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ABSTRACT 

Tumor biology has been extensively studied over the last few decades, with a principal focus 

on how neoplastic cells obtain cellular immortality. A number of oncogenes and tumor 

suppressor genes have been uncovered that regulate cancerous transformation. However, 

tumors are now believed to be complex tissues consisting of various kinds of tumor stromal 

cells as well as transformed cancer cells. The tumor stroma is mainly comprised of tumor-

infiltrating leukocytes, cancer-associated fibroblasts, vascular endothelial cells, lymphatic 

endothelial cells, tumor pericytes, and extracellular matrix. These cells have an extensive 

interplay with one another or with cancer cells, from the initiation stage of tumor 

development to its metastatic dissemination.  

The aim of this thesis was to investigate the tumor pericytes—one of the tumor stroma 

constituents that has not been widely explored—in order to determine their novel roles in 

tumor malignancy. The use of a pericyte-deficient mouse model (pdgfbret/ret), in paper I, 

confirmed that the myeloid-derived suppressor cells (MDSCs), one of the most aggressive 

types of tumor-infiltrating leukocytes, are significantly increased both at the tumor site and in 

the peripheral blood in B16 melanoma and Lewis lung carcinoma (LLC) subcutaneous mouse 

models of pdgfbret/ret, compared to their littermate controls. The increase in the MDSC 

number was dependent on expression of tumor-derived IL-6, induced by the hypoxic tumor 

microenvironment in pericyte-deficient B16 and LLC tumors. Analysis of gene expression in 

human samples (253 breast cancer patients of an Uppsala dataset) showed an inverse 

correlation between human pericyte-related genes and human MDSC markers and a 

subsequent relevance to the survival rate of breast cancer patients. 

The relevance of the tumor pericytes to other tumor stroma cells was studied in paper II, 

which revealed a comparable abundance of PDGFRα- expressing perivascular cells in 

pericyte-deficient B16 melanomas. A further investigation identified the PDGFRα-expressing 

perivascular cells as “specialized myofibroblasts” with gene signature features of both 

fibroblast-related (Fap, Pdgfra, Hgf) and pericyte-related (Cspg4, Pdgfrb, Asma) gene sets. 

Moreover, pericyte-deficient, B16-melanoma-bearing mice showed an elevated level of the 

serum S100B protein, which is widely considered to be a distinctive prognostic marker for 

malignant melanoma patients. The B16 melanoma tumor cell-derived S100B was then 

confirmed to pass into the peripheral blood. Presumably “activated endothelial cells” in 

pdgfbret/ret mice would facilitate more rapid transport of S100B protein via endothelial 

caveola-mediated transcytosis. 

In conclusion, tumor pericytes directly interact with adjacent endothelial cells, thereby 

controlling the tumor vasculature and further changing the tumor microenvironment. Tumor 

pericytes favor tumor immunogenicity by blocking systemic MDSC bursts in experimental 

mouse models (B16, LLC) and are also negatively involved in recruitment of the perivascular 

myofibroblasts. However, the biological relevance of the perivascular myofibroblasts should 

be further investigated.   
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1 INTRODUCTION 

 

 

1.1 TUMOR MICROENVIRONMENT (TME) 
 

In the last few decades, extensive documentation has revealed how incipient cancer cells 

acquire the traits of endless proliferation and aggressiveness, termed “tumor malignancy.” In 

accordance with the advent of new molecular biology techniques, a series of discrete steps of 

tumorigenesis has now been well established, so that the “multistep process of 

tumorigenesis” is known to comprise the following: cellular transformation into neoplastic 

cells; angiogenesis; motility and invasion via blood and lymphatic vessels; formation of multi 

cell aggregates with platelets or leukocytes; embolism and circulation; arrest in capillary 

beds; extravasation into organ parenchyma; colonization (adaptation to new 

microenvironment, establishment of micrometastases and macrotumors); and the metastasis 

of metastatic tumors to other organs (figure 1) [1].   

Figure. 1. Multistep process of tumorigenesis 

These complex serial processes always begin with genetic changes in normal cells, whereby 

various kinds of extracellular or intracellular stimuli elicit aberrant gene expressions. The 

combination of irregular genetic changes, in turn, converts neoplastic cells into transformed 

cancerous cells. Many tumors show genetic instability that persists from the beginning (tumor 
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initiation) stage and this instability is even amplified at the late developmental stage of 

tumorigenesis—metastasis—as the intrinsic intracellular maintenance and repair system 

breaks down.  

Classically, the genetic changes that occur subsequent to genetic instability in cancer cells are 

categorized as follows: the activation of proto-oncogenes (e.g., RAS, EGFR, MYC, and 

ABL1), the inactivation of tumor-suppressor genes (e.g., BRCA1, BRCA2, PTEN, RB, and 

TP53), and the inactivation of genomic stability genes that encode telomerase or DNA 

mismatch repair machinery-related proteins [2]. A number of cancer cell-associated genes, 

oncogenes, and tumor suppressor genes have been reported in various cancer types and at 

different developmental stages of tumorigenesis, but their expression patterns show 

considerable heterogeneity. The recent advancements in techniques for high throughput 

sequencing of DNA or mRNA (whole genome sequencing and whole transcriptome 

sequencing) have allowed resolution and refinement of these heterogeneous patterns in 

certain human tumors; for example, in prostate cancer, chromosomal rearrangements of the 

ETS transcription factor genes with the androgen responsive promoter, TMPRSS2–ERG 

fusions, were discovered in up to 50% of cases, while in melanoma, mutations in the TERT 

promoter appear in approximately 70% [3].  

The notion that gene expression profiles vary in different developmental stages of 

tumorigenesis or in discrete cancer types can be explained by the following two features.  

First, the traits of transformed cancer cells mostly resemble the traits of their normal 

counterparts. Second, neoplastic cells cross talk with their normal neighboring cells and, in 

turn, establish unique and divergent genetic aberrations. The latter concept has been 

aggressively studied during the last two decades and is now well appreciated to be a crucial 

part of the development of tumorigenesis. Various kinds of host-originated cells are 

interconnected with neoplastic cancer cells during the whole process of tumorigenesis; these 

include tumor cell-neighboring regional fibroblasts, new blood or lymphatic vessels sprouted 

from neighboring tissues, pericytes, many types of bone marrow-derived cells, and 

circulating or regional inflammatory cells. Their reciprocal crosstalk change both cancer cells 

and host-derived cells, thereby establishing a unique tumor tissue. Most of the tumor stroma 

components are reprogrammed and distorted from their normal counterparts to favor tumor 

malignancy (figure 2). In some human solid tumors, patho-oncologists have measured tumor–

stroma ratios using conventional histopathological analysis with hematoxylin & eosin stained 

tumor sections and have showed that stroma-enriched tumors are associated with a poor 

prognosis in breast (triple negative), colon, esophagus, lung (non-small cell), liver 

(hepatocarcinoma), and cervical cancers [4]. As such, the tumor microenvironment is 

implicated in the support of tumor progression rather than in its restraint. This notion, 

however, is still controversial and should be addressed with more research.  

The recent study of pancreatic ductal adenocarcinoma in a mouse model can be exemplified 

as countering the concept of a tumor-supportive role of the tumor microenvironment, as 

depletion of αSMA-positive myofibroblasts in the tumor microenvironment by genetic 

alteration induced greater malignancy in transformed pancreatic cancer cells [5]. As such, 
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some controversy exists regarding whether tumor-neighboring tissues are bystanders that 

perform some passive actions or whether they actively participate in tumorigenesis in a 

supportive or suppressive way. A better understanding of how the reprogramed tumor stroma, 

termed the tumor microenvironment (TME), interplays with cancer cells should help in 

establishing targeted therapies to eliminate tumor progression and metastasis.  

              Figure. 2. The tumor microenvironment (TME) 

 

 

1.1.1 Tumor-associated endothelial cells 

The multistep development of tumorigenesis requires that tumor cells receive a supply of 

nutrients and oxygen, and that waste products be extravasated through blood vessels, in the 

same manner as required by normal cells. The establishment of new blood vasculature within 

tumor tissues therefore represents a key step in the excessive and abrupt proliferation of 

cancer cells, which rarely occurs in normal cells under physiological conditions in adults.  

