement regarding 

hard work, beer drinking, and good music. Cecilia Österholm Corbascio, thanks for the fun 

company in the gym. 

Other people at CMM I would like to thank are Susanna Brauner and Shahin Aeinehband 

that supported me during the PhD studies. Andre Ortlieb, Roham Parsa and Harald Lund, 

thank you for the good time at the ICI conference in Milan.  

Thanks to my supervisor at Mayo Clinic, Joerg Herrmann, and his lab members Feilong 

Wang and Lisa Nesbitt for making my stay at Mayo very instructive. My other collaborators 

abroad, Richard Flavell and Ming Li, thank you for your help in the Smad7 story. Tim 

Sparwasser, Mats Rudling, Matti Jauhiainen, and other collaborators, thank you for the 

group effort regarding the DEREG model. Thanks to Gunilla Olivecrona for scientific 

advice. I would like to thank Ellis Reinherz for good collaboration regarding T-cell epitopes 

and Katariina Öörni and Maija Ruuth for the promising collaboration regarding modified 

LDL. 

I would like to thank several people at MTC for making the PhD studies a lot of fun, 

especially the Anchor gang, Thomas Hägglöf, Amanda Duhlin, Carin Dahlberg, and 

Anna-Maria Georgoudaki. Thanks to Mikael Karlsson for good collaboration. Kiran 

Sedimbi, thanks for the fun lunch company. Marton Keszei, thanks for your hospitality at 

Thanksgiving. 



 

44 

Aura Professional English Consulting, Ltd. (www.auraenglish.com) is warmly thanked for 

providing excellent linguistic editing with rapid and complete service. 

I have met several nice people at the gym in Norrbacka, both working in the hospital and at 

KI. I would like to thank Dan Grandér especially for all work-related support and advice.  

Joakim Enlund, my best friend since junior high school, thank you for all support. Linus 

Andersson, thanks for being a fantastic friend and for the good times at Deep. Peter 

Sullivan and Johan Modin, thank you for your company, dinners and parties. Patrik 

Lundqvist, thank you for pleasant hikes in the mountains. 

Last and foremost, I would like to thank my sister Moa, and my parents Örjan and Birgitta. 

http://www.auraenglish.com/


 

 45 

6 REFERENCES 

 

1. Murphy, K., Janeway's Immunobiology. 8 ed. 2011, New York: Garland Science. 

2. Sommer, F. and F. Backhed, The gut microbiota--masters of host development and 

physiology. Nat Rev Microbiol, 2013. 11(4): p. 227-38. 

3. Celsus, A.C., De medicina. Self published, 25 A.D. 

4. Rather, L.J., Disturbance of function (functio laesa): the legendary fifth cardinal 

sign of inflammation, added by Galen to the four cardinal signs of Celsus. Bull N Y 

Acad Med, 1971. 47(3): p. 303-22. 

5. Serhan, C.N. and J. Savill, Resolution of inflammation: the beginning programs the 

end. Nat Immunol, 2005. 6(12): p. 1191-7. 

6. Medzhitov, R. and C.A. Janeway, Jr., Decoding the patterns of self and nonself by 

the innate immune system. Science, 2002. 296(5566): p. 298-300. 

7. Medzhitov, R., Toll-like receptors and innate immunity. Nat Rev Immunol, 2001. 

1(2): p. 135-45. 

8. Takeda, K., T. Kaisho, and S. Akira, Toll-like receptors. Annu Rev Immunol, 2003. 

21: p. 335-76. 

9. Peiser, L., S. Mukhopadhyay, and S. Gordon, Scavenger receptors in innate 

immunity. Curr Opin Immunol, 2002. 14(1): p. 123-8. 

10. Muller-Eberhard, H.J., Molecular organization and function of the complement 

system. Annu Rev Biochem, 1988. 57: p. 321-47. 

11. Wright, A.E. and S.R. Douglas, An Experimental Investigation of the Role of the 

Blood Fluids in Connection with Phagocytosis. Proc R Soc, 1903. 72: p. 357-370. 

12. Springer, T.A., Traffic signals for lymphocyte recirculation and leukocyte 

emigration: the multistep paradigm. Cell, 1994. 76(2): p. 301-14. 

13. Metchnikoff, E., Immunity in infective diseases. 1905: University Press. 

14. Ishizaka, K., T. Ishizaka, and M.M. Hornbrook, Physico-chemical properties of 

human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of 

reaginic activity. J Immunol, 1966. 97(1): p. 75-85. 

15. Steinman, R.M. and Z.A. Cohn, Identification of a novel cell type in peripheral 

lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp 

Med, 1973. 137(5): p. 1142-62. 

16. Isaacs, A. and J. Lindenmann, Virus interference. I. The interferon. Proc Royal Soc 

B, 1957. 147(927): p. 258-267. 

17. Kiessling, R., E. Klein, and H. Wigzell, "Natural" killer cells in the mouse. I. 

Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and 

distribution according to genotype. Eur J Immunol, 1975. 5(2): p. 112-7. 

18. Ljunggren, H.G. and K. Karre, In search of the 'missing self': MHC molecules and 

NK cell recognition. Immunol Today, 1990. 11(7): p. 237-44. 

19. Bendelac, A., M. Bonneville, and J.F. Kearney, Autoreactivity by design: innate B 

and T lymphocytes. Nat Rev Immunol, 2001. 1(3): p. 177-86. 

20. Reinherz, E.L. and S.F. Schlossman, The differentiation and function of human T 

lymphocytes. Cell, 1980. 19(4): p. 821-7. 

21. Lanzavecchia, A., Antigen-specific interaction between T and B cells. Nature, 1985. 

314(6011): p. 537-9. 

22. Kappler, J.W., N. Roehm, and P. Marrack, T cell tolerance by clonal elimination in 

the thymus. Cell, 1987. 49(2): p. 273-80. 

23. Billingham, R.E., L. Brent, and P.B. Medawar, Actively acquired tolerance of 

foreign cells. Nature, 1953. 172(4379): p. 603-6. 



 

46 

24. Glick, B., T.S. Chang, and R.G. Jaap, The bursa of Fabricius and antibody 

production. Poultry Science, 1956. 35(1): p. 224-225. 

25. Peschon, J.J., et al., Early lymphocyte expansion is severely impaired in interleukin 

7 receptor-deficient mice. J Exp Med, 1994. 180(5): p. 1955-60. 

26. Hozumi, N. and S. Tonegawa, Evidence for somatic rearrangement of 

immunoglobulin genes coding for variable and constant regions. Proc Natl Acad 

Sci U S A, 1976. 73(10): p. 3628-32. 

27. Rajewsky, K., Clonal selection and learning in the antibody system. Nature, 1996. 

381(6585): p. 751-8. 

28. Muramatsu, M., et al., Class switch recombination and hypermutation require 

activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell, 

2000. 102(5): p. 553-63. 

29. Nimmerjahn, F. and J.V. Ravetch, Divergent immunoglobulin g subclass activity 

through selective Fc receptor binding. Science, 2005. 310(5753): p. 1510-2. 

30. Fagraeus, A., Plasma cellular reaction and its relation to the formation of 

antibodies in vitro. Nature, 1947. 159(4041): p. 499. 

31. Miller, J.F., Immunological function of the thymus. Lancet, 1961. 2(7205): p. 748-9. 

32. Yanagi, Y., et al., A human T cell-specific cDNA clone encodes a protein having 

extensive homology to immunoglobulin chains. Nature, 1984. 308(5955): p. 145-9. 

33. Klein, L., et al., Positive and negative selection of the T cell repertoire: what 

thymocytes see (and don't see). Nat Rev Immunol, 2014. 14(6): p. 377-91. 

34. Barber, E.K., et al., The CD4 and CD8 antigens are coupled to a protein-tyrosine 

kinase (p56lck) that phosphorylates the CD3 complex. Proc Natl Acad Sci U S A, 

1989. 86(9): p. 3277-81. 

35. Anderson, M.S., et al., Projection of an immunological self shadow within the 

thymus by the aire protein. Science, 2002. 298(5597): p. 1395-401. 

36. Josefowicz, S.Z., L.F. Lu, and A.Y. Rudensky, Regulatory T cells: mechanisms of 

differentiation and function. Annu Rev Immunol, 2012. 30: p. 531-64. 

37. Smith-Garvin, J.E., G.A. Koretzky, and M.S. Jordan, T cell activation. Annu Rev 

Immunol, 2009. 27: p. 591-619. 

38. Zinkernagel, R.M. and P.C. Doherty, MHC-restricted cytotoxic T cells: studies on 

the biological role of polymorphic major transplantation antigens determining T-

cell restriction-specificity, function, and responsiveness. Adv Immunol, 1979. 27: p. 

51-177. 

39. Robb, R.J., A. Munck, and K.A. Smith, T cell growth factor receptors. 

Quantitation, specificity, and biological relevance. J Exp Med, 1981. 154(5): p. 

1455-74. 

