
Department of Clinical Science, Intervention and Technology 

Karolinska Institutet, Stockholm, Sweden 

CARDIOVASCULAR DEVELOPMENT OF 

THE PRETERM INFANT 

Ulf Schubert 

 

Stockholm 2016 

 



 

All previously published papers have been reproduced with permission from the publishers.

Cover picture: © panthermedia.net/Sebastian Kaulitzki 

Published by Karolinska Institutet. 

Printed by Eprint AB 2016 

© Ulf Schubert, 2016 

ISBN 978-91-7676-412-1 

 

  



Cardiovascular development of the preterm infant 

THESIS FOR DOCTORAL DEGREE (Ph.D.) 

By 

Ulf Schubert 

Principal Supervisor: 

Professor Mikael Norman 

Division of Pediatrics,  

Department of Clinical Science,  

Intervention and Technology 

Karolinska Institutet, Stockholm 

 

 

Co-supervisor(s): 

Associate Professor 

Anna-Karin Edstedt Bonamy 

Department of Women´s and  

Children´s Health 

Karolinska Institutet, Stockholm 

 

 

 

Professor Hashim Abdul-Khaliq 

Clinical Director of Pediatric Cardiology, 

Children´s Heart Center 

Universität des Saarlandes, 

Germany 

 

Opponent: 

Associate Professor Katarina Hanséus 

Clinical Director of Pediatric Cardiology, 

Children´s Heart Center 

University Hospital Lund 

 

 

 

Examination Board: 

Professor Nina Nelson Follin 

Department of Clinical and Experimental 

Medicine/ Division of Pediatrics 

University of Linköping 

Department of Quality and Patient Safety, 

Karolinska University Hospital, Stockholm 

 

 

Associate Professor Anders Jonzon 

Department of Women´s and  

Children´s Health 

University of Uppsala 

 

 

Associate Professor Baldvin Jonsson 

Department of Women´s and  

Children´s Health 

Karolinska Institutet, Stockholm 

  



  



 

 

 

 

 

 

 

 

 

 

 

 

 

To Ivan and Ilse 

“Man sieht nur mit dem Herzen gut,  

das Wesentliche ist für die Augen unsichtbar” 
Der Kleine Prinz, Antoine de Saint-Exupéry 

  



 



 

 

ABSTRACT 

The numbers of preterm births and cardiovascular deaths are increasing in most countries. 

The causes of both developments are multiple and apparently not related to each other. 

However, preterm birth might provide an increasing contribution to the burden of 

cardiovascular morbidity and mortality, since epidemiological evidence is growing that 

cardiovascular disease risk factors such as hypertension, ischemic heart disease and 

cerebrovascular events are linked to preterm birth. Despite this, most of the underlying 

mechanisms remain unknown.  

The overall concept of this thesis was to seek evidence for a perinatal origin of the changes 

seen in adults who were born preterm, regarding both vascular and cardiac function. For this 

purpose, we performed a longitudinal observational study, investigating changes in diameter 

and intima-media thickness of the aorta and carotid artery, and in cardiac function during the 

first six months after preterm birth. In addition to well-established ultrasound methods, we 

applied innovative technology such as speckle-tracking echocardiography, since advances 

in myocardial imaging modalities have facilitated the echocardiographic examination of 

preterm infants and even the detection of subclinical functional impairment. 

In preterm born infants, we found significant alterations of the development of the 

cardiovascular system. The large arteries we examined became significantly narrower and 

the intima-media thickened in relation to vessel diameter when they were compared to 

healthy infants born at term. In addition, we found significant differences in the left ventricular 

systolic and diastolic function, suggesting that myocardial remodeling may occur as an 

adaptive process of premature exposure towards the extra-uterine circulation. 

Early changes in the cardiovascular development of the preterm infant may persist and have 

long-term implications. In fact, adults born preterm exhibit similar alterations in 

cardiovascular structure and function to those found in our studies. As it is not currently 

possible to prevent preterm birth or influence the developmental changes described in this 

thesis, we will meet more children and adolescents with remodeled vessels and hearts in the 

future. Further research on the underlying mechanisms is warranted. In addition, early and 

continued follow-up will be required if we are to determine the long-term and clinical 

significance, and to improve cardiovascular health in the growing population of individuals 

born preterm.  
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1 INTRODUCTION 

Every year there are around 16 million infants born preterm across the world. That 

number is equivalent to the entire population of the Netherlands and is increasing 

worldwide. In high-income countries this rise is partly due to the more frequent use of 

assisted reproductive technology like in-vitro fertilization and artificial insemination, and 

increasing maternal age1-3. In addition, advances in prenatal and postnatal care over the 

last decades have contributed to the fact that the number of infants who survive preterm 

birth is constantly increasing, leading to a growing population of adults born preterm. 

There is some epidemiological evidence that preterm birth might be a risk factor for 

cardiovascular and metabolic disease in later life, but very little is known about the 

mechanisms. Preterm delivery induces adaptive processes in hemodynamics that 

stabilize the infants´ condition ex-utero, which might also be implicated in life-long 

anatomical and functional changes in the cardiovascular system. These changes seem 

to contribute to adverse cardiovascular development, such as arterial hypertension, 

stroke and impaired myocardial function4-7. 

Cardiovascular disease represents the most important cause of morbidity and mortality 

in developed countries. Important changes in lifestyle in lower income and developing 

countries are leading to a situation where cardiovascular disease will replace infections 

as the dominant cause of death even in these countries already during the next decade.  

From a public health perspective, it is still unclear how preterm birth will contribute to the 

global burden of cardiovascular disease. 

In this thesis, I will discuss three studies presenting early cardiovascular changes after 

preterm birth and one study investigating the transition from fetal to neonatal life using 

novel echocardiographic techniques. 
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2 BACKGROUND 

2.1 PRETERM BIRTH 

 

2.1.1 Definitions and epidemiology 

The normal human pregnancy length is estimated to be 280 days after the first day of 

the last menstrual period8. In relation to this estimate, the World Health Organization 

(WHO) has defined preterm birth as a pregnancy that ends before 37 gestational weeks 

have been completed9. A categorization into further subdivisions of moderately preterm 

(32-36 weeks), very preterm (<32 weeks) and extremely preterm (<28 weeks) infants is 

widely accepted (Figure 1)10. In order to date gestational age, and define the expected 

date of delivery, the so-called pregnancy wheel is used, counting 280 days from the last 

menstrual period11. In conditions where ultrasound is available, a more correct 

estimation of pregnancy length is possible due to the fact that fetal size is proportional to 

gestational length12. 

