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Abstract 
The work presented in this thesis describes an instrument, developed for 

separation of proteins and peptides based on corresponding isoelectric point (pI) 
values, to empower mass spectrometry-based proteomics analysis. The main 
objectives are the instrument development and optimization, as well as clinical 
applications in biomarker discovery, particularly for neurodegenerative 
disorders. The thesis is based on five scientific papers that focus on three main 
stages; (i) development and optimization of the device for separation of proteins 
and peptides by pI that are well integrated with tandem mass spectrometry 
(ii) optimization of the device for intact blood plasma protein fractionation for 
application in biomarker discovery, and (iii) biomarker discovery in blood 
plasma for early diagnosis of Alzheimer disease. 

Within the first part of the work, a novel multiple-junction capillary 
isoelectric focusing fractionator (MJ-CIEF) is developed (Paper I). 
Subsequently, the resolving power and reproducibility of fractionation are 
improved, and in addition, a novel algorithm is developed to calculate the 
identified peptides’ pI (Paper II). Moreover, to achieve the aim of deep 
proteomics, a multi-parameter optimization of the LC-MS/MS pipeline is 
performed (Paper III). 

In the second part, an online desalinator is developed and coupled to the 
device, for direct buffer-exchange and isoelectric separation of intact human 
blood plasma/serum proteins. The developed pipeline achieves the increased 
depth of the proteome analysis and provides additional information on the pI of 
identified proteins, as another dimension of information in biomarker discovery 
by proteomics (Paper IV). 

The last part of the thesis is focused on the application of the developed 
method in biomarker discovery for early diagnosis of Alzheimer disease. A 
panel of new potential biomarkers is introduced based on the abundance 
changes, as well as shifts in the pI values. By means of the pI information, the 
protein concentration in a narrow pH range around 7.4 reveals increased levels 
in patients with progressive Alzheimer disease compared to stable ones. 
Proteome analysis of this particular pI region also suggests several potential 
proteins as biomarkers for early diagnosis of the disease (Paper V).  

Taken together, this thesis demonstrates emerging applications of peptides 
and proteins fractionation by pI in deep proteomics. The development of 
MJ-CIEF facilitates online separation of peptides and proteins from small 
amounts of samples in a fast format, automatable, cost-effective and compatible 
with mass spectrometry analysis. Further biomarker discovery in the narrow 
range of pH around 7.4 of blood proteome is suggested for early diagnosis of 
neurodegenerative diseases.



Sammanfattning 
Denna avhandling beskriver metodutvecklingen av ett instrument som 

utvecklats för att separera proteiner och peptider via fokusering av 
molekylernas Isoelektriska punkt värden (Ip), följt av masspektrometri-baserad 
proteomik analys. Förutom instrumentutveckling och optimering var syftet att 
testa och applicera metoden på kliniska prover för att identifiera nya 
biomarkörer för neurodegenerativa sjukdomar. Avhandlingen är baserad på fem 
vetenskapliga artiklar som fokuserar på tre huvudkriterier; (i) utveckling och 
optimering av ett instrument som separerar proteiner och peptider genom deras 
pl-värden för vidare analys via en direktkopplad tandem-masspektrometer, 
(ii) optimering av instrumentet för intakt blodplasma protein fraktionering, och 
(iii) applicering av instrumentet för att upptäcka biomarkörer i blodplasma för 
tidig diagnos av Alzheimers sjukdom. 

Den första delen av avhandlingen, beskriver utvecklingen av det nya 
isoelektrisk fokusering instrumentet (MJ-CIEF) (Artikel I), samt hur 
resolutionen och reproducerbarheten av fraktioneringen har förbättras. En ny 
algoritm har utvecklats för att beräkna de identifierade peptidernas lp värden 
(Artikel II). Dessutom, en multi-parameter optimering av en LC-MS/MS 
pipeline genomfördes med syftet att nå en större del av det totala proteomet 
(Artikel III). 

I del två av avhandligen beskrivs metodutvecklingen av ett online 
avsaltnings system som kopplas till instrumentet för direkt buffert-utbyte och 
isoelektrisk separation av intakta humana blodplasma proteiner. Tillämpningen 
av den utvecklade pipelinen innebär att proteomet kan analyseras mer detaljerat. 
Dessutom ger metoden kompletterande information i form av proteinernas lp 
värden, vilket ger ytterligare en dimension av information för respektive 
protein/peptid som kan vara av vikt speciellt för att upptäcka nya biomarkörer 
(Artikel IV). 

Den tredje och sista delen av avhandlingen fokuserar på tillämpning av den 
utvecklade metoden för att upptäcka biomarkörer för tidig diagnos av 
Alzheimers sjukdom. En panel av nya potentiella biomarkörer identifierades, 
som var baserad på storleksförändringar, liksom förändringar i lp av proteiner. 
Specifikt i ett smalt pH-område runt 7.4 upptäcktes en specifik proteinprofil i 
patienterna med progressiv Alzheimers sjukdom. Analys av proteomet för 
denna region identifierade flera proteiner som potentiellt kan användas som 
biomarkörer för tidig diagnos av sjukdomen (Artikel V). 

Sammanfattningsvis, beskriver denna avhandling ett nytt tillvägagångsätt 
för att karaktärisera och profilera peptider och proteiner för djup proteomik 
analys. Utvecklingen av MJ-CIEF förenklar online separering av peptider och 
proteiner från små mängder av prover på ett snabbt, automatiserbart och 



kostnadseffektiv sätt som är kompatibelt med masspektrometrianalys. 
Dessutom, resultaten från vår pilot studie indikerar att metoden kan användas 
för att tidigt diagnosera neurodegenerativa sjukdomar från specifika proteiner 
inom ett snävt pH-område runt 7.4 i blodplasma proteomet. 
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Proteomics in Medical Science 

Medicine is the science of preserving and restoring health. Medical sciences 
are dedicated to maintaining the well-being of humankind by emerging skills in 
prevention, diagnosis, alleviation and treatment of diseases. The cornerstone of 
medicine has been based on detecting the indications of any deviation from the 
state of health. As many other basic sciences, advances in medicine are founded 
on careful examinations and observations, including measurements of all 
possible markers of the diseased state. Conventional medicine was historically 
based on evident physical symptoms of disease incident, and studies often 
directly involved human subjects. Recent advances in science, technology and 
informatics, as well as the access to the disease models, dramatically 
accelerated the developments in medical science and clinical practice and 
brought the depth of observations to the molecular level.  

The markers of health or diseased states are now referred to as biomarkers 
and have a categorized definition. A biomarker is an analyte or a condition of 
the body that is measurable and is shown to be closely associated with the state 
of health. Biomarkers can be indicative of a present state or predictive for a 
future outcome.1 Nowadays, biomarkers not only aim for early diagnosis but are 
also applied to monitor the prognosis of diseases or the success of the response 
to a particular treatment. Advances in cell and molecular sciences provided 
countless opportunities and enhanced the amount of knowledge in modern 
medicine. To date, biomarkers at molecular level such as genes and DNA, 
different types of RNAs, proteins and metabolites, enable early diagnosis with 
improved accuracy and can predict the occurrence of diseases, even before an 
individual is born.  
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Among many biomolecules, proteins are the critical functional actors in 
cellular processes and are involved in numerous disease mechanisms. Hence, 
several proteins represent as a marker of disease onset or progression and are 
among the main targets of drugs.2 The word protein was first used by the 
analytical chemists Jöns Jacob Berzelius and Gerardus Mulder, from the Greek 
root proteios meaning primary, emphasizing the fundamental importance of 
these molecules.3 

Proteins are made up of 20 standard monomers called amino acids that offer 
enormous variability in the polypeptide chain of proteins. This variation is not 
limited by the number of corresponding genes. Originating from the same gene, 
several possible isoforms can be translated into the final amino acid sequences, 
when the corresponding RNA gets spliced into diverse isoforms. Additionally, 
proteins can fold into different 3-D structures that can bring distant amino acids 
together to form unique structural and functional domains. While the primary 
structure of proteins is the order of amino acids, physical and chemical 
properties of amino acids dictate the secondary structures such as turns, sheets 
and helixes. These local structures fold the tertiary structure of proteins, which 
alone or as a combination of several complementary subunits (quaternary 
structure) shape the entire 3-D structure of the protein.4 Beyond that, the amino 
acid residues of a protein can be chemically modified, which is known as post-
translational modifications (PTMs). More than several hundreds of such 
modifications are known to alter proteins in human such as phosphorylation, 
glycosylation, deamidation, acetylation, hydroxylation, methylation and 
ubiquitylation. PTMs affect the ultimate protein conformation, function or 
localisation.5 Considering all possible variations in the final protein products of 
a gene, the term proteoform was introduced to designate each of the molecular 
forms.6 

Proteins play different roles and perform a wide range of tasks based on 
their structural and physicochemical properties. Therefore, abnormal deviation 
in protein properties can manifest diseases. Accordingly, analysis of proteins 
and their associated properties are of significant interest in biological and 
medical research.7 A protein state can be represented by its measurable 
chemical and physical properties such as size and molecular weight, affinity 
and interaction with other proteins or chemicals, lack or gain of a 
chemical modification, enzymatic activity, isoelectric point, melting point, and 
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copy numbers or abundance of that protein. On the other hand, proteins 
orchestrate together in the cellular and organs’ actions. Therefore, the study of 
the entire repertoire of expressed proteins, i.e. the proteome, is also 
significantly important.8  

A proteomics study is defined as the examination of the complete set of 
proteins at a specific state, time or location. This global approach transforms the 
biomedical research into an investigation of the entire cellular system. The 
attempts towards that objectives go back to 1970s with the introduction of two-
dimensional (2-D) polyacrylamide gel electrophoresis.9 However, actual 
achievements to approach the goal had to wait for the development of mass 
spectrometry (MS), which enabled unbiased protein detections with theoretical 
specificity and sensitivity at the level of single molecules.10-12 

Mass Spectrometry in Protein Analysis 

Mass spectrometry (formerly known as mass spectrography) was introduced 
by Joseph John Thomson in 1897 in an experiment in which he studied the 
movement of negatively charged cathode ray particles (electrons), as well as 
other charged particles, in electromagnetic fields.13 He demonstrated that the 
mass-to-charge ratios (m/z) of particles define their movement in electric and 
magnetic fields. Rapidly, the value of mass spectrometry application was 
recognized in different fields of science, particularly the analytical sciences. 
Vast amount of advancements have been made in the field of mass 
spectrometry, and variety of techniques have been developed, which is still 
actively ongoing.  

In principle, each mass spectrometer has three major units known as the ion 
source, mass analyzer, and the ion detector. It also has complement units of 
inlet system for the ion source, vacuum system, electronics control board and 
data processor. The ion source unit ionizes and transfers the analytes into the 
gaseous phase. Methods for ionizations that were in use decades ago were 
strong activation processes such as electron ionization, photoionization, atom 
bombardment, as well as less harsh chemical ionization. These methods were 
not well suited for biomolecules such as proteins that are fragile and could 
decay as a result of ionization. This issue was resolved by the development of 
more gentle, “soft” ionization methods called electrospray ionization (ESI) and 
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matrix-assisted laser desorption ionization (MALDI), by John B Fenn and 
Koichi Tanaka who shared the 2002 Nobel Prize in chemistry.  