40. Gillis, S., et al., T cell growth factor: parameters of production and a quantitative 

microassay for activity. J Immunol, 1978. 120(6): p. 2027-32. 

41. Sallusto, F., et al., Two subsets of memory T lymphocytes with distinct homing 

potentials and effector functions. Nature, 1999. 401(6754): p. 708-12. 

42. Mosmann, T.R., et al., Two types of murine helper T cell clone. I. Definition 

according to profiles of lymphokine activities and secreted proteins. 1986. J 

Immunol, 2005. 175(1): p. 5-14. 

43. Szabo, S.J., et al., A novel transcription factor, T-bet, directs Th1 lineage 

commitment. Cell, 2000. 100(6): p. 655-69. 

44. Wheelock, E.F., Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by 

Phytohemagglutinin. Science, 1965. 149(3681): p. 310-1. 

45. Hooks, J.J., et al., Immune interferon in the circulation of patients with autoimmune 

disease. N Engl J Med, 1979. 301(1): p. 5-8. 



 

 47 

46. Zheng, W. and R.A. Flavell, The transcription factor GATA-3 is necessary and 

sufficient for Th2 cytokine gene expression in CD4 T cells. Cell, 1997. 89(4): p. 

587-96. 

47. Schmitz, J., et al., IL-33, an interleukin-1-like cytokine that signals via the IL-1 

receptor-related protein ST2 and induces T helper type 2-associated cytokines. 

Immunity, 2005. 23(5): p. 479-90. 

48. Finkelman, F.D., et al., IL-4 is required to generate and sustain in vivo IgE 

responses. J Immunol, 1988. 141(7): p. 2335-41. 

49. Harrington, L.E., et al., Interleukin 17-producing CD4+ effector T cells develop via 

a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005. 

6(11): p. 1123-32. 

50. Park, H., et al., A distinct lineage of CD4 T cells regulates tissue inflammation by 

producing interleukin 17. Nat Immunol, 2005. 6(11): p. 1133-41. 

51. Veldhoen, M., et al., TGFbeta in the context of an inflammatory cytokine milieu 

supports de novo differentiation of IL-17-producing T cells. Immunity, 2006. 24(2): 

p. 179-89. 

52. Ivanov, II, et al., The orphan nuclear receptor RORgammat directs the 

differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006. 

126(6): p. 1121-33. 

53. Acosta-Rodriguez, E.V., et al., Surface phenotype and antigenic specificity of 

human interleukin 17-producing T helper memory cells. Nat Immunol, 2007. 8(6): 

p. 639-46. 

54. Kebir, H., et al., Human TH17 lymphocytes promote blood-brain barrier disruption 

and central nervous system inflammation. Nat Med, 2007. 13(10): p. 1173-5. 

55. Lowes, M.A., et al., Psoriasis vulgaris lesions contain discrete populations of Th1 

and Th17 T cells. J Invest Dermatol, 2008. 128(5): p. 1207-11. 

56. Hirota, K., et al., Preferential recruitment of CCR6-expressing Th17 cells to 

inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med, 

2007. 204(12): p. 2803-12. 

57. MacLeod, A.S., et al., Dendritic epidermal T cells regulate skin antimicrobial 

barrier function. J Clin Invest, 2013. 123(10): p. 4364-74. 

58. Meng, F., et al., Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic 

stellate cells exacerbates liver fibrosis in mice. Gastroenterology, 2012. 143(3): p. 

765-76.e1-3. 

59. Gershon, R.K. and K. Kondo, Cell interactions in the induction of tolerance: the 

role of thymic lymphocytes. Immunology, 1970. 18(5): p. 723-37. 

60. Sakaguchi, S., et al., Immunologic self-tolerance maintained by activated T cells 

expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism 

of self-tolerance causes various autoimmune diseases. J Immunol, 1995. 155(3): p. 

1151-64. 

61. Hori, S., T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by 

the transcription factor Foxp3. Science, 2003. 299(5609): p. 1057-61. 

62. Bennett, C.L., et al., The immune dysregulation, polyendocrinopathy, enteropathy, 

X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet, 2001. 

27(1): p. 20-1. 

63. Brunkow, M.E., et al., Disruption of a new forkhead/winged-helix protein, scurfin, 

results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet, 

2001. 27(1): p. 68-73. 

64. Andersson, J., et al., CD4+ FoxP3+ regulatory T cells confer infectious tolerance 

in a TGF-beta-dependent manner. J Exp Med, 2008. 205(9): p. 1975-81. 



 

48 

65. Pandiyan, P., et al., CD4+CD25+Foxp3+ regulatory T cells induce cytokine 

deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol, 2007. 

8(12): p. 1353-62. 

66. Shevach, E.M., Mechanisms of foxp3+ T regulatory cell-mediated suppression. 

Immunity, 2009. 30(5): p. 636-45. 

67. Pestka, S., et al., Interleukin-10 and related cytokines and receptors. Annu Rev 

Immunol, 2004. 22: p. 929-79. 

68. Steinman, R.M., D. Hawiger, and M.C. Nussenzweig, Tolerogenic dendritic cells. 

Annu Rev Immunol, 2003. 21: p. 685-711. 

69. Qureshi, O.S., et al., Trans-endocytosis of CD80 and CD86: a molecular basis for 

the cell-extrinsic function of CTLA-4. Science, 2011. 332(6029): p. 600-3. 

70. Wing, K., et al., CTLA-4 control over Foxp3+ regulatory T cell function. Science, 

2008. 322(5899): p. 271-5. 

71. Latchman, Y., et al., PD-L2 is a second ligand for PD-1 and inhibits T cell 

activation. Nat Immunol, 2001. 2(3): p. 261-8. 

72. Nurieva, R.I., et al., Generation of T follicular helper cells is mediated by 

interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity, 2008. 

29(1): p. 138-49. 

73. Nurieva, R.I., et al., Bcl6 mediates the development of T follicular helper cells. 

Science, 2009. 325(5943): p. 1001-5. 

74. Lozano, R., et al., Global and regional mortality from 235 causes of death for 20 

age groups in 1990 and 2010: a systematic analysis for the Global Burden of 

Disease Study 2010. Lancet, 2012. 380(9859): p. 2095-128. 

75. Hansson, G.K., Inflammation, atherosclerosis, and coronary artery disease. N Engl 

J Med, 2005. 352(16): p. 1685-95. 

76. Napoli, C., et al., Fatty streak formation occurs in human fetal aortas and is greatly 

enhanced by maternal hypercholesterolemia. Intimal accumulation of low density 

lipoprotein and its oxidation precede monocyte recruitment into early 

atherosclerotic lesions. J Clin Invest, 1997. 100(11): p. 2680-90. 

77. Enos, W.F., R.H. Holmes, and J. Beyer, Coronary disease among United States 

soldiers killed in action in Korea; preliminary report. JAMA, 1953. 152(12): p. 

1090-3. 

78. Skalen, K., et al., Subendothelial retention of atherogenic lipoproteins in early 

atherosclerosis. Nature, 2002. 417(6890): p. 750-4. 

79. Pentikainen, M.O., et al., Modified LDL - trigger of atherosclerosis and 

inflammation in the arterial intima. J Intern Med, 2000. 247(3): p. 359-70. 

80. Hansson, G.K. and A. Hermansson, The immune system in atherosclerosis. Nat 

Immunol, 2011. 12(3): p. 204-12. 

81. Cybulsky, M.I. and M.A. Gimbrone, Jr., Endothelial expression of a mononuclear 

leukocyte adhesion molecule during atherogenesis. Science, 1991. 251(4995): p. 

788-91. 

82. Nakashima, Y., et al., Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-

prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb 

Vasc Biol, 1998. 18(5): p. 842-51. 

83. Rajavashisth, T.B., et al., Induction of endothelial cell expression of granulocyte 

and macrophage colony-stimulating factors by modified low-density lipoproteins. 

Nature, 1990. 344(6263): p. 254-7. 

84. Fowler, S., H. Shio, and N.J. Haley, Characterization of lipid-laden aortic cells 

from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of 

aortic cell populations. Lab Invest, 1979. 41(4): p. 372-8. 

85. Robbins, C.S., et al., Local proliferation dominates lesional macrophage 

accumulation in atherosclerosis. Nat Med, 2013. 19(9): p. 1166-72. 



 

 49 

86. Kunjathoor, V.V., et al., Scavenger receptors class A-I/II and CD36 are the 

principal receptors responsible for the uptake of modified low density lipoprotein 

leading to lipid loading in macrophages. J Biol Chem, 2002. 277(51): p. 49982-8. 

87. Goldstein, J.L., et al., Binding site on macrophages that mediates uptake and 

degradation of acetylated low density lipoprotein, producing massive cholesterol 

deposition. Proc Natl Acad Sci U S A, 1979. 76(1): p. 333-7. 