 

Figure 1: Definition of pregnancy length (adapted from Tucker et al.10)  

 

About 16 million infants are born prematurely around the world each year13. Although 

the majority of preterm births, about 85%, occur after 31 weeks, prematurity is the single 

biggest cause of newborn death and the second-leading cause of death after 

pneumonia in children under the age of five14. According to data from the WHO15, the 
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number of preterm births is continuously increasing worldwide, and the present rate is 

more than 11%. The range across 184 countries is 5-18%, with the highest numbers of 

premature births in Southern Asia and Sub-Saharan Africa. In 2011, the first World 

Prematurity Day was arranged, and public health policies recognized the fact that global 

progress in child survival and health cannot be achieved without addressing the problem 

of preterm birth. These strategies should address education and health for girls and 

women, the prevention and management of sexually transmitted diseases, family 

planning and the promotion of healthy nutrition and a healthy lifestyle. 

 

2.1.2 Etiology of preterm birth 

Approximately 60% of all preterm deliveries have a spontaneous onset and 40% are 

medically induced16. The main causes for spontaneous deliveries are premature rupture 

of the membranes, placental abruption, premature labor and vaginal bleeding, often due 

to infection, inflammation or stress17. Medical indications for delivering preterm infants 

include pregnancy complications such as preeclampsia, and fetal conditions such as 

intrauterine growth restriction (IUGR), hydrops, infection or anemia. 

Several risk factors for preterm birth have been identified. Genetic influences account for 

about 30% of the development of preeclampsia, a common cause of preterm delivery, 

but even a family history of preterm birth without preeclampsia raises the risk for a 

subsequent spontaneous preterm delivery16. Other factors, such as maternal obesity, 

low socioeconomic status of the family, maternal smoking, multiple pregnancies and 

bacterial colonization of the reproductive tract, are associated with higher rates of 

prematurity18-22. Finally, low or advanced maternal age and assisted reproductive 

techniques have resulted in an important increase of preterm deliveries worldwide1-3,23. 

In summary, preterm infants have been exposed to very different biological conditions 

before delivery and cannot be considered as a single homogenous group. This 

heterogeneity is important to consider when studying short and long-term outcomes 

after preterm birth. 
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2.1.3 Neonatal morbidity 

Neonatal morbidity and mortality rates are inversely related to gestational age, meaning 

that the probability of suffering from medical problems related to preterm birth increases 

with the immaturity of the infant24. Moderately preterm infants may have difficulties in 

maintaining their temperature and stable blood glucose levels and have feeding and 

respiratory problems. However, these conditions are relatively easy to treat and do 

usually not imply severe complications.  

On the other hand, very preterm and extremely preterm infants may suffer from a variety 

of medical problems and complications due to the immaturity of their organ systems and 

inappropriate adaptation to the extra-uterine environment. A number of severe 

morbidities can exist during more acute periods of hospitalization. Respiratory distress 

syndrome (RDS), infections, patent ductus arteriosus (PDA), necrotizing enterocolitis 

(NEC), intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL) and 

retinopathy of prematurity (ROP) account for severe conditions that often coexist.  

In the long-term, the development of chronic lung disease or bronchopulmonary 

dysplasia (BPD) is a common respiratory problem. The most severe cases are 

complicated by pulmonary hypertension and cor pulmonale25.  

Persistent impairments include cognitive problems and behavioral disorders, hearing 

loss, visual problems/blindness and cerebral palsy26. 

 

2.2 CARDIOVASCULAR DISEASE (CVD)  

Cardiovascular disease is a class of morbidities that involve the heart and/or blood 

vessels. Common CVDs include: ischemic heart disease, congestive heart failure, 

rheumatic heart disease, cardiomyopathy, congenital heart disease, peripheral artery 

disease and stroke. Atherosclerosis is the most common cause of CVD and may be 

accelerated by arterial hypertension, smoking, diabetes, lack of exercise, obesity, high 

blood cholesterol, poor diet and drugs. According to a report published by the WHO in 

collaboration with the World Heart Federation27, cardiovascular diseases are the leading 

cause of death worldwide, except in Africa, where infections are still responsible for 

most deaths. According to the report on the Global Burden of Disease Study28, CVDs 

resulted in 17.3 million deaths (31.5% of all deaths) in 2013 compared to 12.3 million 

(25.8%) in 1990. Ischemic heart disease and stroke account for approximately 80% of 
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CVD deaths in men and 75% in women, at an average age of 80 in the developed world 

and 68 in the developing world. Thus, age is the most important risk factor for CVD. 

Another risk factor is a low socioeconomic and educational status. Because of this, the 

Commission on Social Determinants of Health (WHO 2008)29 has recommended that 

more equal distributions of power, wealth, education, housing, environmental factors, 

nutrition and health care are needed to address inequalities in cardiovascular disease 

and non-communicable diseases30. 

 

2.3 DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE (DOHAD) AND 

FETAL PROGRAMMING 

The hypothesis that early life exposures predict later health outcomes has been 

discussed extensively during the last 30 years. The original hypothesis was a result of 

observations in different studies that found an association between low birth weight 

(LBW) and coronary heart disease later in life31,32. The basic idea from an evolutionary 

perspective is that early life exposure has already induced an adaptive response in the 

fetus in order to provide it with an advantage when it comes to surviving in its current 

situation, and make a prediction of future environmental conditions.  

Undernutrition was a common exposure during pregnancies in the last century and led 

to many LBW infants. This has also given researchers the opportunity to investigate 

associations between inadequate intrauterine growth patterns and later disease. 

Changes in organ growth and in fetal circulation can be interpreted as adaptive 

responses towards undernutrition and might be beneficial under the current precarious 

situation. Nevertheless, these, sometimes irreversible changes, may result in 

disadvantageous health developments after birth. Thus, other cardiovascular diseases 

such as hypertension and stroke, as well as diabetes and metabolic syndrome, have 

been linked to LBW. The underlying mechanisms of how environment is shaping 

developmental trajectories are nowadays investigated, including fetal programming by 

epigenetic modification of gene expression and telomere attrition33. 

The DOHaD hypothesis has been criticized because the associations between 

exposures very early in life and the risk of morbidity and mortality half a century later do 

not seem to be plausible. According to the critics, other environmental and genetic 

factors may confound the associations between birth weight and disease risk in a 

lifelong perspective. 
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Since most of the early studies in the DOHaD field originate from the beginning of the 

20th century, LBW was a consequence of intrauterine growth restriction at term, and not 

prematurity. But now that the number of infants who survive preterm birth increases, the 

main cause of LBW is preterm birth, often with appropriate birth weights. Thus, the 

mechanisms leading to LBW are very different, and it is doubtful that the results from 

growth-restricted individuals can be extrapolated to preterm infants. However, there is 

increasing evidence that even prematurity might operate as an early exposure and 

signal for cardiovascular diseases at a later date. For example, in a large cohort of more 

than 600 000 young adults, the proportion of those who were born preterm and were 

given antihypertensive drugs as a proxy for hypertension was higher compared to the 

group of individuals born at term34.  