By the action of electric potential and pressure differences, the ionized 
molecules, formed in the ionizer, will flow into the mass analyzer unit. In the 
mass analyzer, the ions’ motion will be influenced by electric and/or magnetic 
fields that are associated with their characteristic mass-to-charge ratios (m/z). 
Several mass analyzers have been developed with differences in ion separation 
and analysis. Time-of-flight (TOF) and ion cyclotron resonance (ICR) analyzers 
were first introduced in 1946 and 1948 respectively.14,15 ICR requires strong 
magnets and thus expensive. In contrast, the quadrupole filter and ion trap, 
developed by Wolfgang Paul (therefore also known as Paul trap), are more 
available. 16,17 Other analyzers include magnetic sector and Fourier transform 
(FT) generic types, such as Fourier transform ion cyclotron resonance (FT-ICR) 
and Orbitrap.18  

The main parameters of the mass analyzer are mass accuracy, m/z range, 
dynamic range, sensitivity, resolution, speed and the ability to perform 
fragmentation. Often two analyzers are combined, in order to improve the 
analysis power, which is frequently used in proteomic applications. In this case, 
the first mass analyzer and fragmentation is followed by the second analyzer 
(tandem mass spectrometry, MS/MS). In tandem MS, a particular peptide ion, 
known as precursor ion, is isolated and fragmented, typically by collisions with 
an inert gas such as nitrogen or helium, resulting in product ions. The mass 
spectrum of product ions is called tandem MS, also abbreviated as MS/MS or 
MS2. This methodology (MS/MS) is a key technique for peptide identification 
in MS-based proteomics.19 Collision-induced dissociation (CID)20 and the 
higher-energy collisional dissociation (HCD)21 are among widely used 
techniques for fragmentation. Moreover, development of the complementary 
fragmentation techniques electron capture dissociation (ECD)22 and electron 
transfer dissociation (ETD)23 facilitated the analysis of PTMs such as 
glycosylation and phosphorylation.  

Ions, separated in the mass analyzers by their m/z, produce electrical 
signals. In the detector unit, these signals are detected and amplified in order to 
reach a better sensitivity. The data is presented as mass spectra, with the x-axis 
being m/z, and the y-axis representing relative signal intensities. 
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As previously noted, proteomics studies deal with the analysis of highly 
complex samples, where solely the differences in protein abundances can 
exceed 10 orders of magnitude.24 Considering the current limits of mass 
spectrometers instrumentation in terms of ion capacity and dynamic range 
(3-4 orders of magnitude), such complexity needs to be reduced prior to 
MS analysis, in order to reach a deeper characterization of proteomic samples. 
In that regard, the application of separation and enrichment techniques to 
provide subsets of protein mixtures in separate fractions with reduced 
complexity plays a key role in sample preparation step for MS-based 
proteomics studies. 

Separation Techniques 

As mentioned above, proteins are biomolecules with very diverse 
biochemical characteristics, including the sequence of amino acids, size, PTM, 
3-D structure and solubility. On one hand, this makes the proteome highly 
complex and challenging to analyze. However, on the other hand, these 
differences can be used to separate proteins into subsets in order to simplify the 
subsequent analysis.  

Separation can be based on biological or physicochemical properties. 
Biological properties are usually used for preparative fractionations aiming at 
the enrichment of target proteins. The common methods include sub-cellular 
fractionation25, separations based on interaction to other proteins26,27 or nucleic 
acids,28,29 PTMs like phosphorylation30-33, acetylation34, glycosylation35 and 
SUMOlyation36. Separations based on physicochemical properties are closely 
related to the sequence and properties of the proteins’ amino acids. Often, 
separation based on one single property is not sufficient to cover the vast 
complexity of proteome, and thus two methods will be combined to perform a 
two-dimensional separation. 

The most commonly used separation method that is being applied in MS-
based proteomics is reversed-phase high-performance liquid chromatography 
(HPLC). Amino acids with a hydrophobic side chain such as tryptophan (W), 
phenylalanine (F), leucine (L), isoleucine (I), valine (V), and tyrosine (Y) have 
the biggest effect on hydrophobicity of the proteins and peptides.37 The most 
common stationary phase in this separation is octadecyl carbon chain 
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(C18)-bonded and C4-bonded silica for peptides and proteins respectively.38 
In LC-MS/MS, the chromatography column is coupled to the ESI source of the 
mass spectrometer.39 The acidic environment of separation in HPLC is 
advantageous for ionization using positive ESI mode.  

Another commonly practiced technique for sample pre-fractionation prior to 
MS analysis is SDS-PAGE. The loaded protein samples on the gel are separated 
by size. After cutting the gel, fractions are digested in the gel using protease 
enzymes such as trypsin.40,41 Digested peptides are extracted, purified and are 
analyzed by LC-MS/MS. Proteins or peptides can also be separated using ion 
exchange chromatography that can be combined orthogonally to reversed-phase 
liquid chromatography (RPLC).42 

To achieve the highest resolving power for proteomics applications,43 
proteins or peptides in a complex sample can be separated based on their 
isoelectric point (pI) value. The isoelectric point of a protein or peptide is the 
equivalent to the pH of a buffer, in which the net surface charge of the molecule 
is zero. The pI of proteins therefore is mostly dependent on the amino acids 
with charged side chains such as glutamic acid (E), aspartic acid (D), histidine 
(H), lysine (K) and arginine (R), as well as protein terminal groups (NH2 at the 
N-terminal and COOH at the C-terminal ends). Classical theoretical formula for 
pI calculation is based on Henderson–Hasselbalch equation,44,45 in which the 
pKa of the acid dissociation constant of charged amino acids in the protein 
determines the pH in which the total charge (Ctotal) equals zero: 

for negatively charged residues: 𝐶! =
!!

!!!"!!!!!!"
!
!!!  

for positively charged residues: 𝐶! =
!

!!!"!"!!!!!
!
!!!  

𝐶!"!#$ = 𝐶! + 𝐶! 

Moreover, the influence of other amino acids, sequence and structural 
properties, as well as chemical modifications of the protein and peptide are 
considered in more advanced pI calculation formulas. 
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In practice, proteins and peptides are separated based on their pI by 
isoelectric focusing (IEF).46 IEF is compatible with numerous other separation 
methods like chromatography and gel electrophoresis; therefore, it can be 
readily combined for 2-D separations. A well-known example is 2-D gel 
electrophoresis, in which separated proteins by IEF are subjected to size 
separation in the second dimension.  

An additional advantage of using IEF in the analysis of proteins is the 
separation of proteins in individual fractions based on their pI value. The 
isoelectric point of a protein is an important and informative parameter that 
reflects the intrinsic properties of the proteins as well as its PTMs. Moreover, 
the overall distribution of proteins in a complex protein mixture (such as human 
blood) can be investigated over the theoretical pI values. One intriguing 
instance of such analysis regards the pH range from 7.30 to 7.50 in human 
blood plasma. An in-silico analysis of proteins’ pI values suggests that this 
range is a forbidden region for almost all proteins in the human blood proteome. 
Very few normal protein isoforms appear to have a pI in this range. This can be 
interpreted as the increased risk of neutralization and precipitation at the pH of 
blood (7.4) that causes normal proteins to avoid this pI-value (Figure 1). 

Figure 1. pI distribution of human proteome. The amino acid sequences of all protein isoforms 
from International Protein Index (human version 3.87) were retrieved. The theoretical 
isoelectric point for each sequence was calculated in R by means of “seqinR” package. Then the 
pI distribution was plotted in this histogram. (Similar distribution was previously reported for the 
human proteome47) 

Considering the importance and vast application of separation methods, 
particularly electrophoresis-based techniques, in MS-based proteomics studies, 
the history and fundamentals behind the development of these techniques are 
discussed in more detail in the following sections. 
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Electrophoresis 

Arne Tiselius, a Swedish biochemist and Nobel laureate, obtained his Ph.D. 
in Svedberg Lab at Uppsala University, Sweden. Theodor Svedberg, who also 
won the 1926 Nobel Prize in chemistry, had realized that colloids could be 
separated by migration through electric fields.48 This process was called 
electrophoresis. Tiselius continued working on electrophoresis during his Ph.D. 
and nailed his doctoral thesis in 1930, entitled “The Moving Boundary Method 
of Studying the Electrophoresis of Proteins”.49 Tiselius improved the U-tube 
apparatus for electrophoresis that allowed him to separate serum proteins. Since 
the separations of some artificial mixtures did not produce distinct bands, so the 
utility of such methods at the time was not clear. Years later, Tiselius 
redesigned the electrophoretic U-tube and demonstrated the improved 
resolution on a sample of serum. For that, he dialyzed the serum using a buffer 
solution and after 2 hours of running the separation, the serum had resolved into 
4 bands referred to as albumin, α-, β-, and γ-globulins.50 Tiselius submitted the 
corresponding paper to a biochemical journal, which was rejected as it was too 
“physical”.51 However, the valued paper ended up in the Transactions of the 
Faraday Society50 and later in 1948 along other astonishing works gained him 
the Nobel Prize in chemistry. This cornerstone of a new analytical tool in 
biochemistry was developed further in Tiselius Lab by contribution of pioneers, 
mostly of his Ph.D. students.52 

The main concept of electrophoresis is based on separation of charged 
molecules in an electric field. Depending on the pH of the environment, 
proteins and peptides can have different net charges on their surface. In the 
presence of an electric field, charged molecules feel the force and each one 
moves with a velocity proportional to the mass-to-charge ratio (m/z) of that 
molecule. Having different masses and charges, molecules have different m/z 
and, therefore, different velocities to move in a constant electric field. As a 
result, differences in the velocities can separate amphoteric molecules such as 
proteins during an electrophoretic run.53 

Several different formats of electrophoresis have been developed, in which 
the principle of separation is similar, yet the separation channel is diverse. 
Instances of such methods include capillary electrophoresis (CE), isoelectric 
focusing (IEF), in-gel and off-gel electrophoresis and open channel 
electrophoresis. These configurations are intended to address different issues in 
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the application of the technique for different separation purposes, such as 
decreasing the sample amount and reducing the heat joule production in the 
capillary electrophoresis, separation of amphoteric molecules based on pI value 
in a pH gradient in IEF, separation of proteins based on size in 
gel electrophoresis, and facilitating sample collection from gels in 
off-gel formats. 54 

 

Capillary Electrophoresis 

Tiselius and his group’s works on electrophoresis were the cornerstone in 
understanding the details of this method, which shed light on the direction of its 
development during the following years, that was facilitated by the emerging 
advanced materials.55 The diameter of the separation column decreased to the 
scale of micrometer, and the fused silica capillary columns became the 
dominant material of choice for capillary columns in CE.56 Fused silica has free 
hydroxyl groups on the surface that are ionized during electrophoresis 
experiment and generate a bulk flow of solution in the capillary. This 
phenomenon, known as electroosmotic flow (EOF), changes the laminar flow 
profile to a plug profile.53 

Among electrophoretic separation techniques, CE has several advantages 
including the lower Joule heating effect. This is due to the large surface to 
volume ratio in the CE column that helps to dispatch the heat. Another 
advantage is the low conductivity of the column that allows for the use of 
relatively high electric field strength (100–500 V/cm) without the concern for 
heat generation. The possibility of applying higher electric field results in better 
resolution and efficiency in shorter running times. Furthermore, CE (in 
common with chromatography techniques) has the benefits of minimal sample 
size, ease of sample preparation, cost-effectiveness as well as adaptability to 
method development and automation.53 

CE is an excellent tool for the analysis of DNA (mainly due to its native 
negative charge that is repelled by the negatively charged fused silica surface), 
57 pharmaceutical products (chiral analysis)58 and metabolites. However, 
separation of protein samples with CE is still challenging. This is partially due 
to the amphoteric characteristic of proteins. Moreover, the protein molecules 
interact with hydroxyl groups of silanols in fused silica that results in the 
stickiness of the sample to the fused silica wall of the capillary. During the 
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years, many coatings for the column have been introduced. The available 
coatings work by three main approaches of quenching the interactions (by ionic 
strength or competing ions), micro-ion adsorption to the capillary walls, or 
covalent modification of silanols with polymers. 59 However, none of the above 
is the perfect solution and the separation of proteins, particularly in a complex 
context, via CE is still a challenge.  

