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ABSTRACT 

Resting-state functional Magnetic Resonance Imaging (fMRI) acquires four dimensional data 

that indirectly depicts human brain activity. Within these four dimensional datasets reside 

resting-state functional connectivity networks (RFNs), depicting how the human brain is 

organized functionally. This series of studies delve into the use of data-driven analysis methods 

for resting-state fMRI data. Their strengths were explored and their weaknesses tackled, both 

in their methodologies and applications, all in hope to gain a better understanding of the data, 

and thereby how the brain function.  

The journey begins through the usage of one of the most common data-driven analysis methods 

in use today: Independent Component Analysis (ICA). ICA requires no user input parameter 

apart from the input dataset and the number of output Independent Components (NIC). The 

requirement of the NIC, a priori, is troubling as the inherent number of Independent 

Components (ICs) that exists within non-simulated datasets is unknown, due to the existence 

of various noise and artefact sources to differing degrees. Furthermore, comparing datasets 

using ICA is problematic because of the inherently different dimensionality of different 

datasets. To investigate the effects of NIC on the ICA output results, a classification framework 

based on Support Vector Machines (SVM) was implemented to automatically classify ICs as 

either potential RFNs, or noise/artefact signal. This feature-optimized classification of ICs with 

SVM, or FOCIS, framework uses features derived from verbal instructions for manual visual 

inspection of ICs. With only few significant features selected through iterative feature-selection 

and a small training set, the classification framework performed well with over 98% in overall 

accuracy for group ICA output results. Analysis of different resting-state fMRI datasets using 

FOCIS indicated that the specification of NIC can critically affect the ICA results on resting-

state fMRI data. These changes are complex and are individually different from one another, 

irrespective whether the IC is a potential RFN or artefact/noise signals. Applying this 

knowledge on group comparison studies, ICA was used to study migraine patients undergo 

kinetic oscillation stimulation treatment. The immediate effects of the treatment allows direct 

correlation of a patient’s pain levels with changes in their RFNs. Differences in RFNs that 

include areas in the midbrain and limbic system regulating the central nervous system were 

discovered in migraine patients compared to healthy control group. Overlapping areas were 

also shown to be affected by the treatment. These results provide supporting evidence for the 

hypothesis that the treatment affects and regulates the parasympathetic autonomic reflex, 

alleviating migraine symptoms. 

Hierarchical clustering is another data-driven analysis method that is almost devoid of all user-

input parameters. The algorithm naturally stratifies data into a hierarchical structure. It is 

believed that brain function is hierarchically organized, so an algorithm which reflects this 

aspect is a seemingly excellent choice to use for analyzing the resting-state fMRI data. A 

hierarchical clustering analysis framework was developed to extract RFNs from resting-state 

fMRI data with full brain coverage at voxel level. The RFNs identified using hierarchical 

clustering conforms to those identified previously using other data processing techniques, such 
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as ICA. An innate ability of the clustering algorithm is to naturally organize data into a 

hierarchical tree (dendrogram). This was fully utilized though extensions in the framework for 

cluster evaluation. Extending the hierarchical clustering framework with the cluster evaluation 

pipeline allowed extraction of functional subdivisions of known RFNs. This demonstrated that 

not only can hierarchical clustering be used to extract the modular organization at the scale of 

large systems for entire RFNs, but can also be used to derive the functional subdivision of 

RFNs and provide a consistent method of analysis at different levels of detail. The sub-

networks extracted using hierarchical clustering reveals the intrinsic functional connectivity 

amongst the subnetworks within RFNs and provide clues for further exploring the potential for 

currently unknown functional junctions within RFNs. 
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 7 

PREFACE 

In the digital age, large amounts of data seems to be easily acquired. A system can be set up 

with relative ease to acquire enormous amounts of data. The difficult part remains to extract 

meaningful information from a seemingly overwhelming amount of gathered data. One then, 

can one interpret the data, and draw useful conclusions from within. Functional magnetic 

resonance imaging produces large quantities of data of the human brain; and within, hides the 

patterns depicting shadows of our consciousness. To better understand the human brain and 

ourselves, tools were created to extract meaningful information from data that are difficult 

immediately grasp with our minds. 

As tradition dictates, the following sections will include a summary of the articles I have 

published (and yet to publish) throughout my studies. This is often done in a standard, de-facto 

format, for scientific articles today. Yet, this format does not lend itself for the purpose tying 

in different studies into a coherent whole, with a consistent pattern of thought. This is why I 

have attempted to, as much as possible, write this summary in prose, believing that this format 

will better reflect my thought processes throughout my studies. Those of you readers with an 

undying need to see scientific rigor in their predefined sections, the published articles (and 

manuscripts) can be found appended as usual. But for those who do not feel the urge to see 

sections called “Materials and Methods” and “Conclusion” in everything they read, you’re 

welcome (or at least I tried). 

 

 

Aug 2015 
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1 INTRODUCTION 

The following sections provide background information for those not directly involved in the 

field of functional Magnetic Resonance Imaging (fMRI) to comprehend and appreciate the 

thought patterns throughout my studies. This section could, and should, be averted by those 

with an established understanding of resting-state fMRI and its processing methods. 

1.1 WHAT IS RESTING-STATE FMRI 

Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the differing 

quantum mechanical properties of different types of tissue to form an image noninvasively. 

MRI is completely noninvasive, unlike most other medical imaging techniques such as X-ray, 

Computed Tomography, and Positron Emission Tomography, all of which requires one to be 

subjected to ionizing radiation to form a meaningful image.  

In neuroimaging, MRI scans are traditionally used to visualize the anatomical structure of the 

brain. fMRI is a special type of brain scanning technique, using MRI that visualizes the brain’s 

function by using a technique called Blood Oxygen Level Dependent (BOLD) contrast [1]. The 

theory behind BOLD contrast is as follows: When neurons in the brain activate during task, 

they will absorb energy in the form of oxygen and other nutrients from the surrounding 

capillaries. This causes a slight drop in blood oxygen levels in the capillaries surrounding areas 

of brain activity. The body will sense this drop and over-compensate by flushing fresh, 

oxygenated, blood to that area in excess [2, 3]. This phenomenon is called the hemodynamic 

response, and is important due to two reasons: (1) It can be modelled through the hemodynamic 

response function and (2) It can be measured using MRI because oxygenated blood and 

deoxygenated blood have different magnetic properties [4]. 

The purpose of task based fMRI (or paradigm fMRI) is to visualize regions of the brain 

responsible for processing specific external stimuli. In a task based fMRI experiment, a subject 

is scanned continuously for a duration about 6-12 minutes using a special type of pulse-

sequence. This sequence (typically based on an echo-planar imaging technique [5]), is strongly 

T2*-weighted and sensitive to BOLD contrast. The sequence is also very fast such that an 

image of an entire brain is acquired in the duration of between 0.5 to 3.0 seconds. It 

continuously scans the brain much like sequential shooting options for digital cameras. During 

the scan, the subject is exposed to predefined stimuli, designed to activate specific regions of 

the brain at timed intervals. The stimulus can be as simple as a sound or picture, to more 

complex tasks such as emotional or social thought processing tasks. After processing, the 

specific regions of the brain responsible for processing the presented stimuli can be visualized 

in vibrant colors as overlays on top of a structural image of the brain.  

Resting-state fMRI is simply task-based fMRI without a task. In a resting-state fMRI 

experiment, the subject is scanned in the same fashion as task-based fMRI, but without any 

stimulus presented during scanning. The data acquired in this fashion would reflect thought 

patterns associated with the wandering mind (unless the subject falls asleep). In one respect, 
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the name resting-state fMRI is misleading as the brain is never truly at rest. One is typically 

instructed to not think about anything in particular, instead letting thoughts flow at will. 

Different regions of the brain work in synchronous with each other, for any particular thought. 

The regions of the brain working in synchrony for any particular thought, is known as (resting-

state) functional connectivity networks, or RFNs. Even without a particular cue or stimulus, 

the mind wanders during the scan, and this mind wandering results in different thoughts which 

activates different RFNs. Multiple RFNs are consistently identified, many corresponding to 

task activated areas from task based fMRI studies [6, 7] (some are uniquely identified in 

resting-state fMRI, such as the default-mode network [8, 9]). Instead of just extracting one RFN 

from each scanning session, one hopes to extract multiple (if not “all”) RFNs residing within 

resting-state fMRI data, “all at once”. 

1.2 ANALYSIS METHODS 

fMRI data as obtained from the MRI scanner does not look anything similar to the vibrant 

images in the “Results” section of a published scientific paper. Many stages of processing and 

analysis is required to produce the final image. It should be noted that, before the actual analysis 

is performed, the acquired fMRI data should be subjected to multiple computational steps, 

collectively known as the preprocessing pipeline. The preprocessing steps are purposed to 

remove confounding factors in the fMRI data. Since preprocessing is not the main focus, further 

explanation shall be abstained due to space constraints. Pre-processing is an essential and 

important step in the analysis, and at times, more complex and heavily scrutinized than the 

analysis method and is a subject on its own. There are many excellent review articles explaining 

the most common pre-processing steps in more details [10]. 

 

Figure 1: Illustrative overview of GLM-based analysis methods for task-based fMRI 

For task-based fMRI, the conventionally used analysis method is to process each voxel 

(volumetric pixel) individually using the General Linear Model (GLM). This method is 

commonly known as the GLM-method [11, 12]. It is comparatively simple and easily 

comprehensible. The stimulus onset timing and duration forms basis of the model. It is then 

convolved with the hemodynamic response function, to create an “ideal” time-course for the 
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particular stimulus. The ideal time-course is then used to assess each voxel of the brain’s time-

course using the general linear model. Voxels with time-courses similar to the “ideal” time-

course will have a high t-score and those who do not will have a low t-score. After this statistical 

mapping, the t-scores for all voxels are thresholded to obtain only the significant voxels. The 

thresholded t-map is then color mapped with bright colors and presented on top a structural 

image of the brain. This entire workflow can be seen illustrated in Figure 1. GLM-based 

statistical parametric mapping technique is conceptually transparent and relatively easy to 

perform, especially with ready-made software now readily available. 

 

Figure 2: Task based fMRI analysis relies on the explicit timing of the stimulus presented during the scan. Without the 

presence of a task and its timing information in resting-state fMRI, the analysis method becomes much less intuitive 

The unfortunate problem with the GLM-method is that it does not readily translate to being 

applied to resting-state fMRI data (Figure 2). Conventionally, the seed-voxel analysis method 

[13] was used on resting-state fMRI data. This method is actually a translation of the GLM-

method as follows: One would draw a Region of Interest (ROI), extract the average time-course 

from all voxels inside the ROI, and use the averaged time-course as the “ideal” time-course to 

access all other voxels using GLM. This works relatively well and to this day is still frequently 

used, however; one fundamental problem still persists: In task based fMRI, one’s interests are 

mostly predefined by the stimuli chosen at the time of data acquisition. For example, if an fMRI 

experiment is performed using an auditory stimulus, it would be the auditory network that is of 

interest and not the visual network. The intention of resting-state fMRI is to extract as many 

RFNs simultaneously without knowing what lies within the data prior to analysis. To this end, 

the seed-voxel analysis method is just simply lacking. Furthermore, the ROI dictates the 

outcome of the analysis. The ROIs are typically drawn by the hands of the individual user, 

which will vary from one individual to the next.  
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Researchers needed model-free analysis methods that do not require prior hypothesis or ROIs 

to be drawn beforehand to fully explore resting-state fMRI data. A consequence of this is that 

the model-free analysis methods do not often even require a solid hypothesis to be formulated 

prior to analysis. Hence, they are not as transparent and comprehensible due to their complexity 

and generality. Interpreting the results can be difficult as a drawback of their ability to function, 

without a solid hypothesis, is that their output may be vague in meaning.  
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2 INDEPENDENT COMPONENT ANALYSIS 

ICA is a popular and widely used data-driven method to analyze resting-state fMRI data [14]. 

How ICA works may not be very intuitive for most, but with software packages like FSL [15] 

(http://fsl.fmrib.ox.ac.uk/fsl/) and GIFT (http://www.nitrc.org/projects/gift) almost anyone can 

use ICA to analyze resting-state fMRI data.  

This would normally be the place to get into the technical details of ICA, but it shall be omitted 

here. For those interested in the technical details behind ICA, certainly one can easily find 

better source of information than what can be managed on these pages. For introductory 

purposes, knowing how ICA functions conceptually will suffice. What is relevant, is how to 

interpret the output results from ICA analysis, and how to correctly apply ICA analysis on 

group comparison studies. 

How ICA works conceptually can be intuitively explained through noise cancellation on 

modern mobile phones: There are usually many noise sources during a mobile phone 

conversation in cities. Speaking on your phone in a crowded café by a busy street is not a big 

problem for the modern mobile phone. Inside your phone lies a chip running a variant of ICA 

which decomposes the sound signal received through the microphone to its individual sources, 

including your voice, other people’s conversations, and the traffic noise outside for example. 

Once the sound sources have been isolated, all noise sources can be eliminated to transmit only 

the sound of your voice to the recipient. How the algorithm identifies your voice amongst the 

noise signals is another (more difficult) question altogether. The entire process is illustrated in 

Figure 3. 

 

Figure 3: Illustrative example of how ICA can be used to separate signal sources from a mixture of sounds to filter out 

unwanted noise sources during a typical mobile phone conversation. 

In the case of ICA applied to resting-state fMRI data, ICA takes the entire 4D dataset as an 

input and outputs a predefined number of independent components (ICs), with each component 

representing a potential signal source, that altogether form the original input data [16]. Each IC 

(time-course) is then mapped spatially using statistical mapping to form activation maps 

corresponding to the signal sources, in order to locate the regions of the brain where the signal 

source originates from.  
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2.1 INTERPRETING BLIND-SOURCE SEPARATION 

A challenge for all data-driven methods, ICA included, are that the output results are not 

intuitively interpretable. ICA outputs a predefined number of separated signal sources (ICs), 

each with their corresponding t-map. Typically; some of these ICs will correspond to RFNs, 

and other ICs will represent artefacts and noise signals. Identifying an IC as either an RFN or 

a noise/artefact signal to be discarded, is conventionally done using manual methods, through 

the visual inspection of the IC time-courses and their corresponding t-maps [17]. Proficiency 

in visual inspection is usually obtained through years of experience and accumulated 

knowledge. Visual inspection is often a time-consuming process, especially when dealing with 

a large number of ICs. Visual inspection for large number of ICs must be done independently 

for each IC. This is because the output ICs are ordered randomly in a set, and one lacks prior 

knowledge on the number of outputs ICs corresponding to RFNs, and artefact/noise signal. The 

number of noise/artefact ICs obtained from ICA analysis depends heavily upon how thoroughly 

different sources of artefact and noise signal are removed during preprocessing. Amount of 

RFNs that can be identified from ICA analysis depends on a myriad of factors from group size, 

quality of the data, and whether the subjects in the group have any common abnormal attributes 

(such as disease or debilitating conditions). Furthermore, the predefined number of output ICs 

(NIC) influences the outcome greatly. If chosen incorrectly, it might obstruct the visual 

inspection process [18]. For example, when the NIC is very low (<10), some output ICs might 

may be RFNs merged together with one or multiple sources of noise or artefacts. This makes 

IC identification difficult for datasets heavily contaminated by noise and artefacts. On the other 

hand, for very high NICs (>100), some known RFNs might be found split into multiple output 

ICs. If unlucky, one might find both of the above mentioned situations simultaneously. Having 

a good estimate for the dimensionality of resting-state fMRI datasets, will provide valuable 

information from which the output NIC can be determined prior to analysis. This would in turn 

provide a solid foundation for future resting-state fMRI studies using ICA. 

2.2 DIMENSIONALITY OF RESTING-STATE FMRI DATASETS 

Estimating the dimensionality of resting-state fMRI datasets is equivalent to estimating the 

output NIC parameter for ICA analysis, one is mandated to provide a priori. The output NIC 

is the only user input parameter (with the exception of the input dataset itself) that is required 

by ICA, but it happens to be one of the greatest source of variability among researchers.  

The various methods based on Akaike’s information criterion, minimum description length, 

Bayesian estimates; and probabilistic principle component analysis have been used to model 

the noise signals and estimate the intrinsic dimensionality of resting-state fMRI data [19]. The 

aforementioned uncorrelated noise models, tend to over-estimate the intrinsic dimensionality 

and so several correlated noise models have been developed to improve the estimation [20, 21]. 

To date, no methods have been shown to dominate in terms of performance, possibly due to 

the difficulty in evaluating dimensionality estimation performances in non-simulated data. In 
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practice; the NIC used in studies differ significantly, hindering direct comparison of the RFNs 

obtained across different studies. 

Many other difficulties associated with applying ICA to resting-state fMRI data can be traced 

back to the dimensionality problem, including its application on group comparison studies 

which shall be touched upon briefly in section 2.3. 

2.3 APPLICATION ON GROUP COMPARISON STUDIES 

Those who originally conceived the idea of applying ICA to resting-state fMRI data probably 

did not have group comparison studies in mind. While the results from one group ICA analysis 

is difficult to interpret, it is even more difficult to compare multiple sets of varying ICA results 

from different datasets.   

The underlying hypothesis in group comparison studies are that there are notable differences 

between the groups under scrutiny. It would be nonsensical to pool subjects from different 

groups together to perform a single ICA analysis. As comparing different sets of ICA output 

results is non-trivial. Not only will different dataset be of varying quality, they will invariably 

be contaminated by different degrees of noise and artefact sources. Multiple factors will affect 

the dimensionality of each dataset, which will affect the optimal NIC parameter for the different 

group ICA analyses. Comparing two sets of ICs with differing NIC comes with its own set of 

difficulties. Even if one manages to find the same RFNs in the different IC sets, how can one 

be sure that any differences in the RFNs’ spatial maps is truly a reflection of group differences 

instead of an effect of setting the specified NIC? Can one feasibly justify using the same NIC 

for all groups in a group-comparison study? If justified, does this imply that all group 

differences in RFNs are devoid of influence from the specified NIC? These questions need to 

be thoroughly investigated before one can conduct any sort of group comparison studies using 

ICA with a grounded theoretical footing. 

2.4 TREATING MIGRAINE WITH KINETIC OSCILLATION STIMULATION 

Kinetic Oscillation Stimulation (KOS) is a completely noninvasive treatment shown to be 

extremely effective in the treatment of migraine [22]. Patients suffering severe onset of 

migraine symptoms showed a complete lack of pain, almost directly after treatment and is often 

cured of all symptoms for an extended period of time just after one session of treatment. The 

treatment is performed through vibrations administered through the nasal cavity for 

approximately 15-20 minutes. KOS treatment is ideal for resting-state fMRI studies, as the 

treatment can be safely administered during MRI scanning, and its apparent effect for migraine 

is almost immediate.  

While the treatment has shown to be effective for various conditions including, but not limited 

to, migraine, the mechanism of treatment is still uncertain. One hypothesis potentially 

explaining its undeniable effect, is that KOS treatment stimulates the trigeminal nerve through 
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the nasal cavity. This affects the parasympathetic autonomic reflex of the central nervous 

system, to regulate and correct any imbalances in the nervous system that may be involved in 

some types of migraine [22]. Regulation of the nervous system through stimulation through the 

nasal cavity may explain why KOS treatment is seemingly effective for a range of debilitating 

conditions. Group comparison of ICA output of resting-state fMRI data, lends itself well to 

provide supporting evidence for this hypothesis. Since ICA is such a popular method of 

analysis for resting-state fMRI data, a solid knowledge of how dimensionality selection affects 

ICA results is vital to using ICA to conduct this group comparison study.  

2.5 STUDY OUTLINE 

To confidently use ICA for group comparison studies, how the selection of dimensionality 

affects ICA results for resting-state fMRI data must be better understood. In order to study how 

the selection of NIC affects ICA results, group ICA on different resting-state fMRI datasets 

were performed with sequentially increasing NIC from 20 – 100. Performing group ICA 

analysis for multiple datasets, produces a large amount of output ICs, and visually inspecting 

all the output ICs is very cumbersome. To facilitate the investigation, an analysis framework 

to automate the time consuming process of visual inspection of output ICs was developed based 

on Support Vector Machines (SVM) [23]. The feature-optimized classification of ICs with 

SVM (FOCIS) framework was implemented in a series of bash and R (https://www.r-

project.org/) scripts. FOCIS was first evaluated for its performance accuracies on both single 

subject and group ICA results. Classification results for FOCIS was then compared against 

FSL-fix and manual classification results obtained through visual inspection. With favorable 

classification performance, FOCIS was used to automatically classify all output ICs for the 

different resting-state fMRI datasets at the specified range of NIC. Sub-routines within FOCIS 

allows for tracking individual ICs in any NIC and investigate how the specified IC changes in 

its time-course and spatial pattern through increasing NIC. FOCIS is also capable of tracking 

all output ICs in a given NIC set and compare how all the ICs change with incremental NICs. 

These tools allowed for better understanding of how the selection of NIC affects ICA output 

results. This information also provides valuable insight to how ICA should be used to perform 

group comparison studies. 

Applying the knowledge gathered from investigating the dimensionality of resting-state fMRI 

datasets and how the selection of NICs affect group ICA output results, a group comparison 

study was conducted on migraine patients before and after KOS treatment, compared to healthy 

control volunteers using group ICA. The aim was to provide supporting evidence for the 

hypothesis for a mechanism of the KOS treatment. In addition, to be able to effectively and 

accurately compare sets of group ICA results, to extract differences in RFNs between patient 

and control groups, and before and after treatment. Group ICA were performed individually 

for each group for migraine patients and healthy volunteers before, during; and after KOS 

treatment. The results were then analyzed using the 3-way analysis of variance (ANOVA) 

method to detect differences between the groups, and the effect of KOS treatment. 
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2.6 FOCIS 

The base of the FOCIS analysis framework is a classification routine aimed to automatically 

delineate noise and artefact ICs from those corresponding to functional connectivity networks. 

FOCIS is designed to obtain general information about the ICs in any given set of output ICs. 

Classification is performed using SVM, which is a supervised learning algorithm tailored 

towards binary classification. Classification features were derived from visual inspection 

guidelines. Potential functional connectivity network ICs should: 

1. Have a t-map with activation voxels, that fulfills the voxel-wise threshold of p<0.001 

and contiguous cluster size of a minimum of 20 voxels; that exhibits peak activation in 

cortical grey-matter; possesses little spatial overlap with known vascular, ventricular, 

motion, and susceptibility artefacts; and of a reasonably compact and smooth shape. 

2. Have its associated time-course that reflects the expected low frequency spontaneous 

fluctuations with adequate dynamic range 

A total of 18 features were devised based on these instructions. To avoid over-fitting, only 

significant classifiers were chosen from the final set of features used for the classifier. 

Significance tests were done iteratively using a general linear model with a logit function kernel 

tailored to evaluate the binary classification significance. 5 of the 18 features showed to be 

significant at a 99% significance level. This optimization of feature selection is crucial to avoid 

bias and over-fitting, while retaining computational efficiency. 

The ICA framework is implemented in R, using the kernlab package based on LIBSVM. Since 

the model cannot be expected to be linear, a non-linear SVM model was constructed using a 

Gaussian radial basis function kernel. Technical details concerning the implementation can be 

found in the relevant article [23].  

2.7 ICA ANALYSIS 

A total of 7 datasets were investigated. One dataset was acquired locally (dataset 0) and the 

other 6 datasets (datasets 1-6) were downloaded from the functional connectome open access 

database (https://www.nitrc.org/frs/?group_id=296). Consensus from multiple studies suggests 

that there is a relatively stable set of 10 RFNs at the level of major brain networks [6, 7, 24]. 

Trial runs of ICA analysis using our existing preprocessing pipeline suggests, in the worst case, 

the need for twice as many NICs as approximately half of the output ICs represents artefact or 

noise signals. Based on this information, the range of NIC was set to 20 – 100.   

Group ICA was performed using the standalone melodic program in the FSL package [15, 25, 

26] for different resting-state fMRI datasets ranging from 20 – 100 as the output number of 

ICs. 6 datasets running group ICA was investigated and a 7th dataset running single subject 

ICA for 5 different subjects. The datasets have differing acquisition parameters, obtained from 

different type of scanners, and consists of different number of subjects (details on how ICA 
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analysis was performed and information on the datasets can be found in the corresponding 

article [23]). This process produces a great amount of ICs to investigate, more than 30000 IC 

time-courses with their corresponding t-maps. Without tools to partially automate the analysis 

process, just visually inspecting all the ICs will take a considerable amount of time. 

2.8 CLASSIFICATION AND DIMENSIONALITY INVESTIGATION 

Group ICA results for dataset 1 at NIC=50, was used as training input for the classification 

framework. For cross evaluation, the following NIC values were used for group ICA results: 

NIC=30 for datasets 0-5, NIC=50 and NIC=70 for dataset 0 and NIC 70 and NIC 90 for dataset 

1. Overall, FOCIS achieved 0.92 in precision, 1.00 in sensitivity and 0.98 in specificity in 

identifying artefact/noise ICs. All misclassifications are false negatives, where the ICs have 

borderline characteristics of both RFN and artefact signal contamination. Visual inspection was 

particularly difficult for these ICs and their “ground truth” is a matter of dispute. 

 

Figure 4: Index of Change for selective RFNs and artefact ICs through increasing NIC. 

To quantify the changes for specific ICs, the index of change was defined based on spatial 

overlap and temporal association based on the ICs time course: 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 =

1/(𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 × 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐼𝐶 𝑡𝑖𝑚𝑒 𝑐𝑜𝑢𝑟𝑠𝑒), where the spatial 

overlap for a given IC is defined as the fraction overlap area relative to the original area of the 

spatial pattern given as reference. Index of Change was evaluated for well-known RFNs and 
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artefact ICs, and irrespective of an IC being an RFN or artefact, the change of a given IC can 

be relatively steady or volatile (Figure 4). 

 

Figure 5: Cross-sectional plots of change index of spatial overlap and temporal association for all ICs at different 6 NICs. At 

low NICs, the majority of ICs change slightly with incremental NIC while at high NIC levels, incremental NIC leads to only a 

few ICs changing substantially. 

 

Figure 6: The effect of NIC on the variance contribution of (a) potential RFNs and (c) artefact components. The effect of NIC 
on the IC time-course for (b) potential RFNs and (c) artefact components. 

An interesting aspect to note, is the pattern for overall change of all ICs with incremental NIC. 

At relatively low NICs, incrementing the NIC by 1 gives rise to changes in a large fraction of 

all ICs. At higher NICs, a sequential increment of NIC by 1 results in major changes to only a 

limited number of ICs (Figure 5). This pattern can be appreciated with the variance 
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contributions of various ICs (Figure 6), irrespective of RFN or artefact, being approximately 

inversely correlated to NIC. 

Different methods have been employed by major software packages and independent analysis 

frameworks alike to estimate the NIC parameter. The estimates are normally dependent on 

the SNR of the dataset and preprocessing pipeline steps, and not directly related to the 

neurophysiological properties [21]. A generally proportional increase was shown for both the 

number of RFN, and the artefact/noise ICs with the increasing NIC, for most of the datasets 

with the exception of dataset 1. Neither the variation of the number of RFNs and 

artefact/noise ICs as a function of NIC, nor the variance contribution of ICs, showed any 

signs of reaching a steady state or transition point. For dataset 1, there appears to be a steady 

state upper limit for the number of RFN ICs at around NIC=70±10, where beyond that point, 

increasing the NIC parameter only results in the increase of the number of artefact/noise ICs. 

This is quite consistent with the previous report [18]. The question remains why the other 

datasets do not exhibit this behavior given similar sample size, acquisition parameters, and 

preprocessing with the same pipeline. It is apparent that a general conclusion cannot be drawn 

using the observations from a couple of datasets.  

To summarize the dimensionality investigation: the problem is more complex than initially 

expected. For blind-source separation methods like ICA, this problem is central and impacts 

results greatly. While there are numerous estimators and all major ICA software packages have 

at least one dimensionality estimation method implemented, they are far from perfect. The 

SVM classification framework is designed to be as intuitive as possible, mimicking the manual 

visual inspection process in its choice of features. Classification performance of FOCIS is 

admirable overall, and its analysis pipelines were successful in their purpose of investigating 

the various effects NIC have on the output ICs. While the findings are certainly useful to an 

extent, especially for use of ICA on group comparison studies, the dimensionality problem 

remains as much of a problem to be solved. 

2.9 KINETIC OSCILLATION STIMULATION TREATMENT EFFECTS ON 
MIGRAINE PATIENTS 

In this study, KOS treatment for migraine patients is shown to be visible through changes in 

RFNs from resting-state fMRI data. While only an incomplete image of how dimensionality 

affects ICA output results was obtained from the previous study, some key knowledge were 

acquired nonetheless to facilitate the use of ICA in group studies. One such important 

knowledge is that preprocessing is vital. While the ICs generated from ICA results is difficult 

to gain control of, many artefact ICs (and the variability of having many artefact/noise ICs) can 

be eliminated by removing as many noise sources as possible during preprocessing. 

The same NIC were chosen for all group ICA analyses. Starting form NIC=2 (lowest possible), 

gradually increased until one of the group ICA results showed all major RFNs typically 

reported in literature. This was obtained for datasets at NIC=10. Even assuming the absence of 
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noise/artefact ICs, some variability of which RFNs are extracted between the different group 

ICA runs is expected. Only common RFNs across all groups were chosen for further analysis. 

Overall, the majority of the RFNs were common and comparable. 

 

Figure 7: 3-way ANOVA results of differences in RFNS obtained from individual group ICA for NIC=10 and NIC=11. 

First, the impact of dimensionality selection on ANOVA results was illustrated by 

systematically performing 3-way ANOVA on the ICA results ranging from NIC=2-19. No 

noticeable differences can be found in the ANOVA results for NIC<7. The differences between 

ANOVA results from NIC=10 and 11 is shown in Figure 7. The differences is solely due to the 

slight differences in the resulting RFNS from group ICA performed with the different NICs. 

This shows that dimensionality selection is a basic and crucial prerequisite for statistical 

analysis of ICA results. 

Regarding the 3-way ANOVA difference maps across the comparable RFNs for NIC=10, 

differences were found in the RFNs involving the Limbic systems with significant differences 

in pre- and post-central gyrus, anterior cingulate gyrus, and insula when comparing migraine 

patients against healthy controls. Similar regions and RFNs are shown to be affected by the 

KOS treatment (Figure 7). The regions are known to be responsible for regulating the central 

nervous system and is known to have direct connections to the Trigeminal nerve. The findings 

support the hypothesis that KOS treatment, through stimulating the Trigeminal nerve, regulates 

and stabilizes the parasympathetic autonomic reflex, thereby relieving migraine patients of 

their symptoms.  

Without resorting to pooling all the datasets together into a single group ICA session, group 

comparison of ICA results showed differences in some RFNs between migraine patients 
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compared to healthy control subjects, and the effect of KOS treatment for migraine patients. 

While RFNs can be reliably extracted using ICA, little information be can gained on how the 

various RFNs are functionally connected, both between the RFNs and within the RFNs 

themselves. Due to these outcomes, other methods of analysis must be considered…  
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3 HIERARCHICAL CLUSTERING 

Clustering methods are another class of algorithms used to analyze resting-state fMRI data. A 

clustering algorithm group objects of the same type that are more similar, according to 

predefined measure, together compared to objects of another group (cluster). They are typically 

data-driven and easier to understand conceptually, than blind source separation algorithms such 

as ICA. Clustering algorithms have a high computational complexity, making them less widely 

used for processing large amounts of data without prior dimensionality reduction. 