Another large meta-analysis confirmed the association between prematurity and 

hypertension5, and a third population-based study indicated that the risk of hypertension 

among young men increased with the degree of prematurity4.  

Intima-media thickening is an established risk factor for atherosclerosis. Some studies 

have shown that individuals born preterm exhibit increased IMT5, and that in young 

adults born preterm, thickening of the carotid intima-media is associated with an 

unfavorable lipid profile and a higher current body mass index35.   

Given that preterm birth contributes to cardiovascular disease, it may have important 

implications for public health. We are not just observing an increasing number of 

preterm deliveries, but also a substantial increase in the numbers of preterm survivors. 

In 2010, about 90% of preterm births occurred in low-income and middle-income 

countries. As many of the cardiovascular risk factors emerge with ageing, the burden on 

healthcare costs will rise in the future, especially in these countries33. 

 

2.4 PRINCIPLES AND SAFETY OF ULTRASOUND 

The basic idea of ultrasound is that electrical signals are converted into mechanical 

pulses that are reflected in anatomical tissues according to differences in the acoustic 

impedance of these structures. The transducer of an ultrasound machine consists of 

piezoelectric material, which transforms electrical into mechanical signals by changing 

size when voltage is applied. But the transducer is not just responsible for the emission 

of the pulse, it also receives the echoes, transforming mechanical signals back to 
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electrical signals that are used to produce the image on the screen of the ultrasound 

machine. In medical applications, the frequencies of the waves are above 20 kHz and 

cannot be perceived by the human ear (beyond sound = ultrasound). As the propagation 

speed of the waves in human tissue only varies within a small range (1480-1580 m/s), 

the position of a specific target can be calculated by the time between the emission and 

reception of the signal. The intensity of the reflected signal is visualized as brightness 

and is mainly dependent on the attenuation coefficient of the respective tissue. 

Attenuation is the combined effect of absorption and scattering and is most prominent in 

bone and soft tissues and lower in liquids and blood. The fact that different signal 

intensities produce different levels of brightness gave the B-mode scan its name. 

However, it is better to use the expression ”cross-sectional scan”, as echo intensity 

determines the brightness even in M-Mode, or motion, imaging. The main difference 

between the two modes is that only one scan line is interrogated versus time in M-Mode, 

while multiple scan lines are used in B-Mode imaging36. The cross-sectional image is 

produced by sweeping a beam through different scan lines, and the repetition rate 

needs to be high enough to build up moving targets. As fetal and newborn hearts move 

at high velocities and rates, it is crucial to use high frame rates in order to achieve 

optimal temporal resolution.  

In infants and fetus, hearts are not only beating faster than in adults. They are also 

much smaller. Therefore, optimal spatial resolution is necessary to discriminate different 

points37. Lateral resolution depends on beam width and line density. An increase in line 

density can be achieved by reducing the sector width or frame rate. Axial resolution is 

determined by pulse length, and the shorter the pulse wave, the better the point-to-point 

differentiation in the axial direction. Obviously, higher frequencies may provide shorter 

pulses and better axial resolution, but again, attenuation is greater and tissue 

penetration poorer38. 

The Doppler technique is used in addition to M-Mode and B-Mode imaging in order to 

visualize moving objects such as blood cells or the myocardium. This imaging 

technology is based on the effect that the frequency of sound is shifted when it is 

reflected against a moving object. By analyzing the shift, it is possible to measure 

velocities that are recorded in relation to the position of the transducer and displayed on 

the ultrasound machine. Both pulsed wave Doppler and continuous Doppler techniques 

are applied, and velocity signals are usually coded in red and blue color maps, 

depending on whether the object is moving towards the transducer or away from it.       



 

8 

A loudspeaker is normally used to produce an audible signal, which is equal to the 

Doppler shift and represents the intensity of the scattered wave39. 

 

2.4.1 Mechanical and thermal indices 

As mentioned before, electrical energy is transformed into mechanical energy by the 

transducer, thus emitting ultrasonic waves that are travelling through different kinds of 

tissue in the human body. Part of the energy is scattered back towards the transducer, 

but a considerable amount of the energy is absorbed by the tissue, a physiological effect 

that leads to heating. The absorption or attenuation of energy is very similar in soft 

tissues, but considerably higher in bone, for example. The amount of heating depends 

on the imaging modes, with B-mode being the lowest, and M-Mode, color Doppler and 

pulsed Doppler being higher. This means that the shortest time should be spend on 

Doppler imaging during a routine ultrasound examination40.  

Secondly, ultrasound waves lead to pressure variations in body tissue that may cause 

bubbles. Two different types of these so-called cavitations have been described:  

a) stable cavities oscillate causing shear stress to cell membranes that might be 

damaged and b) inertial cavities may collapse and produce high temperature and 

chemical radicals that may induce tissue destruction41. 

Because of the potentially detrimental effects of heating and cavitation, manufacturers of 

ultrasound machines are advised to provide online updates of the so-called thermal (TI) 

and mechanical index (MI). This ensures that the investigator is aware of possible risks 

and is able to adapt acoustic output settings and limit the duration of examination42. 

 

2.5 SPECKLE-TRACKING ECHOCARDIOGRAPHY (STE) 

All ultrasound images consist of a huge number of speckles that are the result of 

reflected echoes and backscatters. This can be easily observed when an operator uses 

the zoom facility and the image is becoming less smooth. Each region of the 

myocardium includes a characteristic pattern of speckles that are unique and 

reasonably stable even under conditions of movement, and can be re-identified or 

tracked after displacement and deformation (Figure 2).  



 

 9 

 

Figure 2: Speckle-tracking search algorithm in the interventricular septum. Magnification of the kernel (red 

square) in the original frame (t=0) and in the subsequent frame (t) and corresponding search area (white 

square) for the matching kernel. Reproduced with permission from: http://folk.ntnu.no/stoylen/strainrate 

 

This is essential in order to be able to use this technique in echocardiography, as the 

myocardium is contracting and relaxing during the heart cycle and the position of the 

speckle pattern is changing according to fiber movements. Thus, the displacement (cm), 

velocity of displacement (cm/s), deformation (=strain%) and rate of deformation (strain-

rate 1/s) can be measured during systole and diastole. Lagrangian strain is defined as 

the deformation of an object in relation to its original length (ɛ = L − L0 / L0), meaning 

that a negative strain of 20% compresses the object by one-fifth, whereas the 

corresponding positive strain is the result of stretching. Usually, the speckles of the 

myocardium reach the original position and configuration at the end of the heart cycle, 

and both the displacement and strain are zero for that time point and the maximal strain 

is equal in systole and diastole43. Strain can be measured in all dimensions and 

longitudinal, radial and circumferential strain are used to characterize myocardial 

movements.  

