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“If we could give every individual the right amount of nourishment and exercise, not too 
little and not too much, we would have found the safest way to health” 

    Hippocrates, ~ 450 BC 



 

 

ABSTRACT 

 
Regular physical activity is an environmental stimulus that is highly associated to many 
health benefits, while physical inactivity is detrimental for health and physical function. 
Regular exercise training is used in the prevention and treatment of a large number of disease 
conditions, including obesity, type II diabetes, cardiovascular disease and cancer, and reduces 
the risk for premature death. Most tissues adapt to exercise training, not least skeletal muscle 
tissue, which is highly plastic. The local adaptation of muscle is important not only for 
muscle function but also the health effects of training that affect the whole body. The cellular 
adaptations in skeletal muscle are driven by extra- and intracellular signals arising from the 
exercise stimulus, for example changes in shear stress, oxygen tension, energy levels, pH and 
temperature. Ultimately, these cellular perturbations lead to gene expression and protein 
alterations that improve muscle function. Thus, it is important from a clinical, as well as basic 
science perspective to understand the regulation of skeletal muscle gene activity and how 
activity changes contribute to the many health benefits of a physically active lifestyle. 

The understanding of training-induced changes in gene expression and the underlying 
mechanisms have progressed extensively over the past 20 years. Still, many key mechanisms 
remain to be investigated. The overall purpose of this thesis was to investigate the influence 
of epigenetic mechanisms, i.e. DNA methylation and post-translational modifications of 
histones, on endurance training adaptation. Epigenetic mechanisms are important for cellular 
memory. Thus, another objective was to investigate if there were any residual intrinsic 
memory effects of previous endurance training, and if that could induce different responses to 
a repeated training period after detraining.  

The results in this thesis are based on skeletal muscle biopsies from the vastus lateralis, taken 
before and after three months, or six weeks, of endurance training, or at rest in elite athletes 
and sedentary individuals. In the first study, the baseline skeletal muscle transcriptome was 
investigated. Studies using repeated skeletal muscle sampling regularly assume that potential 
changes are due to the intervention and not inherent variability between samples. The results 
showed, using global RNA sequencing analysis, that tissue homogeneity was remarkably 
high within a muscle and in the corresponding muscle of the contralateral leg of an 
individual, while the transcriptome difference between male and female skeletal muscle was 
substantial. This study also found 23 000 isoforms expressed in skeletal muscle at baseline, 
together with almost 2500 previously unannotated, novel transcripts, out of which at least five 
were protein-coding.  

The transcriptome changes induced by three months of one-legged knee extension training 
were very significant. Over 3000 isoforms were found to be differentially expressed, as well 
as 34 of the novel transcripts discovered at baseline. The one-legged training regime meant 
that the other leg was included as an intraindivdual control leg, which was exposed to the 
same other environmental factors such as diet, stress, sleep etc. We found that the training 



response of the trained leg was very specific, although significant but markedly smaller 
changes occurred also in the untrained leg. At the protein level, a specific investigation of 
HIF (hypoxia inducible factor) was performed. HIF is activated by acute exercise, but was 
hypothesized to be attenuated by long-term training due to its inhibitory effect on 
mitochondrial energy production. A comparison of skeletal muscle from elite athletes with 
normally active individuals, showed that the negative regulators of HIF were higher in the 
elite athletes, indicating a reduced HIF activity in that group. This was supported by similar 
findings in a six-week bicycle training study. 

Three months of endurance training induced changes in DNA methylation at almost 5000 
specific sites across the human skeletal muscle genome that were associated to functionally 
relevant transcriptional changes. Many of these changes occurred in regulatory enhancer 
regions and the differentially methylated sites were associated to transcription factor binding 
sites for myogenic regulatory factors (increases in methylation) and the ETS family 
(decreases in methylation). Six weeks of bicycle training showed a strong trend towards a 
global downregulation of trimethylation of histone H3, lysine 27, previously described as a 
dynamic and predominantly inhibitory modification. The specific genes potentially affected 
by this histone modification in response to training are currently being analyzed using 
chromatin immunoprecipitation followed by sequencing.  

After the initial three months of one-legged endurance training, a subset of the subjects came 
back after nine months of detraining and performed a second three-month training period. 
This time, they trained both legs in the exact same way as one leg was trained in the first 
period. One leg had thus been previously well-trained, while the other was previously 
untrained. Potential residual effects were investigated by comparing biopsies obtained from 
both legs before starting the second training period. At the transcriptome level, there were no 
indications of remaining effects, although the exertion perceived in the first training session 
of period 2 was lower in the previously trained leg. Repeated training induced similar 
changes physiologically and at the global transcriptome level between the two legs. There 
were specific differences in the gene activity changes between the legs, but with the current 
approach, we found no overall significant differences in the response to a repeated training 
period. 

Collectively, the results in this thesis show that endurance exercise training induced 
associated changes in the epigenome and transcriptome of human skeletal muscle. The data 
included an in-depth analysis of the human skeletal muscle transcriptome at baseline and how 
it changes in response to repeated endurance training periods, with no detectable muscle 
memory of previous training at the transcriptome level. The results contribute to a better 
understanding of the molecular pathways involved in physiological adaptation to endurance 
training and can potentially be used to describe how training prevents disease development 
and different dysfunctions.  
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1  BACKGROUND 

 
The genome is the foundation of all life. In humans, it works as a unique hardware that is set 
when the egg and the sperm fuse together. The genome holds an immense amount of 
complex information that, in interaction with environmental cues, governs development, 
growth, function and disease (Lander et al., 2001; Venter et al., 2001). The genomic sequence 
is virtually the same in all of our cells. Despite this, there is a vast diversity among cells in the 
human body. Differences in gene activation determine cellular structure and function and also 
allow cells to specifically respond to different stimuli from the environment. One of our most 
plastic tissues is skeletal muscle, which readily adapts to changes in functional demands. 
Physical activity is an environmental stimulus that is associated to many health benefits, 
while physical inactivity is detrimental for health and skeletal muscle function (Booth et al., 
2012). Regular physical activity is now considered fundamental for prevention, management 
and treatment of many of our most common chronic diseases (Haskell et al., 2007; Neufer et 
al., 2015). Much of the effect of training on muscle is made possible through regulation of 
gene activity. It is important from a clinical, as well as basic science perspective to 
understand the activity of the genome in skeletal muscle and how the activity is altered to 
induce the many health benefits of a physically active lifestyle. 

1.1 THE GENOME AND EPIGENOME 

1.1.1 Genes and their splice variants 

The human haploid genome comprises an astonishing 3 billion bases (International Human 
Genome Sequencing, 2004). The estimated number of protein-coding genes within the 
genome has decreased from early estimates of 25 000 and 30 000 at the end of the Human 
Genome Project (Lander et al., 2001; Venter et al., 2001) to approximately 20 000 today 
(Clamp et al., 2007). The genes are transcribed into RNAs, e.g. messenger RNAs (mRNAs). 
The mRNAs are subsequently translated into proteins, a process known as the central dogma 
of molecular biology (Crick, 1970). Transcription is initiated at the promoter region of a gene 
through interaction between regulatory transcription factors and RNA Polymerase II. In most 
cases, genes are first transcribed into pre-mRNA and subsequently modified into mRNA that 
is exported to the cytoplasm for translation. However, the number of functional proteins in 
the human body is higher than the number of genes (Kim et al., 2014). One mechanism that 
greatly increases the complexity of the transcriptome is alternative splicing, that allows for 
different mRNA combinations from exons (coding parts of the gene), effectively producing 
several mRNA isoforms from the same gene. Approximately 95% of multiexon genes are 
believed to undergo alternative splicing (Pan et al., 2008), which can occur through several 
different mechanisms and often is tissue-specific (Wang et al., 2008). Transcription can also 
start from different promoters for the same gene (Ayoubi and Van De Ven, 1996) and include 
alternative 3’ polyadenylation sites (addition of multiple adenine nucleotides) resulting in 
additional isoforms (Proudfoot et al., 2002). Through regulation of gene transcription and 
translation, a cell can thus adjust its functional proteome in accordance to its needs. 
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1.1.2 The non-coding genome  

The protein-coding part of the genome is only about 1.2% (Consortium, 2012). The rest of 
the DNA was previously considered as “junk DNA” (Pennisi, 2012), but in recent years the 
understanding of the role and function of the non-coding part of the genome has increased 
enormously. Over 80% is now considered to have some regulatory role (Consortium, 2012) 
and up to 75% can be transcribed (Djebali et al., 2012). Non-coding RNAs include highly 
abundant transfer RNA (tRNA) and ribosomal RNA (rRNA), both enriched in the cytoplasm 
of cells and involved in translation of mRNA to protein (Djebali et al., 2012). Also present in 
the cytoplasm are microRNAs (miRNAs), very small (~22 nt) inhibitors of translation 
(Bartel, 2004). Regulatory RNAs in the nucleus include long non-coding RNAs (lncRNAs) 
that are less abundant but more cell-type specific than mRNAs, small nuclear RNAs 
(snRNAs) and small nucleolar RNAs (snoRNAs) (Djebali et al., 2012). Enhancers are short 
regulatory regions of DNA that have been known to bind transcription factors and influence 
gene activity for some time (Khoury and Gruss, 1983). Recently, enhancers have also been 
shown to be transcribed into RNA (eRNAs), their level of transcription correlating to that of 
nearby genes (De Santa et al., 2010; Kim et al., 2010). All of these different RNA transcripts 
together constitute the transcriptome, which is continuously proving to be more and more 
complex. The function of the vast majority of the transcriptome, including transcribed genes, 
is seemingly auto-regulation.  

1.1.3 Epigenetics and chromatin 

For transcription to occur, accessibility to the DNA is crucial. The DNA double helix is 
wrapped around octamers of histone proteins, called nucleosomes. DNA together with 
histones is referred to as chromatin, which in humans is intricately organized into 2x23 
chromosomes (22 different autosomes plus the two different sex chromosomes X and Y) 
(Allis et al., 2007). A major mechanism regulating the chromatin structure, and thus 
accessibility to the DNA, is epigenetics, which literally means above our genes. The term was 
first used by Conrad Waddington in 1942 to describe the relationship between genotypes and 
phenotypes (Waddington, 1942). In 1996, it was defined by Riggs and colleagues as “the 
study of mitotically and/or meiotically heritable changes in gene function that cannot be 
explained by changes in DNA sequence”, while a more modern definition was proposed by 
Bird in 2007; “the structural adaptation of chromosomal regions so as to register, signal or 
perpetuate altered activity states” (Bird, 2007). The definition by Bird removes the concept of 
inheritance, which is an important development as epigenetic changes occur also in non-
proliferating cells. The two most common epigenetic modifications are methylation of DNA 
and post-translational modifications of histone proteins. 

1.1.3.1 DNA methylation 

DNA methylation is an essential determinant of genomic stability and a key mechanism in 
the development and differentiation of cells (Jaenisch and Bird, 2003). In humans, 
methylation changes are associated to the normal aging process (Issa, 2014) as well as 
numerous different diseases, including many types of cancer, different imprinting disorders 
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(Robertson, 2005), rheumatoid arthritis (Liu et al., 2013), metabolic disease (Kirchner et al., 
2013), cardiovascular disease (Kim et al., 2013b) and Alzheimer’s (Bennett et al., 2015).  

DNA methylation is the process where DNA methyltransferases (DNMTs) add a methyl 
group (CH3) to position 5 of a cytosine (C) base in the genome, producing 5-methylcytosine 
or 5-mC. It most commonly occurs at C’s that are 5’ of a guanine (G) base, referred to as a 
CpG (Cytosine-phosphate-Guanine) sequence (Jaenisch and Bird, 2003), although it can 
occur also at non-CpG sites (Ramsahoye et al., 2000). DNA methylation regulates 
transcription through direct inhibition of transcription factor binding to the DNA or through 
methyl-binding proteins (e.g. MeCP2 and MDB1-4) that specifically bind to methylated 
DNA and for example recruit histone-modifying enzymes. DNA methylation in promoters is 
associated to repression of gene transcription, while in gene bodies the association appears to 
be the opposite (Ball et al., 2009) although the effect on transcription is not fully understood 
(Jjingo et al., 2012; Kulis et al., 2012). In human somatic cells, 70-80% of all CpG sequences 
are methylated and 5-mC accounts for approximately 1% of all bases in our DNA (Bird, 
2002). The CpG dinucleotide sequence is under-represented in the genome due to 
deamination that may occur for 5-mC, transforming it to thymine (T), and the average GC 
content of the whole genome is about 41%. However, there are regions of the DNA with 
higher GC content and CpG frequency called CpG islands, commonly unmethylated and 
located in the promoters of genes (Lander et al., 2001). A methylated CpG island correlates 
with transcriptional repression (Bird, 2002). Hypermethylation of CpG islands is known to 
occur in cancer, which is also associated with a global hypomethylation (Feinberg and 
Vogelstein, 1983; Robertson, 2005). While promoters and CpG islands were in focus for 
many years, more distant regions have caught increasing interest. In 2009, Irizarry et al. 
showed that methylation changes in so called CpG island shores (±2kb from a CpG island) 
occurred more frequently in colon cancer compared to changes in CpG islands, and were also 
highly correlated to gene expression changes (Irizarry et al., 2009). The terminology has been 
expanded to include CpG island shelves (2-4kb from the CpG island) (Bibikova et al., 2011) 
and “open sea”, >4kb from a CpG island (Sandoval et al., 2011). 

Another modification that has been known for years, but recently has received a lot of 
attention, is 5-hydroxymethylcytosine (5-hmC). A family of enzymes known as TET (Ten-
Eleven-Translocation) converts 5-mC into 5-hmC, which is a step towards demethylation 
(Dahl et al., 2011). Interestingly, 5-hmC is associated with transcriptional activation and the 
levels appear to be more tissue specific than for 5-mC (Munzel et al., 2011). 
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1.1.3.2 Histone modifications 

Histone proteins are very small, and positively charged in order to attract the negatively 
charged DNA. Each nucleosome is made up of an octamer of histone proteins, consisting of 
two molecules each of histone H2A, H2B, H3 and H4 (although variants exist), with 147 base 
pairs of DNA wrapped around it. Each histone has a tail, protruding from the core region, that 
can be post-translationally modified to regulate how compact the chromatin is (Kouzarides, 
2007). Changes in structure and/or electrostatic forces alter the contact between DNA and 
histones and thereby the accessibility for transcription factor binding and transcription. 
Histone tails can be modified in many different ways. Lysine acetylation results in a more 
open chromatin formation as it opposes the positive charge of lysine, while deacetylation has 
the opposite effect. Other modifications include for example methylation (which can occur as 
mono- di- or trimethylation), phosphorylation, ubiquitination and SUMOylation, and 
depending on position in the tail, the effect on transcription differs. The complexity of the 
histone modifications has led to the concept of a histone code (Allis et al., 2007). Similarly to 
DNA methylation, histone modifications are also associated to many critical cellular 
functions, including cell differentiation, and diseases such as cancer, mental disorders and 
rheumatoid arthritis (for review see (Hirst and Marra, 2009; Lennartsson and Ekwall, 2009). 
Figure 1 illustrates the organization of DNA into chromatin. 