The investigation of functional connectivity networks can be split into two major parts. Not 

only are the appearance of RFNs of interest, but also how they are modulated internally (intra-

network) and how they interact with each other (inter-network). There is a long standing theory 

that the brain’s functional areas are modulated in a hierarchical fashion [27-33]. Hence, it 

seemed natural to use a processing method that naturally stratifies data into a hierarchical 

structure to extract and analyze functional connectivity networks. 

3.1 HOW HIERARCHICAL CLUSTERING WORKS 

Hierarchical clustering is a deterministic algorithm that merges two leaves or nodes that are 

closest together, according to some sort of distance measure at each iteration. Beginning with 

all n elements as their separate clusters, at each iteration, the algorithm finds the pair of 

elements (or clusters) and merges them together such that they form a new, single cluster 

between them. New pairwise distances are then computed for the newly formed cluster against 

all other elements, or clusters, that remain. After n-1 iterations, the algorithm terminates when 

only a single cluster consisting of all elements remain. During the process, the algorithm will 

have formed a binary tree (dendrogram) with the individual elements (or voxels in this case) as 

leaves of the dendrogram, and the root of the dendrogram is the single cluster containing all n 

elements  

 

Figure 8: Illustrative example of how hierarchical clustering works. 
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How bottom-up (agglomerative) hierarchical clustering works, and how it can be applied to 

resting-state fMRI data, is illustrated as follows: Given all pair-wise distances between all voxel 

elements in the brain stored in a so-called distance matrix. The algorithm first assigns each 

element (individual voxels) as their own clusters. In the first iteration, the algorithm finds the 

pair with the closest distance (most similar) and merges the two together to form a single 

cluster. All relevant distances are then recalculated according to the specified linkage function 

for the newly formed cluster and the distance matrix updated accordingly. For every successive 

iteration, the algorithm finds the closest pair of voxels or clusters and merges them. The 

algorithm then recalculates the distances, for the newly formed cluster against every previously 

existing voxel/cluster, and updates the distance matrix. The algorithm terminates finally when 

a single cluster consisting of all voxels remain (Figure 8). Having a single cluster remaining 

does not sound particularly useful. During this process it will have generated a binary tree 

(dendrogram) that can be saved and (re)used in order to form the final output clusters. As 

illustrated in Figure 9, cutting the dendrogram at cut level k from the root will reveal k clusters. 

 

Figure 9: Illustration of how to obtain the desired number of clusters through cutting the dendrogram. 

3.2 ON DISTANCE MEASURES 

In Figure 8, the distance measure used is the Euclidean distance, which is very simple to 

understand, but not very useful for finding functional connectivity networks. A distance 

measure must be defined based a measure of similarity between two voxels’ time-courses. The 

simplest and most intuitive of these measures is the Pearson’s cross correlation coefficient 

(CC), which ranges [-1, 1]. To convert the correlation to distances, Pearson’s correlation 

distance 𝑑 = 1 − |𝐶𝐶| is defined, which ranges [0, 1], where 0 corresponds to two time-

courses being the same (or complete opposite as a CC=−1 will also result in d=0), and 1 the 
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maximum distance between two time-courses are statistically independent. There are of course 

other, potentially better [34], distance measures out there, but the standard CC was chosen 

because it is by far more commonly known, and more intuitive than other distance measures. 

3.3 ON LINKAGE 

An important aspect of the algorithm is how the distance is defined when one or both sides is 

a cluster rather than a voxel. This is called the linkage type. There are 4 different types of 

linkage methods commonly used: Single-linkage, complete-linkage, average-linkage, and 

centroid-linkage. Single-linkage takes the minimum distance for all voxels in a cluster and 

other voxel/cluster to be the distance. Complete-linkage is the complete opposite of single-

linkage and takes the maximum instead of the minimum. As the name suggests, average-

linkage takes the average of all voxels in a cluster to be the distance between it and another 

voxel/cluster. Finally, centroid-linkage takes the voxel in the (spatial) center for its calculation 

of new distances. The spatial location of the voxels should not affect the clustering in any way, 

therefore centroid-linkage was excluded from further consideration. Because both single-

linkage and complete-linkage are heavily affected by outliers, and fMRI data is inherently noisy 

without an intuitive method to remove these outliers, average-linkage was opted as the linkage 

function for clustering. 

3.4 DATA MINING AND VISUALIZATION  

After forming the full dendrogram from top to bottom, the hierarchical clustering algorithm is 

complete. All the data has been sorted and ordered according to the distance measurement of 

choice into a dendrogram with the voxels as leaves and the root being the whole brain. 

Somewhere within this dendrogram lies the desired information, but the main issue when using 

hierarchical clustering on resting-state fMRI data at voxel-level, is the vastness of this 

dendrogram. It is impossible to gain any meaningful information from a plot of the full 

dendrogram. A “full” grey-matter dendrogram is attached and can be seen Figure 10. The 

complete hierarchical clustering result is simply too large to get a comprehensive overview. 

The full dendrogram must be decomposed (appropriately) into manageable parts, for one to 

have a chance at gaining some insight. This is in essence a data visualization issue. 

The simplest solution is to cut the dendrogram at a certain cut level k, and look at the clusters 

that come out of the dendrogram at that cut-level. By doing that, one loses the connectivity and 

organizational information in the dendrogram. Having a dendrogram shows how the clusters 

are connected to one another and is one of the main reasons why one would choose to perform 

hierarchical clustering analysis instead of, say ICA-based analysis. So this is clearly not a good 

method. One might attempt to only investigate the sub-dendrograms by only selecting a small 

branch of the full dendrogram in hopes of getting better overview. However this is equivalent 

to investigating only a small part of the brain at a time without any overview of how the part 
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of the brain under investigation is connected to the rest of the brain. Depending on the sub-tree, 

the “small” part of the brain does not necessarily mean small in terms of a dendrogram. Figure 

11 illustrates the dendrogram, down to voxel elements, of the “small” part of the brain 

corresponding to the paracentral lobule. This cluster is only one of the sub-network hubs in the 

somatosensory-motor network, which is only one of the many RFNs in the brain. Figure 11 

shows that it is not small and without further dimensionality reduction, still a very messy and 

incomprehensible data source. 

 

Figure 10: Output dendrogram of a full-brain, grey-matter masked, hierarchical clustering at voxel level using average-
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The hierarchical clustering algorithm is slow to compute the full dendrogram. When complete, 

the dendrogram can be saved as a text file that is much smaller and manageable. A dendrogram 

can be loaded and cut at any other cut level almost instantaneously. After initial clustering, one 

can make cuts at any cut-level to the dendrogram, quickly and efficiently, and extract the 

clusters within. Of significance is that this allows one to systematically cut the dendrogram 

from top to down with increasing cut-levels to obtain all cluster information and documenting 

their connectivity with relative ease. This provides a powerful tool to visualize part of the full 

dendrogram in a meaningful way, provided one knows which parts to look at. 

3.5 DEFINITION OF RFNS AND SUB-NETWORKS 

It is safe to assume that only a small part of the full dendrogram can be feasibly regarded at 

once. The question remains as to which parts of the dendrogram to look at. This question comes 

with its own set of problems that the basic hierarchical clustering algorithm does not attempt 

to solve. At the root of the dendrogram, this question is trivial. Traversing top-down through 

the dendrogram, a large set of the clusters that resemble meaningful RFNs and sub-networks 

can be (relatively) quickly obtained. 

Another issue is how to interpret the clusters. Traversing top-down through the full 

dendrogram, one will most likely stumble upon clusters that resemble very closely to a RFN, 

other clusters will be small and compact, resembling sub-networks or even hubs for some 

RFNs. An important question is what constitutes as a RFN and what is a sub-network? The 

concept of a RFN is originally derived from task-based activations with specific tasks. What 

might be defined commonly as the visual network, probably does not include all brain regions 

that are responsible for all aspects of visual processing, just those responsible for processing 

that particular visual stimulus. Those who are active in resting-state fMRI often find the need 

to emphasize that the task invoked activation patterns and resting-state synchrony patterns, and 

are not of the same physiological origins and cannot be regarded in the same manner. This 

implies that it is unreasonable to assume that the two networks are comparable. Despite this, 

the rough and vague definition of RFN is still commonly used today, often without an explicit 

definition (because any explicit definition along such lines would be incorrect). Those who 

actively work with resting-state fMRI find themselves using this “definition” of RFNs and this 

is partly due to convenience and the lack of anything better, but also because of the fact that, 

in practice, the task invoked activation patterns and resting-state functional connectivity 

patterns happen to be more alike than not (with a few exceptions). For the sake of convenience, 

the same pseudo-definition shall be used here and use the term RFNs to label those that are 

comparable to task based fMRI activations and label smaller clusters that are functionally 

distinct within such RFNs, as sub-networks. It must be stressed however that this is done mostly 

for convenience of labelling rather than a strict definition, because after-all this problem is 

simply a matter of definition. 

One of the inherent strengths of hierarchical clustering is that the full brain dendrogram, not 

accounting for noise and artefacts, can be regarded as an entire network itself, connected down 
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to the voxel elements. As long as a cluster is not classified to be the result of outliers, noise, or 

some other sources of artefacts in the data, it will remain a part of the functional hierarchy to 

be constructed. So it can be said that the RFNs typically associated with resting-state fMRI 

such as the visual network, and executive function networks, are in fact not completely separate 

functional networks, but rather also work together in various tasks. The different RFNs together 

form the complete network consisting of the entire brain. In the same fashion, these networks 

have functional sub-divisions, for example the pre-motor, primary motor, somatosensory, and 

supplementary motor areas in the motor network. Each sub-network regulating a specific aspect 

motor control. 

3.6 CLUSTER EVALUATION AND WHERE TO STOP CUTTING 

It has been established that a dendrogram visualized down to its voxel elements can be visually 

messy, at the same time providing little meaning in terms of clarity on what the voxel elements 

represent. A lower limit as to where to stop cutting the dendrogram must be now established.  

Hierarchical clustering does not have its own native filtering mechanisms. The algorithm is 

intrinsically sensitive to outliers and noise due to its deterministic nature and rigorous 

processing iterations. Applied to noisy resting-state fMRI data, evaluation criteria or a filtering 

method is required to obtain meaningful clusters. 

The first attempt was to apply a minimum CC value threshold on the matrix with all the pair-

wise voxel CC values, from which the distance matrix was calculated. This will guarantee only 

truly correlated voxels, with correlation ≥0.3, to be taken into account when forming the 

distances. All pair-wise correlations below the threshold is truncated to 0. In hind-sight, this 

probably didn’t help and it is good that did not adversely affect the results.  

Due to the limiting resolution and noisy nature of fMRI datasets, a minimum cluster size must 

be imposed where any cluster less than this threshold, cannot be regarded as significant. At low 

cut level, a global threshold was set to filter out noise clusters. For clusters lower down the cut 

level at intra-network hierarchies, a slightly different scheme for cluster size evaluation was 

used. At these cut levels, the cluster evaluations purpose becomes less of filtering out noise 

clusters, rather than evaluating the clusters significance. The evaluation threshold was set 

depending on each cluster’s connectivity within. Generally the smaller a cluster is, the higher 

its intra-cluster connectivity must be, for it to be considered significant. To further evaluate the 

significance of a cluster, a myriad of measures were derived in order to quantify what exactly 

constitutes as a significant cluster. From there a natural end-point was decided where, beyond 

said point, further clustering will yield little to no meaningful results. One measure is to 

evaluate a split that is naturally derived from the hierarchical clustering algorithm, i.e: 

Inconsistency Coefficients. The inconsistency coefficient characterizes each node in a 

dendrogram by comparing its height against those of the other links’ at similar heights. A 

node’s height is simply the distance at which the node (cluster) is first joined together according 

to the algorithm. It is higher for nodes which are less similar to surrounding nodes. Another 
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possible measure is intra-cluster modularity, where the degree of connectedness within a cluster 

was evaluated. It makes little sense to further sub-divide clusters that possess maximum degree 

of intra-cluster connectivity (that is, when every voxel element in the cluster is strongly 

connected to each other). 

3.7 STUDY OUTLINE 

A model-free analysis method for resting-state fMRI data using hierarchical clustering at voxel 

level was implemented. The extracted RFN using hierarchical clustering was evaluated by 

comparing to ICA results from the same dataset. Hierarchical clustering was confirmed to be 

able to produce clusters that closely resemble RFNs obtained through other methods (such as 

ICA), hierarchical clustering analysis framework was extended to be able to efficiently study 

the sub-network functional organization of known RFNs. Ultimately, the hope is to use 

hierarchical clustering in a consistent fashion to analyze brain connectivity by starting from the 

whole-brain level and down to the smallest functionally distinct areas. 

3.8 IMPLEMENTING THE HIERARCHICAL CLUSTERING FRAMEWORK 

Before showing some of the central results from hierarchical clustering, there are a couple of 

implementation details worthy of mention. Being a physicist above a programmer, some 

choices for the implementation might seem convoluted. The main reason for these choices from 

Moore’s Law: The processing power available at the early stages of implementing the 

framework is vastly overshadowed by the processing power available at the time of writing. A 

good example of this is the hierarchical clustering algorithm itself: Like most other clustering 

algorithms, hierarchical clustering operates on a high computational complexity (𝑂(𝑛3)). This 

makes the algorithm scale very poorly as the computational time is cubic to the number of 

voxels being processed. 

3.8.1 The necessity of optimizations 

At the time of development, many optimization steps were needed to be taken for the 

framework to be feasible at all in terms of processing times (or to be able to compute at all). 

With computers getting steadily more memory and faster CPUs, some of the optimization steps 

might have ceased to be necessary and seem much less impressive today. When the framework 

was first developed, all the optimization steps taken were necessary for the framework to 

process the data within reasonable processing times. At the time of this writing, the same data 

can be processed using far less optimized, general purpose hierarchical clustering packages (for 

example that found in MATLAB), using a laptop rather than a workstation. 
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3.8.2 Memory allocation 

The base hierarchical clustering programs are written purely in C due to its speed and control 

of memory allocation. Memory allocation being very important as memory was in short(er) 

supply when the base processing modules were written and memory-efficiency is oftentimes 

the determining factor for whether the analysis pipeline will run at all, or just simply flood the 

computer’s memory. 

3.8.3 Parallel Programming 

A major optimization step is the implementation of parallel processing for the program 

calculating CC matrices. While hierarchical clustering does not lend itself to be naturally 

parallelized, computing the CC matrix can be parallelized. As it happens this is also the step 

that is the most time consuming as in a dataset, multiple CC matrix calculations must be run 

(one for each subject) while hierarchical clustering only need be run once per dataset. 

3.8.4 Dimensionality reduction 

Another necessary optimization step is dimensionality reduction through grey-matter masking. 

There is the physiological reason that functional connectivity networks, and functional areas in 

general do not reside in white-matter and CSF (and definitely not outside the brain). The 

practical reason for this is that it eliminates more than half the voxels to be processed and frees 

up more than half the memory needed to my programs to allocate. 

3.8.5 Libraries 

The C-clustering library for bioinformatics (http://bonsai.hgc.jp/~mdehoon/software/cluster/) 

was used to implement the hierarchical clustering algorithm itself. The library also includes 

functions to efficiently cut a given dendrogram to store as output clusters. The library was 

extended to allow for saving of the tree in ASCI format (linkage file). While the clustering 

itself takes non-trivial amount of time, loading the tree from the linkage file and cutting the tree 

occurs almost instantaneously. 

The analysis pipeline from this point onwards is a series of R and bash script files. The analysis 

traverses through the dendrogram top-down and cuts the dendrogram at every cut level. At 

each consecutive cut level, the children clusters at their mother cluster is identified. The 

children clusters at every consecutive cut is then evaluated for significance through various 

measures such as the IC, intra-cluster connectivity, and voxel size. These scripts also manage 

the construction and preparation for visualization of the filtered sub-dendrogram which 

contains only nodes that pass the filtering process. Would this analysis pipeline have been 

written at the same time the base hierarchical clustering routines were, they would have mostly 

likely been written in C with optimizations of their own. But since they are written more 
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recently on better workstations, these scripts are rough in their implementation. As necessity is 

the mother of invention, without the former, the one is not as motivated to the latter. 

3.9 HIERARCHICAL CLUSTERING AND ICA RESULTS  

RFNs extracted from hierarchical clustering were compared against typical RFNs extracted 

using group ICA. In general, the RFNs extracted using hierarchical clustering have relatively 

good match with RFNs extracted through group ICA. The RFN clusters with matching ICA t-

maps can be found Figure 12. 

 

Figure 12: Comparison between the hierarchical clustering and ICA results. RFNs from hierarchical clustering (left column) 

and group ICA (middle column) with good matching. The right column displays their corresponding overlays with 

overlapping areas showing in orange. The group ICA t-maps were binarized with a threshold at p<0.001 for ease of 

comparison with clustering results. 

3.10 FUNCTIONAL HIERARCHIES 

A major advantage of using hierarchical clustering on resting-state fMRI data is the 

dendrogram obtained during the clustering process. Not only does the dendrogram reflect how 

 

30 

recently on better workstations, these scripts are rough in their implementation. As necessity is 

the mother of invention, without the former, the one is not as motivated to the latter. 

3.9 HIERARCHICAL CLUSTERING AND ICA RESULTS  

RFNs extracted from hierarchical clustering were compared against typical RFNs extracted 

using group ICA. In general, the RFNs extracted using hierarchical clustering have relatively 

good match with RFNs extracted through group ICA. The RFN clusters with matching ICA t-

maps can be found Figure 12. 

 

Figure 12: Comparison between the hierarchical clustering and ICA results. RFNs from hierarchical clustering (left column) 

and group ICA (middle column) with good matching. The right column displays their corresponding overlays with 

overlapping areas showing in orange. The group ICA t-maps were binarized with a threshold at p<0.001 for ease of 

comparison with clustering results. 

3.10 FUNCTIONAL HIERARCHIES 

A major advantage of using hierarchical clustering on resting-state fMRI data is the 

dendrogram obtained during the clustering process. Not only does the dendrogram reflect how 



 

 31 

different RFNs are organized hierarchically in the brain, but the sub-dendrograms of the various 

RFNs may reveal the functional sub-division of the RFNs.  

Using the definition of what constitutes as RFNs for convenience, the aim is the following: 

From the root of the full dendrogram, extract RFNs comparable to those from group ICA and 

task-based activation patterns and obtain their inter-network functional hierarchy. In a 

consistent manner, the framework will allow studying the RFNs’ intra-network connectivity 

through extracting their sub-networks and their intra-network functional hierarchy. 

A limit has to be set for the size of the each sub-dendrogram to be shown. While it is quite 

intuitive (or even through illustration) that the full dendrogram cannot be shown in a single 

figure, the question stands as to how large of a dendrogram can one reasonably squeeze into a 

single figure whilst retaining information that is comprehensible to the viewer? The answer to 

this question is naturally dependent on who the viewer is. Considering that the leaves represent 

clusters and every leaf is of major importance, a sub-dendrogram of approximately 20 leaves 

seems to be the maximum size for a sub-dendrogram. Anything larger and one start to lose 

either over-view of the dendrogram, or lose grasp of the individual leaves. This was established, 

like many researchers do behind the scenes, with trial and error and through many sleepless 

nights. As one traverses down the full dendrogram, more nodes fail the cluster evaluation 

process and one would need to traverse to higher cut levels to fill a figure with 20 sub-networks. 

Here the search was restricted to 80 cut levels as the analysis pipeline is currently poorly 

optimized for high cut levels. Since the dendrogram expands further down the cut levels, the 

full dendrogram will not be presented to its full width, but selectively presenting the full 

dendrogram by presenting one of the leaf clusters from the previous sub-dendrogram as root 

for the next sub-dendrogram.  

From the entire cortical grey-matter as root to the full dendrogram, a top-down evaluation was 

made up to cut level k=32, at which one figure was fully occupied by 20 clusters located 

cortically. Of the 81 potential clusters, 23 clusters remained after cluster evaluation and 3 of 

them were located in the cerebellum which cannot be accurately shown through 3D cortical 

mapping (Figure 13). At this cut level, most of the Cortex remains a single cluster while regions 

near the Mid-brain start splitting apart into functionally distinct areas. The first sub-dendrogram 

has a natural candidate for further clustering: There is a cluster much larger than the other 

clusters in this hierarchy (Figure 13, left, cluster 7), so the obvious choice for presenting the 

next hierarchy would be to use the large cluster as root for the next. This is not to say that one 

cannot use another cluster in the hierarchy (some are of decent size also) and look at its sub-

division, they were simply not presented here. An example of this would be in the next 

hierarchy, where the large cluster splits into clusters that represents known RFNs. The RFNs 

extracted at this level is comparable to ICA results, with the additional information about the 

inter-network functional hierarchy naturally obtained from hierarchical clustering (Figure 13, 

right). 
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Figure 13: Inter-network hierarchies from root (left) down to cut level k=32. One large cluster (cluster 7) remain after 20 
cluster limit per figure was reached. This large cluster was taken as the root and further clustered (right) down to cut level 

k=32. 18 clusters remain after evaluation, of which most of them resemble known RFNs such as the somatosensory-motor 

network (cluster 6) and visual network (cluster 9).  

The intra-network functional hierarchies of the somatosensory-motor network was further 

investigated (Figure 14a). To illustrate the previous point of being able to select any of the 

leaves for a given sub-dendrogram to further study, the functional hierarchy of the visual 

network (Figure 14b) was also constructed. A cluster that is considerably larger in the 

somatosensory-motor network corresponds to the paracentral lobule. It seems that the 

paracentral lobule is also a highly connected hub of the network, hence the cluster was further 

clustered, again to cut level k=80 (Figure 14c). This is a natural end point, as cluster 

characteristics such as the Inconsistency Coefficient, cluster modularity, and cluster 

connectivity suggests that this would be the natural stage to terminate the hierarchical sub-

division. 
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Figure 14: Intra-network functional hierarchies of the somatosensory-motor network (a) and visual network (b). The 

Paracentral lobule was further clustered to cut level k=80, where only 5 clusters remained. The plateau in Inconsistency 

Coefficient at this cut level suggests this would be a good time to terminate the analysis.   
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4 SUMMARY 

Studying how the human brain functions through resting-state fMRI data is, in essence, a data 

mining problem. Within the vast amount of data lies information as to how the human brain is 

functionally organized. Model-free analysis methods lie at the center of exploratory analysis of 

resting-state fMRI data. These model free methods are purposed to extract meaningful 

information amongst noise and other artefacts that lie within the data, and reduce the high-

dimensional data so that the meaningful information can be presented in a fashion that is easily 

comprehensible. How dimensionality estimation affects the output ICA results was 

investigated and how group ICA can be used for group comparison studies. To investigate brain 

connectivity, an analysis framework based on hierarchical clustering was developed to not only 

extract functional connectivity networks, but also obtain their organizational hierarchy 

simultaneously.  

Hierarchical clustering algorithm was shown to be able to feasibly extract functional 

connectivity networks in resting-state fMRI data at a voxel-level. The extracted functional 

connectivity networks resembled those extracted using ICA. Hierarchical clustering results on 

resting-state fMRI data not only extracts functional connectivity networks from resting-state 

fMRI data, but also organizes them inherently into a hierarchical structure that mimics the 

brain’s functional organization. Furthermore, hierarchical clustering can reveal the sub-

networks and their functional organization of resting-state connectivity networks.  

Through studying how the number of output ICs can affect ICA analysis results, valuable 

insight was gained on how ICs behave with increasing NIC, but these changes are too complex 

for any general patterns or conclusions to be drawn. The FOCIS analysis framework was 

implemented to delineate between artefacts and noise ICs and those corresponding to 

functional connectivity networks. While the framework performed superbly in its purposed 

task, the dimensionality problem proved to be more complex than initially thought for FOCIS 

to provide solid answer for. The insights gained from dimensionality investigations was 

sufficient to provide us with a solid basis to effectively utilize ICA to perform group 

comparison analysis. Using ICA individually on the groups with extensive preprocessing 

pipeline to eliminate as many noise and artefact sources as possible, group comparison can be 

conducted, without the need to pool all datasets into one single group ICA analysis run. 

Significant differences were detected in RFNs between migraine patients compared to healthy 

control subjects in areas in the Midbrain and Limbic system, areas which are also affected by 

the KOS treatment. This gives supporting evidence that KOS treatment alleviates migraine 

symptoms through regulating the parasympathetic autonomic reflex.
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5 FUTURE PERSPECTIVES 

1. Programming work. One of the reasons why fMRI has grown to be so popular among 

researchers is that there are software packages available that are easy to use. fMRI has 

become a means rather than an end for mostly this reason. Writing a complete software 

package for hierarchical clustering so that others might be able to use it. 

2. Incorporating a graphics user interface and visualization features. One of the most 

difficult aspects about working with hierarchical clustering is on data visualization. A 

vast improvement of the hierarchical clustering software packages would be to 

implement a graphical user interface, not only benefiting the ease of use, but also 

incorporating visualization tools to easily navigate and manipulate the vastness that is 

the full dendrogram. 

3. Improving and extending the hierarchical model: Incorporate fuzziness. One main 

reason why hierarchical clustering is that the algorithm organizes data in a structure 

that mimics the brain’s functional organization. However there are downsides of the 

algorithm in that aspect. A property of the hierarchical clustering is that the resulting 

clusters are mutually exclusive, which does not seem reasonable in terms of brain’s 

functional areas. Incorporating some sort of fuzziness into an otherwise hierarchical 

clustering algorithm will improve the innate modelling of the analysis method. 

4. Extending the analysis method: Incorporating time-domain analysis. Functional 

connectivity networks are not stationary in time: This is why people made windowed-

ICA. Further processing of resting-state fMRI data, with inclusion of time-domain 

aspects, similar to what windowed-ICA does for hierarchical clustering in hopes of also 

seeing how functional connectivity networks change and interact in time. 

5. Optimize the analysis framework for hierarchical clustering. There seemed to be less 

need for optimization at the time of writing the analysis framework compared to the 

basis hierarchical clustering programs. Hence not much effort was dedicated to 

optimizing the analysis framework programs. This proved to be a mistake as it became 

ridiculously slow for larger cut levels, forcing us to limit the analysis to cut level 80 

from any root starting point. This was not a problem for low cut levels in the full 

dendrogram, but was apparently becoming a limiting factor for sub-network 

investigations at higher cut levels. A more efficient analysis framework allows for more 

efficient and comprehensive analysis of hierarchical clustering results. 

6. Further investigation into the dimensionality of the resting-state fMRI datasets. An 

attempt was made, but did not result in great success. All indicates to that only the 

surface of the problem was scratched upon. Some might say that the problem has 

already been solved through various dimensionality estimators, but since the inherent 

dimensionality of a resting-state fMRI dataset is unknown, one cannot be certain as no 

ground truth exist for evaluation. After all, if the noise filtering chip on your mobile 

phone can fail at times, why can’t it fail here? 
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Abstract

Background: Previous studies using hierarchical clustering approach to analyze resting-state fMRI data were limited to a few
slices or regions-of-interest (ROIs) after substantial data reduction.

Purpose: To develop a framework that can perform voxel-wise hierarchical clustering of whole-brain resting-state fMRI data
from a group of subjects.

Materials and Methods: Resting-state fMRI measurements were conducted for 86 adult subjects using a single-shot echo-
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Introduction

Taking advantage of the rapidly expanding computational

power in the past decade, several studies showed the feasibility to

analyze whole-brain resting-state fMRI data with clustering

algorithms. For example, Benjaminsson et al. used a dimensional

scaling and vector quantization clustering technique to analyze

resting-state fMRI data [1]. Van den Heuvel et al. used a graph-

theory approach to determine several functional connectivity

networks [2].

Hierarchical clustering has not been used as fluently as other

clustering methods in the analysis of resting-state fMRI data due to

its poor scaling, high complexity and sensitivity to outliers. On the

other hand, hierarchical clustering is completely deterministic and

can stratify data into a hierarchical structure [3,4,5,6]. Previous

studies on hierarchical clustering of resting-state fMRI data have

been limited to a few slices or region-of-interests (ROIs) after

substantial data reduction. Cordes et al. used a hierarchical

clustering algorithm and analyzed 4 slices of resting-state fMRI

data [7]. In another hierarchical clustering study of human brain,

Salvador et al. grouped the resting-state fMRI data into regions-of-

interests (ROIs) according to their anatomical locations prior to

the clustering [8] of the ROIs. More recently, voxel-wise

hierarchical clustering was also attempted on resting-state fMRI

data acquired from rodents [9].

Due to limited computational capacity, data reduction is usually

needed in hierarchical clustering of resting-state fMRI data. In the

earlier works this was achieved either by limiting the number of

slices [7] or substantially reducing the data into anatomical ROIs

[8]. In order to perform voxel-wise hierarchical clustering of

whole-brain resting-state fMRI data, in this study we used a brain

mask to achieve data reduction without compromising spatial

resolution and coverage. This masking operation also improves the

robustness of the framework by eliminating irrelevant voxels

containing noise and artifact outliers which destabilize the

algorithm [10]. To further improve stability of the algorithm,
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the distance matrix for individual subject was thresholded and

averaged prior to the clustering. This allows also efficient group

analysis of whole-brain resting-state fMRI data.

We developed an iterative scheme with termination criteria

based on cluster size to analyze the dendrogram. With the

developed framework, we were able to independently identify most

of the functional connectivity networks reported previously in the

literature using ICA and other analysis methods. Furthermore, we

illustrated that the dendrogram can directly reveal the inherent

hierarchical structure within the functional connectivity networks.

To the best of our knowledge, there has been no previous study

succeeded in hierarchical clustering of whole-brain human resting-

state fMRI data at voxel-level.

Materials and Methods

Ethical statement
This study was approved by the Central Ethical Review Board

in Sweden, who also approved the consent form used to provide

information and obtain consent. All participants provided

informed consent by signature.

Data acquisition
Resting-state fMRI measurements were conducted for 86

normal adult subjects (male/female = 40/46, aged 21–84 years

old). All resting-state fMRI measurements were performed on a

Siemens whole-body 3T clinical MRI scanner (Magnetom Trio,

Erlangen, Germany) using a dedicated 32-channel phased array

detector. For each subject, at least one set of resting-state fMRI

data was acquired using a single-shot 2D gradient-recalled echo

(GRE) echo-planar imaging (EPI) technique. The essential

acquisition parameters for the resting-state fMRI scan included

the following: 32 transverse slices of 3.6 mm thick, TR/

TE = 2000/35 ms, FOV = 220 mm, matrix size = 64664, parallel

imaging acquisition with an acceleration factor (IPAT) of 2, flip

angle = 90u, and 300 dynamic timeframes.