Myocardial velocity is defined as displacement per time unit and the strain rate as strain 

per time unit. Both variables are expressed in systole and diastole, with the diastolic part 

of the cardiac cycle being differentiated in early and late ventricular filling phases. 

STE has been validated for the left ventricle in vivo and in vitro by sonomicrometry and 

tagged magnetic resonance imaging (MRI)44. STE measures have been shown to be 

very sensitive to changes in load and cardiac function45-47, and have, therefore, been 

considered a valuable tool in detecting myocardial impairment that was not recognized 
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by conventional echocardiography, for example in children with septic shock48, rejection 

after a heart transplant49 or cardiac resynchronization therapy50. The ability to detect 

subclinical myocardial dysfunction before the appearance of clinically apparent 

ventricular impairment has been recognized even in preterm infants51. 

Since the right ventricle is of particular interest in fetal and neonatal examinations, and a 

strong predictor of outcome in many pathological conditions in preterm infants52, the 

technique has been used to evaluate the right ventricle and showed good feasibility and 

reproducibility53. The lack of objective echocardiographic tools to describe right 

ventricular function has made STE even more valuable. 

STE on infants with smaller hearts and higher heart rates depends on optimal spatial 

and temporal resolution. As the quality of tracking is a function of the frames that can be 

analyzed during each heart cycle, the frame rates have to be high enough to ensure 

excellent tracking conditions. However, if the frame rates are too high, the lateral 

resolution might be impaired due to the effects of smearing. 

 

2.6 THE VASCULAR TREE 

2.6.1 Arterial structure, intima-media thickening and the development of 

atherosclerosis 

A normal artery can be divided into three layers: the intima, media and adventitia.  

The tunica intima consists of a single layer of endothelium cells, which are in direct 

contact with the blood flow. The main function of this layer is to provide a barrier function 

and maintain vascular homeostasis via a mechano-biochemical response to differences 

in shear stress, thus modulating permeability, coagulation and vascular tone. 

The tunica media is composed of concentrically arranged smooth muscle cells (SMC), 

the extracellular matrix, collagen and elastic tissues. In larger arteries, such as the aorta 

and carotid artery, the amount of elastic tissue is considerably higher than in the smaller 

arteries or arterioles. Arterioles constitute the main site for peripheral resistance due to 

their smaller diameters, and contribute to the translation of a pulsatile towards a more 

continuous flow. The interaction between the intima and media occurs via myoepithelial 

bridges, which are sensitive to shear stress and essential for the regulation of the 

vascular tone. 
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The tunica adventitia is the outermost connective tissue around the artery and is made 

of longitudinally arranged collagen fibers, which contain nerves and capillaries (vasa 

vasorum) that supply the larger arteries with oxygen and nourishment from the 

abluminal side.  

The biomechanical force on the vessel wall – which is the perpendicular force of blood 

pressure and the cyclic stretch of pulsatile flow – is dependent on blood flow, arterial 

diameter, resistance and viscosity and is usually expressed as dynes/cm2. Normal 

vascular homeostasis is maintained when all of these factors are in balance. However, 

changes in diameter, blood pressure or laminar flow lead to altered shear stress, 

activate intracellular biochemical pathways and result in modulation of cellular structure 

and function54. The number of known translational factors has been constantly 

increasing over the last decades, and include: vasoactive substances such as nitric 

oxide (NO), endothelin-1, prostacyclin and natriuretic peptide; growth factors such as 

platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and 

insulin-like growth factor 1 (IGF-1); pro-inflammatory mediators and complement factors 

such as tPA, thrombomodullin, and also matrix molecules such as MMP 9 and Collagen 

XII.  

At the critical point when atherogenic influences overweigh atheroprotective 

mechanisms, atherosclerosis might develop. One mechanism is translated via the 

activation and proliferation of SMC, resulting in intimal hyperplasia and a decrease in 

maximal shortening velocity55. As a consequence, the artery is less adaptive towards 

changes in shear stress and becomes stiffer and less compliant. As the total arterial 

compliance has a direct impact on systolic blood pressure56, the pathological pathway 

can lead to a circulus vitiosus and the evolution of atherosclerosis57. Simultaneously, the 

synthesis of MMPs induces the retention of lipoproteins and fatty acids, which can be 

seen histologically as fatty streaks in the early stage of atheroma formation58. 
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Figure 3: Different stages in the development of atherosclerosis from early life to symptomatic disease. 

Adapted from http://en.wikipedia.org/wiki/File:Endo_dysfunction_Athero.PNG, free documentation license 

 

2.6.2 Vessel growth after preterm birth  

During the last trimester of pregnancy, high levels of circulating IGF-1 induce vascular 

growth and elastin deposition in order to prepare sufficient elastic recoil in the great 

arteries in the feto-neonatal transition59. Several studies have shown that human aortic 

smooth muscle cells are sensitive to IGF-1 at the receptor level and that a normal 

concentration of IGF-1 is necessary for normal vascular development60,61.  

The accumulation of elastin in the arterial wall is a process that has been shown to be 

particularly active in the immediate perinatal period in an animal model62. In humans, the 

down-regulation of IGF-1 caused by placental insufficiency has been associated with 

thinner and stiffer umbilical arteries in newborn infants who had suffered from 

intrauterine growth restriction63. Moreover, children born small for gestational age 

continue to exhibit low levels of IGF-1 and vascular dysfunction64. Taken together, these 

findings could explain why fetal growth restriction is a developmental risk factor for 

lasting arterial narrowing65,66. 

Low serum concentrations of IGF-I in very preterm infants have been associated with 

arrested growth of the microvasculature in the eye, preceding retinopathy of prematurity 

(ROP)67. This disease affects the immature retina of preterm infants. Due to deficient 

vasculogenesis, hypoxia leads to excessive levels of vascular endothelial growth factor 

(VEGF), which causes pathological neovascularization68.  
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2.6.3 Arterial dimensions and IMT after preterm birth 

Prematurity and the programming of cardiovascular disease has become an important 

field of research33, and it seems that vascular ageing is starting already in the fetal 

period and continues throughout life58,69,70. Therefore, many researchers have 

developed methods to predict cardiovascular disease risk. It is obvious that the earlier 

valid parameters are available, the sooner medical and lifestyle interventions can be 

initiated. 

