
 
From THE DEPARTMENT OF CLINICAL NEUROSCIENCE 

Karolinska Institutet, Stockholm, Sweden 

 
 
 

Kinetics of Protein-Based In Vivo Imaging 
Tracers for Positron Emission 

Tomography 

 

Jonas Grafström 

 

 

 
Stockholm 2015 

 
 
 
 
 
 
 
 
 
 
  



Cover illustration: Combinations of impressions, like to combination of notes forming 
music, are what feeds science, or rather the scientist, or rather me. Illustration by Palle 
Ryde, idea by Jonas Grafström 

All previously published papers were reproduced with permission from the publisher. 
 
Published by Karolinska Institutet  
Printed by University Service US-AB, Stockholm, Sweden 
 
© Jonas Grafström, 2015 
ISBN 978-91-7676-110-6



 

 

ABSTRACT 

Within the framework of the “Sel-tag imaging project”, a novel method was used to rapidly 
label protein tracers and the in vivo targeting abilities of these tracers were studied in animal 
models of cancer using a preclinical positron emission tomography (PET) camera. To first 
evaluate and optimize preclinically the use of PET tracers can facilitate their translation to and 
implementation in human patient studies. The ultimate goal of the different projects within the 
Sel-tag imaging project was to find imaging biomarkers that could potentially be used for 
individualizing cancer treatment and thereby improve the therapeutic results. This thesis 
focuses on methods employed to describe the distribution of these protein-based tracers in 
human xenografts. Many of the techniques used had been developed for other imaging 
circumstances. Therefore verification for these imaging applications was an important aspect of 
these papers.  
Paper I examined the distribution in a tumour of a medium-sized AnnexinA5-based tracer that 
targeted phosphatidylserine externalised during cell death in tumours in two cases; first, with no 
pre-treatment (baseline) and, second, after pre-treatment with a chemotherapeutic agent. Small 
differences between tracer uptakes in the two cases required a macro parameter analysis method 
for quantifications. Evaluations of the influence of the enhanced permeability and retention 
effect by using a size-matched control were introduced. The AnnexinA5 results were compared 
to those of the metabolic tracer [18F]FDG and complemented with circulating serum markers to 
increase sensitivity.  
Paper II extended the analysis in paper I to incorporate more verifications that were also more 
thorough. The choice of input (blood or reference tissue) and the statistical significance of inter-
group comparisons when using conventional uptake measurements and the more involved 
macro parameter analyses like in paper I were compared. We also proposed that distribution 
volume ratio was a more appropriate quantification parameter concept for these protein-based 
tracers with relatively large non-specific uptake.  
Paper III assessed the smaller Affibody™ tracer ZHER2:342 as an imaging biomarker for human 
epidermal growth factor 2 (HER2), whose overexpressions are associated with a poor prognosis 
for breast cancer patients. In order to demonstrate specific binding to HER2, pre-treatment of 
the tumour with unlabelled protein and uptake in xenografts with low HER2 expression was 
evaluated. Ex vivo immunohistochemistry of expression levels supported the imaging results.  
Paper IV examined a radiopharmaceutical that targeted the epidermal growth factor receptor 
(EGFR), whose overexposure in tumours is associated with a negative prognosis. Again an 
Affibody™ molecule, (ZEGFR:2377), was used and, as in in paper I, a size-matched control was 
also used to estimate the non-specific uptake. Uptakes, quantified by conventional uptake 
methods, varied in tumours with different EGFR expression levels. Ex vivo analyses of 
expression levels were also performed.  
Paper V addressed the non-uniform (heterogeneous) uptake of different tracers in a tumour 
tissue. An algorithm was written that aimed at incorporating all relevant aspects that will 
influence non-uniformity. Histograms were generated that visualized how the frequency and 
spread of deviations contributed to the heterogeneity. These aspects could not always be 
attended in a direct manner, but instead had to be handled in an indirect way. The effect of 
varying imaging parameters was examined as part of the validation procedure. The method 
developed is a robust, user-friendly tool for comparing heterogeneity in similar volume 
preclinical tumor tissues. 
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1 Introduction 

This thesis has dealt with the quantification of the uptake of radiotracers in peripheral tissues 
and particularly in tumours in small animal positron emission tomography (PET). This 
chapter presents a general orientation on diagnostic medical imaging.  
 

1.1 Diagnostic In Vivo Imaging  
 (Bushberg 2002 unless otherwise specified) 

Diagnostic in vivo imaging was developed in order to make predictions about patient 
prognoses in a more non-invasive manner, since making a prognosis requires an evaluation of 
the status of the patient and originally this often involved performing a procedure that wasn’t 
very effective or pleasant for the patient. Some kind of tissue penetrating energy is required 
for in vivo diagnostic imaging and it usually originates from the emission and the 
interpretation of electromagnetic radiation. One exception is the mechanical energy associated 
with ultrasound (US) imaging. US is, briefly, the transmission of high frequency sound waves 
and then interpreting the echo response that is reflected from the target tissue. This modality is 
not discussed further here.  

Visible light has a very limited tissue-penetrating ability. Therefore electromagnetic energy of 
higher frequency is used in diagnostic imaging, see figure 1. 
 

 
Figure 1 (Wikipedia): The electromagnetic spectrum. The electromagnetic radiation energy 

used in radioactivity-based medical imaging is ionizing radiation.  
 

Diagnostic imaging can to a large degree be divided into anatomical imaging and functional 
imaging. Most people are familiar with anatomical imaging and it is encountered at a quite 
early stage when diagnostic imaging is required. Here we have conventional X-ray scans, 
mammography, etc. Other types of anatomical imaging include computed tomography (CT) 
or sometimes magnetic resonance imaging (MRI). These modalities provide a very high 
spatial resolution and provide a very detailed view of the anatomical status of the patient. In 
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anatomical imaging based on ionizing radiation the photons that are detected should have 
undergone some sort of interaction with the tissue prior to being detected, i.e. a non-even flow 
of information.  

Functional imaging is employed when it is instead required to observe the behaviour of a 
certain process in the body. Functional imaging based on ionizing radiation originates from 
when a radioactively labelled compound being distributed in a patient undergoes 
disintegrations and yields photons that can be detected outside the body. In functional imaging 
the less the produced photons interact the better, since these interactions will only introduce 
bias and/or diminish spatial resolution. To obtain the most accurate images, compromises 
have to be made between image quality and patient exposure to radiation. 

 
1.1.1 X-ray  

(Bushberg 2002 & Krane 1988 unless otherwise specified) 

X-ray imaging was the first type of non-invasive imaging technique with any kind of depth. It 
was developed from the discoveries made by Wilhelm Röntgen. One of the first actual X-ray 
images was of Mrs Röntgen’s hand shown in figure 2. X-ray imaging exploits the fact that the 
atoms that make up matter have a certain void between each other. This allows certain 
photons to pass through the material of interest, leak through and emerge on the opposite side.  
X-rays are nowadays mostly produced mechanically. This is achieved by accelerating 
electrons that are aimed to hit an appropriate target. The target is adjusted and composed so 
that incident electrons undergo a certain type of interaction or scattering process, as briefly 
discussed below.  
 

 
 

Figure 2 (Wikipedia): Mrs Röntgen’s hand with her wedding ring.  
 

Scattering occurs when an incident particle interacts with material and changes its path. In X-
ray imaging, scattering occurs when electrons are accelerated to hit a target, commonly a tilted 
tungsten target. This target is usually spinning, thus avoiding substantial heat build-up since 
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only a tiny amount of the incident particles are turned into X-rays. The incident electrons will 
interact with the target and this will result in the production of photons.  

The energy of the incident electrons will determine the types of interaction that they will 
undergo. The interaction can be elastic and then all kinetic energy will be transferred. When 
we instead have an inelastic scattering, photons will be produced and this scattering is called 
bremsstrahlung. The probability that bremsstrahlung will occur is proportional to the target 
atomic number squared (tungsten has Z=74). Energy emission by bremsstrahlung is inversely 
proportional to the square of the incident particle mass. This is why electrons are the incident 
particle of choice for diagnostic imaging. The energy of the resulting photon can have any 
value up to that of the energy of the incident electron. Therefore, the resulting X-rays will 
have a wide spectrum of energies.  

Planar X-ray has not, to any large extent, been optimized specially for pre-clinical applications 
though of course they exist. These pre-clinical X-ray devices generally require higher 
resolution levels, which then would benefit from some special components, such as small 
focal spots (the distribution of electrons that are incident on the tungsten target) [Kalender 
2011].   

 
1.1.2 Computed Tomography  

(Bushberg 2002 & Kalender 2005 unless otherwise specified) 

X-rays have a substantial problem observing any textures beneath a denser object. In other 
words, if a softer tissue falls in the shade of a denser structure it would not be possible to 
distinguish this soft tissue. To avoid this problem, an X-ray image can be taken from different 
angles and an image can continuously be obtained by using a rotating X-ray tube. Since a 
single observer cannot process this information, a computer is employed and it is possible to 
obtain a tomographic image of the object studied (Fig. 3A). The idea for this was not new 
when it was finally implemented (the first head scanner was introduced 1972). Even if it was 
not possible to achieve at the time, the first mathematical grounds can be traced back to an 
article by Radon in 1917.  

Several beam types can be employed in CT: pencil-, fan- and cone-beams. Their names stem 
from how they are perceived visually. All types of beams have their advantages and 
disadvantages, but the fan-beam is most routinely used. CT has undergone several 
“generations” of development since it was first introduced. A substantial problem concerned 
the continual electrical feed, since this then required very long cables that had to be extracted 
and protracted in a specialised manner. This problem was overcome by the introduction of 
the slip ring technology as late as the 1990s which omitted the cables. 

The slip ring technology and data development made it possible to collect multiple slices and 
a total image from a helical acquisition was formed. This then means that every point of the 
body is not imaged in every position (Fig. 3B), but by using a reconstruction method called 
back projection a total image can be obtained. The transition from only one stationary slice to 
obtaining multiple slices for every beam is a necessity for helical acquisition, multi-row 
detectors and fan-beam reconstruction. Compared to X-ray scanning, the radiation dose to the 
patient is much higher in CT. 
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Figure 3A (thefreedictionary.com) & 3B (rgpvexams.com): How modern CT, or Multi-slice 
Spiral CT (MSCT) is obtained using multiple detectors, a fan-beam and helical acquisition. 

 
1.1.3 Magnetic Resonance Imaging  

(Bushberg 2002 unless otherwise specified) 

MRI originated from magnetic resonance spectroscopy, or originally nuclear magnetic 
resonance, but the word “nuclear” was omitted after the Second World War and the cold war. 
In this technique the magnetic properties of the analyte are utilised. The analysed object is 
subjected to a permanent magnetic field, several tens of thousands stronger than that on earth. 
For earth it is about 50 µTesla (µT) while for clinical MRI it is currently about 1.5 - 3 T).  
Magnetic properties of the atoms in the object called spins will polarize and align with the 
field. Hydrogen atoms are usually the targets since they are abundant in tissue. Short bursts of 
orthogonal magnetic fields will alter their alignment with a field and when these spins 
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subsequently re-align they emit an echo (radio wave) that can be interpreted, where the image 
features are proportional to the density of the target atoms and they can thus be visualised.  

Data from an MRI is obtained in the so-called frequency domain, or k-space, and this will 
have to be converted to the spatial domain. This is usually done through some sort of Fourier 
transform.  

Motion artefacts are a substantial concern due to the quite long scan times compared to CT 
and their impacts vary depending on when they occur during the scan. Another inconvenience 
for the patients is the loud noises that are associated with this technique. The sound originates 
from the alteration of currents in the magnetic field that result in Lorentz forces (Eq. 1).  

 
Equation 1: Acoustic noises obtained in an MRI can be attributed to 
the Lorentz forces where F is the force generated when a charge q in 
an electric field E and the magnetic field B travels with the velocity v. 
The bar indicates a vector. 

MRI scan times can be reduced by using higher magnetic field strengths, but this will instead 
increase the acoustic noise. A very clear advantage of MRI compared to CT is the lack of 
ionising radiation. There are potential risks associated instead with what is called the specific 
absorption rate which can result in skin burns, especially when forming loops with the arms. 
To a certain degree MRI can be used also as a functional imaging modality, using a different 
weighting than is normal for anatomical imaging.  

MRI is also used as a functional imaging modality in a growing field of research aiming to 
map and understand the cognitive function of the brain. Functional MRI (fMRI) uses a 
different weighting than in anatomical imaging, e.g. diffusion-weighted imaging (DWI) 
techniques. Clinical MRIs predominantly use field strengths of 1.5 T to 3 T, but substantially 
larger field strengths are found in pre-clinical systems. In the pre-clinical imaging facility at 
Karolinska University Hospital, the stand alone MRI has a field strength of 9.4 T.  

 
1.1.4 Single Photon Emission Computed Tomography (SPECT)  

(Bushberg 2002 & Cherry 2003 unless otherwise specified) 

The transition from gamma camera imaging to SPECT is the nuclear medicine imaging 
equivalent of the anatomical imaging transition from X-ray to CT, i.e. planar to tomographic. 
Gamma cameras and SPECT are based on the detection of radioactive compounds that emit 
excited photons (γ-rays, see Fig. 1) during the disintegration of a radionuclide. The 
radionuclides typically used can be obtained from generators where a desired daughter 
radionuclide is “generated” during the decay of an unstable parent nuclide or by cyclotron 
irradiations of appropriate target materials. 