Isoelectric Focusing 

Isoelectric focusing is an electrophoresis technique but in a pH gradient 
instead of a constant pH along the separation field. The separation then is based 
on the isoelectric point of molecules. In other words, the analyte molecules 
such as proteins move towards the electric field according to their net charge 
until they reach the zone, in which the pH of the environment is equal to 
their pI and, therefore, the net of charge is zero. Unlike electrophoresis, 
peaks are self-sharpened during IEF separation due to the increase in charge by 
moving away from the focusing position and consequently being pushed back 
by the electric field (Figure 2). 

Figure 2. Isoelectric Focusing. Three proteins are schematically shown in yellow, orange and 
green circles; each is focused in a position where the local pH is equal to its pI. Moving away 
from that position makes the protein be charged and, therefore, be forced back to the focusing 
position by the electric field. 
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As explained in the concept of IEF, maintaining a stable pH gradient is the 
essential component of a successful IEF. The roots of the first attempts on 
performing IEF also goes back to the Tiselius Lab where Harry Rilbe (formerly 
Harry Svensson) attempted to make the gradient by trying different buffers 
during his Ph.D. work. The problem was that the ionic constituents of buffers 
were completely migrating to the opposite charge electrodes. This caused a 
non-ionic pure water region in the middle with very low electrical conductivity, 
resulting in the liquid to almost start to boil. He tried to solve this issue by 
continuous supplying of fresh buffers into the giant apparatus during the 
separation, and still the method did not make any stable pH gradient. 60 Years 
later, he attempted to create a pH gradient by mixing of a series of buffers that 
he called “carrier ampholytes”, all of which had to be amphoteric with a small 
value of ΔpK in order to ensure the buffering power.61 With such a mixture, the 
electric field could focus them to these isoelectric points. Diffusion would 
broaden them and slightly make them penetrate into the neighboring zones, 
where they ensure electric conductivity and maintain the electrical current along 
the separation column. 62,63  

During his work at Karolinska Institutet, Svensson together with his 
medical student Olof Vesterberg, designed experiments for proper synthesis of 
carrier ampholytes (CA). Three years later in 1964, Vesterberg synthesized a 
mixture of random oligoamines (from tetra- to hexa-amino groups reacted with 
acrylic acid).64 This invention resulted in the initiation of a broad application of 
IEF in separation science. After a decade improvements of the technique, in 
1975, applying the IEF as the first dimension of 2-D gel electrophoresis, the 
method was permanently established in the realm of biochemical sciences, that 
even today is still one of the most popular techniques practiced in proteome 
analysis.9 Nowadays, there are several commercial carrier ampholytes available, 
covering narrow and broad ranges of pH scale. Most important parameters for a 
successful IEF separation performance are providing a stable and linear pH 
gradient as well as electric field along the separation zone.  

In 1982, the concept of immobilized pH gradients was introduced, in which 
ampholyte compounds were fixed in a gel (immobilized pH gradient - IPG-
IEF). This could solve some of the problems associated with carrier ampholytes 
in solution, such as uneven buffering capacity and conductivity, 
irreproducibility of CA synthesis as well as cathodic drift during the focusing.65 



Background 

14 

Today, there are well-developed techniques for high-resolution pI separation of 
proteins and peptides using IPG-IEF separation, which are applied in 
proteomics studies.43 Nevertheless, the gel-based methods are still time 
consuming and expensive compared to in-solution IEF, are less automated and 
often require considerably larger initial sample amount for reaching the same 
recovery of separated analytes. 

Capillary Isoelectric Focusing 

In contrast to capillary electrophoresis with a single-step separation 
procedure, capillary isoelectric focusing (CIEF) is performed in 
a two-step process. First, the focused proteins will remain steady at the position, 
in which their pI equals the pH zone, which is called the focusing step. Unlike 
CE, the electroosmotic flow should be avoided, and for that the capillary in 
CIEF is often coated with a hydrophilic coating such as polyacrylamide. The 
second step of CIEF procedure is the detection or collection of fractions, 
in which the separated molecules should be mobilized towards the detector 
(often positioned at the cathodic end) or fraction collector, called the 
mobilization step. This is achieved by a variety of approaches including salt 
mobilization or hydraulic mobilization by introducing pressure, vacuum or 
gravity. It would also be possible to avoid the mobilization step, and perform 
the detection by capturing an image of the whole capillary with the focused 
proteins in place. However, any subsequent analysis of the fractions would not 
be possible in this approach.66 In order to precisely define the position of pI 
values in an IEF experiment, usually a set of markers with known pI values are 
applied. In gel-based IEF, these markers are run in a separate adjacent track 
along the samples,67 yet in the solution-based IEF such as CIEF, the markers are 
spiked in the sample for each individual run. 

Hyphenating CIEF with MS, known as analytical CIEF, can be regarded as 
an advanced variant of the 2-D gel electrophoresis principle; the first dimension 
being the IEF and the second dimension being the MS analysis (detection of 
proteins based on mass over charge ratio). However, in the coupling of CIEF to 
MS, several factors should be considered and resolved. Connecting CIEF to the 
MS instrument via ESI source is a challenge, due to the cross talk of the electric 
fields applied in CIEF for separation and the electric field applied in ESI for 
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ionization.68 Moreover, it shall be considered that CIEF buffers can contaminate 
the sample and interfere with MS analysis. The differences in local pH of the 
eluted peaks from CIEF and the zero net charge of the analytes might also add 
complication to the ESI performance.  

For achieving a deep analysis of complex protein mixtures, CIEF can be 
used as the first dimension of fractionation, known as preparative CIEF, 
coupled to orthogonal reverse-phase liquid chromatography, tandem mass 
spectrometry (RPLC-MS/MS). Preparative CIEF acquires larger amount of 
sample compared to the analytical CIEF and, therefore, separation columns 
have larger inner diameters than the analytical ones.69 

As noted above, the advantage of using CIEF over IPG-IEF methods is the 
online nature, as well as minimal sample requirement (at nanoliter scale) thanks 
to the higher sample recovery and the greater availability of miniaturized 
devices. In addition, advantages include the time- and cost- effectiveness of the 
technique. However, there is also a problem inherited to CIEF from the IEF 
concept, which is the analyte (protein or peptide) precipitation and aggregation 
due to the zero net charge on the surface at the focusing position. This can 
cause blockage in the capillary and fluctuation in electric current as well as 
migration time. This issue can partially be addressed by the addition of non-
ionic or zwitterionic detergents and surfactants to enhance protein solubility, 
such as Tween, CHAPS and chaotropic agents like urea, or organic modifiers 
such as glycerol.70 Yet, the compatibility of additives with ESI-based MS 
analysis should be considered, and additional step of sample clean-up 
to MS analysis should be accounted. 

Conclusively, the application of separation and enrichment techniques, and 
the use of these methods in combination for multi-dimensional separations, 
allow for deeper analysis of proteomic samples by mass spectrometry that 
consequently shed light on the holistic view of the studied proteomes.  
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Deep Proteomics 

A holistic description of the complete human proteome demands the 
challenging detection of altering forms of proteins in complex biological 
samples. As discussed in previous sections, analytical methods for covering this 
complexity often require large sample quantities and multi-dimensional 
fractionation. These requirements, of course, influence the throughput of the 
methods. However, one can increase the sensitivity and throughput of protein 
quantification by limiting the number of analytes such as peptides and proteins 
in each experiment. Therefore, proteomics experiments are often divided into 
two categories: discovery and targeted proteomics. Discovery proteomics aims 
at unbiased “global” identification and quantification of as many proteins as 
possible to reach the deepest level of the proteome. This step requires spending 
more time and effort per sample and reducing the number of samples analyzed. 
Whereas in targeted proteomics strategies, which is in most of the time a 
follow-up step on the hypotheses generated from the discovery phase, the 
number of monitored analytes are limited. Also, the pipeline including the 
separation and instrument tuning are optimized to achieve the highest 
sensitivity, specificity and throughput for testing the hypotheses on a bigger 
sample cohort. 

Deep proteomics at discovery phase ultimately aims at uncovering all 
proteoforms unambitiously. For that, in an attempt for MS-based proteomics, 
direct identification of full-length proteins by MS is called ‘top-down’ 
approach. The top-down approach offers a rich data for identification and 
characterization of the protein molecules. Nevertheless, the generated data is 
often convoluted, thus analysis is challenging. Moreover, limitations in both 
MS and fractionation instrumentations for top-down proteomics limit the 
application area. However, these challenges are being more and more addressed 
in recent years and intact protein analysis is shifting from the study of 
individual proteins (subject of targeted proteomics),71,72 towards the deep 
proteomics approach (aiming at the discovery proteomics).73  

The dominant approach in proteomics today is called the ‘bottom-up’ 
approach.74 This strategy always involves a digestion step that breaks the 
protein molecules into defined peptides prior to MS analysis. This approach, 
also known as ‘shotgun proteomics’, avoids many of the problems associated 
with the top-down approach. Here, the protein identification is inferred by the 
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detection of the corresponding peptides by the MS/MS.75 The main challenge in 
shotgun proteomics is to maximize protein identification and quantification in a 
cost- and time- efficient manner.76 The general complication with shotgun 
proteomics that is still a challenge in proteome analysis is the ambiguity75 in 
characterizing all alternative splice forms and modifications as well as 
endogenous protein cleavages, in addition to the complex combination of these 
variants.77  

In MS-based protein identification often only m/z of the protein or peptide 
alone is not sufficient evidence to identify the precursor ion. Therefore, as 
previously explained in mass spectrometry section, usually a tandem mass 
spectrum is required. However, limitation on the speed of the mass 
spectrometers results in different strategies on tandem MS. The two most 
common methods for acquiring MS/MS in shotgun proteomics experiments are 
called data-dependent acquisition (DDA) and data-independent acquisition 
(DIA). In DDA, from a full-scan mass spectrum (MS1) with mass information 
on intact peptides, a limited number of precursors are selected for acquisition of 
fragmentation (MS/MS) spectra.78 While in DIA, MS/MS scans are collected 
systematically and independently of the precursor information. DIA is available 
in various formats such as collecting fragmentation data without precursor-ion 
selection79, using ion mobility–collision-induced-dissociation time-of-flight 
mass spectrometry80, using wide isolation windows81 and using narrow isolation 
windows combined with many injections.82 

Although both methods have shown their strength and power as versatile 
strategies, there are also limitations and disadvantages associated with each 
method. For DDA, the instrument speed of sampling limits the number of 
peptides that are sampled regardless of the dynamic range and peak capacity of 
the mass analyzer. In a complex sample, only a few number of precursors, 
based on their abundance, are selected for MS/MS, which can result in most 
peptides being unsampled.83 Moreover, the randomness of the method can 
result in variation of sampled peptides between replicate measurements.84 
Besides, the precursor abundance of a peptide may stay lower than the 
background threshold of the MS1 spectrum, regardless of the detection level of 
MS/MS; or not be picked up at the highest abundance of elution peptide, or 
fragmented in a complex mixture of chimeric co-eluents.85 On the other hand, 
for DIA method, often the search for assignment of peptide sequences for the 
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obtained MS/MS spectra in databases is less effective than DDA, as a result of 
the elevated complexity of MS/MS data. 