88. Park, Y.M., M. Febbraio, and R.L. Silverstein, CD36 modulates migration of mouse 

and human macrophages in response to oxidized LDL and may contribute to 

macrophage trapping in the arterial intima. J Clin Invest, 2009. 119(1): p. 136-45. 

89. Kannel, W.B., et al., Factors of risk in the development of coronary heart disease--

six year follow-up experience. The Framingham Study. Ann Intern Med, 1961. 55: 

p. 33-50. 

90. de Beer, F.C., et al., Measurement of serum C-reactive protein concentration in 

myocardial ischaemia and infarction. Br Heart J, 1982. 47(3): p. 239-43. 

91. Liuzzo, G., et al., The prognostic value of C-reactive protein and serum amyloid a 

protein in severe unstable angina. N Engl J Med, 1994. 331(7): p. 417-24. 

92. Ridker, P.M., et al., Inflammation, aspirin, and the risk of cardiovascular disease in 

apparently healthy men. N Engl J Med, 1997. 336(14): p. 973-9. 

93. McGill Jr, H.C., J.C. Geer, and J.P. Strong, Natural history of human 

atherosclerotic lesions. Atherosclerosis and its origin, 1963: p. 39-65. 

94. Thompson, R.C., et al., Atherosclerosis across 4000 years of human history: the 

Horus study of four ancient populations. Lancet, 2013. 381(9873): p. 1211-22. 

95. Go, A.S., et al., Heart disease and stroke statistics--2013 update: a report from the 

American Heart Association. Circulation, 2013. 127(1): p. e6-e245. 

96. Schunkert, H., et al., Large-scale association analysis identifies 13 new 

susceptibility loci for coronary artery disease. Nat Genet, 2011. 43(4): p. 333-8. 

97. Harismendy, O., et al., 9p21 DNA variants associated with coronary artery disease 

impair interferon-gamma signalling response. Nature, 2011. 470(7333): p. 264-8. 

98. Kubo, T., et al., Assessment of culprit lesion morphology in acute myocardial 

infarction: ability of optical coherence tomography compared with intravascular 

ultrasound and coronary angioscopy. J Am Coll Cardiol, 2007. 50(10): p. 933-9. 

99. Virmani, R., et al., Lessons from sudden coronary death: a comprehensive 

morphological classification scheme for atherosclerotic lesions. Arterioscler 

Thromb Vasc Biol, 2000. 20(5): p. 1262-75. 

100. Libby, P. and G. Pasterkamp, Requiem for the 'vulnerable plaque'. Eur Heart J, 

2015. 

101. van Lammeren, G.W., et al., Time-dependent changes in atherosclerotic plaque 

composition in patients undergoing carotid surgery. Circulation, 2014. 129(22): p. 

2269-76. 

102. Jonasson, L., et al., Regional Accumulations of T-Cells, Macrophages, and Smooth-

Muscle Cells in the Human Atherosclerotic Plaque. Arteriosclerosis, 1986. 6(2): p. 

131-138. 

103. Richardson, P.D., M.J. Davies, and G.V. Born, Influence of plaque configuration 

and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet, 

1989. 2(8669): p. 941-4. 

104. Naghavi, M., et al., From vulnerable plaque to vulnerable patient: a call for new 

definitions and risk assessment strategies: Part I. Circulation, 2003. 108(14): p. 

1664-72. 

105. van der Wal, A.C., et al., Site of intimal rupture or erosion of thrombosed coronary 

atherosclerotic plaques is characterized by an inflammatory process irrespective of 

the dominant plaque morphology. Circulation, 1994. 89(1): p. 36-44. 



 

50 

106. Amento, E.P., et al., Cytokines and growth factors positively and negatively 

regulate interstitial collagen gene expression in human vascular smooth muscle 

cells. Arterioscler Thromb, 1991. 11(5): p. 1223-30. 

107. Ovchinnikova, O.A., et al., The collagen cross-linking enzyme lysyl oxidase is 

associated with the healing of human atherosclerotic lesions. J Intern Med, 2014. 

276(5): p. 525-36. 

108. Hansson, G.K., et al., Interferon gamma inhibits both proliferation and expression 

of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle 

cells. J Exp Med, 1989. 170(5): p. 1595-608. 

109. Ovchinnikova, O., et al., T-cell activation leads to reduced collagen maturation in 

atherosclerotic plaques of Apoe(-/-) mice. Am J Pathol, 2009. 174(2): p. 693-700. 

110. Back, M., D.F. Ketelhuth, and S. Agewall, Matrix metalloproteinases in 

atherothrombosis. Prog Cardiovasc Dis, 2010. 52(5): p. 410-28. 

111. Kovanen, P.T., M. Kaartinen, and T. Paavonen, Infiltrates of activated mast cells at 

the site of coronary atheromatous erosion or rupture in myocardial infarction. 

Circulation, 1995. 92(5): p. 1084-8. 

112. Ehara, S., et al., Spotty calcification typifies the culprit plaque in patients with acute 

myocardial infarction: an intravascular ultrasound study. Circulation, 2004. 

110(22): p. 3424-9. 

113. Steinberg, D., The Cholesterol Wars: The Skeptics vs the Preponderance of 

Evidence. 2011: Academic Press. 

114. Anitschkow, N., et al., Ueber experimentelle Cholesterinsteatose und ihre 

Bedeutehung einiger pathologischer Prozesse. Centrbl Allg Pathol Pathol Anat, 

1913. 24: p. 1-9. 

115. Virchow, R., Über den Faserstoff: Phlogose und Thrombose im Gefäßsystem, 

Gesammelte Abhandlungen zur wissenschaftlichen Medicin. 1856, Frankfurt am 

Main: Meidinger & Sohn Corp. 

116. Frostegard, J., Atherosclerosis in patients with autoimmune disorders. Arterioscler 

Thromb Vasc Biol, 2005. 25(9): p. 1776-85. 

117. Spah, F., Inflammation in atherosclerosis and psoriasis: common pathogenic 

mechanisms and the potential for an integrated treatment approach. Br J Dermatol, 

2008. 159 Suppl 2: p. 10-7. 

118. Mattila, K.J., et al., Association between dental health and acute myocardial 

infarction. BMJ, 1989. 298(6676): p. 779-81. 

119. Muhlestein, J.B., et al., Infection with Chlamydia pneumoniae accelerates the 

development of atherosclerosis and treatment with azithromycin prevents it in a 

rabbit model. Circulation, 1998. 97(7): p. 633-6. 

120. Caligiuri, G., et al., Chlamydia pneumoniae infection does not induce or modify 

atherosclerosis in mice. Circulation, 2001. 103(23): p. 2834-8. 

121. Andraws, R., J.S. Berger, and D.L. Brown, Effects of antibiotic therapy on 

outcomes of patients with coronary artery disease: a meta-analysis of randomized 

controlled trials. JAMA, 2005. 293(21): p. 2641-7. 

122. Wright, S.D., et al., Infectious agents are not necessary for murine atherogenesis. J 

Exp Med, 2000. 191(8): p. 1437-42. 

123. Jonasson, L., J. Holm, and G.K. Hansson, Cyclosporin A inhibits smooth muscle 

proliferation in the vascular response to injury. Proc Natl Acad Sci U S A, 1988. 

85(7): p. 2303-6. 

124. Marx, S.O. and A.R. Marks, Bench to bedside: the development of rapamycin and 

its application to stent restenosis. Circulation, 2001. 104(8): p. 852-5. 

125. Back, M. and G.K. Hansson, Anti-inflammatory therapies for atherosclerosis. Nat 

Rev Cardiol, 2015. 12(4): p. 199-211. 



 

 51 

126. Edfeldt, K., et al., Expression of toll-like receptors in human atherosclerotic 

lesions: a possible pathway for plaque activation. Circulation, 2002. 105(10): p. 

1158-61. 

127. Miller, Y.I., et al., Minimally modified LDL binds to CD14, induces macrophage 

spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol 

Chem, 2003. 278(3): p. 1561-8. 

128. West, X.Z., et al., Oxidative stress induces angiogenesis by activating TLR2 with 

novel endogenous ligands. Nature, 2010. 467(7318): p. 972-6. 

129. Lundberg, A.M. and G.K. Hansson, Innate immune signals in atherosclerosis. Clin 

Immunol, 2010. 134(1): p. 5-24. 

130. Bjorkbacka, H., et al., Reduced atherosclerosis in MyD88-null mice links elevated 

serum cholesterol levels to activation of innate immunity signaling pathways. Nat 

Med, 2004. 10(4): p. 416-21. 

131. Hurt-Camejo, E., et al., Phospholipase A(2) in vascular disease. Circ Res, 2001. 

89(4): p. 298-304. 

132. Steinberg, D., The LDL modification hypothesis of atherogenesis: an update. J 

Lipid Res, 2009. 50 Suppl: p. S376-81. 

133. White, H.D., et al., Darapladib for preventing ischemic events in stable coronary 

heart disease. N Engl J Med, 2014. 370(18): p. 1702-11. 