Figure 1. Basic chromatin structure. The ball-shaped structures illustrate the nucleosomes, with the 
DNA double helix wrapped around octamers of histone proteins. Post-translational modifications (Ac 
for acetylation, Me for methylation and P for phosphorylation) mark the protruding histone tails. 
Methyl marks are also present on cytosines of the DNA. Illustration: Elina Anttila. 
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1.2 SKELETAL MUSCLE BIOLOGY 

Skeletal muscles execute all voluntary movements of our body, from locomotion to speech, 
breathing and facial expressions. Signals from the nervous system activate skeletal muscle 
fibers to contract and create mechanical force. Depending on age, gender and size, skeletal 
muscle normally makes up 40-45% of the body weight, by far the most abundant tissue in 
healthy humans.  

1.2.1 Skeletal muscle structure and function 

Human skeletal muscle fibers are large, multinucleated cells that are highly organized into 
bundles. In humans there are three different types of fibers; type I, type IIA and type IIX. The 
type I fibers are slow-twitch oxidative fibers that can produce relatively low amount of force 
over a long time. Type IIA and IIX are fast-twitch, more glycolytic fibers that have higher 
force production but lower endurance. With increasing contractile force, type IIA are 
recruited first and type IIX last. For a recent description of the different fiber type 
characteristics, see (Egan and Zierath, 2013). Each fiber consists of multiple myofibrils, 
where the smallest contractile unit is the sarcomere, containing the two main myofilaments; 
actin and myosin. These ultimately produce the mechanical force. Each myofibril is 
surrounded by sarcoplasmic reticulum that stores Ca2+ for release upon activation of the 
muscle. Ca2+ is the key that unlocks the contractile proteins and thus initiates the contractile 
process. Going from rest to full activity can increase energy demand >100-fold in a muscle. 
The main energy molecule of human cells is ATP (adenosine triphosphate). During short-
lasting and intense exercise, the first source of energy for contraction comes directly from 
ATP that is hydrolyzed. Concurrently, chemical energy from creatine phosphate is transferred 
to form new ATP molecules. For work performed up to 90 seconds, anaerobic lactate 
formation provides most of the ATP needed. Over longer work periods, ATP is primarily 
produced by mitochondria, which is highly abundant in skeletal muscle fibers, especially 
Type I. Energy for virtually all chemical reactions in the body is derived from the breakdown 
of ATP into ADP (adenosine diphosphate) and free phosphate. To produce ATP through 
aerobic metabolism, the muscle needs oxygen and nutrient (glucose and fatty acids) supply 
via a network of capillaries that are interspersed in the fiber bundles (Windhorst and 
Mommaerts, 1996).  

1.3 SKELETAL MUSCLE ADAPTATION TO ENDURANCE TRAINING 

Physical activity is a highly potent environmental stimulus that induces adaptation in almost 
the entire human body. Regular exercise training improves and prevents a large number of 
disease conditions and reduces the risk for premature death (Neufer et al., 2015). Endurance 
training positively influences for example the cardiovascular system (Whyte and Laughlin, 
2010), the endocrine system (Henriksson, 1995), the nervous system (van Praag, 2009), and 
even promotes a better mental health (Fox, 1999). Recent data also shows that endurance 
exercise can attenuate aging of the skin (Crane et al., 2015). Skeletal muscle is very plastic 
and quickly adapts to cope with the altered physiological demands associated with exercise. 
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The local adaptation of muscle is important not only for muscle function but also the health 
effects of training that affect the entire human body. 

1.3.1 Cellular adaptation 

An acute bout of endurance exercise transiently disrupts the cellular homeostasis. Repeated 
bouts of exercise, i.e. training, then lead to cumulative effects that slowly adapt the tissue 
(Hawley, 2002). Skeletal muscle cellular and tissue adaptations are well established and some 
examples are illustrated in Figure 2. An early adaptation seen with endurance training is 
increased capillarization (angiogenesis) that improves the supply of oxygen and nutrients and 
removal of waste products to/from the skeletal muscle. The transport capacity for glucose and 
lipids improves with training. There is an increased abundance of the main glucose 
transporter GLUT-4, resulting in improved insulin sensitivity, as well as fatty acid 
transporters in the skeletal muscle cell and its mitochondria. The improved transport ability is 
also accompanied by an increased storage of lipids and glycogen within the skeletal muscle 
fibers. The enzyme activity for breakdown of fatty acids also increases, as does the overall 
mitochondrial density (mitochondrial biogenesis), resulting in a higher aerobic capacity for 
oxidation of both lipids and carbohydrates (Coffey and Hawley, 2007; Egan and Zierath, 
2013).  

 

Figure 2. Skeletal muscle endurance-induced adaptation. Examples of known skeletal muscle 
tissue adaptations that occur in response to endurance training in humans. Illustration: Susanna Appel. 
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Together with the increase in supply of oxygen to the working muscles, these adaptations 
greatly improve the aerobic metabolic capacity of skeletal muscle to produce the high 
amounts of ATP required for endurance exercise. Fiber type changes that occur with training 
include a decrease in the proportion of type IIX fibers, while type IIA increases. Type I 
fibers, which are mainly recruited during low-intensity endurance training, may increase 
somewhat in size. Although the degree of fiber type transition is very limited, the amount of 
slow, oxidative myosin ATPases and oxidative enzymes in all fibers increases (Saltin and 
Gollnick, 2011). Whether transitions between fast-twitch and slow-twitch fibers can occur 
with training is not fully understood (Booth et al., 2010). Repeated contractions require 
propagation of action potentials along the sarcolemma, which in turns necessitates restoration 
of ion distribution across the cell membrane. Endurance training increases the ATPase 
activity of ion pumps, resulting in a faster restoration of the ion distribution (Green, 2000). 
The pH buffer capacity also improves (Hawley, 2002), which is beneficial because of the 
increased lactic acid production that occurs at higher exercise intensities. Apart from the local 
adaptation in skeletal muscle, exercise also stimulates many different signaling molecules 
that can exit skeletal muscle fibers and induce systemic effects on different tissues. An 
example that is shown in Figure 2 is the anti-inflammatory effect of long-term training. The 
adaptation processes of skeletal muscle were described early by (Holloszy and Booth, 1976) 
and recently reviewed by (Baar, 2014; Egan and Zierath, 2013). 

1.3.2 Molecular adaptation mechanisms 

The cellular adaptations are driven by extracellular and intracellular signals arising from the 
exercise stimulus. Extracellular signals include for example the increased nervous stimulation 
and changes in hormone levels and shear stress (Blauuw et al., 2013). A majority of the 
cellular changes are, however, endogenous and include for example altered temperature, pH, 
oxygen tension, ROS (reactive oxygen species) production, ATP/ADP ratio and levels of free 
Ca2+ (Booth and Thomason, 1991; Egan and Zierath, 2013; Saltin and Gollnick, 2011). These 
perturbations of the intracellular milieu initiate a remodeling process in skeletal muscle fibers 
by altering the activity and abundance of many different proteins. Ultimately, these changes 
lead to transcriptional regulation through activation of transcription factors or repressors, 
cofactors for these processes, or regulators of translation. AMPK (AMP-activated protein 
kinase) is activated when the ATP levels in the cell decrease, resulting in suppression of 
several anabolic pathways including glycogenesis, and stimulation of catabolic processes, e.g. 
glycogenolysis. Transcription factors activated by AMPK include MEF2 (Myocyte Enhancer 
Factor 2) and NRF-1 (Nuclear Respiratory Factor 1) that are important for mitochondrial 
biogenesis. CaMKII (Ca2+-calmodulin-dependent protein kinase II) is an enzyme that is 
induced by exercise and activates several transcriptional regulators, including CREB (cAMP 
responsive element-binding protein), MEF2 and HDACs (Histone deacetylases) (Egan and 
Zierath, 2013). Mitogen-activated protein kinases (MAPKs) are also activated by endurance 
training (Widegren et al., 2000), the p38 MAPK, for example, has together with AMPK been 
suggested to increase the nuclear abundance of the cofactor PGC1α (Peroxisome proliferator-
activated receptor (PPAR) gamma coactivator 1α) with training (Little et al., 2010). PGC1α 
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has repeatedly been described as a master regulator of mitochondrial biogenesis and regulates 
a number of downstream transcription factors and thereby expression of many different genes 
(Gidlund et al., 2015; Olesen et al., 2010). The oxygen tension in skeletal muscle cells is 
sensed by prolyl hydroxylases (PHDs). A reduced oxygen tension inactivates PHDs (Epstein 
et al., 2001), which would result in the acute activation of hypoxia inducible factor 1 that has 
been observed with endurance exercise (Ameln et al., 2005). This system is discussed further 
below under section 1.3.5. Associated to the oxygen tension is the redox balance, which is 
mainly reflected by the ratio between NAD+ and NADH (the oxidized and reduced form of 
the electron carrier Nicotinamide adenine dinucleotide). Sirtuins are a group of protein 
deacetylases that are NAD+-dependent and involved in the regulation of metabolism (Schwer 
and Verdin, 2008). Both SIRT1 and SIRT3 have been implicated in endurance training 
adaptation by affecting mitochondrial biogenesis, potentially through activation of PGC1α. 
SIRT3 is located in mitochondria and could thus influence function directly. For an overview 
of the complex role of SIRT1 and SIRT3 in exercise adaptation, see (White and Schenk, 
2012). 

The above mentioned factors represent a selection of some of the important factors known to 
be affected by endurance training in skeletal muscle. All these factors act directly or 
indirectly as transcription factors, regulating gene expression and thereby protein composition 
and activity. The induced changes, in turn, lead to the functional adaptation of skeletal 
muscle. 

1.3.3 Exercise-induced transcriptional regulation 

The transcriptome is the complete set of coding and non-coding RNA transcripts in a cell at a 
given point in time. A typical mammalian cell expresses between 11 000 and 13 000 genes 
(Ramskold et al., 2009). By increasing or decreasing transcription of these genes, cells can 
adjust different functions in response to environmental changes. Both acute endurance 
exercise and training are known to induce specific gene expression changes in human skeletal 
muscle (Ameln et al., 2005; Gidlund et al., 2015; Gustafsson et al., 1999; Kraniou et al., 
2000; Norrbom et al., 2010; Ookawara et al., 2002; Pilegaard et al., 2003; Rullman et al., 
2007; Russell et al., 2003; Short et al., 2005; Wadley et al., 2001; Wallace et al., 2011), 
something that has been studied extensively during many years. At the global level, an acute 
bout of endurance exercise in four subjects changed the expression of 126 genes (Mahoney et 
al., 2005), while a later study found 938 genes to be differentially expressed in twelve 
subjects performing a one-legged exercise bout (Catoire et al., 2012). In 2005, Timmons et al. 
conducted the first transcriptome-wide longitudinal study on eight sedentary individuals that 
performed six weeks of training. Using the Affymetrix platform (with 63000 probe sets), 
almost 500 genes were differentially expressed and several enriched processes were identified 
as contributors to the physiological remodeling (Timmons et al., 2005). With additional 
subjects, the differentially expressed genes subsequently increased to ~800, referred to as the 
training-induced transcriptome (Keller et al., 2011; Timmons et al., 2010). Regulation of gene 
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expression is therefore well established as an important mechanism behind skeletal muscle 
adaptation to endurance training. 

Other tissues are not as well studied in humans, likely due to difficulties in acquiring tissue. 
Global changes in adipose tissue gene expression with six months of endurance training have 
been reported (Rönn et al., 2013), while cardiac muscle mainly has been studied in animals 
(Ellison et al., 2012). 

1.3.4 Epigenetics and exercise 

Epigenetic modifications regulate gene expression and may therefore be an important 
mechanism for skeletal muscle adaptation to training. There are a few studies that have 
associated the levels of physical activity in different cohorts to overall methylation level in 
leukocytes (Luttropp et al., 2013; White et al., 2013). In skeletal muscle, the epigenomic 
pattern changes over time, in part due to differences in lifestyle (Fraga et al., 2005). In 
response to an acute 60-min cycling exercise bout, it has been shown that global histone 3 
acetylation at lysine 36 increases and histone deacetylases (HDAC) 4 and 5 are translocated 
out of the myonuclei (McGee et al., 2009). The HDAC 4 and 5 enzymes belong to the class II 
HDACs, which are enriched in striated muscle and have been implicated in the regulation of 
muscle gene expression, e.g. by repressing oxidative genes (McGee and Hargreaves, 2011). 
Transient specific changes in DNA methylation at a few promoter CpG sites also occur with 
one bout of endurance exercise in human skeletal muscle (Barres et al., 2012). In the context 
of type II diabetes, a six-month exercise intervention has been shown to alter DNA 
methylation in skeletal muscle (Nitert et al., 2012). For review, see (Voisin et al., 2015).  

Epigenetics has also emerged as a mechanism for cellular memory (Bird, 2007).Transmission 
of cell memory is, however, complex and not fully understood but histone modifications and 
other epigenetic mechanisms are involved (Ng and Gurdon, 2008). Histone modification 
patterns can for example establish gene regulatory regions in an active or a poised state 
(Kimura, 2013). That environmental exposures at a young age can alter epigenetic marks and 
give rise to a different phenotype also later in life has been studied in mice for maternal 
nurturing of the offspring (Bird, 2007). This type of memory that is passed on from one cell 
to the next is highly interesting biologically. Although skeletal muscle cells do not divide, it 
is possible that environmentally-induced epigenetic changes (displayed as an altered gene 
activity) can remain for a long period of time. Exercise training-induced adaptation of human 
skeletal muscle is to a large extent expected to be lost upon detraining (Bishop et al., 2014). 
However, there are some indications of potential small residual effects. Resistance training 
increases the number of myonuclei per skeletal muscle fiber, and in mice, this effect is 
maintained some time after detraining (Bruusgaard et al., 2010). In humans, previous 
administration of androgenic anabolic steroids has induced an increase in the number of 
myonuclei, which may persist after cessation (Yu et al., 2014). These few studies indicate 
that possible intrinsic memory mechanisms may play a role after previous adaptation to 
physiological or pharmacological interventions in skeletal muscle. Despite the very limited 
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scientific evidence, there is still a notion in the popular science literature that once a person 
has been fit, it is easier to become fit again after a period of detraining.  

1.3.5 HIF-1 and exercise 

Hypoxia Inducible Factor 1α (HIF-1α) is a transcription factor that is an important mediator 
of cellular adaptation to hypoxia (Wang and Semenza, 1993). Target genes of HIF-1 promote 
improved oxygen delivery to cells, through for example erythropoietin (EPO) and vascular 
endothelial growth factor (VEGF), and improve anaerobic glycolysis through induction of 
glucose transporters and glycolytic enzymes, including lactate dehydrogenase (LDH) 
(Semenza, 1999). This feature made HIF-1α into an interesting candidate for training 
adaptation and it is activated following an acute bout of exercise (Ameln et al., 2005). 
However, after four weeks of unilateral training, HIF-1α transiently increased only in the 
untrained leg when exposed to acute exercise (Lundby et al., 2006). Also, another response 
gene of HIF-1 is pyruvate dehydrogenase kinase 1 (PDK-1) that inhibits the pyruvate 
dehydrogenase complex from converting pyruvate from glycolysis into acetyl-CoA that is 
required for further aerobic catabolism in the citric acid cycle and eventually the electron 
transport chain (Kim et al., 2006; Papandreou et al., 2006). By inhibiting aerobic energy 
production, HIF-1α would rather prevent further training adaptation. In humans, patients with 
the autosomal recessive disorder Chuvash polycythemia have constantly elevated HIF-1 
activity, which leads to increased lactate accumulation and reduced muscle pH in response to 
exercise (Formenti et al., 2010). This is also supported by studies in mice with a skeletal 
muscle-specific HIF-1 deletion, that have many features typically associated with trained 
muscle, especially regarding mitochondrial function (Mason et al., 2004; Mason et al., 
2007b).  