The radionuclide is attached to a molecule that is injected into a subject and then the γ–
photons emitted can be observed outside the body using a dedicated detector. In order to 
increase spatial resolution and sensitivity, extra gamma cameras are added to the SPECT 
system. Normally at least two detector “heads” are used. To avoid including dis-information 
in the form of scattered impinging photons, mechanical collimation using a very dense 
material is employed. Non-parallel rays are thereby filtered (Fig. 4), which naturally will also 
reduce sensitivity and, to some extent, the spatial resolution since it is predominately 

F = q E + v×B( )
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determined by the collimator resolution. A kind of electronic collimation can also be 
achieved using the energy resolution of the detector to omit scattered photons that have lost 
energy through interactions. However, collimation in SPECT can not effectively be achieved 
without physical barriers.  
 

 
Figure 4: The principle behind collimation. The arrows represent impinging photons. 

One of the advantages with SPECT is the possibility to use a multi-energy window approach 
to detect γ–particles of different energies. This permits simultaneously tracking different 
biological processes by using different gamma emitting radionuclides and tracer molecules 
and therefore potentially studying the relationship between these different processes.  

The signal retrieved from any voxel (volume element) in SPECT will not usually linearly 
correspond to the amount of activity in that voxel. SPECT is therefore, at least globally, non-
quantifiable, which is mainly due to the reconstruction processes. Recent developments have 
considerably improved the quantification capability of SPECT [Bailey 2013], but this is not 
yet applied routinely. SPECT is rather widely employed clinically due to its numerous areas 
of application and relatively low cost.  
  

1.1.5 Positron Emission Tomography (PET)  
(Bushberg 2002 & Cherry 2003 & Krane 1988 unless otherwise specified) 

PET is based on positron (β+) emission. When the PET radionuclides decay, they emit the 
anti-particle of an electron, a positron. The positron will be emitted with some amount of 
energy, which, together with the local environment, determines how far the positron will 
travel. The positron will travel until it collides with an electron. These two particles will very 
briefly interact forming what is called positronium and then annihilate, generating two 
photons of 511 keV each (which is the rest energy of an electron/positron). These photons are 
then emitted in nearly opposite directions (Fig. 5). In a stationary system they would be 
emitted exactly opposite, but since the positron has some energy when this annihilation 
occurs, the path of the resulting photons cannot be exactly 180o opposed to each other due to 
conservation of momentum. Since the photons from all positron emitters have identical 
energies, simultaneous tracking of different radionuclides cannot be performed. Annihilation 
coincidence detection is used in PET, i.e. the detection of one photon must be followed by the 
detection of another photon about 180o opposite and within a certain time window. 
Performing this kind of detection requires a substantial temporal resolution of the system. The 
collimation used is electronic and, since physical collimation can to some extent be avoided, 
the sensitivity is greater than in SPECT.  
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The annihilation photons being produced in a β+ decay should, as previously mentioned, travel 
unhindered from where they were emitted to the detector. However this is rarely the case. 
Therefore scatter and attenuation maps would be desirable, but these are seldom generated 
when working with small animals [Gremse 2011].  

 
Figure 5: The principle behind PET imaging. 

 
The positron will as mentioned travel a certain range before it is annihilated (Fig. 6). The 
range of the positron will be inversely proportional to the density of the material in which it is 
travelling.  

Isotope Emean [keV] Rmean [mm] 
18F 252 0.66 
11C 390 1.27 
13N 488 1.73 
15O 730 2.97 

68Ga 844 3.56 
Figure 6: Mean ranges in water of some positrons from radionuclides often used in PET.  

Data from [Jødal 2012]. 
 

PET is intrinsically quantifiable. This means that the signal received from each voxel can be 
linearly (linearly means mathematically that f(x+y)=f(x)+f(y)) related to the radioactivity in 
the voxel. This is attributed to the fact that photon attenuation in PET (where the photon 
energy is limited to about 511 keV) is easier to compensate for than in SPECT (where the 
photon energies can have a quite wide range and generally lower values) [Judenhofer 2011]. 
The ability to quantify the processes is important for many applications and therefore one of 
the major reasons why PET is preferred. There are of course still sources of error in the 
quantification process as, for instance, the depth of interaction (DOI) and non collinearity 
(NC) [Sánchez-Crespo 2006]. A substantial disadvantage of PET is that it often requires on-
line access to a cyclotron to produce the required positron emitting radionuclides and a 
radiolabelling laboratory for making the tracers, which increases the costs of the technique.  
 
 
 



 

8 

1.1.6 Combined Imaging Modalities  
(Bushberg 2002 unless otherwise specified) 

A natural extension of having two types of imaging modalities that give two types of 
desired information is of course to combine them. By doing so functional imaging can be 
obtained in an anatomical framework. Delineating a region of interest (ROI) in functional 
imaging can be greatly improved by adding landmarks from an anatomical imaging [Gunn 
2011a] since its spatial resolution is superior to that of functional imaging. Likewise, an 
anatomical image can be of much greater value when combined with functional information 
about the structures being imaged.  

Combining imaging modalities can essentially be achieved by setting up two different 
machines directly beside each other. The hybrid machines are in reality still two machines 
but in one single frame. Subject motion between frames can be compensated for and high 
integrity data can be achieved [Gunn 2011a]. However, temporal coincidence between the 
two imaging modalities is still not optimal, since the scans must be performed sequentially. 
PET/CT and SPECT/CT have become the standards for clinical imaging.  

In small animal imaging, especially for oncological studies [Sossi 2011], obtaining both 
structural and functional information may become crucial when structures are of very small 
size and obtaining anatomical information is essential for accurate delineations. Improving 
the observations made pre-clinically can help solidify the translation between pre-clinical 
and clinical applications.  
 

1.2 Tracers 

A tracer is a substance that, when suitably labelled for the imaging method, can make a 
certain biological or physiological process visible. There are very specific requirements for 
tracer molecules and they can be rejected for use in studying the process they aim to trace if, 
for example, they have slightly differing polarities or bond angles or they just do not fit in the 
very small clefts they are targeting [Cherry 2003]. If the tracer deviates from the ideal 
properties, this will affect the effectiveness of its tracing.  

The tracer is, in order to be detected externally, labelled with a radionuclide (a radiotracer, 
sometimes called a radiopharmaceutical). When the tracer is small it can easily enter a tissue 
and will accumulate quickly if it has a high affinity to a target in order to remain there. Larger 
tracers will not accumulate quickly, but can eventually achieve a similar retention as small 
tracers [Schmidt 2009]. The tracer may bind to a target and this binding can be either 
reversible or irreversible during the time of observation. It is not always possible to determine 
the binding characteristics of the tracer from the data externally detected alone.   
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2 Review of the Literature 
 

This section presents an overview of some of the literature related to methods used in this 
thesis and in particular aspects concerning pre-clinical small animal PET.  

 
2.1 General on Quantification of Tracers 

The ability to quantify allows for objective comparisons to results generated elsewhere 
[Weber 2010] in the literature and/or cross-centre studies, even though imaging parameter 
variations must be considered. It has to be remembered that what is measured is radioactivity. 
It is therefore not possible to isolate the distribution of one particular target, but the 
measurement will instead be a combination of different contributions.  

Radioactivity is typically measured as disintegrations per time [Becquerel, Bq] per unit 
volume. In PET the data is usually presented as per cent injected dose per gram (%ID/g) or as 
a standard uptake value (SUV) [see e.g. Inoue 1998], which normalizes the measured 
radioactivity to the same administered activity, the same sized subject, etc. SUVs are 
dependent on a number of parameters, which has made it difficult to compare SUV between 
centres [Tomasi 2012].  

 
Equation 2. The general equation for the standard uptake value (SUV). The normalisation 

factor can be body mass, lean body mass or body surface area. 
 

The radioactivity measured may be coming from at least three different biological factors 
[Weber 2010]. First, we could be measuring non-intact tracers, metabolites, formed when the 
molecule containing the radionuclide has changed or the radionuclide has been lost from the 
original tracer molecule. The measurement will furthermore include contributions from still 
intact tracer. These contributions can be, secondly, “free” radiotracer, and thirdly, “bound” 
tracers. The former does not bind to anything in the ROI and the latter are tracers bound to a 
target, both specifically bound to the intended target and non-specifically to a non-target 
structure. It is usually the specifically-bound tracer that we are trying to estimate. However, 
evaluations need to consider all these contributions in order to properly describe the tracer 
behaviour, which is a fundamental problem when attempting to do any kind of quantification 
[Ito 1998].  

Contributions due to the specifically bound tracers may be evaluated by, but are not limited to, 
the kinetic modelling methods presented in section 2.4. Often simpler methods are initially 
tested. The method that is often first used is to compare the uptake in two different situations 
in the same biological system. For example, a measurement is first made using the tracer 
under normal conditions. This is subsequently compared to a measurement made by the same 
procedure but unlabelled or “cold” drug has been injected prior to the radiotracer [Lassen 
1992]. The targets are blocked (Fig. 7 left) and the specific binding decreased to a 
corresponding degree.  By repeating with different amounts of blocking doses, the number of 
binding sites can in theory be determined. This method to demonstrate specific binding 
through a blocking approach was implemented in paper III. There are naturally shortcomings 
in this method. For instance injecting foreign substances can cause undesirable side-effects. 

SUV =
radiotracer concentration

injected activity NormalisationFactor
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Small animals tend to not tolerate it very well, especially if the tracer and doses are large. 
Also, total saturation would be desirable, but large amounts of the drug may perturb the 
system under study in other ways than the intended (affect blood flow, blood pressure etc.). 
Therefore using lower degrees of saturation is often necessary.  

 
Figure 7: An illustration of a “blocked” environment (left) opposed to  

an “unblocked” (right) environment for the tracer (orange). 
 

Many conventional methods of quantification are based on static data acquisitions performed 
at a given time interval and are therefore a direct function of when in time the measurement 
was performed. Also they generally are averages over the ROI and time and do not take 
advantage of all the information that is often available [Kuntner 2014]. Instead obtaining 
information continually (dynamic data acquisition) can permit less time dependent methods of 
quantification and more in-depth analysis may therefore be conducted. With all the data 
available, conventional uptake measurements (e.g. SUVs) can be compared with more 
involved uptake measurements to find the most optimal method and this was done in paper II 
[see also Thiele 2009].  

Quantification for all imaging modalities is affected when the object imaged is small 
compared to the spatial resolution of the system [Maziotta 1981]. Therefore it is important to 
know the limitations imposed by the spatial resolution, usually the full width at half maximum 
(FWHM) when quantification is performed. The spatial resolution of PET depends on a 
number of parameters, such as reconstruction and acquisition parameters and they should 
always be specified when analysing or comparing images [Gremse 2011].  

The goals of quantification are usually to estimate uptake/numbers of targets and to determine 
if some kind of effects on these numbers can be observed. If the effects are not very 
substantial, for example when time activity curves (TACs) for two situations have overlapping 
standard deviations (Fig. 8), further analysis of the data may become necessary. In these cases, 
a more involved analysis of the individual contributions to a tracer behaviour (the 
contributions mentioned above) must be determined.  
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Figure 8: A TAC showing degrees of uptake as a function of time. If a target quantification is 

clearly separated compared to a control (left, paper III) simplified quantifications could be 
sufficient to describe differences between the two. If the separation is small (right, paper I), 

but discernable, an alternate quantification method often becomes necessary. 
 
Resolution and sensitivity are improved in small animal imaging compared to human 
imaging systems. However, these parameters are inversely related. When the spatial 
resolution is increased, the voxel size will decrease. The signal to noise ratio (SNR) and the 
sensitivity will therefore decrease and quantification will be affected. The more narrow 
tangential field of view (FOV) enhances resolution but the structures are smaller [Hutchins 
2008]. 

 
2.2 Data Fitting 

Large quantities of data are obtained in PET. It is natural to arrange this data in a certain 
manner (e.g. place it in bins in a histogram). Fitting a straight line to uniformly sampled data, 
which is over-determined, is a typical problem in system science. Regression can then 
indicate if a correlation between measurements exists. However, correlation does not 
necessarily imply causation. Fitting a straight line to uniformly sampled data can be dealt 
with using the so called indirect method (sampling consequences related to the target instead 
of sampling the target directly [Musser 2007]) in which signal processing is a more 
straightforward approach.  

Samples collected in PET are non-uniform and can thus not be dealt with using the indirect 
method. Instead the direct method is applied [Feng 1996]. An example would be the 
commonly used least square algorithm. It is essential that alternative regression methods are 
statistically reliable [Feng 1993]. One such alternative that supplies optimal statistical 
accuracy is the non-linear least squares algorithm [Feng 1993]. Though quite effective, the 
non-linear least squares algorithm requires initial values to converge and is also computer 
intensive. Other alternatives like the generalised linear least squares method [Chen 1998] can 
supply a comprehensive solution that meets all requirements but do not have any of the 
problems associated with the non-linear squares method [Feng 1996].  

A fit of the regression has to be validated. For this purpose residuals are used, which are 
defined as the distances between the fit and the measured points that constitute the fit. One 
can validate by analysing the residuals [Rice 1995], as illustrated in figure 9.  
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Figure 9: The top graph shows a linear fit to measured points (the black dots) and the bottom 

graph shows the residuals of these.  
 