Data preprocessing
Data preprocessing were performed using AFNI (http://afni.

nimh.nih.gov/afni/) and FSL (http://www.fmrib.ox.ac.uk/fsl)

programs wrapped around a bash shell script. The first 10

timeframes in each data set were removed to ensure the signal

reaches steady state. Head motion correction was performed based

on 6-parameter rigid body images registration. The average

volume for each motion corrected time series were used to remove

the skull from the images and to create whole-brain mask. Spatial

normalization to the MNI template was performed using 12

parameter affine transformation and mutual information as the

cost function. The data was then resampled to isotropic resolution

using a Gaussian kernel with FWHM = 4 mm. Low-pass filtering

at 0.1 Hz was done followed by baseline de-trending up to the

third order.

Cross-correlation evaluation
To minimize processing load without promising the spatial

resolution and whole-brain coverage, individual datasets were

masked with a standard gray matter template derived from FSL

tissue priors (http://www.fmrib.ox.ac.uk/fsl) to exclude white

matter and cerebral spinal-fluid (CSF) regions. After the masking,

the pair-wise Pearson’s cross correlation coefficients (CC) were

calculated for all datasets. The correlation coefficients were then

thresholded at 0.3 [7] The correlation values below the threshold

was truncated to zero while values above this threshold were not

changed. After thresholding, approximately 1.1% of the correla-

tion coefficients remained for further analysis (Fig. 1). The cross

correlation matrices for all subjects were then averaged together

Figure 1. Average CC matrix histogram. Histogram of the average CC matrix of all datasets. The majority of CC values are below 0.2 with a
relatively small number of values above 0.4. Negative values exist but are relatively few and only take on small values.
doi:10.1371/journal.pone.0076315.g001
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voxel-wise. The averaged correlation data were then converted

into absolute Pearson’s distances according to the definition (1-

|CC|), which were used to perform hierarchical clustering.

Hierarchical clustering
An agglomerative hierarchical clustering algorithm was used as

the basis for the framework. A brief description of the algorithm is

summarized as follows: Given a set of N voxels to be clustered, and

a corresponding N6N distance matrix:

1. Assign each voxel to a cluster, resulting in N clusters, with each

cluster containing just one voxel. The distances between the

clusters are the distances among the voxels.

2. Find the closest pair of clusters.

3. Merge the closest pair of clusters, resulting in one cluster less in

total.

4. Repeat 2–3 until only a single cluster remains.

Step 3 can be performed in a variety of ways, referred to as

linkage methods. The type of linkage in a hierarchical clustering

algorithm refers to how the algorithm determines distance between

newly formed clusters to all other voxels and clusters. Single-

linkage takes the shortest distance between new clusters against the

rest of the data, maximum-linkage takes the longest distance, and

average-linkage takes the average. In our application, voxels

within a cluster corresponding to a functional connectivity network

should be highly correlated to each other. Hence, single-linkage is

not desirable in this application. Maximum-linkage forces the

algorithm to solely determine clusters with all voxels having high

correlations to each other without exceptions. Average-linkage

relaxes somewhat the intra-cluster connectivity requirements

compared to maximum-linkage by taking the average distance.

Hence, average-linkage was opted to take into account of the

potential noise residues. Pseudo-code for the algorithm is shown in

Appendix A in Supporting Information S1.

The algorithm produces a binary hierarchy tree (dendrogram)

from which k clusters can be retrieved by cutting the k-1 longest

links.

Since the number of meaningful clusters is unknown a priori and

is affected by the noise level of the resting-state fMRI data, it is

difficult to specify the number of resulting clusters directly. We

tested different criterion for the selection of clusters, e.g. the

inconsistency coefficient (see Appendix B in Supporting Informa-

tion S1 and Figure S1 for details). It was found that the cluster size

could be used as an effective approach. By referring to the group

ICA result from the same dataset, a cluster larger than 5000 voxels

in size (S$5000) is considered too large to be a single functional

connectivity network, whereas a cluster less than 50 voxels in size

(S#50) is considered too small to be a meaningful cluster. The

selection of these parameters is determined semi-empirically and is

discussed in further details below.

Testing the algorithm with different number of clusters indicates

that increasing the number of clusters in the first iteration simply

increases the number of spurious small clusters but does not

efficiently reduce the size of the largest cluster, once the cluster

count is sufficiently large. Therefore, the cluster count, for the first

iteration (whole-brain clustering), was set to 64. Cluster count for

the hierarchies further down was reduced by a factor of 2 than that

for the previous iteration (k2 = 32, k3 = 16, k4 = 8 etc.). The cluster

number for subsequent iterations is decreased according to the size

Figure 2. Schematics of the iterative clustering pipeline. Schematics for iterative hierarchical clustering framework based on resulting cluster
size. Small clusters are excluded and large clusters are clustered further iteratively using a smaller cluster count.
doi:10.1371/journal.pone.0076315.g002

Table 1. Cluster count for hierarchical clustering.

Iteration Big cluster count Small cluster count Potential RSN cluster count Total cluster count

1 1 47 16 64

2 0 18 14 32

Total 1 65 30 96

doi:10.1371/journal.pone.0076315.t001

Analyzing fMRI Data Using Hierarchical Clustering

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e76315

voxel-wise. The averaged correlation data were then converted

into absolute Pearson’s distances according to the definition (1-

|CC|), which were used to perform hierarchical clustering.

Hierarchical clustering
An agglomerative hierarchical clustering algorithm was used as

the basis for the framework. A brief description of the algorithm is

summarized as follows: Given a set of N voxels to be clustered, and

a corresponding N6N distance matrix:

1. Assign each voxel to a cluster, resulting in N clusters, with each

cluster containing just one voxel. The distances between the

clusters are the distances among the voxels.

2. Find the closest pair of clusters.

3. Merge the closest pair of clusters, resulting in one cluster less in

total.

4. Repeat 2–3 until only a single cluster remains.

Step 3 can be performed in a variety of ways, referred to as

linkage methods. The type of linkage in a hierarchical clustering

algorithm refers to how the algorithm determines distance between

newly formed clusters to all other voxels and clusters. Single-

linkage takes the shortest distance between new clusters against the

rest of the data, maximum-linkage takes the longest distance, and

average-linkage takes the average. In our application, voxels

within a cluster corresponding to a functional connectivity network

should be highly correlated to each other. Hence, single-linkage is

not desirable in this application. Maximum-linkage forces the

algorithm to solely determine clusters with all voxels having high

correlations to each other without exceptions. Average-linkage

relaxes somewhat the intra-cluster connectivity requirements

compared to maximum-linkage by taking the average distance.

Hence, average-linkage was opted to take into account of the

potential noise residues. Pseudo-code for the algorithm is shown in

Appendix A in Supporting Information S1.

The algorithm produces a binary hierarchy tree (dendrogram)

from which k clusters can be retrieved by cutting the k-1 longest

links.

Since the number of meaningful clusters is unknown a priori and

is affected by the noise level of the resting-state fMRI data, it is

difficult to specify the number of resulting clusters directly. We

tested different criterion for the selection of clusters, e.g. the

inconsistency coefficient (see Appendix B in Supporting Informa-

tion S1 and Figure S1 for details). It was found that the cluster size

could be used as an effective approach. By referring to the group

ICA result from the same dataset, a cluster larger than 5000 voxels

in size (S$5000) is considered too large to be a single functional

connectivity network, whereas a cluster less than 50 voxels in size

(S#50) is considered too small to be a meaningful cluster. The

selection of these parameters is determined semi-empirically and is

discussed in further details below.

Testing the algorithm with different number of clusters indicates

that increasing the number of clusters in the first iteration simply

increases the number of spurious small clusters but does not

efficiently reduce the size of the largest cluster, once the cluster

count is sufficiently large. Therefore, the cluster count, for the first

iteration (whole-brain clustering), was set to 64. Cluster count for

the hierarchies further down was reduced by a factor of 2 than that

for the previous iteration (k2 = 32, k3 = 16, k4 = 8 etc.). The cluster

number for subsequent iterations is decreased according to the size

Figure 2. Schematics of the iterative clustering pipeline. Schematics for iterative hierarchical clustering framework based on resulting cluster
size. Small clusters are excluded and large clusters are clustered further iteratively using a smaller cluster count.
doi:10.1371/journal.pone.0076315.g002

Table 1. Cluster count for hierarchical clustering.

Iteration Big cluster count Small cluster count Potential RSN cluster count Total cluster count

1 1 47 16 64

2 0 18 14 32

Total 1 65 30 96

doi:10.1371/journal.pone.0076315.t001

Analyzing fMRI Data Using Hierarchical Clustering

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e76315



of the large cluster to be further divided to avoid spurious amounts

of small clusters being generated. An overview of the hierarchical

clustering pipeline is schematically shown in Figure 2.

In order to identify potential resting-state functional networks

(RFNs), Clusters with adequate voxel size (50#S#5000) were

carefully examined by comparing their spatial distribution patterns

with previously published RFNs in the literatures.

ICA analysis
In order to verify the RFN results from the hierarchical

clustering, independent component analysis (ICA) of the same

resting-state fMRI data sets were also performed using the GIFT

toolbox, v1.3h (http://www.nitrc.org/projects/gift) implemented

in MATLAB (MathWorks, Massachusetts, U.S.A). Individual data

set was first concatenated and then followed by computation of the

individual ICA components and corresponding time courses.

Principle Component Analysis (PCA) was used prior to ICA for

data reduction. The InfoMax group-ICA algorithm was then

applied on the reduced data. Lastly, back-reconstruction of time

series data for each individual subject was performed. The number

of predefined ICA components was set to 36, as done in

accordance to a previous study [11]. Independent components

(ICs) that are common for the entire subject group and resemble

RFNs were identified through a threshold of voxel-wise t-maps

and visual examination of the spatial distribution patterns.

Table 2. Hierarchical clustering results.

Label
Size
(Voxels) Min CC Max CC Average CC

B 312 0.17 0.29 0.24

C 330 0.17 0.30 0.24

D 66 0.19 0.30 0.25

E (left/right) 168/176 0.17/0.19 0.25/0.26 0.22/0.22

F 270 0.18 0.29 0.24

G 66 0.19 0.28 0.24

H 1311 0.16 0.27 0.22

I 672 0.17 0.27 0.22

J 6828 0.15 0.29 0.22

K, blue region 240 0.20 0.31 0.27

L (left/right) 189/114 0.21/0.24 0.32/0.34 0.31/0.30

M 888 0.20 0.33 0.27

N (left/right) 67/91 0.25/0.22 0.36/0.34 0.31/0.30

O 999 0.19 0.36 0.29

P 463 0.19 0.30 0.26

Q 1540 0.19 0.35 0.27

R 1619 0.18 0.36 0.29

doi:10.1371/journal.pone.0076315.t002

Figure 3. Hierarchical clustering result. Clustering results from the selected cut levels. Bilaterally symmetric clusters are displayed in the same
figures using two different colors (blue and red). The large cluster went through further iteration is marked with a green box.
doi:10.1371/journal.pone.0076315.g003
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Figure 4. Comparison between the hierarchical clustering and ICA results. Set of hierarchical clusters (left column) and ICA components
(middle column) with good matching. The right column displays their corresponding overlays with overlapping areas showing in orange. The group
ICA t-maps were binarized with a threshold at p,0.001 for ease of comparison with clustering results.
doi:10.1371/journal.pone.0076315.g004

Table 3. Comparison between the ICA and clustering results.

Label Cluster size Component size Intersect Exclusive cluster Exclusive component

A 1540 1100 636 904 464

B 1619 494 469 1125 25

C 463 841 399 64 442

D 672 843 537 135 306

E 1311 1099 558 753 541

F 999 765 517 482 248

G 270 481 247 23 234

H 888 1550 594 294 956

doi:10.1371/journal.pone.0076315.t003
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(middle column) with good matching. The right column displays their corresponding overlays with overlapping areas showing in orange. The group
ICA t-maps were binarized with a threshold at p,0.001 for ease of comparison with clustering results.
doi:10.1371/journal.pone.0076315.g004

Table 3. Comparison between the ICA and clustering results.

Label Cluster size Component size Intersect Exclusive cluster Exclusive component

A 1540 1100 636 904 464

B 1619 494 469 1125 25

C 463 841 399 64 442

D 672 843 537 135 306

E 1311 1099 558 753 541

F 999 765 517 482 248

G 270 481 247 23 234

H 888 1550 594 294 956

doi:10.1371/journal.pone.0076315.t003
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Comparison between hierarchical clustering and ICA
results

For quantitative comparison between the hierarchical clustering

results and RFNs identified by ICA, each cluster that fulfilled the

cluster size criteria (50#S#5000) was matched with a RFN

identified using ICA based on its maximum overlap and the

similarity of the spatial distribution. The cluster size, intersection

area, and complementary non-overlapping areas were evaluated

for each matched pair.

Assessment of statistical significance
Because the CC matrices were thresholded at 0.3, which

corresponds to a t-score threshold of 2.88 (df = 84), the statistical

significance at voxel-level is p,0.001 without correcting for

multiple comparisons. For comparison the group ICA spatial t-

maps were then binarized at voxel-level with the same voxel-level

statistical significance.

The final statistical significance was evaluated by enforcing also

a minimum voxel cluster size of 6 contiguous voxels. After

specifying the original and final voxel sizes as well as the

uncorrected threshold value the AFNI program, AlphaSim, was

used to compute a list of probabilities corresponding to different

cluster sizes produced by random field of noise. The final voxel

size after pre-processing was 46464 mm3. The used interpolation

kernel along the slice direction was bicubic. The in-plane blurring

kernel was Gaussian function. By enforcing a minimum cluster size

of 6 contiguous voxels, probability simulations based on AlphaSim,

using 105 iterations indicate that the probability of random field of

noise producing a cluster of size $6 is at p,0.05 after the noise

was thresholded at pixel level with p,0.001.

Results

There were 37 out of a total of 112 clusters that fulfilled the

cluster size criteria (Table 1). As summarized in Figure 3, a total of

20 out of the 37 clusters were identified as potential RFNs by

careful inspection of the spatial patterns. The characteristics of

these identified RFNs were summarized in Table 2. The

remaining 17 clusters were classified as likely artifacts after

studying their spatial distribution patterns. Small clusters with less

than 50 voxels usually have single or too few voxels to be

considered as meaningful RFNs.

As shown in Figs. 2 and 3, the first iteration hierarchical

clustering produced 8 RFNs (Figs. 3B–I) including two frontal

networks (Figs. 3D and F), dorsolateral frontal network (Fig. 3C),

premotor network (Fig. 3G) and 3 RFNs involving the temporal

cortex. Two of the RFNs detected in the temporal lobes were split

into right- and left-sided clusters along the hemisphere middle line,

as indicated with two different colors (Figs. 3E, L, and N). This

iteration produced also a large cluster with 6828 voxels (Fig. 3J) for

further clustering in the second round.

The second iteration of the hierarchical clustering on the large

cluster (Fig. 3J) produced 6 commonly observed RFNs including

the default mode network (DMN) (Figs. 3M and O), visual network

(Fig. 3R), sensorimotor network (Fig. 3K), and 2 temporal

networks (Figs. 3N and P). The sensory motor network (Fig. 3K)

includes the motor, somatic sensory, parts of the auditory cortex

and parietal region. The visual network (Fig. 3R) covers the

primary and secondary visual cortices and posterior hippocampus.

The second iteration results in more highly intra-connected

clusters. As shown in Table 2, the mean of the averaged intra-

cluster CC for the second iteration is 0.29 while it is 0.23 for the

first iteration.

Analysis of the same dataset with ICA, 13 independent

components out of 36 were identified as relevant RFNs based

on t-score threshold and visual inspection of the t-maps and

corresponding time courses, whereas the remaining 23 compo-

nents were classified as artifacts due to contamination from CSF,

motion, and large veins.

Among the extracted 20 potential RFN clusters by using the

proposed hierarchical clustering scheme, there are 8 clusters

having relatively good match with RFNs identified by ICA. The

details are summarized in Figure 4 and Table 3. As shown, the 8

RFN clusters cover about 58% of the total grey matter volume.

For these 8 clusters, on average, there is a 61% spatial overlap

between the hierarchical clustering and ICA results.

Discussion

Choices of parameters for the hierarchical clustering
framework

An analysis of the resulted clusters shows that many of them are

small clusters with less than 50 voxels (Fig. 5) and are spatially too

Figure 5. Histogram of cluster size. Cluster size from all clusters
produced by applying the proposed framework to the acquired resting-
state fMRI datasets. It is clear that many clusters have less than 50
voxels.
doi:10.1371/journal.pone.0076315.g005
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results and RFNs identified by ICA, each cluster that fulfilled the

cluster size criteria (50#S#5000) was matched with a RFN

identified using ICA based on its maximum overlap and the

similarity of the spatial distribution. The cluster size, intersection

area, and complementary non-overlapping areas were evaluated

for each matched pair.

Assessment of statistical significance
Because the CC matrices were thresholded at 0.3, which

corresponds to a t-score threshold of 2.88 (df = 84), the statistical

significance at voxel-level is p,0.001 without correcting for

multiple comparisons. For comparison the group ICA spatial t-

maps were then binarized at voxel-level with the same voxel-level

statistical significance.

The final statistical significance was evaluated by enforcing also

a minimum voxel cluster size of 6 contiguous voxels. After

specifying the original and final voxel sizes as well as the
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used to compute a list of probabilities corresponding to different

cluster sizes produced by random field of noise. The final voxel
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of 6 contiguous voxels, probability simulations based on AlphaSim,
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noise producing a cluster of size $6 is at p,0.05 after the noise
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Results

There were 37 out of a total of 112 clusters that fulfilled the

cluster size criteria (Table 1). As summarized in Figure 3, a total of

20 out of the 37 clusters were identified as potential RFNs by

careful inspection of the spatial patterns. The characteristics of

these identified RFNs were summarized in Table 2. The

remaining 17 clusters were classified as likely artifacts after

studying their spatial distribution patterns. Small clusters with less

than 50 voxels usually have single or too few voxels to be

considered as meaningful RFNs.

As shown in Figs. 2 and 3, the first iteration hierarchical

clustering produced 8 RFNs (Figs. 3B–I) including two frontal

networks (Figs. 3D and F), dorsolateral frontal network (Fig. 3C),

premotor network (Fig. 3G) and 3 RFNs involving the temporal

cortex. Two of the RFNs detected in the temporal lobes were split

into right- and left-sided clusters along the hemisphere middle line,

as indicated with two different colors (Figs. 3E, L, and N). This

iteration produced also a large cluster with 6828 voxels (Fig. 3J) for

further clustering in the second round.

The second iteration of the hierarchical clustering on the large

cluster (Fig. 3J) produced 6 commonly observed RFNs including

the default mode network (DMN) (Figs. 3M and O), visual network

(Fig. 3R), sensorimotor network (Fig. 3K), and 2 temporal

networks (Figs. 3N and P). The sensory motor network (Fig. 3K)

includes the motor, somatic sensory, parts of the auditory cortex

and parietal region. The visual network (Fig. 3R) covers the

primary and secondary visual cortices and posterior hippocampus.

The second iteration results in more highly intra-connected

clusters. As shown in Table 2, the mean of the averaged intra-

cluster CC for the second iteration is 0.29 while it is 0.23 for the

first iteration.

Analysis of the same dataset with ICA, 13 independent

components out of 36 were identified as relevant RFNs based

on t-score threshold and visual inspection of the t-maps and

corresponding time courses, whereas the remaining 23 compo-

nents were classified as artifacts due to contamination from CSF,

motion, and large veins.

Among the extracted 20 potential RFN clusters by using the

proposed hierarchical clustering scheme, there are 8 clusters

having relatively good match with RFNs identified by ICA. The

details are summarized in Figure 4 and Table 3. As shown, the 8

RFN clusters cover about 58% of the total grey matter volume.

For these 8 clusters, on average, there is a 61% spatial overlap

between the hierarchical clustering and ICA results.

Discussion

Choices of parameters for the hierarchical clustering
framework

An analysis of the resulted clusters shows that many of them are

small clusters with less than 50 voxels (Fig. 5) and are spatially too

Figure 5. Histogram of cluster size. Cluster size from all clusters
produced by applying the proposed framework to the acquired resting-
state fMRI datasets. It is clear that many clusters have less than 50
voxels.
doi:10.1371/journal.pone.0076315.g005

Analyzing fMRI Data Using Hierarchical Clustering

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e76315



compact to portray RFNs. We investigated also the intra-cluster

connectivity and measured the number of connections a voxel

have with other voxels in a cluster. As shown in Fig. 6, for clusters

with less than 50 voxels, the normalized number of connections

decreases with the cluster size, while the larger clusters have the

opposite trend. Therefore, we choose 50 as the lower limit for

clusters to be considered as potential RFNs.

The whole-brain grey matter mask has 13312 voxels and

analysis of the ICA results showed that clusters with more than

5000 voxels are too large to be considered as a single coherent

RFN and should be refined further. Therefore, we choose 5000 as

the ultimate upper limit for a cluster to be considered as an

independent RFN. However, it should be pointed out that most of

the extracted RFNs were much smaller (see Table 2). By lowering

the upper limit, large clusters can be further analyzed with

additional iterations to study the hierarchical structures within.

This point is further demonstrated by Figure S2 and Appendix C

in Supporting Information S1.

Cordes et al. used previously a CC threshold of 0.3 for voxel-

based hierarchical clustering [7] and the same threshold was opted

here for the individual dataset. Systematically changing the CC

threshold showed that increasing the threshold above 0.3 resulted

in the loss of robustness of the algorithm. A threshold of CC$0.4

resulted in only about 0.1% of the values remained.

Regression removal of the global signal was deliberately omitted

in the preprocessing of the data, as it is known to introduce

substantial negative correlations into the data [12] and lead to

controversial interpretation of the resulted RFNs [13]. Without

Figure 6. Intra-cluster connections of the clusters. Scatter plot of the normalized intra-cluster connections (the ratio between the number of
connections with CC$0.3 and the number of possible connections) as a function of the cluster size. Locally weighted scatterplot smoothing (LOESS)
regression analysis (dashed curve) shows a distinct change in trends in the data. To emphasize this change, linear regression (shown in blue) was
used to extrapolate the initial distinct trend of the LOESS curve. Linear regression occupied 63 of the smallest clusters (shown in blue crosses) and
intersects the x-axis at 50.02. This observation was used to determine the minimum cluster size threshold.
doi:10.1371/journal.pone.0076315.g006

Figure 7. Unilateral networks from ICA analysis. Symmetrical one-sided networks found amongst ICA results. Both in their entirety cannot be
obtained through hierarchical clustering due to the spatial overlap between them.
doi:10.1371/journal.pone.0076315.g007
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connectivity and measured the number of connections a voxel

have with other voxels in a cluster. As shown in Fig. 6, for clusters

with less than 50 voxels, the normalized number of connections

decreases with the cluster size, while the larger clusters have the

opposite trend. Therefore, we choose 50 as the lower limit for

clusters to be considered as potential RFNs.

The whole-brain grey matter mask has 13312 voxels and

analysis of the ICA results showed that clusters with more than

5000 voxels are too large to be considered as a single coherent

RFN and should be refined further. Therefore, we choose 5000 as

the ultimate upper limit for a cluster to be considered as an

independent RFN. However, it should be pointed out that most of

the extracted RFNs were much smaller (see Table 2). By lowering

the upper limit, large clusters can be further analyzed with

additional iterations to study the hierarchical structures within.

This point is further demonstrated by Figure S2 and Appendix C

in Supporting Information S1.

Cordes et al. used previously a CC threshold of 0.3 for voxel-

based hierarchical clustering [7] and the same threshold was opted

here for the individual dataset. Systematically changing the CC

threshold showed that increasing the threshold above 0.3 resulted

in the loss of robustness of the algorithm. A threshold of CC$0.4

resulted in only about 0.1% of the values remained.

Regression removal of the global signal was deliberately omitted

in the preprocessing of the data, as it is known to introduce

substantial negative correlations into the data [12] and lead to

controversial interpretation of the resulted RFNs [13]. Without

Figure 6. Intra-cluster connections of the clusters. Scatter plot of the normalized intra-cluster connections (the ratio between the number of
connections with CC$0.3 and the number of possible connections) as a function of the cluster size. Locally weighted scatterplot smoothing (LOESS)
regression analysis (dashed curve) shows a distinct change in trends in the data. To emphasize this change, linear regression (shown in blue) was
used to extrapolate the initial distinct trend of the LOESS curve. Linear regression occupied 63 of the smallest clusters (shown in blue crosses) and
intersects the x-axis at 50.02. This observation was used to determine the minimum cluster size threshold.
doi:10.1371/journal.pone.0076315.g006

Figure 7. Unilateral networks from ICA analysis. Symmetrical one-sided networks found amongst ICA results. Both in their entirety cannot be
obtained through hierarchical clustering due to the spatial overlap between them.
doi:10.1371/journal.pone.0076315.g007
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global signal removal, in the averaged CC matrix there are only

0.3% negative values with mean {0:03+0:01. Hence, without

the removal of the global signal the vast majority of the negative

CC values are too small to be considered statistically significant.

Comparison between hierarchical clustering and ICA-
based methods

The implemented hierarchical clustering is a deterministic

algorithm and the final result is independent of the initial seed

point. Its non-fuzziness implies that each voxel is exclusively

assigned to a single cluster. Therefore, there is no spatial overlap

among the clusters identified by the proposed framework. For

example, the two unilateral frontal-parietal networks found with

ICA [14] (Fig. 7) are not detectable in their entireties with the

proposed hierarchical clustering method, because these two

unilateral frontal-parietal networks have an overlapping component

in the medial frontal cortex. With hierarchical clustering, detecting

one will exclude the other from being detected in its entirety.

The computation involved in hierarchical clustering does not

scale up well with the number of observations. Optimal

agglomerative algorithms exist for single (SLINK [15]) and

complete-linkage (CLINK [16]) scale at O(n2). Average-linkage

algorithms such as the one used here scales cubically. Average-

linkage tends to join clusters with small variances and is slightly

biased toward producing clusters with the same variance because it

considers all members in the cluster rather than just a single point.

Hence, average-linkage tends to be less influenced by extreme

values than other methods, despite of the fact that hierarchical

clustering is overall very sensitive to outliers.

The used scheme may have not extracted all meaningful clusters

from the data, because only a few numbers of cuts are applied to

the dendrograms. For example, the DMN was not found in its

entirety at the specified cut-levels discussed above. Through

exhaustive searching, the whole DMN (Fig. 8) was found amongst

clusters at the cut level from the dendrogram of the second

iteration.

The DMN result illustrates once again that the hierarchical

clustering approach has its inherent strength to reveal the

hierarchy structure within a functional connectivity network. As

shown in Fig. 3, the DMN in its entirety at cut level k = 18 (Fig. 8)

was split into the frontal- (Fig. 3M) and parietal sub-networks

(Fig. 3O) down in the dendrogram at cut level k = 32 from the

large cluster. It is known that the DMN is composed of the

prefrontal and parietal sub-units [17]. The medial prefrontal sub-

network is responsible for executive functions and the parietal sub-

network is responsible for sensory-related responses.

Conclusion

With the developed framework we successfully have extracted

gray matter clusters with striking similarities to RFNs that are well

documented in the literature using different analysis methods. The

obtained results further confirm the notion that brain at resting-

state is highly engaged in spontaneous synchronous activity within

the various intrinsic functional networks. The present study

demonstrates also that hierarchical clustering might be a very

useful tool for analysis of whole-brain resting-state fMRI data at a

voxel-level. This approach is model free and does not require any

prior assumption about the number and location of the clusters.

Furthermore, it can be used to reveal directly the hierarchical

structures within the functional connectivity networks.

Supporting Information

Figure S1 Inconsistency coefficients of dendrogram.
Plot of inconsistency coefficients of the full dendrogram. The

nodes are sorted from lowest to highest distance in the

dendrogram. The coefficients fluctuate sporadically and no

general pattern can be detected for determining dendrogram cut

level.

(TIF)

Figure S2 Sub-networks of visual system. Clustering

results from an additional iteration with 8-cluster split of the

visual network (Fig. 3R) extracted from the 2nd iteration. The

results illustrate the potential for using the proposed framework to

study the hierarchical structures within functional connectivity

networks. As shown, the visual network was split into a sub-

network containing the primary and secondary visual systems (A),

the lingual gyrus (B) and inferior temporal gyrus (C). It should be

possible to extract the full hierarchical structure tree of the visual

system by further analysis of the larger sub-network (A).

(TIF)

Supporting Information S1 Appendices A, B, and C.
(DOC)

Figure 8. The default mode network. The default mode network in its entirety found at cut number k = 18 from the first iteration. This cluster was
found through exhaustive search over all cut numbers.
doi:10.1371/journal.pone.0076315.g008
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global signal removal, in the averaged CC matrix there are only

0.3% negative values with mean {0:03+0:01. Hence, without

the removal of the global signal the vast majority of the negative

CC values are too small to be considered statistically significant.

Comparison between hierarchical clustering and ICA-
based methods

The implemented hierarchical clustering is a deterministic

algorithm and the final result is independent of the initial seed

point. Its non-fuzziness implies that each voxel is exclusively

assigned to a single cluster. Therefore, there is no spatial overlap

among the clusters identified by the proposed framework. For

example, the two unilateral frontal-parietal networks found with

ICA [14] (Fig. 7) are not detectable in their entireties with the

proposed hierarchical clustering method, because these two

unilateral frontal-parietal networks have an overlapping component

in the medial frontal cortex. With hierarchical clustering, detecting

one will exclude the other from being detected in its entirety.

The computation involved in hierarchical clustering does not

scale up well with the number of observations. Optimal

agglomerative algorithms exist for single (SLINK [15]) and

complete-linkage (CLINK [16]) scale at O(n2). Average-linkage

algorithms such as the one used here scales cubically. Average-

linkage tends to join clusters with small variances and is slightly

biased toward producing clusters with the same variance because it

considers all members in the cluster rather than just a single point.

Hence, average-linkage tends to be less influenced by extreme

values than other methods, despite of the fact that hierarchical

clustering is overall very sensitive to outliers.

The used scheme may have not extracted all meaningful clusters

from the data, because only a few numbers of cuts are applied to

the dendrograms. For example, the DMN was not found in its

entirety at the specified cut-levels discussed above. Through

exhaustive searching, the whole DMN (Fig. 8) was found amongst

clusters at the cut level from the dendrogram of the second

iteration.

The DMN result illustrates once again that the hierarchical

clustering approach has its inherent strength to reveal the

hierarchy structure within a functional connectivity network. As

shown in Fig. 3, the DMN in its entirety at cut level k = 18 (Fig. 8)

was split into the frontal- (Fig. 3M) and parietal sub-networks

(Fig. 3O) down in the dendrogram at cut level k = 32 from the

large cluster. It is known that the DMN is composed of the

prefrontal and parietal sub-units [17]. The medial prefrontal sub-

network is responsible for executive functions and the parietal sub-

network is responsible for sensory-related responses.

Conclusion

With the developed framework we successfully have extracted

gray matter clusters with striking similarities to RFNs that are well

documented in the literature using different analysis methods. The

obtained results further confirm the notion that brain at resting-

state is highly engaged in spontaneous synchronous activity within

the various intrinsic functional networks. The present study

demonstrates also that hierarchical clustering might be a very

useful tool for analysis of whole-brain resting-state fMRI data at a

voxel-level. This approach is model free and does not require any

prior assumption about the number and location of the clusters.

Furthermore, it can be used to reveal directly the hierarchical

structures within the functional connectivity networks.