HIF-1 is constitutively expressed and continuously degraded in normoxia, while it is 
stabilized and activated during hypoxia (Semenza, 1999). Yet, HIF-1 controls basal 
expression of its target genes also under normoxia (Xia et al., 2009). Regulation of HIF-1 
activity occurs at multiple levels by adjustment of the rate of degradation or the 
transactivation capacity. Negative regulation of HIF-1α mainly occurs through hydroxylation 
of critical proline residues by PHDs, which mark the protein for degradation through the 
ubiquitin-proteasome pathway (Ivan et al., 2001; Jaakkola et al., 2001). There are two 
inhibitors of the transactivation capacity of HIF-1. Factor Inhibiting HIF (FIH) hydroxylates 
an asparagine residue that prevents binding to the coactivator CBP/p300 (Lando et al., 2002; 
Mahon et al., 2001). An epigenetic corepressor of HIF-1 is Sirtuin 6 (SIRT6), a histone 3 
lysine 9 deacetylase (Michishita et al., 2008) that specifically targets glycolytic genes in favor 
of mitochondrial activity (Zhong et al., 2010).  
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2  AIMS 

 
Understanding the molecular mechanisms behind adaptation to endurance training is highly 
important. It may have implications for our future lifestyle, for example through optimization 
of training interventions to promote the largest effect in each individual and by artificially 
inducing some of the beneficial effects of training in patients unable to perform regular 
exercise. 

The overall objective of this thesis was to investigate the relation between epigenomic and 
transcriptomic changes following a highly controlled endurance exercise training 
intervention, and the potential presence of an endurance training-induced skeletal muscle 
memory. The specific aims of this thesis were to investigate; 

 

1. the baseline transcriptome in human skeletal muscle, i.e. the differences within a 
muscle, between muscles from different legs of the same individual and between male 
and female muscle. 

2. how the global DNA methylation pattern changes in response to long-term endurance 
training 

3. if histone modifications are involved in training adaptation 
4. how repeated training, after a period of detraining, affects the transcriptome, i.e. if 

there is any evidence of a skeletal muscle memory of training adaptation 
5. the regulation of a specific molecular system, HIF, in highly trained individuals 
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3  METHODOLOGY 

3.1 EXPERIMENTAL PROTOCOLS AND TISSUE SAMPLING 

Before each study, the experimental protocol was explained to all subjects and informed 
consent was obtained. Each study was approved by the Ethics Committee of Karolinska 
Institutet and conformed to the Declaration of Helsinki. Table 1 summarizes the human 
studies included in this thesis. 

 
EpiTrain 

study 
Cross-sectional 

Study (males) 
Six-week 

bicycle study 

Number of 
subjects 

Males 
12 

Females 
11 

Controls 
9 

Elite Athletes 
12 

Males 
24 

Age (yrs) 28 ± 1 26 ± 1 24 ± 1  22 ± 1  23 ± 1 

Height (cm) 181 ± 2 169 ± 2 180 ± 2 181 ± 2 182 ± 2 

Weight (kg) 81 ± 5 67 ± 4 72 ± 2 72 ± 2 79 ± 3 

Peak VO2 
(ml*kg-1*min-1) 

40 ± 1 38 ± 1 47 ± 2 75 ± 2 48 ± 1 

Table 1. Subject characteristics for the different human studies. EpiTrain was the basis for Papers I, II 
and IV, the cross-sectional study was the basis for Paper V and the six-week study was included in 
Papers III and V. Data is presented as mean ± SEM.  

3.1.1 EpiTrain study (Papers I, II and IV) 

Twenty-three young, healthy volunteers (twelve men and eleven women) were included in 
the study. All individuals completed a questionnaire about exercise habits, disease history, 
smoking habits, use of contraceptives and other medications. The baseline fitness level was 
evaluated using the peak oxygen uptake (VO2-peak) as determined on a cycle ergometer 
where the load was increased stepwise until exhaustion. Inclusion criteria were < 48 ml kg-1 
min-1 and < 46 ml kg-1 min-1 for men and women, respectively. Baseline subject 
characteristics are presented in Table 1 and an outline of the whole study is shown in Figure 
3A. The training protocol consisted of 45 min one-legged knee-extension exercise training 
four times per week for twelve weeks, in total 45 sessions. In this first training period (Period 
1), all subjects exercised only one randomized leg. All training was conducted with the load 
and frequency supervised by an assistant. The load was continuously increased during each 
session, as well as during the training period.  

In humans, skeletal muscle is a relatively unique tissue as it is accessible for sampling in 
adequate quantities, easily subjected to physiologically relevant interventions, highly plastic 
and also functionally testable in a reliable and relevant manner. In the EpiTrain study, two 
biopsies from the vastus lateralis muscle of each leg were obtained at rest before and after 
(24h) each training period (Figure 3A and B). No large blood vessels perforate the lower part 
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of this outer thigh muscle, making it ideal for sampling. For all studies, the tissue samples 
were taken under local anesthesia using the percutaneous needle technique (Bergström, 
1962), immediately frozen in liquid nitrogen or 2-methylbutane cooled by liquid nitrogen 
(Paper III) and stored at -80°C. 

Two one-legged knee-extension performance tests were conducted on a modified bicycle 
before and after the training period. A one-legged max test was performed using two different 
protocols; two minutes at a constant load (10W or 20W based on measured VO2-peak) 
followed by an increase in load by 3 or 5 watts every 30 seconds until exhaustion. A fifteen 
minutes one-legged optimal performance test (15-min test) was performed on a different day 
or at least 6 h after the previous test. After one minute the load was 50% of the achieved 
maximum at the previous max test. Thereafter the load was kept as high as possible for the 
subject to be able to keep the pace at 60rpm for the full fifteen minutes. Heart rate was 
registered every minute, as well as the rate of perceived exertion (RPE, Borg-scale) of the 
working leg. 

 

Figure 3. Experimental overview of the EpiTrain study. A) The outline of the study, with 
performance tests, biopsy time points with the corresponding code (T (for the leg trained in Period 1) 
or U (for the untrained leg in Period 1) followed by the time point (1-4)). B) Illustration of the biopsy 
sites. C) Schematic image of the one-legged training regime. 

After nine months of detraining, twelve of the subjects started a second training period 
(Period 2) with the same number of sessions and workload, but now training both legs. 
Before start of the training period, all subjects performed a VO2-peak test. The same one-
legged performance tests were conducted and skeletal muscle biopsies were obtained from 
both legs before and after training. The purpose of the one-legged training regime, which is 
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illustrated in Figure 3C, was to include the other leg as an intraindividual, untrained control. 
Several environmental factors, like diet and stress can affect DNA methylation and these 
factors were assumed to affect both legs similarly. In this way, it was possible to isolate the 
effect of training on the skeletal muscle tissue. The repeated training also made it possible to 
compare the training response in a previously well-trained with a previously untrained leg. 

3.1.2 Cross-sectional study (Paper V) 

The cross-sectional study included twelve highly endurance-trained men (elite cyclists and 
triathletes) and nine moderately active men (controls). Baseline characteristics, including 
VO2-peak, are presented in Table 1, and has previously been published (Fischer et al., 2006). 
Biopsies were obtained at rest from the vastus lateralis muscle, frozen in liquid nitrogen and 
stored at -80°C. 

3.1.3 Six-week bicycle study (Papers III and V) 

24 young, moderately active men (baseline characteristics are presented in Table 1) 
performed a supervised six-week endurance training program, four 45-min sessions per week 
at 70% of their pre-training VO2-peak. Biopsies were taken from the vastus lateralis muscle 
before and 24 hours after the last training session. The effect on physical fitness was 
evaluated using the mean improvement in VO2-peak (13%), data that has been published 
before (Vollaard et al., 2009). The biopsy procedure used for all human tissue sampling is 
shown in Figure 4. 

Figure  4. Biopsy procedure using a 
Bergstrom needle. Image courtesy of 
Susanna Appel.  

 

 

 

 

 

3.1.4 Skeletal muscle primary myoblasts 

In Paper V, skeletal muscle satellite cells were extracted from resting skeletal muscle 
biopsies. After initial proliferation of the myoblasts until 80% confluence, the cells were 
differentiated into myotubes in a low-serum culture medium. The cells were treated with the 
prolyl hydroxylase inhibitor Dimethyloxallyl glycine (DMOG) to investigate the association 
between PHD activity and the expression of PDK-1. 
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3.1.5 C2C12 mouse myoblast cell line 

C2C12 is an immortal mouse skeletal muscle cell line (Blau et al., 1985) that originates from 
satellite cells from the thigh muscle of a mouse from the CH3 strain (Yaffe and Saxel, 1977). 
It was used in Paper V for in vitro confirmation of the human data. Once the myoblasts were 
80% confluent, the cells were differentiated into myotubes. To study the effect of an altered 
HIF-1 activity on skeletal muscle metabolism in vitro, the cells were treated either with 
DMOG, to induce HIF-1, or transfected with siRNA (small interfering RNA) against PDK-1, 
to inhibit translation of the response gene transcript. Transfection was performed overnight 
using Lipofectamine®. Lactate levels were investigated in the culture medium using standard 
lactate strips and the cells were subsequently harvested in Trizol® for mRNA analysis and in 
0.1 M phosphate buffer with 0.5 % BSA (pH 7.7) for enzyme activity analysis at 6, 48 and 96 
hours after removal of the Lipofectamine. 

3.2 ENZYMATIC ACTIVITY ANALYSES 

The experimental procedure was done according to the fluorometric principles of Lowry & 
Passonneau (Lowry and Passonneau, 1972). For skeletal muscle, a small section of each 
biopsy was freeze-dried and homogenized in 0.1 M phosphate buffer (pH 7.7) with 0.5% 
BSA (bovine serum albumin). For the in vitro experiments, cells were cultured in six-well 
plates and scraped off in 250ul of phosphate buffer with 0.5% BSA and 1x PI (protease 
inhibitor) cocktail per well. The cells were subsequently homogenized with a polytron for ten 
seconds on ice. For the cell experiments, the homogenate was also freeze-thawed a couple of 
times to break the cell and mitochondrial membranes. 

3.2.1 Citrate synthase 

Citrate synthase (CS) is a rate-limiting metabolic enzyme of the citric acid cycle that has been 
shown to reflect the mitochondrial content of skeletal muscle (Holloszy et al., 1970). A well-
established adaptation of skeletal muscle to endurance training is an increase in mitochondrial 
density (Duscha et al., 2012; Holloszy and Booth, 1976; Holloszy et al., 1970), which enables 
muscle to produce more aerobic energy. CS activity was therefore used to obtain an 
objective, biochemical indication of the training response. To measure the activity of CS, the 
tissue lysates were added to a reagent solution containing NAD+ and MDH (Malate 
dehydrogenase). Acetyl-CoA was added to start the enzymatic reaction and the reaction 
velocity was subsequently registered with a fluorometer (reduction of NAD+ to NADH). To 
quantify the activity, the velocity was related to a standard curve computed from known 
amounts of NADH. 

In Papers III and V, there was a 26% increase in CS activity with six weeks of training 
(Vollaard et al., 2009). In Paper V, the elite athletes in the cross-sectional study had > 2-fold 
higher CS activity compared to the moderately active controls (Wiik et al., 2005). 
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3.2.2 3-hydroxyacyl-CoA dehydrogenase 

Another mitochondrial enzyme is 3-hydroxyacyl-CoA dehydrogenase, or β-HAD, that 
catalyzes a step in the β-oxidation of fatty acids. In response to long-term endurance training, 
there is an increase in the triglyceride content of skeletal muscle and the ability of muscle to 
utilize these stores through e.g. an increase in the lipoprotein lipase activity (Holloszy and 
Booth, 1976). β-HAD is also induced with endurance training (Ngo et al., 2012; Perry et al., 
2007) and was investigated as an additional biochemical marker for training response. The β-
HAD activity was measured in a reagent solution (0,5M Imidazol (pH 7), 0.1M EDTA, 5mM 
NADH diluted in carbonate buffer and 2mM Aceto-Acetyl-CoA) where addition of the tissue 
lysate started the reaction. Fluorescence of β-HAD oxidation of NADH to NAD+ was 
recorded and quantified in relation to a standard curve from known amounts of NADH. 

3.3 TRANSCRIPTIONAL ACTIVITY 

3.3.1 RNA extraction 

Total RNA was isolated from cells and skeletal muscle biopsies using the Trizol® reagent, 
based on a method by (Chomczynski and Sacchi, 1987). In short, each sample was 
homogenized with a polytron on ice. Total RNA was precipitated using isopropanol, the final 
RNA pellet diluted in RNase-free water and stored at -80°C. The concentration and quality 
was determined using the RNA 6000 Nano chip on the 2100 Bioanalyzer automated 
electrophoresis system (Papers I, II and IV) and/or absorbance at 260nm and agarose gel (all 
RNA).  

3.3.2 RNA sequencing 

RNA sequencing (RNA-seq) uses massive parallel sequencing of complementary DNAs 
(cDNAs) for genome-wide gene expression profiling. In addition to high-resolution 
quantification of exon expression, RNA-seq also allows for analysis of splice variants and 
identification of previously unknown alternative splicing events and novel transcripts 
(Nagalakshmi et al., 2010). RNA-seq results have been shown to be highly reproducible and 
well correlated to microarray expression data (Marioni et al., 2008) and the method has a 
large dynamic range. As the majority of a total RNA sample is rRNA, an enrichment step is 
necessary. For these studies, two µg of total RNA was used for each sample. Poly-A-tail  
hybridization to poly-d(T) probes made the analysis mainly include transcripts containing a 
poly-A-tail, which may also include transcripts marked for degradation (Ozsolak and Milos, 
2011). The RNA was subsequently fragmented to improve the sequence coverage and then 
converted into cDNA. The libraries were barcoded and clustered on a cBot cluster-generation 
system using an Illumina HiSeq paired-end cluster-generation kit and sequenced as paired-
end, 2x100 bp on the Illumina HiSeq 2000. All lanes were spiked with 1% phiX control 
library. In total, 155 skeletal muscle tissue samples from the EpiTrain study (Papers I, II and 
IV) underwent sequencing. Efforts have been undertaken to assess the impact of technical 
limitations for RNA-seq on gene expression analysis, including differences due to processing 
date, library preparation batches, differences between the Illumina sequencing flow cells and 
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lanes within each flow cell (Consortium, 2014). Although some residual effects will always 
be present, these issues have been addressed through batch correction, as described below.   

3.3.2.1 Sequence read alignment and analysis 

Sequencing of all samples generated over 3 billion paired-end reads in total, a vast challenge 
analytically. After initial quality control (FastQC), adapter trimming was performed with 
TrimGalore. The sequencing reads were then aligned to the human genome (version 
hg19/GRCh37) for identification of their genomic origin. This was performed with the 
alignment software TopHat2, which is one of the most widely used for RNA-seq data (Kim et 
al., 2013a). This is an important step as the choice of alignment tool influences the accuracy 
of the subsequent analysis (Engstrom et al., 2013). The aligned reads were then assembled 
into transcripts using Cufflinks (Trapnell et al., 2010). To obtain an accurate expression level, 
it is important to account for sequencing depth, gene length and composition of the RNA 
population, which is done through normalization (Robinson and Oshlack, 2010). In Papers I 
and IV, Fragments Per Kilobase of Exon per Million mapped fragments (FPKM) values were 
calculated and the aligned reads were also used to count the number of reads per gene using 
HTSeq (Anders et al., 2014). The gene counts were then used to calculate differential gene 
expression through DESeq2 (Anders and Huber, 2010) (Paper I) or Limma (Smyth, 2005) 
(Paper IV). In Paper II, the number of reads per gene were also calculated with HTSeq, 
lowly expressed genes were filtered out (counts per million (CPM) mapped reads < 1 in at 
least half of the samples) and normalization factors were calculated using TMM (trimmed 
mean of M values) to normalize for RNA composition (Robinson and Oshlack, 2010). 
Differentially expressed genes were analyzed with edgeR (Robinson et al., 2010). DESeq and 
edgeR are similar in several aspects, for example both use a negative binomial distribution 
and adopt an adjusted version of Fishers exact test (Rapaport et al., 2013).  