The final error estimation can be presented as the residual sum of squares (RSS), which is 

defined as RSS = yi −
⌢
β0 −

⌢
β1xi( )

2

1

n

∑ . Here x and y are the actual measurements and 
⌢
β0

and 
⌢
β1 are the estimated intersection of the fit and the estimated slope of the fit, respectively, 

and n is the total number of individual measurements, where i=1…n [Rice 1995].  
 

2.3 Region Of Interest 

A ROI has to be delineated to isolate the area within which a specific event has occurred, see 
figure 10. The term volume of interest (VOI) is sometimes used to emphasize the 3D nature of 
a ROI, but I will not make this distinction in this thesis.  
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Figure 10 (paper II): The delineation of a ROI defining a tumour in an animal model. A ROI 
isolating the area in which events occur (here in a tumour) will allow us to gather information 
about the radioactivity uptake in this region. The image to the left is a coronal full body image 

and on the right is an enlarged trans-axial image through the tumour. 
 

Delineating a ROI has to occasionally be performed without having anatomical information 
available. How it is delineated will have quite a significant effect on the quantification [Krak 
2005]. Delineation can be performed, for example, by manually drawing a ROI using fixed 
dimensions and by cluster analysis, which isolates particular pixel values or other 
characteristics into groups or clusters. Some types of clustering can be very advanced using 
some sort of elastic net algorithm [Lévano 2011], a temporal clustering [Kim 2006], or it can 
be more straightforward like intensity thresholding [Krak 2005].  A variety of difficulties can 
emerge when delineating ROIs. In particular, it is often difficult to isolate the uptake in the 
target region when the background uptake in nearby non-targeted tissue is substantial. Failure 
to exclude non-targeted background levels can lead to erroneously high values in the target 
[see e.g. Henriksson 2007]. To address this problem, kinetic filtering, which identifies pixels 
belonging to healthy tissue and omits these based on time and distance relationships [Gray 
2010], can be used.  
 

2.4  Kinetic Modelling 

Kinetic modelling, using a mathematical framework to describe the tracer distribution, can 
become necessary when two sets of data are not clearly separable from each other. For 
example this would be for a target vs. a control or for the same target in 
sequential/longitudinal studies, etc. Modelling often entails estimation of absolute values for 
parameters, for example, blood flow and volumes, metabolic rates, receptor occupancy. This 
approach may offer more advantages than just making the uptake differences more 
pronounced. For instance, compared to conventional uptake quantifications, kinetic 
modelling can reveal and increase the awareness for interactions between delivery and 
binding [Kuntner 2014].  
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Kinetic modelling can be thought of as in vivo, image-based pharmacokinetics [Watabe 
2006]. In pharmacokinetics the goal is to determine the relationship between a dosing 
regimen and the body’s exposure to a drug. In tracer-based kinetic modelling the goal is 
instead to describe the body’s exposure to the tracer or the tracer’s interactions in the body as 
well as the factors contributing to the distribution of the tracer.  

In one approach to kinetic modelling a binding analysis can be performed by injecting the 
radiotracer while systematically varying the injected specific activity (SA, the ratio of the 
radioactivity molecules to the total (radioactive and non-radioactive) molecules) by adding 
increasing amounts of the unlabelled compound [Farde 1989]. When a function of the bound 
uptake to bound/free tracer amount is subsequently plotted, a Scatchard plot can be created 
(Fig. 11). The original Scatchard plot is based on the condition (assuming high SA) that 
B/F=(Bmax-B)/(KdVR), where B is the bound concentration, F is the free concentration, KdVR is 
the equilibrium dissociation constant where VR is a ROI corrected for e.g. heterogeneous 
concentration [see Delforge 1995]. This is a type of displacement experiment [Horovitz 
1987] and originated from in vitro experiments. The parameters that are quantified using 
kinetic modelling are called macro parameters.  

 
Figure 11: A typical Scatchard plot in which bound tracer is plotted as a function of 

bound/free, for varying SA (assuming that B is not negligible compared to Bmax) and a simple 
linear fit can be constructed. The intercept of the fitted line with the y-axis gives the maximum 

number of specific binding sites Bmax. 
  

Scatchard plots require more measurements to be made than conventional quantifications. In 
the example mentioned above, the additional measurements were performed sequentially after 
the first measurement performed without added unlabelled compound. Repeated 
measurements are, however, not always required in kinetic modelling: see compartmental 
modelling in section 2.4.1.   
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Kinetic modelling stems from the analysis of mass balance equations, which originally have 

the form
dms (t)
dt

= RCA (t)− RCV (t) , where CA is the concentration in arterial blood, CV is 

concentration in venous blood, ms is the tracer amount and R represents the blood flow. Since 
this is a linear relation we have the possibility to translate an input, usually CA, into a system 
response function, which in this case can be called CTARGET, using a convolution process or 
operation. Mathematically this would have the form  

CA (t)⊗ h(t) =CTARGET  
Equation 3: The relationship between input and system response. 

where h(t) is the so called impulse response function (IRF) and ⊗  is the convolution operator. 
In the most general form of the convolution integral, the concentration is a function of both 
spatial coordinates and time (that is; CTARGET(x,y,z,t)) [Hoff van den 2011]. CA and CTARGET are 
data usually collected in the measurements and the IRF is the parameter that is sought. 

When modelling, much more data is available than can be appreciated solely by the naked eye  
(see section 2.2). This has led to the development of “radiomics” in which additional 
information about image features currently not being used is obtained through data post 
processing techniques [Chicklore 2013]. However, it is important to not just use the 
information that seems applicable, since this can lead to results that the data don’t support 
[Hoff van den 2011, Dupont 2009].  

Subjectivity can influence any interpretation of the images, even in conventional uptake 
assessments simply by how the window settings are chosen. To minimize the influences of 
subjectivity, parametric maps (voxel-based macro parameters) may be constructed [Blomqvist 
1984]. Each voxel will thus have its own macro parameter though the macro parameters are of 
course affected to some degree by subjective decisions (for example when the ROI is 
delineated). 

Other voxel-based analysis techniques using e.g. spectral analysis [Cunningham 1993] have 
been proposed. Spectral analysis is founded on the definition of basis functions, but it is quite 
sensitive to noise [see e.g. Rizzo 2013]. Noise artefacts have been suppressed by e.g. limiting 
the number of involved components [Cunningham 1998]. When performing voxel by voxel 
kinetics, heterogeneous distributions and local spatial variations must also be considered [Su 
2008].  

Kinetic modelling is well established and researched, particularly in brain studies. The 
possibility of performing kinetic analysis in small animal imaging has increased with the 
availability of specialised software and dedicated pre-clinical cameras [Dupont 2009]. A clear 
difference from clinical imaging is the need for anaesthesia in small animal PET [Kuntner 
2014]. For more on this see section 4.1.2. Furthermore, the disease models develop and 
progress very rapidly in small animals. When possible, test/re-tests should be performed [see 
e.g. Shoghi 2009]. 

Kinetic models estimate macro parameters and the different models differ in how the macro 
parameters are determined. In the following, compartmental, graphical and model-based 
compartmental analysis methods are discussed. 
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2.4.1 Compartmental analysis 

Compartmental analysis is by far the most widely used kinetic modelling technique in PET 
[Schmidt 2002] and it is a natural extension of the linear convolution equation (eq. 3). As a 
first step it assumes that a well delineated structure of the tissue of interest has been 
established. This eliminates the dependency on the spatial coordinates in equation 3 to give 
CTARGET(t) [Hoff van den 2011]. Therefore each tracer contribution to the uptake measurement 
is isolated to a certain compartment. These isolated compartments are assumed to be 
physically separated from each other. It is also assumed that they mix instantaneously, i.e. the 
tracer is distributed homogenously within each compartment instantly and only trace amounts 
are injected [Gunn 2001]. In PET this is frequently the case since its substantial sensitivity 
allows the use of very small amounts of tracer, in the range of picomoles. Thus these 
assumptions imply that linear relationships may be used and, furthermore, the kinetics of each 
compartment can be described by differential equations (see eq. 4 for two tissue compartments 
on page 17). Compartmental modelling is illustrated in figure 12. 

 
Figure 12: The tissue of interest is delineated here, as is typical for physicists, as a rectangle, 

composed of three compartments. The k2, k3, k4, k5, k6 cm3 ⋅cm−3 ⋅min−1#$ %& and k1 

ml ⋅cm−3 ⋅min−1#$ %&are the rate constants for the in- and out- flows and are referred to as micro 

parameters. As mentioned in section 1.2, the tracer may bind reversibly and irreversibly when 
k4>0 or k4=0, respectively. Further, the concentrations C [kBq/ml] of F, B and NSB are for the 

free, bound and non-specifically bound tracer, respectively. 
 

Arterial blood or rather arterial plasma (Fig. 12) carries the radiotracer to the tissue of interest 
and thus provides input to the tissue. The blood can be sampled and the radioactivity 
measured and analysed to correct for the presence of metabolites. Having metabolites will of 
course also necessitate analysing the distribution of these [Gulyás 2002]. These are some of 
the “additional measurements” mentioned in section 2.4. It is further assumed that the supply 
of tracer from the blood is to only one location, which is naturally a simplification.  

Alternative methods for acquiring the input to the tissue have been sought since sampling 
arterial blood is an invasive procedure and the temporal resolution is quite limited [Laforest 
2005]. In some cases the image-derived input function (IDIF) and cluster analysis have been 
used [e.g. Liptrot 2004, Lubberink 2004]. The ROI for the arterial blood is then generally 
positioned in the left ventricle of the heart, which requires the heart to be in the FOV of the 
PET [Watabe 2006]. This is usually the case when working pre-clinically with mice, but not 
necessarily otherwise.  
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Analyzing data by compartmental methods requires dynamic data acquisition with continuous 
sampling. Thereafter the image is subdivided into time frames with the early time frames used 
to determine the IDIF [Zanotti-Fregonara 2011]. These often very short time frames typically 
contain very much information, but, since they are short, effects of noise and noise artefacts 
can become critical [Laforest 2005]. In small animal imaging only the earliest time frames are 
reliable for delineating the ROI due to possible spillover effects due to myocardial uptake for 
some tracers over time [Ferl 2007] which can lead to an overestimation of the activity in the 
small ventricle.  

Compartmental techniques are equilibrium techniques, which means that they assume that a 
relationship exists between two measurables [Koeppe 1991]. Simplifying the situation in 
figure 12, it can be argued that the NSB- and the F-compartments will achieve an equilibrium 
very quickly, meaning that k5 and k6 are very rapid compared to k1 [Koeppe 1991]. If we 
assume that this equilibrium is achieved instantaneously, we can omit one compartment 
[Blomqvist 1990], as illustrated in figure 13. The equations that govern this modelling 
situation are illustrated below [see Eq. 4]. 

 
Figure 13: Omitting one compartment yields this two tissue compartment configuration with 

only 4 unknowns. Here the free compartment and the non-specifically bound compartment are 
combined as ND, the “non-displaceable compartment”. 

 
dCF t( )
dt

= k1CP t( )− k2 + k3( )CF t( )+ k4CB t( )

dCB t( )
dt

= k3CF t( )− k4CB t( )
 

Equations 4A & 4B: The time dependence of the different parameters shown in figure 13, 
(where CP would be the plasma concentration) are described by first order differential 

equations, where CND and CF is indistinguishable here. The flow of tracer from compartment 
F to compartment B is assumed to be proportional (k3) to the concentration of the tracer CF. 

 
The micro parameters are also obtained from sampled sets of data that subsequently have to 
be fitted, see section 2.2 above. So-called macro parameters are determined from different 
combinations of the micro parameters. One example of a macro parameter often used in 

tracer kinetics is the distribution volume (VT), which is defined as VT =
k1
k2
1+ k3

k4

!

"
#

$

%
&  for 

reversibly bound radiotracers in two compartment models. This is the volume of tissue space 
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a target volume would have if it had the same radioactivity concentration as that of the blood 
[Innis 2007]. VT is a linear function of the free receptor concentration in the ROI [Logan 
1996]. Alternatively, for irreversibly bound radioligands, we have instead the net uptake rate 

constant (Ki) which is defined as Ki =
k1 ⋅ k3
k2 + k3

 for two compartment models. 

Determining the radioactivity in the plasma is necessary for using these models, which is a 
problem due to limited statistics and the invasiveness of the procedures. This is especially 
true for small animals, in which the small blood volumes are a very limiting factor. Taking 
multiple blood samples from mice would also potentially perturb the physiology under study 
[Shoghi 2009]. Furthermore, the small size of the heart and motion effect (both whole body 
motion or just the beating of the heart) would introduce a substantial source of error. To 
avoid these problems, alternatives have been developed.  

Using a reference tissue instead to function as an input has been proposed [Blomqvist 1989], 
see figure 14. The reference tissue is assumed to have the same blood supply as the tissue of 
interest and also the same inflow to outflow ratio, that is k1/k2.  

 
Figure 14: A modification of figure 13 in which a reference tissue instead of arterial plasma is 

acting as the input function. 
 