Supporting Information

Figure S1 Inconsistency coefficients of dendrogram.
Plot of inconsistency coefficients of the full dendrogram. The
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dendrogram. The coefficients fluctuate sporadically and no

general pattern can be detected for determining dendrogram cut

level.
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Figure S2 Sub-networks of visual system. Clustering

results from an additional iteration with 8-cluster split of the

visual network (Fig. 3R) extracted from the 2nd iteration. The

results illustrate the potential for using the proposed framework to

study the hierarchical structures within functional connectivity

networks. As shown, the visual network was split into a sub-

network containing the primary and secondary visual systems (A),

the lingual gyrus (B) and inferior temporal gyrus (C). It should be

possible to extract the full hierarchical structure tree of the visual

system by further analysis of the larger sub-network (A).
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Different machine learning algorithms have recently been used for assisting automated

classification of independent component analysis (ICA) results from resting-state fMRI

data. The success of this approach relies on identification of artifact components and

meaningful functional networks. A limiting factor of ICA is the uncertainty of the number

of independent components (NIC). We aim to develop a framework based on support

vector machines (SVM) and optimized feature-selection for automated classification of

independent components (ICs) and use the framework to investigate the effects of input

NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18

features were devised by mimicking the empirical criteria for manual evaluation. The five

most significant (p < 0.01) features were identified by general linear modeling and used to

generate a classification model for the framework. This feature-optimized classification of

ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA

results. The classification results obtained using FOCIS and previously published FSL-FIX

were compared against manually evaluated results. On average the false negative rate

in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%,

respectively. The number of artifact and functional network components increased almost

linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC

affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct

splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with

increasing NIC are individually specific irrespective whether the component is a potential

resting-state functional network or an artifact component. Using FOCIS, we investigated

experimentally the ICA dimensionality of resting-state fMRI datasets and found that the

input NIC can critically affect the ICA results of resting-state fMRI data.

Keywords: magnetic resonance imaging, functional neuroimaging, independent component analysis, pattern

classification, machine learning, signal processing, image processing

Introduction

Independent component analysis (ICA) is a data-driven, unsupervised analysis method for
extracting resting-state functional connectivity networks (RFNs) (Calhoun et al., 2001; Beckmann
et al., 2005; Kiviniemi et al., 2009; Schopf et al., 2010). Although ICA has been widely used for
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Introduction

Independent component analysis (ICA) is a data-driven, unsupervised analysis method for
extracting resting-state functional connectivity networks (RFNs) (Calhoun et al., 2001; Beckmann
et al., 2005; Kiviniemi et al., 2009; Schopf et al., 2010). Although ICA has been widely used for
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TABLE 1 | Summary of previous studies on automated classification of ICA results.

Reference Algorithm Features Applicability Performance

Perlbarg et al., 2007 Stepwise regression Physiological noise, movement

parameters

Individual Mean sensitivity 0.87

Sui et al., 2009 Adaptive threshold Spatial features, templates Group, task-based fMRI Mean accuracy 0.91

Douglas et al., 2011 Random Forest, AdaBoost, Naïve

Bayes, J48 Decision Trere, K*, SVM

Unknown Individual, task-based

fMRI

Accuracy rates 0.92, 0.91, 0.89,

0.87, 0.86, 0.84 respectively

Kundu et al., 2012 Multiple regression TE-dependency, R2* Group and Individual,

Multi-Echo EPI

Effective at detecting motion and

pulsation artifacts. Denoised

datasets show higher t-values in

their connectivity maps.

Bhaganagarapu et al., 2013 k-means clustering 4 features, spatial and

temporal

Group and Individual Accuracy 0.997; Sochat et al.,

2014 reports (Individual)

Sensitivity 0.52, Specificity 0.89,

(group) Sensitivity 0.42,

Specificity 0.91,

Xu et al., 2014 Decision Tree 4 features, Spatial task-based and

resting-state fMRI with

PET

Sensitivity 0.991, Specificity 1

Salimi-Khorshidi et al., 2014 SVM >180 features Individual Accuracy 0.98 (multi-band EPI),

0.95 (standard EPI)

Sochat et al., 2014 Logistic Regression 246 features, spatial and

temporal

Group and Individual (Individual) Sensitivity 0.91,

Specificity 0.91, (Group)

Sensitivity 0.91, Specificity 0.81

Current study SVM 5 features, spatial and

temporal

Group and Individual (Individual) Accuracy 0.91;

(Group) Accuracy 0.99

the analysis of resting-state fMRI data, there are still three
inter-related issues that needs to be addressed: (1) The lack
of gold standard or generally accepted RFN template; (2) the
influence of the input number of independent components
(NIC) or dimensionality on the ICA results; (3) the removal
of artifact contaminated components. Manual classification of
meaningful RFNs from the ICA results is currently a tedious
but necessary step when conducting ICA of resting-state fMRI
data, because only some of the independent components
(ICs) represent meaningful RFNs associated with spontaneous
neuronal activities, while other ICs reflect the effects of artifact
contamination due to head motion, other physiological activities,
and instrument imperfection. The manual evaluation of ICA

Abbreviations: ICA, Independent Component Analysis; NIC, Number of

Independent Components; SVM, Support Vector Machines; IC, Independent

Component; FOCIS, Feature Optimized Classification of Independent

components with SVM; (fsl) FIX, FMRIB’s ICA-based X-noiseifier; RFN,

Resting-state Functional Networks; CSF, Cerebral Spinal Fluid; MDL, Minimum

Description Length; PPCA, Probabilistic Principle Component Analysis; AIC,

Akaike Infomormation Criteria; FWHM, Full Width at Half Maximum; DMN,

Default-Mode Network; Class RFN, Classification class of Potential Resting-state

Functional Networks; Class ART, Classification class of artefacts and otherwise

components of non-interest; RBF, Radial Basis Function (kernel); NRFN, Number

of members of class RFN; NART, Number of members of class ART; CISOTA,

Change Index of Spatial Overlap and Temporal Association.

results usually rely on visual inspection of the spatial patterns
and their corresponding time courses of the of ICs (Bartels and
Zeki, 2005). As summarized recently by Allen et al. (2011), the
empirical criteria to select RFNs from ICs are based on the
expectations that RFNs should exhibit peak activations in gray
matter, low spatial overlap with known vascular, ventricular,
motion, and susceptibility artifacts, and dominated by low
frequency fluctuations below 0.08Hz (Cordes et al., 2000). This
way of manually selecting a subset of ICs as RFNs is not only
biased, but also cumbersome, particularly when NIC is relatively
large.

As summarized in Table 1, earlier studies aimed to develop
automated classification of ICA results relied on relatively simple
metrics from the time courses and spatial template matching.
Perlbarg et al. (2007) used a step-wise regression approach
and features based on the spatial and temporal patterns of
the physiological noise to group ICs into noise and signal.
Calhoun et al. (2005) utilized a brain atlas to sort ICs, which
requires strong a priori knowledge on the spatial patterns of
the activation. Sui et al. (2009) employed spatial criterion to
automatically classify ICs. Their method relied on generating
accurate cerebrospinal fluid (CSF) and graymatter masks. Kundu
et al. (2012) conducted classification using the TE dependence of
ICs, which seemed to be robust but requires the acquisition of
multi-echo fMRI data.
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ICs, which seemed to be robust but requires the acquisition of
multi-echo fMRI data.
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TABLE 2 | Acquisition parameters for seven the resting-state fMRI datasets and subject demographic information.

Dataset Source Male/Female Age Time-frames Slice thickness Slices TR FOV Matrix size

0 Our own 40/46 21–84 300 3.6 32 2 220 64× 64

1 TRT[1] 15/11 13–29 197 3 34 2 192 64× 64

2 1636[2] 13/15 23–44 195 4 34 2.3 192 64× 64

3 1624[2] 16/21 20–42 195 4 47 2.3 192 64× 64

4 1600[2] 8/15 20–40 123 3 39 2.5 256 96× 96

5 2085[2] 10/15 22–49 197 3 36 2 192 64× 64

6 1616[2] 12/12 20–71 115 4 32 2 220 64× 64

[1] http://www.nitrc.org/projects/nyu_trt/

[2] https://www.nitrc.org/frs/downloadlink.php/<Datasource> (where <Datasource> is the number in the Source column where the footnote is referenced).

TABLE 3 | Results of explanatory power test for the five most significant

(p < 0.01) features.

Coefficients t-value p-value

Positive t-value with gray-matter overlap 6.23 9.97e-07

Peak voxel location in gray matter 5.79 3.23e-06

Frequency ratio of IC time course 5.14 1.90e-05

1-lag autocorrelation of IC time course 3.60 0.12e-03

Cluster bounding box to voxel count ratio 3.38 0.21e-03

In a number of more recent studies (see Table 1), automatic
techniques based on more sophisticated machine learning
algorithms has been applied to assist in grouping ICs into
artifacts and potential RFNs. Douglas et al. (2011) compared
the classification performances of six different machine learning
algorithms ranging from K-star to support vector machine
(SVM) using time course features. Xu et al. (2014) attempted to
address themechanistic motive and generalizability of automated
classification of ICA results by incorporating information from
headmask, auxiliary physiological recordings and PET activation
results. The FIX plug-in (Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014) for FSL package achieved high accuracy classification
of single-subject ICA results by employing ensemble learning
based on multi-level classifiers and a large number of features.
Sochat et al. (2014) used even a more comprehensive pool of
temporal and spatial features (up to 246) to perform automated
classification of ICs but attained lower accuracy than FSL-FIX.
On the other hand, Bhaganagarapu et al. (2013) accomplished
robust classification of ICA results for both group and single-
subject data using a method based on k-means clustering of
four features associated with the smoothness, edge activity,
and temporal frequencies of the ICs. Overall, the progress in
improving the accuracy of the automated classification of ICs
has been quite promising. It becomes feasible to test automated
classification for systematic studies involving a large of ICs.

ICA results for resting-state fMRI are sensitive to the specified
NIC or the dimensionality. Neither the true numbers of RFNs
in the data nor the degree of artifact contamination is known a
priori for a given resting-state fMRI dataset. The effects of input
NIC on ICA results can be systematically studied by evaluating
the number of RFNs as a function of the input number of
components in combination with tracking the changes in the

specific ICs (Abou Elseoud et al., 2010, 2011; Elseoud et al.,
2011). Different methods, such as, AIC, Minimum description
length (MDL), and probabilistic principle component analysis
(PPCA) have been proposed to model the noise characteristics
and estimate intrinsic dimensionality of resting state fMRI
data (Cordes and Nandy, 2006). However, uncorrelated noise
models like Akaike information criterion (AIC), MDL, and
PPCA tend to over-estimate the dimensionality for fMRI data
(Li et al., 2007; Xie et al., 2009). In practice, the numbers
of ICs used in different studies vary widely, which makes it
difficult to directly compare the RFN results from the different
studies.

The purpose of this study is two-fold: (1) Develop a
robust tracking and binary sorting framework based on feature
optimized classification of ICs with SVM (FOCIS) techniques
to reduce some of the limitations overviewed above; (2) Use
the developed method to investigate how the extracted RFNs
are influenced by the selection of NIC. As discussed above,
optimal feature selection is not only important for improving
computation efficiency, but also very critical for improving
classification accuracy and general applicability through reducing
model complexity which makes it less likely to over-fit.
We carefully selected relatively few features based on their
explanation power (p < 0.01) to maximize the AIC to avoid
over-determination. This was done to maximize the general
applicability of FOCIS in cross-dataset classification. The focus of
our study was the classification of group ICA results. The manual
and automated classifications of the group ICA results were
carried out after t-score and cluster size filtering were conducted
to the one-sampled t-score map to ensure a statistical significance
p > 0.01.

We tested the FOCIS framework on a dataset acquired by
us and 6 other datasets acquired at different sites, which are
openly accessible. The study included also a formal performance
evaluation through direct comparison with the published FSL-
FIX package. Another important aspect of our study is to use
the developed framework to investigate systematically how the
selection of NIC affects the ICA results. Our results indicate that
the ICA dimensionality is far from a resolved issue. Therefore, we
also implemented a module in the FOCIS framework to facilitate
automatic tracking of a given IC component as a function of NIC.
This enabled us to study how a given IC component changes with
increasing NIC.
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FIGURE 1 | Pipeline schematic of FOCIS framework.

Materials and Methods

Ethics Statement
The Central Ethical Review Board in Stockholm Province,
Sweden approved the ethical permission application for this
study. The study permission included the consent form used
to provide information and obtain consent. All participants
provided informed consent by voluntary signature.

Resting-State fMRI Data
Seven resting-state fMRI datasets from normal volunteers were
used for the development and validation of the framework.
We acquired one dataset ourselves by using a 3T whole-body
clinical MRI scanner (TIM Trio, Siemens Healthcare, Erlangen,
Germany) with a 2D gradient-recalled echo echo-planar imaging
technique. The other 6 datasets were downloaded from an open-
access database (https://www.nitrc.org/frs/?group_id=296).
More details of the data acquisition parameters and the
demographics of the participants are summarized in Table 2.

Preprocessing
The resting-state fMRI datasets underwent the same
preprocessing procedure, which were performed with AFNI
(http://afni.nimh.nih.gov/afni) and FSL (http://www.fmrib.ox.ac.
uk/fsl) programs with a bash wrapper shell (Wang and Li, 2013).
The first 10 timeframes in each data set were removed to ensure
signal steady state. After temporal de-spiking, six-parameter
rigid body image registration was performed for motion
correction. The average volume for each motion-corrected
time series was used to generate a brain mask to minimize the
inclusion of the extra-cerebral tissues. Spatial normalization
to the standard MNI template was performed using a 12-
parameter affine transformation and mutual-information cost
function. During the spatial normalization the data was also
resampled to isotropic resolution using a Gaussian kernel with

FIGURE 2 | Visually inspected ICs in feature space visualized using

Andrew’s curves. Selected feature space consists of only the significant

(p < 0.01) features. Red curves represent class RFN and black curves

represent class ART.

FWHM = 4mm. Nuisance signal removal was achieved by
voxel-wise regression using the 14 regressors based on the
motion correction parameters, average signal of the ventricles
and their 1st order derivatives. After baseline trend removal up
to the third order polynomial, effective band-pass filtering was
performed using low-pass filtering at 0.08Hz. Local Gaussian
smoothing up to FWHM = 6mm was performed using an
eroded gray matter mask (Jo et al., 2010).

Independent Component Analysis
The lowest value that we can specify for NIC is 2 in
ICA of resting-state fMRI data. With adequate preprocessing,
ICA at NIC = 2 produces typically two large networks:
one corresponding to the motor-sensory network combined
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with the visual network and the other corresponding to a
cognitive functional network somewhat resembles the default
mode network (DMN). The visual network usually become the
next split-off at NIC = 3. With NIC > 3, the precise ICA
representation of a resting-state fMRI dataset depends on the
noise characteristics of the dataset. Defining a basic set of RFNs
and artifacts is an extremely difficult and complex task beyond
the scope of this investigation (Wig et al., 2011, 2014; Schultz
et al., 2014). However, consensus from multiple studies suggests
that there is a relatively stable set of RFNs that provide an
appropriate description of the functional connectivity hierarchy
at the level of major brain networks. For example, the 10
consistent across-subject RFNs from Damoiseaux et al. (2006),
the 10 task and resting-state matched networks from Smith
et al. (2009), and the 7-network parcellation from Yeo et al.
(2011). Assuming a need for at least twice as many components
as the 10 potential RFNs to allow for the adequate modeling
of both RFNs and artifact components associated with noise
and physiological sources, Schultz et al. (2014) created a 20
component ICA template and used it for template-based ICA of
resting-state fMRI data. Along similar line of thinking, we assume
that it is necessary to use at least a NIC= 20 to extract a complete
set of RFNs with group ICA from a resting-state fMRI dataset
contaminated with artifacts and focus our investigation of ICA
dimensionality on NIC = 20. Since the results from previous
ICA of fMRI data with NIC up to 90 indicated that performing
ICA in an unnecessarily high dimensional subspace decreases the
stability of the algorithm and degrades the integrity of the ICA
representation of functional networks in the brain, we choose
NIC= 100 as the upper limit in our investigation.

FIGURE 3 | Visualizing the FOCIS classification model as a dividing

hyper-plane in 3D feature space projected onto its 3 dimensions with

greatest variances.

Group ICA was performed on the resting-state fMRI datasets
0–5 using the standalonemelodic program in FSL package (Smith
et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012). The
analysis option of multi-session temporal concatenation was
selected to extract common spatial patterns without assuming
the consistent temporal response pattern across the subjects
(Beckmann and Smith, 2004). By defaultmelodic can estimate the
dimension of the input data by performing a Bayesian analysis
and use it for ICA. The estimated dimensions for the 7 datasets
varied from 21 to 38. To study how the ICA results are influenced
by the specification of input NICand test the stability of the
SVM-based framework, besides ICA at the estimated NIC, 80
additional group ICA runs were also carried out for the resting-
state fMRI dataset 1–5 by systematically increasing NIC from
20 to 100. Single subject ICA was also performed for the first 5
subjects included in the dataset 6 with NIC = 30. When NIC
was explicitly specified as an input to melodic, the estimated
default NIC by the Bayesian analysis should not affect the ICA
results.

Before automated classification of the ICs with FOCIS and
FSL-FIX, the one-sampled t-test maps for the ICs from the group
ICA were first assessed by setting an uncorrected voxel-wise
threshold at p < 0.001 and the minimum voxel cluster size of
20 contiguous voxels. The probability of random field of noise
producing a cluster of size ≥20 was estimated at p < 0.01. This
was assessed by Monte-Carlo simulation result obtained from
the AFNI program, AlphaSim, with the following main input
parameters: FWHM = 6.2mm estimated average by running
3dFWHM on the input data to ICA, voxel-wise threshold value
p < 0.001, and 5× 105 iterations.

Manual Evaluation of IC Maps
Group ICA results for the dataset 1 at NIC = 50 was chosen as
the training input for both FOCIS and FSL-FIX, the ICA results
for datasets 1–6 at NIC = 30, and dataset 0 at NIC = 70 were
all manually classified for cross-validation. In addition, for self-
verification purpose, the group ICA results for dataset 1 at NIC=

70 and 90 were also manually classified. The results of manual
classification were used to test the precision, accuracy, sensitivity,
and specificity of the classification model. The ICA results were

TABLE 4 | Summary of the automated (FOCIS and FLS-FIX) and manual

classification results for the group ICA results.

FOCIS Manual Evaluation FSL-FIX

Dataset NIC NART NRFN NART NRFN NART NRFN

0 70 29 41 30 40 30 40

30 13 17 13 17 13 17

1 50 25 25 25 25 25 25

70 39 31 39 31 37 33

90 56 34 56 34 51 39

2 30 14 16 15 15 12 18

3 30 15 15 16 14 16 14

4 30 20 10 20 10 17 13

5 30 16 14 17 13 14 16
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TABLE 5 | Precision, accuracy, specificity, and sensitivity of the automatic classifications based on FOCIS and FSL-fix frameworks for group ICA results.

Dataset NIC Precision Sensitivity Specificity Accuracy

FOCIS FLS-FIX FOCIS FLS-FIX FOCIS FLS-FIX FOCIS FLS-FIX

0 70 0.97 1.00 1.00 1.00 0.98 1.00 0.99 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

70 1.00 0.87 1.00 1.00 1.00 0.86 1.00 0.93

90 1.00 0.89 1.00 1.00 1.00 0.83 1.00 0.93

2 30 0.94 0.80 1.00 1.00 0.93 0.83 0.97 0.90

3 30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 30 1.00 0.85 1.00 1.00 1.00 0.77 1.00 0.90

5 30 0.94 0.82 1.00 1.00 0.93 0.81 0.97 0.90

Mean 0.98 0.92 1.00 1.00 0.98 0.90 0.99 0.95

TABLE 6 | Precision, accuracy, specificity and sensitivity of the automatic

classification with FOCIS for single subject ICA results.

Subject NIC Precision Sensitivity Specificity Accuracy

1 30 0.93 1.00 0.94 0.97

2 30 0.69 0.90 0.80 0.83

3 30 0.78 0.78 0.90 0.87

4 30 1.00 1.00 1.00 1.00

5 30 0.85 0.92 0.89 0.90

Mean 0.85 0.92 0.91 0.91

manually examined by at least two experienced neuroscientist
raters and were classified into two broad classes: Potential RFN
(class RFN) or artifacts (class ART). The classification criteria for
the manual evaluation can be approximately summarized as the
following:

(1) A potential RFN has to fulfill the voxel-wise threshold p <

0.001 and the minimum cluster size >20.
(2) A potential RFN exhibits peak activation in cortical gray-

matter.
(3) A potential RFN possesses little spatial overlap with known

vascular, ventricular, motion, and susceptibility artifacts.
(4) The associated time course for a potential RFN should reflect

the expected low frequency spontaneous fluctuations with
adequate dynamic range.

(5) The geometry of an involved region of interests in a potential
RFN is reasonably compact and smooth instead of extreme
shape.

The overall classification scheme for class ART was more
confined by using high cost for it to ensure that the potential
RFNs are not discarded as artifacts. Whenever there exists
uncertainty or inconsistency between the evaluation results from
two reviewers, the involved ICs were classified into RFN class.
This may increase the false negative rate in the classification
results. However, this is appropriate given our goal of not
discarding potential RFNs.

Feature Selection
A total of 18 initial features were devised to reflect the criteria
used for visual inspection. These features include measures
for spatial patterns, time-course characteristics, and spectral
information. The descriptions for the initially devised features
are provided in Appendix A (Supplementary Material) in
more details including the relevant mathematical definitions.
Calculations of the features were implemented in R in
combination with AFNI programs, which are detailed in
Appendix B (Supplementary Material). All features were
conditioned prior to use in feature selection, training, and
classification. This involves mean-centering (removal of mean)
and scaling (division by standard deviation). All features were
tested for explanatory power on the training dataset using a
general linear model with a binomial variance function and
a logit link function. We used F-score to select the features
with high significant explanatory power (p < 0.01) out of
the initial 18-item feature space. The procedure is summarized
below:

(1) Calculate F-score of each feature.
(2) Manually pick a relative low F-score threshold to drop

features with F-score below the threshold.
(3) Randomly split the training data into training and validation

subsets.
(4) Predict the validation subset using SVM procedure based on

the model built with the training subset and high F-score
features.

(5) Repeat the steps 4 multiple times to achieve a steady average
validation error.

(6) Repeat the steps 2–6 by incrementing F-score thresholds to
drop more features with relatively low F-scores until the
validation accuracy decrease significantly.

As shown in Table 3, with the group ICA training datasets
we settled down on a model with only 5 most significant
features (p < 0.01). A model with fewer parameters is
less complex and more likely to be biased. On the other
hand, a simpler classification model with limited Vapnik–
Chervonenkis dimension has higher computational efficiency
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and lower risk of over-fitting. Optimal feature selection is,
therefore, very important for the construction of classification
model.

Construction of the Classification Model
A boundary-constraint SVM C-classification model was
constructed using the training datasets and the 5 most significant
features with p < 0.01. The boundary-constraint SVM

classification solves a variant of quadratic problem using
modified TRON optimization software (Lin and Moré, 1999;
Mangasarian and Musicant, 1999).The resulting feature space is
50 training points × 5 features. The binary classification model
uses a non-linear radial basis function kernel and 100 in cost.
This was chosen to penalize false positive rates more severely
than false negatives to avoid misclassification of potential RFNs
as artifacts.

FIGURE 4 | Number of RFNs and artifact components determined from automated and manual classifications as a function of NICfor dataset 1.

FIGURE 5 | Number of RFNs (A) and artifact components (B) determined from automated classification as a function of NIC for the datasets 1–5. The

lines indicate the least-square fittings of a linear function to the average data.
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The framework uses the R package kernlab (Karatzoglou
et al., 2007) for its SVM implementations. Kernlab‘s SVM
implementation is based on LIBSVM (Chang and Lin, 2011)
which is a popular implementation of SVM. To solve the
optimization problems encountered in the training of the

TABLE 7 | The linear least-square fitting results for NRFN and NART as a

function of NIC.

Dataset RFN ART

Ratio Correlation Adjusted R2 Ratio Correlation Adjusted R2

1 0.28 0.96 0.93 0.72 0.99 0.99

2 0.29 0.93 0.87 0.71 0.99 0.98

3 0.40 0.98 0.95 0.60 0.99 0.98

4 0.41 0.98 0.96 0.59 0.99 0.98

5 0.36 0.97 0.93 0.64 0.99 0.98

Mean 0.35 0.96 0.93 0.65 0.99 0.98

kernelized SVM, LIBSVM uses a minimal optimization
algorithm. Gaussian radial basis function (RBF) kernel is used as
a kernel function for non-linear SVM classification (in contrast
to the dot product for linear SVM). The kernel function between

TABLE 8 | The ranking and probability of the split ICs for the motor-cortex

functional network as a function of NIC.

NIC Original IC Split IC

Ranking Probability Ranking Probability

30 1 0.98

40 1 0.89

50 1 0.56 7 0.10

60 3 0.32 10 0.10

70 2 0.32 3 0.24

80 1 0.35 2 0.23

90 1 0.42 11 0.17

FIGURE 6 | The tracking results of dataset 1 for a typical RFN through similarity matching. The motor-sensory functional network was tracked at NIC =

20–100. The IC splits into two potential RFNs with high similarity to the original IC, when NIC = 50.
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two samples x and y is defined as:

k(x, y) = exp(σ ||x− y||22)

where σ is a free parameter. Optimal values of σ is shown to lie
between the 0.1 and 0.9 quantiles of the ||x-y||statistic (Caputo
et al., 2002) and any value is within these quantiles leads to
good performance (Karatzoglou et al., 2004). Therefore, the value
of σ was taken to be a random value within the 0.1 and 0.9
quantiles, which were estimated by using a random subsample of
the training dataset. The choices of parameters were confirmed
by hyper-parameter optimization through an exhaustive grid

searching in input space of the cost (C) and free parameter (σ)
within the boundary constraints C= [10, 1000] and σ= [0.1, 1.0]
with a grid size of 1C = 10 and 1σ = 0.1. Cross validation by
maximizing accuracy while retaining sensitivity to 1 was carried
out during self-verification with dataset 1, NIC = 30, 50, 70,
and 90. It was confirmed that the performance is maximized
and insensitive to the choice of σ within the predefined quantiles
0.1–0.9 and C within 100–210.

The workflow of the classification framework is illustrated
in Figure 1. The training module takes ICA results (IC spatial
map and IC time-course) as inputs to calculate the features. The
calculated feature values with the manual inspection results are

FIGURE 7 | The tracking results of dataset 4 for a typical RFN through similarity matching. The motor-sensory functional network was tracked at NIC =

20–100. The IC was split into two potential RFNs with high similarity to the original IC, when NIC = 30.
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then used to generate a SVM classification model. The classifier
module calculates the features from ICA results the same way as
the training module. But it uses the calculated features together
with the SVM classification model output from the training
module to classify the ICs.

Comparison Between the Automated and Manual
Classifications
We conducted direct comparison of the classification
performances between FOCIS and FSL-FIX by assuming
the manual evaluation result as the ground truth. For direct
comparison with FSL-FIX, we adapted the output results from
group ICA so that automated classification can be performed
using FSL-FIX, since FSL-fix was designed for single-session
ICA, some required input parameters for FSL-FIX need to be
compiled manually in order to use FSL-FIX for classification
of the group ICA results. These included the concatenated 4D
fMRI data for individual subject, the temporal mean of the 4D
fMRI data, concatenated motion parameters, and the group
average of transformation matrix. It should be pointed out

that the outputs of the group and single subject ICA can be
directly used for automated classification with FOCIS, because
it requires no additional input except for the IC time course
and spatial maps. The automated classification results from
both FOCIS and FSL-FIX were then compared with those from
manual evaluation. For a given IC, we verified if the automated
classification is consistent with the manual evaluation. We also
counted and compared the numbers of ICs in the RFN (NRFN)
and ART (NART) classes as determined by the automated and
manual classifications. The most relevant performance index for
automated classification here is the accuracy or the true negative
rate (the percentage of true artifact component detected), since
FOCIS was trained with heavy penalty on false positive rate.
When a mismatch appeared between the automated and manual
classification, the misclassified IC was further investigated to
identify potential causes of the misclassification.

The Effects of Input NIC on ICA Results
We analyzed the datasets 1–5 with group ICA using a wide range
of input NIC from 20 to 100. To understand how the ICA results

FIGURE 8 | The tracking results of dataset 4 for a typical RFN through similarity matching. The primary visual functional network was tracked at NIC =

20–90. The IC did not split in the entire investigated NIC range.
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are influenced by the selection of NIC, we investigated NRFN and
NART obtained from the automated and manual classifications as
a function of NIC. We also investigated how the contribution of
variance changed with NIC for some specific ICs. Furthermore,
we constructed a regression module in FOCIS so that it can
be used to track the changes of a given IC in a series of ICA
results obtained from the same fMRI dataset by analyzing it
with different NIC. The regression model was constructed using
an epsilon (ε) support vector regression algorithm. Similar to
SVM classification, the support vector regression algorithm only
uses a subset of the training data (Vapnik et al., 1997). The
cost function for building the model ignores any training data
that is close (within a threshold ε) to the model prediction
(Smola and Schölkopf, 2004). The regression model provides
class probabilities as output instead of class labels. To track a
specific IC in a series of ICA results, we constructed the model by
labeling the specific IC as class 1 and all other ICs as class 0 using
the ICA result with NIC = 30. When the SVM regression model
was applied to ICA results with a larger NIC, we used the model
to estimate class probabilities for all ICs. Then, we rank the ICs
according to their class probabilities (the level of similarity to the
specific IC). With the ranking, we can identify the corresponding
IC in the ICA results of different NIC that matches closest to the
given IC.

To quantify the changes in spatial patterns and the associated
time courses of a given IC as a function of NIC we introduce
a change index of spatial overlap and temporal association
(CISOTA) which is defined in the following equation:

CISOTA = 1/(spatial overlap× correlation coefficient of the IC

time course).

where the spatial overlap for a given IC is defined as the fraction
of overlap area relative to the original area of the spatial pattern.
We evaluated CISOTA for three typical RFNs (motor-sensory,
visual, and DMN) and three artifact components as function of
NIC. Furthermore, we also evaluated the cross-sectional changes
of all ICs whenNICwas incremented by 1 at different NIC values.

Results

Feature Selection
Amongst the 18 initially devised features, 5 are highly significant
(p < 0.01) as determined by the explanatory power test (see
Table 3). Themodel based on the subset of 5 parameters achieved
a low AIC of 3.71 compared to AIC = 17.03 for the full model
including 18 parameters. The relative AIC between the two
models isAICrel = exp

(

3.71−17.03
2

)

= 0.0013, which indicate that
the model based on the subset of 5 parameters is much likely to
minimize the information loss than the full model (Akaike, 1974).
To avoid over-fitting, therefore, we take no longer the full model
into further consideration.