In many cases, the biological difference, which is going to be addressed by 
proteomics studies, requires not only the identification of proteins in samples 
but also quantification of the abundances of identified proteins. Mass 
spectrometry is also associated with difficulties in the ionization efficiency, and 
detectability of different peptides in a given sample. Therefore, different 
methods are introduced for both relative and absolute quantification of proteins 
in samples.86 The intensity of the ions in a mass spectrum is not proportional to 
the absolute number of the injected ions into the MS. However, the ratios of the 
peak intensities of the same analyte between different samples, if all conditions 
of the injection and analysis are kept constant, can accurately reflect the relative 
amounts of that analyte in different samples.8 Based on this concept, one 
approach for relative quantitation is to separately analyze samples by MS and 
compare the spectra. In this method, which is usually applied to the results of 
LC-MS/MS analysis, the corresponding peak in the LC-chromatogram for each 
ion is extracted for each sample to determine peptide abundance in that sample. 
Comparison of the area under these peaks in different samples results in a 
relative abundance of that analyte. This method is known as label-free 
quantification.87,88 

Another strategy in relative quantification is based on labeling the analytes 
in different samples by incorporation of a tag into the analytes, usually 
composed of different isotopes for different samples. The labeled samples are 
mixed and analyzed in the same LC-MS/MS experiment. Relative abundance of 
the corresponding “reporter” peaks in the mass spectrum then represent the 
relative quantities of the analytes in the samples. This strategy is called label-
based quantification. In general, there are two types of labeling methods 
developed for label-based quantification. One is the stable isotope metabolic 
labeling and is based on the incorporation of chemically same amino acids with 
differences in isotopic composition. Resulted proteins as well as digested 
peptides will have different m/z, which will be visible in mass spectrometry. 
The relative abundance of different peaks of each isotopic composition 
represents the relative quantification between those proteins in the 
corresponding samples. One of the best developed methods for metabolic 
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isotopic labeling is stable isotope labeling with amino acids in cell culture 
(SILAC).89  

The second strategy is called isobaric mass tags, which is labeling of 
peptides with tags. These tags have similar total masses and chemical structure, 
but different isotopic compositions in a part of the tag known as mass reporter 
region. This mass difference, therefore, is balanced in each tag with 
complement region known as mass normalization region. These two parts 
together balance the total mass of the tag to be similar for all labels. Each tag is 
chemically bound to the digested peptides of proteins in each sample. After 
tagging samples, they can be mixed and analyzed together. Tandem MS on each 
peptide results in the analysis of the reporter ions and relative abundances of the 
corresponding peaks represent relative quantities of the protein in the samples. 
Among these methods are tandem mass tags (TMT)90,91 and isobaric tags for 
relative and absolute quantitation (iTRAQ)92.  

Absolute quantification by MS requires calibration by known amounts of a 
synthetic analyte such as a peptide, in order to calculate the absolute amount of 
the same analyte based on a relative comparison to the synthetic one. The 
method, which is known as selected reaction monitoring (SRM) is usually 
performed by tandem MS, in which the analyte of interest is selected in the first 
stage and is fragmented followed by detection of the ion products.93 This 
method is also applied on a mixture of analytes known as multiple reaction 
monitoring (MRM), where pre-defined m/z ions are chosen for fragmentation 
and only specific product ions are detected and reported.94 

Taken together, the emerging techniques in MS-based proteomics, both for 
the sample preparation and analysis steps, as well as data acquisition and 
interpretation, is opening the path towards deeper studies of proteomic samples 
that aim at the proteome-wide analysis of different specimens. Among the 
practiced proteomic samples, an area with large research interest to perform 
deep proteomics is the analysis of blood, since it encompasses a perfect 
reflection from nearly all healthy and diseased tissues of the body. However, 
the huge dynamic range of protein abundances and the enormous variety of 
proteins in blood makes such studies a challenge. 
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Blood Plasma Proteome 

Blood plasma is among the largest collected clinical specimens. It is 
considered as the most complex human-derived proteome. The complexity 
arises since blood contains not only plasma proteins, the ones with defined 
main function in circulation but also proteins that are actively being secreted or 
even leaked from different tissues into the blood. The list will drastically 
expand if one considers the proteoforms of these proteins, including splice 
variants and post-translational modifications. One instance is glycosylation as 
most blood proteins are known to be heavily glycosylated. 

Albumin is the most abundant protein in blood and represents almost 55% 
of the total protein concentration. The French chemist Pierre Macquer first 
introduced the term albumin in the year 1777 for substances that coagulate upon 
heating. It took more than half a century till the 1830s when the German 
chemists Justus Von Liebig and Gerardus J. Mulder described albumin as a 
protein. Later, in 1862 the term ‘globulin’ was introduced by Carl Schmidt for 
proteins that are insoluble in pure water. Applying electrophoresis, the Swedish 
Nobel laureate Arne Tiselius separated blood plasma proteins in the year 1937 
and classified them as albumin, α-, β-, and γ-globulins. Advances in 
electrophoresis and other separation methods resulted in further identification 
and characterization of more and more proteins in the blood.  

According to the early definition that was given in the 1970s by F. W. 
Putnam in his famous book series: The Plasma Proteins: Structure, Function 
and Genetic Control, the plasma proteins are those that carry out their function 
in circulation. Noticeably, this definition does not cover the proteins in blood 
plasma with origins from tissues that play other roles. Examples of such 
important proteins include cytokines, peptide hormones as messengers between 
tissues, proteins that are being leaked due to tissue damage, as well as aberrant 
secretions from tumors. Considering the importance of such proteins, the term 
blood plasma proteome has recently been re-defined to cover every protein 
present in plasma that is detectable by protein analytical means. Elaborating the 
first definition by Putnam, N. L. Anderson and N. G. Anderson introduced a 
comprehensive classification in their well-recognized article: “The human 
plasma proteome: history, character and diagnostic prospects”. Accordingly, the 
plasma proteins are classified in one of the following groups: 
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• Secreted proteins from solid tissues with a known function in plasma. 
This category contains classical plasma proteins that are secreted from liver and 
intestines. These are mostly larger than molecular cut-off of kidney filtration 
(45 kDa) and thus show a long residence time in plasma.  

• Immunoglobulins, also referred to as antibodies. This group of immune 
proteins is a vastly complex family of functional proteins in plasma with 
estimated over 10 million different amino acid sequences in adult human 
circulation.  

• Long distance receptor ligands. This group of proteins includes classical 
peptide and protein hormones such as insulin and erythropoietin. These proteins 
appear in a wide range of molecular sizes, which regulates their life span in 
plasma.  

• Local receptor ligands. This group of proteins comprises of cytokines and 
other local mediators with small molecular size and, therefore, a short residence 
time in plasma.  

• Temporary passengers. This group encompasses the non-hormone proteins 
such as lysosomal proteins that are actively passing through plasma from their 
secretion source to their functional site.  

• Tissue leakage products. These proteins are mostly intracellular proteins, yet 
can be released into plasma due to cell damage or cell death. Important 
diagnostic markers, such as myoglobin as a biomarker of myocardial infarction, 
are often described in this group. 

• Aberrant secretions. This group contains proteins that are released from 
tumors or other diseased tissues and includes cancer markers. 

• Foreign proteins. This group of proteins includes alien molecules with origin 
from infectious organisms or parasites that are released into the plasma.  

The quantitative dynamic range of plasma proteome is limited by the 
existing state of analytical methods in proteomics. Serum albumin with the 
normal concentration of 35-50 mg/mL is at the high abundant end, whereas 
interleukins and cytokines such as interleukin 6 (IL-6) with the normal range of 
0-5 pg/mL is at the low abundant end. Thus, the normal plasma proteome has a 
dynamic range of at least 10 orders of magnitude. This means that the detection 
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of an analyte such as IL-6 in plasma among the albumin molecules is equivalent 
to looking for one particular molecule in a crowd of over 7 billions of other 
molecules. 

Nevertheless, despite the vast dynamic range, proteins in all levels are used 
as biomarkers. Plasma proteins at the very high abundance level such as serum 
albumin have been described as a marker of severe liver disease or malnutrition. 
Tissue leakage proteins at the middle abundance level such as cardiac 
myoglobin are known as a marker for myocardial infarction. And cytokines at 
the low abundance end such as interleukin 6 are characterized as markers of 
inflammation or infection.  

The path in plasma protein and proteome analysis that was started by Arne 
Tiselius applying electrophoresis, has been continued by 2-D gel 
electrophoresis by Anderson, and was later emerged by MS analysis. Recent 
advances in mass spectrometry techniques opened a new era in blood plasma 
proteomics. However, the dynamic range of the most advanced mass 
spectrometers is still in range the of 4 to 5 orders of magnitude. Therefore, the 
large dynamic range of protein concentrations in blood is currently the greatest 
challenge for the MS-based plasma proteomics.95 Thus, many scientific efforts 
have been focused on the development of methods in order to address this issue. 

Pre-fractionation of samples prior to mass spectrometry analysis using 
conventional separation techniques, such as chromatography and 
electrophoresis, can increase the depth of proteome analysis by reducing the 
complexity of samples. These methods are used as the first dimension of 
separation, either for proteins or after digestion into peptides, prior to 
LC-MS/MS analysis.95,96 Furthermore, immunoaffinity-based depletion of 
highly abundant proteins has become the dominant approach in blood plasma 
proteomics to reduce the dynamic range of blood samples. Several kits and 
methods are available for plasma depletion via a single or multi-step 
procedure.97-102 However, besides an increase in time and cost of sample 
preparation, depletion can cause an unwanted removal of non-targeted proteins 
or result in elevated variability of protein abundances.103,104 Alternatively, target 
proteins of interest can be enriched in blood plasma samples. For instance, 
lectin columns can be applied for the enrichment of glycosylated 
polypeptides.35,105 In addition, several cell types release large (microparticles - 
100 nm to 1 µm) or small size (exosomes - 40 to100 nm) vesicles into the blood 
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that contain cell-specific proteins.106,107 Isolation of microparticles and 
exosomes is used to enrich for tissue leakage proteins.108 

Biomarker discovery in plasma proteome is of especial interest due to the 
existing routine clinical sampling, but also for the fact that blood plasma 
contains the protein markers that represent the state of the body at a given time.  
Particular interest is in plasma proteins in the middle abundance range 
generated from tissue leakage, from which a pathological state can be 
identified. This range of abundances is accessible for MS-based proteomics 
studies. Therefore, intensive research is ongoing both for biomarker discovery 
and pathological study of diseases, in particular when the target organ is not 
easily accessible, such as neurodegenerative diseases of the brain. 