In the reference tissue method, it is assumed that the amount of non-specific binding is the 
same in the target region in the reference region [Gunn 1997] or, alternatively, that there is no 
substantial non-specific binding in the reference region during the scan [Litton 1997]. Here 
dCR t( )
dt

=CP t( ) ⋅ k1ref −CR t( ) ⋅ k2ref  (compare to eq. 4A) where CR(t) is the concentration in 

the reference region). This condition is often assumed, but is seldom actually verified [Petit-
Taboué 1998]. In this reference tissue method the macro parameter most often used for 
reversibly bound tracers is the ratio of the VT of the target region to that of the VT of the 
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reference region forming a distribution volume ratio (DVR). For small animal imaging the 
use of a reference region is not extensively validated [Tomasi 2012]. In paper II of this thesis 
this method was employed after in house validation for that particular tracer and by using a 
control tracer to estimate the differences in blood supply and non-specific uptake in the 
tumour and the reference tissue, see further sections 4.2 and 5.2, see further sections 4.2 and 
5.2. 

Testing whether a region is completely devoid of specific receptors can be attempted by 
comparing mathematically the ratios of TACs from the proposed region to a region known to 
be devoid of specific binding sites (arterial blood as performed in paper II). However, 
actually finding such ideal regions is not very common. For example, in paper IV we even 
observed what we interpreted as a specific signal in the blood. Pseudo reference models, in 
which the input function has a specific binding and subsequently generates a sort of bias, 
have been developed for these instances [Gunn 2011b].  

Compartmental models can be subdivided further into either data-driven (like the graphical 
models in section 2.4.2) or model-driven (like the simplified reference tissue model in section 
2.4.3) methods. Data-driven methods will not assume a priori a particular compartmental 
setup, whereas model-driven methods do [Gunn 2002]. Therefore data-driven methods allow 
a more “open” approach to the data analysis and biologically relevant information may be 
implied from the model suggested by the data-driven analysis [Peng 2008]. However, when 
the model assumption is correct, model-driven methods yield more robust results. Another 
difference is that model-driven models often generate all the separate flow parameters (micro 
parameters) whereas data-driven models will generate combinations of these, macro-
parameters directly [Gunn 2002 or Blomqvist 1991].  
 

 
Figure 15: A voxel intensity image illustrating the summed tracer uptake over the summed 

scan period (left) and its related parametric image of the tracer DVR (right). For comparison 
purposes, the window settings are matched. In this example the PS-targeting AnnexinA5 

from paper I was used.  
  

The parametric maps mentioned in section 2.4 are generally constructed using compartmental 
approaches [Blomqvist 1990] (Fig. 15). These parametric maps intend to portray results with 
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less subjective bias. Attaching a macro parameter value to each voxel will also avoid 
averaging, as for when a TAC or summed image is constructed for averages of the measured 
radioactivity over the pre-determined time frames.  

Parametric maps can also be used to map other parameters like temporal distributions when 
the data have been dynamically acquired. However, on the whole, parametric imaging of 
compartmental models have been limited since a high degree of parameterisation in the 
model can lead to numerically unidentified parameter estimates and optimisation using 
conventional nonlinear least squares methods is (as mentioned in section 2.2) both time 
consuming and prone to local minima [Gunn 1997].  

 
2.4.2 Graphical Analysis 

Graphical methods can be used to solve the differential equations of the compartmental 
models (see eq. 4A & 4B). The graphical methods most widely used are those developed by 
Jean Logan [Logan 1990] for reversibly bound tracers and by Patlak and Gjedde [Patlak 
1983] for tracers that bind irreversibly. Both the Patlak and the Logan plot can be derived 
from the tracer’s temporal distribution in a compartmental system consisting of n 
compartments. Thus, as mentioned above, in the data-driven methods the compartmental 
setup is supplied by the kinetic data [Gunn 2002]. In these methods a plot is constructed in 
which a measured function value opposed to another measured function value will supply a 
data-point. Several of these data points will form a line with a particular slope and this slope 
will be the value (the macro parameter) sought. The graphical analysis method transforms 
radioactivity measured in the arterial plasma and in some target region at numerous times 
into a line. Its slope is then related to the number of available binding sites in the target region 
[Logan 2000]. Both these methods were later modified so a reference tissue could be used 
instead of arterial plasma [Logan 1996, Patlak 1985].   

For graphical solutions modifications of the well-known formula: y=kx+b are used in which 
x and y are still the measured values, or “function values” mentioned above. 

For the Logan plot the formula is instead
CTARGET (t ')d !t

0

t

∫
CTARTGET (t)

= k
CA (t ')dt '

0

t

∫
CTARTGET (t)

+ b
 
and  

for the Patlak plot the formula is CTARGET (t)
CA (t)

= k
CA (t ')dt '

0

t

∫
CA (t)

+ b . Having this relationship 

implies that the linearity is essential. 

The slope k is proportional to CB and b is the y-axis intercept. It is assumed here that there is a 
linear relationship, an equilibrium, between the input and the CTARGET after a time t>t’ and this 
is where the macro parameter, or the slope, should be determined. The equilibrium conditions 
are usually achieved prior to t’ and this must be validated [see e.g. Ito 1998]. In this thesis the 
only graphical modelling used was the Logan plot  (papers I and II) and hence most 
information and discussions hereafter concern the Logan plot.  
 
The Logan plot is a popular graphical analysis compartmental method to use for calculating 
macro parameters, owing to its simplicity as well as its elegance [Kuntner 2014]. Solving the 
original Logan plot starting from Equations 4A & 4B (page 17) (thus assuming two 
compartments here): 
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dCF t( )
dt

= k1CP t( )− k2 + k3( )CF t( )+ k4CB t( ) (5a)

dCB t( )
dt

= k3CF t( )− k4CB t( ) (5b)

CTARGET t( ) =CF t( )+CB t( )+VBCB t( ) (5c)

 

 
where VB is the blood volume and CB is the blood concentration. 
Extracting an expression for the free and bound concentrations: 
 

(5a) : k2CF t( )+ k3CF t( ) = k1CP t( )−
dCF t( )
dt
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neglecting VBCB(t), integrating and dividing 7a with CTARGET(t) 
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where the last term in b will become nearly constant. Originally the Logan plot was 
developed and applied to calculations of macro parameters in brain regions, but it is not 
limited to central nervous system applications. 

In the original version of the Logan plot there was a negative bias present in the 
determination of VT, and therefore the distribution volume was underestimated. This is due to 
the fact that the blood volume VB included in the slope [Kimura 2007] in 7a was subsequently 
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neglected in the solution 8a. The underestimation was also due to noise [Logan 2011]. The 
larger the VT the larger the underestimation becomes [Slifstein 2000]. This bias has been dealt 
with in several ways. Ogden [Ogden 2003] suggested that it could be solved using a more 
advanced fitting algorithm and this was also tested by Parsey et al. [Parsey 2003] the same 
year. For high noise levels in individual voxels a strategy for minimizing the effects of 
outliers becomes necessary [Logan 2011]. This was proposed to be solved by determining VT 
in a number of ways (e.g. the proposed solution by Ogden) and calculating their mean [Logan 
2011]. Thus, the SUV quantification is sampled and subsequently the different integrals over 
the ROI are also sampled as a function of time.  

In order to obtain micro parameters using the Logan method some approximations are 
available. The k1 can be obtained as the ratio -k/b for a two tissue compartment setup, 
requiring that in the intercept the second term is less than the first term (see eq. 8a). Further k2 

can be estimated as -1/b [Logan 2000].  

The input, CA or CP in the equation, was originally obtained from arterial blood (as mentioned 
in the section above) though this was not always feasible and the CA was replaced by a 
reference region, to give the new expression  

CTARGET ( !t )d !t
0

t

∫
CTARGET (t)

= k
ROI ref ( !t )d !t + ROI ref (t) k2

ref

0

t

∫
CTARGET (t)

+ b
 

where the superscript ref refers to a reference region. The slope k then gives the DVR. This 
means that k2

ref, the outflow parameter of the reference region, has to be determined in order 
to approximate the plasma integral [Logan 1996]. An average k2

ref can be used to minimize 
the time dependence of the target ROI opposed to the reference region ROI, or it can be 
neglected all together if the ratio of the ROI of the target to the ROI of the reference region 
becomes reasonably constant [Logan 1996]. 

This kind of solution makes the macro parameter calculation rather sensitive to noise (as 
mentioned above) [see Slifstein 2000]. Data-based methods also include other types of 
analyses such as spectral analyses [Schmidt 1999]. These were not used in this thesis. In 
additional to the Logan and the Patlak plots, a number of other graphical analysis methods 
have been presented. For example Ito et al. [Ito 2010] presented a graphical plot for the linear 

relationship 
CTARGET t( )

CP t '( )dt '
0

t

∫
= k1 − k2

CND t '( )dt '
0

t

∫

CP t '( )dt '
0

t

∫
 

which assumes that CT becomes CND when time goes to zero (before any binding has 
occurred). Thus the interception of x and y will provide the sought macro parameter 
estimates. Lassen et al. also introduced a graphical method [Lassen 1995] based on regional 
changes in VT after drug administration. This method was re-evaluated and somewhat 
generalised by Cunningham et al. [Cunningham 2010]. None of these methods have yet 
gained widespread use, though one area of potential application might be in describing the 
biological variability in tumours particularly with respect to their vascularization.  
 

2.4.3 Model Based Analysis 

Model-based methods can be used to determine micro parameters, if the compartmental 
structure is known, as for example for well characterised tracers like the metabolic tracer 2-
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deoxy-[2-18F]-2-fluoro-D-glucose, [18F]FDG, The compartmental configuration needs to be 
verified. One way of doing so is by observing the ratios of different micro parameters such as 
k1 calculated for different compartment setups.  

The model-driven method employed in this thesis (paper I) was the simplified reference 
tissue model (SRTM) applicable for reversibly binding tracers which was introduced by 
Lammertsma and Hume [Lammertsma 1996]. The original reference tissue compartment 
model generated four unknowns, of which one was the binding potential BP [Mintun 1984]. 
The determination of the BP was solid, but not that of the other three. It was later discussed 
[Innis 2007] that the BP was interpreted in several ways. Thus, to clarify, the most common 
was called the BPND, which can be defined as DVR-1. The SRTM only contains three 
parameters, of which BPND is one.  

A potential error can occur when using the SRTM model if the employed reference region is 
not completely devoid of specific binding. This means a BPreference is present which is 

calculated as BPapparent =
BPtissue +1
BPreference +1

−1[Gunn 1997]. 

Omitting VBCB(t), and implementing a derivation of the CTARGET(t): 

(5c) :
dCTARGET t( )

dt
=
dCF t( )
dt

+
dCB t( )
dt

⇒

⇒

CF  and CB  are both omitted.
This requires the assumption that the TAC of the ROI can
 satisfactoraly be fitted to a single tissue compartment model, 
thus only one total C called CTARGET (t) is present. CTARGET (t)) 
has a plasma input. k2α  is the apparent rate constant for 
transfer from the only compartment which contains specific
binding to plasma.  
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⇒

⇒
dCTARGET t( )

dt
= k1CP t( )− k2αCTARGET t( ) (9a)

 

Introducing 
dCR (t)
dt

= k1
refCP (t)− k2

refCR (t)and R1 =
k1
k1
ref =

k2
k2
ref and

k1
k2α

=
k1
k2
1+BPND( )  

(9a) :
dCTARGET t( )

dt
= k1CP t( )− k2αCTARGET t( )→

→ k1CP t( ) =
dCTARGET t( )

dt
+ k2αCTARGET t( )

(10a)

obviously[ ]k1refCP t( ) =
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dt

+ k2
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10a&10b( )⇒
dCTARGET t( )

dt
+ k2αCTARGET t( ) = R1

dCR t( )
dt

+ k2CR t( )⇒

k2α =
k2

1+BPND

"

#
$

%

&
'⇒

dCTARGET t( )
dt

=
dCR t( )
dt

R1 + k2CR t( )− k2
1+BPND

CTARGET t( ) 11a
 

 
from equation 11a, R1, k2 and BPND can be calculated (for equations 5-11 see 
http://www.turkupetcentre.net/petanalysis/model_reports.html). Thus the SRTM will make 
the following key assumptions: 

1. The reference region is devoid of specific/displaceable binding (as mentioned). 
2. The kinetic behaviour of the tracer in both the reference region and in the target 

region can be described by a single tissue compartment model. 
3. The blood volume (VB) contribution to both the reference region and the target region 

is negligible. 
4. The reference and target regions have the same nondisplaceable volume (VND). 

 
Many of these assumptions are familiar. The effects of violations of these assumptions have 
recently been tested [Salinas 2014]. It must be remembered that the blood volume fraction in 
most tissues is 2%-7% [Bremer 2003], differences that may introduce bias in the analysis if 
not treated properly. Furthermore, the blood volume in e.g. tumours supplies information 
regarding abnormal local vascularization tumours [Hoff van den 2011]. 

 
2.5   Indirect Influences on Uptake Quantifications 

 
The following sections will discuss some parameters of biological nature and machine-
associated limitations that will influence the quantification, but whose effects are not always 
separately estimated in the quantifications. 

 
2.5.1 Enhanced Permeability and Retention (EPR) 

 
EPR effects on tracer uptake were specifically addressed in papers I, II and IV in this thesis. 
It has been known for some time that the vascular permeability is increased in tumours and 
that lymphatic drainage from tumour tissue is impaired. Matsumura and Maeda demonstrated 
that these properties have a combined effect on delivery to tumours by increasing the uptake 
and decreasing the elimination of agents of different sizes [Maeda 1984, Matsumara 1986]. 
This effect is known as the EPR effect (Fig. 16) and is particularly noticeable for agents 
larger than 40 kDa. 
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Figure 16: Illustration of the EPR in which changes in the tumour tissue architecture alter the 

distributions of molecular agents into and from the tissue. 
 