In addition to measurements of endothelial function71,72, arterial elasticity73,74 and blood 

pressure75 in individuals born preterm, arterial dimensions and IMT have been 

determined in several studies and at different ages. There is actually some evidence 

that narrowing of the vascular tree is present not only in subjects born at term with low 

birth weight 65,66,76-78but also in individuals born preterm72,79,80. The most common 

methodological approach is non-invasive ultrasound of the aorta, carotid and coronary 

arteries, which measures diameters and IMT81. Results concerning IMT can be 

somewhat contradictory as some studies have shown an association between low birth 

weight and intima-media thickening82-86, while others, mostly in elderly people, have 

failed to demonstrate this association35,87-91. Even in autopsies performed after neonatal 

deaths, coronary IMT was not increased in infants born small for gestational age in one 

study87. In contrast, another study investigating 22 unexplained intra-uterine deaths and 

36 victims due to sudden-infant-death-syndrome, has shown early atherosclerotic 

coronary lesions in the prenatal and neonatal period, especially in infants whose 

mothers smoked69 (Figure 4).  

Another study compared 92 young adults born with very low birth weight with 68 

individuals born at term with adequate birth weight92. The authors found that the 

carotid arteries in the low birth weight subjects were insignificantly narrower, but IMT 

was significantly thicker in relation to vessel diameter. 

However, it is important to emphasize, that most of these studies included subjects 

who were born with low birth weight but not necessarily preterm. And although studies 

will be able to show that VLBW infants - both preterm and term - exhibit intima-media 

thickening, pathophysiological mechanisms might be different.  
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2.7 CARDIAC DEVELOPMENT 

2.7.1 Circulatory transition at birth 

A lot of processes occur over a very short period of time when the placental circulation is 

interrupted at delivery. Fluid from the lungs is removed by tissue absorption and 

expulsion through the mouth and regular breathing is established. The location of gas 

exchange is transferred from the placenta to the lungs and sufficient pulmonary blood 

flow has to be established in order to facilitate oxygen uptake. During late gestation, 

pulmonary perfusion accounts for only about 17% of the combined cardiac output93,94. In 

the postnatal period, when blood is flowing serially through the right and left ventricles, 

practically all of the blood circulates through the lungs. The sudden increase in alveolar 

and arteriolar oxygen tension in the pulmonary artery, lung expansion and vasoactive 

products from the vascular endothelium, such as endogenous NO and prostacyclin lead 

to decreased pulmonary vascular resistance95. The increase of pulmonary blood flow 

and venous return to the left atrium results in higher left atrial pressures, and in 

combination with the increase of left ventricular afterload, the foramen ovale closes. Left 

ventricular afterload rises immediately at birth, when the low resistant placental 

circulation is replaced by a high resistant systemic circulation. The underlying 

mechanism seems to be peripheral vasoconstriction, due to labor-induced endogenous 

catecholamines, renin-angiotensin, vasopressin and corticosteroids95.  

In healthy conditions, the closure of the ductus arteriosus occurs slightly later than the 

foramen ovale and the ductus venosus and this process can take place hours or even 

days after birth. The closure occurs due to higher partial oxygen pressures and 

decreased concentrations of the circulating prostaglandin E2. 

Figure 4: Histology after fetal death: 

intimal thickening in the left coronary 

artery with fragmentation of the internal 

elastic membrane (original 

magnification x 200). Reproduced with 

permission from Milei 2008 
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In the fetus, oxygenated blood returns through the umbilical venous system, passes 

through the ductus venosus and mixes with poorly oxygenated blood from the fetal 

systemic circulation before entering the right atrium. With the clamping of the umbilical 

cord the ductus venosus usually closes and the right atrial preload decreases96. 

Simultaneously, intrathoracic pressure levels fall from about 8-10 mmHg prenatally to 

subatmospheric and makes the ventricular function less restrictive, which could 

compensate for the drop in right ventricular preload. 

Fetal ventricular function is restrictive due to an incompliant thorax that is surrounded by 

amniotic fluid. The myocardium is both less compliant and less contractile than during 

the postnatal period, and the main mechanism to cope with changes in preload and 

afterload is to change heart rate. The fetal myocardium consists of less contractile units, 

a developing sarcoplasmatic reticulum and T-tubular system, a deficiency in the ability of 

calcium uptake and reduced responsiveness towards sympathic stimulation due to 

sparse sympathic nerve endings. Additionally, the myocytes are smaller than in a term 

newborn with a single nucleus and less mitochondria and a higher water content97. 

In the event of a preterm delivery, the gradual development of contractile units and T-

tubular systems, sympathetic innervation and increase of myocardial mass is suddenly 

interrupted98. Further development then occurs under adverse – or at least very different 

conditions in the extra-uterine environment.  

After preterm birth, the immature myocardium of the left ventricle is exposed to a 

significantly higher afterload and additionally, to persisting atrial and ductal shunts, 

leading to a volume overload. But even a delay in the decrease of pulmonary vascular 

resistance, due to respiratory distress syndrome, might put an extra load to the 

myocardium of the right ventricle. 

To date, there have been very few human studies that focused on myocardial 

development and preterm birth, and there is little knowledge about how the adaptive 

mechanisms of the myocardium cope with the extra load. However, there is interesting 

data of myocardial remodelling in preterm lambs. According to their findings, the 

adaptive process towards higher afterload was characterized by the deposition of 

extracellular matrix and collagen in the myocardium in order to maintain the integrity and 

strength of the ventricular wall. In addition, T-lymphocytes were present in most of the 

preterm lamb hearts, suggesting an inflammatory response similar to the cardiac 

inflammatory changes found in patients with hypertension99. 
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2.7.2 Cardiac function in the fetus 

The heart begins as a primitive tube and starts to contract already at four weeks of 

gestational age, although blood is not pumped into the circulation at this early stage. 

When the transition to a looped heart occurs, peristaltic movements are replaced by a 

suction pump model where the ejection fraction is about 100%, something that is never 

achieved later in life100. Septation takes place between week 5-7, and differentiation of 

the myocardium and ventricle formation starts during this period and has usually finished 

before week 12. Animal studies suggest that the Frank-Starling mechanism already 

applies at the embryonic stadium101. During the fetal period, the heart is growing and the 

myocardial mass is constantly increasing102. Systolic and diastolic pressures show a 

linear rise during gestation and the combined cardiac output decreases with higher 

afterload103.  

Fetal cardiac function has been quantified by planimetric methods, flow velocity integral 

and calculation of stroke volume and cardiac output, shortening fraction by M-Mode, 

myocardial performance index (MPI) and early and late ventricular filling parameters104. 

Additionally, three-dimensional ultrasound technologies – the so-called spatio-temporal 

image correlations (STIC) – have been used to calculate stroke volume and ejection 

fraction from systolic and diastolic ventricular volumes105. MRI is still considered the gold 

standard, as measurements of ventricular mass and volume and the calculation of 

cardiac output are possible, and the image quality is not dependent on the examiner, 

maternal obesity, fetal position or gestational age106. However, fetal movements might 

complicate interpretation of the images, and rapid heart rates require high frame rates 

that have a direct impact on image resolution107.  