A well-known concept in tumor biology is that the formation of new blood vasculature is 

generated by “angiogenesis,” the sprouting of new vessels from pre-exiting ones in response 

to pro-angiogenic signals (e.g., VEGFA, FGFs) that react with the endothelial cells via the 

extracellular domains of their membrane-anchored receptors [6]. During the embryonal 

development stage, angiogenesis occurs vigorously and triggers blood vessel-sprouting from 

the existing vessel tubing, in which endothelial progenitor cells have assembled and 

differentiated into endothelial cells (vasculogenesis). In adults, wound healing represents a 

rare case that requires angiogenesis to form new vessels in lesions.  

The normal vasculature is well organized, differentiated, and classified into arteries, 

arterioles, veins, venules and capillaries, and each type of vasculature has its own phenotype 
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and function [7]. In contrast, tumor vasculature is chaotic, having considerable variations in 

phenotype and is essentially unclassifiable. Phenotypically, tumor vessels appear irregularly 

branched, enlarged, hemorrhaging, and irregular in their blood flow. During the whole 

developmental stage of tumor progression and metastasis, the proangiogenic signals, which 

are mainly secreted by tumor parenchyma and partially by the tumor stroma, overwhelm their 

antiangiogenic counterparts, thereby causing the angiogenic switch to be invariably turned on 

[8].  

Previous reports have confirmed that tumor angiogenesis occurs from a capillary or venule in 

the nearby tissue, where the tumor grows, and the newly formed vessels branch into the 

intratumoral region. Recent studies, however, have suggested that vasculogenesis also 

includes the new formation of blood vessels from endothelial progenitor cells during tumor-

associated neovascularization. Endothelial progenitor cells are mostly originated from bone 

marrow-derived cells, including hematopoietic stem cells, myeloid progenitors, and 

mesenchymal stem cells. Bone marrow transplantation using EGFP or LacZ-marked reporter 

mice confirmed that various subsets of bone marrow-derived cells are recruited at an 

implanted tumor locus and become integrated into nascent vessels [9]. Whether the 

endothelial progenitor cells affect to any great extent the tumor-associated neovascularization 

remains arguable, due to the very low rate of integration and the invalidated identification of 

endothelial progenitor cells in tumor vessels. In addition, tumor-associated neovascularization 

has been shown to be accomplished by the neoplastic cancer cells themselves. In 

glioblastoma, a fraction of cancer cells expressing CD133, believed to be a cancer-stem cell 

marker, differentiates into endothelial progenitor cells as well as tumor cells, which thereafter 

have the features of endothelial hyperplasia in the glioblastoma tissue [10]. As such, tumor-

associated endothelial cells can be obtained from three different routes: neighboring vessels 

and host-derived and cancer cell-derived endothelial progenitor cells.  

In the context of cancer therapy, tumor-associated endothelial cells have been recognized as 

an “attractive target.” Tremendous efforts have been made to block tumor angiogenesis in the 

last few decades. A few drug candidates, including bevacizumab (a neutralizing monoclonal 

anti VEGFA antibody) have gone through clinical trials and have been approved for clinical 

use in combination with chemotherapy or cytostatic reagents for patients with some advanced 

cancers, including metastatic colorectal cancer, advanced non-small cell lung cancer, 

advanced ovarian cancer, advanced cervical cancer, metastatic renal cell carcinoma, and 

recurrent glioblastoma, which reflects their limited efficacy [11-13].  

Recent preclinical and clinical studies have focused on a newer aspect of angiogenesis 

regulation: the endogenous inhibitors of angiogenesis (angiostatin and endostatin). These are 

counter-balancing molecules against proangiogenic factors, and play important roles in the 

development of tumorigenesis by suppressing tumor angiogenesis, thereby inducing 

dormancy, especially in distant micrometastases. Nevertheless, single targets against tumor-

associated endothelial cells are recognized as still insufficient for cancer treatment [11].  

 

 



 

 5 

 

1.1.1.1 Endothelial Caveolin 1 

Caveolae are cholesterol- and sphingolipid-rich lipid rafts that occur as ≈100nm flask-shaped 

invaginations of the plasma membrane and are involved in clathrin-independent membrane 

transport [13, 14]. They are ubiquitously present in most cells and are highly enriched in 

endothelial cells (≈ 10,000/cell). They mainly function in transport (e.g., endocytosis, 

exocytosis, and transcytosis) of macromolecules such as albumin, iron-transferrin, insulin, 

low-density lipoprotein (LDL), high-density lipoprotein, and CCL-2 [15, 16]. They are also 

involved in signal transduction through their constituents, including caveolins, eNOS, cavins, 

IL1R, gp130, INSR, RAGE, EGFR, LDLR, HDLR, and gp60 (an albumin receptor) [17].  

Among these many signaling molecules, caveolins are the major structural proteins and 

include caveolin1 (Cav1), caveolin2 (Cav2), and caveolin3 (Cav3). Cav1 and Cav2 are 

expressed in most cells, while Cav3 is expressed in cardiac and skeletal muscle cells [18].  

Cav1 has an essential role in caveolar biogenesis. Cav1 null mice show a loss of caveolae in 

most cell types, including endothelial cells, adipocytes, and cardiac and skeletal muscle cells 

[19, 20] and Cav1 is therefore a compulsory component. Cav1 directly interacts with eNOS 

in endothelial caveolae, thereby sequestering eNOS and maintaining NO production at a 

basal level. The Cav1/eNOS complex is closely involved with angiogenesis, vascular 

permeability, and vasodilation [18, 20, 21]. Cav1 also binds to the transient receptor potential 

channel-1 (TRPC-1) and thus enables caveolae to store calcium ions in endothelial cells [22]. 

Cav1 also senses shear stress in the vascular luminal side by dissociating eNOS to produce 

NO, which triggers the translocation of Cav1to the abluminal side [23].  

                                Figure.3. Endothelial caveolae 

 

Endothelial cells require an enrichment of passive and active transport systems to pass 

nutrients, oxygen, and bioactive molecules bidirectionally from the blood luminal to the 

abluminal side, and vice versa. Caveolae exist most abundantly in the capillary endothelium 

(≈30% of cell surface), the interface between the blood and tissue (figure 3). Not surprisingly, 

therefore, caveolae, as the major component of transcytosis, are also associated with 
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pathological conditions including atherosclerosis, diabetes, and hyperlipemia [17, 24]. The 

manner in which caveolae-mediated transcytosis and endocytosis occur and which molecular 

interactions control each step of the serial processes remain largely unresolved questions. 

Recent evidence, in part, has shown that the initial step of the caveola-mediated transcellular 

pathway requires the phosphorylation of Cav1 (pT14). In the lung microvessel, tyrosine 

phosphorylation of Cav1, mediated by oxidant stress (hydrogen peroxidase), induced 

transcellular albumin hyperpermeability, with Src identified as the upstream kinase that 

performed the phosphorylation. Interestingly, a high degree of oxidant stress also induced 

paracellular permeability by dissociating VE-cadherin from membrane-bound β-catenin. In 

mouse embryonal fibroblasts (MEFs), phospho-Cav1 mediated the internalization of 

cholesterol-dependent clusters of GM1 and GPI-linked protein (caveolae), implying that 

phospho-Cav1 is not limited to the endothelial caveolae pathway [25, 26]. 

In tumor endothelial cells, the irregularly active state of transcellular signaling pathway is 

presumed to occur in the tumor endothelium, where it positively modulates TME for tumor 

malignancy, taking into account both notions that 1) the aberrant tumor vessels are the main 

passage for the considerable amount of tumor-derived factors, and 2) only small molecules (< 

3nm) pass through via the paracellular pathway.                  

               

 

1.1.2 Tumor pericytes 

Pericytes are specialized mesenchymal cells that regulate angiogenesis and vascular integrity. 

As inferred by their name, pericytes lie in the perivascular niche, where the basement 

membrane anchors pericytes and endothelial cells, enabling their close interconnection. 

Pericytes are present in the microvessels—capillaries, postcapillary venules, and terminal 

arterioles [27]. Vascular smooth muscle cells (vSMCs) encircle the large blood vessels, 

including precapillary arterioles, arterioles, veins, and arteries. Spindle-like and flattened 

vSMCs constitute a dense layer surrounding the abluminal region of blood vessels and are 

responsible for vasocontraction and vasodilation. By contrast, pericytes are umbrella-like 

round cells, with protruding cytoplasmic processes on the abluminal surface of the 

endothelial tubing. The possibility that pericytes also function in vasocontraction to control 

blood flow in the microvessels remains controversial [28]. Nevertheless, pericytes are similar 

to vSMCs, when gene and protein expression signatures are taken into account. Pericytes, 

therefore, are considered to be the closest relatives to vSMCs.  