Although the ability of RNA-seq to accurately detect relative expression is high, it has to be 
used with spike-in samples with known concentrations in order to attempt to quantify 
absolute expression levels (Consortium, 2014), which was not done in the present studies. 

3.3.2.2 Novel transcript discovery 

In Paper I, we investigated the presence of previously unknown transcripts in skeletal 
muscle. A reference-based assembly of the aligned reads was performed (using Cufflinks, 
(Trapnell et al., 2010)) without any transcript reference. The resulting 45 assemblies (one per 
sample) were merged with the Cuffmerge tool within Cufflinks, to which transcript 
annotation (ENSEMBL v. 71) was supplied. Transcripts that were classified as “unknown 
intergenic” were extracted, and additional removal of still overlapping transcripts due to 
slightly different assemblies from different samples was performed. The resulting list of 
putative novel intergenic transcripts was compared to the BodyMap data set and to a 
published list of lncRNAs (Hangauer et al., 2013). Some were also defined as protein-coding 
through comparison to a genome-wide set of known and novel protein-coding loci obtained 
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through HiRIEF (high-resolution isoelectric focusing) mass spectrometry (Branca et al., 
2013).  

3.3.3 Quantitative real-time PCR 

Two µg of total RNA was used to generate cDNA through reverse transcription. Quantitative 
real time PCR (qPCR) was then used for quantification of specific transcripts. The analysis 
was done using TaqMan gene expression assays (Applied Biosystems) (Papers I and V) or 
SYBR green reactions on specifically designed primers and probes (see Paper IV for 
details). For SYBR green reactions, the specificity of the primer pairs was investigated using 
a melting curve. For all qPCR analyses, an endogenous control was used to correct for 
loading discrepancies and potential variation in efficiency of the reverse transcription. The 
different controls were; in Paper I beta-actin (ACTB), in Paper IV 40S ribosomal protein 
S18 (RPS18) and in Paper V 18S ribosomal RNA or glyceraldehyde dehydrogenase 
(GAPDH) for human studies and hypoxanthine phosphoribosyltransferase (Hprt) for the 
murine cell line. For each subject, all samples were simultaneously analyzed in one assay run. 
The expression of each target was then evaluated by the 2-ΔΔCT method (Schmittgen et al., 
2000). 

3.4 DNA METHYLATION ANALYSES (PAPER II) 

3.4.1 DNA extraction 

DNA was extracted with the Gentra Puregene Tissue Kit (Qiagen). In brief, 5-10 mg of tissue 
was homogenized by hand in lysis buffer with proteinase K, and incubated at 55°C for 1h. 
After RNase A treatment, protein was precipitated followed by centrifugation at 14 000 x g. 
DNA was subsequently precipitated using ice-cold isopropanol. DNA was washed in 70% 
EtOH and mixed with 50ul of DNA hydration solution. After incubation at 65°C for 1h, the 
concentration and quality of the DNA was analyzed with Nanodrop® and gel electrophoresis. 

3.4.2 Luminometric Methylation Assay 

LUminometric Methylation Assay, LUMA, measures the global level of methylation at 
CCGG sequences in the genome. It utilizes the restriction enzymes MspI, that cleaves all 
CCGG sites, and HpaII, which is methylation sensitive (Karimi et al., 2006). Sample DNA 
was mixed with Tango buffer, EcoRI enzyme for internal control, and HpaII or MspI (in 
separate plates). After 4 hours of incubation at 37°C, annealing buffer was added and the 
plates were subjected to pyrosequencing. The ratio between HpaII and MspI was then 
calculated to investigate unidirectional changes in the DNA methylation level. 

3.4.3 450K DNA methylation arrays 

Genome-wide DNA methylation profiling was generated with the Infinium 
HumanMethylation450K BeadChip array (Illumina) on bisulfite-treated DNA. Bisulfite 
converts cytosine bases to uracil, whilst methylated cytosines are protected. The Illumina 
array then employs two different chemistries and probe designs, Infinium I and II, to measure 
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methylation of 485 577 sites at single-base resolution. Infinium I has two probes per locus, 
one for methylated and one for unmethylated C’s, while Infinium II has one probe, with a 
subsequent base extension with adenine for unmethylated and guanine for methylated sites 
resulting in differences in fluorescence emission. The array covers 99% of genes, 96% of 
CpG islands, >80 000 predicted enhancers as well as non-CpG sites (Bibikova et al., 2011). It 
cannot differentiate between 5-mC and 5-hmC. The samples were run at the BEA core 
facility, Karolinska Institutet. 

3.4.4 Bisulfite pyrosequencing 

In order to validate some of the specific findings from the array, bisulfite pyrosequencing was 
adopted. Primers for this purpose were designed using the PyroMark assay design software 
(Qiagen) or the BiSearch primer design tool (http://bisearch.enzim.hu). After bisulfite 
treatment, the DNA was amplified with a specific primer pair, one biotinylated at the 5’ end. 
The PCR product was subsequently mixed with streptavidin-coated sepharose beads to 
acquire a single-stranded product and mixed with a specific sequencing primer. 
Pyrosequencing was then performed by sequential injection of nucleotides in a controlled 
order, where each nucleotide is degraded before addition of the next. Successful 
incorporation of a nucleotide renders a bioluminometric signal as the resulting release of 
pyrophosphate (PPi) provides energy for a luciferase (Tost and Gut, 2007). 

3.5 PROTEIN ANALYSES 

3.5.1 Immunohistochemistry 

In Paper III, human skeletal muscle tissue sections (10µm) were cut in a cryostat at -20°C 
and placed on microscope slides. For each subject, three sections from the before and three 
from the after training samples were placed together on one slide. The slides were air dried 
for 5 min in room temperature followed by fixation in 4% PFA for 10 min. After washing, 
the sections were blocked in 5% horse serum in PBT (Phosphate-buffered saline with 0.1% 
Tween). Primary antibodies, against a specific histone modification and laminin, were diluted 
in blocking solution and incubated over night at 4°C. After wash in PBT, all slides were 
incubated for 1 h dark at room temperature with secondary antibody (anti-rabbit-Red X and 
anti-goat-FITC). After additional washing, the slides were mounted in VECTASHIELD® 
with DAPI stain for DNA. 

3.5.1.1 Confocal microscopy analysis 

Tissue sections were visualized with the Zeiss LSM710 confocal microscope at 40x 
magnification, using channels for DAPI (blue), FITC (green) and Rhodamine RedX (red). 
For each subject, three images were taken before and three after training, all from the same 
glass slide. The images were analyzed using the Volocity® software, where objects were 
automatically excluded by size (>700µm3 and <50µm3) or manually excluded if they did not 
appear within a nucleus (blue).  
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3.5.2 Chromatin Immunoprecipitation and sequencing 

Chromatin immunoprecipitation (ChIP) analysis was included in Paper III. Skeletal muscle 
tissue was cross-linked with 1% formaldehyde, washed (in PBS with 1mM PMSF and 1% PI 
cocktail) and then lysed in lysis buffer to isolate nuclear material. The nuclear extracts were 
clarified by centrifugation and the lysate was diluted five-fold in ChIP lysis buffer, mixed and 
subsequently sonicated (16x16 pulses, Branson Sonicator). This generated DNA fragments 
between 100 and 600bp long. For each sample, 100ul of sonicated lysate was used as input 
control. The samples were then immunoprecipitated with an H3K27me3 antibody (07-449, 
Merck Millipore, where previous lots have been validated for ChIP experiments (Egelhofer et 
al., 2011)), and magnetic A/G beads at 4°C overnight. The immune complexes were washed 
with RIPA buffer and TE buffer with 50mM NaCl. DNA was subsequently eluted with 
elution buffer and NaCl was added to 0.2M, followed by reverse cross-linking at 65°C 
overnight. Purification of the DNA was performed with phenol/chloroform/isoamylalcohol. 

DNA was prepared with the NEBNext ChIP-Seq Library Prep and sequenced on the Illumina 
HiSeq 2000 (by the BEA core facility, Karolinska Institutet). Sequencing generated on 
average 11.4 million reads per sample. Reads were aligned to the human genome using 
Bowtie 2 (>90% alignment) and peak calling was performed using MACS (Zhang et al., 
2008). 

3.5.3 Protein extraction and immunoblotting 

For Paper V, skeletal muscle biopsies were homogenized in the appropriate buffer on ice 
using glass homogenizers. The concentration was measured using the Bradford Assay and an 
equal amount of protein from all samples was subsequently boiled in Laemmli loading buffer. 
The protein was separated on sodium dodecyl sulfate (SDS) polyacrylamide gels and blotted 
onto Protran nitrocellulose or Polyvinylidene fluoride (PVDF) membranes. The membranes 
were blocked for 1h with 5 % dry milk or 0.5 % gelatine in tris-buffered saline containing 0.1 
% Tween 20 (TBS-T) and then incubated with the appropriate primary antibody at 4°C 
overnight. After washing, the membranes were incubated with an HRP-linked secondary 
antibody for 1 h at room temperature. After additional washing, the immune-complex was 
detected using enhanced chemiluminescence (ECL) or SuperSignal West Femto Sensitivity 
Substrate. To correct for potential differences in loading, the protein of interest was related to 
the amount of α-actinin, which was investigated on the same blot.  

3.6 STATISTICS 

3.6.1 Student’s t-test 

In Paper I, unpaired Student’s t test was used to compare CS levels and specific mRNA’s 
(from qPCR validation) between males and females. In Paper II, the bisulfite 
pyrosequencing validation was analyzed with a paired Student’s t test for before and after 
training in the trained and untrained legs. In Paper IV, the qPCR validation of RNA-seq data 
was also analyzed with a paired Student’s t test, while in Paper V, unpaired tests were 
adopted for the cross-sectional study and primary cell experiments while paired tests were 
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used to analyze protein and mRNA in the longitudinal study. For all analyses, the results were 
considered significant at p<0.05. 

3.6.2 ANOVA 

A two-way repeated measures ANOVA (Analysis of variance) was adopted for all 
measurements with repeated sampling and more than one group. That includes the 
physiological measurements and enzyme activity analyses in Papers II and IV, and LUMA 
and hydroxymethylation analyses in Paper II. In Paper V, results from the in vitro 
experiments with C2C12 cells were analyzed with ANOVA. Specific differences were 
investigated with the Bonferroni post hoc test and considered significant at p<0.05. 

3.6.3 Bioinformatics of RNA-seq data 

The RNA-seq expression data has been analyzed in two principal ways. For Papers I and IV, 
the analyses have been based on multivariate statistical methods. For Paper II, where the 
primary focus was on correlating changes in expression to changes in DNA methylation, the 
Bioconductor package edgeR was used to identify differentially expressed genes. Basic 
treatment of the raw count data was very similar, as described under Sequence read alignment 
and analysis (3.3.2.1).  

3.6.3.1 Multivariate data analysis 

The multivariate statistical analyses were performed using the software Simca p+13.0.3x64  
(Umetrics, Sweden) on normalized gene-level counts. Principal component analysis (PCA) 
aims to reduce the number of dimensions of a data set into visually comprehensible 
components that explain the largest amount of variability found in the data. By identifying the 
linear combinations of the data points in a matrix where the highest variance is found, the 
data points can be rotated into a more informative co-ordinate system where the axes, i.e the 
components, represent the highest variance. The first principal component thus identifies the 
dimension where the highest variance can be found in the data, the second component the 
second highest and so on. Each component is orthogonal to the next. For PCA, no initial 
categorization of the data was performed, i.e. the samples were not grouped in any way. For 
the majority of comparisons, the data was visualized as the first three principal components 
with coloring to identify the different samples. The results were also reported as an Rx

2 value, 
which accounts for the variance explained by the components, also described as the goodness 
of fit of the model, and a Qx

2 value, which is the cumulative fraction of the total variation of 
X (which is the entire gene or isoform expression data set) that can be predicted by the 
model, i.e. the quality of Rx

2. The Qx
2 value is derived from cross-validation, a procedure that 

aims to simulate the predictive ability of a PCA model. The principle behind it is to 
continuously remove part of the data and validate how well the model predicted the removed 
values in comparison to the actual observed values. The resulting Q2 is the sum of squares of 
the difference between the predicted and observed variables (Eriksson et al., 2013). The 
application of PCA to transcriptome data has been previously described (Kjellqvist et al., 
2013; Kurtovic et al., 2011).   
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Orthogonal Projections to Latent Structures by means of partial least squares discriminant 
analysis (OPLS-DA) is a multivariate statistical method where the data set can be categorized 
into groups. Similarly to PCA, OPLS also aims to reduce the number of dimensions of the 
data, while the discriminant analysis part includes the classification component. The 
relationship between a data matrix X, gene or isoform expression values in this case, can 
thereby be investigated in relation to a class Y (right and left legs, males and females or 
before and after training). What OPLS-DA does is that is separates the systematic variation in 
X into two different parts, one that is linearly related to Y (referred to as the predictive 
component) and one that is orthogonal, i.e. unrelated, to Y. The purpose of this procedure is 
to remove potential systematic variation in X that is not related to the investigated groups 
defined by Y. An OPLS model is also described by the Rx

2 value, together with Ry
2 that 

accounts for the explained variance of the Y component and Qy
2, which is the cumulative 

fraction of the total variation of Y that can be predicted by the model (Eriksson et al., 2013).  

If the model was good based on the model parameters, differentially expressed genes and 
isoforms were identified through the loadings in the OPLS models. Loadings are the cosine 
of the angle between a variable and the principal component, which therefore indicates how 
similar the variable is to each respective principal component, i.e. how much it contributes to 
the total variance described by the principal component (Eriksson et al., 2013). If, in theory, a 
specific variable is in the exact same direction as the first principal component, that variable 
would explain all the variance observed for the first principal component. The level of 
significance of each loading was calculated as the absolute value of each loading (ABS 
(loading)) subtracted by the absolute value of the jack knife confidence interval (Martens et 
al., 2001), where a positive value indicated that a gene was significant. The jack knife 
confidence interval is a cross-validation technique where the average for the whole set of 
samples is calculated and subsequently there is an iterative process where one sample is 
dropped from the set to obtain partial estimates. The differences between the partial estimates 
and the estimate for the whole set are then used to estimate standard errors and calculate 
confidence intervals. This technique has also been used previously for differential expression 
analysis (Kjellqvist et al., 2013; Kurtovic et al., 2011). In Paper I, a significance level of 0.05 
was used, while for Paper IV the significance level was set to 0.01. 

Prior to the multivariate analyses all data was subject to unit variance scaling (UV-scaling), 
where each variable was divided by its standard deviation. This equalizes the variance 
between different variables, which is important since both PCA and OPLS aim to identify the 
maximum variability in a data set. The data was also mean-centered, where the average for 
each variable was subtracted from the data, resulting in a mean of 0 for all variables. In the 
original co-ordinate system, the average for all variables will therefore be centered at the 
origin.   