Myocardial imaging modalities have contributed to a better understanding of fetal 

cardiac function. The main advantage of the speckle-tracking technique is that it is 

independent of the angle of insonation, which is particularly important for difficult fetal 

positions where Doppler techniques cannot be applied. After the initial phase of 

feasibility studies in 2004-2012108-115, myocardial imaging proved to be useful in 

pathological conditions such as congenital heart defects116,117, growth restriction and 

preeclampsia118, amniotic infection119 and twin-to-twin transfusion syndrome120. 

Recently, attempts have been made to use three-dimensional STE in a fetal cohort, and 

a mean temporal resolution of 31 volumes per second was achieved. However, the 

authors concluded that three-dimensional STE was only possible in a few individuals 

and that further improvement of this technique was necessary to use it in fetuses121. 
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2.7.3 Cardiac function in the newborn 

Historically, the basic concerns of neonatologists have been the lungs. This is 

understandable because of the immediate postnatal challenge in the delivery room to 

establish adequate ventilation and the assumption that heart rate and function will just 

follow ventilation. In other words: the immaturity of the respiratory system has been 

considered more acute in comparison with the cardiac, and the focus on the neonatal 

intensive care unit (NICU) has mainly been on respiratory issues. Additionally, a 

comprehensive approach towards cardiac function in newborn infants has always been 

complicated. Hemodynamic monitoring has usually been limited to the continuous 

measuring of heart rate and oxygen saturation, continuous or intermittent blood 

pressure, urine output and estimates of capillary refill and skin color122. Practically all of 

these measurements depend on various factors other than cardiovascular, and do 

actually not help the clinician when it comes to making decisions or providing treatment. 

For example, the normal blood pressure range adjusted for gestational and postnatal 

age is still unknown, and the treatment of “hypotension” does not improve relevant 

clinical outcome in preterm infants123,124. 

Because of this dilemma, the importance of echocardiographic assessments in NICUs 

has been widely understood, and practical guidelines on so-called functional or point-of-

care echocardiography have been formulated125,126. The standard techniques for left 

ventricular function are usually based on left ventricular size and Doppler measurements 

of both left ventricular inflow and outflow, obtained using M-Mode in the parasternal 

short or long axis view and cross-sectional images in the three and four-chamber views. 

Many of these measurements are load-dependent, which is of particular importance in 

the transitional period after birth. Although it is well known that the assessment of 

shortening fraction (SF) is associated with considerable inter- and intraobserver 

variability127, this technique is widely used in the evaluation of left ventricular systolic 

function. An alternative might be the biplane volumetric measurement and calculating 

the ejection fraction according to the modified Simpson’s formula, although the 

geometrical assumptions are not really met in newborn infants36. Combining Doppler 

with cross-sectional imaging permits the calculation of stroke volume (SV) and cardiac 

output (CO). The Doppler signal can be obtained from the suprasternal or three-

chamber view, while the aortic diameter is usually measured using M-Mode. It is 

recommended to use the mean of at least three measurements as an error in diameter 

leads to a squared miscalculation of CO. SV is equal to the aortic flow velocity time 
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integral (VTI) multiplied by the aortic valve area, and CO equals SV multiplied by heart 

rate. Normal values of VTI for term infants are available and can be used to estimate 

cardiac function128. 

The myocardial performance index (MPI) combines systolic and diastolic function, since 

the sum of the isovolumetric contraction and relaxation time is divided by the ejection 

time. Although not specific for either systolic or diastolic performance and load- 

dependent, MPI is considered a useful parameter when it comes to differentiating 

between pathological and normal conditions in the neonatal period129. 

The assessment of diastolic function by conventional echocardiography is mainly based 

on left ventricular inflow patterns. During the transitional period, these patterns 

progressively change, from a more restrictive inflow with lower E/A ratios, lower E-wave 

velocities and higher A-waves to a more mature sequence. At higher heart rates, the 

fusion of E and A-waves may complicate the analysis. Acceleration and deceleration 

times as well as velocity time integrals for both the E and A-wave may give additional 

information, and reference values are available for preterm and term infants130. 

Differences between preterm and term infants seem to be resolved by three months of 

age. In contrast to adult cardiology, the right ventricle represents an interesting target, 

but the limitations of conventional echocardiography usually reduce the evaluation to 

simple visual assessment. More advanced techniques like tricuspid annular plane 

systolic excursion (TAPSE) and fractional area change (FAC) have been used to 

quantify right ventricular function, and reference values are available for preterm and 

term infants51,131. 

Recently, other techniques like tissue Doppler imaging51,132-135 and speckle-tracking 

echocardiography136-138 seem to have overcome some of the limitations of conventional 

echocardiography, showing good feasibility and reproducibility, even in preterm 

infants53,139-141. Some of these have found altered left ventricular diastolic function140 and 

others have revealed changes in systolic function in infants undergoing ligation of 

PDA141.  

As the myocardium of the LV consists of two helically orientated muscle layers with an 

interposed circumferential midwall layer, rotational movements make an important 

contribution to the ejection of blood from the LV cavity and can be tracked by two-

dimensional STE142. The torsion or wringing motion towards the LV outflow tract in 
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systole is the net twist between apical and basal twist, untwisting is considered a 

surrogate for diastolic function.  

Another technique that has been introduced to the pediatric population is real-time 

three-dimensional STE, analyzing myocardial deformation in all three dimensions 

without losing speckles because of out-of-plane motion143. During the acquisition of 3D-

images, the number of achievable frames/volumes is crucial in order to obtain 

acceptable temporal resolution, and the authors concluded that the resolution was good 

enough to use it in the pediatric population. In contrast, the precision of real-time three-

dimensional echocardiography has been questioned in another study that tested 

calibrated dynamic objects of the size of neonatal and pediatric hearts. The authors 

described relevant spatiotemporal inaccuracies and concluded that the precision of real-

time three-dimensional echocardiography was not sufficient for a small, fast-moving 

structure such as the neonatal or pediatric heart144. 

In summary, it is important to establish robust nomograms for STE values adjusted for 

gestational and postnatal age, in order to use myocardial imaging in the clinical 

evaluation of newborn hearts. 