Alzheimer Disease 

In 1901, Alois Alzheimer interviewed a patient and reported a series of 
symptoms that distinguished the studied disease from what was clinically 
known. The patient was a 51-year-old woman who was diagnosed with memory 
decline and cognitive disabilities. Alois Alzheimer and his colleagues defined 
the clinical and pathological details of this late-life mental decline 
syndrome.109,110 The disorder was named Alzheimer disease (AD) after Alois 
Alzheimer and later in the 1960s it was described as the most common form of 
senile dementia.111,112 Currently, it is estimated that more than 27 million people 
live with AD and the number is predicted to increase to 86 million people by 
the year 2050. Age is the highest risk factor for AD and its incidence increases 
exponentially with aging, in which it doubles every 5 years after 
the age of 65.113  

The gradual and progressive decline in two or more cognitive domains, 
most commonly involving executive functions and episodic memory are the 
hallmark clinical phenotypes of AD.114,115 These declines are therefore 
sufficient to cause severe social or occupational impairments. AD dementia is 
progressive and associated with functional impairment, whereas the cognitive 
changes of aging are benign and relatively static. This is the main clinical 
distinction between cognitive changes of aging and those of underlying 
dementia.115-117
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In terms of neuropathological characterizations, the hallmarks of AD are 
more or less similar to what Alois described in his original work, the presence 
of “miliary bodies” that we now know as amyloid plaques and “dense bundles 
of fibrils” that we today call neurofibrillary tangles. In 1985, the amyloid 
plaque was first purified and analysis of its core identified the 4 kDa amyloid β 
(Aβ) peptide as the main component of the plaques.118 Consequently, further 
studies on the protein led to the cloning of the gene encoding the amyloid 
precursor protein (APP).119 On the other hand, parallel studies on the 
neurofibrillary tangles revealed abnormally hyperphosphorylated forms of the 
protein tau.120 These attempts were the start of modern research on AD that 
provides detailed knowledge to understand the APP metabolism and Aβ 
generation, as well as tau homeostasis. Two important proteins that participate 
in APP metabolism are prsenilin proteins. Mutations in APP or one of the 
presenilin genes (PSEN1 or PSEN2) have been reported to cause rare familial 
forms of AD.121 However, these mutations are the cause for less than 1% of AD 
cases, and only 10% of AD patients younger than 65 are with a family history 
of AD. Therefore, AD is believed to be an age-dependent sporadic disease 
rather than a genetic disorder.122 A well-known theory called the ‘amyloid 
cascade hypothesis’ emphasizes the particular role of Aβ and its imbalance 
(production vs. clearance) as the driving force of AD. Accumulation of the Aβ 
then leads to tau pathology and causes neurological degradation and ultimately 
dementia.123 However, for late-onset AD, this hypothesis has not yet been 
proven with adequate certainty. 

There are several other hypotheses for the cause of AD, including the “tau 
hypothesis” that considers hyperphosphorylation of tau proteins as the causative 
effect for AD,124,125 the “cholinergic hypothesis” that states the deficiency in 
production of acetylcholine that is a vital neurotransmitter as the initiative cause 
of AD,126 the “oxidative stress hypothesis” which emphasizes the role of 
reactive oxygen species (ROS) and free radicals as a cause of AD,127 and the 
“protein aging hypothesis” that relates protein degradation, such spontaneous 
chemical modification of asparaginyl residues, as a cause of AD.128,129   

Considering any hypothesis that explains the AD onset, the long-term 
preclinical pathology behind AD suggests that disease-modifying drugs will 
most probably be more effective in earliest stages of AD.130-132 Therefore, it is 
of crucial importance to diagnose AD in earlier stages, before the start of 
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dementia (prodromal AD) or even before the occurrence of symptoms 
(preclinical AD).133 In the preclinical stage of AD, the disease progressive 
mechanism has already been started in the brain; however, the severity of 
neuronal damage is not yet sufficient to cause any detectable cognitive 
symptom. In the prodromal stage of AD, known as the mild cognitive 
impairment (MCI), the causal pathology of the disease will affect the cognition. 
The diagnosis of AD with certainty has not yet been addressed in these early 
stages. To find a therapeutic agent that would affect the main disease hallmarks 
and positively revert the disease progress is still a challenge.134 Thus, 
identifying reliable biomarkers to enable early AD diagnostics is currently an 
obvious requirement of the field. 





Chapter 2 
Present Investigations 
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Main Objectives 

The aim of the current thesis is to develop a novel technique for online 
fractionation of peptides and proteins according to their isoelectric point (pI), in 
order to perform deep MS-based shotgun proteomics studies. The main focus is 
on the instrumentation development and optimization, as well as clinical 
applications in biomarker discovery. The 7.4 hypothesis is presented, which 
assumes that in blood samples of patients with neurodegenerative disorders, 
there is a higher ratio of abnormal to normal proteins, in a range of 7.30 to 7.50 
of the pI distribution of proteins. This hypothesis is tested for biomarker 
discovery in early-stage AD. 

Specific Aims 
In more detail, the specific aims of the current thesis, as presented in five 

scientific publications (Papers I-V), are the following: 

1. Setting up the pI fractionator device for separation of polypeptides
based on their isoelectric point in electrospray-friendly solution. 

2. Optimizing the pI fractionator device and separation conditions for
application in deep shotgun proteomics. 

3. Optimizing and setting up a pipeline for high content shotgun
proteomics by LC-MS/MS. 

4. Setting up an online desalinator and couple it to the pI frationator device
for applications in blood plasma proteomics. 

5. Applying the instrument for investigation of protein/peptide levels in
Alzheimer disease (AD) plasma samples, particularly at the region around 
pH = 7.4.   
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Methodology 

Blood Samples 

In the current thesis, blood samples were analyzed by deep shotgun 
proteomics for potential predictive markers of AD. The samples were collected 
from two cohorts: Kuopio blood plasma cohort, acquired within the EU project 
PredictAD 135 in Finland, and DemVest plasma cohort, acquired in Norway. 

The Kuopio biobank consists of samples including patients at different AD 
stages of stable and progressive mild cognitive impairment as well as healthy 
controls. Respective data is available on gender and age. In the current study, 
twelve progressive mild cognitive impairment (PMCI) samples and the equal 
number of healthy controls with matching age and gender were pooled into two 
respective samples to be further examined.  

Serum samples were also recruited from an ongoing cohort study of patients 
with mild dementia in Western Norway (DemVest cohort). Selection and 
diagnostic procedures were performed as previously described.136 Data is 
available on the rate of annual decline, which is calculated based on the five 
years follow-up measurements of the mini-mental state examination (MMSE) 
score. Fourteen female samples from donors at the age of 77 ± 6 years were 
selected, of which six samples have had the annual decline rate in MMSE score 
of below 2 (slow decliners), and 8 samples have had the annual decline rate of 
over 5 (fast decliners). 

Ethical Permits 

Regarding Kuopio blood plasma cohort (studied in Paper IV), the use of 
samples for biomarker discovery has been approved by the research ethics 
committee, Hospital District of Northern Savo, stating the research fulfils the 
Finnish Research law (488/1999), Finnish personal data act (523/1999) and 
Finish Rights for Patients law (785/1992).   

Concerning DemVest cohort (studied in Paper V), blood serum was 
sampled and stored at University of Bergen, Norway. The use of samples has 
been approved by the ethical committee at University of Bergen (reference 
number: 167.04) and additionally approved by the ethical committee at 
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Karolinska Institutet, the regional human ethics committee of the Stockholm 
County (ethical permit number: 2013/914-31/4).  

The MJ-CIEF Device 

A fractionator device, called multiple-junction capillary isoelectric focusing 
(MJ-CIEF), is developed for in-solution separation of proteins and peptides, 
applicable for online coupled mass-spectrometry analysis.137 PEEK capillary is 
utilized (OD 635 µm, ID 395 µm) as seven equal segments of 1.55 cm long, 
joined via insertions of 0.2 cm tubular Nafion membranes (OD 610 µm, ID 330 
µm). The assembled capillary is passed through eight 0.5 mL Eppendorf tubes 
for supplementation of external electrolytic solutions. Compared to the 
traditional fused silica capillary columns, the PEEK material shows no 
electroosmotic force; therefore, the analytes are separated merely based on their 
charge (pI), rather than size-to-charge ratio. Moreover, the PEEK material is 
also inert in terms of adsorbing polypeptides, due to hydrophilic property of the 
surface. The multi-compartment assembly of the developed tool provides the 
ability to stabilize pH gradient via permeable membranes at each junction, 
which results in low sample contamination by carrier ampholytes and well-
focused zones.  

In order to ensure a linear electrical field gradient across the entire column, 
a voltage divider was implemented in the device. The multi-section voltage 
divider was assembled by connecting eight resistors (1 MΩ, 1 W) in series, with 
the last one connected to the voltage supplier polar. In addition, the joint section 
of each two neighboring resistors was connected to interval vials via an 
immersed platinum wire (Figure 3).  

A stepwise focusing and mobilization scheme was implemented for eluting 
each of the focused zones. After the first focusing step, hydrodynamic flow was 
applied for elution of the peaks from the anode side. Then, the cathode 
electrode was moved forward to the next junction and refocusing was done in 
the reduced volume. The process was repeated, and the anode fraction was 
collected sequentially. The developed optimized method for refocusing enables 
fractionation with increased resolution and has the ability of rapid release of the 
zones by higher flow rate.  
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MJ-CIEF was used as a micro-preparative fractionator device for separation 
of complex peptide mixtures based on pI in paper II as well as blood plasma 
protein separation in papers IV and V. 

Figure 3. Scheme of the MJ-CIEF device. The device is comprised of a 6-port valve, connected 
to the multijunction IEF column consisting of PEEK capillaries with Nafion membrane windows 
immersed in vials. The vials contain solutions with different pH values. Resistors of the voltage 
divider ensure stable and linear distribution of the electrical field along the column. 

Fractionation Workflow 

External electrolyte buffer solutions are used to provide the pH range of 
pH=3 to pH=10 through the anodic vial of the MJ-CIEF device to the cathodic 
vial (i.e., acetic acid, ammonium acetate, ammonium formate, ammonium 
bicarbonate and ammonia). 5 % isopropanol and 0.5 % Pharmalyte 3-10 in 
miliQ water is applied as carrier buffer. First, the sample (3 µL) is loaded into a 
loop, connected to a 6-port injector valve. Through adjustment of the valve, the 
sample can be transferred into the fractionator. High voltage (-1 kV, -100 
V/cm) in a constant current regime, limited to maximum 25 µA, is applied to 
the end vials. The ground electrode is immersed in the collector end (anode), 
and the negative voltage is applied at the injector end (cathode). The focusing is 
normally done in 25 min and -0.2 kV voltage is applied during mobilization. 
The focused fractions are collected at 0.5 µL per min flow rate. After collection 
of each focused fraction, the mobilization is stopped for performing the 
refocusing. The cathode electrode is moved forward in the adjacent vial. The 
vial buffer is altered to ammonia, and the high voltage is applied for 5 min (-
100 kV/cm) for refocusing. The mobilization-refocusing cycle is repeated for 
all vials sequentially.  
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Desalinator 

In sample preparation for MS analysis, sample contamination by salts and 
buffers as well as sample loss in preparation steps seem inevitable.138 Protein 
extraction and digestion utilize salts such as dodecyl sulfate, deoxycholate, 
urea, dithiothreitol and iodoacetamide. Proteins (or peptides) separation 
methods also incorporate salts such as ionic solutions in strong cationic/anionic 
exchange, or ampholyte mixtures during isoelectric focusing, which are not 
compatible with mass spectrometry.137-140 Fractionation of blood plasma 
proteins by MJ-CIEF device is hindered by the high salt concentration and 
electrical conductivity of the plasma, which interferes with the electrophoresis 
process. Hence, addition of a sample clean-up procedure by a desalinator can 
play an important role in the improvement of the sample preparation workflow. 