3.6.3.2 Differential gene expression using DESeq2, edgeR and Limma 

Differential expression was also evaluated with the univariate methods DESeq2, edgeR and 
Limma. DESeq2 and edgeR (used in Papers I and II respectively) are very similar methods. 
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They both evaluate differential gene expression based on generalized linear models, use count 
data as input, and utilize a negative binomial model to account for over-dispersion of the 
count data (the sample variance exceeds the sample mean) (Anders and Huber, 2010; 
Robinson et al., 2010). See (Soneson and Delorenzi, 2013) for a comparison of these and 
other methods for analysis of differential expression of RNA-seq data.  

In Paper I, DESeq2 was used to investigate differential expression within a muscle and 
between the right and left leg of an individual. In Paper II, the time point (T2 vs T1), library 
preparation and the individual were included as covariates and for T2 vs T1 the 
log2FoldChange and false discovery rate (FDR) were reported for each gene. A 
multidimensional scaling plot was obtained using the top 1000 genes (displaying the largest 
biological variation between samples) where the distance between each pair of samples (T1 
and T2 for each individual) represent the biological coefficient of variation from edgeR. In 
Paper IV, Limma was used to investigate potential differential expression with training for 
the list of putative novel transcripts presented in Paper I, as well as to validate the significant 
differentially expressed genes identified with OPLS. Putative novel isoforms were 
investigated using a new tool called Ballgown, because of its ability to perform differential 
expression analysis on transcriptome assemblies (Frazee et al., 2015). 

3.6.4 Bioinformatics of DNA methylation data 

The pre-processing and normalization of DNA methylation data was carefully evaluated in a 
separate paper, not included in this thesis (Marabita et al., 2013). The data processing in 
Paper II included color adjustment (because of different fluorescent colors used on the array) 
and quantile normalization on pooled signal intensities from methylated and unmethylated 
probes to reduce the between sample variation due to position on the actual slide. BMIQ (beta 
mixture quantile dilation) is a correction method that aims to eliminate probe-type bias 
(Marabita et al., 2013), which was performed on the calculated β-values (β=IM/(IU+IM+α), 
where IM and IU represent fluorescence intensities for the methylated and unmethylated 
probes, respectively, and α is a constant. β-values (range between 0 and 1) basically reflect 
percentage methylation of a specific locus. Before differential methylation analyses, we 
filtered out 65 SNP-associated (single nucleotide polymorphism) probes, probes on 
chromosomes X and Y (because the study included both males and females) and probes with 
a detection p-value > 0.01 in over 5% of the samples (detection p-value represents the 
confidence with which the probe is positively detected above a negative control background 
level). Batch effect correction was performed using ComBat. The subsequent analyses were 
performed on M-values (M=log2((IM+α)/(IU+α)), partly because the data distribution is more 
homoscedastic (approximately equal standard deviations across the data set), which most 
statistical methods assume.  

Differentially methylated positions (DMPs) were identified using Limma (Smyth, 2005), 
with the group (T2 vs T1) and the subject as covariates. DMPs were considered significant if 
FDR<0.05. Standard Illumina annotation was used to annotate the DMPs (relation to genes, 
relation to CpG islands, enhancers etc.) in relation to non-DMPs and the entire array probe 
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set. To investigate the DMPs further, we used publically available NIH roadmap epigenomic 
data for skeletal muscle to identify H3K4me1, H3K4me3 and H3K27ac peaks using MACS 
(Zhang et al., 2008). A list of putative promoters (H3K4me3) (Guenther et al., 2007) 
enhancers (H3K4me1) and active enhancers (H3K27ac ∩ H3K4me1) (Creyghton et al., 
2010) was obtained and the relative fractions of DMPs, non-DMPs and the entire array probe 
set located within those elements were calculated. In addition, chromatin segmentation tracks 
for an HSMM (human skeletal muscle myoblast) cell line were downloaded from the UCSC 
genome browser and the relative fraction falling in each segment category was calculated for 
with DMPs and the entire array position; a fold difference was then obtained (DMPs vs. 
array). 

3.6.5 Relation between DNA methylation and transcriptome data 

For DNA methylation data, the Illumina annotation for genes associated to analyzed 
cytosines on the 450K array was used to acquire a methylation associated gene list. Together 
with the gene expression data, a Spearman correlation was calculated for the normalized 
CPM value and the corresponding M-values. The calculation was done for all 
methylation/gene pairs and for DMPs/DEGs (Differentially Expressed Genes) only. The 
differential gene expression data was also used to construct a transcriptional network based 
on a mutual information algorithm developed in ARACNE (Algorithm for the 
Reconstruction of Accurate Cellular Network) (Margolin et al., 2006). This algorithm aims 
to reverse engineer gene regulatory networks and identify transcriptional interactions. Mutual 
information between differentially expressed genes was considered significant at P<10-14 and 
the final consensus networks were generated with bootstrap runs and a significance level of 
P<10-10. The networks were visualized using the Cytoscape software.  

3.6.6 Functional categorization and network analyses 

To obtain a functional categorization of the differentially expressed or methylated high-
throughput data, several different approaches were taken. In Paper I, the entire skeletal 
muscle transcriptome (expressed at an average FPKM>1) was functionally annotated using 
the Panther database (Thomas et al., 2003), while the DAVID (Database for Annotation, 
Visualization and Integrated Discovery) gene ontology (GO) annotation tool (Dennis et al., 
2003) was used for DEGs between males and females. DAVID results were reported for 
functional categories that had a fold enrichment >1.5 and a FDR<0.05. The presented p-
values represent the probability of finding that subset of genes from a certain GO term in a 
random set of genes drawn from the complete background gene list. The Ingenuity pathway 
analysis software was also used to investigate functional enrichment of expression differences 
between males and females, including potential upstream regulators. In Paper II, GO 
analysis of the gene expression data was performed using GOseq (Young et al., 2010) and the 
resulting enriched KEGG pathways were visualized with pathview (Luo and Brouwer, 2013). 
For DNA methylation data, functional gene categories associated with DMPs were 
investigated using GREAT. Potential enrichment of known transcriptional motifs in a region 
of ± 100bp around DMPs was investigated using HOMER. In Paper IV, ontology of 
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differential gene and isoform expression was performed with DAVID and Ingenuity. For 
novel transcripts, conserved regions were investigated using the UCSC genome browser and 
presence of open reading frames and protein-coding motifs were analyzed with the ORF 
Finder Sequence Manipulation Suits and Motif Search tool, respectively. For details, please 
see each respective paper.  
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4  RESULTS AND DISCUSSION 

4.1 THE BASELINE SKELETAL MUSCLE TRANSCRIPTOME 

For most skeletal muscle studies, repeated sampling is necessary. Samples taken from 
different legs or different parts of the same leg are often assumed to be similar at baseline, 
despite little scientific evidence. Although alterations in gene expression levels in different 
conditions and in response to interventions have been studied extensively in skeletal muscle, 
there is no systematic analysis of the baseline skeletal muscle transcriptome. Paper I aimed 
to investigate this with specific regard to sex differences, alternative splicing and tissue 
homogeneity. 

4.1.1 Tissue homogeneity 

From RNA sequencing of 48 biopsies from nine men and nine women, 12 659 unique known 
transcripts were found to be expressed in skeletal muscle, with 10 419 representing protein-
coding genes. Many mitochondrial and structural genes were among the most highly 
expressed. The number of expressed genes was similar to what has been observed in other 
human tissues, as well as skeletal muscle, with RNA-seq (Wang et al., 2008). A comparison 
between 28 different human tissues shows that skeletal muscle is most similar to heart muscle 
and adipose tissue and the number of genes that are considered uniquely elevated in skeletal 
muscle is <400, mainly structural components involved in contraction. Similar to heart 
muscle, a majority of the transcribed genes in skeletal muscle are, however, involved in 
energy turnover (Lindskog et al., 2015). At the isoform level, just over 23 000 different 
transcripts were transcribed above the threshold (FPKM>1), out of which 15 455 were 
classified as protein-coding (Paper I). Alternative splicing occurs in virtually all multi-exon 
genes and appears to be highly tissue-specific (Wang et al., 2008). The average number of 
isoforms per gene was 2 in this study, but there were 113 genes that expressed 10 different 
isoforms or more where NDRG2 was the most versatile with 38 expressed isoforms. The 
tissue homogeneity in these repeated samples was found to be very high. Multivariate 
statistics, with unsupervised PCA and supervised OPLS-DA, was adopted to compare global 
expression differences within legs (i.e. with two biopsies from the same leg) and between 
legs, but no systematic differences were found. This was confirmed by linear model statistics 
as well. When interpreting the results, it is important to consider the individual variability that 
has been observed for isoform expression (Wang et al., 2008). The reported numbers 
represent averages across all individuals and it is unlikely that all individuals expressed all the 
investigated isoforms. A closer look at all expressed isoforms from a few genes, however, 
showed that the most abundant isoforms were high among most subjects, while the lowly 
expressed ones were more variable. This could also reflect a technical limitation as most 
software, including Cufflinks, perform worse in estimating expression of lowly expressed 
genes and isoforms (Kanitz et al., 2015). 
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4.1.2 Sex differences 

A supervised OPLS-DA analysis comparing male and female human skeletal muscle showed 
clear differences both at gene- (>3000) and isoform (>5000) level (Figure 5A-B), regardless 
of whether the sex chromosomes were excluded or not. In females, enriched transcripts 
belonged to genes coding for mitochondrial factors for cellular respiration and fatty acid 
oxidation, while those enriched in males were cytoplasmic and involved in protein catabolism 
(Figure 5C). Some difference in gene expression between the sexes was expected, as this has 
been investigated previously with microarray (Maher et al., 2009; Welle et al., 2008). Maher 
et al. compared skeletal muscle from 12 men and 12 women with a global microarray 
approach and found 66 genes with a significant fold difference >1.2 (Maher et al., 2009). 
Fifty percent of those were found among our differentially expressed genes. Using 
oligonucleotide microarrays to compare muscle between 15 men and 15 women (age 20-75), 
Welle et al. (Welle et al., 2008) found approximately the same number of genes to be 
differentially expressed as in our study, but only 25% of those were the present in both 
studies. Age differences between the included subject populations, as well as methodological 
and statistical differences can likely explain some of the discrepancies.   

Fiber type composition is one physiological difference between male and female skeletal 
muscle that, in part, can explain the differential gene expression. In males, glycolytic type II 
fibers are more abundant, while females have a higher percentage area of more oxidative type 
I fibers (Staron et al., 2000). This was reflected in our transcriptome data, where female 
muscle was highly enriched for genes involved in mitochondrial function while many 
glycolytic genes (e.g. LDHA, GAPDH, ALDOA and PFKM) were more highly expressed in 
male muscle. The more oxidative phenotype of women could also reflect a small difference 
in average fitness level, and although there were no significant differences between the 
groups, the average CS activity was somewhat higher in women. There was no difference in 
VO2-peak. Type I fibers also have a higher capillary density, and female muscle was enriched 
for endothelial markers as well as several angiogenic factors, including VEGFA.   

ACTN3 is a structural protein in the sarcomere that is only expressed in type II fibers. A SNP 
(R577X) in the ACTN3 gene results in a premature stop codon that leads to a dysfunctional 
protein, i.e. lack of ACTN3. An XX genotype for this SNP in humans has, for example, been 
associated to reduced response to sprint exercise training (Norman et al., 2014). The 
expression of ACTN3 was higher in males, likely due to the higher percentage area of type II 
fibers. However, it is also important to consider the potential difference in the genotype 
prevalence among these subjects. A small sample size increases the risk for a skewed 
genotype distribution, and this could influence observed expression differences. This 
particular SNP has been analyzed in these subjects and no one has the XX genotype, however 
it is not possible to exclude for other genes.  

In order to further investigate the reason behind the sex differences in skeletal muscle gene 
expression, we also used Ingenuity to predict upstream regulators of the enriched genes. In 
females, the most significant predictor was P53 (TP53). Other predictors were the PPARs 
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(Peroxisome proliferator-activated receptors), regulators of for example lipid metabolism 
(Ehrenborg and Krook, 2009), and ß-estradiol. Hormonal differences were expected, but 
there was no predicted regulation by male sex hormones. Two factors involved in translation 
were predicted as upstream regulators of genes enriched in male skeletal muscle. The 
substantial differences between male and female skeletal muscle may explain differences in 
physiological phenotype and possibly also disease susceptibility between the sexes.  

Figure 5. Sex differences in the human skeletal muscle transcriptome. A) OPLS-DA score plots of 
isoform and B) gene level expression data between males (red) and females (blue). Data is analyzed in 
34 samples in total, two from each individual. C) Ontology analysis for cellular component (left) and 
biological process (right) for genes enriched in females (blue) and males (red), respectively. 

4.1.3 Novel transcripts 

The high number of sequenced samples generated over 830 million paired-end reads in total. 
The whole data set was used for a reference-based de novo assembly for identification of 
previously unannotated loci, which resulted in 2430 novel transcripts. The majority were 
either associated with lncRNAs (17%), (from a study by (Hangauer et al., 2013)), found in 
other RNA-seq data sets (78%) or conserved in mammals (99%), indicating that they are 
transcripts of functional importance. Five transcripts co-localized in the genome with newly 
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identified peptides (Branca et al., 2013), which strongly indicates that they are protein-coding 
genes. It is important to note that all these transcripts were unannotated in ENSEMBL, which 
means that some of them are likely included in for example RefSeq, and some might have 
been described before, but not annotated.  

In summary, Paper I provides a deep and extensive baseline reference for the human skeletal 
muscle transcriptome, both with regards to alternative splicing events, novel transcript 
expression and sex differences in functional ontology. The high tissue homogeneity observed 
is of great importance for studying interventions, which is the basis for the rest of the papers 
in this thesis. 

4.2 THE TRAINING-INDUCED TRANSCRIPTOME  

The training-induced transcriptome was investigated in the EpiTrain study and is reported in 
Papers II and IV. Three months of one-legged endurance training (Period 1) induced 
significant physiological changes in the trained leg, measured by two different one-legged 
performance tests (Figure 6, top). A small performance improvement was also detected in the 
untrained leg. A more objective measure of the skeletal muscle adaptation was obtained by 
investigating changes in citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (β-
HAD) activity, which increased by 50% and 20%, respectively (Figure 6, bottom).  There 
was no change in the untrained leg. This confirms that the training stimulus induced a 
specific and significant adaptation. 

4.2.1 Gene expression changes 

In Paper II, linear model analysis of the RNA sequencing data showed that 4076 genes 
significantly changed in response to training. Fifty-four percent of the regulated genes 

increased in expression, which is 
relatively low compared to other 
studies showing a much larger 
majority of genes increasing in 
expression (Timmons et al., 
2010).  

 

 

 

Figure 6. Physiological and 
biochemical adaptation. Data from 
Period 1 of the EpiTrain study. Data 
is presented as mean ± SEM. * 
indicates significance between before 
and after training and # between legs, 
P<0.05.  
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Gene ontology and pathway analysis of the differentially expressed genes (DEGs) revealed 
many processes known to be associated with training adaptation, for example cellular 
respiration and blood vessel development (Figure 7). Enriched pathways included for 
example oxidative phosphorylation and ECM-receptor interaction. To identify transcriptional 
interactions, the data was also visualized as a gene regulatory network based on mutual 
information from the gene expression data, as implemented in ARACNE (Margolin et al., 
2006). The network can be viewed in full online in the freely available supplementary 
material of Paper II (supplementary figure S7).

 

Figure 7. Molecular function ontology. Gene ontology for molecular function of the differentially 
expressed genes in response to training in Period 1 of the EpiTrain study. Significant categories are 
visualized using TreeMaps. 