Enhanced vascular permeability is found in almost all rapidly growing solid tumours [Maeda 
2009] and also in granuloma, inflammatory and infected tissue [Maeda 2000]. It can be 
purposefully used for selective targeting.  Inflammatory tissue may be more permeable than 
healthy tissue but its lymphatic drainage is still functional [Azzopardi 2013]. Therefore EPR-
related retention will not be as prolonged as in tumours, in which draining is severely 
impaired or non-existent [Maeda 2009]. By following the elimination of a tracer from the 
tissue over a long enough period it might be possible to separate inflammatory from tumour 
tissues. The contribution from the EPR-increased retention should not be underestimated. 
These effects on an agent uptake could last for as long as weeks to months [Fang 2003]. 
Thus, enhanced permeability does not only improve passive targeting to initially increase the 
delivery but also decreases the elimination, which is a key factor behind the total overall 
increased retention [Maeda 2000]. Cancer therapeutics are therefore not necessarily 
preferably small molecules, since they can potentially leave the tissue much faster than the 
larger agents if they are not bound to a target with high affinity. 

The EPR effect can be augmented by hypertension and reduced/obliterated by anti-vascular 
therapies. The size as well as the shape of the targeting compound, such as dimensional 
complexity [Smith 1996] are important [Decuzzi 2009]. Factors such as bradykinins, 
acetylcholine and nitric oxides increase or induce vascular permeability. Therefore, sites 
overexpressing these factors will also exhibit EPR effects [Maeda 2009]. It is important to 
realize that different vascular events will be important for drug delivery to the tumours 
[Maeda 2009] as well as for the imaging agents used to study them.  

The practical implications of EPR effects for imaging are that varying degrees of the uptake 
of tracers in a tumour tissue will be due to EPR effects instead of their specific binding 
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interactions [Azzopardi 2013 and Maeda 2000]. This is one reason why it becomes so 
important to be able to separate/estimate the different contributions to the tracer uptake. 
 

2.5.2 Partial Volume Effects (PVEs) 
 

PVEs are phenomena that cause estimations of the intensity values in structures studied in 
medical imaging to be different than what they actually are, see figure 17. This is particularly 
important in small animal imaging and was therefore a factor to consider in all the studies 
performed in the papers in this thesis. 

There are a number of factors contributing to PVEs. They are especially related to the image 
resolution, which in turn will be determined by the detector size, the diameter of the FOV and 
the distance the different positrons travels due to their kinetic energy. The decay from an 
infinitely small object will be smeared out and perceived as a “cloud” [Muellauer 2013]. The 
ratio of the size of the structures studied in relation to the spatial resolution of the imaging 
system will have a large impact on the magnitude of the PVE. In small animal PET the 
resolution is improved compared to clinical PET cameras but not to the same extent as the 
corresponding structures are decreased in small sized subjects (particularly mice) [Dupont 
2009]. The bias in the uptake measurement will be directly proportional to the size of the 
region in which the uptake is assessed [Muellauer 2013, Soret 2007]. Thus, the region should 
be as large as possible and PVEs will be significant when the size of the region measured is 
less than twice scanner’s spatial resolution, as measured by the FWHM [Sossi 2011]. 
Preferably the region should be three or four times the spatial resolution.  

PVEs are also related to the image sampling on a voxel grid. Each voxel will contain more 
than one type of tissue and the radioactivity concentrations will be the weighted average of 
those in the different tissues in the voxel. The higher the heterogeneity, the higher the PVE. 
This is called the tissue fraction effect. The size, shape and the uptake in the tumour as well 
as the uptake in the surrounding tissues will have an effect. Thus PVEs will always be present 
[Soret 2007] and they are not only due to sub-optimal scanning characteristics. 

 

Figure 17: The measured signal (here the dotted line) is smeared out compared to the actual 
structure (the solid line) and the signal is weaker. Thus this means, for instance, that a very 

small “hot” object in a “cold” background will look larger but dimmer. 

 
To minimize the PVEs on quantification, maximum SUVs are often used instead of means. 
However, this may not be desirable since maximum SUVs are prone to many errors such as 
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the increased noise compared to that in a mean SUV [Teo 1014]. Other methods attempt to 
improve spatial resolution, by, for example, using different reconstruction algorithms. When 
performing longitudinal studies it will be imperative that the parameters affecting the spatial 
resolution are the same for each imaging session [Soret 2007]. 

Some methods can be implemented during data acquisition that can reduce PVEs.  The most 

direct way is to calculate the recovery coefficient (RC) where RC = measured activity
knownactivity

. 

The RC requires a priori knowledge of the structure to be imaged and the RC is also 
dependent on the activity measured in the region, thus making it time dependent [Muellauer 
2013]. Therefore, when possible in longitudinal studies, similar amounts of activity or the 
same protocols should be used [Mannheim 2012]. PVEs can have a substantial impact when 
quantification is the goal of an experiment. 

 
2.5.3 Heterogeneity 

Heterogeneity in the structures and in the images of those structures affects the quantification 
of tracer uptake. Thus heterogeneity is a factor that will affect all images and the assessment 
of heterogeneity was a specific focus of paper V. 

A perfectly homogenous image without any contrast that can be attributed to differences in 
substructures would supply no information at all. Therefore the heterogeneity in images is 
actually the basis on which the imaged structures are identified. However, in the context of 
this section and the thesis, heterogeneity concerns variations on a substructure level. The 
number of publications dealing with heterogeneity in nuclear medicine imaging has increased 
drastically over the past twenty years, see figure 18. This indicates an increased awareness of 
the importance heterogeneity has in e.g. cancer development [Burrell 2013] and the influence 
this has on medical imaging [Brooks 2013]. In spite of this increased focus, there is no actual 
consensus on exactly what heterogeneity is. When the word “heterogeneity” is used in a 
scientific context, it can therefore have numerous meanings [Heppner 1984]. This is 
obviously a problem for dealing with the implications of an influence not clearly defined. 

 
Figure 18: The number of publications per year dealing with heterogeneity in nuclear 

medicine (Pubmed search: “heterogeneity AND nuclear medicine”).  
 

Genetic heterogeneities exist both between and within tumours and this will have 
implications for which biomarkers are used to make clinical decisions [Burrell 2013] and for 
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planning of treatment, for example, for the doses used in external beam therapy [Toma-Dasu 
2012]. External radiation therapy attempts to deal with heterogeneity using a dose volume 
histogram for dose delivery calculations and restrictions. El-Naqa introduced an analogue 
called intensity volume histogram for a type of heterogeneity ranking [El-Naqa 2009]. 

 
Figure 19: Illustration of spatial uptake variations. Heterogeneity is often perceived as 

deviations from a mean uptake normalised to the distance between these deviations. Other 
parameters that could be of interest are the gradient of the deviation, how to define the 

involved distances and variations in uptake. The X- and Y-axes are random  
spatial dimensions, the Z-axis represents uptake. 

 
Heterogeneity, or uptake variations, in diagnostic imaging is illustrated in figure 19. The 
heterogeneity may be due to underlying biological variations, such as local differences in 
metabolic needs, cell proliferation, cell death, metabolic activity and vascular growth or 
structure [Brooks 2013, Henriksson 2007, Asselin 2012]. It can, however, also be due to 
PVEs or the inherently noisy image acquisition of PET [Forma 2013]. Thus the cause for the 
uptake variations has to be determined and, if the variations are protocol-related, we need to 
attempt to minimise them.  

The potential importance of these spatial deviations of the uptakes for both the 
quantifications performed and the conclusions made about the underlying biology on the 
basis of the imaging results warrants efforts to assess and rank the heterogeneity. This has 
been primarily performed using textural analyses [Chicklore 2013] and to a lesser degree by 
alternatives like fractal analyses [Miwa 2013]. Advances in medical imaging techniques 
increase the possibilities for assessing effects due to the microenvironments in tumour tissue 
[Brooks 2014]. Therefore an understanding of intra-tumour biology and the subtle differences 
within tumours becomes necessary [Brooks 2013]. Studies analysing heterogeneity in, for 
example, 3’-Deoxy-[3’-18F]fluorothymidine ([18F]FLT) and [18F]FDG images have been 
conducted [Axente 2012, Watabe 2012, respectively]. It is important to determine the scale 
by which heterogeneity is ranked since everything would be interpreted as homogenous at a 
small enough scale [Brooks 2013].  
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3 Aims of the Thesis 

The goal of this thesis was to develop, validate and implement methods for describing 
radioactivity uptake. Most methods of quantification and kinetic modelling in PET have been 
developed for applications in the human brain. This thesis aimed to translate the use of some 
of these models to studies in peripheral tissue (primarily tumours) in small animals (mice). 
Specifically, in the following papers the quantification/modelling aims were:  

Paper I: To use kinetic analyses to describe the small, but distinct, cell death related uptake 
of the phosphatidylserine-targeting 11C-labelled Sel-tagged AnnexinA5 and the uptake of an 
analogously labelled control protein in xenografts with and without chemotherapy.  

Paper II: To further examine and validate the use of a macro-parameter based quantification 
rather than conventional quantifications of the data from paper I.  

Paper III: To demonstrate using conventional uptake quantifications the ability of the 
Affibody™ molecule ZHER2:342, after Sel-tagging and 11C-labelling, to target the human 
epidermal growth factor 2 (HER2) by comparing to studies with pre-blocking doses and in 
non-HER2-expressing tumours. Furthermore the dosimetry advantages of the chosen 
radionuclide for labelling were examined. 

Paper IV: To demonstrate using conventional uptake quantifications the ability of the 
Affibody™ molecule ZEGFR:2377 after Sel-tagging and 11C-labelling, to target and monitor the 
expression of the epidermal growth factor receptor (EGFR) by comparing uptake patterns in 
tumours with different expression levels due to the cell line or developmental status. 
Furthermore, specific uptake of the tracer in other peripheral compartments was discussed. 

Paper V: To develop a method for ranking variations in inter- and intra-tumoural uptake, 
heterogeneity, in small animal PET images. The data used to illustrate the use of the 
algorithm were acquired in other studies included in this thesis (papers I and III).   
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4 General Methods 
 
4.1 Animal and Disease Models 

Prior to the clinical implementation of a medical procedure, several types of trials must first 
be conducted and approved. Typically at least one of these involves trials with in vivo 
biological models. In the papers of this thesis, rodent (mouse) models were used. These 
animals and the tumour models of different human derived cell lines were grown, engineered 
and chosen to fit the goals of a particular experiment. In order to minimize influences from 
movement artefacts predominantly from breathing and cardiac motion (which are quite rapid 
in mice), the tumour models that are used here were placed on the upper right flank of the 
mice, near the shoulder. Additionally in this region there were no large uptakes of the studied 
tracers and therefore spillover effects were minimized.  

 
4.1.1 Animal Models 

The distribution in one species never fully matches the distribution in another species and 
therefore using animal models are not exactly models for humans. So why do we keep doing 
animal studies? One answer is that even if we can’t say exactly what will happen in an other 
species, if any effects are observed this will warrant performing more extensive examinations 
of these effects. Animal studies can also give indications about the kinetics of the studied 
compound. However, when performing small animal studies, the impact of stress and 
environment on the kinetics of the tracer must be remembered. Thus animal handling and 
external environmental factors that may impact on experimental outcomes must be 
standardised [Beynen 2001]. The mouse types that are used are genetically modified and are 
inbred strains of several generations (at least twenty generations to be classified as inbred) 
[Zutphen van 2001].  

Severe combined immunodeficiency (SCID) mice lack an immune system and are therefore 
appropriate for oncological experiments, especially when using human carcinomas.  

Balb/c is an inbred albino, laboratory bred strain of the normal house mouse. It is a popular 
strain used in many types of research in especially cancer and neurological diseases. 

Nude mice are autosomal strains with very poor viability [Kindred 1971]. They completely 
lack a thymus, which results in an inhibited immune system. Therefore they will not reject 
human tumour xenografts and are, like SCID, appropriate for oncological experiments but 
can not be used to the same extent.  

The development of animal models has increased during the last decades and, in particular 
the possibilities to genetically enhance the environment in which disease develops [Abbey 
2006]. It is desirable that the animal models include all the applicable and correlated 
parameters that are present in the ultimately targeted biological system. Naturally it would be 
preferred to replace animal models with non-in vivo tests or theoretical studies. Performing 
kinetic (PET) studies and employing software for simulations can reduce the amount of 
animals. 

To avoid motion during PET acquisition, the mice used here were anesthetized using 
isoflurane delivered through individual breathing masks. The anaesthesia may have an effect 
on the imaging results [Saba 2015]. Stress is also a potential source of error [Fueger 2006] so 
the mice are delivered to the PET laboratory hours prior to the exam to allow them to 
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acclimatize. Additionally, the PET bed is equipped with a heating pad to maintain body 
temperature during the study. To increase the throughput of examined animals and reduce the 
costs of the experiments, the animals are often examined pairwise (Fig. 20). Studies in which 
more than two animals were imaged simultaneously have been assessed and examined 
elsewhere [Habt 2013, Jabte 2013], but additional processing, such as scatter corrections, was 
necessary which instead produced poorer SNRs [Prasad 2013]. 