Standard available methods for desalination and buffer exchange are centrifugal 
filtration (size exclusion) and solid phase extraction (SPE). Filtration needs 
costly filters, as well as addition of time-consuming centrifugal steps to the 
procedure. The sample recovery and filter cut-off specificity, as well as buffer 
and filter compatibility, are also considerable issues.  In SPE, target molecules 
attach to the surface of the stationary phase, while salts and buffers are washed 
away.139 Afterward, target molecules are eluted from the stationary phase in a 
solvent that is generally compatible with downstream steps, such as 0.1% 
trifluoroacetic acid (TFA) or formic acid (FA) in water. Many approaches use a 
C4 coated submicrometer-porous silica beads for the purification of proteins 
and C18 beads for peptides. Despite many advantages of these methods, they 
are still time-consuming, labour-intensive and relatively expensive. Moreover, 
robustness and sensitivity are issues for small amounts of protein, due to 
inefficient interactions and low recoveries.140 Suitable molecular cut-off (less 
than 400 Da, as measured and reported in Paper IV), chemical and thermal 
stability of Nafion membrane, and availability at submicron diameters, make it 
suitable for microdialysis performance. Therefore, we applied Nafion 
membrane to develop a micro-chamber for sample clean-up and buffer 
exchange, as a complementary desalinator section of the MJ-CIEF device. The 
microdialysis device has a similar configuration to a cell that has previously 
been reported for hydrogen/deuterium exchange.141 The desalinator consists of 
two coaxial tubes (4 cm). The inner tube (390 µm ID and 356 µm OD) contains 
the sample and is separated from the outer tube by a Nafion membrane. 
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Washing buffer is flowing in the outer tube (2 mm ID), and the sample is 
desalted before it enters into the fractionator section (Figure 4). 

Figure 4. Scheme of the desalinator device. Sample is injected via 6-port valve and passes 
through a PEEK capillary tube into the Nafion membrane. The washing buffer passes through the 
outer tube that results in buffer exchange of the sample. 

Protein Digestion 

Proteins, either from cell lysate (as described in Paper III) or from blood 
plasma/serum (as studied in Papers IV and V) were digested in solution.142 
Proteins were reduced and alkylated with DTT and IAA at the final 
concentration of 10 mM. Proteins were digested with sequencing grade trypsin 
at 37 °C overnight. All peptide mixtures were purified using C-18 columns.  

LC-MS/MS 

Samples were analyzed in a random order, using LC-MS/MS method. In 
brief, an EASY-Spray LC column (PepMap® RSLC, C18 material with 100 Å 
pores, 50 cm in paper III, and 15-cm column in papers II, IV and V) from 
Thermo Scientific was applied with a flow rate of 250 nL/min. The gradient 
was nonlinear and was optimized to have constant rate of peptide elution from 
LC column. Mass spectra were acquired in a data-dependent manner using a 
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top-10 MS/MS method with an Orbitrap XL (paper I), Velos (paper II), 
Q Exactive (paper III) or Q Exactive Plus (papers IV and V) mass 
spectrometers from Thermo Fisher Scientific. MS1 spectra were acquired at a 
resolution of 70,000 with a target value of 3E+06 ions or a maximum 
accumulation time of 250 ms in the m/z range from 300 to 2000 for plasma 
proteins as reported in papers IV and V, and 400 to 1200 for cancer cell lysate 
as described in papers II and III. MS/MS spectra were acquired using CID 
(paper II) or otherwise HCD fragmentation at a resolution of 17,500 with a 
target value of 2E+05 ions or a maximum accumulation time of 120 ms.  

Data analysis 

Acquired data from LC-MS/MS is in the form of a .raw file containing all 
MS1 and MS2 spectra. There are several available search engines for 
identification of peptides and parental proteins from these files. Moreover, the 
identified proteins should be quantified precisely for a study based on the 
abundance of proteins. There are also well-developed software packages that 
are available for quantification. In the current thesis work, we have used 
MaxQuant for peptide and protein identification and quantification.87 As a 
sequence database, the International Protein Index was used. Modern Orbitrap 
mass spectrometers can provide up to ppb (parts per billion) level of mass 
accuracy87 in both MS1 and analytic MS/MS scans. For Orbitrap Q-Exactive 
instruments, mass tolerances are commonly set as 10 ppm for precursor (MS) 
and 20 ppm for fragments (MS/MS). Cysteine carbamidomethylation was 
selected as a fixed modification, and oxidation of methionine, N-acetylation of 
protein, and deamidation of asparagine and glutamine were selected as variable 
modifications. The results were filtered to a 1% false discovery rate (FDR) at 
both protein and peptide levels.143 MaxQuant reports several .txt files as the 
results of identification and quantification analysis. Further data analysis was 
performed on the proteinGroups.txt, which contains the relative abundance of 
protein groups. If the proteome of a sample is fractionated, the software is 
reporting the total abundance of each protein prior the fractionation. The 
MaxQuant-reported ‘LFQ-intensity’ of each protein was taken as relative 
protein abundance. It is also possible to introduce each fraction as a separate 
experiment, and consequently the software will report the abundance of each 
protein in each fraction. By means of this information, the focusing position of 
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each protein was determined by calculating the weighted average of all values 
(Figure 5). Statistical tests and calculations were done using R and SIMCA14.0 
(Umetrics, Sweden). Orthogonal projections to latent structures discriminate 
analysis (OPLS-DA) was performed using SIMCA.144 For that, LFQ-intensities 
were log transformed. The performance of the resulted model was reported as 
the cumulative correlation (R2X[cum]), and predictive power was reported 
based on seven-fold cross-validation (Q2[cum]). 

Figure 5. Calculating the focusing position of each peptide. Each peptide has its focusing 
position in the CIEF column. For a peptide that is shown in red, during fraction collection, it 
appears in several of collected fractions close to its central focusing position. LC-MS/MS 
analysis of fractions reviles relative abundance of the peptide in each fraction. The central 
focusing position is calculated by fitting a bell-shaped curve to the distribution of peptide 
abundances and determination of the central position of the curve, or calculated the weighted 
average of all values. 
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Results and discussion 
LC-MS/MS has become a dominant analytical tool in current human 

proteomics, providing most suitable integral performance for the 
comprehensive analysis of high-complexity protein and peptide mixtures 
extracted from tissues, cell lines and body fluids. Nevertheless, the complexity 
and large dynamic range of protein concentrations are among the greatest 
challenges for the MS-based proteomics studies.  

Sample fractionation prior to LC-MS/MS analysis is currently generally 
accepted as a key to cover proteome of complex samples to a reasonable depth. 
Separation of proteins and peptides by isoelectric point is one of the emerging 
techniques for this purpose. The advantage of using isoelectric focusing for 
pre-fractionation, which is an orthogonal separation to RPLC, is not only in the 
reduction of sample complexity, but also in grouping polypeptides by their 
isoelectric point (pI). The pI-value is an informative parameter that is associated 
with proteins amino acid sequence, structure, and post-translational 
modifications. 

This thesis work includes the development of a novel device for online 
peptide and protein fractionation according to their isoelectric point for deep 
shotgun proteomics. For that purpose, a novel multiple-junction capillary 
isoelectric focusing fractionator (MJ-CIEF) was developed and subsequently 
improved regarding the resolving power and reproducibility of fractionation. 
In addition, a novel algorithm was developed to calculate the identified 
peptides’ pI and distinguish PTMs based on the elution time.  Moreover, an 
online desalinator was developed and was coupled to the device for direct 
sample buffer-exchange and isoelectric separation of human blood plasma. 

To achieve the aim of deep proteomics, a multi-parameter optimization of 
an LC-MS/MS pipeline was performed. The optimized experimental conditions 
included the optimization of cell lysis and protein extraction, digestion of 
insoluble cell debris, tailoring the LC gradient profile and choosing the optimal 
dynamic exclusion window in data-dependent MS/MS as well as the optimal 
m/z scan window. 

Conclusively, the combination of developed desalinator, pI fractionator 
device and optimized deep proteomics LC-MS/MS method was applied in 
biomarker discovery for AD in blood plasma, in which a panel of new potential 
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biomarkers is introduced. By means of the pI information of proteins, the 7.4 
hypothesis, i.e. a higher ratio of abnormal to normal proteins in the range from 
7.30 to 7.50 of the pI distribution of proteins, was also tested, and its potential 
as a biomarker for early diagnosis of AD is investigated. 

All results of the current work are summarized in five scientific papers as 
explained in the following pages. 
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Paper I- Developing an online multiple-junction capillary isoelectric 
focusing fractionator (OMJ-CIEF) device 

An online multiple-junction capillary isoelectric focusing fractionator 
(OMJ-CIEF) device was developed for the separation of proteins and peptides 
in solution by pI. The separation column was constructed of seven equal 
sections, joined via tubular Nafion membrane insertions. Each junction was 
merged into a reservoir of the external electrolytic buffer, which was used both 
to supply electrical contact and for solvent exchange. The performance of the 
fractionator was explored using protein and peptide samples covering a broad 
pI range from pH= 3 to 10. 

Separation was carried in ionic and ampholytic buffers, including 
ammonium formate, ammonium hydroxide, histidine and arginine. For that, all 
reservoir chambers and separation column were filled with the same buffer. The 
pH of the external buffer was adjusted to increase linearly from 2.9 in the 
anodic end, up to 8.5 in the cathodic end.  

Five measurements were performed by injecting myoglobin into OMJ-CIEF 
coupled to mass spectrometry. In these experiments, myoglobin was eluted after 
0, 10, 35, 80 and 180 minutes by applying an electrical field. Comparing the 
eluted peak by time indicates the migration of myoglobin towards the anodic 
side as well as focusing.  

Separation of a mixture of three proteins, myoglobin, cytochrome c and 
lysozyme in ammonium hydroxide buffer was carried over 80 minutes. Peak 
shape of released separated proteins indicated peak broadening of later 
fractions. To confirm that the peak broadening occurs during mobilization, the 
same experiment was performed, but with switched polarity of the electric field. 
Lysozyme, which was the last and broadest peak in the previous experiment, 
was now first and sharpest peak. This result confirmed the peak broadening 
during mobilization. To circumvent this problem, selective release of 
downstream analyte fractions was achieved by maintaining electric potential 
across upstream segments of the capillary after the focusing stage.  

Using single-component ampholyte buffers such as histidine with 
pI = 7.3 and arginine with pI = 10.8, controlled separation of protein mixture 
into basic and acidic fractions was demonstrated. Proteins with higher pIs than 
the applied ampholyte buffer were focused at the cathodic end within the high 



Pirmoradian M. 

39 

pH range, and proteins with pIs lower than ampholyte buffer were observed at 
the anodic end of the column within the low pH region. 

Separation of tryptic peptides from BSA digest was also performed in 
5 mM aqueous histidine both as a carrier solution and electrolytic liquid in 
external reservoirs. IEF was carried over 1 h in 5 µA constant current. Focused 
peaks were mobilized for ESI-MS detection via hydrodynamic pumping at 
3 µL/min. The peak elution time of identified peptides (37 peptide covering 
60 % of BSA protein sequence) were compared to the theoretical pI values. The 
negatively charged peptides with (pI < 5) were drifted to the anodic end with 
low pH (equivalent to tR ≈ 1.5 min), whereas positively charged peptides 
(pI > 7.6) were drifted towards the cathodic end with the higher pH region (late 
released peaks with tR ≈ 5 min). Moreover, an intermediate fraction of peptides 
with pI from 6 to 7 was also focused at the middle region of the column 
(tR ≈ 3 min).  
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Paper II- Optimizing the MJ-CIEF device as a micro-preparative 
fractionator 

Although the presence of a reasonably high concentration of ampholytes is 
not pleasant for the LC-MS analysis due to increased background and ion 
suppression effect, it is important for the CIEF process, to establish a stable pH 
gradient and thus improve the separation performance.  