In Paper IV, multivariate statistics was applied to the RNA-seq data and confirmed the 
results from Paper II with a clear difference between the samples before and after training. 
2394 genes were found to be differentially expressed, at a significance level of 0.01 (resulting 
in lower number of genes compared to Paper II). The untrained leg was also included in the 
analysis, showing that the training response of the trained leg was very specific. However, 
there were genes that changed also in the untrained leg, out of which approximately 500 also 
changed in the trained leg. This can for example be due to the element of time (three months 
between the biopsies) or through vascular or other systemic effects induced by training in the 
trained leg. Skeletal muscle tissue releases myokines into the circulation (Pedersen and 
Febbraio, 2012) that could potentially induce effects also in the contralateral leg, as well as 
other parts of the body. The observed changes in the untrained leg highlights the importance 
of including a relevant control when conducting exercise training intervention studies.  

Of the 2394 DEGs in Paper IV, 75% were also found in Paper II. These multivariate and 
univariate methods complement each other, although there are evident discrepancies that are 
inevitable for different statistical approaches. Multivariate statistics is highly appropriate for 
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this type of data that is multivariate in nature. It is unpaired, however, which is a 
disadvantage considering the increased power of a paired analysis that is more appropriate in 
this experimental set-up with repeated sampling from the same individual. We are currently 
exploring a potential paired multivariate approach for this data. EdgeR is univariate, but 
allows for efficient pairing of the samples and is commonly used, which simplifies 
comparison to other studies. 

4.2.2 Isoform expression changes 

In Paper IV, the training-induced transcriptome changes were also investigated at isoform 
level. With training, 3404 isoforms, distributed across 2624 genes, were differentially 
expressed. For a majority of the genes, only one isoform was thus differentially expressed, 
while 2% of the genes differentially expressed 4-8 isoforms. The NDRG2 gene, with 18 
differentially expressed isoforms, displayed 17 isoforms decreasing and one isoform 
increasing in expression. NDRG2 has been shown to be a PGC1α/ERRα transcriptional target 
in C2C12 myotubes, influencing protein turnover and the regulation of genes involved in 
muscle contraction and function (Foletta et al., 2013). From the SPARC gene (Secreted 
protein, acidic, cystein-rich, or osteonectin), five isoforms significantly increased in 
expression. This protein has recently been identified as a myokine that is induced by exercise 
and suppresses tumorigenesis in the colon (Aoi et al., 2013). Gene ontology analysis showed 
that the differentially expressed isoforms were mainly associated to cellular respiration and 
ATP synthesis coupled electron transport, and enriched pathways included oxidative 
phosphorylation and the TCA cycle. These results were thus very similar to the analysis 
performed at gene level. Many differentially expressed isoforms were highly interesting for 
endurance training adaptation and its health effects.   

Fifty-four genes differentially expressed multiple isoforms that changed in opposite 
directions. This information further highlights the complexity of gene regulation and the 
importance of recognizing this before drawing conclusions solely from gene-based data. 
Examples of these genes include the mitochondrial ATP synthase ATP5G1, the FUS gene 
(Fused In Sarcoma) that encodes an RNA-binding protein involved in pre-mRNA processing 
(Vance et al., 2009), and Pyruvate Kinase Muscle (PKM) (Figure 8). A potential reason for 
differential regulation of isoforms from the same gene is that the isoforms have different 
functions and therefore contrasting roles in muscle adaptation to training. It could, however, 
also be due to a change in cellular composition of the muscle, which is known to occur with 
endurance training (Gustafsson, 2011) and isoform expression shows cell-type specificity 
(Wang et al., 2008). 

The analysis at isoform level is less robust compared to the analysis at gene level because it is 
more difficult to correctly map reads to specific isoforms compared to genes (Consortium, 
2014). Therefore, we utilized the second training period in the EpiTrain study to validate the 
results from the first period and identify the most training-responsive isoforms. The power of 
Period 2 was much smaller, as only twelve subjects finalized the entire study. However, we 
found 153 isoforms that were differentially expressed with training in the leg trained in 
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Period 1 and in both legs trained in Period 2. A Venn diagram showing the specific numbers 
for all trained legs as well as a table of all 153 isoforms are included in Paper IV. Many 
isoforms expectedly belonged to genes that are known to be induced by training, for example 
collagens and genes encoding proteins for the mitochondrial oxidative phosphorylation 
process.  

Three months of endurance training also altered the expression of 752 previously unannotated 
splice variants of already known genes. The differences range from a single base to 
unannotated exons, and further analysis of these is necessary.  

 

Figure 8. Differentially expressed isoforms. Examples of isoforms that were all significantly 
differentially expressed with three months endurance training and where isoforms from the same gene 
changed in different directions. The bars represent the mean fold changes. All displayed isoforms are 
significant (P<0.01).  

4.2.3 Novel transcripts 

In order to investigate if endurance training could alter expression of transcripts in 
unannotated parts of the genome, we performed a differential expression analysis (using 
Limma) of the 2400 novel transcripts identified in Paper I. Initially, we found 35 transcripts 
that were differentially expressed and not annotated in Ensembl v.71. Manual inspection of 
all 35 transcripts showed that one transcript overlapped an already known gene (PECAM1) 
that was annotated in RefSeq. This gene has previously been shown to be induced by training 
(Roudier et al., 2013), which was confirmed by our data. Out of the remaining 34 novel 
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transcripts, nine were upregulated and 25 were downregulated with training. The expression 
level was low in general, ranging from only four to 178 reads before training. All 34 
transcripts contained predicted open reading frames (ORFs) and protein-coding motifs 
(ranging from two to eleven), suggesting that they have protein-coding potential. A majority 
of the assembled transcripts also overlapped conserved regions in chimp, rhesus, mouse, rat 
or dog, indicating that they are functionally interesting. Two transcripts were also identified 
as enhancer RNAs when compared to a paper by (Arner et al., 2015).  

4.3 EPIGENETIC CHANGES WITH ENDURANCE TRAINING 

Epigenetics is a very important mechanism in the regulation of gene expression, and there are 
very few studies that have investigated the impact of epigenetic changes on adaptation to 
endurance training. The aim of Papers II and III was therefore to investigate the role of 
DNA methylation (Paper II) and histone modifications (Paper III) in skeletal muscle 
adaptation to long-term endurance training.   

4.3.1 Training-induced changes of the methylome 

In Paper II, the effect of training on the skeletal muscle methylome was investigated using 
LUMA and Illumina 450K arrays on DNA isolated from skeletal muscle biopsies taken 
before and after Period 1 of the EpiTrain study. The array specifically investigates the level of 
methylation at 486 000 sites throughout the genome.  

With training, 4919 sites (FDR<0.05) were found to be differentially methylated. The 
absolute changes were small in general, which was partly expected from this environmental 
stimulus where observed changes often are small and susceptible to large individual variation 
in comparison to for example cancer (Feil and Fraga, 2011). Clustering analysis of the data 
from autosomal chromosomes identified training and gender as the main determinants of 
variability between the samples. The corresponding analysis was performed on gene 
expression data, with very similar results. The localization of the differentially methylated 
positions (DMPs) in relation to the distribution on the array showed that there was a relative 
enrichment outside of CpG islands/shores/shelves. In relation to genes, the DMPs were 
primarily present in gene bodies and intergenic regions, and to a lesser degree in promoters. 
Further analysis based on the Illumina annotation showed significant enrichment of DMPs in 
regulatory enhancer regions. This was additionally confirmed using independent data from an 
HSMM cell line. That differential methylation mainly occurred at regulatory enhancer 
regions is very novel from an exercise biology perspective. However, DNA methylation has 
previously been shown to be most dynamically regulated in enhancers and other regulatory 
regions in humans (Ziller et al., 2013). Enhancer methylation has also shown tissue-specific 
patterns (Xie et al., 2013; Ziller et al., 2013), which is important to consider in the context of 
studying differential methylation in a mixed tissue sample.  

To investigate the potential functional relevance of the DMPs, an ontology analysis of the 
genes associated to the DMPs was performed. The DMPs were grouped as increasing or 
decreasing with training. Genes in the vicinity of increasing DMPs were associated to skeletal 
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muscle processes, highly relevant to endurance training adaptation, e.g. contractility, collagen 
binding and energy metabolism. Decreasing DMPs showed enrichment for developmental 
processes, transcriptional regulation and inflammation (Figure 9), very different from the 
increasing DMPs. This indicates that the observed changes were part of a controlled 
adaptation process rather than a random effect across the genome.  

 

Figure 9. Methylation ontology and motif enrichment. GREAT analysis of genes associated to 
DMPs increasing (UP) and decreasing (DOWN) in methylation. Enriched motifs were retrieved using 
a 200bp window surrounding each DMP.  
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The high degree of DMPs in enhancer regions prompted for additional analyses of the 
potential presence of known transcriptional motifs in close proximity of the DMPs. For 
increasing DMPs, motifs for the skeletal muscle-related Myogenic Regulatory Factors 
(MRFs) and Myocyte Enhancer Factors (MEFs) were significantly enriched. For decreasing 
DMPs, motifs for the ETS family of transcription factors were enriched (Figure 9). Enhancer 
methylation has been shown to be very dynamic and more closely associated to gene 
expression changes compared to promoter methylation (Aran et al., 2013). MRFs (including 
Myf5, MyoD, Myogenin and Mrf4) are important transcription factors for development of the 
muscle cell lineage (Gundersen, 2011). They are also highly interesting for endurance 
training adaptation by regulating expression of PGC1α (Amat et al., 2009) and through a 
possible role in promotion of a more oxidative muscle. MyoD has been shown to promote 
slow-to-fast twitch fiber transformation in rats, while myogenin has been implicated in 
regulation of several mitochondrial enzymes (Gundersen, 2011). Our results were confirmed 
in a recent endurance training study on mice, where binding sites for MyoD and myogenin 
were significantly enriched around differentially methylated sites (Kanzleiter et al., 2015). 
The ETS family of transcription factors has diverse functions, and several members regulate 
exercise-responsive genes. One example is GABPA (or NRF-2, nuclear respiratory factor 2), 
which controls gene expression of many mitochondrial genes important for cellular 
respiration (Fredriksson et al., 2008). Other members of the family control expression of 
angiogenic factors, and could thereby contribute to the increased capillary density that occurs 
with endurance training.  

To validate the array data, seven selected sites were analyzed using bisulfite pyrosequencing. 
Six sites were in accordance with the array data. There was no change observed in the 
untrained leg for any of the sites. We also performed an analysis of unidirectional changes in 
CpG methylation of global CCGG sites with LUMA. In accordance with the observed array 
data of approximately similar number of sites increasing and decreasing in methylation, we 
observed no global unidirectional change with training, nor any difference between the 
trained and untrained leg. The level of methylation was instead remarkably similar between 
samples. Global reduction of CCGG methylation with LUMA has previously been observed 
with an acute bout of endurance exercise in humans (Barres et al., 2012). 

Several different approaches were employed to couple changes in DNA methylation with 
transcription, in order to evaluate potential functional effects. A Pearson correlation of DMPs 
and DEGs showed that there was both positive and negative correlation, which was related to 
the position of the DMP. Negative correlation was primarily present in promoters/5’UTR/1st 
exon while positive correlation was more prominent in gene bodies, in accordance with 
known effects of methylation on transcription. To link the change in methylation to the 
change in transcription, we also produced a starburst plot where this is illustrated (Figure 10). 
Indeed, two-thirds of the DMP/DEG pairs showed an inverse correlation. The methylation 
data was also laid on top of the transcriptional gene network produced with ARACNE. This 
data showed that the gene regulatory domain that mainly increased in expression showed 
mostly decreasing levels of methylation, while the opposite was true for the domain that 
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showed mostly decreases in expression. Several interesting examples of genes were found 
among the altered DMP/DEG pairs, many related to the known training-induced changes in 
structural components, metabolic enzymes and transcriptional regulation. Although the 
DMPs were not directly correlated to gene expression at isoform level, > 3000 isoforms were 
found to be differentially expressed with training in the EpiTrain study. DNA methylation 
changes are highly interesting from this perspective as 22% of alternative exons are regulated 
by DNA methylation and splice sites are highly methylated in comparison to adjacent introns 
(Lev Maor et al., 2015).  

 

Figure 10. Relationship between methylation and expression changes. A starburst plot illustrating 
the relationship between gene expression changes (x-axis) and DNA methylation changes (y-axis). 
Green dots correspond to significant gene expression/methylation pairs.  

One other study has investigated DNA methylation changes in human skeletal muscle with 
exercise training, using an immunoprecipitation-based method (MeDIP) and microarrays 
(Nitert et al., 2012). Methodological and statistical differences render very different results, 
but both their and our (Paper II) studies show reduced methylation of RUNX1 and COL4A1 
for example. THADA was highlighted by Nitert et al., who observed a reduced methylation in 
the promoter region, although no change in expression was seen. In contrast, we saw an 
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increase in methylation of two CpG sites in the gene body, and no change in the promoter 
region or in gene expression of THADA. In total, Nitert et al. found 46 DMP/DEG pairs 
changing in opposite direction (Nitert et al., 2012), the corresponding figure in our data was 
210. The effect of endurance training on DNA methylation has also been studied in human 
adipose tissue. Six months of endurance training altered almost 18 000 CpG sites in the 
adipose tissue genome (Rönn et al., 2013). A striking difference in comparison to our 
findings in skeletal muscle is that over 90% of the DMPs in adipose tissue increased in 
methylation, while the distribution was 55% increasing DMPs in our study.  

The mechanisms behind the observed training-induced changes in DNA methylation remain 
to be investigated. Altered metabolism is one hypothesis, as changes in metabolites from the 
citric acid cycle, for example α-ketoglutarate, are known substrates for enzymes catalyzing 
methylation reactions (Lu and Thompson, 2012). Another potential mechanism is interaction 
between epigenetic DNMT and TET enzymes and exercise induced transcriptional regulators, 
like AMPK, NRFs and HIF-1. In mice, DNA-binding factors have been shown to establish 
lowly methylated active enhancer regions (Stadler et al., 2011) and an increased DNA 
methylation at regulatory regions has been shown to be due to vacating transcription factors 
and a subsequent passive introduction of methylated cytosines (Thurman et al., 2012). It is 
also possible that something in the exercise stimulus can directly activate DNMTs and/or 
TETs, for example changes in redox status or inflammation. Oxidative stress has been 
hypothesized to induce TET activity through increased production of α-ketoglutarate via a 
SIRT-dependent mechanism (Chia et al., 2011). The expression of DNMT1 itself increases 
with training in this study, as well as in the six-week training study analyzed in Paper III. 

4.3.2 Global changes of the histone modification H3K27me3 

Post-translational modifications of histones are important gene regulatory epigenetic 
mechanisms that were investigated in Paper III. At the global level, six weeks of endurance 
training induced no change in H3ac, H3K4me3, H3K9ac, H3K9me3 or H3K36me3. 
However, there was a strong tendency for a reduction of the inhibitory modification 
H3K27me3 (FC=0.87, p=0.058, Figure 11). Previously, an acute bout of endurance exercise 
has been shown to increase the global level of H3K36ac in humans (McGee et al., 2009). The 
study of overall levels of different histone modifications with immunohistochemistry has 
many limitations and should be interpreted with caution. The size of a skeletal muscle 
nucleus is, for example, large in relation to thickness of the skeletal muscle section. Skeletal 
muscle nuclei are approximately 23 µm2 in a cross-section (Vassilopoulos et al., 1976) and 
normally have a convoluted shape, although this varies for example with degree of 
contraction (Franke and Schinko, 1969). The section can vary in thickness and fibers are not 
perfect cross-sections, which will affect the measureable nuclear volume. This method can at 
best be considered semi-quantitative. It was, however, used to obtain an indication of global 
changes for further investigation of gene-specific changes using chromatin 
immunoprecipitation followed by sequencing, which was performed for H3K27me3. The 
analysis is currently ongoing and the resulting data will be correlated to gene expression 
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changes that have already been published for the included subjects (Keller et al., 2011; 
Timmons et al., 2010).  