As shown in Table 3, three of the significant features are
associated with the spatial patterns of IC maps, whereas the
other two features are related to the characteristics of IC time
courses. Figure 2 depicts all the manually evaluated ICs used for
training (dataset 1, NIC = 50) in the feature space of the five

most significant features. All ICs in feature space is visualized
as Andrews curves as a method to visualize high-dimensional
data (Andrews, 1972). Each IC’s data point in feature space x

= [x1,. . . ,x5] defines a curve through the function f (x, t) =

x1sin(t)+x2cos(t)+x3sin(2t)+x4cos(2t)+x5sin(3t). This function is
uniquely defined and plotted between −π and π. This formula
can also be regarded as the projection of the data point onto the
vector [sin(t), cos(t), sin(2t), cos(2t), sin(3t)].

Construction of the Classification Model
The SVM classification model constructed with the five most
significant features described above was trained with the training
dataset. The resultingmodel has 23 support vectors and the radial
kernel size σ = 0.38. Self-verification of the model resulted
in perfect classification with 100% in specificity and 100% in
sensitivity for both the training dataset. Figure 3 illustrates the
trained SVM model as a hyper-plane in a 3D projection of the
5D feature space. As illustrated in Figure 3, a hyper-plane of
maximum variance separates appropriately the two classes of ICs
in the training dataset.

Comparison Between the Automated and Manual
Classifications
The results from the automated and manual classifications
are summarized in Tables 4–6. On average the automated
classification based on FOCIS achieved zero false positive and
4/231 false negative rates in identifying artifact contaminated ICs
of the group ICA results, signifying a 98.27% overlap between
the FOCIS-based and human expert classifications in identifying
artifact contaminated ICs (see Table 4). The false negative rates
for FSL-FIX in identifying artifact contaminated ICs of the group
ICA results is 17/231, corresponding to 92.64% overlap with the
manual classification (see Table 4). As shown in Table 5, both
FOCIS and FSL-FIX achieved robust classifications of the group
ICA results. The performance of FOCIS in precision, accuracy
and specificity is slightly higher than FSL-FIX when compared
on the basis of using the identical training dataset of group ICA
for dataset 1 at NIC = 50. As shown in Table 5, the accuracy
of FOCIS in the automated classification of single subject ICA
results is 91%, which is not as robust as that for the group ICA
results.

The Effects of Input NIC on ICA Results
Figure 4 depicts the extracted NRFN and NART for the dataset 1
as a function of NIC. The results from both the automated (with
FOCIS) and manual classifications were shown. It is apparent
that both NRFN and NART increase with NIC, but the NART

grows at faster rate than NRFN, particularlyat higher NIC. This is
further demonstrated by the classification results for the datasets
1–5 summarized in Figure 5. For the group ICA results NRFN

and NART are overall linearly dependent on NIC and the linear
correlation coefficient is R = 0.93. As summarized in Table 7,
the average ratios for NRFN/NIC and NART/NICare 0.35 and 0.65,
respectively. On average, the number of artifact components is
about twice of that for RFNs.

The tracking results of dataset 1 as a function of NIC for
the motor-sensory are shown in Figure 6. For this dataset the
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of all ICs whenNICwas incremented by 1 at different NIC values.
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including 18 parameters. The relative AIC between the two
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= 0.0013, which indicate that
the model based on the subset of 5 parameters is much likely to
minimize the information loss than the full model (Akaike, 1974).
To avoid over-fitting, therefore, we take no longer the full model
into further consideration.

As shown in Table 3, three of the significant features are
associated with the spatial patterns of IC maps, whereas the
other two features are related to the characteristics of IC time
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dataset. The resultingmodel has 23 support vectors and the radial
kernel size σ = 0.38. Self-verification of the model resulted
in perfect classification with 100% in specificity and 100% in
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trained SVM model as a hyper-plane in a 3D projection of the
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of the group ICA results, signifying a 98.27% overlap between
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ICA results is 17/231, corresponding to 92.64% overlap with the
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FOCIS and FSL-FIX achieved robust classifications of the group
ICA results. The performance of FOCIS in precision, accuracy
and specificity is slightly higher than FSL-FIX when compared
on the basis of using the identical training dataset of group ICA
for dataset 1 at NIC = 50. As shown in Table 5, the accuracy
of FOCIS in the automated classification of single subject ICA
results is 91%, which is not as robust as that for the group ICA
results.

The Effects of Input NIC on ICA Results
Figure 4 depicts the extracted NRFN and NART for the dataset 1
as a function of NIC. The results from both the automated (with
FOCIS) and manual classifications were shown. It is apparent
that both NRFN and NART increase with NIC, but the NART

grows at faster rate than NRFN, particularlyat higher NIC. This is
further demonstrated by the classification results for the datasets
1–5 summarized in Figure 5. For the group ICA results NRFN

and NART are overall linearly dependent on NIC and the linear
correlation coefficient is R = 0.93. As summarized in Table 7,
the average ratios for NRFN/NIC and NART/NICare 0.35 and 0.65,
respectively. On average, the number of artifact components is
about twice of that for RFNs.

The tracking results of dataset 1 as a function of NIC for
the motor-sensory are shown in Figure 6. For this dataset the
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motor-sensory RFN splits into two ICs starting at NIC= 50.With
increasing NIC, the split ICs exhibit consistently high degrees
of similarity with the original IC at lower NICs as indicated
by the relatively small variations in the rank of matching with
the original IC (Table 8). The tracking results of dataset 4 as a
function of NIC for the motor-sensory, visual and DMN RFNs
are depicted in Figures 7–9, respectively. Similar to the tracking
results of dataset 1, the motor-sensory RFN was only split once at
NIC = 30 and the split-off ICs display little alterations over the
entire investigated NIC interval 20–100. The visual RFN (medial)
showed very little change over the entire range of NIC from
20 to 100, indicating that the primary visual system has very
strong intra-network association. The DMN was first split into
an anterior sub-network at NIC = 40. With further increase in
NIC, an inferior split-off was detected at NIC= 80.

FIGURE 9 | The tracking results of dataset 4 for a typical RFN through

similarity matching. The DMN was tracked at NIC = 20–100. An anterior

and inferior split-offs were detected at NIC = 40 and 80, respectively.

In addition to the qualitative change associated with the split
of a RFN at some specific NICs, with the increase of NIC there
exist also gradual and quantitative changes in a given RFN and
the trend of change can be quite specific for a given IC. This
is clearly illustrated by Figure 10 showing CISOTA as function
of NIC for 3 RFNs and artifacts. Irrespective to the categories
(RFN or ART), the change of a given IC can be quite steady as
for motion artifact component and primary visual network or
volatile as for the CSF artifact component and DMN. Figure 11
shows another important aspect of IC change with NIC. At
relatively low NIC = 33, incrementing NIC by 1 gives rise to
changes in a large number of ICs. When NIC > 40, incrementing
NIC by 1 results in changes in a few limited number of ICs.
The NIC effect on ICA results can be further appreciated by
examining the variance contribution of the ICs and the changes
in the associated time courses. As shown Figure 12, the variance
contribution from each IC is approximately an inverse function
of NICirrespective to whether the IC is a potential RFN or
artifact components. As indicated by the Pearson’s correlation
coefficient of the time courses for a given IC at different
NIC (Figures 12B,D), the input NIC produces more significant
impact on the time courses ICs when NIC is relatively small (e.g.,
NIC < 40).

Discussion

Classification Performance of FOCIS
When the model was trained by using a group ICA dataset and
with heavy penalty on false positive rate, FOCIS tends to slightly
over-estimate the number of potential RFNs and under-estimate
the number of artifact ICs, as indicated by the false negative
rate (4/231) in identifying artifact contaminated ICs. Compared
to FSL-FIX, the performance of FOCIS in the automated
classification of group ICA results is slightly improved in terms
of accuracy, precisions and specificity. However, its performance
in the classification of single subject data is somewhat poorer with

FIGURE 10 | Change index of spatial overlap and temporal association

(CISOTA) as function of NIC for three typical RFNs (top) and artifact

(bottom) components.
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changes in a large number of ICs. When NIC > 40, incrementing
NIC by 1 results in changes in a few limited number of ICs.
The NIC effect on ICA results can be further appreciated by
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of NICirrespective to whether the IC is a potential RFN or
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the number of artifact ICs, as indicated by the false negative
rate (4/231) in identifying artifact contaminated ICs. Compared
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FIGURE 11 | Cross-sectional plots of change index of spatial overlap and temporal association (CISOTA) for all ICs at different 6 NICs.

FIGURE 12 | The effect of NIC on the variance contribution of potential RFNs (A) and artifact components (C). The effect of NIC on the IC time courses for

potential RFNs (B) and artifact components (D).

an average accuracy of 91% (Table 5). As reported previously
(Griffanti et al., 2014), the true false negative rate for FSL-FIX was
95.1% in the classification of single subject data acquired from 3T
scanners with a comparable quality as that for the single subject
data studied here. It is noticeable that the previously reported
FSL-FIX result was based on training of multiple single-subject
datasets, whereas the performance of FOCIS reported here is
based on the training of a group ICA dataset (the dataset 1 at
NIC= 50). It is probably reasonable to attribute the performance
difference to the difference in training.

FSL-FIX employed a large number of features ranging from
spatial and temporal characteristics to motion correction and
image registration parameters, which is not only useful for
identifying rare type of artifacts, but also favorable for situation
with large within-class heterogeneity. This may partly explain
the good performance of FSL-FIX in the automated classification
of single subject ICA results. We cannot generalize that the

more features the better performance in classification. In a recent
study (Sochat et al., 2014) it was reported that as many as 246
features were employed to achieve a classification accuracy of
87%. Actually, we advocate the selection of features to optimize
their classification power, because it does not only help improve
the performance of the model but also enhances generalization
capability, learning efficiency and model interpretability.

A closer examination of the misclassified ICs may provide
some clues to account for the classification discrepancy between
FOCIS and FSL-FIX. The misclassified ICs summarized in
Table 4 are depicted in in Figure 13. It is apparent that the main
classification discrepancies between FOCIS and FSL-FIX lie in
the ICs with relatively simple and regular geometries such as a
single plane (e.g., most of ICs in the left column in Figure 13)
and ICs having large portion of overlap with the cerebellum, such
as most of the ICs in the middle column of Figure 13. As shown
in Table 2, one of the five selected features in FOCIS is the ratio
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data studied here. It is noticeable that the previously reported
FSL-FIX result was based on training of multiple single-subject
datasets, whereas the performance of FOCIS reported here is
based on the training of a group ICA dataset (the dataset 1 at
NIC= 50). It is probably reasonable to attribute the performance
difference to the difference in training.

FSL-FIX employed a large number of features ranging from
spatial and temporal characteristics to motion correction and
image registration parameters, which is not only useful for
identifying rare type of artifacts, but also favorable for situation
with large within-class heterogeneity. This may partly explain
the good performance of FSL-FIX in the automated classification
of single subject ICA results. We cannot generalize that the

more features the better performance in classification. In a recent
study (Sochat et al., 2014) it was reported that as many as 246
features were employed to achieve a classification accuracy of
87%. Actually, we advocate the selection of features to optimize
their classification power, because it does not only help improve
the performance of the model but also enhances generalization
capability, learning efficiency and model interpretability.

A closer examination of the misclassified ICs may provide
some clues to account for the classification discrepancy between
FOCIS and FSL-FIX. The misclassified ICs summarized in
Table 4 are depicted in in Figure 13. It is apparent that the main
classification discrepancies between FOCIS and FSL-FIX lie in
the ICs with relatively simple and regular geometries such as a
single plane (e.g., most of ICs in the left column in Figure 13)
and ICs having large portion of overlap with the cerebellum, such
as most of the ICs in the middle column of Figure 13. As shown
in Table 2, one of the five selected features in FOCIS is the ratio
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FIGURE 13 | The spatial patterns of all misclassified ICs summarized in Table 4.

of bounding box to voxel account, which is quite sensitive to
IC with simple and regular geometries. For simplicity, the tissue
templates used in FOCIS does not include cerebellum, it is no
surprising that FOCIS reject ICs with large cerebellum overlaps.

It is noteworthy to point out that the using the manually
classified ICs from two raters as the ground truth for training
is certainly a limitation of the study and can be problematic.
However, there is currently no good solution for it unless
simulated data are used.

Classification of Borderline ICs
If the results from manual classification are considered as
the ground truth, the misclassified ICs by FOCIS belong
to the category of false negatives. As shown in the right

column of Figure 13, all four ICs misclassified by FOCIS have
the characteristics of borderline cases. They may represent
meaningful RFN spatial patterns to some degree, but they are
contaminated by one or multiple sources of artifacts such as
susceptibility, motion, and vascular effects. The human raters
classified these ICs as artifact components during the manual
inspections due to the strong activities along the most superior
location, at the bilateral edges of the temporal lobe, and
smaller clusters in white matter and around the contour of
the brain, which are classics of motion artifacts. However, the
strong activities in the gray matter regions involving posterior
cingulate, hypothalamus and thalamus are probably of RFN
nature. Therefore, for the “misclassified” ICs, even the visually
inspected results may be a matter of dispute.
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The Effects of NIC Input on the ICA Results
As discussed above, ICA can only extract the number of
components defined a priori and the RSNs from ICA of resting-
state fMRI data are very sensitive to the specified NIC input. This
makes it difficult to compare ICA results of resting-state fMRI
from different studies. It can even be problematic to compare
group differences within the same study. Since the number of
ICs are determined both by the potential RFNs and artifacts
components, it less likely to find a ground truth common NIC
for the different datasets. Even if the samemodel order parameter
was used in the different studies, the obstacle could still remain,
because the data acquisition and structured noise may differ
substantially.

Different methods (Cordes and Nandy, 2006; Li et al., 2007;
Xie et al., 2009; Chen et al., 2010; Beckmann, 2012) have been
employed to improve the estimation of dimensionality. However,
the rationality of the applied criterion is still questionable,
because the estimates are typically dependent on SNR of the data
and preprocessing pipeline steps, but not directly related to the
neurophysiological properties. The use of a relatively low NIC
in the range of 20–30 has the risk to discard potentially useful
information, because the more complex RFNs are left aside as
mixtures of real independent constituents. On the hand, the use
of a large NIC can results in an excessive number of components
with dissociated sources. Furthermore, algorithmic variability of
ICA decomposition increases with NIC, we are left with a trade-
off to choose between high modularity versus reproducibility and
over-fitted ICs.

From the experimental point of view, there are nearly
proportional increases in both NRFN and NART with NIC for
most of the datasets except for dataset 1 (see Figure 4). Neither
the variation of NRFN and NART as a function of NIC, nor
the tracking the variance contribution of the ICs showed any
clear sign of reaching a steady state or transition point. For
dataset 1 there appears to be a clear upper limit for the number
of RFNs at NIC = 70 ± 10 beyond which only the number
of artifact ICs increases as one increases NIC (Figure 4). This
result is quite consistent with a previous report (Abou Elseoud
et al., 2010; Elseoud et al., 2011) on the effect of NIC selection
in group ICA. It was reported that NIC = 70 ± 10 offered a
more detailed evaluation of RSNs in spatial pattern, whereas
NIC > 100 produced a decrease in ICA repeatability, but no
gain in either volume or mean z-score results (Abou Elseoud
et al., 2010; Elseoud et al., 2011). It is apparent that we cannot
draw a general conclusion using the observations from a couple
of datasets. It is unlikely that we can find a ground truth
common NIC for the different datasets, because the number of
ICs are determined both by the potential RFNs and artifacts
components. From neuroscientific point of view, it is probably

more productive to try to find a set of RFN template common for
normal controls through ICA or other data-driven approaches.
Therefore, tracking the spatial and temporal changes of some
typical RFNs as a function of NIC can be very useful in gaining
insight into how the RFNs are affected by selected NIC and
deriving criterion for defining dimensionality of ICA in resting-
state fMRI.

Conclusion

We have described a new tool, FOCIS, for the automated
classification of artifact components in ICA results of resting-
state fMRI data. Based on training of a group ICA dataset,
FOCIS achieved on average 98 and 91% classification accuracy
on the group and single subject ICA datasets, respectively.
Therefore, FOCIS can be a very useful tool for assisting
automated classification of ICA results from resting-state fMRI.
The classification model employs the five most significant
features to catch relevant spatial and temporal characteristics
with most discriminative power to differentiate RFNs from
artifacts components. Once trained a minimum account of hand-
labeled data, FOCIS can be applied for automated classification
of both group and single subject ICA results from resting-state
fMRI datasets of different acquisition parameters without further
intervention.

FOCIS is particularly useful for the studies involving a large
number of ICs such as in the study of ICA dimensionality
problem of resting-state fMRI datasets. With FOCIS, we were
able to conduct systematically group ICA of six resting-state
fMRI datasets acquired at different sites using different protocols
as a function of NIC varied systematically from 20 to 100. We
found that NIC can critically affect both the spatial pattern
and temporal characteristics of the RFNs. The dimensionality
problem deserves further investigations, because the input NIC
can substantially affect group ICA results and the outcome of
group comparison studies.
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Abstract 25 

Hierarchical clustering is a useful data-driven approach to classify complex data and 26 

has been used to analyze resting-state functional magnetic resonance imaging (fMRI) 27 

data and derive functional networks of the human brain at very large scale, such as the 28 

entire visual or sensory-motor cortex. In this study, we developed a voxel-wise, 29 

whole-brain hierarchical clustering framework to perform multi-stage analysis of 30 

group-averaged resting-state fMRI data in different levels of detail. With the 31 

framework we analyzed particularly the somatosensory motor and visual systems in 32 

fine details and constructed the corresponding sub-dendrograms, which corroborate 33 

consistently with the known modular organizations from previous clinical and 34 

experimental studies. The framework provides a useful tool for data-driven analysis 35 

of resting-state fMRI data to gain insight into the hierarchical organization and degree 36 

of functional modulation among the sub-units.  37 

38 
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 3 

Introduction 39 

Different clustering techniques have been used for exploratory analysis of resting-40 

state functional magnetic resonance imaging (fMRI) data aimed to group together 41 

functionally similar voxels or regions of interests (ROIs) and identify functionally 42 

connected brain networks. These include, among others, fuzzy C-means 43 

(Baumgartner et al., 1997;Hilgetag et al., 2000), spectral clustering (Snyder et al., 44 

1997;Mattingley et al., 1998), K-means clustering (Fogassi et al., 2005), hierarchical 45 

clustering (Cordes et al., 2002;Foxe et al., 2002;Menon and Uddin, 2010;Wang and Li, 46 

2013), consensus clustering (Moretti and Munoz, 2013) and constrained clustering 47 

(Snyder et al., 1997;Foxe et al., 2002). Hierarchical clustering analysis (HCA) has not 48 

been used as fluently as other clustering methods in the analysis of resting-state fMRI 49 

data probably due to its poor scalability, high complexity and sensitivity to noise 50 

outliers. However, HCA is completely deterministic and can stratify inherently the 51 

data into a hierarchical structure (Zhou et al., 2006;Marrelec et al., 2008;Gomez-52 

Laberge et al., 2011;Boly et al., 2012). Although the structure nature of resting-state 53 

functional networks (RFNs) is still a matter of debate (Sporns, 2014), the notion that 54 

both structure and function connection networks exhibit a hierarchical organization of 55 

distinct brain modules that communicate through connector hubs is supported by a 56 

massive body of evidence ranging from cellular circuit of neuron connections to 57 

large-scale brain networks (Hilgetag et al., 2000;Zhou et al., 2006;Cohen et al., 58 

2008;Ferrarini et al., 2009;Park and Friston, 2013;Zhen et al., 2013;Russo et al., 59 

2014). Hence, extraction and characterization of such a hierarchical organization is an 60 

important issue in the study of brain function networks. 61 

 62 

In spite of the successful application of HCA in extracting RFNs (Liu et al., 63 

2012;Wang and Li, 2013;Alho et al., 2014), the results are strongly affected by the 64 

specified number of network clusters, which is not known a priori. Almost all of the 65 

previous clustering studies of resting-state fMRI attempt to parcel the data into a 66 

predefined number of clusters so that the clusters have high intra-cluster similarity 67 

and low inter-cluster similarity according to a chosen distance metric. Therefore, the 68 

outcome depends significantly on the choice of distance metric and the predefined 69 

number of clusters. In HCA, the cutting depth of dendrogram directly defines the 70 

number of produced clusters. Typically, over 10 RFNs are extracted from the group-71 

averaged resting-state fMRI data (Cavanna and Trimble, 2006;Bellec et al., 72 

2010;Wang and Li, 2013) in reference to the result form independent component 73 

analysis (ICA) studies (Damoiseaux et al., 2006;Smith et al., 2009), However, ICA 74 

result itself is also plagued with the issue of unknown number of independent 75 

components (Meunier et al., 2010;Bullmore and Sporns, 2012). 76 

 77 

Due to lack of “ground truth” for the number of RFNs, clustering studies of resting-78 

state fMRI data have to deal with the optimization of the number of clusters and 79 

assessment of clustering quality. Cluster validity index provides a tool to validate the 80 

performance of clustering algorithm and identify the natural structure in the input data. 81 
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 4 

Moreover, it can be used to determine the correct number of clusters in a dataset 82 

through comparing the results of different clustering algorithms and different number 83 

of clusters. Many different cluster validity indexes have been proposed in the 84 

literature, e.g., Milligan and Cooper (Milligan and Cooper, 1985) presented a 85 

comparison of 30 HCA validity indexes. In general, these indices can be classified as 86 

internal and external indexes, the former are usually based on information intrinsic to 87 

the data, while the latter are based on prior knowledge about the data. The optimal 88 

number of clusters can be determined by identifying the “knee point” (where the 89 

validity index exhibits a sharp change) among the validity index values as a function 90 

of different numbers of clusters. This procedure can fail in practice, because there 91 

might not exist any “knee points” or the existence of multiple. Therefore, knowing 92 

how to define a robust clustering criterion is critical and requires a good 93 

understanding of the data. In single subject-based clustering, several works have 94 

reported that spatial reproducibility is an important quality measures (Zhou et al., 95 

2006;Chan et al., 2008;Ferrarini et al., 2009;Bellec et al., 2010;Alho et al., 96 

2014;Russo et al., 2014;Mejia et al., 2015) for resting-state fMRI data. 97 

 98 

HCA has been previously used to analyze resting-state fMRI data (Cordes et al., 99 

2002;Zhou et al., 2006;Marrelec et al., 2008;Gomez-Laberge et al., 2011;Ma et al., 100 

2011;Boly et al., 2012). Most of these studies are based on either pre-defined region-101 

of-interests (ROIs) or independent components from ICA (Zhou et al., 2006;Marrelec 102 

et al., 2008;Gomez-Laberge et al., 2011;Ma et al., 2011;Boly et al., 2012). With 103 

distance metrics derived from the average time course of ROIS or RFNs, the higher-104 

level interrelationship among ROIs and independent components can be studied (Ma 105 

et al., 2011), In this study, we focus on voxel-based whole-brain HCA of average 106 

resting-state fMRI data. Our approach is based on multi-stage dissection of the full 107 

connectivity dendrogram derived using the time course of individual voxel (Wang and 108 

Li, 2013), We employed an average-linking agglomerative hierarchical clustering 109 

algorithm to generate the full correlation-coefficient dendrogram for grey matter in 110 

the brain with over 13x103 nodes. We developed a framework that can be used to 111 

retrieve the entire linkage tree, dissect it at any desired level and track a given mother 112 

node and its associated children clusters in any two consecutive cuts of the 113 

dendrogram. Based on stop criteria derived from internal characteristics of the 114 

produced clusters, such as cluster size, weakest linkage, and inconsistency coefficient 115 

(IC), we devised an iterative procedure to extract the potential RFNs and sub-116 

networks within a given RFN. Particularly, we investigated the somatosensory motor 117 

(SSM) and visual systems in fine details and constructed the sub-dendrograms of the 118 

RFNs according to the tracked association and distance metrics among the sub-units.  119 

 120 

Materials and Methods 121 

Ethics statement 122 

The Central Ethical Review Board in Stockholm region approved this study 123 

permission including the recruiting ad and consent form used to provide information 124 

and obtain consent. All participants provided informed consent by voluntary signature. 125 
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produced clusters, such as cluster size, weakest linkage, and inconsistency coefficient 115 

(IC), we devised an iterative procedure to extract the potential RFNs and sub-116 

networks within a given RFN. Particularly, we investigated the somatosensory motor 117 

(SSM) and visual systems in fine details and constructed the sub-dendrograms of the 118 

RFNs according to the tracked association and distance metrics among the sub-units.  119 
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Materials and Methods 121 

Ethics statement 122 

The Central Ethical Review Board in Stockholm region approved this study 123 

permission including the recruiting ad and consent form used to provide information 124 

and obtain consent. All participants provided informed consent by voluntary signature. 125 
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Data acquisition 127 

Resting-state fMRI measurements were conducted for a total of 84 normal adult 128 

subjects (male=40, 46, age=21-84) using a 3T whole-body clinical MRI scanner 129 

(TIM Trio, Siemens Healthcare, Erlangen, Germany). A single-shot 2D gradient-130 

recalled echo echo-planar imaging sequence was used with the following acquisition 131 

parameters: 32 transverse slices (3.6mm thickness), TR/TE=2000/35ms, 132 

FOV=220mm, matrix size=64x64, flip angle=90°, 300 dynamic timeframes, IPAT=2. 133 

A 32-channel phased-array head coil was used for the signal reception. Foam 134 

paddings were used to for every subject reduce the head motions.  135 

 136 

Preprocessing 137 

The resting-state fMRI datasets underwent the same preprocessing procedure, which 138 

were performed with AFNI (http://afni.nimh.nih.gov/afni) and FSL 139 

(http://www.fmrib.ox.ac.uk/fsl) programs with a bash wrapper shell. The first 10 time 140 

frames in each data set were removed to ensure signal steady state. After temporal de-141 

spiking, six-parameter rigid body image registration was performed for motion 142 

correction. The average volume for each motion-corrected time series was used to 143 

generate a brain mask to minimize the inclusion of the extra-cerebral tissues. Spatial 144 

normalization to the standard Talairach template was performed using a 12-parameter 145 

affine transformation and mutual-information cost function. The data was then 146 

resampled to isotropic resolution using a Gaussian kernel with FWHM=4mm. 147 

Nuisance signal removal was achieved by voxel-wise regression using the 14 148 

regressors based on the motion correction parameters, average signal of the ventricles 149 

and their 1st order derivatives. To avoid creating excessive negative functional 150 

connectivity no regression of white matter signal was included. After baseline trend 151 

removal up to the third order polynomial, effective band-pass filtering was performed 152 

using low-pass filtering at 0.08Hz. Local Gaussian smoothing up to FWHM=6mm 153 

was performed using an eroded gray matter mask to reduce unnecessary partial 154 

volume effect from CSF and white matter. The actual FWHM of the smoothed data 155 

was 6.2±2 mm as estimated by using the AFNI program, 3dFWHM.  156 

 157 

Hierarchical clustering to extract RFNs 158 

Clustering was restricted to voxels inside the grey-matter using a grey-matter masked 159 

derived from FSL grey-matter tissue priors (http://www.fmrib.ox.ac.uk/fsl). For each 160 

subject, the Pearson’s cross correlation (CC) distances were calculated voxel-wise for 161 

all datasets. The correlation distances were then evaluated with a threshold ≤0.7 162 

corresponding to a correlation coefficient threshold CC≥0.3 (Cordes et al., 2002). 163 

After thresholding, approximately 1.1% of the correlation coefficients remained. 164 

Cordes et al (Cordes et al., 2002) used previously the same CC threshold of 0.3 for 165 

voxel-based hierarchical clustering and the same threshold was opted here for the 166 

individual dataset. We systematically changed the CC threshold and found that 167 

increasing the threshold above 0.3 resulted in the loss of robustness of the algorithm. 168 

A threshold of CC≥0.4 resulted in only about 0.1% of the values remained. After 169 

threshholding, all values above the threshold were set to an arbitrary large value. The 170 

cross correlation matrices for all subjects were then averaged together voxel-wise. 171 

The averaged distance matrix was then computed, which was used to perform 172 

hierarchical clustering through an average-linking agglomerative clustering algorithm 173 

as the basis for the framework (Wang and Li, 2013).  174 
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 175 

A brief description of the algorithm is summarized as follows: Given a set of N voxels 176 

to be clustered, and a corresponding N×N distance matrix: 1) Assign each voxel to a 177 

cluster, resulting in N clusters, with each cluster containing just one voxel. The 178 

distances between the clusters are the distances among the voxels; 2) Find the closest 179 

pair of clusters; 3) Merge the closest pair of clusters, resulting in one cluster less in 180 

total; 4 ) Repeat 2-3 until only a single cluster remains. Step 3 can be performed in a 181 

variety of ways, referred to as linkage methods. The type of linkage in a hierarchical 182 

clustering algorithm refers to how the algorithm determines distance between newly 183 

formed clusters to all other voxels and clusters. Single-linkage takes the shortest 184 

distance between new clusters against the rest of the data, maximum-linkage takes the 185 

longest distance, and average-linkage takes the average. In our application, voxels 186 

within a cluster corresponding to a functional connectivity network should be highly 187 

correlated to each other. Hence, single-linkage is not desirable in this application. 188 

Maximum-linkage forces the algorithm to solely determine clusters with all voxels 189 

having high correlations to each other without exceptions. Average-linkage relaxes 190 

somewhat the intra-cluster connectivity requirements compared to maximum-linkage 191 

by taking the average distance. Hence, average-linkage was opted to take into account 192 

of the potential noise residues. We have previously described the algorithm in more 193 

details elsewhere (Wang and Li, 2013).  194 

 195 

The algorithm produces a binary tree, known as a dendrogram, presenting the 196 

hierarchical organization of the individual elements as leafs according the pre-defined 197 

distance measure. k number of clusters can be retrieved by cutting the k-1 longest 198 

links in the dendrogram. Since the number of meaningful clusters is unknown a priori 199 

and is affected by the noise level of the resting-state fMRI data, it is difficult to use 200 

the number of clusters as the termination criteria. Through tests on different cutting 201 

depths of the dendrogram, we developed an iterative scheme with termination criteria 202 

based on cluster size (S) to extract RFNs. A cluster larger than 5000 voxels in size 203 

(S≥5000) is considered too large to be a single RFNs, because the whole-brain grey 204 

matter mask that was used has 13312 voxels and analysis of the ICA results showed 205 

that clusters with more than 5000 voxels are usually too large to be considered as a 206 

single coherent RFN and should be refined further. Therefore, we choose 5000 as the 207 

upper limit for a cluster to be considered as an independent RFN. Analyses of the 208 

resulted clusters at different cutting levels showed that many of clusters are small 209 

clusters with less than 50 voxels (Wang and Li, 2013) and are not associated with any 210 

known RFNs. Therefore, we choose 50 as the lower limit for clusters to be considered 211 

as potential RFNs. In order to identify potential RFNs, Clusters with adequate voxel 212 

size (50≤S≤5000) were carefully examined by comparing their spatial distribution 213 

patterns with previously published RFNs in the literatures.  214 

 215 

In the first iteration the cluster count for whole-brain dendrogram (k1), was set to 64. 216 

Clusters above 5000 voxels in size (S) were then further dissected with a reduced 217 

cluster count by a factor of 2 than that for the previous iteration (k2=32, k3=16, and 218 

etc.). The cluster numbers for subsequent iterations were successively decreased 219 

accordingly to avoid spurious amounts of small clusters being generated. In order to 220 

identify potential RFNs, the empirical cluster size criteria (50≤S≤5000) discussed 221 

above was adopted to filter away small clusters (Wang and Li, 2013). The remaining 222 
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prospective clusters were then carefully examined by comparing their spatial 223 

distribution patterns with ICA results and previously published RFNs in the literature 224 