Other cell types also anchor or stand in the vascular beds in similar fashion to pericytes; these 

are called “perivascular mesenchymal cells” and include bone marrow mesenchymal stem 

cells, bone marrow-derived progenitor cells, infiltrating leukocytes, fibroblasts, 

myofibroblasts, and regional progenitor cells. An exact categorization of these cell types has 

not been established. Under physiological conditions, pericytes are defined as already 

described above; namely, as cells embedded in the basement membrane with endothelial 

cells, present in the microvessels, morphologically featuring protruding-umbrella like shapes, 

and expressing multiple pericyte marker proteins. So far, no single unique marker for 
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pericytes has been identified; instead, multiple marker proteins (e.g., NG2, PDGFRβ, CD13, 

αSMA, DESMIN, RGS5, IPTG7, and CD248) are used to identify pericytes [29, 30]. NG2 

has been used as the most reliable marker for pericytes, but it is also expressed in the skin, 

bone, fat, and brain in regional progenitor cells, including oligodendrocyte precursor cells, 

osteoblasts, chondroblasts, epidermal and hair follicle progenitor cells, and adipose stem cells 

[31-33]. PDGFRβ is also expressed in other cell types, including myofibroblasts, neuronal 

stem cells, and mesenchymal stem cells. Interestingly, PDGFRα, which has rarely been 

considered as a pericyte marker, has recently been demonstrated by electron microscopy 

analysis to be expressed in a considerable proportion of the pericytes in the mouse spinal 

cord. In skeletal muscle, NG2+/NESTIN-perivascular cells express PDGFRα and function in 

fat deposition during skeletal muscle regeneration, further indicating the complexity of 

pericyte identification [34-36].  

In their anatomical and biochemical respects, mature pericytes reside in close proximity to 

the quiescent endothelium and are embedded and interconnected with the basement 

membrane. At distinctive points in the basement membrane, pericytes directly contact the 

endothelial cells by peg-pocket type interactions, where the pericyte cytoplasmic processes 

(pegs) are inserted into endothelial invaginations (pockets), or where the two membranes of 

the pericytes and endothelial cells align together. These mechanical close contacts mediate 

active biochemical interactions in paracrine and juxtacrine manners, and vice versa.  

Several signaling pathways are involved in pericyte/endothelium interactions: 

PDGFB/PDGFRβ, TGFβ1/TGFRβ2/ALK1 or ALK5, TIE2/ANG1 or ANG2, and HB-

EGF/EGFR [28]. Classically, PDGFB/PDGFRβ is the best-known molecular axis, recruiting 

the developing pericytes to the angiogenic endothelial tip cells. PDGFB is expressed in the 

endothelial cells, and then retained in the extracellular matrix neighboring the endothelial 

cells, where it binds to a receptor tyrosine kinase, PDGFRβ, in pericytes. This interaction is 

the crucial and dominating factor for mural cell recruitment and subsequent vascular 

integrity. In a mouse model, both Pdgfb and Pdgfrb null mice exhibited perinatal lethality, 

mainly caused by vascular dysfunction, and particularly the loss of mural cell recruitment. 

Interestingly, the pattern of mural cell deficiency was heterogeneous between different 

organs, alluding to the fact that other pathways are also somehow actively implicated in the 

mural cell recruitment and that the ontogeny of mural cells varies in different organs [37, 38]. 

A smarter attempt has also contributed to generate a pericyte-deficient mouse model 

(pdgfbret/ret), in which the PDGFB retention motif is deleted to protect PDGFB binding to the 

extracellular matrix, which leads to hypoplasia and partial detachment of the pericytes [39]. 

In TGFβ signaling, complex patterns of regulation arise between endothelial cells and various 

kind of mesenchymal cells, including pericytes or vSMCs, Once TGFβ1 binds to the TGFβ 

type 1 receptor (ALK1 or ALK5, respectively in the endothelium and pericytes), two 

confronting signaling pathways are implicated. ALK1 leads to proliferation and ALK5 leads 

to differentiation via phosphorylation of Smad1/5 and Smad2/3, respectively. The resulting 

effects on vascular integrity depend on the expression ratio of ALK1/ALK5, which appears to 

undergo a dynamic change depending on the vascular developmental stage.  
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The concept underlying the combinational or reciprocal TGFβ signaling networks would be 

to control and maintain vascular integrity [40, 41]. TIE2 is a receptor tyrosine kinase, mostly 

expressed in endothelial cells, that binds to angiopoietin 1 (ANG1) and angiopoietin 2 

(ANG2). ANG1 is secreted by pericytes, perivascular mesenchymal cells, fibroblasts, or 

cancer cells and functions as a key stabilizer for vascular permeability and integrity by 

maintaining or increasing pericyte coverage in the endothelium. On the other hand, ANG2, in 

large part, is secreted by endothelial cells and counterbalances ANG1 by competing to bind 

the same receptor, TIE2, in the endothelium. ANG2 binding to TIE2 results in pericyte 

detachment and angiogenic sprouting. Hypoxia upregulates ANG2 secretion in the 

endothelium, as well as that of VEGFA, thereby turning on an angiogenic switch and forming 

aberrant and immature vasculature. As such, TIE2/ANG1, or the ANG2 signaling pathway, 

also participates in the homeostasis of the vascular system.  

Interestingly, in the endocrine pancreas of pdgfbret/ret mice, which are pericyte deficient mice, 

a similar level of pericyte coverage to that seen in littermate controls is observed, 

representing an exception to recruitment by the PDGF-B/PDGFRβ axis (unpublished data). A 

recent study in a mouse pancreatic neuroendocrine tumor model showed that endothelial- and 

pericyte-derived HB-EGF binds to EGFR in the pericyte, thereby increasing pericyte 

coverage and vascular stability and providing a clue to the identity of the alternative 

recruiting factor in the pancreas [42-44].  

 

Figure. 4. Tumor pericytes 

The active state of the tumor vasculature has long been 

postulated to lack pericyte coverage. Recent studies, 

however, have revealed that tumor vasculature is covered by 

a certain number of pericytes, and its integrity is also, in 

large part, controlled by the tumor pericytes. Unique traits of 

tumor pericytes appear to be a loose detachment from the 

endothelium and a more heterogeneous frequency (figure 4). 

The recruitment of tumor pericytes mostly occurs in an 

analogous manner to that of their normal counterparts. 

PDGF-B/PDGFRβ axis plays an important role in 

recruitment and maintenance of tumor pericytes in the 

endothelium. In the pdgfbret/ret mouse model, implanted 

melanomas, lung carcinomas, and sarcomas caused a greater 

than 50% reduction in pericyte coverage when compared to the littermate controls [45, 46]. 

The TIE2/ANG1 and ANG2 signaling pathways are also implicated in tumor pericyte 

coverage and vascular integrity, as described above.  

The gene and protein signatures of tumor pericytes might appear more variable that those of 

normal pericytes, as inferred by their prolonged dynamic states in tumor vasculature. The 

NG2 protein has been widely used as a marker for tumor pericytes in mouse models. This is 
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because other markers for pericytes—for example, αSMA, DESMIN and PDGFRβ—can be 

expressed more often in major tumor stroma constituents, cancer associated fibroblasts, and 

myofibroblasts. This is exemplified by the fact that NG2-tk+GCV transgenic mice, which 

show inducible and transient pharmacological targeting of pericytes, are well appreciated as a 

mouse model for tumor pericyte studies, in addition to the pdgfbret/ret pericyte-deficient mice 

model [47]. 

The role of tumor pericytes in the multistep process of tumorigenesis has been recently 

documented in several papers. Tumor pericytes clearly function to stabilize tumor 

vasculature, thereby supporting tumor vessels that deliver more oxygen and nutrients, which 

seems to favor tumor progression. This assumption is supported by two respective mouse 

experimental models. In the 4T1 murine breast tumor model, tumor growth rate is decreased 

when pericytes are targeted, while in T241 murine sarcoma, the ectopic expression of N-

cadherin stimulates pericyte coverage and tumor growth [48, 49]. By contrast, in murine lung 

carcinoma in the pdgfbret/ret mice, the partial depletion of pericytes instead results in an 

increased tumor growth, while in the same context of a mouse setting with a B16 murine 

melanoma, targeting of pericytes does not result in any difference in tumor growth [45]. 