Different concentrations of pharmalytes (one of the commercial carrier 
ampholytes widely used for isoelectric focusing experiments) from 0% as the 
control to 0.25, 0.5, 1, 2.5 and 5% were spiked in a mixture of the yeast 
proteome. LC-MS/MS experiments were performed on each sample in three 
replicates. The data was analyzed, and the number of identified peptides were 
compared along the increase in pharmalyte concentration. The identified 
peptides showed a significant decrease by adding pharmalyte in concentrations 
higher 
than 0.5 %. 

Compensating the stability of the pH gradient during IEF in lower 
concentrations of ampholytes, we used the advantage of multi-junction 
structural compartment of the MJ-CIEF device, by applying a range of buffers, 
from pH=3 in the first vial, increasing by one unit of pH as going towards the 
last vial that ends up to pH=10. This strategy made it possible to maintain a 
stable pH gradient in low concentrations of pharmalyte (0.5%) during focusing. 
The collected fractions were further diluted six times before injection into 
RPLC, and thus the final Pharmalyte concentration in the LC−MS/MS run was 
below 0.1%.  

Electrical field provides the driving force in isoelectric focusing experiment 
by moving the charged compounds towards the field until they reach the region 
where pH = pI and they are neutralized. Therefore, it is essential to keep the 
electrical field linear and strong during the CIEF experiment. Beside the analyte 
and running buffer with proton and hydroxyl ions that maintain the 
conductivity,145 there are other ions and salts that accumulate on anode and 
cathode poles along the CIEF experiment time. Also, different analytes have 
different mobility and focusing speed in a mixture. Early focused analytes can 
create nonconductive local regions in the CIEF column (known as hot spots) 
and, therefore, interfere with focusing of other components.  
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To maintain the linearity of electric field, a voltage divider was designed 
and added to the MJ-CIEF structure. The effect of the performance of MJ-CIEF 
device was studied with two experiments on separation of digested yeast 
proteome. In one experiment, IEF separation was performed with MJ-CIEF and 
the second one with MJ-CIEF equipped with voltage divider.  The focusing 
position of each peptide was calculated by fitting the abundances of that peptide 
in different fractions into a bell-shaped curve. The center of the curve was 
determined and reported as the focusing position of that peptide. Focusing 
position of all peptides in each experiment was calibrated to the theoretical pI 
values using a polynomial of fifth order, and the deviation from the calibration 
curve for each peptide was measured. Standard deviation from distribution of 
these residual values σ represented the quality of separation and performance of 
the device. The σ value for MJ-CIEF was 0.435 without the voltage divider and 
0.230 with the voltage divider, which was significantly improved. This result 
demonstrates that the addition of voltage divider improves the performance of 
MJ-CIEF fractionation.  

In addition, as previously noted, the mobilization of focused zones without 
peak broadening is a challenge in CIEF. Peaks are getting broader by traveling 
along the column during elution. To overcome this problem, we applied a 
stepwise refocusing and releasing of the peaks from the column. After the 
focusing step, the peaks are eluted from the column as much as one junction on 
the column. Remaining peaks are subjected to refocusing again within the 
remaining part of the column. This refocusing sharpens back the peaks, 
particularly the very last basic peaks with very high pI values, which is a 
challenge in IEF. To study the effect of refocusing on performance of the 
MJ-CIEF, the same sample of digested yeast proteome was again separated, but 
this time peaks were collected with stepwise mobilization and refocusing. The 
σ value decreased into 0.21, and more peptides were identified compared to 
direct elution of peaks (Figure 6).  

The acquired .raw files from the last experiment were also searched for 
modified peptides, deamidation of Asn and phosphorylation on Ser, Thr or Tyr. 
The same calculation based on the abundances of the modified peptides in 
different fractions was performed to calculate the central focusing position of 
each peptide. This value was later compared with the focusing position of 
unmodified form of the peptide, and the shift was calculated. The obtained 
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results indicate a different pI shift for different peptides, in a way that the shift 
for the same PTM is not constant and depends on the sequence of the peptide. 
Therefore, the pI values and pI shifts (ΔpI) due to PTM represent a sequence-
specific information that can be used in reducing the false discovery rate in 
shotgun proteomics. 

Figure 6. Focusing position of peptides versus theoretical pI. Focusing position of peptides are 
determined, and theoretical values are calculated. The results are plotted, and a polynomial curve 
was fitted. σ value is the standard deviation of the pIs from the fitted curve. 
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Paper III- Rapid and deep single-dimension shotgun proteomics 

Urea, SDC and ProteasMax are three commonly used detergents for 
cell lysis and protein extraction. These detergents were used in a comparative 
experiment for best efficacy, where extracted samples were analyzed by tryptic 
digestion followed by LC-MS analysis. The total number of identified proteins 
and peptides were compared, and the use of ProteasMax resulted in highest 
values. GO annotation analysis of identified proteins shows higher number of 
proteins in membrane, nucleus and cytosolic fractions. ProteasMax detergent 
(Sodium 3-((1-(furan-2-yl)undecyloxy)carbonylamino) propane-1-sulfonate) is 
a hydrophobic anionic sulfonate. It is sensitive to temperature and pH, in which 
it degrades in acidic conditions. Therefore, it is rather easy to remove it after 
protein digestion and prior to LC-MS analysis of peptides. Addition of 10% v/v 
acetonitrile to the ProteaMax lysis buffer also facilitates solubilization of 
hydrophobic proteins. 

There are several organelles and cell debris, which are insoluble in cell lysis 
buffers. These compartments of the cell are usually removed from cell extract 
prior to protein digestion. However, the pellet contains proteins, which are low 
soluble, or trapped in cell debris. To investigate the increase of the proteomics 
depth, the precipitated organelles were maintained in lysate buffer during 
digestion. This was in a comparison with removed precipitated organelles from 
lysis buffer during the digestion by centrifugation. Results of LC-MS/MS 
analysis of both samples indicated 7% higher protein identification by keeping 
the cell debris. GO annotation also indicated that the extra gained proteins are 
most notably from the nucleus and membranes.  

In conventional linear gradient on RPLC, the rate of peptide elution is not 
constant. This is causing saturation of MS analysis capacity at some regions and 
low efficacy in others during an LC-MS/MS analysis. To optimize the efficacy 
of an LC-MS/MS run and to make a constant elution rate of peptides from 
LC column, the gradient was experimentally tailored to a nonlinear profile. The 
increase in the identified number of peptides would result from the peptides that 
were eluted in later stages of the run instead of the saturated zone. The 
optimized profile for a 4 hours experiment was set from 2% acetonitrile to 5% 
over 19 min, and then to 19% over 133 min, and finally to 30% over 28 min 
and finally followed by a 20 minutes washing step. This profile resulted in 
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identification of 35,623 unique peptides, which showed an increase of 2000 
peptides over the linear gradient.  

In data-depended analysis mode, each full MS scan is followed by a 
specified number of MS/MS of the most abundant peptide ions detected by full 
MS. To minimize multiple analysis of the same precursor ion, analyzed 
precursors are automatically uploaded to a dynamic exclusion list for a certain 
time. High sensitivity of mass spectrometers such as Q Exactive results in peak 
picking at very early steps of elution of the LC column, in which the signal is 
not strong enough for a full informative MS/MS analysis. To overcome this 
issue, by means of very fast scanning Q Exactive instrument, in a series of 3 
hours gradient runs, the DEW was decreased in intervals including 5, 15, 30, 
and 90 seconds. Results suggested the DEW of 15 seconds as the optimum 
value, in which the over selecting of the same peak (high abundance precursors) 
still did not decrease the ion selection of low abundant ions. It should also be 
considered that this value is dependent to the gradient and speed of the peptides 
elution from the LC column.  

Considering the range of m/z distribution of tryptic peptides in a shotgun 
proteomics analysis, the scan range for best informative peptides was limited 
from 400 to 1200, where the default scan range for MS1 spectra in Q Exactive 
is from 300 to 1650. In a comparison experiment of these two values, the 
limited range of 400 to 1200 resulted in identification of 159 more protein 
groups (up to 4044 protein groups). Normally the short sequence peptides have 
poor sequence specificity and are not informative for protein identification. On 
the other hand, the very long peptides often result in uninformative MS/MS 
spectra because of the insufficient fragmentation. Therefore, limiting the scan 
range, results in focusing on sequencing of more informative peptides as well as 
excluding most of the background ions such as solvent and salt clusters, LC 
stationary-phase components and ubiquitous contaminants (e.g. siloxanes or 
phthalic acids).146 

The time of gradient and length of the LC column are directly proportional 
to the resolving power of RPLC separation. Based on the above-mentioned 
optimized parameters, including cell lysis and digestion, nonlinear LC gradient 
profile and mass spectrometry parameters, a series of experiments including 
four time-points, 2, 3, 4 and 5 hours gradients with 3 LC columns, 15 cm, 25 
cm and 50 cm length were performed. Using 50 cm LC column in 4-h LC-
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MS/MS run with a 3 h gradient time 37,554 peptides and 4,825 protein groups 
were identified. Merging three replicates increased the identified peptides to 
56,390 and 5,354 protein groups, which represent nearly half of the human 
proteome.76 Further increase in the gradient time results in slow increase and 
gradually reaching a plateau in identification number. Therefore, the increase in 
gradient time becomes rather inefficient in terms of the content rate (i.e. the 
number of proteins identified per unit time) (Figure 7). 

Figure 7. ProteaseMAX buffer was found to be more efficient for cell lysis and protein extraction 
compared to SDC and urea. Preserving cell debris in cell buffer for protein digestion enabled 
higher coverage of membrane and nucleus proteins. Tailoring the LC gradient profile yielded 
higher total number of sequenced proteolytic peptides. The optimal dynamic exclusion window 
setting in data-dependent MS/MS was found to be 15 s for 3 h LC gradient time, and the optimal 
scan window was 400-1200. Comparison between three different column lengths and also the 
gradient time illustrated the gain in identification number by longer column, but saturation in very 
long gradient runs. 
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Paper IV- Online desalination and isoelectric focusing of plasma 
proteome 

Blood plasma contains high concentration of salts and metabolites that are 
conductive and, therefore, interfere with electrophoresis. An online 
microdialysis desalinator was developed using Nafion membrane. The 
molecular cut-off of this membrane was determined to be around 400 Da. This 
is less than the size of proteins and neuropeptides but large enough for 
removing salts and small metabolites. The constant flow on the outer layer of 
the membrane increases the buffer exchange rate.  

In the performed experimentation, 365 protein groups from 4030 peptides 
were quantified with 1% FDR at both peptide and protein levels. In a separate 
experiment, unfractionated blood plasma was analyzed in ten replicates that 
resulted in quantification of 206 protein groups from 2571 peptides. 
Comparison between these two sets of the results indicates the increase in depth 
of the proteome due to pre-fractionation. Moreover, the correlations between 
replicates of each group were calculated, where the median value of Pearson 
correlation was 0.96, and the CV was 3.8%, representing the high 
reproducibility of the method.  