(Wang and Li, 2013). Among the identified potential RFN clusters, we selected the 225 

RFNs corresponding to the SSM and visual systems for further analysis with the 226 

method described below. The basic information for the extracted SSM and visual 227 

RFNs is replicated and summarized in Table 1.  228 

 229 

Hierarchical modular decomposition of the SSM and visual RFNs  230 

One of the outputs from the framework is the whole dendrogram as a simple ASCII 231 

file that contains a list of nodes, their linking distance; connections to their children 232 

clusters; and the size of children clusters. With the node list and the associated 233 

information, any given node, cluster or sub-tree can be efficiently retrieved. Our 234 

framework contains a module that can be used to identify and visualize the split 235 

children clusters from any given mother node. For a given RFN (a sub-dendrogram), 236 

the module can be used to iterate through the list of nodes ordered in descending 237 

heights and systematically dissect through all nodes in the network. For a cut at node 238 

k>0, we compare the clusters with the results from the previous cut at node k-1 to 239 

identify which cluster is split. Whenever a significant cluster (p<0.01) is split into two 240 

significant clusters, the mother node is denoted as a dissociable node and its children 241 

clusters are labeled for inspection and further analysis. The above process is repeated 242 

again for each significant child cluster. In principle, the iteration process can continue 243 

down to any desirable level of fine details. To facilitate the comparison between the 244 

results from the SSM and visual systems, we choose the cluster count corresponding 245 

to the first intersect point of the IC curves for the 2 investigated RFNs as the cutting 246 

depth. As shown in Figure 1, the IC curves intersect at IC=2.65 and the corresponding 247 

cut level is 80, which is a manageable size both for cluster characterization and 248 

visualization. For each RFN, the extracted functional connectivity sub-networks 249 

together with their node heights were then used to construct the intra-network sub-250 

dendrogram.  251 

 252 

Statistical assessment of the clustering results 253 

As described above, for each resting-state fMRI dataset, we computed voxel-wise the 254 

Pearson’s cross-correlation coefficients (CC) and thresholded at CC≥0.3 255 

(corresponding to a distance threshold ≤0.7). To assess the statistical significance of 256 

the inter-subject averaged CC matrix, we performed voxel-wise one-sampled t-test for 257 

the thresholded CC data (N=84 subjects) to test the null hypothesis that the inter-258 

subject averaged CC at a given voxel is not significantly larger than 0. We computed 259 

also the voxel-wise skewness and kurtosis for the inter-subject averaged CC matrix. 260 

Examinations of the skewness and kurtosis versus the mean CC values show that the -261 

1.01<skewness<-1.0 and 1.0<kurtosis<1.02 when the averaged CC≥0.18, indicating 262 

that the mean CC can be reasonably approximated as a normal distribution. Figure 2 263 

depicts the scatter plot of the voxel-wise t-scores versus the mean CC values. Since 264 

the minimum averaged CC value for the voxels in the SSM and visual RFNs is 0.18 265 

(Table 1), the voxel-wise t-score for any voxel in the RFNs is, therefore, at least ≥4.8 266 

(Fig. 2), corresponding to voxel-wise p<0.0001 (uncorrected). A family-wise error 267 

(FEW) p<0.01 is guaranteed by imposing a minimum cluster size s≥12, as estimated 268 

by using the AFNI program, AlphaSim with following inputs: voxel-wise p<0.0001, 269 

FWHM=6.2 mm, and 106 iterations. FWHM=6.2mm was the estimated average by 270 
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applying the AFNI program, 3dFWHMx, to the final smoothed fMRI data, which was 271 

quite close to FWHM=6mm used in the final smoothing procedure described above. 272 

 273 

Results 274 

Sub-dendrogram of the SSM network 275 

The Sub-networks for the SSM RFN were dissected down to 80 nodes (cut level 276 

k=79). Among the 80 nodes, 19 sub-networks amongst 20 dissociable nodes were 277 

identified (Tables 1 and 2) to be statistically significant (p<0.01 and s≥12) and 278 

functionally distinct. The intra-network hierarchy of the extracted sub-networks and 279 

their neuroanatomical locations are depicted in Fig. 3. As shown, the extracted sub-280 

networks for the SSM network include the following 4 groups of bilateral sub-281 

networks: insula-auditory sub-networks (Fig. 3, clusters 1-3), paracentral lobule and 282 

cingulate motor cortex sub-networks (Fig. 3, clusters 4 and 5), sub-networks for facial 283 

expression control (Fig. 3, clusters 11-13), and sub-networks for hand movement 284 

control (Fig. 3, clusters 6, 7, 9, and 10). Furthermore, there exist also 2 groups of 285 

unilateral sub-networks: the right parietal sub-network group (Fig. 3, clusters 15 and 286 

16) and the left insular-STG (superior temporal gyrus) sub-network group (Fig. 3, 287 

clusters 17-19). An overview of these sub-network groups in relation to the central 288 

sulcus is outlined in Fig. 4 as a 2D-projection in the Talairach coordinates. This intra-289 

network organization of intrinsic functional connectivity derived from spontaneous 290 

activity of the brain at rest reflects consistently the functional and neural anatomic 291 

connectivity topography of the SSM network. SSM system in the human brain 292 

consists of S1, M1, and some pre/post- central gyrus areas divided into dorsal and 293 

ventral subgroups in addition to the parietal operculum and the auditory cortex 294 

(Power et al., 2011).  295 

 296 

As shown in Figs. 3 and 4, the extracted sub-networks of SSM system are not 297 

exclusively localized to either side of the central sulcus rather its division is along the 298 

ventral-dorsal direction.  This sub-division roughly separates the facial motor control 299 

from those for the rest of the body, as illustrated by the results of stimulus-evoked 300 

responses (Penfield and Boldrey, 1937;Mayka et al., 2006). 301 

 302 

Another finding is that the cophenetic distance, defined as the threshold height at 303 

which the two sub-network groups join together, between two sub-network groups is 304 

not determined by the anatomical spatial distance rather than the level of functional 305 

conjunction between the involved brain sub-networks. E.g., the cophenetic distance 306 

between auditory (Fig 3, clusters 1-3) and paracentral lobule (Fig. 3 cluster 4) sub-307 

network groups is 0.72, which is closer than that between auditory and facial-308 

expression control (Fig3, clusters 11-13) sub-network groups (0.74) or between 309 

auditory and hand control (Fig. 3 clusters 6, 7, 9, and 10) sub-network groups (0.76).  310 

 311 

The unilateral sub-network group in the right hemisphere (Fig. 3, clusters 15 and 16) 312 

involves two anterior regions of the parietal lobe: Precuneus and inferior parietal, 313 

which have closely related functions for visual-spatial abilities and motor 314 

coordination strategies (Snyder et al., 1997;Mattingley et al., 1998;Margulies et al., 315 

8 
 

 8 

applying the AFNI program, 3dFWHMx, to the final smoothed fMRI data, which was 271 

quite close to FWHM=6mm used in the final smoothing procedure described above. 272 

 273 

Results 274 

Sub-dendrogram of the SSM network 275 

The Sub-networks for the SSM RFN were dissected down to 80 nodes (cut level 276 

k=79). Among the 80 nodes, 19 sub-networks amongst 20 dissociable nodes were 277 

identified (Tables 1 and 2) to be statistically significant (p<0.01 and s≥12) and 278 

functionally distinct. The intra-network hierarchy of the extracted sub-networks and 279 

their neuroanatomical locations are depicted in Fig. 3. As shown, the extracted sub-280 

networks for the SSM network include the following 4 groups of bilateral sub-281 

networks: insula-auditory sub-networks (Fig. 3, clusters 1-3), paracentral lobule and 282 

cingulate motor cortex sub-networks (Fig. 3, clusters 4 and 5), sub-networks for facial 283 

expression control (Fig. 3, clusters 11-13), and sub-networks for hand movement 284 

control (Fig. 3, clusters 6, 7, 9, and 10). Furthermore, there exist also 2 groups of 285 

unilateral sub-networks: the right parietal sub-network group (Fig. 3, clusters 15 and 286 

16) and the left insular-STG (superior temporal gyrus) sub-network group (Fig. 3, 287 

clusters 17-19). An overview of these sub-network groups in relation to the central 288 

sulcus is outlined in Fig. 4 as a 2D-projection in the Talairach coordinates. This intra-289 

network organization of intrinsic functional connectivity derived from spontaneous 290 

activity of the brain at rest reflects consistently the functional and neural anatomic 291 

connectivity topography of the SSM network. SSM system in the human brain 292 

consists of S1, M1, and some pre/post- central gyrus areas divided into dorsal and 293 

ventral subgroups in addition to the parietal operculum and the auditory cortex 294 

(Power et al., 2011).  295 

 296 

As shown in Figs. 3 and 4, the extracted sub-networks of SSM system are not 297 

exclusively localized to either side of the central sulcus rather its division is along the 298 

ventral-dorsal direction.  This sub-division roughly separates the facial motor control 299 

from those for the rest of the body, as illustrated by the results of stimulus-evoked 300 

responses (Penfield and Boldrey, 1937;Mayka et al., 2006). 301 

 302 

Another finding is that the cophenetic distance, defined as the threshold height at 303 

which the two sub-network groups join together, between two sub-network groups is 304 

not determined by the anatomical spatial distance rather than the level of functional 305 

conjunction between the involved brain sub-networks. E.g., the cophenetic distance 306 

between auditory (Fig 3, clusters 1-3) and paracentral lobule (Fig. 3 cluster 4) sub-307 

network groups is 0.72, which is closer than that between auditory and facial-308 

expression control (Fig3, clusters 11-13) sub-network groups (0.74) or between 309 

auditory and hand control (Fig. 3 clusters 6, 7, 9, and 10) sub-network groups (0.76).  310 

 311 

The unilateral sub-network group in the right hemisphere (Fig. 3, clusters 15 and 16) 312 

involves two anterior regions of the parietal lobe: Precuneus and inferior parietal, 313 

which have closely related functions for visual-spatial abilities and motor 314 

coordination strategies (Snyder et al., 1997;Mattingley et al., 1998;Margulies et al., 315 



9 
 

 9 

2010). The unilateral sub-network group in the left hemisphere (Fig. 3 clusters 17-18) 316 

is the most loosely connected components in SSM network. It consists of lateral 317 

premotor cortex (cluster 17), anterior insula (cluster 18) and caudal auditory cortex 318 

(cluster 19). This sub-network group plays an important role in the sensorimotor 319 

integration to mediate the categorization of incoming speech sounds through 320 

reciprocal auditory-to-motor and motor-to-auditory projections (Schroeder et al., 321 

2001;Foxe et al., 2002;Alho et al., 2014).  322 

 323 

Sub-dendrogram of the visual RFN 324 

Figure 5 shows the hierarchical clustering results for the visual RFN at cutting level 325 

k=79. Among the 80 nodes, 15 sub-networks amongst 14 dissociable nodes were 326 

identified (Tables 1 and 3) to be statistically significant (p<0.01 and S≥12) and 327 

functional distinct. The intra-network hierarchical organization of the extracted sub-328 

networks depicts 5 groups of bilateral sub-networks: primary visual cortex sub-329 

network (Fig. 5, cluster 1), ventral medial sub-network (Fig. 5, cluster 2), dorsal sub-330 

networks (Fig. 5 clusters 3-5), ventral inferior-occipital sub-networks (Fig. 5, clusters 331 

6-9), and ventral posterior-temporal sub-networks (Fig. 5, clusters 10-15).  332 
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Central to the visual network is the primary visual area sub-network (Figure 5, cluster 334 

1). The location of cluster 1 overlaps with the anatomical location of the primary 335 

visual cortex V1 and dorsal visual association area V2d. These visual areas are 336 

strongly correlated with each other, as it is known that V2 receives strong feed-337 

forward from V1 and sends feedback to V1 (Gazzaniga et al., 2002). The sub-network 338 

with the least cophenetic distance to the primary visual cortex is the ventral medial 339 

visual sub-network (Figure 5, cluster 2). The anatomical location of this cluster (Table 340 

3, cluster 2) is consistent with the retinotopical locations of the ventral medial visual 341 

area, located within the posterior parahippocampal cortex (PHC) extending along the 342 

collateral sulcus and flanked by the lingual gyrus (Arcaro et al., 2009;Wang et al., 343 

2014). This sub-network is known to respond more strongly to scenes than objects or 344 

faces (Arcaro et al., 2009).  345 
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Overall, the sub-dendrogram of the visual RFN reflects the known functional sub-347 

division of the visual system summarized as the two-stream hypothesis that the 348 

ventral stream and the dorsal stream have distinct functional sub-divisions 349 

(Ungerleider, 1982). The dorsal visual areas are specific for the detection of motion, 350 

locating objects in space, and processing visual information used to guide 351 

movements(Goodale and Milner, 1992), whereas the ventral visual association areas 352 

are associated with form recognition and object representation (Vartanian and Skov, 353 

2014). As shown in Fig. 5, the cophenetic distance between the dorsal visual areas 354 

(Fig. 5, clusters 3-5) and V1 (Fig. 1, cluster 1) is 0.65, whereas the cophenetic 355 

distance between the ventral visual areas (Fig. 5, clusters 6-15) and V1 is 0.72. 356 

Therefore, the primary visual cortex is more closely associated with the dorsal visual 357 

stream than that with the ventral visual stream.  358 
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respectively, both in terms of their anatomical locations and their lateral sub-divisions 361 
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(Wang et al., 2014). V3a and V3b border the inferior parietal sulcus visual area 362 

(IPS0/1) (Tootell et al., 1998;Press et al., 2001). This is consistent with our 363 

observation that clusters 3 and 4 are adjacent to the bilateral cluster 5, which 364 

corresponds to parietal visual areas IPS0. The cophenetic distance between the 365 

primary visual sub-network (Fig. 5, cluster 1) and visual areas IPS0/1 (Fig. 5, cluster 366 

5) is 0.65, whereas the cophenetic distance between IPS0/1 and the visual association 367 

areas V3a and V3b (Fig. 5, clusters 3 and 4) is 0.69. This implies that IPS0/1 is more 368 

closely associated to the primary visual cortex than visual association areas V3a and 369 

V3b. This conforms the view that the parietal visual areas responsible for detection of 370 

motion, is comparatively faster relative to the ventral-temporal areas responsible for 371 

recognition and identification (Norman, 2002). 372 

 373 

The ventral-stream visual association areas can be sub-divided into 2 sub-network 374 

groups according to the hierarchical functional sub-dendrogram: Inferior-occipital 375 

visual areas (Fig. 5, clusters 6-9) and posterior-temporal visual areas (Fig. 5, clusters 376 

10-15). As shown in figure 5, the inferior-occipital ventral visual areas are more 377 

closely associated to V1 with a mean cophenetic distance of 0.68, compared to the 378 

posterior-temporal ventral visual areas (Fig. 5, clusters 10-15) with a mean cophenetic 379 

distance of 0.75. The anatomical location of cluster 6 overlaps with ventral visual area 380 

V2v and ventral visual area V3v (Wang et al., 2014). The cluster 7-9 forms bilateral 381 

clusters corresponding to ventral-temporal areas of human visual area V4 (hV4) and 382 

ventral- occipital visual area (VO1). Comparing with previously determined 383 

probabilistic maps of visual topography, we found that the boundaries of cluster 6 384 

with clusters 7-9 are consistent with the known boundaries between hV4/VO1 and 385 

V3v (Sereno et al., 1995;DeYoe et al., 1996;Engel et al., 1997;Wade et al., 386 

2002;Brewer et al., 2005). The clusters 10 and 11 correspond to the left and right 387 

middle-temporal visual area (MT)/V5 (Kolster et al., 2010), respectively. The 388 

bilateral cluster 12 corresponds well to the lateral occipital area 1 (LO1) (Wang et al., 389 

2014). The clusters 13-15 have the largest cophenetic distances to V1 in the visual 390 

network and correspond to the medial superior temporal area (MST) (Wang et al., 391 

2014).  392 

 393 

Discussion 394 

Voxel-wise Hierarchical Clustering of Resting-state fMRI Data 395 

The agglomerative hierarchical clustering algorithm used in this study works by 396 

grouping the data one-by-one on the basis of the nearest distance measure of all the 397 

pairwise distance between voxel data points. It can inherently stratify the image data 398 

into hierarchical structures of different scales, such as RFNs and sub-networks within 399 

a given RFN. We have previously used HCA to analyze whole-brain resting-state 400 

fMRI data voxel-by-voxel and obtained large-scale RFN results that are comparable 401 

with what were obtained from ICA studies (Wang and Li, 2013). One of the main 402 

issues in using HCA of resting-state fMRI data to extract large-scale RFNs is the 403 

prerequisite to specify the number of clusters produced by the algorithm. Neither the 404 

number of RFNs present in the data nor the noise characteristics are known a priori 405 

when applying the algorithm to a given resting-state fMRI dataset. In other words, we 406 

need to establish the cutting depth of the dendrogram. After testing the framework 407 

with the group-averaged resting-state fMRI data using different number of clusters 408 
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and iterations to investigate how the choice of clustering parameters affect the 409 

outcomes, we proposed a multiple-iteration clustering scheme in combination with a 410 

cluster-size based criterion as the decision rules to extract potential RFNs (Wang and 411 

Li, 2013).  412 

 413 

In this study, we further explored the potential of voxel-based hierarchical clustering 414 

of resting-state fMRI data and extended the previously developed framework to 415 

extract sub-networks within SSM and visual RFNs. As discussed above, the intra-416 

network hierarchical organizations of the intrinsic functional connectivity derived 417 

from spontaneous activity of the brain at rest reflect consistently the known functional 418 

modular organizations of the corresponding neural networks. It is apparent that the 419 

level of details that can be achieved using the voxel-wise HCA framework spans from 420 

the large-scale RFNs down to a single voxel defined the fMRI spatial resolution. For 421 

simplicity of comparison in this study, we chose the 1st crossing point of their IC 422 

curves as the clustering stop condition. With this choice we have also taken into 423 

consideration of that the number of clusters should be within a manageable magnitude.  424 

 425 

There are limitations in the implementation suggested here. Firstly, a threshold of 426 

2.65 for the IC curves corresponding to the first crossing point is arguably somewhat 427 

arbitrary. As shown in Figure 1, the IC curves do not reach a plateau until IC<2.0, 428 

which corresponds to a cluster count over 200. This indicates that we can obtain 429 

substantially more clusters with considerable differences in correlation distance by 430 

lowering the threshold to IC>2.0. However, further lowering the threshold gives rise 431 

mostly smaller clusters, which are split-offs from the small clusters. It is difficult to 432 

give putative functional assignments to these split-offs. As shown in Tables 2 and 3, 433 

most clusters extracted at the threshold of 2.65 have already become relatively small 434 

except for the core clusters (cluster 4 in SSM and cluster 1 in visual RFN). It is more 435 

productive to dissect selectively the largest cluster with an additional iteration. 436 

Secondly, the criterion for cluster size and weakest linkage (minimum mean CC) were 437 

not automatically combined with the IC threshold instead they were manually 438 

implemented in a stepwise fashion.  439 

 440 

The implemented hierarchical clustering scheme is, nevertheless, a principled means 441 

in which certain internal characteristics of the data, such as cluster size, IC, and 442 

weakest linkage, functioned as a validity metric for selecting the clustering results. 443 

The obtained sub-dendrograms for the SSM and visual system corroborate 444 

remarkably well with the known modular organizations from previous clinical and 445 

experimental studies. On the other hand, not only the core sub-networks (cluster 4 for 446 

SSM and cluster 1 for the visual RFN) are sufficiently large to warrant further 447 

iterations, it is also very interesting to investigate further their functional and 448 

structural subdivisions. Result from preliminary testing (not shown) indicates indeed 449 

that an additional HCA iteration applied directly to these clusters can produce 450 

interesting subdivisions that can lead better understanding of the functional 451 

organizations within these sub-networks.  452 

 453 
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Hierarchical modular organization of functional connectivity 454 

Although the exact nature of the organization of brain function networks derived from 455 

resting-state fMRI is still a matter of debate, from cellular circuit of neuron 456 

connections to large-scale networks, there exists a massive body of evidence 457 

indicating that brain networks demonstrate the property of hierarchical modularity 458 

(Hilgetag et al., 2000;Zhou et al., 2006;Cohen et al., 2008;Ferrarini et al., 2009;Park 459 

and Friston, 2013;Zhen et al., 2013;Russo et al., 2014). This hierarchical modularity 460 

exists on multiple topological scales: Within each module there are a set of sub-461 

modules, and within each sub-module a set of sub-sub-modules, etc. At a given 462 

topological scale, a module is often made up of densely inter-connected, anatomically 463 

and/or functionally related cortical regions, while inter-modular connections tend to 464 

be relatively long-distance and sparse. Although the detailed organization of brain 465 

networks across all scales is currently not yet fully experimentally accessible, there is 466 

a rapidly growing arsenal of data analytic tools, including the voxel-based 467 

hierarchical clustering developed in this study, that have been tested to analyze 468 

complex dendrograms of brain structural and functional networks.  469 

 470 

At the large-scale and global levels, our understanding of brain connectivity topology 471 

relies mainly on the analysis of anatomical and functional connections measured by 472 

non-invasive brain imaging (Hilgetag et al., 2000;Zhou et al., 2006;Cohen et al., 473 

2008;Ferrarini et al., 2009;Park and Friston, 2013;Zhen et al., 2013;Russo et al., 474 

2014). Both clustering (Golland et al., 2008;Wang and Li, 2013) and ICA of brain 475 

imaging data (Wang and Li, 2015) are particularly important data-driven approaches 476 

to study brain network organization. Accumulating results from clustering and ICA 477 

studies demonstrate that the cerebral cortex can be divided into the extrinsic and 478 

intrinsic systems at the global scale (Golland et al., 2008). The former comprises the 479 

sensory–motor cortex and is associated with the external environment. The later 480 

overlaps substantially with the default mode network and is likely associated with 481 

inner-oriented processing. The development of voxel-based hierarchical clustering of 482 

brain imaging data provides not only a complementary approach to ICA for the 483 

analysis of brain networks at large-scale level, it allows also the study of sub-484 

dendrograms of a given network or even sub-network as demonstrated by the results 485 

from this study. It can be used to explore the sub-units of a brain network down to the 486 

level of voxel of a few millimeters limited ultimately by the spatial resolution of the 487 

in vivo brain imaging data acquisition techniques. 488 

 489 

Not only empirical data confirm the hierarchical modular organization at different 490 

scales (Hilgetag et al., 2000;Park and Friston, 2013), but also theoretical 491 

considerations favor the assumed hierarchical modular topology of brain networks 492 

(Meunier et al., 2010;Bullmore and Sporns, 2012;Moretti and Munoz, 2013;Park and 493 

Friston, 2013). It has been hypothesized that hierarchical modular organization of the 494 

brain is evolutionary advantageous, contributing to adaptive aspects of anatomical and 495 

functional brain connectivity. It enables the efficient processing of information, 496 

supports complex brain functions, and fits particularly for diverse dynamics and 497 

divergent functionalities within a fixed structure. 498 

 499 
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In this report we limited our exploration within the intra-network sub-dendrograms of 500 

the SSM and visual RFNs at rather crude scale. In the future we will explore for using 501 

the developed HCA framework to study the following topics: 1) extract sub-502 

dendrograms for other RFNs such as the default-mode network; 2) refine sub-503 

dendrograms of the large clusters of the SSM and visual RNFs based on resting-state 504 

fMRI data at higher spatial resolution. We believe it is feasible to use voxel-based 505 

hierarchical clustering of resting-state fMRI data for detailed retinotopical and 506 

somatosensory mappings; 3) study the variations in sub-dendrograms, particularly in 507 

subjects with neurological and neuropsychiatric diseases. 508 

 509 

Conclusion 510 

Using the SSM and visual RFNs as examples, we have demonstrated that the 511 

developed HCA framework is a useful tool for analyzing resting-state fMRI data 512 

voxel-by-voxel. Not only can it be used to extract the modular organizations of brain 513 

functional networks at the scale of large systems (Wang and Li, 2013), such as the 514 

entire SSM and visual systems, but also can be used to derive the sub-dendrogram of 515 

a given RFN and dissect it at different level of details. The constructed sub-516 

dendrogram for each RFN reveals the intrinsic functional connectivity among all sub-517 

units within a RFN. For the two investigated RFNs (SSM and visual systems), the 518 

derived sub-dendrograms reflect consistently the known functional topographic 519 

mapping results. It should be possible to use the HCA framework for constructing 520 

sub-dendrograms of other RFNs and explore for potential but currently unknown 521 

functional junctions among the sub-units. 522 
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functional networks at the scale of large systems (Wang and Li, 2013), such as the 514 

entire SSM and visual systems, but also can be used to derive the sub-dendrogram of 515 

a given RFN and dissect it at different level of details. The constructed sub-516 

dendrogram for each RFN reveals the intrinsic functional connectivity among all sub-517 

units within a RFN. For the two investigated RFNs (SSM and visual systems), the 518 

derived sub-dendrograms reflect consistently the known functional topographic 519 

mapping results. It should be possible to use the HCA framework for constructing 520 

sub-dendrograms of other RFNs and explore for potential but currently unknown 521 

functional junctions among the sub-units. 522 
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Tables 668 

 669 

Table 1: Summary of the SSM and visual RFNs as extracted by voxel-wise hierarchical 670 

clustering of the mean cross-correlation confident matrix derived from the resting-state fMRI 671 

data of 86 normal adult subjects. The dissection was terminated at the inconsistency 672 

coefficient of 2.65, which corresponds to the first crossing point of the inconsistency 673 

coefficient curves for the SSM and visual RFNs. 674 

 675 

RFN SSM VISUAL 

SIZE (VOXELS) 1540 1619 

CCMIN 0.19 0.18 

CCAVG 0.27 0.29 

CCMAX 0.35 0.36 

ICMEAN 3.10±0.17 3.25±0.34 

DIVISIBLE NODES 20 19 

SUB-NETWORKS 14 15 
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Table 2: Summary of the significant sub-networks extracted from the SSM RFN. The sub-678 

networks are labeled in ascending order according to their heights in the hierarchical sub-679 

dendrogram. The closest matching Brodmann area (BA) for reach cluster is also included in 680 

the cortical location labeling. 681 

  682 

Cluster Size Height Cortical Location Focal Point 

1 25  0.66 Left insula; BA13  (-47, -14, 12) 

2 99  0.66 Left Superior Temporal Gyrus (STG); BA41  (-53, -24, 8) 

3 99  0.69 Right STG; BA42 (46, -20, 12) 

4 370  0.69 Paracentral lobule; BA31; Cingulate-motor (0, -20, 51) 

5 34  0.69 Left postcentral gyrus; BA3 

Right postcentral gyrus; BA3 

(-20, -32, 60) 

(22, -28, 60) 

6 40  0.69 Right Inferior parietal lobule; BA40 (38, -33, 46) 

7 55  0.69 Right pre- postostcentral Gyrus; BA3-4 (37, -23, 50) 

8 36  0.71 Left Superior Parietal Lobule; BA7 (-22, -44, 57) 

9 67  0.71 Left pre- postcentral Gyrus; BA3-4 (-38, -28, 49) 

10 63  0.71 Left Inferior parietal lobule; BA40 (-41, -37, 45) 

11 150  0.71 Left precentral gyrus; BA4 

Right precentral gyrus; BA4 

(-48, -12, 36) 

(53, -9, 27) 

12 36  0.71 Left postcentral Gyrus; BA2 (-52, -19, 31) 

13 32  0.72 Right postcentral Gyrus; BA2 (47, -18, 36) 

14 37  0.72 Left STG; BA41 (-39, -30, 16) 

15 55  0.77 Right Inferior parietal lobule; BA40 (21, -49, 56) 

16 33  0.77 Right Precuneus; BA7 (29, -51, 49) 

17 22  0.78 Left STG BA22, Precentral gyrus; BA6 (-50, -6, 6) 

18 54  0.78 Left Insula; BA13 (-40, -6, -2) 

19 29  0.79 Left STG;BA22; Insula; BA13 (-43, -21, 5) 
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Table 3: Summary of the significant sub-networks extracted from the visual network. The 685 

sub-networks are labeled in ascending order according to their heights in the hierarchical sub-686 

dendrogram. The closest matching Brodmann area (BA) for each cluster is also included in 687 

the cortical location labeling. 688 

 689 

Cluster Size Height Cortical Location Focal Point  

1 546 0.64 
Cuneus; Lingual Gyrus;  

(3, -74, 1) 
Striate & extrastriate Cortex; BA18, 30 

2 62 0.64 
Left Lingual/Parahippocampal Gyrus; (16, -49, -4) 

Right Lingual/Parahippocampal Gyrus; BA19 (-15, -53, -4) 

3 37 0.65 
Left Superior Cuneus/Precuneus; (18 -81, 25) 

Right Superior Cuneus/Precuneus; BA18 (-18 -82, 24) 

4 87 0.65 
Left Middle Occipital Gyrus; (-27, -83, 16) 

Right Middle Occipital Gyrus; BA19 (30, -77, 22) 

5 86 0.66 
Left Cuneus;  (14, -74, 29) 

Right Cuneus; BA18, 7, & 31 (-11, -78, 29) 

6 150 0.67 Right Declive; Fusiform Gyrus; BA19 (4, -74, -20) 

7 36 0.67 Left Declive: Fusiform Gyrus; BA19 (-32, -66, -22) 

8 48 0.69 Left Fusiform Gyrus; BA19 (-23, -75, -14) 

9 47 0.69 Right Fusiform Gyrus; BA19 (26, -74, -12) 

10 33 0.71 Left Inferior Temporal Gyrus; BA19 (-41, -72, -1) 

11 41 0.71 Right Inferior Temporal Gyrus; BA37 (45, -67, -2) 

12 64 0.76 
Left Middle Occipital Gyrus;  (32, -83, -1) 

Right Middle Occipital Gyrus; BA18  (-34, -82, 0) 

13 45 0.77 Right Middle Temporal Gyrus; BA39 (40, -73, 19) 

14 59 0.77 Right Middle Temporal Gyrus; BA37 (48, -61, 7) 

15 33 0.80 Left Middle Temporal Gyrus; BA37 (-40, -73, 12) 
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Figure Legends 692 

 693 

Figure 1: Inconsistency coefficients at full depth for all nodes in the SSM and visual RFNs.  694 

 695 

Figure 2: One-sampled t-test score as a function of the cross-correlation coefficients of the 696 

resting-state fMRI time courses between voxels inside the brain. The average results for 84 697 

normal adult volunteers are displayed. 698 

 699 

Figure 3: The intra-network hierarchical organization of the sub-networks extracted from the 700 

SSM RFN. The lines in the sub-dendrogram are drawn in proportion to the distance measure 701 

of the nodes (left). The sub-networks are labeled in ascending order according to their 702 

distances in the sub-dendrogram. Each sub-network is color coded to depict the 703 

neuroanatomical location in the Talairach template. The top panel shows the color-coded sub-704 

networks imposed on the smoothed white matter surface. The middle and bottom panels show 705 

the medial and lateral views of the inflated hemispheres, respectively. 706 

 707 

Figure 4: An overview of SSM sub-network groups in relation to the fontal edge of the 708 

central sulcus as a 2D-projection in the Talairach coordinate system. The colors indicate the 709 

different sub-network groups and the lines were drawn to guide the eyes.  710 

 711 

Figure 5: Intra-network hierarchical organization of the sub-networks extracted from the 712 

visual system. The lines in the dendrogram are drawn in proportion to the distance measure of 713 

the nodes (left). The sub-networks are labeled in ascending order according to their distances 714 

in the sub-dendrogram. Each sub-network is color coded to depict the neuroanatomical 715 

location in the Talairach template. The top panel shows the color-coded sub-networks 716 

imposed on the smoothed white matter surface. The middle and bottom panels show the 717 

medial and lateral views of the inflated hemispheres, respectively. 718 
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Abstract 
 

Kinetic oscillatory stimulation (KOS) in nasal cavity is a non-invasive cranial nerve stimulation 

method with promising efficacy for acute migraine and other inflammatory disorders. To better 

understand the underlying neurophysiological mechanisms of KOS treatment, we conducted a 

resting-state functional magnetic resonance imaging (fMRI) study of 10 acute migraine patients 

and 10 normal control subjects during KOS treatment in a 3T clinical MRI scanner. The fMRI 

data were first processed using a group independent component analysis (ICA) method and then 

further modeled with a voxel-wise 3-way ANOVA approach. 