134. O'Donoghue, M.L., et al., Effect of darapladib on major coronary events after an 

acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA, 

2014. 312(10): p. 1006-15. 

135. Duewell, P., et al., NLRP3 inflammasomes are required for atherogenesis and 

activated by cholesterol crystals. Nature, 2010. 464(7293): p. 1357-61. 

136. Rajamaki, K., et al., Cholesterol crystals activate the NLRP3 inflammasome in 

human macrophages: a novel link between cholesterol metabolism and 

inflammation. PLoS One, 2010. 5(7): p. e11765. 

137. Ridker, P.M., et al., Interleukin-1beta inhibition and the prevention of recurrent 

cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory 

Thrombosis Outcomes Study (CANTOS). Am Heart J, 2011. 162(4): p. 597-605. 

138. Loppnow, H. and P. Libby, Proliferating or interleukin 1-activated human vascular 

smooth muscle cells secrete copious interleukin 6. J Clin Invest, 1990. 85(3): p. 

731-8. 

139. Drechsler, M., et al., Hyperlipidemia-triggered neutrophilia promotes early 

atherosclerosis. Circulation, 2010. 122(18): p. 1837-45. 

140. Tupin, E., et al., CD1d-dependent activation of NKT cells aggravates 

atherosclerosis. J Exp Med, 2004. 199(3): p. 417-22. 

141. Whitman, S.C., et al., Depletion of natural killer cell function decreases 

atherosclerosis in low-density lipoprotein receptor null mice. Arterioscler Thromb 

Vasc Biol, 2004. 24(6): p. 1049-54. 

142. van Puijvelde, G.H., et al., Effect of natural killer T cell activation on the initiation 

of atherosclerosis. Thromb Haemost, 2009. 102(2): p. 223-30. 

143. Cheng, H.Y., R. Wu, and C.C. Hedrick, Gammadelta (gammadelta) T lymphocytes 

do not impact the development of early atherosclerosis. Atherosclerosis, 2014. 

234(2): p. 265-9. 

144. Elhage, R., et al., Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to 

opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient 

mice. Am J Pathol, 2004. 165(6): p. 2013-8. 

145. Jonasson, L., et al., Expression of class II transplantation antigen on vascular 

smooth muscle cells in human atherosclerosis. J Clin Invest, 1985. 76(1): p. 125-31. 



 

52 

146. Davies, R.W., et al., A genome-wide association study for coronary artery disease 

identifies a novel susceptibility locus in the major histocompatibility complex. Circ 

Cardiovasc Genet, 2012. 5(2): p. 217-25. 

147. Swanberg, M., et al., MHC2TA is associated with differential MHC molecule 

expression and susceptibility to rheumatoid arthritis, multiple sclerosis and 

myocardial infarction. Nat Genet, 2005. 37(5): p. 486-94. 

148. Bjorkbacka, H., et al., Weak associations between human leucocyte antigen 

genotype and acute myocardial infarction. J Intern Med, 2010. 268(1): p. 50-8. 

149. Bobryshev, Y.V. and R.S. Lord, Mapping of vascular dendritic cells in 

atherosclerotic arteries suggests their involvement in local immune-inflammatory 

reactions. Cardiovasc Res, 1998. 37(3): p. 799-810. 

150. Llodra, J., et al., Emigration of monocyte-derived cells from atherosclerotic lesions 

characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci U S A, 

2004. 101(32): p. 11779-84. 

151. Palinski, W., et al., Low density lipoprotein undergoes oxidative modification in 

vivo. Proc Natl Acad Sci U S A, 1989. 86(4): p. 1372-6. 

152. Bui, M.N., et al., Autoantibody titers to oxidized low-density lipoprotein in patients 

with coronary atherosclerosis. Am Heart J, 1996. 131(4): p. 663-7. 

153. Wu, R., et al., Lysophosphatidylcholine is involved in the antigenicity of oxidized 

LDL. Arterioscler Thromb Vasc Biol, 1998. 18(4): p. 626-30. 

154. Shaw, P.X., et al., Natural antibodies with the T15 idiotype may act in 

atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest, 2000. 

105(12): p. 1731-40. 

155. Fredrikson, G.N., et al., Identification of immune responses against aldehyde-

modified peptide sequences in apoB associated with cardiovascular disease. 

Arterioscler Thromb Vasc Biol, 2003. 23(5): p. 872-8. 

156. Stemme, S., et al., T lymphocytes from human atherosclerotic plaques recognize 

oxidized low density lipoprotein. Proc Natl Acad Sci U S A, 1995. 92(9): p. 3893-7. 

157. Xu, Q., et al., Increased expression of heat shock protein 65 coincides with a 

population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits 

specifically responding to heat shock protein 65. J Clin Invest, 1993. 91(6): p. 2693-

702. 

158. Benagiano, M., et al., Human 60-kDa heat shock protein is a target autoantigen of 

T cells derived from atherosclerotic plaques. J Immunol, 2005. 174(10): p. 6509-17. 

159. George, J., et al., Cellular and humoral immune responses to heat shock protein 65 

are both involved in promoting fatty-streak formation in LDL-receptor deficient 

mice. J Am Coll Cardiol, 2001. 38(3): p. 900-5. 

160. Schett, G., et al., Autoantibodies against heat shock protein 60 mediate endothelial 

cytotoxicity. J Clin Invest, 1995. 96(6): p. 2569-77. 

161. Maron, R., et al., Mucosal administration of heat shock protein-65 decreases 

atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-

deficient mice. Circulation, 2002. 106(13): p. 1708-15. 

162. Klingenberg, R., et al., Subcutaneous immunization with heat shock protein-65 

reduces atherosclerosis in Apoe(-)/(-) mice. Immunobiology, 2012. 217(5): p. 540-

7. 

163. George, J., et al., Adoptive transfer of beta(2)-glycoprotein I-reactive lymphocytes 

enhances early atherosclerosis in LDL receptor-deficient mice. Circulation, 2000. 

102(15): p. 1822-7. 

164. Duner, P., et al., Immunization of apoE-/- mice with aldehyde-modified fibronectin 

inhibits the development of atherosclerosis. Cardiovasc Res, 2011. 91(3): p. 528-36. 



 

 53 

165. Palinski, W., E. Miller, and J.L. Witztum, Immunization of low density lipoprotein 

(LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL 

reduces atherogenesis. Proc Natl Acad Sci U S A, 1995. 92(3): p. 821-5. 

166. Ameli, S., et al., Effect of immunization with homologous LDL and oxidized LDL on 

early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc 

Biol, 1996. 16(8): p. 1074-9. 

167. George, J., et al., Hyperimmunization of apo-E-deficient mice with homologous 

malondialdehyde low-density lipoprotein suppresses early atherogenesis. 

Atherosclerosis, 1998. 138(1): p. 147-52. 

168. Zhou, X., et al., LDL immunization induces T-cell-dependent antibody formation 

and protection against atherosclerosis. Arterioscler Thromb Vasc Biol, 2001. 21(1): 

p. 108-14. 

169. Binder, C.J., et al., IL-5 links adaptive and natural immunity specific for epitopes of 

oxidized LDL and protects from atherosclerosis. J Clin Invest, 2004. 114(3): p. 427-

37. 

170. Fredrikson, G.N., et al., Inhibition of atherosclerosis in apoE-null mice by 

immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol, 

2003. 23(5): p. 879-84. 

171. Tse, K., et al., Atheroprotective Vaccination with MHC-II Restricted Peptides from 

ApoB-100. Front Immunol, 2013. 4: p. 493. 

172. van Puijvelde, G.H., et al., Induction of oral tolerance to oxidized low-density 

lipoprotein ameliorates atherosclerosis. Circulation, 2006. 114(18): p. 1968-76. 

173. Klingenberg, R., et al., Intranasal immunization with an apolipoprotein B-100 

fusion protein induces antigen-specific regulatory T cells and reduces 

atherosclerosis. Arterioscler Thromb Vasc Biol, 2010. 30(5): p. 946-52. 

174. Herbin, O., et al., Regulatory T-cell response to apolipoprotein B100-derived 

peptides reduces the development and progression of atherosclerosis in mice. 

Arterioscler Thromb Vasc Biol, 2012. 32(3): p. 605-12. 

175. Hermansson, A., et al., Immunotherapy with tolerogenic apolipoprotein B-100-

loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. 

Circulation, 2011. 123(10): p. 1083-91. 

176. Tsimikas, S., et al., Relationship of IgG and IgM autoantibodies to oxidized low 

density lipoprotein with coronary artery disease and cardiovascular events. J Lipid 

Res, 2007. 48(2): p. 425-33. 

177. Hartvigsen, K., et al., The role of innate immunity in atherogenesis. J Lipid Res, 

2009. 50 Suppl: p. S388-93. 

178. Shoji, T., et al., Inverse relationship between circulating oxidized low density 

lipoprotein (oxLDL) and anti-oxLDL antibody levels in healthy subjects. 