Furthermore, the normalized protein abundances were compared between 
two sample groups, i.e. healthy controls and AD patients. Some of the proteins 
showed statistically significant different abundances. Alpha-2-macroglobulin 
(A2M) is a proteinase inhibitor, and one of the high abundant proteins in blood 
plasma and the presence of this protein was previously shown in amyloid 
plaques.147 This protein is also a potential marker for the damage in blood-brain 
barrier, which can be present in neurodegenerative diseases such as AD.148 
Moreover, it is suggested that A2M plays a role in regulation of the immune 
response, the association of which is reported with AD.149,150 Plasmin is another 
high abundant protein in blood and is shown to promote Aβ peptide 
clearance.151 Four members of complement system proteins showed elevated 
levels in AD patients. There are studies that suggest the activation of this 
system by soluble Aβ peptides in the AD brain.152,153  

Additionally, for each sample, by means of the abundances of each protein 
in all fractions, the centroid of the focusing position for that protein was 
calculated. The obtained focusing positions of all proteins were compared 
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between replicates, which resulted in median CV of 3.5%. This low value of 
CV shows the accuracy of measuring this parameter experimentally. 
Furthermore, comparison of focusing position of each protein between healthy 
and patient samples showed statistically significant shift for some proteins such 
as kinesin-like protein, thyroxine-binding globulin and Msx2-interacting protein  
(Figure 8). The change in focusing position indicates the change in pI, and this 
could be due to many reasons such as altered splice variance, protein truncation, 
protein-protein interactions or PTM. In most of the cases, the observed shift 
was towards acidic pH. Some important PTMs cause acidic pI shift such as 
deamidation and phosphorylation. Kinesin-like protein and thyroxine-binding 
globulin has several positions for phosphorylation, but this was not observed in 
identified peptides of this study. However, for Msx2-interacting protein several 
sites of Asn deamidations were identified in samples from AD patients. Asn 
deamidation leads to formation of the damaging isoaspartyl (isoAsp) residues 
and the elevated levels of isoAsp residues in Msx2-interacting protein was 
shown earlier in blood plasma with AD progression.129  

Figure 8. Proteins with (A) significant differences in their pI values or (B) protein abundances, 
between healthy controls (green) and AD patients (red). 
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Paper V- Narrow pH range around 7.4 in biomarker discovery of 
neurodegenerative disorders 

For each of the 14 serum samples (6 patients with slow memory decline and 
8 patients with fast memory decline), separation was performed. For each 
sample, 20 fractions were collected with MJ-CIEF, digested and analyzed by 
LC-MS/MS. The subsequent data analysis resulted in quantification of 650 
protein groups with false discovery rate less than 1% at both peptide and 
protein levels. 

Pearson correlation between quantified abundances of proteins between 
samples in each group was higher than r = 0.96 between the replicates, which 
shows high reproducibility of the experiments. Comparison of proteins 
abundances between two patient groups showed statistically significant changes 
(with p-value less than 0.05) for several proteins. Some of the proteins have 
been reported in previous studies, in which the abundance change is associated 
with the progression of neurodegenerative diseases. Clusterin, a chaperon 
protein, was detected in amyloid plaques that can play a role in degradation of 
Aβ peptide.154,155 Beta-Ala-His dipeptidase has a role in regulation of immune 
response and was reported as a shared biomarker candidate for multiple 
sclerosis (MS), Alzheimer disease (AD), and Parkinson disease (PD). The level 
of this protein is higher in AD and PD patients compared to healthy controls, 
but lower in MS patients.  

pI fractionation of proteins results in focusing of each protein in a fraction 
with the closest pH to its pI. Analyzing the abundance of each protein in 
different fractions revealed the focusing position of that protein in each sample. 
By means of spiked pI-markers, all proteins with 7.1 < pI < 7.5 in each sample 
were selected. Sum of the proteins abundances in each fraction was calculated. 
As a control comparison, the same calculation was performed for proteins in 
neighboring fractions in which the pI markers were well identified in all 
samples. The protein concentrations in the fractions were compared between the 
replicates of two groups of patients, i.e. slow memory decliner vs. fast memory 
decliner. This revealed significantly (p-value = 0.003) higher concentration of 
total protein in fast decliner patients near the 7.4 region. Therefore, the obtained 
result of this comparison indicates strong potential of the protein concentration 
at the pI=7.4 region to be used as a potential biomarker for progressive AD. 
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Identified proteins in this region are also of important interest. Further study 
regarding the abundances of these proteins in an unsupervised clustering 
resulted in perfect separation of the two groups of patients. Some of these 
proteins were also reported in previous studies as markers of AD. 
Apolipoprotein C-I, calmodulin-like protein 5 and caspase-14 are among those 
proteins that were present in the fraction with pI≈7.4 in blood serum of patients 
with fast memory decline but not in patients with slow memory decline.  

Using OPLS-DA approach, two predictive models were built. The first one 
was based on the results of proteins abundances from label-free quantification, 
and the second one was based on proteins abundances with pI in the 7.4 region. 
An OPLS-DA model based on proteins abundances was built with R2=0.9 and 
Q2=62%, whereas the model based on proteins in the pI≈7.4 region had R2=0.9 
and Q2=72%. This result indicates excellent predictive power of both models, 
with a higher predictive power of the second model compared to the first one 
(Figure 9).  

Figure 9. (A) Protein concentration in different fractions. Green boxplots represent slow 
decliners, and red ones show the fast decliners. (B) Each dot is the ratio of median protein 
abundances in all fast decliners to the slow decliners. (C) OPLS-DA model is shown based on 
total protein abundances and (D) based on proteins abundances in the 7.4 region. Green circles 
represent slow decliners, and red ones correspond to the fast decliners.  
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Conclusion and Future Perspectives 
Fast growing applications of deep proteomics in cell biology and medical 

studies demand the development of advanced techniques with higher 
sensitivity, throughput, lower cost and compatibility with automation. Mass 
spectrometry is the core technique of proteomics studies. This necessitates 
inventing novel techniques, as well as improving available upstream methods 
compatible with this instrument. Isoelectric focusing is one of the most widely 
applied methods in separation of polypeptides prior to mass spectrometry 
analysis. In the current thesis, an in-solution isoelectric focusing separation of 
proteins and peptides is presented for applications in MS-based clinical 
proteomics.  

We developed a novel micropreparative capillary isoelectric focusing 
device. The utilized porous membrane allows the online coupling of the device 
to auto-sampler, fraction collector, detector or mass analyzer. The pH gradient 
and chemical profile inside the column can be tailored externally via Nafion 
membranes in each junction. This significantly decreases the need for 
ampholyte mixtures for creating and maintaining the pH gradient in separation 
column, and minimizes the contamination of the sample and instrument by 
salts, buffers, and ampholytes. Separation column is made of PEEK capillary 
that precludes the electroosmotic flow to interfere with separation. The higher 
loading capacity compared to analytical capillary IEF enabled the application of 
the device as first dimension of separation prior RPLC hyphenated to MS. 
Orthogonality of IEF separation to RPLC is also another merit.  

Addition of a voltage divider to the MJ-CIEF stabilizes the linear electric 
field along the separation column, and increases the effective length of the 
column. As an advantage, the issue of interfering hot spot regions, i.e. local 
nonconductive regions, as well as high electrical conductivity of anode and 
cathode ends of the column were addressed.  Mobilization of focused peaks in 
CIEF is often associated with peak broadening. The multi-junction structure of 
the MJ-CIEF allows the stepwise elution of peaks from one junction and 
refocusing of the remaining ones.  

Furthermore, an online microdialysis device was developed for direct 
desalination and buffer exchange of samples, particularly blood plasma, prior 
CIEF. The same Nafion membrane was applied as a dialysis membrane with 
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molecular cut-off of ca. 400 Da. This molecular cut-off allows removing of 
salts, amino acids and metabolites from blood plasma proteins and peptides, 
which are conductive and interfere with electrical field during IEF separation.  

In order to achieve the highest efficiency in deep shotgun proteomics, the 
LC-MS/MS pipeline was also optimized without any hardware or software 
modification of the commercial instrument. This optimized pipeline complied 
with the developed MJ-CIEF fractionation method for a two-dimensional deep 
shotgun proteomics approach.  

The application of MJ-CIEF in prefractionation of peptides prior to 
LC-MS/MS analysis was also demonstrated. The separation pipeline is fast, not 
labor-intensive and cost-effective. The results prove the reproducibility and 
robustness of the pipeline in deep proteomics, representing via high correlation 
between replicates and low coefficient of variation (CV). MJ-CIEF coupled to 
desalinator was also applied in pre-fractionation of blood plasma proteins 
followed by shotgun proteomics. Two-dimensional separation by IEF-LC 
increased the depth of the plasma proteome analysis. This results in 
identification of several proteins as potential biomarkers for AD, in which the 
abundance of protein was significantly changed. Applying the MJ-CIEF in 
fractionation of proteins provided additional information of pI. The isoelectric 
point of a protein depends on the sequence, structure, PTM and protein-protein 
interaction, hence is biologically informative. Several proteins with significant 
shift in their pI value were identified in biomarker discovery for AD patients. 
These altered proteins are also introduced as additional potential biomarkers for 
AD.  

The pIs of normal blood plasma/serum proteins avoid the values around 7.4 
that is equal to the pH of blood. This makes the region attractive for 
proteomics-based biomarker discovery. The proteomics study of the narrow pH 
range around 7.4 suggests significant elevation in total protein abundance in 
AD patients with fast memory decline. Moreover, the results suggest the 
accumulation of several proteins in the 7.4 region in AD patients with 
progressive memory decline. These proteins and the total protein abundance at 
7.4 region can be potential markers for AD progression. The introduced 
biomarkers are at the discovery phase, and the investigation was a proof-of-
concept test made on a small cohort. Further confirmation of these results on a 
bigger cohort of diverse gender and age, as well as the specificity of these 
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biomarkers to AD compared to other neurodegenerative diseases, will be 
considered to validate the clinical application of the presented biomarker 
candidates. 

Development and optimization of the MJ-CIEF device and the coupled 
desalinator in this thesis work is going to be continued by commercializing the 
device to be available in more advanced and automated shape for laboratories 
who are practicing proteomics. Automation of the device will make it more 
user-friendly as well as high-throughput. Microfluidic chip design of the 
separation column will be considered to increase the robustness and 
reproducibility of the device performance. Regarding the data analysis step, the 
obtained pI values of the separated peptides and proteins present additional 
important information. This can be implemented in the search engines for 
identification of protein and peptides and reducing the false discovery rate.  

The developed instrument is also highly applicable in studying PTMs, 
particularly the ones that induce a shift in pI of the molecule. For that, more 
investigation on these PTMs and the association between the pI shift and the 
sequence of the polypeptide is needed. Shotgun proteomics lacks vital 
information on the proteoforms, and application of the pI shift in biomarker 
discovery requires the identification of the particular proteoform. This is 
possible with merging the pI separation with top-down proteomics.  

Taken together, the outcomes of scientific experiments along this thesis 
signify the valued applications of both the developed MJ-CIEF instrument and 
investigation of the narrow pH range around 7.4 of the body fluids in 
proteomics research. This will ultimately lead us to a deep and holistic 
understanding of biological processes and disease mechanisms, as well as 
discovery of biomarkers that enable the prevention, diagnosis and effective 
treatment of neurodegenerative disorders. 
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