 

All migraine participants were relieved from their acute migraine symptoms after 10-20 minutes 

of KOS treatment and remained migraine free for 3-6 months. The analysis of the resting-state 

fMRI data indicates that migraine patients have altered intrinsic activity in their anterior 

cingulate, inferior frontal gyrus, and middle/superior temporal gyrus. KOS treatment up-

regulated intrinsic functional activity in a number of broad brain regions involving the limbic and 

primary sensory systems, while down-regulating the activity in few more specific brain areas, 

such as the right dorsal posterior insula and inferior frontal gyrus.  

 

The result of this study confirms the efficacy of KOS treatment for relieving acute migraine 

symptom and reducing attack frequency. Resting-state fMRI measurements demonstrate that 

migraine is associated with aberrant intrinsic functional activity in the limbic and primary 

sensory systems. Furthermore, KOS in the nasal cavity gives rise to the adjustment of the 

intrinsic functional connectivity in the limbic and primary sensory networks and restores the 

physiological homeostasis in the autonomic nervous system. 

 

 

KEY WORDS: Kinetic oscillatory stimulation (KOS), migraine, autonomic nervous system 

(ANS), resting-state fMRI, intrinsic functional activity, independent component analysis (ICA), 3-

way ANOVA. 

 

RUNNING TITLE: fMRI study of KOS treatment for migraine  
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Introduction 
 

Migraine is a common neurological disorder characterized by severe headache and affecting 

approximately 18 percent of women and 6 percent of men1-3. Triptans such as Sumatriptan are 

widely used for acute symptom relief of migraine headaches. About 2% of the population suffers 

from refractory chronic migraine and the trigeminal autonomic cephalalgias (TACs), which is 

often associated with drug-resistance, disability, and low quality of life. 

 

There exist a number of theories trying to account for the ethnology of migraine. For example, 

inadequate regulation of the autonomic nervous system (ANS)4-6, derangement of serotonin 

metabolism7-9, insensitive reaction to reduced oxygen in the vasculature and tissue10-12, 

disruption of the normal pain pathways13, peculiar platelet metabolism14-16, neurogenic 

inflammation17 and etc18. Researchers have yet to disseminate a unified theory to account for the 

different aspects of the complex pathophysiology involved in migraine. Despite extensive 

neuroimaging studies of headache disorders in the last decade3,19-32, functional imaging acquired 

during transient attack of migraine has been rare. Such studies can provide important insight into 

the pathogenesis of migraine headaches. Earlier PET studies have shown persisting activation in 

the brain stem and hypothalamus during migraine attacks33,34. MRI studies based on arterial spin 

labeling have also reported hemodynamic abnormality in the hypothalamus during treatment of 

migraine with triptan31,35,36. These findings have led to the hypothesis that the hypothalamic 

pathway might play a critical role in the pathogenesis of migraine attacks3,21,26. Results from 

neuroimaging and spectroscopy studies of TACs provided further evidence for this view37-39. For 

TACs and refractory migraine, hypothalamic deep brain stimulation has been tested as an 

alternative treatment and symptom reduction has been observed in some patients40,41. 

 

Taking advantages of the rich innervations and inter-nerve connections in the nasal mucous 

membrane, we have recently developed a non-invasive approach based on kinetic oscillatory 

stimulation (KOS) in the nasal cavity for the treatment of migraine42 and other chronic 

inflammatory disorders43. We have completed a randomized control trial (RCT) study 

(ClinicalTrials.gov Identifier: NCT01488110) based on 36 migraine patients and showed that 

KOS in the nasal cavity is an effective and safe method to relieve both acute pain and reduce the 

attack frequency in patients with migraine42. Multi-site clinical RCT studies for further testing its 

efficacy on acute migraine (ClinicalTrials.gov Identifier: NCT02185703) and prophylactic 

effects (ClinicalTrials.gov Identifier: NCT02243865) are currently under way. 
 

The purpose of this study is to improve our understanding of the neurological underpinnings for 

KOS treatment of acute migraine. Such understanding may provide guidance for further 

optimization of the procedure, and extension of KOS method for other clinical applications in 

addition to the treatment of migraine. We used blood oxygen-level dependent (BOLD) functional 

magnetic resonance imaging (fMRI) technique to study the alterations in the functional 

connectivity in the brain in response to the KOS treatment. We compare the resting-state 

functional connectivity differences between patients with acute migraine and normal volunteers 

before, during, and after KOS treatment. We demonstrate that migraine headache is associated 

with abnormal functional connectivity in the limbic system, which is the central brain network 

for ANS control, and KOS treatment can regulate the functional connectivity of the limbic 

system back to normal status.  
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Materials and Methods 
 

Recruitment and clinical evaluation of the migraine patients 
We recruited 10 adult patients (male/female=5/5, age=44±10) and 10 normal controls 

(male/female=5/5, age=43±11) into the study. The patients were previously diagnosed with 

migraine and experienced at least one migraine attack per month before participating in the 

study. The patients contacted the investigators by phone at typical signs of an attack 

development. Their headache has to fulfill the ICHD-2 criteria and reach at least 4.0 on the pain 

visual analog scale (VAS) 0-10. VAS 0 represents no pain and VAS 10 the highest level of 

unbearable pain. We administered the actual KOS treatment inside a clinical MRI scanner within 

30 minutes of arrival on site. Patients were asked not to take any medication before the KOS 

treatment44,45.  

 

The VAS assessment of pain was conducted immediate before the KOS treatment, every 10 

minute during treatment, at the end of the treatment, and 15 minutes after treatment. All patients 

were also asked to assess their general well-being immediately before and following the 

treatment. The pain level was also assessed 24 hours after by telephone interview. After the KOS 

treatment the patients were requested to continue with their VAS assessment of pain and report to 

the investigators. In case of migraine reoccurrence, we provided the patients with the option of 

repeated KOS treatments.  

 

KOS treatment 
KOS in the nasal cavity was administered using the same equipment described in our previous 

studies42-45. It consists of a controller and a single-use catheter. The catheter, coated with 

lubricating liquid (medical grade paraffin or water), was inserted into the nasal cavity on the side 

with the predominant pain. For active treatment of migraine, the tip was inflated and oscillated 

for 10 minutes at the pressure of 95mbar and frequency of 68Hz. After 10 minutes, the 

oscillations were terminated and the patients were asked to assess their pain level. If necessary, 

the catheter was deflated and moved to the other side, re-inflated, and the treatment continued for 

another 10 minutes.  

 

It should be noted that the device can deliver KOS inside the entire nasal cavity, extending deep 

in the proximity of the pterygopalatina ganglion (PPG). The settings (pressure and frequency) 

and treatment duration are based on previous clinical experience42,43, and optimized for each 

specific disorder and patient sub-group. For example, the optimal settings for the treatment of 

non-allergic rhinitis are 50mbar and 50Hz43, whereas 95mbar and 68Hz are more effective for 

migraine42,44,45.  

 

fMRI data acquisition 
The fMRI measurements were conducted using a 3T whole-body clinical MRI scanner 

(TIM Trio, Siemens Healthcare, Erlangen, Germany). A single-shot 2D gradient-recalled echo 

echo-planar imaging pulse sequence was used for the data acquisition with the following main 

acquisition parameters: 32 transverse slices, slice thickness=3.6 mm, TR/TE=2000/35ms, 

FOV=220mm, matrix size=64x64, flip angle=90°, 300 dynamic timeframes, and IPAT=2. A 32-

channel phased-array head coil was used for the signal reception. Foam padding was used to for 
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each subject to reduce the involuntary head motions.  

 

For each migraine subject, we conducted 4-5 sessions of BOLD fMRI scans lasting 10 minutes 

per session. The migraine headache was on going at the time of arrival for fMRI. Prior to the 

active KOS treatment, we performed two of control resting-state fMRI scans for each patient: A 

baseline measurement session without inserted probe (denoted as Base1), and another session 

with inserted catheter but no active oscillatory stimulations (denoted as Probe). Depending on the 

symptom assessment, we administrated one or two sessions of active KOS treatment for each 

patient inside the MRI scanner while continuous BOLD fMRI recording was also carried out 

(denoted as KOS). Only the data acquired during KOS treatment of the right nasal cavity entered 

into the analysis. A post-treatment control session was performed consisting of a resting-state 

fMRI scan after removing the KOS catheter (Base2).  

 

Since KOS in nasal cavity is a non-invasive treatment, for comparison, we applied the same 

treatment procedure and fMRI protocol described above to the normal controls.  

 

fMRI data pre-processing 
The resting-state fMRI datasets underwent a pipeline of preprocessing procedure, which were 

performed with AFNI (http://afni.nimh.nih.gov/afni) and FSL (http://www.fmrib.ox.ac.uk/fsl) 

programs with a bash wrapper shell46,47. The first 10 timeframes in each data set were removed to 

ensure signal steady state. After temporal de-spiking, six-parameter rigid body image registration 

was performed for motion correction. The average volume for each motion-corrected time series 

was used to generate a brain mask to minimize the inclusion of the extra-cerebral tissues. Spatial 

normalization to the standard MNI template was performed using a 12-parameter affine 

transformation and mutual-information cost function. During the affine transformation the 

imaging data were also re-sampled to isotropic resolution using a Gaussian kernel with Full 

width at half maximum (FWHM) of 4mm. Nuisance signal removal was achieved by voxel-wise 

regression using 16 regressors based on the motion correction parameters, average signal of the 

ventricles, average signal of the core white matter and their 1st order derivatives. After baseline 

trend removal up to the third order polynomial, effective band-pass filtering was performed using 

low-pass filtering at 0.08Hz. Local Gaussian smoothing up to FWHM=6mm was performed 

using an eroded gray matter mask.  

 

Group ICA and statistical assessment 
To create group level functional connectivity network parcellation we performed ICA on the pre-
processed resting-state fMRI data using the GIFT toolbox (mialab.mrn.org/software) 

implemented in MATLAB (MathWorks, Massachusetts, USA). It included a series of analytical 

steps similar to the standard group ICA procedure46,47. Individual datasets were first concatenated 

and then followed by computation of the individual ICA components and corresponding time 

courses. Data reduction based on principle component analysis was performed at the subject and 

group levels prior to ICA. The Infomax algorithm was then applied to estimate the aggregate 

independent components (ICs). Lastly, subject specific spatial maps and time courses were 

estimated using the direct group ICA back-reconstruction approach. To prepare the subject 

specific ICA results for higher-level statistical assessment, the subject specific ICA results were 

rescaled with z-transformation.  
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To investigate how the specified number of independent component (NIC) influences ICA 

results, we performed group ICA of the pooled resting-state fMRI data with NIC systematically 

incremented from 2 to 19. We manually inspected the spatial distributions of the one-sampled t-

test results of all ICs and the corresponding time courses to exclude possible artifacts. All non-

artifacts ICs are considered as potential resting-state functional networks (RFNs). A mask was 

created for each potential RFN by imposing a voxel-wise t-score threshold of t≥4.0 (p≥0.0008 

uncorrected) and a minimum cluster size S≥8. This guarantees a family-wise error rate (FWER) 

p≤0.01, as estimated by using the AFNI program, AlphaSim+ with following inputs: voxel-wise 

p<0.0008, FWHM=6.2 mm, and 106 iterations. FWHM=6.2mm was the estimated average by 

applying the AFNI program, 3dFWHMx, to the final smoothed fMRI data, which was quite close 

to FWHM=6mm used in the final smoothing procedure described above. 

 

Statistics 
We performed voxel-wise 3-way analysis of variance (ANOVA) of the ICA results to assess the 

functional connectivity differences between migraine patients and normal controls measured 

before, during and after the KOS treatment. We used the AFNI program 3dANOVA3 with the 

model option of type=5. The model has two fixed factors. One is the group difference between 

migraine patients and normal controls (DF=1) and the other is the KOS treatment effect occurred 

in the four scanning sessions: Base1, Probe, KOS, and Base2 (DF=3). The participants in each 

group were modeled as a random factor (denominator DF=36). With the 3-way ANOVA, we can 

also assess the interaction between the two fixed factors, and interrogate how the KOS treatment 

affected differently the functional connectivity in migraine patients and healthy volunteers. We 

performed voxel-wise 3-way ANOVA for each RFN and only voxels within the RFN mask are 

considered. 

 

The statistical significance of the 3-way ANOVA result for a given RFN was assessed first by 

setting an uncorrected voxel-wise threshold at p≤0.01, and then by imposing a minimum voxel 

cluster size of at least 20 contiguous voxels. The probability of random field of noise producing a 

cluster of size ≥20 was estimated at p≤0.05. This was concluded from the Monte-Carlo 

simulation result obtained by using the AFNI program, AlphaSim+. For the simulations we used 

following input parameters: voxel-wise threshold value p≤0.01, 106 iterations, the brain mask 

and FWHM=6.2mm. The final result for a given NIC is summarized as the non-zero mean of the 

ANOVA results for all potential RFNs. 
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RESULTS 
 
Table 1: Summary of the clinical information for the 10 migraine patients. 

Patient Sex Age Pain Treatment Date Outcome 

1 f 40 7 Right side 2011-01-07  migraine free 6 month 

2 m 37 6 Right side 2013-05-20 migraine free 3 months 

3 m 43 7 Right side 2013-05-27  migraine free 3 months 

4 f 35 8 Right side 2013-08-15  migraine free 6 months 

5 f 41 5 Right side 2013-08-29  migraine free 5 months 

6 f 53 6 Both side 2013-10-11  migraine free 6 months 

  7 m 61 8 Both side 2013-10-11  migraine free 5 months 

8 m 61 4 Right side 2014-11-27  migraine free 3 months 

9 m 42 5 Both side 2014-04-29  migraine free 3 months 

10 f 31 4 Both side 2015-03-19  migraine free 3 months 
 
 

As summarized in Table 1, all migraine patients were fully relieved from their acute headache 

symptoms after 10-20min KOS treatment inside the MRI scanner, which confirms the result 

from previous RCT study conducted outside the MRI scanner42. Furthermore, the patients 

experienced a prolonged period up to 3-6 months without migraine attacks, as assessed by 

telephone interviews after the fMRI study.  

 

 
Figure 1: The cross-sectional displays 
of the one-sampled t-score maps (t≥4.0 
and minimum cluster size of 20) for 

group ICA result at NIC=2. (a) The 
somatosensory motor network together 

with the auditory and visual systems. (b) 
The extended default mode network. 
The color bar indicates the t-score level. 

 

 

 

 

 

 

 

 

Figures 1-3 depict the one-sampled t-score maps of the group ICA results (FWER p≤0.01) for 

NIC=2-4, respectively. ICA parcellation with low NIC produced over-determined and 

functionally less specific networks. With increasing NIC, the detected RFNs become more 

functional specific. E.g. at the minimum NIC=2, we observed the primary sensory network 

consisting of the somatosensory motor, auditory and visual systems (Fig. 1a) and the extended 

default mode network (Fig. 1b). With NIC=3, we observed an additional network (Fig. 2c) 

consisting of several left-right mirrored frontoparietal areas and corresponding to the 

combination of the left and right control networks48,49. Further increasing NIC=4, we observe 
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that the primary visual network (Fig. 3d) is split off from the primary sensory network (Fig. 1a or 

Fig. 2a).  

 

 
Figure 2: The cross-sectional displays of the 
one-sampled t-score maps (t≥4.0 and 

minimum cluster size of 20) for group ICA 
result at NIC=3. Besides the primary sensory 
network consisting of the somatosensory 

motor, auditory, and visual systems (a) and 
the extended default mode network (b) 

observed at NIC=2, the symmetrically 
mirrored left- and right-control RFN (c) is 
also seen. The color bar indicates the t-score 

level.  
 

 

 

 

 

 

 
 

Figure 3: The cross-sectional displays of 

the one-sampled t-score maps (t≥4.0 and 
minimum cluster size of 20) for group ICA 
result at NIC=4. Compared with the over 

determined ICs observed at NIC=3, the 
primary sensory network is split into two 

separate ICs. (a) The default mode network. 
(b) The somatosensory motor network. (c) 
The visual system. (d) The symmetrically 

mirrored left- and right-control RFN. The 
color bar indicates the t-score level. 
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The 3-way ANOVA modeling of the ICA results at low NIC produced very little statistical 

contrast. When NIC≥7, the ICA parcellation becomes sufficiently specific and renders significant 

statistical contrast in the 3-way ANOVA. Figures 4-6 depict the 3-way ANOVA results of the 

ICA results at NIC=10. As shown in Fig. 4 and Table 2, the brain regions with significant group 

difference in functional connectivity include mainly anterior cingulate, left inferior frontal gyrus, 

and middle/superior temporal gyri. The boxplots of the averages for the regions of interest 

(ROIs) with significant group difference (see Fig. 4) indicate that migraines patients have 

reduced intrinsic activity in involved functional networks (Figs. 7a and b). 

 

 

  
Figure 4: Brain regions with 
significant group differences 

(migraine patients versus 
healthy controls) in functional 
connectivity at NIC=10. The 

statistical significance was 
assessed with the 3-way 

ANOVA (model type=5) at 
voxel-wise F-score threshold 
F≥7.385 (numerator DF=1, 

denominator DF=36, 
uncorrected p≤0.01) and a 
minimum cluster size of 20 

contiguous voxels. The color bar 
indicates the F-score level. 

 

 

 
Figure 5: Brain regions with 

significant KOS treatment effect 
on functional connectivity at 

NIC=10. The statistical 
significance was assessed with 
the 3-way ANOVA (model 

type=5) at voxel-wise F-score 
threshold F≥4.373 (numerator 
DF=3, denominator DF=36, 

uncorrected p≤0.01) and a 
minimum cluster size of 20 

contiguous voxels. The color bar 
indicates the F-score level.  
 

 
 

9 

The 3-way ANOVA modeling of the ICA results at low NIC produced very little statistical 

contrast. When NIC≥7, the ICA parcellation becomes sufficiently specific and renders significant 

statistical contrast in the 3-way ANOVA. Figures 4-6 depict the 3-way ANOVA results of the 

ICA results at NIC=10. As shown in Fig. 4 and Table 2, the brain regions with significant group 

difference in functional connectivity include mainly anterior cingulate, left inferior frontal gyrus, 

and middle/superior temporal gyri. The boxplots of the averages for the regions of interest 

(ROIs) with significant group difference (see Fig. 4) indicate that migraines patients have 

reduced intrinsic activity in involved functional networks (Figs. 7a and b). 

 

 

  
Figure 4: Brain regions with 
significant group differences 

(migraine patients versus 
healthy controls) in functional 
connectivity at NIC=10. The 

statistical significance was 
assessed with the 3-way 

ANOVA (model type=5) at 
voxel-wise F-score threshold 
F≥7.385 (numerator DF=1, 

denominator DF=36, 
uncorrected p≤0.01) and a 
minimum cluster size of 20 

contiguous voxels. The color bar 
indicates the F-score level. 

 

 

 
Figure 5: Brain regions with 

significant KOS treatment effect 
on functional connectivity at 

NIC=10. The statistical 
significance was assessed with 
the 3-way ANOVA (model 

type=5) at voxel-wise F-score 
threshold F≥4.373 (numerator 
DF=3, denominator DF=36, 

uncorrected p≤0.01) and a 
minimum cluster size of 20 

contiguous voxels. The color bar 
indicates the F-score level.  
 



 
 

10 

Figure 6: Brain regions with 
significant interaction between 

the two main fixed factors. That 
is the brain regions where the 
KOS treatment resulted in 

significantly difference in 
functional connectivity (at 

NIC=10) between migraine 
patients and normal controls. 
The statistical significance was 

assessed with the 3-way ANOVA 
(model type=5) at voxel-wise F-
score threshold F≥4.373 

(numerator DF=3, denominator 
DF=36, p≤0.01 uncorrected) and 

a minimum cluster size of 20 
contiguous voxels. The color bar 
indicates the F-score level. 

 

 
Table 2: List of brain regions with significant statistical contrast (FWER p≤0.05) as identified by voxel-wise 
3-way ANOVA modeling of the ICA results with NIC=10. X, Y, and Z represent the focal locations of ROIs in 
the standard MNI coordinates. The referred voxel size is 4 mm isotropic. 

Statistical 
Contrast 

ROI Volume  

(voxel) 

X 

(mm) 

Y 

(mm) 

Z 

(mm) 

LL/R    Location label 

 

Group 

1 110 0.0 -28.0 +34.0 B Anterior cingulate 

2 49 +16.0 -9.0 -17.0 L Inferior frontal gyrus 
3 31 -49.0 -1.0 -33.0 R Middle/superior temporal gyri 

 
 
 

 
 
 

 
Treatment 

4 508 +52.0 +12.0 +32.0 L Pre- postcentral gyrus 
5 411 -60.0 +14.0   +35.0 R Pre- postcentral gyrus 
6 126 0.0 -13.0 +37.0 B Anterior cingulate 

7 93 +37.0 -12.0 +5.0 L insula, inferior frontal gyrus 
8 81 -38.0 -14.0 +2.0 R insula, inferior frontal gyrus 
9 68 -52.0 -8.0 -16.0 R Superior temporal gyrus 

10 48 -33.0 -48.0 +26.0 R middle prefrontal gyrus 
11 31 -31.0 -22.0 +50.0 R middle prefrontal gyrus 

12 48 +32.0 -45.0 +16.0 L middle prefrontal gyrus 
13 20 +41.0 -28.0 +41.0 L middle prefrontal gyrus 
14 32 0.0 +5.0 +9.0 B Thalamus 

15 23 0.0 -1.0 -14.0 B Hypothalamus 
16 34 -19.0 +96.0 +7.0 R Cuneus 
17 51 32.0 +80.0 -11.0 L Lingual gyrus 

18 22 -38.0 +75.0 +43.0 R Superior parietal gyrus 

 

Interaction 

19 55 -15.0 +79.0 -4.0 R Lingual gyrus 

20 24 -11.0 +56.0 +31.0 R Insula 
21 21 -40.0 -31.0 -9.0 R precuneus 
22 20 -44.0 +28.0 +19.0 R Inferior frontal gyrus 

 

 

As shown Fig. 5 and Table 2, KOS treatment resulted in substantial functional connectivity 

changes in the limbic and primary sensory systems. The involved brain regions in the limbic 

system include anterior cingulate, anterior insula cortex, inferior frontal gyrus, thalamus, and 
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22 20 -44.0 +28.0 +19.0 R Inferior frontal gyrus 

 

 

As shown Fig. 5 and Table 2, KOS treatment resulted in substantial functional connectivity 

changes in the limbic and primary sensory systems. The involved brain regions in the limbic 

system include anterior cingulate, anterior insula cortex, inferior frontal gyrus, thalamus, and 
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hypothalamus. These brain areas are important components of the cerebral central control 

network for the autonomic nervous system. Boxplots of the average IC coefficients for the 

relevant ROIs shown in Figs. 7c and d. It is clear that KOS treatment up-regulated the intrinsic 

functional activity during and after the treatment in a number of broad brain regions, such as the 

limbic and primary sensory systems. The trend of change with KOS procedure is quite similar 

for both groups of participants. However, there are a few smaller regions shown in Figs. 6, 7e 

and 7f that exhibited the opposite trend. The involved brain regions include lingual gyrus, dosal 

posterior insula, precuneus, and inferior frontal gyrus. The KOS treatment down-regulated the 

relatively high intrinsic activity in migraine patients (Figs. 7e and f).  

 

 
Figure 7: Boxplots of the ROI averages of IC coefficients 
for brain regions with significant statistical contrasts 

(FWER p≤0.05) as detected by 3-way ANOVA modeling 
of the group ICA results at NIC=10. The group difference 
between normal controls (a) and migraine patients (b), 

KOS treatment effect (c and d), and interaction between 
the two main fixed factors (e and f) are displayed. 

 

 

 

 

 
 

 

 

 

 

NIC affects the ICA outputs and, therefore, the ANOVA results derived from it as illustrated by 

the supplementary materials for NIC=11 shown in Figs. S1-3. A series of ANOVA modeling of 

the ICA results for NIC=2-19 demonstrate that most of the relevant regions displayed stable 

ANOVA statistical contrast irrespective of the input NIC parameter, once NIC≥7.  
 

DISCUSSION  
 

Important findings of the study 
Major novel findings of the study are the following: 1) ICA result is directly influenced by the 

input parameter NIC, and NIC has to be sufficiently high to extract functionally specific 

connectivity networks for interrogation of clinically relevant questions; 2) Migraines patients 

have altered intrinsic activity in anterior cingulate, inferior frontal gyrus, and middle/superior 

temporal gyrus. 3) KOS treatment in the nasal cavity can effectively relieve acute migraine 

symptoms and reduce attack frequency. 4) KOS treatment results in up-regulated intrinsic 

functional activity in a number of broad brain regions of the limbic and somatosensory systems, 

while down-regulating a few smaller brain areas such as the inferior frontal gyrus and dorsal 

posterior insula. These areas have recently been identified as a specific brain regions associated 

with painful experience and potential therapeutic targets50. 
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KOS of the nasal mucosa with low frequency mechanical vibrations was initially developed to 

provide an alternative therapy for non-allergic rhinitis43. Completed single- and multi-site RCT 

studies (ClinicalTrials.gov Identifier: NCT01844336) have demonstrated that a single KOS 

treatment has significant impact on reducing the nasal symptoms of persistent rhinitis43. The 

effect was most pronounced on the days immediately following treatment, but was still present 

two weeks post-treatment. More recently, an exploratory trials study to test the efficacy of KOS 

treatment on acute migraine patients demonstrated that this treatment has a surprisingly fast-

acting remedy for acute migraine pain42. Result from the present study confirms that KOS is 

indeed an effective and safe treatment for acute migraine42,44,45. Comparing with existing 

treatments for migraine, KOS therapy has the following benefits: 1) Easy to administer; 2) Well 

tolerated by the patients. 3) No involvement of pharmaceuticals. 4) Very few and mild side 

effects. KOS in the nasal cavity has the potential to offer a viable alternative, both for acute 

symptom relief and long-term prevention. 

 

Underlying neurophysiological mechanisms for KOS treatment of migraine 
The mechanisms of KOS treatment have not been fully understood. Besides the altered intrinsic 

functional activities observed in the present study, the measurements of heart rate variability 

(HRV) during the KOS treatments of migraine patients (not shown) also indicate active 

responses in the parasympathetic tone. It is evident that the intervention has very positive impact 

on the normal functioning of ANS, possibly by restoring homeostasis in the basal parts of the 

brain and the hypothalamic area, which are responsible for short-term ANS response.  

 

It has been previously demonstrated that electrical stimulation of the PPG can mitigate severe 

symptoms in primary headaches40,41, implying that the stimulation of PPG by the KOS treatment 

in the nasal cavity is at least partly responsible for the migraine pain relief through the trigeminal 

parasympathetic reflex. Recent studies provided new anatomic insight into the PPG innervation 

of the posterolateral nasal mucosa51-53. Neurons project from the PPG, via multiple individual 

postganglionic rami, to supply the nasal mucosa51 and is directly connected to hypothalamus 

through the parasympathetic fibers from the superior salivatory nucleus52,53. Growing evidence 

from functional imaging studies indicates that hypothalamus plays a very important role in the 

pathogenesis of migraine attacks3,19-32,35,54. Migraine patients seem to have a normally regulated 

ANS when symptom free between attacks. However, during headache attacks they suffer 

typically the symptoms of an unbalanced ANS.  

 

Preliminary studies of patients with chronic inflammatory disorders, such as Wegener's 

granulomatosis and dialysis patients with kidney failure (not shown), indicate that KOS in the 

nasal cavity may have promising anti-inflammatory efficacy. This suggests that KOS treatment 

may has similar impact as the electric stimulation of the vagus nerve55-57 and might also involve 

the activation of the cholinergic anti-inflammatory pathway (CAP)58,59 through the inter-

connections between cranial nerves in the naval cavity. This aspect will be vigorously 

investigated in the near future. 

 

The main strength and weakness of the study  
The strengths of this study include the following: 1) KOS treatment of on-going acute migraine 

was investigated inside MRI scanner with simultaneous BOLD fMRI recordings. 2) Non-

invasive KOS treatment was also conducted in normal volunteers with identical procedure, 
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allowing for direct comparison between migraine patients and normal controls. 3) Voxel-wise 

data-driven analysis based on 3-way ANOVA modeling of the ICA results was conducted 

systematically for a wide range of NIC=2-19.  

 

The main weaknesses of the study is the following: 1) Data analysis based on ICA does not 

provide quantitative metrics for neurophysiology activity, which renders the results difficult to 

interpret and dependent on the input value for NIC. 2) There was no data available for migraine 

patients under migraine-free period. A crossover study design with the patients as their own 

controls has definitely its advantage for identifying possible prophylactic effect of KOS 

treatment. 3) Simultaneous monitoring of HRV during fMRI measurements would be very useful 

for more detailed interpretation of the neurophysiological mechanisms underlying KOS 

treatment of acute migraine. However, electrocardiography recording during fMRI is currently 

hampered by the interfering artifacts caused by the pulsing magnetic field gradients. 

 

Conclusion 
 

The result of this study confirms that KOS treatment is effective, both in relieving acute migraine 

headache and reducing attack frequency. Migraine is associated with aberrant intrinsic functional 

activity in the limbic and primary sensory systems. KOS in the nasal cavity can regulate the 

intrinsic functional connectivity in the limbic system and restore favorably the 

neurophysiological homeostasis in the ANS.  

 

Acknowledgements 
 

Experimental assistance and stimulating discussion with Dr. R. Hallin are gratefully 

acknowledged. This study was supported by research grants from the Swedish Research Council 

and ALF Medicine in Stockholm Province. The authors also want to acknowledge the support 

from Karolinska Institute and Karolinska University Hospital. 