Trimethylation of H3K27 is a repressive histone mark that has been associated to silent 
promoters (Barski et al., 2007). Reduced levels of this inhibitory modification in gene 
promoters and/or enhancers may thus stimulate gene activation in response to training. 
H3K27me3 is demethylated by the two demethylases JMJD3 (KDM6B) and UTX (KDM6A) 
(Swigut and Wysocka, 2007), while the Polycomb-Group proteins (PcG) methylates H3K27 
(Grossniklaus and Paro, 2014). Interestingly, several lysine specific demethylases (KDMs) 
were differentially expressed with training in the EpiTrain study, indicating that training does 
affect protein methylation levels. Transcription of other histone-modifying enzymes, for 
example several HDACs and both lysine and arginine methyltransferases was also altered 
with three months of endurance training. Metabolic perturbations that occur with exercise is 
important for training adaptation (Egan and Zierath, 2013). Similarly to enzymes regulating 
DNA methylation, histone lysine demethylases are also α-ketoglutarate-dependent (Tsukada 
et al., 2006) and can be inhibited by two other metabolites from the citric acid cycle; 
succinate and fumarate (Xiao et al., 2012).  

 

Figure 11. Immunohistochemistry of H3K27me3. A) Semi-quantitative representation of the 
staining for H3K27me3 before (pre) and after (post) training. Data is presented as mean ± SEM. B) 
Example of a two-dimensional visualization of the confocal image of a skeletal muscle cross-section 
with the nuclei in blue, the histone modification in red and basal lamina in green.  

The immunohistochemical analysis of histone modifications also included a three-
dimensional volume measurement of the nucleus, i.e. the DAPI stained DNA. The primary 
objective was to relate the intensity of the immunohistochemical stainings for the different 
histone modifications to the nuclear volume. However, an analysis of only the volume before 
and after six weeks of training showed that the nuclear volume increased by 10%. Despite the 
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above-mentioned limitations that applies also to this measurement, the difference in volume 
was consistent for the repeated measurements represented by the separate sections stained for 
the different histone modifications. To investigate if this could possibly be due to the 
presence of polyploid skeletal muscle nuclei, a flow cytometry based method was adopted. 
However, there was no sign of polyploidy. Nuclear volume is tightly controlled and highly 
correlated to the cell size (Huber and Gerace, 2007), thus an increase in the cytoplasmic 
volume might promote an increase in nuclear size. Another possible explanation could be an 
increased protein content in the nuclei, due to for example an increased transcriptional 
activity, something that remains to be investigated.  

The complexity of the overall chromatin structure approaches infinite as the chromosomes 
show structural stochasticity in the three-dimensional nuclear space and that the structural 
organization may affect gene activation (Nagano et al., 2013). 

4.4 SKELETAL MUSCLE TRANSCRIPTIONAL MEMORY 

The purpose of the repeated training period after detraining in the EpiTrain study was to 
investigate the potential presence of a skeletal muscle transcriptional memory in response to 
endurance training (Paper IV). Epigenetic mechanisms are highly interesting for muscle 
memory since they have the potential to mark genomic regions for future activation or 
suppression. Currently, only the transcriptome data is available for analysis of endurance-
induced skeletal muscle memory. 

4.4.1 Baseline skeletal muscle memory 

We first investigated if there were any remaining effects from the previous training period in 
the previously trained leg before start of Period 2 (T3). Comparing before training (T1) with 
T3, there were some differences that could be due to time (one year between biopsies), that 
the subjects were slightly less fit based on VO2-peak (mean 40 before Period 1 vs 37.5 
ml/kg/min before Period 2) or remaining effects of training. Next, we therefore compared T3 
with U3 (i.e. the untrained leg before start of Period 2), and found no significant differences 
with the multivariate methods (Qy

2 was negative) or with paired Limma. The power of this 
analysis was low, considering that only twelve subjects continued in Period 2. As there were 
no significant difference between the skeletal muscle performance and enzymatic measures in 
T3 and U3, we found no indication of a baseline skeletal muscle endurance-induced memory 
at the physiological or transcriptome level.    

4.4.2 Repeated response to training 

If a possible memory exists at the epigenetic level, this could potentially influence the 
transcriptional response to a second training period. During the first training session in Period 
2, the rate of perceived exertion (Borg-scale measurement of effort) was smaller in the 
previously trained leg (Figure 12A) compared to the untrained leg. This could potentially be a 
neuromuscular or other neurophysiological “memory” effect. It is impossible to blind the 
training, why this may introduce a bias. Unfortunately, the acute exercise response at the 
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transcriptome level is not possible to investigate in this study since there was no acute 
exercise biopsy in association to either Period 1 or 2. The transcriptional response to Period 2 
was investigated for both the previously trained (T3 vs T4) and untrained (U3 vs U4) leg. At 
the global level, the degree of transcriptome differences was similar between the two legs 
(Figure 12B-C), with 852 genes differentially expressed in T3 vs T4 and 928 genes in U3 vs 
U4. However, there were specific differences between the responses, as only 180 DEGs were 
common between the two legs. Ingenuity analysis of the training-responsive genes showed 
that the main pathways induced were oxidative phosphorylation and mitochondria for both 
legs. In the previously untrained leg, EIF2 and mTOR signaling were downregulated, which 
was not the case for the previously trained leg. Yet, these differences in response were not 
significant enough to introduce global differences at the end of Period 2 (T4 vs U4), as no 
separation was seen in a PCA and the model Qy

2 of the OPLS was negative.  

 

Figure 12. Response to repeated training. A) The rate of perceived exertion (RPE) in the exercising 
leg during the first training session in Period 1 (T1) and Period 2 in the previously trained (T3) and 
untrained (U3) legs. Data is presented as mean ± SEM. The presented p-values are based on Student’s 
t-test. B-C) PCA and OPLS analyses of the training response of the transcriptome to Period 2 of the 
EpiTrain study in the previously trained (B) and untrained (C) leg.  

In a separate, univariate approach we also specifically analyzed the DEGs in Period 1 (using 
Limma, in total 2203 genes) to see if those genes also changed in Period 2 and if there were 
any differences between the legs. Limma identified 465 DEGs in T3 vs T4 and 398 DEGs in 
U3 vs U4, with 150 genes in common between the two legs. Although the number of 
common DEGs is still low, the correlation between the fold changes between Periods 1 and 2 
was very high (Pearson’s r=0.96 for both legs). This shows that the training response still was 
very consistent, although differences definitely exist. Whether this is due to natural biological 
variability or some type of memory mechanism is not possible to determine with this 
experimental setup, but the current evidence does not support the presence of a differential 
response due to a skeletal muscle memory effect.  

4.5 THE HYPOXIA INDUCIBLE FACTOR 1 SYSTEM IN TRAINING 
ADAPTATION 

At the protein level, which is functionally most important, transcription factors are essential 
transcriptional regulators. Cellular responses to hypoxia are to a large degree conferred by the 
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transcription factor HIF-1 (Stroka et al., 2001), which is activated in response to an acute bout 
of exercise (Ameln et al., 2005). HIF-1 was early on suggested to be an interesting factor 
from an endurance training adaptation perspective (Hoppeler and Vogt, 2001) as several 
studies have shown an increased adaptation when training is performed with restricted blood 
flow or at high altitude (Hoppeler and Vogt, 2001; Kaijser et al., 1990; Sundberg et al., 
1993). However, based on observations indicating that HIF-1 effects on skeletal muscle 
metabolism are in some ways opposite to those of long-term endurance training, together 
with an attenuation of HIF-1 regulated genes with an acute exercise bout after training, we 
hypothesized that training attenuates HIF-1 activity by inducing some of its negative 
regulators (Paper V).  

The results showed that PHD2 was the most abundant prolyl hydroxylase in human skeletal 
muscle, and together with PHD3, it was higher in elite athletes compared to moderately 
active individuals for mRNA (Figure 13). Protein levels of PHD2 were also higher in the elite 
group. FIH and SIRT6, two other negative regulators, were also higher in elite athletes at 
both mRNA (Figure 13) and protein levels, while expression of the HIF-response gene PDK-
1 was lower. A longitudinal study with six weeks of endurance training also showed similar 
results with training. The HIF-1 inhibition was thus present at several different regulatory 
levels, with the prolyl hydroxylases marking HIF for proteasomal degradation (Ivan et al., 
2001; Jaakkola et al., 2001), FIH inhibiting binding to the coactivator CBP/P300 (Mahon et 
al., 2001) and SIRT6 that deacetylates H3K9 on glycolytic response genes of HIF (Zhong et 
al., 2010).  

The effect of HIF on performance has been studied in humans suffering from the autosomal 
recessive disorder Chuvash polycythemia. These patients carry a mutation in the VHL gene, 

leading to a general stabilization and 
thus elevated activity of HIF-1. In 
response to exercise, the patients 
experience an altered skeletal muscle 
metabolism with a reduced muscle 
pH and increased serum lactate 
accumulation, as well as a reduced 
maximal exercise performance.  

 

Figure 13. Higher negative regulators 
of HIF in elite athletes. mRNA 
expression in moderately active 
individuals (MA) compared to elite 
athletes (EA). Data is presented as mean 
± SEM. * indicates significance at 
P<0.05. 
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Transcriptional analyses of skeletal muscle showed enhanced levels of the HIF-1 targets 
PFK-1 and PDK-1, indicating high glycolytic activity (Formenti et al., 2010). In humans, 
there are also different variants of the HIF1A gene. One SNP (P582S) changes the amino acid 
sequence, where presence of a T-allele-associated HIF-1 protein has shown a reduced 
degradation and thus increased activation of HIF-1 (Tanimoto et al., 2003). Twenty-four 
weeks of endurance training induces lower changes of VO2-peak in elderly humans with the 
T-allele compared to those with the CC genotype (Prior et al., 2003). The opposite has, 
however, been observed in young women where the T-allele was associated to greater gains 
in VO2-peak (McPhee et al., 2011), although that study was shorter (six weeks).  

The functional role of a protein is otherwise more easily studied in KO animals. Mice with a 
muscle-specific deletion of HIF-1α actually show higher endurance compared to their normal 
littermates, and higher activities of CS and ß-HAD, concordant with a better aerobic capacity. 
The improved mitochondrial function in the KO mice was suggested to be due to activation 
of the pyruvate dehydrogenase complex (PDHc) through its HIF-1 inducible inhibitor PDK-1 
(Mason et al., 2004; Mason et al., 2007a). HIF-1 regulates mitochondrial oxygen 
consumption during hypoxia through increased expression of PDK-1 (Kim et al., 2006), 
which then inhibits PDHc and provides an active repression of mitochondrial function to 
reduce the cellular oxygen consumption. Thus, a lower HIF-1 activity seems to be beneficial 
for endurance performance, and in humans, skeletal muscle appears to adapt to long-term 
endurance training by inducing the negative regulators of the HIF system.  

To mechanistically establish a link between an altered prolyl hydroxylase activity and PDK-1 
mRNA levels in muscle, human primary myoblasts were treated with the prolyl hydroxylase 
inhibitor DMOG. This resulted in a high induction of PDK-1 in the cells, which would be 
expected from an increased HIF activity when the negative regulator was inhibited. To study 
the opposite effect of a reduced HIF-1 activity on metabolism, we silenced the response gene 
PDK-1 in C2C12 cells. This resulted in an increase in CS activity, while treatment with 
DMOG reduced CS and concurrently also increased the lactate production (as measured in 
the cell media), indicating a higher glycolytic activity. The reason for not measuring HIF-1 
directly in the human subjects is that the protein is continuously degraded and only stabilized 
in response to acute hypoxia or exercise. In biopsies taken at rest, as in these studies, it is 
therefore not possible to measure HIF.    

The hypothesis of a moderation of the HIF response in a trained muscle is supported by 
recent data from a rat study where acute exercise decreased the nuclear accumulation and 
DNA binding activity of HIF-1α, as well as the expression of VEGF and eNOS after training 
(Rodriguez-Miguelez et al., 2015). Tibetans, who live at high altitude where they have been 
exposed to chronic hypoxia for generations, have a very high frequency of a variant of PHD2 
with a higher affinity for oxygen (Lorenzo et al., 2014). This would prevent HIF-1α 
stabilization also under mild hypoxia, likely resulting in a similar effect as that expected from 
an increased expression of the HIF negative regulators.  
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The studied factors are not the only factors regulating HIF-1 activity. The N(Alpha)-
Acetyltransferase 10 (NAA10), for example, acetylates a lysine in HIF-1, which results in an 
accelerated degradation during normoxia (Jeong et al., 2002). In relation to epigenetics, 
regulation of histone modifications is highly associated to HIF-1. HDAC7 binds directly to 
HIF-1α (Kato et al., 2004), as does HDACs 4 and 5 that inhibit binding to FIH, which results 
in an increased transactivation capacity of HIF (Seo et al., 2009). Cell experiments have 
demonstrated that hypoxia increases global histone methylation. HIF-1 has been suggested to 
compensate for this by inducing expression of several known histone demethylases (e.g. 
JARID1B, JMJD1A, JMJD2B, and JMJD2C) to maintain histone methylation homeostasis 
(Pollard et al., 2008; Xia et al., 2009). In addition, HIF-1 regulation of the histone 
demethylase JMJD1A has been shown to be important for tumor growth (Krieg et al., 2010). 
However, the effect of HIF-1 on chromatin regulation in skeletal muscle is unknown as are 
the effects of a possible attenuation of HIF with long-term training on chromatin regulation. 
These issues are highly interesting and remain to be investigated.  

In addition to its effects on angiogenesis and metabolism, regulation of glucose transport in 
skeletal muscle has also been attributed to HIF-1α activity (Sakagami et al., 2014). 
Hyperglycaemia, which is an important feature of type II diabetes, inhibits hypoxia-induced 
stabilization of HIF-1 (Catrina et al., 2004), suggesting that this protein is also highly relevant 
in glucose control.  

4.6 GENERAL DISCUSSION 

Skeletal muscle is a heterogeneous tissue. Whole tissue samples include skeletal muscle 
fibers and satellite cells, as well as other cell types, for example endothelial cells, fibroblasts 
and immune cells. The transcriptome and methylome analyzed in this thesis represent a 
mixed human tissue, not only skeletal muscle cells (myocytes). The analyzed samples also 
represent a snap shot of the skeletal muscle biology, taken 24h after the last training bout for 
the intervention studies or at rest for the cross-sectional study and before the interventions. 
Gene transcription is known to occur stochastically between individual cells, and this occurs 
for example for metabolic gene networks where cells stochastically activate or deactivate 
metabolic pathways, perhaps to be prepared for nutrient arrival (Raj and van Oudenaarden, 
2008). The stochasticity of gene activity will inevitably affect the results, although the 
number of subjects and high number of cells in a tissue sample aim to reduce the impact of 
stochastic effects. 