 

 
Figure 20: Arrangement of the mice during imaging. 

 
Even though the goal of a study often concerns a tracer’s uptake in a specific tissue such as a 
tumour the overall bio-distribution also has to be assessed since it affects the tracer’s 
availability for targeting. This means that several other tissues have to be delineated if they 
contain radioactivity. For mice these can include the liver, kidneys, intestines, spleen, venous 
and arterial blood, skeletal muscle, heart, sometimes the lungs, brain and whole body. Other 
organs may be difficult to delineate in mice due to their size or their proximity to other 
tissues with high uptakes. The urinary bladder can also often be detected when the tracers are 
renally eliminated, though the radioactivity concentrations collecting there vary considerably. 
The choices of which tissues to delineate were based on patterns observed in the studies, 
information about the tracer’s expected behaviour and in discussions within the research 
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group. In the absence of anatomical images, anatomical atlases of mice [e.g. Iwaki 2001] 
were of considerable utility. 

After the final examinations the animals are euthanized and post mortem analyses can be 
made. The tissues can be excised for complementary ex vivo analyses such as histochemical 
mapping and phosphoimaging.  For tumours, final measurements of the dimensions can be 
made and possibly combined with calliper measurements made on live animals for use when 
constructing a ROI. Tumour volume may be calculated according to the formula 

[Euhus 1986].  

The animal strains used in the papers of this thesis were chosen based on the tumour models 
to be used: 

Paper I: SCID mice with one tumour model divided in four different groups: the targeting 
and control tracers were tested at baseline (n=12 and 9) and after the mice were treated with 
the chemotherapeutic doxorubicin [Kong 2000] (n= 8 and 5). 

Paper II: SCID mice from three of the groups in paper I (sub-grouped so there would be the 
same number in each group, i.e. n= 5). 

Paper III: SCID mice, two groups: one (n=8) with a tumour containing a high amount of the 
molecular target and examined twice (without and with blocking) and a second group (n=4) 
with a tumour containing low expressions of the molecular target. 

Paper IV: SCID (n=10), Balb/c (nu/nu) (9) and Balb/c (8), of which the first two were 
tumour-bearing and the Balb/c was used for bio-distribution studies. 

Paper V: SCID mice with tumour models studied were from previous experiments (n=7). 
 

4.1.2 Cancer and Cancer Models 

Cancer (malignant tumour growth) is increasing worldwide in economically developed 
countries. Major contributors to the development of cancer include genetic predispositions, 
infections, environmental factors, obesity and smoking. More recently the incidence has also 
begun to increase in less developed countries [Torre 2015]. In principle the major 
characteristic different cancer types have in common is that of uncontrolled cell division. 
However, other common underlying biological features have been identified [see e.g. 
Hanahan 2011 and Fig. 21]. Cancers take over the natural transduction pathways used by 
growth factors to stimulate proliferation and to sustain viability [Figueiras 2011]. These 
“ambushed” pathways will therefore naturally become the goals for targeted therapy 
strategies.  

In order to improve prognosis, cancer treatment needs to be individualised [Witsuba 2011]. 
Furthermore, to lessen occurrence of cancer worldwide, the causes of cancer and how to 
control it must be better understood [Jemal 2011]. 

height ⋅width2 ⋅0.5



 

 
  33 

 
Figure 21: Biological “hallmarks” in cancers and the therapeutics targeting them. These can 
consequently all also be potential targets for imaging tracers. Reprinted from Hanahan 2011 

with permission. 
 

If the cancer spreads from its original site it is said that the cancer has metastasised. This 
spread is the primary cause of death related to cancer [Chambers 2002]. The disease models 
that were employed in this thesis are based on xenografts of different human tumours. 
Therefore a deficient immune system in the animal model was required.  

FaDu, a human head/neck carcinoma, was the cancer model that was used most often since it 
is typically a very quickly growing solid cancer (doubling time is approximately 50 hours 
[Rangan 1972]). This was the only cancer model used in papers I and II and it was also one 
of the models used in papers IV and V. 

A431 is an epidermoid carcinoma. This cancer has low expressions of the human epidermal 
growth factor receptor 2 (HER2), which is overexpressed in many breast cancers and 
associated with a poor prognosis. It was used as a control in HER2 targeting studies in papers 
III and V. Additionally it has a considerable overexpression of the epidermal growth factor 
receptor [Ullrich 1984] (EGFR which is a cell surface protein that binds to the epidermal 
growth factor). It was used in EGFR targeting studies in paper IV. 

SKOV-3 is an ovarian carcinoma. This cancer has a very high expression of HER2. Targeting 
its HER2 expressions was studied and compared to that in A431 in papers III and V. 

MDA-MB-453 453 is a human breast cancer. Cells of this type were used in vitro in paper III 
as a control for HER2 and paper IV as a control for EGFR binding only with the 
fluorescently labelled protein.  

 
 
 



 

34 

 
4.2 MicroPET 

The PET camera that was used in the studies in this thesis was the microPET Focus 120 ®  
(Concorde Microsystems, later Siemens), shown in figure 22. Its FOV is 7.6 cm x 10 cm for 
axial and trans-axial dimensions and the resolution of the machine centrally in the FOV is 
about 1.3 mm. This system has been extensively evaluated previously by Tai et al. [Tai 
2005].  

The microPET was more extensively calibrated against external phantoms of known 
radioactivity concentrations twice a year. Quick quality controls, so called quickscans, were 
also performed at the beginning of each examination day. The quickscan performs a machine 
diagnosis by scanning a pre-defined 68Ga point source and generating images from which the 
current status of the machine can be judged to be operative or not (all detector blocks 
functioning as expected, etc.).  

Having a dedicated small animal PET allows us to “reduce” and  “refine” experiments, two 
of the three R’s of Russell and Burch’s guide for more ethical use of animals in testing 
[Russell and Burch 1959, Russell 1995] (the third is “replacement”). We “reduce” since we 
are able to achieve results with fewer animal models than with ex vivo techniques that require 
sacrifice of multiple individuals at multiple times. We “refine” because the data are from the 
same individual over all times and potentially on multiple days, therefore allowing better 
control over influences from individual variations. 

 
Figure 22: The microPET Focus 120 ® used in the experiments of this thesis. 

 
4.2.1 Statistical analysis 

Research results can be either “quantitative” or “qualitative”, Qualitative research tends to 
focus more on underlying causes, why and how things happen, whereas quantitative research 
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tries to provide answers using numbers that can be transformed into useable statistics. 
Quantitative research is often viewed to be more “scientific”, more “evidence-based”. The 
research conducted in this thesis dealt with “quantitative” rankings of imaging data. 

After analysing two or more data(sets), it is often desirable to assess if the two results are 
(statistically) different from each other. Typically this is achieved by using a t-test in which 
the size of the difference between their means is related to the variation in the data. 
The t-test will yield a p-value, which is the probability that the so-called null hypothesis is 
fulfilled. The null hypothesis generally assumes that there is no relationship between the two 
(or no differences between them).  

The t-test assumes that the distribution involving these two samples is normally distributed, 
which can be tested graphically by performing a quantile-quantile-plot (QQ-plot). If the 
distribution can not be assumed to be normally distributed (i.e. unknown distributions), the 
Wilcoxon rank sum test can instead be used to generate a p-value. Often significance tests are 
two-sided, meaning every deviation can be both positive and negative. The ANOVA-test 
(Analysis of Variance) is an alternative test for the p-value which allows for more than two 
conditions.   

The F-test can be used to determine whether or not two samples are from the same group. It 
gives only a “they are” or  “they aren’t” answer. This test is only applicable for normally 
distributed measurements. Generally a p-value less than 5% is usually considered to imply 
that the null hypothesis is not fulfilled, thus a statistically significant difference is achieved. 
 

4.2.2 Data processing 

Raw data from the microPET camera is acquired continually in list mode in which each event 
and its time of occurrence are recorded sequentially (as opposed to “frame” mode in which 
data is collected without the temporal information). The list mode files are then transformed 
into a sinogram format. This sinogram file is reconstructed into histogram files. The fastest 
and often the first used reconstruction algorithm is the filtered back projection (FBP), which 
was used in papers I and III. In this process a convolution will smooth out the sharp edges 
associated with imaging [Bushberg 2002]. FBP is an analytical method that performs the 
image reconstruction by directly applying analytic formulas derived from the theory 
[Clackdoyle 2010] as opposed to iterative methods that are optimized to handle large linear 
systems. Due to the limited number of projections, FBP can create artefacts that streak 
reconstructed images, so-called streaking artefacts. To avoid these and to some extent address 
PVEs, iterative reconstruction algorithms such as ordered subset expectation maximization 
(OSEM) can be employed [Hudson 1994], see figure 23. OSEM was used in papers II, IV 
and V and could possibly have benefited analyses in paper I. 
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Figure 23: Comparison of a reconstructed image using FBP (left) and OSEM (right) 

algorithms. Notice the streaking artefacts emerging from the radioactive “hot spot” when 
using the FBP reconstruction. This is a trans-axial image of a 68Ga point source.  

 
An iterative algorithm may substantially increase the signal to noise ratio (SNR) if the 
number of iterations is optimal: i.e. after a certain number of iterations the spatial resolution 
is optimised but thereafter the noise will increase. If the SNR is not very large, an optimised 
iterative reconstruction should be used instead of FBP [Riddell 2001]. The increase in spatial 
resolution with an iterative method will, however, be dependant on the object size, which is 
not the case for linear methods like FBP [Weber 2004].  

Systematic corrections are made in the reconstruction step. These include corrections for 
dead-time (the short time the detector will require to recover after each detected event) and 
for randoms (the events detected that do not originate from the same annihilation). During the 
reconstruction process it is possible for the user to determine the framing of the one second 
data sets acquired into larger intervals, as desired, to highlight different phases during the 
imaging. Typically short time frames are first chosen during the initial distribution phase 
when events are changing rapidly. Care has to be taken to not make the time frames too short 
toward the end of the scan, since the number of events detected decrease as the short-lived 
radionuclides decay. 

The computer software in which the histogram files are opened and is used in all papers in 
this thesis was developed by Siemens. It is called the Inveon™ Research Workplace (IRW). 
The IRW supplies you with several options for constructing a ROI, extraction of the spatial 
and quantification information for each voxel, full control over window settings and different 
kinetic modelling methods. For more elaborate data handling and especially when developing 
the heterogeneity algorithm (paper V) the matrix laboratory (MatLab ® version R2011a) 
software was used as a complement. 

 
4.2.3 Tracer Quantification 

The goal of quantification is to be able to make conclusions about tracer behaviour based on 
the data available and ideally via as simple a process as possible. The flowchart displaying 
the thought process behind choosing a method for tracer quantification applied in this thesis 
is shown in figure 24.   
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Figure 24: A flowchart over the thought process for quantification. The 

“p” stands for “probability”, see section “Statistical analysis”.  
 

The papers in this thesis all dealt with descriptions of the behaviour of radiolabeled small 
proteins in targeting peripheral tumours. The quantification processes used in the papers in 
this thesis were: 

Paper I evaluated two comparisons: the differences in uptakes of two different ≈36 kDa 
protein tracers and the differences in their uptakes after chemotherapy or at baseline. The 
tumour, the left heart chamber and the right thigh of the mice were first delineated. The 
differences between the uptakes were very small and therefore macro-parameter (graphical) 
methods for describing the tracer behaviour were examined. Using reference tissue 
necessitated testing whether the binding was reversible during the measurement period. This 
was done by observing the TACtumour-TACart. Patlak plots were generated and analysed but 
they did not generate a horizontal residual line and thus Patlak analysis was not deemed 
appropriate. To use the Logan reference tissue model, a was required. The right thigh 

was validated as a reference tissue by observing the residual of the Logan plot. The was 
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determined using the SRTM after validating that the k1
onecompartment

k1
twocompartments ratio did equal 

≈1. This was further validated using a F-test. The macro parameter then analysed was the 
BPND. 

Paper II was an extension and further validation of the quantifications of the studies 
performed in paper I. Thus the same types of tests as those used in paper I were performed, 
though the data were reconstructed differently using shorter time frames initially for 
definition so the blood input could be defined (for comparison with the reference tissue 
results) and by using so the OSEM algorithm would reduce PVEs. Additionally it was 
demonstrated that the did not alter the results and thus it could be omitted. Therefore 
SRTM and any assumptions associated with it were totally avoided. Here we calculated the 
macro parameter DVR instead of BPND. 

Paper III compared the uptakes of an Affibody™ tracer in HER2-expressing tumours at 
baseline vs. uptake in the same tumours subsequently measured after administering a 
blocking dose and also compared with a tumour model with lower HER2 expression levels. 
The differing uptakes were well separated from each other and could thus be described 
without employing macro parameter analysis. %ID/g was used as the quantification 
measurement for this paper, though they were all normalised to body weight and thus were in 
essence similar to SUV. 

Paper IV compared the uptake of targeting vs. non-targeting Affibody™-based tracers in 
tumours with different EGFR expression levels, either due to the cell line used or its time of 
growth from inoculation. The differences were in general quite robust and in those cases 
SUV quantifications were sufficient to illustrate the differences in the uptakes. However, it 
was noted that future applications aiming to quantify when there were small differences 
between the compared uptakes, a macro parameter method would be required and it would 
have to deal with the separation of radioactive signals in the blood and reference tissue 
(metabolized, free, bound tracer).  