In fact, myocardial imaging has become routine in adult cardiology and is widely used as 

a valid diagnostic tool. However, follow-up studies on preterm individuals are scarce. In 

one cross-sectional study of 20 to 39-year-old adults who were born preterm, functional 

cardiovascular magnetic resonance revealed significant reductions in left ventricular 

longitudinal strain and strain rate, as well as in left ventricular systolic and diastolic 

myocardial velocities. In addition to functional alterations, the left ventricular shape, size 

and mass were also found to differ from the heart structure in adults born at term. The 

authors of that study concluded that adults born very preterm exhibited structural 

changes of the left side of the heart that they would expect to see in an adult who was 

ten years older or who had a body mass index (BMI) that was nine units higher. This 

was also the case after adjusting for other risk factors such as blood pressure6.  In the 

same cohort, quantification of right ventricular function and anatomy showed that 

ejection fraction is significantly reduced, and that ventricles are smaller and exhibit 

greater mass compared to adults born at term145. 
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3 AIMS 

The overall objective of this thesis was to investigate cardiovascular physiology after 

preterm birth. 

The specific aims were: 

 To compare aortic and carotid growth in preterm infants with those of fetuses and 

term newborn infants 

 To determine intima-media thickness of the aorta and carotid artery after preterm 

birth 

 To characterize the circulatory transition from fetal to neonatal life by using novel 

echocardiographic techniques such as speckle-tracking 

 To assess the development of cardiac function during the first six months after 

preterm birth by conventional and speckle-tracking echocardiography 
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4 METHODS 

4.1 STUDY COHORT 

We studied cardiovascular physiology in two groups during two developmental periods 

corresponding to the last trimester of pregnancy and the first three months after term-

equivalent age. 

The study group comprised 25 very preterm infants (13 boys) born at Karolinska 

University Hospital between August 2008 and September 2009 at the start of the third 

trimester. They all had a gestational age of between 26 and 30 weeks and a mean birth 

weight and standard deviation (SD) of 1153 (258) grams. All the very preterm infants 

were singletons without any malformations. 21 very preterm infants were appropriate for 

gestational age (AGA), defined as a birth weight within 2 SD from the mean for normal 

fetal weight, and four infants were small for gestational age (SGA), defined as a birth 

weight of more than 2 SD below the mean according to Swedish sex and gestational 

age-specific reference data146.  

There were no cases of maternal diabetes and one mother delivering very preterm had 

a diagnosis of preeclampsia. Umbilical artery blood flow velocity measurements had 

been performed on clinical indication in 10 of 25 pregnancies ending very preterm and 

the pulsatility index had been found to be normal in all cases (within ± 2SD for 

gestational length)147. Besides one case of preeclampsia (maternal indication for 

Cesarean section), primary causes of preterm delivery were preterm labor (n=7), pre-

labor premature rupture of membranes (n=9), vaginal bleeding (n=7) and one delivery 

was medically indicated because of intercurrent maternal disease (liver tumor). 

In the very preterm group, 22 out of 25 (88%) had received antenatal steroids to induce 

lung maturation and ten (40%) needed ventilator support during their initial 

hospitalization. Twenty (80%) had an umbilical artery catheter inserted after birth, with 

the catheter tip located in the lower thoracic aorta (Th 6-10). All umbilical catheters were 

removed before the first ultrasonographic assessment. Five infants (20%) were 

pharmacologically treated with ibuprofen for a hemodynamically significant patent 

ductus arteriosus, but none of the infants needed surgical ligation for this condition. Ten 

infants (40%) suffered from neonatal septicemia, three (12%) had a diagnosis of mild 

intraventricular hemorrhage (grades 1–2), four (16%) had bronchopulmonary dysplasia, 

defined as the need for supplementary oxygen at 36 weeks of postmenstrual age, and 
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one infant (4%) had retinopathy of prematurity stage 1. There were no cases of 

necrotizing enterocolitis.  

As control group, we selected 30 (11 boys) healthy fetuses, who were subsequently 

born at term with normal birth weights: mean birth weight (SD): 3456 (437) grams. 29 of 

the term infants were AGA and one was proportionately large for gestational age without 

any history of maternal diabetes. The recruitment and enrollment of the controls was 

performed during routine antenatal visits to three primary healthcare maternity clinics in 

the second trimester of pregnancy. Gestational age had been prospectively determined 

in all of the pregnancies by a fetal ultrasound examination at 17–18 postmenstrual 

weeks, according to Swedish recommendations for antenatal care.  

All of the parents were interviewed about their family history of cardiovascular disease 

and a positive history was defined as a report of myocardial infarction, stroke, 

pharmacologically treated hypertension or hyperlipidemia among their first-degree 

relatives. The infant and maternal characteristics are presented in table 1. Once the 

infants were included in the study, there were no dropouts because of pregnancy or 

postnatal complications, fetal or infant deaths, or withdrawal of parental consent. 
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 Preterm infants (n=25) Term controls (n=30) p-value 

Maternal data    

Age, years 32.6 (4.2) 31.1 (4.3) 0.20 

Parity, n 1.7 (1.0) 1.9 (1.0) 0.46 

Family history of CVD 3/25 (12%) 5/30 (17%) 0.62 

Smoking in pregnancy, n 5/25 (20%) 1/30 (3.3%) 0.048 

Perinatal data    

Gestational age, weeks 27.7 (1.2) 39.0 (1.4) - 

Boys, n 13/25 (52%) 11/30 (33%) 0.16 

Birth weight, g 1153 (258) 3456 (437) - 

Birth weight SDS -0.82 (1.01) 0.09 (1.10) 0.003 

Birth length, cm 37.2 (2.7) 50.3 (1.9) - 

Infant data at final 
assessment 

   

Postmenstrual age, days 380 (15) 371 (10) 0.13 

Weight, kg 5.61 (0.48) 6.09 (0.62) 0.003 

Length, cm 59.8 (2.5) 61.2 (2.7) 0.072 

Heart rate, beats/min 144 (17) 143 (15) 0.90 

Syst. blood pressure, mmHg 91 (13) 94 (9) 0.41 

Diast. blood pressure, mmHg 59 (11) 63 (12) 0.32 

Table 1: Maternal and infant characteristics, mean (SD) values or proportions (%). CVD=cardiovascular 

disease, SDS= standard deviation score 
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4.2 STUDY PROTOCOL 

The protocol in study I, II and IV consisted of three consecutive assessments. 

Ultrasonography of the major arteries and the heart was performed at 3 months before 

term, at term and three months after term-equivalent age (Figure 5). The first ultrasound 

was performed at a mean (SD) of 206 (10) days of postmenstrual age in very preterm 

infants and at 198 (6) days of postmenstrual age in the fetal reference group. At the third 

and last ultrasonographic investigation, the very preterm infants were 380 (16) days and 

the reference infants born at term 371 (10) days of postmenstrual age. At the final 

investigation, weight, length and blood pressure (mean of two measurements using an 

oscillometric device; Omron HEM-907, Omron Healthcare Inc., IL, USA) were measured 

in all infants. At the same time and using the same protocol (anthropometry, blood 

pressure and ultrasonography of the large arteries and the heart), we also examined the 

mothers once. In studies I and II, we excluded all infants that were not AGA, in study IV 

we did not include fetal data. 