These discrepancies might imply that crosstalk by the tumor pericytes with other tumor 

stroma constituents or tumor cells may differ among discrete tumors. However, regarding 

metastasis or tumor cell dissemination, consistent outcomes have been that poor pericyte 

coverage in tumor vasculature correlates with more advanced metastasis [47-49]. Paper I of 

this thesis discusses tumor pericytes and tumor malignancy in greater detail.  

Investigation of the identity, ontogeny, and function of pericytes or pericyte-like cells 

continues in physiologic and the pathologic conditions, including tumor biology. With 

respect to targeting tumor pericytes as a therapeutic approach, the following factors need to 

be addressed in further investigations: 1) The difference between the closest relative, αSMCs, 

and pericytes, regarding their recruitment and maintenance, 2) A more refined definition of 

pericytes, focusing on how their discrete features differ from perivascular cells or pericyte-

like cells, 3) The origin of pericytes or tumor pericytes—whether they arise from endothelial 

progenitor cells, pre-exiting pericytes, bone marrow-derived cells, or mesenchymal stem 

cells, and 4) The role of tumor pericytes in the tumor microenvironment—whether they are 

tumor supportive or suppressive.      

 

 

1.1.3 Cancer-associated fibroblasts 

Fibroblasts, the most abundant mesenchymal cells in the connective tissues, originate from 

the mesodermal layer at the embryonal stage. Morphologically, they differ in various 

locations and stages; thus, they are still characterized rather vaguely as non-vascular, non-

epithelial, and non-inflammatory cells in the connective tissue [50]. Fibroblasts reside in the 

connective tissues and are embedded within the ECM, which is mostly synthesized and 

established by the fibroblasts. Their roles in physiological conditions are to maintain ECM 

homeostasis by secreting most of the ECM components, including various subtypes of 
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collagen fibers, fibronectin, and the collective proteases that degrade the ECM, such as the 

family of matrix metalloproteases (MMPs). In addition, fibroblasts support the neighboring 

tissue to keep its integrity in terms of paracrine and juxtacrine interactions [51].  

The crucial supportive role of fibroblasts is emphasized in wound healing processes. Once an 

injury occurs, regional fibroblasts or distant cells respond to lesion-derived stimuli, 

subsequently enabling the reprograming of fibroblasts to invade the lesion, facilitate 

contraction, and restore the ECM, which acts as the scaffold for other recruited cells. The 

reprogramed fibroblasts, mostly composed of myofibroblasts defined as αSMA-expressing 

fibroblasts, undergo apoptosis after completing the wound healing process [52]. In the 

context of tumorigenesis of a solid tumor, the tumor tissue is considered to reflect a chronic 

wound region, in which fibroblasts are constantly being stimulated by dynamically evolving 

cancer cells. The fibroblasts in the tumor tissue are therefore termed “cancer-associated 

fibroblast (CAFs).” The CAFs can be further subtyped as discrete cells that function in tumor 

suppression and tumor promotion. However, CAFs, in large part, have been widely 

documented to orchestrate cancer cells and the tumor microenvironment, promoting tumor 

malignancy from the very beginning—from tumor initiation to the last metastatic 

colonization [53].  

Fibroblasts, as mentioned earlier, are the most common cell type in the connective tissue, 

which means that the fibroblasts would be the first barrier that pre-transformed cells would 

have to overcome during the multistep process of tumorigenesis. The fibroblasts (which, in 

this case, are not the CAFs) have been reported in several studies to block the growth of 

neoplastic cells. A recent in vitro and ex vivo study showed that isolation and co-culture of 

normal human and mouse quiescent fibroblasts of diverse origins with the PC3 prostate 

carcinoma cell line revealed a prominent suppression of the proliferation of PC3 cells by 

secretion of different sets of ECM components and bioactive molecules responsible for cell to 

cell contact-dependent inhibition of cell proliferation [54, 55]. The normal fibroblasts, though 

not yet programmed, are somehow able to restrain the development of tumor initiation and 

metastatic colonization. On the other hand, a few neoplastic cells continuously evolve and 

acquire the ability to resist and destroy the fibroblast-derived defense armaments, thereby 

changing the property of the fibroblasts in a tumor-favoring way. TGFβ is the major cancer 

cell-derived factor affecting CAF activation and the PDGF, COX2, and IL6 signaling 

pathways have also been implicated in CAF activation [53, 56, 57].  

The manner by which CAFs orchestrate or modulate tumorigenesis remains in question. The 

answer evidently lies in their unique feature as a dense reservoir of bioactive molecules, 

including growth factors, proinflammatory cytokines, ECM-degrading enzymes, and 

chemokines. Once activated, CAFs start secreting a plethora of bioactive molecules, which 

stimulate not only neoplastic cells or transformed cancer cells, but also neighboring tumor 

environment components or distant cells, in a paracrine manner. Various experiments using 

in vitro co-culture and transplantation studies with tumor cells and CAFs have shown that 

abundant grow factor secretions (e.g., EGF, bFGF and HGF) might support tumor growth. In 

some cases, tumor cells can be stimulated by CAFs to express COX2 and elicit changes in the 
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tumor microenvironment, including angiogenesis and tumor immunity, although the exact 

underlying mechanisms are not fully elucidated [53, 58]. In human ductal carcinoma in situ 

(DCIS), in neoplasia of breast cancer, and in xenograft tumor experiments, the COX2 level 

was highly upregulated by interaction with CAFs via the NF-kB mediated signaling pathway, 

thus enabling tumor cells to secrete MMP14 and VEGF-A. Interestingly, a neoplastic skin 

tumor in a transgenic mouse model showed that tumor cells stimulated neighboring CAFs to 

express a variety of proinflammatory molecules, including COX2, via the NF-kB signaling 

pathway. These two studies confirmed that CAFs are eventually implicated in tumor 

progression and metastasis [59], thereby providing growing evidence of a complex reciprocal 

crosstalk occurring between cancer cells and neighboring CAFs. The CAF-derived CXCL12 

has also been well studied. CXCL12 behaves as the chemo-attractant to recruit cells 

expressing its receptor CXCR4, such as bone marrow-derived endothelial progenitor cells, 

mesenchymal stem cells, tumor cells, and tumor-infiltrating leukocytes, thereby confirming 

its close involvement in angiogenesis, tumor immunity, and the EMT program [60].  

Attempts to target CAFs for cancer therapy have not been successful. This might be because 

CAFs are heterogeneous and have diverse origins, arising from regional fibroblasts, bone 

marrow-derived progenitor cells, mesenchymal stem cells, specially differentiated stellate 

cells (e.g., liver and pancreas), or fibroblasts from the epithelial-mesenchymal transition 

(EMT) or the endothelial-mesenchymal transition (EndMT). Even though located in the same 

region of tumor tissue, different CAFs have various traits and stages, some of which are 

complementary, compensatory, or confronting in their functions regarding tumor malignancy. 

For instance, FAP, a type II transmembrane protein functioning as a post-prolyl protease, has 

been targeted for development of a CAF-related cancer therapeutic agent because the 

expression of FAP protein is mostly detected on the cell surfaces of CAFs, but is absent or 

rarely found on the normal counterparts. A study using FAP null mice showed a decrease in 

tumor malignancy of lung carcinoma and colon tumor models. A preclinical study of a 4T1 

breast cancer mouse model showed similar results, where a decreased tumor burden was 

associated with the attenuated deposition of collagen I and increased recruitment of CD8 

positive cells, collectively demonstrating the important role of FAP positive CAFs in 

modulating tumorigenesis [50, 61]. However, in a clinical trial (phase II) in human patients 

with metastatic colorectal cancer, humanized anti FAP-neutralizing antibody (sibrotuzumab) 

failed to show any significant efficacy as a treatment [62]. In addition, a recent study with 

αSMA-tk transgenic mice revealed the astonishing result that, in pancreatic ductal 

adenocarcinoma (PDAC)—one of the most stroma- rich cancers with a lethal malignancy—

depletion of αSMA positive CAFs elicited a decrease in tumor vessel density, an increase in 

hypoxia, a subsequent recruitment of tumor-promoting inflammatory subsets, regulatory T 

cells (Tregs), and myeloid-derived suppressor cells (MDSCs), and eventually an increase in 

tumor malignancy with reduced survival. This might highlight again the complexity of CAF 

interplay within tumor tissues [5].        
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Table 1 

Murine protein markers commonly used for identifying pericytes and fibroblasts 

Marker 

(gene symbol) 
Function 

Cell types expressing 
the marker 

Other cell types expressing 
the marker 

Refer-
ence 

 

FSP1  

(S100a4) 