Gene expression data was the basis for the majority of the studies in this thesis. 
Quantification of gene expression changes, regardless of method, is not synonymous with a 
concurrent functional change in skeletal muscle. Specific mRNA levels do not always 
correlate with protein levels, although there is a high overall correlation (Vogel and Marcotte, 
2012), and post-translational modifications of proteins are also highly important for the 
activity of individual factors.    
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A major limitation in studying training-induced skeletal muscle responses in humans is the 
large intra- and interindividual variability that exists in comparison to model organisms. 
Genetic differences, lifestyle choices, psychological factors and medical status may all affect 
the investigated phenomena. This is something that needs to be considered before any general 
conclusions can be drawn from the data. Also, human studies are limited in their descriptive 
nature and need to be complemented with animal models and cell systems to establish direct 
mechanistic relationships. Nevertheless, there are evident advantages with studying humans. 
For animal studies and in vitro experiments, results are commonly extrapolated to the human 
situation, which is sometimes not correct. If humans are the intended species of investigation, 
we should study humans whenever possible from a methodological and ethical perspective.  
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5  CONCLUSIONS 

 

The main findings from this thesis were; 

§ The baseline transcriptome in human skeletal muscle was remarkably homogenous 
both within a muscle and in the corresponding contralateral leg of an individual. 
Furthermore, the transcriptome difference between male and female skeletal muscle 
was very high. 

§ That 23 000 isoforms were expressed in skeletal muscle at baseline together with 
almost 2500 novel transcripts, out of which at least five were protein-coding, and how 
these isoforms and novel transcripts changed in expression with three months 
endurance training.  

§ Three months endurance training induced changes in DNA methylation across the 
human skeletal muscle genome that were associated to functionally relevant 
transcriptional changes. Many changes occured in regulatory enhancer regions. 

§ Trimethylation of histone 3 lysine 27 was likely reduced at a global level with 
endurance training, showing that histone modifications are involved in training 
adaptation.  

§ There was no clear evidence of an endurance-induced skeletal muscle memory at the 
transcriptome level after nine months of detraining or in response to a repeated 
training period. 

§ The HIF-1 response was attenuated in response to long-term endurance training due 
to activation of its negative regulators. 

 

Collectively, the results of the present thesis show that endurance exercise training can induce 
associated changes in the epigenome and transcriptome of human skeletal muscle. The data 
provides an in-depth analysis of the human skeletal muscle transcriptome at baseline, 
including sex-specific differences with potential implications for function, and how gene 
expression changes in response to repeated endurance training periods. With the present 
analyses, there was no detectable muscle memory of previous training at the transcriptome 
level. In all, the results contribute to a better understanding of the molecular pathways 
involved in physiological adaptation to endurance training and can provide a basis for how 
training prevents disease development and different dysfunctions.  
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6  FUTURE PERSPECTIVES 

 
We are born to move and it has even been argued that, in order to maintain health, we need a 
certain amount of physical activity to reach a high enough expression level of certain genes 
that evolved during a time when we were required to be much more physically active than 
today (Booth et al., 2002). The mechanisms behind training adaptation and how genes 
respond to environmental lifestyle interventions have been the focus of intensive research for 
many years, but despite substantial progress, they are still not completely understood. The 
mechanisms of exercise will most certainly continue to be of great scientific and public 
interest. The studies in this thesis have contributed to a part of the picture, but more studies 
are obviously needed.  

The DNA methylation and histone modification responses to endurance training shown in 
this thesis can hopefully serve as one starting point for future studies on the mechanisms 
behind these training-induced epigenetic changes. Future studies should focus on identifying 
the specific factors responsible for inducing changes in DNA methylation and histone 
modifications. It is not understood whether changes in transcription drive methylation 
changes or vice versa. Therefore, the studies herein need to be complemented with 
mechanistic studies to functionally link changes in epigenetic modifications and concurrent 
transcriptional regulation in training adaptation.  

Transcriptional activity and epigenetic patterns are cell-type specific and most likely also 
cell-specific. Future studies would therefore benefit from a single-cell approach to elucidate 
the cell-to-cell variability in expression and its epigenetic regulation. From an exercise 
physiology perspective, it would be highly interesting to compare the transcriptome and 
epigenome between the different fiber types and how these are affected by different training 
modalities. From a skeletal muscle biology perspective, an investigation of the epigenetic 
pattern in individual skeletal muscle nuclei from the same fiber would also provide valuable 
information on the natural variability in human biology. The inter- and intraindividual 
response variability poses a great challenge scientifically, but is also one of the most 
fascinating and important elements of studying human physiology.  

Exercise genomics has been of great interest for many years (Loos et al., 2015), but exercise 
epigenomics is still in its infancy. There are some studies on miRNAs, very few on DNA 
methylation and studies of histone modifications are sparse. 5-hydroxymethylcytosine (5-
hmC) is considered to be the sixth base of DNA and has only been mentioned briefly in this 
thesis. However, mechanistic studies regarding its role in gene regulation have emerged in 
recent years, for example through the presence of TET enzymes in enhancer regions (Stadler 
et al., 2011). 5-hmC is likely involved also in endurance training adaptation considering its 
role in gene activation.  

In sports, an optimal physical performance is of interest and many hope that epigenetics will 
be able to bridge the gap between the genotype-phenotype interaction (Ehlert et al., 2013). 
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Although most predictions of athletic maximal performance potential based on genetic and 
epigenetic information will likely never reach significance due to enormous biological 
complexity, the impact of the genome and epigenome on performance and performance 
change is presumably substantial. Current and future studies on epigenetic changes with 
training will also be of interest for performance improvement purposes, and may therefore be 
relevant in development of anti-doping strategies. This could also be of interest for the 
negative regulators of HIF, investigated in this thesis.  

Epigenetic memory mechanisms have been studied in relation to inheritance, i.e. that 
epigenetic marks acquired from environmental exposures can be passed on to the next 
generation, enabling multigenerational influences on inheritance and phenotype. This is a 
relatively common phenomenon in plants (Reik, 2007) and likely also occurs in humans 
(Pembrey et al., 2014). It would be intriguing if the effects of exercise could be conveyed to 
the next generation, and a recent study actually shows that three months of sprint interval 
training changes the methylation pattern of sperm cells in humans (Denham et al., 2015). 
Future studies will most likely develop these initial findings. 

Endurance exercise effects on skeletal muscle are fundamental for the health benefits of 
training, which includes prevention of many of our most common chronic diseases, including 
obesity, type II diabetes and cardiovascular disease. The prevalence of these diseases is 
increasing at a scary pace, which in combination with a growing and aging population is a 
huge challenge for society. Exercise training prevents disease, and can also be a cheap and 
easily accessible treatment (or part thereof) for numerous different diseases, including 
metabolic diseases, cardiovascular disease and even cancer. In this respect, exercise is a 
medicine for the future.  
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7  POPULÄRVETENSKAPLIG 
SAMMANFATTNING 

 

Gener och deras aktivitet 

Människans kropp består av tusentals miljarder enskilda celler som samverkar för att vi ska 
fungera som en organism. Grunden för människan som livsform ligger i arvsmassans DNA. 
Dess specifika sammansättning bestäms då ägget och spermien smälter samman med hälften 
av arvsmassan från mamma och hälften från pappa. Från denna embryonala stamcell 
utvecklas en mängd olika celler och celltyper som bygger upp en människa. Alla celler 
innehåller samma genetiska material, samma DNA, men har ändå olika funktion och 
utseende. Det beror på skillnader i hur de ca 20 000 gener som finns DNA:t används. 
Generna uttrycks (kopieras) till en molekyl som kallas mRNA som sedan kan översättas till 
ett funktionellt protein i cellerna. Något förenklat kan man säga att varje gen kodar för ett 
enskilt protein, och det är proteinerna som står för majoriteten av kroppens olika funktioner. 
Våra proteiner ger t.ex. struktur, producerar rörelse och fungerar som biologiska katalysatorer 
och markörer. Genom att olika gener uttrycks i olika celler så gör det att celler har varierande 
funktion. Det gör också att gener kan svara på förändringar i vår miljö genom att öka eller 
minska sitt uttryck och därmed produktion av proteiner. En av de mekanismer som styr hur 
mycket gener uttrycks kallas för epigenetik, vilket betyder ovanför genetiken. Epigenetiken 
påverkar hur lättillgängliga olika gener är för uttryck och därmed hur mycket protein som kan 
produceras från varje gen. Förutom våra gener så uttrycks också andra delar av arvsmassan, 
som inte kodar för proteiner men ändå bildar RNA. Dessa kan till stor del påverka hur 
mycket generna uttrycks och därmed hur mycket funktionella proteiner som bildas. 

Muskler och träning 

Muskel är den av kroppens vävnader som är specialiserad på rörelse. Skelettmuskler är 
ansvariga för alla våra viljemässigt styrda rörelser, vilket bl.a. inkluderar allt kroppsspråk, att 
andas, springa äta och tala. En frisk människa består till ca 40-45% av skelettmuskulatur, 
vilket innebär att det är vårt viktmässigt största organ. Skelettmusklerna är också ett av 
kroppens mest anpassningsbara organ. Genom träning anpassar sig musklerna till den typ av 
aktivitet som utförs. I denna avhandling ligger fokus på uthållighetsträning, som leder till att 
musklernas förmåga att utvinna energi med hjälp av syrgas förbättras och att vi kan arbeta 
längre och hårdare. Musklerna får t.ex. fler små blodkärl som ökar transporten av syre, de får 
fler mitokondrier som är muskelcellernas energiproducenter, och de ökar sin inlagring av 
näringsämnen som kolhydrater och fettsyror. Tillsammans med den anpassning som sker i 
andra organ förbättras kroppens funktion och hälsa avsevärt, vi minskar risken att utveckla en 
mängd olika sjukdomar och till och med risken för förtidig död. Syftet med den här 
avhandlingen var att studera vilka förändringar i geners uttryck som är viktiga för anpassning 
till träning och om det finns någon form av muskelminne av tidigare träning som kan påverka 
hur vi svarar på upprepad träning. 
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Muskelbiopsier 

En stor fördel med att studera just muskler är att den är tillgänglig för provtagning i 
människor. Alla studier som ligger till grund för denna avhandling inkluderar muskelbiopsier 
före och efter uthållighetsträning, alternativt från vältränade jämfört med normalt tränade, 
friska frivilliga försökspersoner. Muskelbiopsier är små bitar, på ca 100 mg (vilket är mindre 
än en tiondels tusendel av lårets sträckarmuskels vikt), som tas ut med hjälp av en nål. Huden 
lokalbedövas först och därefter läggs ett litet snitt ner till muskelns yttre hinna, den så kallade 
muskelfascian. Nålen förs därefter ner genom snittet och in i muskeln. Genom att ett 
undertryck skapas utifrån med hjälp av en sug gör det att en liten bit av muskeln sugs in i 
nålen och kan kapas av. Alla biopsier för dessa studier har tagits från den yttre lårmuskeln, m. 
Vastus lateralis. Med hjälp av modern teknik och avancerad statistik har sedan nästan allt 
RNA i muskelbiopsierna kunnat analyseras för att studera hur detta förändras med träning. 
Även epigenetiska förändringar har kunnat analyseras på en mängd olika ställen i musklernas 
arvsmassa. 

Resultat från studierna 

Resultaten från dessa studier visar att epigenetiken, på såväl DNA:t som på de proteiner 
(histoner) som DNA:t finns upprullat på, påverkas av tre månaders, respektive sex veckors 
träning hos människor. Förändringar på DNA kallas DNA-metylering, vilket innebär att en 
metylgrupp (som består av en kolatom och tre väteatomer) sätts på eller tas bort från DNA. 
Tre månaders träning förändrade DNA-metylering på nästan 5000 olika platser i 
försökspersonernas DNA och många av dessa förändringar kunde kopplas till skillnader i 
olika geners uttryck. Det visade sig också att många av förändringarna skedde i delar av DNA 
som är specialiserat för att reglera geners uttryck, så kallade enhancers. Processer som 
påverkades av förändring i DNA-metylering med träning var relaterade till muskelns förmåga 
att dra ihop sig, inflammation, samt reglering av geners kopieringhastighet. Preliminära 
resultat tyder också på att histonerna kan påverkas av träning så att DNA sitter hårdare eller 
lösare, vilket är viktigt för hur mycket en gen kan uttryckas. En gen som sitter lösare bunden 
är lättare tillgänglig för uttryck och därmed för potentiell produktion av dess protein. Ett 
specifikt protein som undersöktes extra noga var HIF som står för hypoxi-inducerad faktor. 
Tidigare studier har visat att HIF aktiveras vid träning hos otränade och stimulerar då 
sannolikt till bildandet av nya blodkärl och större mängd syretransporterande röda 
blodkroppar. Mycket tyder dock på att HIF hindrar mitokondriernas aktivitet, vilket inte är 
bra för anpassning till en längre tids träning. Själva HIF-proteinet är svårt att mäta, men de 
proteiner som reglerar HIF visade sig vara mycket högre hos vältränade personer jämfört med 
normaltränade och dessutom ökade proteinerna med sex veckors träning. De reglerande 
proteinerna hindrar olika delar av HIFs normala verkan. Det gör att resultaten tyder på att 
HIFs verkan dämpas med träning, troligtvis för att tillåta en större syreberoende (aerob) 
energiproduktion. 

En gen kan uttryckas till lite olika varianter, så kallade isoformer. Dessa studier visar för 
första gången hur en stor mängd olika isoformer förändrades med träning. Det fanns till och 
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med gener med isoformer som reglerades i olika riktning, d.v.s. isoformer från samma gen 
som uttrycktes mer respektive mindre med träning. Vi hittade även 34 tidigare okända uttryck 
av DNA som förändrades med träning. Funktionen för dessa är dock okänd, men mycket 
tyder på att några av dem kan koda för funktionella proteiner.  

Ett viktigt syfte med avhandlingen var också att studera om det fanns någon form av 
muskelminne som kvarstod efter ett längre träningsuppehåll och i så fall kunde påverka hur 
anpassningen till en andra träningsperiod såg ut. I den träningsstudie som bestod av tre 
månaders träning tränades först bara det ena benet och efter nio månaders uppehåll tränades 
båda benen i ytterligare tre månader, vilket innebar att ett ben tidigare var vältränat och ett 
ben tidigare otränat. Vi kunde dock inte hitta några tydliga tecken på att uthållighetsträning 
kunde ge kvarvarande effekter. Även om det fanns vissa skillnader i hur ett tidigare vältränat 
ben respektive otränat ben svarade på en andra träningsperiod kunde vi inte tillskriva detta till 
ett muskelminne. 

En av studierna visade också att det grundläggande genuttrycket i skelettmuskler var väldigt 
lika mellan muskelprover tagna från en och samma muskel, samt från vänster jämfört med 
höger ben. Däremot var skillnaderna mellan män och kvinnor stora, där kvinnor verkar ha 
mer uthålliga muskler och män ha större omsättning av proteiner.   

Framtida användningsområden 

Resultaten från dessa studier bidrar till ny grundläggande kunskap om vad som händer med 
geners uttryck i skelettmuskler vid uthållighetsträning och hur det grundläggande 
genuttrycket ser ut hos unga män och kvinnor. Resultaten kan i förlängningen bidra till 
utvecklingen av individualiserade träningsprogram för att optimera träningseffekter i olika 
personer. De kan också vara värdefulla för utvecklingen av framtida behandlingar mot t.ex. 
metabola sjukdomar och för att på konstgjord väg kunna få fram effekter liknande de som fås 
av träning hos personer som av olika anledningar inte kan utföra fysisk aktivitet, t.ex. på 
grund av rörelsehinder.
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