  

 
 

13 

allowing for direct comparison between migraine patients and normal controls. 3) Voxel-wise 

data-driven analysis based on 3-way ANOVA modeling of the ICA results was conducted 

systematically for a wide range of NIC=2-19.  

 

The main weaknesses of the study is the following: 1) Data analysis based on ICA does not 

provide quantitative metrics for neurophysiology activity, which renders the results difficult to 

interpret and dependent on the input value for NIC. 2) There was no data available for migraine 

patients under migraine-free period. A crossover study design with the patients as their own 

controls has definitely its advantage for identifying possible prophylactic effect of KOS 

treatment. 3) Simultaneous monitoring of HRV during fMRI measurements would be very useful 

for more detailed interpretation of the neurophysiological mechanisms underlying KOS 

treatment of acute migraine. However, electrocardiography recording during fMRI is currently 

hampered by the interfering artifacts caused by the pulsing magnetic field gradients. 

 

Conclusion 
 

The result of this study confirms that KOS treatment is effective, both in relieving acute migraine 

headache and reducing attack frequency. Migraine is associated with aberrant intrinsic functional 

activity in the limbic and primary sensory systems. KOS in the nasal cavity can regulate the 

intrinsic functional connectivity in the limbic system and restore favorably the 

neurophysiological homeostasis in the ANS.  

 

Acknowledgements 
 

Experimental assistance and stimulating discussion with Dr. R. Hallin are gratefully 

acknowledged. This study was supported by research grants from the Swedish Research Council 

and ALF Medicine in Stockholm Province. The authors also want to acknowledge the support 

from Karolinska Institute and Karolinska University Hospital. 

  



 
 

14 

References 

 
1. Tfelt-Hansen PC, History of migraine with aura and cortical spreading depression from 1941 and onwards, 

Cephalalgia 30:780 (2009). 
2. Goadsby PJ, Neuroimaging in Headache, Microscopy Res Tech 53:179 (2001). 
3. Constance MM, Megan W, Blaise F, et al, Topiramate raises anterior cingulate cortex glutamine levels in 

healthy men; a 4.0 T magnetic resonance spectroscopy study, Psychopharmacology 188:236 (2006). 
4. Wilkins AJ. Reading through colour. Chichester: Wiley, 2003. 
5. Welch KM et al, The concept of migraine as a state of central neuronal hyperexcitability. Neurol Clin 8:817 

(1990). 
6. Siniatchkin M, et al, Abnormal Changes of Synaptic Excitability in Migraine with Aura, Cerebral Cortex, 

November 11, (2011). 
7. Kato Y Araki N, Matsuda H, et al, Arterial spin-labeled MRI study of migraine attacks treated with rizatriptan, J 

Headache Pain 11:255(2010) 
8 Lance JW, Classification, Headache: mechanism and principles of therapy, with particular reference to 

migraine, Recent Prog Med 80:673 (1989) 
9. Prog Med 80:673–680Cohen AS, Matharu, MS, Goadsby PJ, Trigeminal Autonomic Cephalalgias: Current and 

Future Treatments, Headache, 969 (2007). 
10. Luh W, Talagala LS, Li TQ, Pseudo-continuous Arterial Spin Labeling at 7T for Human Brain: Estimation and 

Correction for Off-resonance Effects Using a Prescan, Magn Reson. Med, revised (2012).  
11. Li TQ et al, Inter- And Intra-Subject Variability of CBF Measurements Using PCASL Method, Proc. Int. Soc. 

Magn. Reson. Med. Stockholm, 2010 
12. Luh WM, Li TQ, Wong EC, Bandettini PA. Pseudo-continuous Arterial Spin Labeling at 7T. Proc. Int. Soc. 

Magn. Reson. Med. Toronto, P.3339 (2008). 
13. Nordin LE, Li TQ et al. Detection of exposure related cortical responses by amphetamine using pCASL and 

pharmacokinetik/pharmacodynamic dose modeling, Proc. Int. Soc. Magn. Reson. Med. Salt Lake City (2011).  
1. Scher AI, Bigal ME, Lipton RB. Comorbidity of migraine. Curr Opin Neurol 2005;18:305-10. 
2. Friedman DI, De ver Dye T. Migraine and the environment. Headache 2009;49:941-52. 
3. Schwedt TJ, Chiang CC, Chong CD, Dodick DW. Functional MRI of migraine. Lancet Neurol 2015;14:81-91. 
4. Geraud G, Donnet A. [Migraine and hypothalamus]. Rev Neurol (Paris) 2013;169:372-9. 
5. Melek IM, Seyfeli E, Duru M, Duman T, Akgul F, Yalcin F. Autonomic dysfunction and cardiac repolarization 

abnormalities in patients with migraine attacks. Med Sci Monit 2007;13:RA47-9. 
6. Ebinger F, Kruse M, Just U, Rating D. Cardiorespiratory regulation in migraine. Results in children and 

adolescents and review of the literature. Cephalalgia 2006;26:295-309. 
7. Vollbracht S, Rapoport AM. New treatments for headache. Neurol Sci 2014;35 Suppl 1:89-97. 
8. Dussor G. Serotonin, 5HT1 agonists, and migraine: new data, but old questions still not answered. Curr Opin 

Support Palliat Care 2014;8:137-42. 
9. Hoffmann J, Goadsby PJ. Emerging targets in migraine. CNS Drugs 2014;28:11-7. 
10. Raddant AC, Russo AF. Reactive oxygen species induce procalcitonin expression in trigeminal ganglia 

glia. Headache 2014;54:472-84. 
11. Friberg L, Olesen J, Lassen NA, Olsen TS, Karle A. Cerebral oxygen extraction, oxygen consumption, and 

regional cerebral blood flow during the aura phase of migraine. Stroke; a journal of cerebral circulation 
1994;25:974-9. 

12. Lacombe P, Sercombe R, Correze JL, Springhetti V, Seylaz J. Spreading depression induces prolonged 
reduction of cortical blood flow reactivity in the rat. Exp Neurol 1992;117:278-86. 

13. Kroger IL, May A. Triptan-induced disruption of trigemino-cortical connectivity. Neurology 
2015;84:2124-31. 

14. Danese E, Montagnana M, Lippi G. Platelets and migraine. Thromb Res 2014;134:17-22. 
15. Hanington E. Migraine: the platelet hypothesis after 10 years. Biomed Pharmacother 1989;43:719-26. 
16. Gawel MJ, Rose FC. Platelet function in migraineurs. Adv Neurol 1982;33:237-42. 

 
 

14 

References 

 
1. Tfelt-Hansen PC, History of migraine with aura and cortical spreading depression from 1941 and onwards, 

Cephalalgia 30:780 (2009). 
2. Goadsby PJ, Neuroimaging in Headache, Microscopy Res Tech 53:179 (2001). 
3. Constance MM, Megan W, Blaise F, et al, Topiramate raises anterior cingulate cortex glutamine levels in 

healthy men; a 4.0 T magnetic resonance spectroscopy study, Psychopharmacology 188:236 (2006). 
4. Wilkins AJ. Reading through colour. Chichester: Wiley, 2003. 
5. Welch KM et al, The concept of migraine as a state of central neuronal hyperexcitability. Neurol Clin 8:817 

(1990). 
6. Siniatchkin M, et al, Abnormal Changes of Synaptic Excitability in Migraine with Aura, Cerebral Cortex, 

November 11, (2011). 
7. Kato Y Araki N, Matsuda H, et al, Arterial spin-labeled MRI study of migraine attacks treated with rizatriptan, J 

Headache Pain 11:255(2010) 
8 Lance JW, Classification, Headache: mechanism and principles of therapy, with particular reference to 

migraine, Recent Prog Med 80:673 (1989) 
9. Prog Med 80:673–680Cohen AS, Matharu, MS, Goadsby PJ, Trigeminal Autonomic Cephalalgias: Current and 

Future Treatments, Headache, 969 (2007). 
10. Luh W, Talagala LS, Li TQ, Pseudo-continuous Arterial Spin Labeling at 7T for Human Brain: Estimation and 

Correction for Off-resonance Effects Using a Prescan, Magn Reson. Med, revised (2012).  
11. Li TQ et al, Inter- And Intra-Subject Variability of CBF Measurements Using PCASL Method, Proc. Int. Soc. 

Magn. Reson. Med. Stockholm, 2010 
12. Luh WM, Li TQ, Wong EC, Bandettini PA. Pseudo-continuous Arterial Spin Labeling at 7T. Proc. Int. Soc. 

Magn. Reson. Med. Toronto, P.3339 (2008). 
13. Nordin LE, Li TQ et al. Detection of exposure related cortical responses by amphetamine using pCASL and 

pharmacokinetik/pharmacodynamic dose modeling, Proc. Int. Soc. Magn. Reson. Med. Salt Lake City (2011).  
1. Scher AI, Bigal ME, Lipton RB. Comorbidity of migraine. Curr Opin Neurol 2005;18:305-10. 
2. Friedman DI, De ver Dye T. Migraine and the environment. Headache 2009;49:941-52. 
3. Schwedt TJ, Chiang CC, Chong CD, Dodick DW. Functional MRI of migraine. Lancet Neurol 2015;14:81-91. 
4. Geraud G, Donnet A. [Migraine and hypothalamus]. Rev Neurol (Paris) 2013;169:372-9. 
5. Melek IM, Seyfeli E, Duru M, Duman T, Akgul F, Yalcin F. Autonomic dysfunction and cardiac repolarization 

abnormalities in patients with migraine attacks. Med Sci Monit 2007;13:RA47-9. 
6. Ebinger F, Kruse M, Just U, Rating D. Cardiorespiratory regulation in migraine. Results in children and 

adolescents and review of the literature. Cephalalgia 2006;26:295-309. 
7. Vollbracht S, Rapoport AM. New treatments for headache. Neurol Sci 2014;35 Suppl 1:89-97. 
8. Dussor G. Serotonin, 5HT1 agonists, and migraine: new data, but old questions still not answered. Curr Opin 

Support Palliat Care 2014;8:137-42. 
9. Hoffmann J, Goadsby PJ. Emerging targets in migraine. CNS Drugs 2014;28:11-7. 
10. Raddant AC, Russo AF. Reactive oxygen species induce procalcitonin expression in trigeminal ganglia 

glia. Headache 2014;54:472-84. 
11. Friberg L, Olesen J, Lassen NA, Olsen TS, Karle A. Cerebral oxygen extraction, oxygen consumption, and 

regional cerebral blood flow during the aura phase of migraine. Stroke; a journal of cerebral circulation 
1994;25:974-9. 

12. Lacombe P, Sercombe R, Correze JL, Springhetti V, Seylaz J. Spreading depression induces prolonged 
reduction of cortical blood flow reactivity in the rat. Exp Neurol 1992;117:278-86. 

13. Kroger IL, May A. Triptan-induced disruption of trigemino-cortical connectivity. Neurology 
2015;84:2124-31. 

14. Danese E, Montagnana M, Lippi G. Platelets and migraine. Thromb Res 2014;134:17-22. 
15. Hanington E. Migraine: the platelet hypothesis after 10 years. Biomed Pharmacother 1989;43:719-26. 
16. Gawel MJ, Rose FC. Platelet function in migraineurs. Adv Neurol 1982;33:237-42. 



 
 

15 

17. Tajti J, Szok D, Majlath Z, Tuka B, Csati A, Vecsei L. Migraine and neuropeptides. Neuropeptides 
2015;52:19-30. 

18. Alstadhaug KB. Histamine in migraine and brain. Headache 2014;54:246-59. 
19. Maniyar FH, Sprenger T, Monteith T, Schankin CJ, Goadsby PJ. The premonitory phase of migraine--

what can we learn from it? Headache 2015;55:609-20. 
20. Zielman R, Teeuwisse WM, Bakels F, et al. Biochemical changes in the brain of hemiplegic migraine 

patients measured with 7 tesla 1H-MRS. Cephalalgia 2014;34:959-67. 
21. Moulton EA, Becerra L, Johnson A, Burstein R, Borsook D. Altered hypothalamic functional connectivity 

with autonomic circuits and the locus coeruleus in migraine. PloS one 2014;9:e95508. 
22. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory 

phase of nitroglycerin-triggered migraine attacks. Brain 2014;137:232-41. 
23. Lipton RB, Buse DC, Hall CB, et al. Reduction in perceived stress as a migraine trigger: testing the "let-

down headache" hypothesis. Neurology 2014;82:1395-401. 
24. Kroger IL, May A. Central effects of acetylsalicylic acid on trigeminal-nociceptive stimuli. The journal of 

headache and pain 2014;15:59. 
25. Sahler K. Hemicrania continua: functional imaging and clinical features with diagnostic implications. 

Headache 2013;53:871-2. 
26. Robert C, Bourgeais L, Arreto CD, et al. Paraventricular hypothalamic regulation of trigeminovascular 

mechanisms involved in headaches. J Neurosci 2013;33:8827-40. 
27. Morelli N, Rota E, Gori S, et al. Brainstem activation in cluster headache: an adaptive behavioural 

response? Cephalalgia 2013;33:416-20. 
28. May A. Pearls and pitfalls: neuroimaging in headache. Cephalalgia 2013;33:554-65. 
29. Charles A. The evolution of a migraine attack - a review of recent evidence. Headache 2013;53:413-9. 
30. Seifert CL, Magon S, Staehle K, et al. A case-control study on cortical thickness in episodic cluster 

headache. Headache 2012;52:1362-8. 
31. Arkink EB, Bleeker EJ, Schmitz N, et al. Cerebral perfusion changes in migraineurs: a voxelwise 

comparison of interictal dynamic susceptibility contrast MRI measurements. Cephalalgia 2012;32:279-88. 
32. Montagna P, Pierangeli G, Cortelli P. The primary headaches as a reflection of genetic darwinian 

adaptive behavioral responses. Headache 2010;50:273-89. 
33. Geraud G, Denuelle M, Fabre N, Payoux P, Chollet F. [Positron emission tomographic studies of 

migraine]. Revue neurologique 2005;161:666-70. 
34. Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ. Brainstem activation specific to migraine 

headache. Lancet 2001;357:1016-7. 
35. Kato Y, Araki N, Matsuda H, Ito Y, Suzuki C. Arterial spin-labeled MRI study of migraine attacks treated 

with rizatriptan. The journal of headache and pain 2010;11:255-8. 
36. Pollock JM, Deibler AR, Burdette JH, et al. Migraine associated cerebral hyperperfusion with arterial 

spin-labeled MR imaging. Ajnr 2008;29:1494-7. 
37. Lodi R, Pierangeli G, Tonon C, et al. Study of hypothalamic metabolism in cluster headache by proton 

MR spectroscopy. Neurology 2006;66:1264-6. 
38. Wang SJ, Lirng JF, Fuh JL, Chen JJ. Reduction in hypothalamic 1H-MRS metabolite ratios in patients with 

cluster headache. J Neurol Neurosurg Psychiatry 2006;77:622-5. 
39. Iacovelli E, Coppola G, Tinelli E, Pierelli F, Bianco F. Neuroimaging in cluster headache and other 

trigeminal autonomic cephalalgias. The journal of headache and pain 2012;13:11-20. 
40. Altinay M, Estemalik E, Malone DA, Jr. A comprehensive review of the use of deep brain stimulation 

(DBS) in treatment of psychiatric and headache disorders. Headache 2015;55:345-50. 
41. Palmisani S, Al-Kaisy A, Arcioni R, et al. A six year retrospective review of occipital nerve stimulation 

practice--controversies and challenges of an emerging technique for treating refractory headache 
syndromes. The journal of headache and pain 2013;14:67. 

42. Juto JE, Hallin R. Kinetic oscillation stimulation as treatment of acute migraine. A randomized, 
controlled pilot study. Headache 2015;55:11. 

 
 

15 

17. Tajti J, Szok D, Majlath Z, Tuka B, Csati A, Vecsei L. Migraine and neuropeptides. Neuropeptides 
2015;52:19-30. 

18. Alstadhaug KB. Histamine in migraine and brain. Headache 2014;54:246-59. 
19. Maniyar FH, Sprenger T, Monteith T, Schankin CJ, Goadsby PJ. The premonitory phase of migraine--

what can we learn from it? Headache 2015;55:609-20. 
20. Zielman R, Teeuwisse WM, Bakels F, et al. Biochemical changes in the brain of hemiplegic migraine 

patients measured with 7 tesla 1H-MRS. Cephalalgia 2014;34:959-67. 
21. Moulton EA, Becerra L, Johnson A, Burstein R, Borsook D. Altered hypothalamic functional connectivity 

with autonomic circuits and the locus coeruleus in migraine. PloS one 2014;9:e95508. 
22. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory 

phase of nitroglycerin-triggered migraine attacks. Brain 2014;137:232-41. 
23. Lipton RB, Buse DC, Hall CB, et al. Reduction in perceived stress as a migraine trigger: testing the "let-

down headache" hypothesis. Neurology 2014;82:1395-401. 
24. Kroger IL, May A. Central effects of acetylsalicylic acid on trigeminal-nociceptive stimuli. The journal of 

headache and pain 2014;15:59. 
25. Sahler K. Hemicrania continua: functional imaging and clinical features with diagnostic implications. 

Headache 2013;53:871-2. 
26. Robert C, Bourgeais L, Arreto CD, et al. Paraventricular hypothalamic regulation of trigeminovascular 

mechanisms involved in headaches. J Neurosci 2013;33:8827-40. 
27. Morelli N, Rota E, Gori S, et al. Brainstem activation in cluster headache: an adaptive behavioural 

response? Cephalalgia 2013;33:416-20. 
28. May A. Pearls and pitfalls: neuroimaging in headache. Cephalalgia 2013;33:554-65. 
29. Charles A. The evolution of a migraine attack - a review of recent evidence. Headache 2013;53:413-9. 
30. Seifert CL, Magon S, Staehle K, et al. A case-control study on cortical thickness in episodic cluster 

headache. Headache 2012;52:1362-8. 
31. Arkink EB, Bleeker EJ, Schmitz N, et al. Cerebral perfusion changes in migraineurs: a voxelwise 

comparison of interictal dynamic susceptibility contrast MRI measurements. Cephalalgia 2012;32:279-88. 
32. Montagna P, Pierangeli G, Cortelli P. The primary headaches as a reflection of genetic darwinian 

adaptive behavioral responses. Headache 2010;50:273-89. 
33. Geraud G, Denuelle M, Fabre N, Payoux P, Chollet F. [Positron emission tomographic studies of 

migraine]. Revue neurologique 2005;161:666-70. 
34. Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ. Brainstem activation specific to migraine 

headache. Lancet 2001;357:1016-7. 
35. Kato Y, Araki N, Matsuda H, Ito Y, Suzuki C. Arterial spin-labeled MRI study of migraine attacks treated 

with rizatriptan. The journal of headache and pain 2010;11:255-8. 
36. Pollock JM, Deibler AR, Burdette JH, et al. Migraine associated cerebral hyperperfusion with arterial 

spin-labeled MR imaging. Ajnr 2008;29:1494-7. 
37. Lodi R, Pierangeli G, Tonon C, et al. Study of hypothalamic metabolism in cluster headache by proton 

MR spectroscopy. Neurology 2006;66:1264-6. 
38. Wang SJ, Lirng JF, Fuh JL, Chen JJ. Reduction in hypothalamic 1H-MRS metabolite ratios in patients with 

cluster headache. J Neurol Neurosurg Psychiatry 2006;77:622-5. 
39. Iacovelli E, Coppola G, Tinelli E, Pierelli F, Bianco F. Neuroimaging in cluster headache and other 

trigeminal autonomic cephalalgias. The journal of headache and pain 2012;13:11-20. 
40. Altinay M, Estemalik E, Malone DA, Jr. A comprehensive review of the use of deep brain stimulation 

(DBS) in treatment of psychiatric and headache disorders. Headache 2015;55:345-50. 
41. Palmisani S, Al-Kaisy A, Arcioni R, et al. A six year retrospective review of occipital nerve stimulation 

practice--controversies and challenges of an emerging technique for treating refractory headache 
syndromes. The journal of headache and pain 2013;14:67. 

42. Juto JE, Hallin R. Kinetic oscillation stimulation as treatment of acute migraine. A randomized, 
controlled pilot study. Headache 2015;55:11. 



 
 

16 

43. Juto JE, Axelsson M. Kinetic oscillation stimulation as treatment of non-allergic rhinitis: an RCT study. 
Acta oto-laryngologica 2014;134:506-12. 

44. Li TQ, Yang Y, Hallin R, Juto JE. Novel intervention for acute migraine headache investigated by BOLD 
fMRI. Proc ISMRM 2014;2014:2016. 

45. Li TQ, Yang Y, Hallin R, Juto JE. Kinetic oscillatory stimulation (KOS) in the nasal cavity studied by 
resting-state fMRI. Proc ISMRM 2015;2015:6193. 

46. Wang Y, Li TQ. Analysis of whole-brain resting-state FMRI data using hierarchical clustering approach. 
PloS one 2013;8:e76315. 

47. Wang Y, Li TQ. Dimensionality of ICA in resting-state fMRI investigated by feature optimized 
classification of independent components with SVM. Front Hum Neurosci 2015;9:259. 

48. Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain's functional architecture during 
activation and rest. Proceedings of the National Academy of Sciences of the United States of America 
2009;106:13040-5. 

49. Schultz AP, Chhatwal JP, Huijbers W, et al. Template based rotation: a method for functional 
connectivity analysis with a priori templates. NeuroImage 2014;102 Pt 2:620-36. 

50. Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I. The dorsal posterior insula subserves a 
fundamental role in human pain. Nat Neurosci 2015;18:499-500. 

51. Bleier BS, Schlosser RJ. Endoscopic anatomy of the postganglionic pterygopalatine innervation of the 
posterolateral nasal mucosa. Int Forum Allergy Rhinol 2011;1:113-7. 

52. Li C, Fitzgerald ME, Del Mar N, et al. The identification and neurochemical characterization of central 
neurons that target parasympathetic preganglionic neurons involved in the regulation of choroidal blood flow 
in the rat eye using pseudorabies virus, immunolabeling and conventional pathway tracing methods. Front 
Neuroanat 2015;9:65. 

53. Li C, Fitzgerald ME, Ledoux MS, et al. Projections from the hypothalamic paraventricular nucleus and 
the nucleus of the solitary tract to prechoroidal neurons in the superior salivatory nucleus: Pathways 
controlling rodent choroidal blood flow. Brain research 2010;1358:123-39. 

54. May A. [The window into headache research : what have we learned from functional and structural 
neuroimaging]. Schmerz 2010;24:130-6. 

55. Bonaz B, Picq C, Sinniger V, Mayol JF, Clarencon D. Vagus nerve stimulation: from epilepsy to the 
cholinergic anti-inflammatory pathway. Neurogastroenterology 2013;25:208-21. 

56. Huston JM. The vagus nerve and the inflammatory reflex: wandering on a new treatment paradigm for 
systemic inflammation and sepsis. Surgical infections 2012;13:187-93. 

57. Andersson U, Tracey KJ. A new approach to rheumatoid arthritis: treating inflammation with 
computerized nerve stimulation. Cerebrum 2012;2012:3. 

58. Tracey KJ. Reflex control of immunity. Nature reviews 2009;9:418-28. 
59. Tracey KJ. The inflammatory reflex. Nature 2002;420:853-9. 

 
 

 
 

16 

43. Juto JE, Axelsson M. Kinetic oscillation stimulation as treatment of non-allergic rhinitis: an RCT study. 
Acta oto-laryngologica 2014;134:506-12. 

44. Li TQ, Yang Y, Hallin R, Juto JE. Novel intervention for acute migraine headache investigated by BOLD 
fMRI. Proc ISMRM 2014;2014:2016. 

45. Li TQ, Yang Y, Hallin R, Juto JE. Kinetic oscillatory stimulation (KOS) in the nasal cavity studied by 
resting-state fMRI. Proc ISMRM 2015;2015:6193. 

46. Wang Y, Li TQ. Analysis of whole-brain resting-state FMRI data using hierarchical clustering approach. 
PloS one 2013;8:e76315. 

47. Wang Y, Li TQ. Dimensionality of ICA in resting-state fMRI investigated by feature optimized 
classification of independent components with SVM. Front Hum Neurosci 2015;9:259. 

48. Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain's functional architecture during 
activation and rest. Proceedings of the National Academy of Sciences of the United States of America 
2009;106:13040-5. 

49. Schultz AP, Chhatwal JP, Huijbers W, et al. Template based rotation: a method for functional 
connectivity analysis with a priori templates. NeuroImage 2014;102 Pt 2:620-36. 

50. Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I. The dorsal posterior insula subserves a 
fundamental role in human pain. Nat Neurosci 2015;18:499-500. 

51. Bleier BS, Schlosser RJ. Endoscopic anatomy of the postganglionic pterygopalatine innervation of the 
posterolateral nasal mucosa. Int Forum Allergy Rhinol 2011;1:113-7. 

52. Li C, Fitzgerald ME, Del Mar N, et al. The identification and neurochemical characterization of central 
neurons that target parasympathetic preganglionic neurons involved in the regulation of choroidal blood flow 
in the rat eye using pseudorabies virus, immunolabeling and conventional pathway tracing methods. Front 
Neuroanat 2015;9:65. 

53. Li C, Fitzgerald ME, Ledoux MS, et al. Projections from the hypothalamic paraventricular nucleus and 
the nucleus of the solitary tract to prechoroidal neurons in the superior salivatory nucleus: Pathways 
controlling rodent choroidal blood flow. Brain research 2010;1358:123-39. 

54. May A. [The window into headache research : what have we learned from functional and structural 
neuroimaging]. Schmerz 2010;24:130-6. 

55. Bonaz B, Picq C, Sinniger V, Mayol JF, Clarencon D. Vagus nerve stimulation: from epilepsy to the 
cholinergic anti-inflammatory pathway. Neurogastroenterology 2013;25:208-21. 

56. Huston JM. The vagus nerve and the inflammatory reflex: wandering on a new treatment paradigm for 
systemic inflammation and sepsis. Surgical infections 2012;13:187-93. 

57. Andersson U, Tracey KJ. A new approach to rheumatoid arthritis: treating inflammation with 
computerized nerve stimulation. Cerebrum 2012;2012:3. 

58. Tracey KJ. Reflex control of immunity. Nature reviews 2009;9:418-28. 
59. Tracey KJ. The inflammatory reflex. Nature 2002;420:853-9. 

 
 



 
 

17 

Supplementary materials 
 

Group ICA result is directly influenced by the input NIC value. Therefore, statistical analysis of 

the ICA result is also affected by the specified NIC. To study the impact of NIC on the statistical 

contrasts derived from 3-way ANOVA modelling of the group ICA result, we systematically 

analyzed the ICA results corresponding to NIC=2-19. Figs. S1-3 depict the 3-way ANOVA 

results for NIC=11. It is apparent that there are substantial differences between the results shown 

in Figs. 4-6 and Figs S1-3, although the corresponding NIC values differ only by 1. For 

comparison, ROIs with significant statistical contrast (FWER p≤0.05) are also detailed in Table 

S1.  

 
 
Table S1: List of brain regions with significant statistical contrast (p<0.05, corrected) as identified by voxel-
wise 3-way ANOVA modeling of the ICA results with NIC=11. X, Y, and Z represent the peak locations of 

ROIs in the standard MNI coordinates. The referred voxel size is 4 mm isotropic. 

Statistical 

Contrast 

ROI Volume  

(voxel) 

X 

(mm) 

Y 

(mm) 

Z 

(mm) 

LL/R    Location label 

 
 

 
Group 

1 118 -18.0 +90.0 -21.0 R fusiform gyrus 
2 96 0.0 -28.0 +25.0 B anterior cingulate 

4 57 +15.0 +2.0 -20.0 L parahippocampal gyrus 
5 52 +32.0 +7.0 -42.0 L inferior temporal gyrus 
6 37 +37.0 +19.0 +39.0 L precentral gyrus 

7 24 +38.0 +67.0 -42.0 L pyramis 
8 23 +48.0 -36.0 +25.0 L inferior frontal gyrus 
9 20 -49.0 -12.0 -33.0 R medial temporal gyrus 

 
 

 
 
 

 
KOS 

10 609 +52.0 +12.0 +29.0 L Pre- postcentral gyrus 
11 398 -50.0 +12.0   +33.0 R Pre- postcentral gyrus 

12 81 +36.0 -11 +2.0 L insula, inferior frontal gyrus 
13 79 -36.0 -11.0 +5.0 R insula, inferior frontal gyrus 
14 29 +30.0 -80.0 +15.0 L middle prefrontal gyrus 

15 59 -33.0 -60.0 +17.0 R middle prefrontal gyrus 
16 47 0.0 -18.0 +21.0 B Anterior cingulate 
17 38 0.0 +75.0 +22.0 B Cuneus 

18 26 -7.0 +88.0 -14.0 R Lingual gyrus 
19 24 -40.0 +68.0 +50.0 R superior parietal gyrus 

20 21 0.0 -7.0 +70.0 B Medial frontal gyrus 

 
 

Interaction 

21 63 -3,0 +74.0 +4.0 R cuneus 
22 45 +12.0 +85.0 +32.0 L cuneus 

23 27 -38.0 +62.0 +52.0 R inferior parietal Lobule 
24 27 -2.0 +68.0 +46.0 R precuneus 
25 25 +6.0 +61.0 +46.0 L precuneus 

26 23 0.0 -44.0 -2.0 B medial frontal gyrus 
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With increasing NIC, there is an evident tendency of increased number of ROIs and larger brain 

volume possessing significant statistical significance. It is plausible that the parcellated brain 

networks become more functionally specific at higher NIC, and the statistical moiling becomes 

more sensitive. On the other hand, there exist also relatively stable ROIs insensitive to the choice 

of NIC. How to select the optimal NIC for ICA in the parcellation of resting-state fMRI data is 

beyond the scope of this study47-49. Dimensionality of ICA is currently an unsolved problem in 

data-driven analysis of resting-state fMRI47.  

 

 
Figure S1: Brain regions with 
significant group differences 

(migraine patients versus healthy 
controls) in functional connectivity 
at NIC=11. The statistical 

significance was assessed with the 
3-way ANOVA (model type=5) at 

voxel-wise F-score threshold 
F≥7.385 (numerator DF=1, 
denominator DF=36, uncorrected 

p≤0.01) and a minimum cluster size 
of 20 contiguous voxels. The color 
bar indicates the F-score level. 

 

 

 
Figure S2: Brain regions with 
significant KOS treatment effect on 
functional connectivity at NIC=11. 

The statistical significance was 
assessed with the 3-way ANOVA 

(model type=5) at voxel-wise F-
score threshold F≥4.373 (numerator 
DF=3, denominator DF=36, 

uncorrected p≤0.01) and a minimum 
cluster size of 20 contiguous voxels. 
The color bar indicates the F-score 

level. 
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Figure S3: Brain regions with 
significant interaction between the 

two main fixed factors. That is the 
brain regions where the KOS 
treatment resulted in significantly 

difference in functional connectivity 
(at NIC=11) between migraine 

patients and normal controls. The 
statistical significance was assessed 
with the 3-way ANOVA (model 

type=5) at voxel-wise F-score 
threshold F≥4.373 (numerator 
DF=3, denominator DF=36, p≤0.01 

uncorrected) and a minimum cluster 
size of 20 contiguous voxels. The 

color bar indicates the F-score level. 
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