S100 calcium 
binding protein 

Fibroblasts in normal and 
fibrotic tissues 

Epithelial ovarian carcinoma cells 
and macrophages, activated 
lymphocytes 

[63-65] 

Fibroblast-activation 
protein, FAP  

(Fap) 

Serine 
endopeptidase 

Cancer-associated fibroblasts 
and activated fibroblasts 
(myofibroblast) 

Myoblast, mature cardiac 
fibroblasts, and activated 
melanocytes 

[53, 66, 
67] 

 

Vimentin 

(Vim) 

Intermediate 
filament 

Fibroblasts in normal and 
fibrotic tissues 

Endothelial cells, mesenchymal cells, 
and most neuronal precursor cells 

[68-70] 

Platelet-derived 

growth factor 

receptor-alpha, 
PDGFRα 

(Pdgfra) 

Cell surface tyrosine 
kinase receptor for 
PDGFs (PDGFA and 
PDGFC) 

Perivascular profibrotic cells 
in skeletal muscle, skin and 
small intestine, dermal 
fibroblasts, pericytes in spinal 
cord   

Neural stem cells, oligodendrocytes 
precursor cells, renal interstitial cells 

[35, 71, 
72] [69, 
73] 

Platelet-derived 

growth factor 

receptor-beta, 
PDGFRβ  

(Pdgfrb) 

Cell surface tyrosine 
kinase receptor for 
PDGFs (PDGFB and 
PDGFD) 

Bone marrow-derived or 
regional myofibroblasts 
(kidney, breast and liver), 
pericytes  

Mesenchymal stem cells, neuronal 
progenitors, vSMCs 

[28, 74-
76] 

Desmin  

(Des) 

Intermediate 
filament 

Fibroblasts in skin, pericytes 
vSMCs, cardiomyocytes, skeletal 
muscle cells, and fetal hepatic 
stellate cells  

[28, 53, 
77] 

Alpha-smooth 

muscle actin, αSMA 
(Acta2) 

Microfilament Myofibroblasts and pericytes vSMCs, myoepithelial cells 
[45, 78, 
79] 

 

Chondroitin sulfate 

proteoglycan 4,  NG2 
(Cspg4) 

Integral membrane 
proteoglycan 

 

Perivascular myofibroblasts 
and pericytes 

 

 

 

 

 

vSMCs,  oligodendrocyte precursor 
cells, osteoblasts, chondroblasts, 
epidermal and hair follicle 
progenitor cells, and adipose stem 
cells 

[31-33, 
80] 

 

Endosialin   

(Cd248) 

C-type lectin 
transmembrane 
receptors 

Brain pericytes in embryonal 
stage and glioma, fibroblasts, 
and myofibroblasts 

Vascular-associated leukocytes 
(CD45+/CD144+) 

[81-84] 

Regulator of 

G protein signaling 5, 
RGS5*  

(Rgs5)  

Intracellular signal 
transducer (GTPase 
activator) 

Pericytes 
vSMCs, breast cancer cells, multiple 
myeloma cells, colon cancer cells, 
renal cell carcinoma cells 

[85, 86] 

 

Alanine 
aminopeptidase, CD13 
(Anpep) 

Membrane-
integrated 
aminopeptidase 

Brain and retinal pericytes 
vSMCs, myeloid cells, and epithelial 
cells of normal tissues and 
malignant neoplasms 

[87-89] 

*Obscure yet, because of lack of a validated antibody for immunostaining 
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1.1.4 Tumor-infiltrating leukocytes (TILs) 

The use of the currently available advanced methods to detect somatic mutations in tumor 

biology using genome-wide analysis has indicated that some transformed cancer cells, such 

as melanoma, lung carcinoma, and glioma, retain hundreds to even thousands of somatic 

mutations on their chromosomes (somatic mutation prevalence), as well as aberrant 

epigenetic changes, conferring an increase in the corresponding pool of antigens to be 

recognized by the immune system [90]. This feature raises the question as to how pre-

neoplastic or transformed cancer cells circumvent the immune surveillance system, which has 

evolved a sophisticated combination of innate and adaptive immune systems against external 

and internal hindrances that threaten the organism’s lifespan. The antigens originating from 

host-derived transformed tumor cells are presumed to be improperly recognized and primed 

by the host immune system (immunologic ignorance). However, recent work with solid 

tumors in experimental mouse models and from human patients has shown that spontaneous 

tumor antigen-specific T cell responses are prevalently induced at tumor sites, even though 

the response varies in terms of the individual patients, the location, and the grade of tumors 

[91].  

A complex series of anti-tumor immune response mechanisms, which are not yet fully 

elucidated, have been reported to suppress tumor progression and malignancy. The cells 

involved include granulocytes (the major immune component in the peripheral blood), 

regional macrophages, dendritic cells (especially the CD8α+ subset, which is implicated in 

type I interferon/STAT1 signaling pathway, responsible for the innate recognition of tumor 

cells), cytotoxic T lymphocytes (CTLs), natural killer T (NKT) cells, and natural killer (NK) 

cells (the complimentary innate arm to CTLs that destroy the tumor cells that downregulate 

expression of the MHC I molecule and thus evade attacks from CTLs). As seen in bacterial 

infections or skin injuries, the innate arm of the immune system first affects antitumor 

immunity. Regional macrophages, natural killer cells, or circulating granulocytes sense tumor 

cells as an aberrant stress, and some debris from dying tumor cells (DNA fragments or 

aberrant peptide) are exposed and are recognized by antigen presenting cells (dendritic cells),  

followed by the subsequent activation of the adaptive arm in host immune system.  

Eventually, the activated CTLs start to destroy the tumor cells that present aberrant antigen-

MHC I on their membranes. Mice that are genetically targeted for enhancement or deficiency 

in NK cells and CTLs confirm an inverse correlation between tumor burden and the activity 

of the above immune effector cells, demonstrating the importance of antitumor immunity 

functions against tumorigenesis [92-94]. Upon evasion of the host immune surveillance 

system, some, but not many, of the neoplastic or transformed cells—which have already 

acquired the aberrant genetic instability—proceed to evolve and thus adapt a strategy to 

nullify or destroy antitumor immunity, in close cooperation with the neighboring TME.  
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The strategy for avoiding the intrinsic surveillance immune systems can be subdivided into 4 

different categories: one is that tumor cells per se react to the CTLs. In the case of most 

melanomas, the tumor cells highly express an inhibitory ligand, programmed death-ligand 1 

(PD-L1), which, in turn, binds to the inhibitory receptor, PD1, in activated CD8+ CTLs or 

NK cells, thereby inhibiting CTL or NK cell activation [95]. The tumor cells of many cancers 

also attempt to evade T cell-mediated immune responses through down-regulation of MHC 

class 1 [96].  

The second category is the reprogramming of myeloid or dendritic cells in the innate immune 

system by tumor-derived factors—the TME even polarizes the transition-state cells into 

tumor-promoting state cells. Extensive investigations during the last decade have focused on 

these tumor-educated and tumor-favoring cell types, including tumor- associated 

macrophages (TAMs), tumor-associated neutrophils (TANs), and plasmacytoid dendritic 

cells (pDCs). TAMs, a distinct population of macrophages in the TME, promote tumor 

progression and metastasis. Most murine TAMs can be identified by the following markers: 

CD11b+, CD34-, CD45+, CD68+, CCR2+, CXCR4+ and F4/80+. TAMs were first identified 

as a negative regulator of antitumor immunity by suppressing CTLs, as they express PD-L1, 

similarly to tumor cells and thus directly counteract CTLs or indirectly suppress CTLs by 

CCL22-mediated recruitment of regulatory T cells (Tregs) [97, 98]. The TIE2+ TAM subset 

also stimulates tumor angiogenesis by expressing a proangiogenic enzyme, thymidine 

phosphorylase, and cathepsin B. In addition, in a mouse mammary tumor model, TAMs play 

a crucial role of the intravasation of invasive tumor cells within the primary tumor to form 

blood vessels by a paracrine interaction, termed the “paracrine loop,” which includes 

signaling pathways such as EGF, CSF-1, and their corresponding receptors [99, 100].  

Like TAMs, the tumor-educated neutrophils, the TANs, have been recently identified as an 

immune-suppressive cell type in murine lung carcinoma, mainly functioning to reduce CTL 

activity and thereby promote tumor progression. However, their actual contribution to 

tumorigenesis remains unclear because neutrophils are also involved in antitumor immunity. 