Paper V focused on the description of local variations in the uptakes (SUVs) in studies from 
papers I and III and not their quantifications per se. 
 
An underlying theme in these studies concerned the use of controls, either using the animals 
as their own control in different situations or by comparing with another tracer with no 
specific targeting capacity. Having a non-distinguishable separation between two datasets 
warranted a macro parameter analysis, which was the case in papers I and II (and implied that 
it could sometimes be the case in further applications of the tracer in paper IV).  
 

4.3 Tracers Evaluated 

In this thesis six different tracers were used for imaging preclinical tumours. Aside from 
[18F]FDG used in papers I and V as a comparison to another imaging biomarker, the tracers 
were all small to medium-sized proteins (7-40 kDa). These five proteins (and these studies) 
were connected by the way in which they were labelled (Fig. 25). After they were 
recombinantly fused with a C-terminal selenocysteine-containing Sel-tag (ST), the 
tetrapeptide -Gly-Cys-Sec-Gly [Cheng, 2006] the sulphur-selenium bond is broken during the 
labelling using DDT to generate a very reactive selenide ion. This then can react with 
radiolabelled reagents like [11C]methyl iodide and the label will thus be site-specifically on 

k2
ref
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the C-terminal. For a detailed description of the tagging and labelling method see Cheng et al. 
[Cheng 2006]. This method was used to label all the protein ligands used in this thesis with 
11C, but also with fluorescent tags and for reactions with chelators to enable radiometal (68Ga) 
labelling. 

 
Figure 25: The Sel-tag method of labelling. 

 

AnnexinA5 (AnxA5; when 11C-labeled here: [methyl-11C]-His6-AnxA5-ST-CH3) has been a 
frequently evaluated tracer that most often is labelled with 99mTc for SPECT studies 
[Belhocine 2006]. This tracer was studied in papers I, II and V. AnxA5 targets 
phosphatidylserine (PS) which normally faces inward on the cell wall (cell membrane), but is 
exposed extracellularly during programmed cell death (apoptosis) and necrosis. The 
molecular weight of unmodified AnxA5 is about 36 kDa, but about 38 kDa after adding the 
His6- (N-terminal, see below) and Sel-tags (C-terminal). 

Mutated-thioredoxin-green fluorescent protein (mTrx-GFP, when 11C-labeled here [methyl-
11C]-His6-mTrx-GFP-ST-CH3) was used also in papers I, II and V as a negative control to 
AnxA5, since it is size-matched but with no specific binding to the targeted PS. After tagging 
with His6 and ST, its molecular weight is about 40 kDa. It was employed to assess and 
correct for the influence of the EPR effect [see e.g. Maeda 2009] on the uptake and retention 
of AnxA5. 

ZHER2:342 (when 11C-labeled here: [methyl-11C]-His6-ZHER2:342-ST-CH3) is an Affibody™ 
molecule which targets HER2 with high affinity. This tracer had been previously labelled 
with 111In [Tolmachev 2006] and 99mTc [Tran 2007] and this thesis (papers III and to a small 
extent V) was intended as a benchmarking study to show that the Sel-tagging and labelling 
with positron emitters gave expected results. In order to perform a dose comparison 
(radiometals tend to accumulate in the kidneys), the radiometal 68Ga was also used to label 
this tracer.   

The His6 in the abbreviations for the labeled proteins indicates that these tracers are His-
tagged. A His-tag is an amino acid motif consisting of six histidine residues and is used to 
aid in purifying recombinant proteins. It enhances the protein’s tendency to bind to other 
molecules and the fused proteins can be easier to purify [Hengen 1995]. Thus the Sel-
tagged proteins with the His-tag were more easily isolated. However, since it has been 
observed that His-tagging could alter the uptake of Affibody™ molecules particularly in 
the liver [Ahlgren 2009], we did not His-tag the following two proteins. 
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ZEGFR:2377 (when 11C-labeled here: [methyl-11C]-ZEGFR:2377-ST-CH3) is an Affibody™ 
molecule, which targets EGFR with high affinity.  This tracer had been previously labelled 
with 111In [Malmberg 2011, Tolmachev 2010]. In paper IV the 11C-labeled Sel-tagged tracer 
was paired with its control protein (see below) to monitor the receptor density over time and 
in different models as well as to examine other factors contributing to the tracing ability.  

ZTaq:3638 (when 11C-labeled here: [methyl-11C]-ZTaq:3638-ST-CH3) [Gunneriusson 1999] is an 
Affibody™ molecule used as a size-matched, negative control to ZEGFR:2377 in paper IV. Thus 
it had the same function as mTrx-GFP in papers I, II and V. It binds to polymerase, an 
enzyme that synthesizes long chains of nucleic acids, but not to the EGFR receptors, as was 
previously known and also confirmed here for the fluorescently labelled Sel-tagged protein.  

AnxA5, mTrx-GFP, ZHER2:342, ZEGFR:2377 and ZTaq:3638 were all also fluorescently labeled 
through the Sel-tag for in vitro, ex vivo corroborations of their binding characteristics. 
However, those results were not quantified by the techniques described here for the 11C-
labeled probes. 

[18F]FDG was, as mentioned above, used as a metabolic comparison to results obtained with 
AnxA5 and mTrx-GFP. [18F]FDG is very small (0.18 kDa). It is an analogue of D-glucose 
and thus traces glucose pathways and its uptake is closely related to the first step of glucose 
metabolism [Dierckx 2008]. [18F]FDG is not what we usually mean by a targeting tracer 
since it can accumulate wherever glucose is utilized. [18F]FDG has been used extensively in 
neuroscience PET and more recently very much in diagnostic oncology [Hess 2014]. 
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5 Results and Discussions  
This chapter will briefly sum the results and discuss further the findings of the papers 
included in this thesis.  

 
5.1 Combining [11C]-AnxA5 PET imaging with serum biomarkers for improved detection 

in live mice of modest cell death in human solid tumor xenografts (Paper I) 

The production, Sel-tagging and 11C-labelling of AnxA5 and control protein mTrx-GFP were 
published in paper i (not included in this thesis). It was also validated there that the uptake of 
11C-labelled AnxA5-based tracer could be used to monitor cell death since it increased, as 
expected, after massive apoptosis was induced in the liver by anti-fas treatment.  

Paper I introduced the use of compartmental modelling to analyse the more modest imaging 
readouts obtained when the induced cell death was much more moderate. In this study the 
chemotherapeutic agent doxorubicin was used to treat FaDu xenografts and the effects were 
monitored using the radiolabelled AnxA5 and the control mTrx-GFP as well as with serum 
cell death markers. Initial analyses of conventional uptake measurements did not reveal 
statistically significant inter-group differences. With macro parameter analyses, a statistically 
significant difference was achieved in uptake between baseline and 72 hours after treatment 
with doxorubicin for the radiolabelled AnxA5 but the control tracer uptake did not increase 
similarly (Fig. 26). Tumours were imaged at several time points after the administration of 
doxorubicin, but very small radioactivity uptake differences were observed before 72 hours. 
The serum biomarkers gave a larger read-out due to their accumulation over the whole 72 
hours after the doxorubicin treatment, while PET-AnxA5 imaging instead showed only the 
cell death at a single discrete time. The macro-parameter used here was the BPND, which we 
later in paper II deemed less appropriate for these medium sized tracers. However, the choice 
of macro parameter used did not affect the conclusions drawn (see below). Thus it was 
possible to assess the moderate cell-death induced by doxorubicin using radiolabelled Sel-
tagged AnxA5 and with PET quantification. It is noteworthy that the curve for mTrx-GFP 
decreased after treatment. This was hypothesized to be due to decreased delivery due to the 
doxorubicin’s effect on endothelial cell function. It was therefore concluded that the uptake 
of AnxA5 after treatment should instead be compared to that of mTrx-GFP after treatment. 
 

 
Figure 26: Left: Tumour TACs for radiolabelled AnxA5 (dotted) and mTrx-GFP (dashed); 

treated (symbols) and non-treated (no symbols). Right: Logan plots for radiolabelled AnxA5 
(dotted) and mTrx-GFP (dashed); treated (symbols) and non-treated (no symbols)). 
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The ability of radiolabelled AnxA5 and mTrx-GFP to detect changes due to the treatment 
was also compared with [18F]FDG (Fig. 27). [18F]FDG showed a characteristically faster 
distribution to the tumours, but no distinguishable difference between the treated and non-
treated tumours was observed. 
 

 
Figure 27: Left: TACs for AnxA5 (dotted) and [18F]FDG (dashed) for non-treated (no 
symbols) and treated (symbols) tumours. Right: TACs for mTrx-GFP (dotted) and 
[18F]FDG (dashed) for non-treated (no symbols) and treated (symbols) tumours. 

 
This was, to our knowledge, the first study in which a size-matched control was introduced 
specifically to assess the influence of the EPR effect on AnxA5 imaging. Attributing this to 
the EPR effect could be done since the distributions of both tracers in healthy tissue were 
otherwise comparable. In spite of our intention to take advantage of the short half-life of the 
radionuclide to perform sequential studies in the same animals with AnxA5 and mTrx-GFP 
as was done in paper i this had to be abandoned here since the tumour-bearing SCID mice did 
not tolerate multiple imaging sessions. Even though each animal was not its own control, 
statistically significant results were still found for these inter-group comparisons. Though not 
commented on specifically in this paper, the concept of heterogeneity and its contribution to 
differences between images arose in the analyses performed in this paper and was one of the 
reasons leading to the study in paper V.  

 
5.2 Comparison of methods for evaluating radiolabelled Annexin A5 uptake in pre-clinical 

PET oncological studies (Paper II) 

Paper II performed more in depth validations of the methods used to analyse radiolabelled 
AnxA5 uptakes due to induced cell death (a retroactive analysis of the studies performed in 
paper I). Here the statistical significance, the p-value, for comparisons of baseline to treated 
animals was evaluated for analyses using conventional uptake measurements (here SUV) as 
opposed to macro parameter measurements.  

Recognizing that the BPND parameter used in paper I did not adequately emphasize the large 
non-specific EPR-related contributions to the AnxA5 uptake in these leaky tumours, the DVR 
was instead used here. In order to avoid assumptions about the compartmental setup, a data 
driven graphical approach was employed to determine the macro parameter. Since we had a 
tracer (AnxA5) that bound reversibly, the Logan method was used. Since we were working 
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with small animals from which blood samples are difficulty taken, uptake in a reference 
tissue (muscle) was employed as the input. It is essential to validate the methods used for 
obtaining a macro parameter. This is because the reference tissue method had not been 
validated in peripheral tissue [Tomasi 2012]. Mean DVRs using the arterial blood and the 
reference tissue as input were comparable for both tracers (Fig. 28 top).  

The statistical significance of the differences calculated for baseline AnxA5 compared to 
AnxA5 after doxorubicin treatment was 20-fold higher when measured with macro 
parameters than SUVs (Fig. 28 bottom left). Similarly for the comparison of baseline mTrx-
GFP compared to AnxA5 after doxorubicin treatment the statistical significance was even 
larger, 40-fold, when measured with macro parameters than SUVs (Fig. 28 bottom right). 
This difference supports even further the suggestions in paper I that comparisons between the 
two tracers are relevant to make. 

 
Figure 28: Top: Verification of reference tissue. Bottom left: Treated AnxA5 compared to 
non-treated AnxA5. Bottom right: Treated AnxA5 compared to non-treated mTrx-GFP. 

 
The EPR effect on tracer uptake was quite obvious here, as revealed by the large uptakes of 
the control protein that were essentially the same as AnxA5 (Fig. 28 top). The DVRs (ratio of 
tumour to reference tissue) should at baseline (with no specific cell death related uptake of 
AnxA5) theoretically be unity if the non-specific uptake in the tumour was comparable to 
that in the reference tissue. However, they were in fact close to 2. Due to known abnormal 
characteristics of tumours, it is reasonable to attribute this discrepancy to the VT of the tumour 
and to an EPR-effect that about doubled the macro parameter measurement.  
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Macro parameter assessment using a reference tissue method will implicitly assume that the 
biological characteristics of the target tissue and the reference tissue are the same, except for 
the presence of the target. This is most likely not true in tumours due to defective 
vascularization and lymphatics. Thus the calculated macro parameter will be biased, 
especially when describing the uptake of larger and medium sized proteins that are retained 
longer, like AnxA5 and mTrx-GFP. When making comparisons between two tissues or 
situations in which the EPR-effect ought to be of equal amplitudes, it should be accurate to 
use a ratio between the two results. However, care must be taken in determining a macro 
parameter using a reference tissue if the comparisons involve different tumour models (with 
different vascular properties) or between substantially different size ligands that can be taken 
up or eliminated at different rates. In this case, it becomes important to have these size-
matched controls as comparisons and to use macro parameter results that are ratios of the 
binding to the non-targeting tracer to reduce the bias.   