Atherosclerosis, 2000. 148(1): p. 171-7. 

179. Habets, K.L., et al., Vaccination using oxidized low-density lipoprotein-pulsed 

dendritic cells reduces atherosclerosis in LDL receptor-deficient mice. Cardiovasc 

Res, 2010. 85(3): p. 622-30. 

180. Freigang, S., et al., Immunization of LDL receptor-deficient mice with homologous 

malondialdehyde-modified and native LDL reduces progression of atherosclerosis 

by mechanisms other than induction of high titers of antibodies to oxidative 

neoepitopes. Arterioscler Thromb Vasc Biol, 1998. 18(12): p. 1972-82. 

181. Binder, C.J., et al., Pneumococcal vaccination decreases atherosclerotic lesion 

formation: molecular mimicry between Streptococcus pneumoniae and oxidized 

LDL. Nat Med, 2003. 9(6): p. 736-43. 

182. Schiopu, A., et al., Recombinant human antibodies against aldehyde-modified 

apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation, 2004. 

110(14): p. 2047-52. 



 

54 

183. Grabner, R., et al., Lymphotoxin beta receptor signaling promotes tertiary lymphoid 

organogenesis in the aorta adventitia of aged ApoE-/- mice. J Exp Med, 2009. 

206(1): p. 233-48. 

184. Martel, C., et al., Lymphatic vasculature mediates macrophage reverse cholesterol 

transport in mice. J Clin Invest, 2013. 123(4): p. 1571-9. 

185. Cuffy, M.C., et al., Induction of indoleamine 2,3-dioxygenase in vascular smooth 

muscle cells by interferon-gamma contributes to medial immunoprivilege. J 

Immunol, 2007. 179(8): p. 5246-54. 

186. Galkina, E., et al., Lymphocyte recruitment into the aortic wall before and during 

development of atherosclerosis is partially L-selectin dependent. J Exp Med, 2006. 

203(5): p. 1273-82. 

187. Watanabe, M., et al., Distribution of inflammatory cells in adventitia changed with 

advancing atherosclerosis of human coronary artery. J Atheroscler Thromb, 2007. 

14(6): p. 325-31. 

188. Hu, D., et al., Artery Tertiary Lymphoid Organs Control Aorta Immunity and 

Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin beta 

Receptors. Immunity, 2015. 42(6): p. 1100-15. 

189. Clement, M., et al., Control of the T follicular helper-germinal center B-cell axis by 

CD8(+) regulatory T cells limits atherosclerosis and tertiary lymphoid organ 

development. Circulation, 2015. 131(6): p. 560-70. 

190. Zhou, X. and G.K. Hansson, Detection of B cells and proinflammatory cytokines in 

atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. 

Scand J Immunol, 1999. 50(1): p. 25-30. 

191. Caligiuri, G., et al., Protective immunity against atherosclerosis carried by B cells 

of hypercholesterolemic mice. J Clin Invest, 2002. 109(6): p. 745-53. 

192. Major, A.S., S. Fazio, and M.F. Linton, B-lymphocyte deficiency increases 

atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol, 2002. 

22(11): p. 1892-8. 

193. Robinette, C.D. and J.F. Fraumeni, Jr., Splenectomy and subsequent mortality in 

veterans of the 1939-45 war. Lancet, 1977. 2(8029): p. 127-9. 

194. Ait-Oufella, H., et al., B cell depletion reduces the development of atherosclerosis in 

mice. J Exp Med, 2010. 207(8): p. 1579-87. 

195. Kyaw, T., et al., Conventional B2 B cell depletion ameliorates whereas its adoptive 

transfer aggravates atherosclerosis. J Immunol, 2010. 185(7): p. 4410-9. 

196. Kerekes, G., et al., Effects of rituximab treatment on endothelial dysfunction, 

carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin Rheumatol, 

2009. 28(6): p. 705-10. 

197. Kyaw, T., et al., B1a B lymphocytes are atheroprotective by secreting natural IgM 

that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. 

Circ Res, 2011. 109(8): p. 830-40. 

198. Centa, M., et al., Atherosclerosis Susceptibility in Mice Is Independent of the V1 

Immunoglobulin Heavy Chain Gene. Arterioscler Thromb Vasc Biol, 2015. 

199. Chang, M.K., et al., Apoptotic cells with oxidation-specific epitopes are 

immunogenic and proinflammatory. J Exp Med, 2004. 200(11): p. 1359-70. 

200. Grasset, E.K., et al., Sterile inflammation in the spleen during atherosclerosis 

provides oxidation-specific epitopes that induce a protective B-cell response. Proc 

Natl Acad Sci U S A, 2015. 112(16): p. E2030-8. 

201. Hansson, G.K., J. Holm, and L. Jonasson, Detection of activated T lymphocytes in 

the human atherosclerotic plaque. Am J Pathol, 1989. 135(1): p. 169-75. 

202. Zhou, X., S. Stemme, and G.K. Hansson, Evidence for a local immune response in 

atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. 

Am J Pathol, 1996. 149(2): p. 359-66. 



 

 55 

203. Stemme, S., J. Holm, and G.K. Hansson, T lymphocytes in human atherosclerotic 

plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler 

Thromb, 1992. 12(2): p. 206-11. 

204. Paulsson, G., et al., Oligoclonal T cell expansions in atherosclerotic lesions of 

apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2000. 20(1): p. 10-

7. 

205. Zhou, X., et al., Transfer of CD4(+) T cells aggravates atherosclerosis in 

immunodeficient apolipoprotein E knockout mice. Circulation, 2000. 102(24): p. 

2919-22. 

206. Zhou, X., et al., Adoptive transfer of CD4+ T cells reactive to modified low-density 

lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol, 2006. 

26(4): p. 864-70. 

207. Zhou, X., et al., Lesion development and response to immunization reveal a 

complex role for CD4 in atherosclerosis. Circ Res, 2005. 96(4): p. 427-34. 

208. Emeson, E.E., et al., Inhibition of atherosclerosis in CD4 T-cell-ablated and nude 

(nu/nu) C57BL/6 hyperlipidemic mice. Am J Pathol, 1996. 149(2): p. 675-85. 

209. Tyznik, A.J., J.C. Sun, and M.J. Bevan, The CD8 population in CD4-deficient mice 

is heavily contaminated with MHC class II-restricted T cells. J Exp Med, 2004. 

199(4): p. 559-65. 

210. Olofsson, P.S., et al., CD137 is expressed in human atherosclerosis and promotes 

development of plaque inflammation in hypercholesterolemic mice. Circulation, 

2008. 117(10): p. 1292-301. 

211. Hermansson, A., et al., Inhibition of T cell response to native low-density 

lipoprotein reduces atherosclerosis. J Exp Med, 2010. 207(5): p. 1081-93. 

212. Frostegard, J., et al., Cytokine expression in advanced human atherosclerotic 

plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating 

cytokines. Atherosclerosis, 1999. 145(1): p. 33-43. 

213. Gupta, S., et al., IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J 

Clin Invest, 1997. 99(11): p. 2752-61. 

214. Whitman, S.C., P. Ravisankar, and A. Daugherty, IFN-gamma deficiency exerts 

gender-specific effects on atherogenesis in apolipoprotein E-/- mice. J Interferon 

Cytokine Res, 2002. 22(6): p. 661-70. 

215. Buono, C., et al., Influence of interferon-gamma on the extent and phenotype of 

diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb 

Vasc Biol, 2003. 23(3): p. 454-60. 

216. Buono, C., et al., T-bet deficiency reduces atherosclerosis and alters plaque 

antigen-specific immune responses. Proc Natl Acad Sci U S A, 2005. 102(5): p. 

1596-601. 

217. Pober, J.S., et al., Ia expression by vascular endothelium is inducible by activated T 

cells and by human gamma interferon. J Exp Med, 1983. 157(4): p. 1339-53. 

218. Hansson, G.K., et al., Gamma-interferon regulates vascular smooth muscle 

proliferation and Ia antigen expression in vivo and in vitro. Circ Res, 1988. 63(4): 

p. 712-9. 

219. Gerdes, N., et al., Expression of interleukin (IL)-18 and functional IL-18 receptor 

on human vascular endothelial cells, smooth muscle cells, and macrophages: 

implications for atherogenesis. J Exp Med, 2002. 195(2): p. 245-57. 

220. Tenger, C., et al., IL-18 accelerates atherosclerosis accompanied by elevation of 

IFN-gamma and CXCL16 expression independently of T cells. Arterioscler Thromb 

Vasc Biol, 2005. 25(4): p. 791-6. 

221. Zhou, X., et al., Hypercholesterolemia is associated with a T helper (Th) 1/Th2 

switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin 

Invest, 1998. 101(8): p. 1717-25. 



 

56 

222. Davenport, P. and P.G. Tipping, The role of interleukin-4 and interleukin-12 in the 

progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol, 

2003. 163(3): p. 1117-25. 