In the 1960s, patients with advanced cancer were reported to have a severe blood 

neutrophilia, which today is considered to result from host-tumor interactions. The nature of 

this blood neutrophilia, however, is still uncertain, as it may be largely tumor supportive or 

tumor suppressive. TANs change their properties in either way, depending on their discrete 

TME [101, 102].  

Plasmacytoid dendritic cells (pDCs) are the antigen-presenting cells that circulate in the blood 

and lie in the secondary lymphoid organs. The pDCs are the key regulators of antiviral 

immunity as they sense external DNA fragments and produce type I interferon (e.g., IFNα, 

IFNβ). They are identified in the mouse by the expression of the following markers: B220+, 

CD11c+, PDCA1+, Siglec-H+, GR1+, and CD11b-. In the context of tumor immunity, pDCs 

function as negative immune regulators. In human breast cancer and mouse xenograft 

experiments, immature pDCs showed a considerable tumor-promoting effect through a 

mechanism involving the endosomal Toll-like receptor (TLR7) in the pDCs, which binds to a 

tumor-derived or TME-derived ligand, TLR7L. This activates pDCs to produce type I 
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interferon, followed by the subsequent recruitment of immune-regulatory T cells (Tregs) 

within the tumor sites [103, 104].  

A third category involves the adaptive immune arm in the immune surveillance system, 

which is also often distorted by tumor cells or their neighboring TME, and thereafter 

transformed into powerful tumor promoting constituents. The adaptive immune regulatory 

cells are as follows: the regulatory T cells (Tregs), the regulatory B cells (Bregs), and the 

IL17-producing CD4+ helper T cells (Th17). The Tregs are defined as the 

immunosuppressive CD4+ T cells and express the alpha chain of the IL2 receptor, CD25, and 

the immune-responsive transcription factor, forkhead box P3 (FOXP3). Tumor-derived or 

TME-derived CCL22 and CCL5 were first reported as Treg-recruiting factors at tumor sites. 

In a breast cancer model, prostaglandin E2 was also suggested to recruit Tregs, and the 

pleiotropic cytokine, TNF, was reported to activate Tregs by upregulating FOXP3 via a 

TNF/TNFR2 pathway in the presence of IL2.  

The exact suppressive role of Tregs is not yet fully understood. However, it is well 

appreciated that Tregs would be one of the major components of immunosuppressive 

mechanisms for avoiding antitumor cytotoxicity. Their suppression, in large part, is directed 

to the activity of CTLs, NK cells, and antigen-presenting dendritic cells, by a direct cell to 

cell contact with FasL/Fas and PD1/PD-L1 interactions or by a TGFβ signaling pathway-

mediated paracrine interaction [105-107]. Bregs are also associated with tumorigenesis. 

Bregs constitute a small population of B cells that have immunosuppressive functions in 

autoimmune diseases. Tumor-related Bregs are characterized by expression of the markers 

CD25+, B220+, and CD19+. Recently, lung metastases of 4T1 breast cancer mouse model 

have confirmed that Bregs contribute to Treg conversion from naïve CD4+ helper cells and, 

in the end, aid in growth of lung metastases [108]. IL17-producing Th17 cells are also 

involved in immune-regulatory responses relating to tumorigenesis. However, the role of 

Th17 cells in tumor biology remains controversial. One clear observation is that Th17 cells 

are more abundant at tumor sites than in the peripheral blood, alluding to a possible 

implication of Th17 in tumorigenesis. A recent report, using a VEGFA-blockade resistant 

murine lymphoma model, showed that the tumor-promoting effect of Th17 cells, which 

secrete IL17A, involves the modulation of the TME to induce G-CSF, thereby recruiting 

MDSCs. Conversely, in ovarian tumors, the increased number of Th17 cells was associated 

with an improved prognosis. Taken together, these data can be interpreted as indicating that 

Th17 cells play different roles, depending on the context of the tumors [109, 110].  

The last category involves the immature myeloid cell population as a strong tumor-promoting 

factor for incipient cancerous cells or transformed malignant tumor cells. As mentioned 

previously, neutrophilia in patients with the advanced cancers results, in part, from tumor-

educated, immune-regulatory activation. Tumor-bearing mice show an accumulation of 

immature myeloid cell populations in the bone marrow, the spleen, the blood, and at tumor 

sites. These populations are characterized by expression of CD11b and GR1, together with 

the undifferentiated myeloid-expressing proteins, S100A8 and S100A9. Today, these cells 

are referred to as myeloid-derived suppressor cells (MDSCs) [110, 111]. The MDSCs are a 
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heterogeneous population with immunosuppressive, proangiogenic, and metastasis-

supportive functions (figure 5). They are subdivided into two discrete subsets: monocytic 

(Mo-MDSCs) and granulocytic (G-MDSCs) MDSCs. The marker proteins for murine 

MDSCs are CD11b+/GR1+ (LY6C high LY6G low: Mo-MDSC, LY6C low LY6G+ : G-MDSC), 

and those for human MDSCs are HLA-DR-/CD33+, sub-grouped into CD14+/dull for Mo-

MDSCs and CD15+ for G-MDSCs. Both MDSC subsets—G-MDSCs and Mo-MDSCs—

serve to suppress immune effectors, the CTLs and NK cells. G-MDSCs express a 

considerable amount of ROS and little NO, whereas Mo-MDSCs express little ROS but a 

considerable amount of NO, and both MDSC subsets express Arginase 1. When exposed to a 

combination of three different pathways—ROS, NO, and Arginase1—both MDSC subsets 

efficiently block antigen specific CTLs as well as NK cells. MDSCs can also directly sustain 

proliferation of tumor cells or protect against the apoptotic death of tumor cells via the 

S100A8/S100A9 signaling pathway in MDA231-LM2 breast cancer cells [112, 113]. 

Adaptively transferred MDSCs can also differentiate into F4/80+ TAMs in HIF1α-mediated 

manner, thereby reflecting MDSC plasticity for the promotion of tumorigenesis in various 

ways [114]. Tumor angiogenesis is also positively regulated by MDSCs at tumor sites, where 

MDSCs interplay with the TME and thereby stimulate the production of proangiogenic 

factors (e.g., IL8, IL10, PGE2, VEGF, and MMP8/9). Conversely, the activated MDSC 

subsets can be transdifferentiated into endothelial-like cells [111, 115]. As described above, 

the MDSCs systemically expand, once activated by tumor- or TME-derived factors (e.g., 

CCL2, CXCL5, IL6, IL17, G-CSF, GM-CSF, CSF, CXCL12, TGFβ, TNF, and VEGFA) that 

were secreted and reached the bone marrow, a reservoir of immature myeloid cells. The 

systemic MDSC expansion also contributes to pre-metastatic niche formation by promoting 

the adherence and growth of disseminating tumor cells [112, 116]. 

      Figure. 5. MDSCs: crosstalk in the tumor 
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Taken together, the available evidence supports reprogramming of TILs by tumor cells 

through the suppression of immune effector cells and promotion of negative regulatory 

leukocytes, which both intrinsically function in immune homeostasis. In this way, the 

immune surveillance system is overcome. A better understanding of how TILs cross talk with 

tumor cells, the TME, or the tumor macro-environment at different stages or at different 

tumor loci will definitely benefit effective tumor targeting. This is especially the case when 

considering the accumulating, but limited, knowledge of TILs that already points to a link to 

clinical therapeutic approaches, such as the generation of genetically enhanced effector T 

cells and clinical targeting to tumor-suppressing stroma (MDSCs, Tregs and pDCs), 

combined with a cancer vaccine therapy [117, 118].  

 

1.2 CANCER BIOMARKERS 

 

1.2.1 S100A8/9 and S100B 

The S100 protein family consists of 21 members: S100A1-S100A16, S100B, S100P, S100G, 

S100Z, and FGL, which all have calcium-binding EF hand (helix E-loop-helix F) domains in 

their N-terminal regions [119]. In 1965, two members of the S100 proteins, S100S1 and 

S100B, were first identified and termed S100 proteins because they were soluble in 100% 

saturated ammonium sulfate [120]. S100 proteins have bifunctional roles: In the cytoplasm, 

they act as calcium sensors, by binding to intracellular calcium, and as signaling modulators, 

by translating calcium influx into diverse target-connected signaling pathways. In the 

extracellular spaces, S100 proteins appear as secreted proteins that are capable of binding to 

several cell membrane receptors (e.g., RAGE, TLR4, FGFR1, and ALCAM), thereby 

affecting nearby or distant cells in complex ways, depending on the composition of their cell 

membrane receptors [121, 122]. The S100 proteins contribute to tumor malignancy in various 

types of cancers, including brain (S100B, S100A8, S100A9) [122, 123], breast (S100A4, 

S100A7, S100A8, S100A9) [124-127], and skin (S100A4, S100A9, S100B [121, 127]) 

cancers. Within the S100 protein family, S100A8/S100A9 and S100B have recently emerged 

as attractive therapeutic targets, with inhibitors now in clinical trials for prostate and skin 

cancer. 