 
5.3 HER2-Positive Tumors Imaged Within 1 Hour Using a Site-Specifically 11C-Labeled 

Sel-tagged Affibody molecule (Paper III) 

In Paper III the ≈7 kDa Affibody™ HER2-targeting ligand, ZHER2:342, was produced, Sel-
tagged and labelled with 11C and with 68Ga. The 68Ga-labelled tracer was only used in 
biodistribution studies in healthy mice for dosimetry comparisons. The biodistribution as well 
as the HER2-targeting ability in SKOV-3 xenografts of the 11C-labelled ZHER2:342 tracer was 
examined. The blocking approach (as described in section 2.1) was used to demonstrate 
specifically bound ligand. In these mice it was possible to perform repeated studies and it was 
also possible to achieve, with blocking, a distinct separation between the uptake curves at 
baseline and after pre-administration of the unlabelled ZHER2:342 (see Fig. 29 left). Since 11C 
was used as a label, the radioactivity had essentially decayed after 60-90 min. Thus 
sequential investigations could be conducted during the same imaging session without 
removing the animal. Therefore the ROI was the same for both experiments, which allows for 
a more direct comparison and other biological variability was compensated for by default 
when each subject was its own control. After blocking, the uptake was essentially the same 
level as that in A431 xenografts with low HER2 expression levels (Fig. 29 right).   

Although the differences between groups observed here were quite distinguishable, a macro 
parameter-based method could have been used as an alternative quantification approach. This 
could have been used to e.g. determine the rate constants describing the distribution between 
compartments. In this way even more support could have been obtained for the conclusions 
made that the pre-blocking decrease in uptake was receptor mediated and not due to other 
pharmacological effects of the administered Affibody™ molecule. Macro parameter methods 
might also be beneficial (necessary) if studying small changes over longer periods of time or 
before and after therapies, as in paper I and IV. In such studies, it would be very valuable to 
compare results with those obtained with a size-matched control, as we did with Affibody™ 
molecules in paper IV. 
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Figure 29: Left: TAC representing radioactivity uptake in SKOV-3 tumour of tracer when the 

tumour has not been pre-treated, i.e. baseline (dotted, symbols) opposed to pre-treated, i.e. 
blocked (dashed, no symbols). Right: Static (at 40 min) uptake means and individual spreads 

for the SKOV-3 xenografts without and with blocking compared to A431 xenografts with 
low HER2 expressions.  

Dose expositions due to the uptake of the tracer labelled with the longer-lived radiometal 
68Ga was compared to that of the relatively short-lived 11C. The MIRD (Medical Internal 
Radiation Dose) pamphlet with dose to tissue weighting factors based on human data was 
used for these calculations. However, since the results presented in paper III were ratios 
between the two radiotracers, biases due to use of human data should cancel. A more 
rigorous estimation would have been to conduct Monte Carlo simulations, but this was 
deemed to be outside the scope of this article. Both tracers cleared fairly rapidly from non-
tumour tissue and blood before plateauing at low levels in the latter. Radioactivity from the 
radiometal labelled tracer accumulated in the kidney, which led to a much higher dose 
exposition than for the 11C-labelled tracer. There was a rapid and high uptake in the tumour 
tissue resulting in high tissue contrast and good delineations. If 68Ga had been used in the 
tumour imaging its half-life of 68 minutes would have made it necessary to wait longer than 
with 11C between successive imaging sessions and therefore to remove the animal from the 
camera. However, a longer half-life would have permitted observations of the distribution of 
the tracer during a longer period of time.  

 
5.4 Preclinical PET imaging of EGFR levels: paring a targeting with a non-targeting Sel-

tagged Affibody-based tracer to estimate the specific uptake (Paper IV) 

In Paper IV the ≈7 kDa Affibody™ EGFR-targeting ligand, ZEGFR:2377, and this time a non-
binding size-matched control, ZTaq:3638, were produced, Sel-tagged and labelled with 11C. 
Their biodistributions were compared in healthy mice and their uptakes in numerous tumour 
models were also studied. Longitudinal studies were performed here, i.e. the uptake levels 
were examined over time (in the same animal model), which had not been attempted (paper 
III) or achieved in the other studies in this thesis due foremost to the fragile nature of the 
animals (paper I). 

The method for quantification used here was conventional uptake measurements since a 
sufficient separation between control and targeting uptakes was achieved to be able to 
demonstrate the differences being studied. Alternative quantifications of the EGFR-targeting 
ligand would require the use of either blood or reference tissue as input and both of these 
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showed a distinct difference in the concentrations of radioactivity for the two tracers (Fig. 
30A). These differences were interpreted to be related to EGFR binding in other peripheral 
compartments. Furthermore it was unclear from comparing residuals from Logan and Patlak 
curves (not presented in the paper) whether the tracers used in this paper bound reversibly or 
irreversibly in all situations (Fig. 30B,C). This needs to be clarified in order to choose the 
appropriate macro parameter method for analysis, which was another reason for using SUVs. 
Several verification steps were thus circumvented, making the analyses easier. 

The purpose of comparing the targeting with the control protein was to assess the EPR effect 
and non-specific uptake, in a similar manner to that of paper I. Even if the EPR usually is 
more pronounced for larger molecules, the effects of EPR were noticeable when using these 
small proteins as well and were especially important when the receptor levels were low (Fig. 
30B). This becomes important since the EPR effect will definitely have different impacts on 
the quantifications, depending on both tumour and tracer characteristics.   

 

 
Figure 30. 
(A): Radioactivity concentrations in arterial blood for ZEGFR:2377 (black) and for ZTaq:3638 
(blue).  
(B): How ROI thresholding can impact on radioactivity uptake measurements: a ROI (left #1) 
not excluding areas of more diffuse uptake has nearly the same mean uptake levels as a 
smaller tumour growing more slowly (less necrosis) (right).  
(C): TACs showing changes in increased targeting with time uptake from inoculation.  
(D): Changes in targeting uptake on an individual level as the tumours grew.  
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The variability in expression levels on an individual level over time/size (Fig. 30 B-D) raises 
questions about how well all these factors are known/accounted for in group-wise 
comparisons. Individual variability could be due to changes in the expression levels and their 
locations (intra- vs. extracellular) over time, but may also be affected by variations in the 
availability of the tracer due to changing vascular properties, other tumour characteristics, 
competition with other binding sites in other compartments. Non-invasive radionuclide-based 
imaging provides a powerful technique for monitoring over time in the same individual (if 
they are robust enough for multiple imaging sessions) and estimating the influences of these 
various physiological parameters (Fig. 30D and in paper III in which the same tumour 
models were their own controls).  

A blocking quantification, as was used in paper III, could have also been used in this study to 
illustrate the specific binding. However, this was not expected to give additional information 
since some of the targeting uptakes were only slightly larger than the non-specific uptake. 
Therefore it would have been difficult to separate out only the effect on the specific binding 
component without using a macro parameter approach as in papers I and II. Furthermore 
finding the optimal blocking dose to use could be complicated due to the other peripheral 
EGFR-containing compartments that would also need to be comparably blocked.  

The A431 tumour has a substantial overexpression of EGFR [Ullrich 1984] and is often used 
because the signal contrasts will be so substantial. However, this tumour model is probably 
not very representative of more typical tumours with elevated expression levels. Therefore 
comparisons of the ability to show expression levels in other xenografts (like FaDu used 
here) are motivated.  

EGFR trafficking leads to different amounts of extracellular and internalized receptor [Wiley 
2003]. It could be beneficial if these different contributions to estimated receptor densities 
could be isolated/quantified. A proposal for such an experiment is shown schematically in 
Figure 31. 
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Figure 31: A proposed continuation of this study. sEGFR is shed EGFR. 
 

At a minimum, a control tracer (like ZTaq:3638), an extracellular targeting tracer (like ZEGFR:2377) 
and a tracer that also targets intracellular EGFR (like the tyrosine kinase inhibitor erlotinib 
[Bahce 2013] would be used. We would continue with carbon-11 labelled ligands since same 
day experiments can be performed with different tracers on the same individual. After 
verification of input (blood or reference tissue) a macro parameter method can be employed 
(possibly the pseudo reference model in Gunn 2011b]. This gives us the opportunity to 
calculate flow-parameters (and thus assessing vascularisation and permeability of this 
tumour) as well as the different binding potentials or DVR for the two targeting ligands. 
Conducting the experiments on rat would permit measurements of blood radioactivity 
directly, as well as an analysis of possible presence of radiolabeled metabolites. 
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Examinations of PET measurements of extra/intracellular EGFR should be complemented 
with ex vivo measurements quantifying the same in excised tissues [Pu 2009]. 

 
5.5 A Method for Comparing Intra-tumoural Radioactivity Uptake Heterogeneity in 

Preclinical Positron Emission Tomography Studies (paper V) 
In this paper I attempted to develop a user-friendly method for assessing and ranking tumour 
heterogeneity. The method was based on an algorithm that isolates certain uptake deviations 
from a mean per distance, the individual heterogeneities: 

 
where Ip is the top quantification at some certain point p, Iq is an other quantification at point 
q, Ibar is the mean quantification (where the k means a certain plane or slice), dpq is the 
geometric distance between point p and q. The heterogeneity for each plane was calculated 
and then summed to give the value for the whole volume of interest, called the heterogeneity 
factor (HF). The distributions of the contributions to the HF for the entire volume were 
displayed as histograms to visualize how the contributions were distributed, how frequent 
they were and how quickly or slowly the changes were occurring. In the validation of this 
algorithm it was applied to several mathematically constructed ROIs in order to correct the 
algorithm so it produced results that were theoretically sound. The algorithm was 
subsequently tested, as examples, using previous imaging studies in which different tracer 
uptakes had been compared (see Fig. 31).  
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Figure 32: Histograms visualizing the contributions to the heterogeneity factors calculated for 
the following comparisons: 
(A) Radiolabelled AnxA5 vs. (B) mTrx-GFP in the same FaDu tumour, where mTrx-GFP had 
a heterogeneity factor that was about 85% higher than AnxA5. These data were collected in 
paper I. 
Radiolabelled ZHER2:342 in a (C) SKOV-3 tumour vs. (D) in an A431 tumour. In this case the 
heterogeneity factor was about 2.5 times larger for A431. These data were collected in paper 
III. 
(E) [18F]FDG compared to (F) radiolabelled AnxA5 in the same FaDu tumour. The 
heterogeneity factor for AnxA5 was 33% larger than that for [18F]FDG. These data were 
collected in paper I. 
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The rise and fall of the slope composing the top value was deemed to be of importance and 
was incorporated in the HF. This was done, however, in an indirect manner (i.e. by handling 
the consequences of the gradient instead of the gradients itself). Attempts to control other 
influences such as the length between quantification tops and tumour size was also 
incorporated into the algorithm. In our aim to make the algorithm computer effective, some 
information concerning ROI parameters is changed or not used (for example, positional 
coordinates were reduced to distance information), which could potentially introduce some 
bias in the HF calculation. Further developments should examine the consequences of these 
modifications. 

This algorithm was tested for consistency by altering certain post-processing parameters. 
Permutations were performed and the reconstruction process, threshold limits, image size and 
ROI size were altered. Altering these parameters changed the calculated HFs but did not alter 
the overall conclusions made in the comparisons.  

It appears that many concepts are avoided in imaging due to their complexity and their time 
consuming nature. In constructing this user-friendly algorithm, mathematical concepts that 
were too advanced were avoided in order to make the code that assesses and ranks 
heterogeneity comprehensible to most users and avoid “black box” situations. In principle the 
user can thus modify the code and thereby adapt it to their situation and needs.  
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6 Final Comments 

1. Quantifications in peripheral tumours from conventional uptake to macro parameter 
methods: 
• The method chosen for the quantification should be as simple as possible for 

answering the questions posed, i.e. conventional uptake measurements may 
sufficiently describe differences between groups.  

• Kinetic analyses require a verification of the binding characteristics (reversible 
vs. irreversible) of the tracer, a choice of the input function (blood vs. reference 
region), determination of the equilibrium status, and offer possibility of 
determining macro or micro parameters, depending on the method chosen (data-
driven vs. model-driven) 

• The choice between these different quantification strategies depends on how 
distinct the differences between data sets are. 

2. The use of controls is important for quantification in peripheral tumours and it is 
important that they closely mimic the passive uptake and non-binding characteristics 
of the targeting ligand.  

3. EPR effects in tumours must be considered to a larger extent. EPR effects may cast 
doubt on the validity of using a reference region for the calculation of a macro 
parameter. This is especially important when using large or medium sized tracers.  

4. Retroactive analyses vs. specifically designing new experiments for the intended 
purpose of the study. Only using results from previously conducted experiments and 
not optimizing the PET examinations specifically to address the questions being 
posed is practical and reduces the number of animals used but may not always be 
optimal.  

5. Heterogeneity in images will influence the conclusions drawn about radioactivity 
measurements and it is important to continue to develop methods for assessing these 
variations. Simplifications made in construction of the algorithm here omit some 
information, which needs to be considered in future modifications of this algorithm. 

6. Advantages/disadvantages of radiolabelling as enabled by Sel-tagging: The C-
terminal ST activates for labelling at the same site in the targeting as well as the non-
targeting proteins, thereby minimizing variability due to possible differences in 
locations of the labels. Labelling is possible with, but not limited to 11C. Using this 
short-lived radionuclide enabled multiple same-day imaging sessions, but does not 
allow observations longer than ≈60 min. It could be of interest to compare different 
observation periods to see if specific uptake and influences from non-specific 
mechanisms vary. 

7. Size of proteins as ligands: Proteins offer a wide range of specificity for in vivo 
targeting. However, size must be considered with respect to the EPR contributions to 
their localizations, especially for the larger proteins.  
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