223. King, V.L., S.J. Szilvassy, and A. Daugherty, Interleukin-4 deficiency decreases 

atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/- 

mice. Arterioscler Thromb Vasc Biol, 2002. 22(3): p. 456-61. 

224. Cardilo-Reis, L., et al., Interleukin-13 protects from atherosclerosis and modulates 

plaque composition by skewing the macrophage phenotype. EMBO Mol Med, 2012. 

4(10): p. 1072-86. 

225. Miller, A.M., et al., IL-33 reduces the development of atherosclerosis. J Exp Med, 

2008. 205(2): p. 339-46. 

226. Large-scale gene-centric analysis identifies novel variants for coronary artery 

disease. PLoS Genet, 2011. 7(9): p. e1002260. 

227. Eid, R.E., et al., Interleukin-17 and interferon-gamma are produced concomitantly 

by human coronary artery-infiltrating T cells and act synergistically on vascular 

smooth muscle cells. Circulation, 2009. 119(10): p. 1424-32. 

228. de Boer, O.J., et al., Differential expression of interleukin-17 family cytokines in 

intact and complicated human atherosclerotic plaques. J Pathol, 2010. 220(4): p. 

499-508. 

229. Danzaki, K., et al., Interleukin-17A deficiency accelerates unstable atherosclerotic 

plaque formation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc 

Biol, 2012. 32(2): p. 273-80. 

230. Usui, F., et al., Interleukin-17 deficiency reduced vascular inflammation and 

development of atherosclerosis in Western diet-induced apoE-deficient mice. 

Biochem Biophys Res Commun, 2012. 420(1): p. 72-7. 

231. Madhur, M.S., et al., Role of interleukin 17 in inflammation, atherosclerosis, and 

vascular function in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc 

Biol, 2011. 31(7): p. 1565-72. 

232. Gao, Q., et al., A critical function of Th17 proinflammatory cells in the development 

of atherosclerotic plaque in mice. J Immunol, 2010. 185(10): p. 5820-7. 

233. Erbel, C., et al., Inhibition of IL-17A attenuates atherosclerotic lesion development 

in apoE-deficient mice. J Immunol, 2009. 183(12): p. 8167-75. 

234. Smith, E., et al., Blockade of interleukin-17A results in reduced atherosclerosis in 

apolipoprotein E-deficient mice. Circulation, 2010. 121(15): p. 1746-55. 

235. Taleb, S., et al., Loss of SOCS3 expression in T cells reveals a regulatory role for 

interleukin-17 in atherosclerosis. J Exp Med, 2009. 206(10): p. 2067-77. 

236. Cheng, X., et al., Inhibition of IL-17A in atherosclerosis. Atherosclerosis, 2011. 

215(2): p. 471-4. 

237. van Es, T., et al., Attenuated atherosclerosis upon IL-17R signaling disruption in 

LDLr deficient mice. Biochem Biophys Res Commun, 2009. 388(2): p. 261-5. 

238. Butcher, M.J., et al., The IL-17A/IL-17RA axis plays a proatherogenic role via the 

regulation of aortic myeloid cell recruitment. Circ Res, 2012. 110(5): p. 675-87. 

239. Lim, H., et al., Proatherogenic conditions promote autoimmune T helper 17 cell 

responses in vivo. Immunity, 2014. 40(1): p. 153-65. 

240. Cheng, X., et al., The Th17/Treg imbalance in patients with acute coronary 

syndrome. Clin Immunol, 2008. 127(1): p. 89-97. 

241. Simon, T., et al., Circulating levels of interleukin-17 and cardiovascular outcomes 

in patients with acute myocardial infarction. Eur Heart J, 2013. 34(8): p. 570-7. 

242. de Boer, O.J., et al., Low numbers of FOXP3 positive regulatory T cells are present 

in all developmental stages of human atherosclerotic lesions. PLoS One, 2007. 2(8): 

p. e779. 



 

 57 

243. Maganto-Garcia, E., et al., Dynamic changes in regulatory T cells are linked to 

levels of diet-induced hypercholesterolemia. Circulation, 2011. 124(2): p. 185-95. 

244. Ait-Oufella, H., et al., Natural regulatory T cells control the development of 

atherosclerosis in mice. Nat Med, 2006. 12(2): p. 178-80. 

245. van Es, T., et al., Vaccination against Foxp3(+) regulatory T cells aggravates 

atherosclerosis. Atherosclerosis, 2010. 209(1): p. 74-80. 

246. Mor, A., et al., Role of naturally occurring CD4+ CD25+ regulatory T cells in 

experimental atherosclerosis. Arterioscler Thromb Vasc Biol, 2007. 27(4): p. 893-

900. 

247. Dinh, T.N., et al., Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal 

antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and 

attenuates development and progression of atherosclerosis. Circulation, 2012. 

126(10): p. 1256-66. 

248. Takeda, M., et al., Oral administration of an active form of vitamin D3 (calcitriol) 

decreases atherosclerosis in mice by inducing regulatory T cells and immature 

dendritic cells with tolerogenic functions. Arterioscler Thromb Vasc Biol, 2010. 

30(12): p. 2495-503. 

249. Sasaki, N., et al., Oral anti-CD3 antibody treatment induces regulatory T cells and 

inhibits the development of atherosclerosis in mice. Circulation, 2009. 120(20): p. 

1996-2005. 

250. Kita, T., et al., Regression of atherosclerosis with anti-CD3 antibody via 

augmenting a regulatory T-cell response in mice. Cardiovasc Res, 2014. 102(1): p. 

107-17. 

251. Foks, A.C., et al., Differential effects of regulatory T cells on the initiation and 

regression of atherosclerosis. Atherosclerosis, 2011. 218(1): p. 53-60. 

252. Wigren, M., et al., Evidence for a role of regulatory T cells in mediating the 

atheroprotective effect of apolipoprotein B peptide vaccine. J Intern Med, 2011. 

269(5): p. 546-56. 

253. Mallat, Z., et al., Protective role of interleukin-10 in atherosclerosis. Circ Res, 

1999. 85(8): p. e17-24. 

254. Pinderski Oslund, L.J., et al., Interleukin-10 blocks atherosclerotic events in vitro 

and in vivo. Arterioscler Thromb Vasc Biol, 1999. 19(12): p. 2847-53. 

255. Caligiuri, G., et al., Interleukin-10 deficiency increases atherosclerosis, thrombosis, 

and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med, 2003. 

9(1-2): p. 10-7. 

256. Li, M.O., et al., Transforming growth factor-beta regulation of immune responses. 

Annu Rev Immunol, 2006. 24: p. 99-146. 

257. Robertson, A.K., et al., Disruption of TGF-beta signaling in T cells accelerates 

atherosclerosis. J Clin Invest, 2003. 112(9): p. 1342-50. 

258. Grainger, D.J., et al., Activation of transforming growth factor-beta is inhibited in 

transgenic apolipoprotein(a) mice. Nature, 1994. 370(6489): p. 460-2. 

259. Gojova, A., et al., Specific abrogation of transforming growth factor-beta signaling 

in T cells alters atherosclerotic lesion size and composition in mice. Blood, 2003. 

102(12): p. 4052-8. 

260. Mallat, Z., et al., Inhibition of transforming growth factor-beta signaling 

accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ 

Res, 2001. 89(10): p. 930-4. 

261. Lutgens, E., et al., Transforming growth factor-beta mediates balance between 

inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc 

Biol, 2002. 22(6): p. 975-82. 



 

58 

262. Frutkin, A.D., et al., TGF-[beta]1 limits plaque growth, stabilizes plaque structure, 

and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler Thromb 

Vasc Biol, 2009. 29(9): p. 1251-7. 

263. Reifenberg, K., et al., Overexpression of TGF-beta1 in macrophages reduces and 

stabilizes atherosclerotic plaques in ApoE-deficient mice. PLoS One, 2012. 7(7): p. 

e40990. 

264. Buday, A., et al., Elevated systemic TGF-beta impairs aortic vasomotor function 

through activation of NADPH oxidase-driven superoxide production and leads to 

hypertension, myocardial remodeling, and increased plaque formation in apoE(-/-) 

mice. Am J Physiol Heart Circ Physiol, 2010. 299(2): p. H386-95. 

265. Von Der Thusen, J.H., et al., Attenuation of atherogenesis by systemic and local 

adenovirus-mediated gene transfer of interleukin-10 in LDLr-/- mice. FASEB J, 

2001. 15(14): p. 2730-2. 

266. Ikonen, E., Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol 

Cell Biol, 2008. 9(2): p. 125-38. 

267. Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nat Rev Mol Cell 

Biol, 2000. 1(1): p. 31-9. 

268. Grundy, S.M., Absorption and metabolism of dietary cholesterol. Annu Rev Nutr, 

1983. 3: p. 71-96. 

269. Ridker, P.M., et al., Measurement of C-reactive protein for the targeting of statin 

therapy in the primary prevention of acute coronary events. N Engl J Med, 2001. 