S100A8 and S100A9 are, in large part, expressed in immature CD11b+ myeloid cells, such as 

the MDSCs in the tumor stroma. The prolonged expression of both S100A8 and S100A9 

delays the differentiation of myeloid progenitor cells to their derivatives (e.g., macrophages 

and dendritic cells). In the TME, the prevalence of S100A8 and S100A9 indicates a high 

frequency of MDSCs and poor prognosis [128]. S100A8 and S100A9 mostly occur in vivo as 

heterodimers (S100A8/9) and their binding to the cell membrane receptor, RAGE, stimulates 

MAPK and NFκB signaling pathways, thereby enabling the greater expression of S100A8 

and S100A9 as an autocrine feedback loop, or the maintenance of cell proliferation. 

However, how S100A8/9 is involved in intracellular signaling networks in different cell types 

remains unclear.  
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Tumor and serum S100B has been used as a diagnostic marker for advanced melanoma, and 

a glioma xenograft mouse model has shown that an aberrantly upregulated tumor S100B 

level promoted tumor growth and recruited tumor promoting myeloid cells to the tumor sites. 

In contrast to S100A8 and S100A9 (tumor stromal origin), S100B is expressed in tumor cells 

in melanoma and gliomas. As an intracellular regulator, the Ca2+-bound S100B protein 

directly interacts with tumor suppressor protein p53, thereby sequestering p53 protein in the 

cytoplasmic region, which prevents tumor cells from undergoing apoptosis or cell cycle arrest 

[129, 130]. An association of S100B with cell migration and cell motility via a Src-mediated 

pathway was also reported in glial cells [131]. Once secreted into the extracellular spaces, 

S100B might affect the nearby cells by interacting with cell membrane receptors, as 

mentioned above, and then induce secretion of the proinflammatory cytokines, TNFα, IL1, 

and IL6 [123]. In patients with melanoma or in B16 melanoma-bearing mice, the S100B level 

is considerably enhanced in the blood, where circulating melanoma cells would secret S100B, 

but this serum S100b is viewed as a consequence of the advanced melanoma, not the cause of 

it [132]. 

 

 

1.2.2 Serum IL6 

In 1983, interleukin 6 (IL6) was first identified to induce the maturation of B cells into 

immunoglobulin-producing cells. Accumulating evidence has now extended its role as a 

pleiotropic bioactive molecule that has multiple functions in the human body [133]. Its 

functions are associated with diverse physiologic and pathologic conditions, such as liver cell 

regeneration and glucose and lipid metabolism: It is a key mediator of insulin resistance, 

myocardial infarction, T cell priming in the secondary lymphoid organs, autoimmune disease 

(e.g., rheumatoid arthritis), atherosclerosis, sepsis, and tumorigenesis [133-135].   

The expressions of IL6 and its receptor IL6R are detected in several cell types: hepatocytes, 

endothelial cells, fibroblasts, myocytes, and some leukocytes, including monocytes, 

macrophages, T cells, and dendritic cells [136]. The IL6/IL6R complex, however, does not 

turn on downstream signaling pathways; instead, this complex binds to the co-stimulatory 

membrane-anchored receptor, gp130, which is ubiquitously expressed in most cell types. 

Two IL6/IL6R /gp130 trimers form a hexamer complex, which acts as a signal transducer 

that mainly activates the STAT3 transcription factor, as well as PI3K and MAPK (IL6 

classical signaling) [137]. Adding more complexity, IL6 in the extracellular space and in the 

blood can bind to the soluble form of the IL6 receptor (sIL6R), which is cleaved by the cell 

membrane-bound metalloproteinases, ADAM10 and ADAM17, and subsequently shed from 

the cellular membrane. Thereafter, this IL6/sIL6R complex binds to cell membrane-anchored 

gp130 and turns on the alternative IL6-mediated signaling pathway (IL6 trans-signaling). The 

alternative Il6 signaling mechanism enables IL6R-negative cells to respond to IL6, thereby 

conferring multiple availabilities to IL6 [138, 139]. Moreover, a soluble form of gp130 

(sgp130) is also found in the body and acts as an antagonist to block the circulating 

IL6/sIL6R complex. In the steady state, sgp130 blunts the activation of IL6 signaling, but in 
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IL6-related pathological conditions, serum IL6 levels abruptly peak at the maximum and 

overwhelm the activation of IL6 trans-signaling (figure 6) [140-144].  

As an inflammatory cytokine, IL6, like IL1, TNF, and TGFβ, plays an important role in the 

maintenance of immune homeostasis, especially in the control of the activation of T cell and 

humoral responses. For example, in the lymph nodes, antigen-presenting dendritic cells 

activate T cell priming by the IL6/IL6R/gp130 signaling pathway. By contrast, for T cell 

trafficking, the IL6/sIL6R/gp130 signaling pathway is activated in the high endothelial 

venules (HEV), increasing their adhesiveness through the expression of ICAM1. Chronic 

inflammation is characterized by prolonged activation of the IL6 signaling, which is often 

aberrantly distorted and amplified through the circulation system. In this context, IL6 

signaling is presumed to be somehow closely associated with cancers, as some subtypes often 

develop from chronic inflammation. Interestingly, a high concentration of serum IL6 has 

been extensively correlated with poor prognosis in human melanoma and gastric, pancreatic, 

lung, breast, and colorectal cancers. IL6 in the TME can be expressed in tumor parenchyma, 

tumor cells, and the tumor stroma, as well as tumor-promoting cell types (e.g., CAFs, 

MDSCs, TAMs, and CD4+ regulatory cells, Th17, and Tregs). In tumor cells, IL6 trans-

signaling is, in part, aberrantly activated by genetic and epigenetic changes, which helps 

tumor cells maintain proliferation or block apoptotic signals. In the tumor stroma, some 

tumor-promoting cells (e.g., MDSCs and Tregs) are present and serve as a source of sIL6R to 

boost IL6 trans-signaling at tumor sites, thereby driving the establishment of a tumor-

favoring niche in the TME. This includes stimulation of angiogenesis by VEGFA and bFGF, 

which are downstream cytokines of trans-IL6 signaling, and activation or recruitment of 

tumor-promoting leukocyte subsets [134].  

              Figure. 6. Interaction of IL6 with IL6 receptor: classic (cis)-and trans-signaling 
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Taken together, the evidence points to an intimate involvement of cis- and trans-IL6 signaling 

pathways in tumorigenesis; this unexpectedly lies on the tumor-promoting side rather than in 

anti-tumor immunity. The origin and function of serum IL6 is still elusive in patients with 

cancers, but many advanced cancer types show an enhanced serum IL6 level. In the light of 

this, IL6 should be more extensively investigated as a therapeutic target.                          
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2 AIM OF THE THESIS 

 

In the last two decades, the concept of tumor biology has abruptly changed, so that tumors 

are indeed appreciated as complex tissues, rather than as lumps of chaotic neoplastic cells. 

Emerging evidence now points to an important role of the TME in regulating 

tumorigenesis. In this thesis, we studied the role of tumor pericytes as one of the crucial 

regulatory components in the TME.     

 

 

 

 

 

PAPER I: To establish the role of tumor pericytes in regulating MDSC bursts 

 

 

PAPER II: To confirm the close interplay of tumor pericytes and perivascular 

myofibroblasts 
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3 RESULTS AND DISCUSSION 

 

3.1 PAPER I 

In paper I, tumor pericytes are studied with a focus especially on how they interplay with 

TILs in the TME. The use of syngeneic subcutaneous tumors (B16 melanoma and Lewis lung 

carcinoma) in pericyte-deficient transgenic mice (pdgfbret/ret) demonstrated that the numbers 

of tumor-promoting TILs and MDSCs were increased both in the blood and at the tumor sites 

in the pericyte-deficient, tumor-bearing group, when compared to the tumor-bearing 

littermate control group. This systemic MDSC boost did not occur in the pericyte-rescued 

B16 melanoma (B16-PDGF-B) cells, implying that the tumor pericytes did indeed regulate 

MDSC activation and recruitment. The observed higher frequency of MDSCs in the blood of 

pericyte-deficient, tumor-bearing mice suggested the occurrence of a release of MDSC-

related bioactive molecules from the TME or the circulating MDSC to the blood, thereby 

indicating an involvement in MDSC recruitment and expansion. Surprisingly, the level of 

serum IL6, one of the potential MDSC-recruiting factors, was also increased, together with 

the MDSC population. The increased serum IL6 level was downregulated in the pericyte-

rescued B16 melanoma (B16-PDGF-B).  

Serum IL6 is used as a prognostic marker for human melanoma, gastric, pancreatic, lung, 

breast, and colorectal cancers and it has an as yet unexplained close relationship with TILs in 

the TME. However, how serum IL6 affects tumorigenesis, and whether it is the cause or the 

consequence of tumorigenesis, remains to be elucidated. In light of this, the underlying 

mechanism of serum IL6 as it relates to tumor pericytes is worth studying. The following 

mechanistic study was therefore performed using IL6 shRNA-mediated gene knockdown cell 

lines (B16-IL6KD) and hypoxia experiments. The results confirmed that the increase in serum 

IL6 is tumor cell-derived in the hypoxic TME. The reduction in IL6 expression from B16 

melanoma, as expected, also reversed the systemic MDSC bursts to a similar level to that 

seen in the tumor-bearing, littermate control group. These experiments confirm a role for 

serum IL6 as a hypoxia-responsive, MDSC-recruiting factor.  

Pericyte-deficient tumor vasculature serves to elicit a hypoxic TME, because of the lack of 

integrity of this vasculature. As a tumor grows to an advanced stage, it tends to have a more 

irregular tumor vasculature, with less pericyte coverage, and its TME tends to be more 

hypoxic. This might explain why patients or animals with advanced solid tumors show a high 

concentration of serum IL6. This would be an interesting topic for a future study, to 

determine if the serum IL6 and the MDSCs in the patients are correlated with diverse types 

and degrees of cancers. The T241 murine sarcoma showed a similar MDSC expansion, 

independent of tumor pericyte coverage, which might reflect that T241 sarcoma cells, unlike 

B16 and LLC cells, do not upregulate IL6 under hypoxic conditions. This is one example 

where a different type of tumor cell might confer its own discrete TME.  

Each B16 and LLC tumor in the pdgfbret/ret mice exhibited a different type of tumor 

malignancy, even though both tumors acquired the same tumor-promoting armament in the 
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form of MDSCs. The LLC tumor in pdgfbret/ret mice grows more rapidly, but the B16 tumor 

in pdgfbret/ret mice grows similarly, while more tumor cells disseminate into the peripheral 

blood. This higher frequency of circulating tumor cells does not occur in the LLC tumor in 

these mice. This discrepancy was explained by the fact that each tumor has a different subset 

of MDSCs: B16 tumors have a relatively higher proportion of monocytic MDSCs, while LLC 

tumors have mostly granulocytic MDSCs. In this paper, the exact mechanism underlying the 

MDSC subset and different tumor phenotype is still elusive. Further study is needed to 

determine which TME constituent interplays with tumor pericytes and activates MDSC in a 

different way. In the blood, MDSCs belong to mostly granulocytic subset in both B16 and 

LLC tumor model, implying that MDSCs are first recruited by the HIF1α/IL6 axis and then 

activated in a different way at each tumor site.          

The human study with breast cancer cohorts showed a fortunate, meaningful, and correlated 

outcome, where the expression of pericyte-related genes (CSPG4, RGS5,ITGA7, CD248) are 

inversely correlated with the expression of human MDSC markers (S100A9, CD33) and this 

correlation appears to have consequential relevance to the survival rate of patients with breast 

cancers. As discussed in the introduction, due to the lack of the specific markers for tumor 

pericytes, the gene expression analysis used above is limited in its accuracy. Nevertheless, it 

is still of importance, in that the clusters of pericyte-related genes displayed a significant 

correlation with MDSC markers.     

 

3.2 PAPER II 

Recently, tumor pericytes have been shown to regulate tumor-favoring TILs and MDSCs via 

aberrant tumor vasculature. In paper II, a new idea is proposed whereby tumor pericytes in 

B16 melanoma play a tumor type-specific role by regulating myofibroblast recruitment. In 

B16 tumors, PDGFRα-expressing cells were found in tumor vasculature and, in turn, these 

perivascular PDGFRα-expressing cells appeared more frequently in pericyte-deficient tumor 

vasculature. By contrast, in LLC tumors, PDGFRα-expressing cells were mostly localized 

outside of the tumor vasculature and showed no difference in frequency between pericyte-

deficient, pdgfbret/ret and littermate control mice, indicating TME heterogeneity between the 

tumor types.  

The perivascular PDGFRα+ cells were further characterized using immunochemistry and 

quantitative PCR analysis with FACS-sorted samples: PDGFRα+/PDGFRβ+ as the 

perivascular PDGFRα+ cells and PDGFRα+/PDGFRβ- as the pericytes, and identified as a 

subset of myofibroblasts that differentially express mRNA for FAP, HGF, CXCL12, and 

Wnt5a. Interestingly, the perivascular myofibroblasts (PDGFRα+) express comparable 

amounts of NG2, PDGFRβ, and αSMA to those expressed by pericytes, but the fibroblasts do 

not express mRNA of RGS5, another marker for pericytes. As discussed in the introduction, 

no pericyte-specific marker has yet been found. Correct detection of tumor pericytes, 

especially by immunostaining, requires careful selection of marker proteins and must take 

into consideration the tumor type and stage. In the light of this notion, RGS5 should be 
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considered as a pericyte marker in the melanoma context. However, this study was performed 

with a mouse model, and requires verification by studies on human melanomas.  

This study also showed that serum S100B is involved in the generation of the higher 

frequency of the perivascular myofibroblasts observed in the pericyte-deficient B16 tumor, as 

determined using the S100B-knockdown B16 (B16-S100BKD) tumor model. The S100B 

protein is highly expressed in melanoma cells in humans and mice, and it is a bifunctional 

protein, as discussed in the introduction. The S100B secreted into the extracellular space 

binds to its receptor, RAGE, which is abundant in endothelial cells and leukocytes. This is 

followed by cellular responses, including secretion of pro-inflammatory cytokines and 

chemokines and possibly transcytosis through the endothelium. In the melanoma, serum 

S100B is used as a prognostic marker. Nevertheless, the way that serum S100B affects 

tumorigenesis in melanoma and in the blood is not yet understood. S100B expression is 

considered to be a consequence of the increased tumor burden. Our experimental setting 

revealed a distinctive function of serum S100B in recruiting the perivascular myofibroblasts.  

The function of recruited myofibroblasts in terms of the increase in serum S100B remains to 

be established. Even though the pericyte-deficient B16 tumor showed an increased serum 

S100B (a marker of poor prognosis for melanoma), it did not exhibit any difference in tumor 

malignancy. As shown in paper I, pericyte-deficient B16 melanoma showed more MDSC 

bursts. Therefore, the MDSCs are presumed to behave as the major controller, driving 

melanoma to greater malignancy, while the perivascular myofibroblasts, as a minor 

modulators, react in accordance with MDSCs or against a tumor-promoting TME. 

Conceivably, serum S100B may enhance the recruitment of perivascular myofibroblasts as 

“defenders” of the host-defense system. As shown in the introduction, recent evidence 

obtained in murine pancreatic adenocarcinoma has suggested a protective role of the TME 

against tumor malignancy.  

Lastly, this study has revealed a possible reason for the increased serum S100B levels 

observed in pericyte-deficient B16 tumors. In pericyte-detached endothelial cells, tyrosine-14 

of Cav1 had a higher phosphorylation level when compared to Cav1 of pericyte-attached 

endothelial cells. This was confirmed both in the in vitro cell culture experiment and in the 

B16 tumor vascular fragment in pdgfbret/ret and littermate control mice. Moreover, lung 

vascular fragments in tumor-free, pericyte-deficient mice also showed an enhanced 

phosphorylation of Cav1, indicating that pericyte coverage regulates the endothelial Cav1 

state, but not in a tumor-limiting manner. The S100B receptor, RAGE, has been reported to 

have a caveolar localization, so that, upon S100B binding, the RAGE/S100B complex is 

internalized with the help of phospho-Cav1 (an essential prerequisite for S100B 

internalization). The manner by which pericytes control endothelial Cav1 deserves further 

investigation.  
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