344(26): p. 1959-65. 

270. Randomised trial of cholesterol lowering in 4444 patients with coronary heart 

disease: the Scandinavian Simvastatin Survival Study (4S). Lancet, 1994. 

344(8934): p. 1383-9. 

271. Alberts, A.W., et al., Mevinolin: a highly potent competitive inhibitor of 

hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. 

Proc Natl Acad Sci U S A, 1980. 77(7): p. 3957-61. 

272. Kovanen, P.T., et al., Regulatory role for hepatic low density lipoprotein receptors 

in vivo in the dog. Proc Natl Acad Sci U S A, 1981. 78(2): p. 1194-8. 

273. Wang, X., et al., SREBP-1, a membrane-bound transcription factor released by 

sterol-regulated proteolysis. Cell, 1994. 77(1): p. 53-62. 

274. Reiner, Z., et al., ESC/EAS Guidelines for the management of dyslipidaemias: the 

Task Force for the management of dyslipidaemias of the European Society of 

Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J, 

2011. 32(14): p. 1769-818. 

275. Baynes, J. and M.H. Dominiczak, Medical biochemistry. 2009: Elsevier Health 

Sciences. 

276. Eckel, R.H., Lipoprotein lipase. A multifunctional enzyme relevant to common 

metabolic diseases. N Engl J Med, 1989. 320(16): p. 1060-8. 

277. Zimmermann, R., et al., Fat mobilization in adipose tissue is promoted by adipose 

triglyceride lipase. Science, 2004. 306(5700): p. 1383-6. 

278. Chen, S.H., et al., The complete cDNA and amino acid sequence of human 

apolipoprotein B-100. J Biol Chem, 1986. 261(28): p. 12918-21. 

279. Chan, L., RNA editing: exploring one mode with apolipoprotein B mRNA. 

Bioessays, 1993. 15(1): p. 33-41. 

280. Peterson, M.M., et al., Apolipoprotein B Is an innate barrier against invasive 

Staphylococcus aureus infection. Cell Host Microbe, 2008. 4(6): p. 555-66. 

281. Ketelhuth, D.F., et al., Identification of a danger-associated peptide from 

apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses. 

Circulation, 2011. 124(22): p. 2433-43, 1-7. 



 

 59 

282. Assinger, A., et al., Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) 

triggers platelet activation and boosts platelet-leukocyte proinflammatory 

responses. Thromb Haemost, 2014. 112(2): p. 332-41. 

283. McGillicuddy, F.C., et al., Inflammation impairs reverse cholesterol transport in 

vivo. Circulation, 2009. 119(8): p. 1135-45. 

284. Schwartz, G.G., et al., Effects of dalcetrapib in patients with a recent acute 

coronary syndrome. N Engl J Med, 2012. 367(22): p. 2089-99. 

285. Kingwell, B.A., et al., HDL-targeted therapies: progress, failures and future. Nat 

Rev Drug Discov, 2014. 13(6): p. 445-64. 

286. Brown, M.S. and J.L. Goldstein, Receptor-mediated control of cholesterol 

metabolism. Science, 1976. 191(4223): p. 150-4. 

287. Mahley, R.W., Apolipoprotein E: cholesterol transport protein with expanding role 

in cell biology. Science, 1988. 240(4852): p. 622-30. 

288. Boucher, P., et al., LRP1 functions as an atheroprotective integrator of TGFbeta 

and PDFG signals in the vascular wall: implications for Marfan syndrome. PLoS 

One, 2007. 2(5): p. e448. 

289. Strong, A., et al., Hepatic sortilin regulates both apolipoprotein B secretion and 

LDL catabolism. J Clin Invest, 2012. 122(8): p. 2807-16. 

290. Musunuru, K., et al., From noncoding variant to phenotype via SORT1 at the 1p13 

cholesterol locus. Nature, 2010. 466(7307): p. 714-9. 

291. Stanford, K.I., et al., Syndecan-1 is the primary heparan sulfate proteoglycan 

mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest, 

2009. 119(11): p. 3236-45. 

292. Kozarsky, K.F., et al., Overexpression of the HDL receptor SR-BI alters plasma 

HDL and bile cholesterol levels. Nature, 1997. 387(6631): p. 414-7. 

293. Abifadel, M., et al., Mutations in PCSK9 cause autosomal dominant 

hypercholesterolemia. Nat Genet, 2003. 34(2): p. 154-6. 

294. Stein, E.A., et al., Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N 

Engl J Med, 2012. 366(12): p. 1108-18. 

295. Sacks, F.M., The crucial roles of apolipoproteins E and C-III in apoB lipoprotein 

metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol, 2015. 

26(1): p. 56-63. 

296. Chawla, A., et al., Nuclear receptors and lipid physiology: opening the X-files. 

Science, 2001. 294(5548): p. 1866-70. 

297. Joseph, S.B., et al., Synthetic LXR ligand inhibits the development of atherosclerosis 

in mice. Proc Natl Acad Sci U S A, 2002. 99(11): p. 7604-9. 

298. Wang, H., et al., Endogenous bile acids are ligands for the nuclear receptor 

FXR/BAR. Mol Cell, 1999. 3(5): p. 543-53. 

299. Staels, B., et al., Mechanism of action of fibrates on lipid and lipoprotein 

metabolism. Circulation, 1998. 98(19): p. 2088-93. 

300. Jun, M., et al., Effects of fibrates on cardiovascular outcomes: a systematic review 

and meta-analysis. Lancet, 2010. 375(9729): p. 1875-84. 

301. Altshuler, D., et al., The common PPARgamma Pro12Ala polymorphism is 

associated with decreased risk of type 2 diabetes. Nat Genet, 2000. 26(1): p. 76-80. 

302. Li, A.C., et al., Differential inhibition of macrophage foam-cell formation and 

atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest, 2004. 

114(11): p. 1564-76. 

303. Graham, T.L., et al., The PPARdelta agonist GW0742X reduces atherosclerosis in 

LDLR(-/-) mice. Atherosclerosis, 2005. 181(1): p. 29-37. 

304. Isomaa, B., et al., Cardiovascular morbidity and mortality associated with the 

metabolic syndrome. Diabetes Care, 2001. 24(4): p. 683-9. 



 

60 

305. Hotamisligil, G.S., Inflammation and metabolic disorders. Nature, 2006. 444(7121): 

p. 860-7. 

306. Sammalkorpi, K., et al., Changes in serum lipoprotein pattern induced by acute 

infections. Metabolism, 1988. 37(9): p. 859-65. 

307. Tracey, K.J., et al., Cachectin/tumor necrosis factor induces cachexia, anemia, and 

inflammation. J Exp Med, 1988. 167(3): p. 1211-27. 

308. Beutler, B. and A. Cerami, Cachectin and tumour necrosis factor as two sides of the 

same biological coin. Nature, 1986. 320(6063): p. 584-8. 

309. Khovidhunkit, W., et al., Effects of infection and inflammation on lipid and 

lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res, 

2004. 45(7): p. 1169-96. 

310. van Diepen, J.A., et al., Hepatocyte-specific IKK-beta activation enhances VLDL-

triglyceride production in APOE*3-Leiden mice. J Lipid Res, 2011. 52(5): p. 942-

50. 

311. Bensinger, S.J., et al., LXR signaling couples sterol metabolism to proliferation in 

the acquired immune response. Cell, 2008. 134(1): p. 97-111. 

312. Holmqvist, M.E., et al., Rapid increase in myocardial infarction risk following 

diagnosis of rheumatoid arthritis amongst patients diagnosed between 1995 and 

2006. J Intern Med, 2010. 268(6): p. 578-85. 

313. Hua, X., et al., Dyslipidaemia and lipoprotein pattern in systemic lupus 

erythematosus (SLE) and SLE-related cardiovascular disease. Scand J Rheumatol, 

2009. 38(3): p. 184-9. 

314. Kerekes, G., et al., Effects of biologics on vascular function and atherosclerosis 

associated with rheumatoid arthritis. Ann N Y Acad Sci, 2009. 1173: p. 814-21. 

315. Jacobsson, L.T., et al., Treatment with tumor necrosis factor blockers is associated 

with a lower incidence of first cardiovascular events in patients with rheumatoid 

arthritis. J Rheumatol, 2005. 32(7): p. 1213-8. 

316. Backhed, F., et al., The gut microbiota as an environmental factor that regulates fat 

storage. Proc Natl Acad Sci U S A, 2004. 101(44): p. 15718-23. 

317. Wostmann, B.S., Intestinal bile acids and cholesterol absorption in the germfree 

rat. J Nutr, 1973. 103(7): p. 982-90. 

318. Sayin, S.I., et al., Gut microbiota regulates bile acid metabolism by reducing the 

levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell 

Metab, 2013. 17(2): p. 225-35. 

319. Smith, P.M., et al., The microbial metabolites, short-chain fatty acids, regulate 

colonic Treg cell homeostasis. Science, 2013. 341(6145): p. 569-73. 

320. Park, J., et al., Short-chain fatty acids induce both effector and regulatory T cells by 

suppression of histone deacetylases and regulation of the mTOR-S6K pathway. 

Mucosal Immunol, 2015. 8(1): p. 80-93. 

321. Koeth, R.A., et al., Intestinal microbiota metabolism of L-carnitine, a nutrient in 

red meat, promotes atherosclerosis. Nat Med, 2013. 19(5): p. 576-85. 

322. Lo, J.C., et al., Lymphotoxin beta receptor-dependent control of lipid homeostasis. 

Science, 2007. 316(5822): p. 285-8. 

323. Paigen, B., et al., Variation in susceptibility to atherosclerosis among inbred strains 

of mice. Atherosclerosis, 1985. 57(1): p. 65-73. 

324. Russell, E.S., Origins and history of mouse inbred strains: contributions of 

Clarence Cook Little. Origins of Inbred Mice, Morse, HC, eds. (Academic Press, 

NY), 1978: p. 33-43. 

325. Waterston, R.H., et al., Initial sequencing and comparative analysis of the mouse 

genome. Nature, 2002. 420(6915): p. 520-62. 

326. Huber, S.A., et al., T helper-cell phenotype regulates atherosclerosis in mice under 

conditions of mild hypercholesterolemia. Circulation, 2001. 103(21): p. 2610-6. 



 

 61 

327. Plump, A.S., et al., Severe hypercholesterolemia and atherosclerosis in 

apolipoprotein E-deficient mice created by homologous recombination in ES cells. 

Cell, 1992. 71(2): p. 343-53. 

328. Murphy, A.J., et al., ApoE regulates hematopoietic stem cell proliferation, 

monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin 

Invest, 2011. 121(10): p. 4138-49. 

329. Ishibashi, S., et al., Hypercholesterolemia in low density lipoprotein receptor 

knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest, 

1993. 92(2): p. 883-93. 

330. Rader, D.J., J. Cohen, and H.H. Hobbs, Monogenic hypercholesterolemia: new 

insights in pathogenesis and treatment. J Clin Invest, 2003. 111(12): p. 1795-803. 

331. Boren, J., et al., Identification of the low density lipoprotein receptor-binding site in 

apolipoprotein B100 and the modulation of its binding activity by the carboxyl 

terminus in familial defective apo-B100. J Clin Invest, 1998. 101(5): p. 1084-93. 

332. Linton, M.F., et al., Transgenic mice expressing high plasma concentrations of 

human apolipoprotein B100 and lipoprotein(a). J Clin Invest, 1993. 92(6): p. 3029-

37. 

333. Sanan, D.A., et al., Low density lipoprotein receptor-negative mice expressing 

human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow 

diet: no accentuation by apolipoprotein(a). Proc Natl Acad Sci U S A, 1998. 95(8): 

p. 4544-9. 

334. Johnson, J.L. and C.L. Jackson, Atherosclerotic plaque rupture in the 

apolipoprotein E knockout mouse. Atherosclerosis, 2001. 154(2): p. 399-406. 

335. Calara, F., et al., Spontaneous plaque rupture and secondary thrombosis in 

apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol, 2001. 195(2): 

p. 257-63. 

336. Caligiuri, G., et al., Myocardial infarction mediated by endothelin receptor 

signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A, 1999. 96(12): p. 

6920-4. 

337. Gu, H., et al., Deletion of a DNA polymerase beta gene segment in T cells using cell 

type-specific gene targeting. Science, 1994. 265(5168): p. 103-6. 

338. Spangrude, G.J., Assessment of lymphocyte development in radiation bone marrow 

chimeras. Curr Protoc Immunol, 2008. Chapter 4: p. Unit 4 6. 

339. Lahl, K., et al., Selective depletion of Foxp3+ regulatory T cells induces a scurfy-

like disease. J Exp Med, 2007. 204(1): p. 57-63. 

340. Collier, R.J., Diphtheria toxin: mode of action and structure. Bacteriol Rev, 1975. 

39(1): p. 54-85. 

341. Grotto, D. and E. Zied, The Standard American Diet and its relationship to the 

health status of Americans. Nutr Clin Pract, 2010. 25(6): p. 603-12. 

342. Wu, L., et al., Addition of dietary fat to cholesterol in the diets of LDL receptor 

knockout mice: effects on plasma insulin, lipoproteins, and atherosclerosis. J Lipid 

Res, 2006. 47(10): p. 2215-22. 

343. Nicoletti, A., et al., Immunoglobulin treatment reduces atherosclerosis in apo E 

knockout mice. J Clin Invest, 1998. 102(5): p. 910-8. 

344. Gistera, A. and D.F. Ketelhuth, Immunostaining of Lymphocytes in Mouse 

Atherosclerotic Plaque. Methods Mol Biol, 2015. 1339: p. 149-59. 

345. Pepys, M.B. and G.M. Hirschfield, C-reactive protein: a critical update. J Clin 

Invest, 2003. 111(12): p. 1805-12. 

346. Engvall, E. and P. Perlmann, Enzyme-linked immunosorbent assay (ELISA). 

Quantitative assay of immunoglobulin G. Immunochemistry, 1971. 8(9): p. 871-4. 



 

62 

347. Havel, R.J., H.A. Eder, and J.H. Bragdon, The distribution and chemical 

composition of ultracentrifugally separated lipoproteins in human serum. J Clin 

Invest, 1955. 34(9): p. 1345-53. 

348. Qiu, H., et al., Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human 

atherosclerotic lesions correlates with symptoms of plaque instability. Proc Natl 

Acad Sci U S A, 2006. 103(21): p. 8161-6. 

349. Olofsson, P.S., et al., Genetic variants of TNFSF4 and risk for carotid artery 

disease and stroke. J Mol Med (Berl), 2009. 87(4): p. 337-46. 

350. Okamoto Yoshida, Y., et al., Essential role of IL-17A in the formation of a 

mycobacterial infection-induced granuloma in the lung. J Immunol, 2010. 184(8): 

p. 4414-22. 

351. Gaffen, S.L., Structure and signalling in the IL-17 receptor family. Nat Rev 

Immunol, 2009. 9(8): p. 556-67. 

352. Border, W.A. and E. Ruoslahti, Transforming growth factor-beta in disease: the 

dark side of tissue repair. J Clin Invest, 1992. 90(1): p. 1-7. 

353. Ai, D., et al., Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 

levels in obese mice. J Clin Invest, 2012. 122(5): p. 1677-87. 

354. Teslovich, T.M., et al., Biological, clinical and population relevance of 95 loci for 

blood lipids. Nature, 2010. 466(7307): p. 707-13. 

355. VanderLaan, P.A., et al., VLDL best predicts aortic root atherosclerosis in LDL 

receptor deficient mice. J Lipid Res, 2009. 50(3): p. 376-85. 

356. Clarkson, S.B., et al., Blockade of clearance of immune complexes by an anti-Fc 

gamma receptor monoclonal antibody. J Exp Med, 1986. 164(2): p. 474-89. 

357. Thornburg, R.W., et al., Carbohydrate-mediated clearance of immune complexes 

from the circulation. A role for galactose residues in the hepatic uptake of IgG-

antigen complexes. J Biol Chem, 1980. 255(14): p. 6820-5. 

358. Luth, S., et al., Ectopic expression of neural autoantigen in mouse liver suppresses 

experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. J 

Clin Invest, 2008. 118(10): p. 3403-10. 

359. Baldwin, T.A., et al., The timing of TCR alpha expression critically influences T cell 

development and selection. J Exp Med, 2005. 202(1): p. 111-21. 

360. Nicoletti, A., et al., Induction of neonatal tolerance to oxidized lipoprotein reduces 

atherosclerosis in ApoE knockout mice. Mol Med, 2000. 6(4): p. 283-90. 

361. Harwood, N.E. and F.D. Batista, Early events in B cell activation. Annu Rev 

Immunol, 2010. 28: p. 185-210. 

362. Barral, P., et al., B cell receptor-mediated uptake of CD1d-restricted antigen 

augments antibody responses by recruiting invariant NKT cell help in vivo. Proc 

Natl Acad Sci U S A, 2008. 105(24): p. 8345-50. 

363. Schissel, S.L., et al., Secretory sphingomyelinase, a product of the acid 

sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. 

Implications for atherosclerotic lesion development. J Biol Chem, 1998. 273(5): p. 

2738-46. 

364. Dongre, A.R., et al., In vivo MHC class II presentation of cytosolic proteins 

revealed by rapid automated tandem mass spectrometry and functional analyses. 

Eur J Immunol, 2001. 31(5): p. 1485-94. 

365. Ketelhuth, D.F., et al., T cell-based therapies for atherosclerosis. Curr Pharm Des, 

2013. 19(33): p. 5850-8. 

 