In study III, we compared cardiac function in the healthy control group before and after 

birth. The first intra-uterine echocardiographic examination was performed at a mean 

gestational age of 28+3 weeks and the second extra-uterine assessment was carried 

out at term, on average 170 hours after birth.   

 

Figure 5: Time points when the preterm and term control groups were examined 
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4.2.1 Ultrasound assessments 

All recordings were performed by one experienced examiner using the same ultrasound 

machine (GE Vingmed Vivid 7, General Electric, Horten, Norway, 

http://www.ge.com/no/). We used a phased array matrix sector probe (GE M3S 1.5–4.0 

MHz) for fetal, and another phased array sector probe (GE 10-S 4.0–10.5 MHz) for 

infant examinations. A complete diagnostic echocardiographic assessment was 

performed on all subjects to rule out malformations and significant patent ductus 

arteriosus in the newborn infants. All recordings in infants included an electrocardiogram 

(ECG), in fetal investigations we used a dummy ECG based on mitral and aortic valve 

motion in order to define systole and diastole. 

All recordings were analyzed off-line by an independent examiner, blinded for group 

belonging in studies I, II and IV, using commercially available software (Echo-PAC, GE 

Healthcare, USA). 

 

4.2.2 Aortic and carotid diameters and IMT 

At each investigation, we performed three consecutive angle-corrected M-mode 

recordings, each including at least six heart cycles, to determine the end-diastolic and 

systolic diameters of the upper abdominal aorta at the level of the diaphragm, and the 

diameter of the common carotid artery just before the bifurcation. Aortic and carotid IMT 

were measured in the distal arterial wall using M-Mode according to international 

guidelines148 (Figure 6). The reason for the measurement of the distal wall was that a 

proper differentiation between tunica adventitia and media is not possible in the proximal 

wall149. 
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Figure 6: M-Mode image of the abdominal aorta of a preterm infant. Illustration of the measurements of 

the end-diastolic diameter (white) and intima-media thickness (red) 

 

4.2.3 Conventional echocardiography 

All standard echocardiographic views were performed: parasternal long and short axis, 

four and two chamber, subcostal and suprasternal views, M-Mode and Doppler 

investigation of the four valves and the great arteries. We determined systolic 

parameters such as: a) shortening fraction of the LV in the M-Mode recording of the 

parasternal long axis view, b) ejection fraction by biplane volumetric estimation 

according to the modified Simpson’s formula and c) cardiac output as the product of 

stroke volume and heart rate. Diastolic function was assessed by measuring the 

relationship between early and late ventricular filling (E/A-ratio). Finally, we calculated 

the myocardial performance index (MPI) as a parameter for both systolic and diastolic 

function. MPI is the ratio of isovolumetric contraction and relaxation time divided by 

ejection time. It has been shown to be useful in both ventricles, even in infants 129. 
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4.2.4 Speckle-tracking echocardiography 

For each examination, digital loops containing at least five heart cycles in a B-Mode 

apical four-chamber projection were acquired in high 2D-quality. In order to obtain 

optimal frame rates, apical two-chamber views including either the right or left ventricle 

and the corresponding atrium were recorded when frame rates were too low in the four-

chamber-projection. No harmonic imaging was used. 

A semi-automatic system traced the myocardium/endocardium border of each ventricle 

in separate analyses, marking 6 regions of interest (Figure 7). When necessary, the 

tracking process was visually optimized by the examiner, as the midpoint of the 

endocardial tracking line was not necessarily the anatomical apex of the respective 

ventricle. We measured at the basal (atrio-ventricular annulus), mid-septal and apical 

level in the free walls of the left (LV) and right ventricle (RV) and the interventricular 

septum (IVS) in systole and diastole. Values for the interventricular septum were 

recorded and analyzed together with those of the left ventricle (Figure 8).   

Peak systolic longitudinal strain, strain rate and myocardial velocities were determined. 

For estimations of each of these variables, three measurements were performed and 

the mean value calculated. 

 

Figure 7: Identification of six regions of interest in the left ventricle of a fetus at a gestational age of 28+2 

using STE: red, dark-blue and purple at the free left ventricular wall, and yellow, light-blue and green at the 

interventricular septum from basis to apex 
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Figure 8: Graphical and numerical presentation of strain in six regions of interest (ROI) in the LV of a 

preterm infant 3 months after birth with the same color coding of the free left ventricular wall and 

interventricular septum as in figure 7 

 

4.2.5 Calculated indices 

We measured the early diastolic filling velocity in the conventional PW-Doppler (E) and 

by STE (E´) and calculated the relation between them (E/E´) in both ventricles. This 

parameter has become central in the evaluation of diastolic function and an estimate of 

diastolic filling pressure150. Additionally, we assessed the relationship of early and late 

ventricular filling velocities in the conventional PW-Doppler, and myocardial velocities 

during early and late diastolic filling by STE in both ventricles. 

 

4.3 STATISTICAL METHODS 

The results are presented as means and standard deviations (SD), medians and 

interquartile ranges or proportions. Shapiro Wilk test was used to test the normality of 

distributions. If p>0.05, the data distributions were considered to be normal. Student´s  

t-test and Wilcoxon rank-sum test were used to test for group differences, the paired  
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t-test was applied in the analysis of within group changes. A p-value of < 0.05 was 

considered significant in studies I-III. In order to avoid type 1 statistical errors due to 

multiple comparisons, a significance level of 0.01 was chosen for study IV. Associations 

between covariates were first tested using univariate analyses, and associations with a 

p<0.25 were then entered into a stepwise multivariate regression model. Accordingly, 

perinatal characteristics and neonatal morbidities were analyzed for associations with 

the respective outcome variables. All data were analyzed using JMP 11.0.0 (SAS 

Institute Inc., Cary, NC, USA). 

 

4.4 ETHICAL CONSIDERATIONS AND INFORMED CONSENT 

The study protocols were in accordance with the ethical principles for medical research 

involving human subjects laid out in the Declaration of Helsinki. Parental oral and written 

informed consent was obtained before the infants were included in the studies. All the 

studies had been approved by the Regional Ethics Review Board in Stockholm 

(2008/294-31/3). 
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5 RESULTS 

 

5.1 STUDY I 

Aortic diameters and growth 

At the first assessment, which corresponded to an average post-conceptional age of 28 

weeks, the aortic end-diastolic diameter (aEDD) was somewhat larger in very preterm 

infants than in the age-matched controls assessed as fetuses (median 3.6 vs. 3.4 mm, 

p=0.03), whereas there was no significant group difference in systolic diameters (aSD; 

median 4.0 vs. 4.3 mm, p=0.30). At the next investigation three months later, both aEDD 

(4.9 vs. 5.8 mm) and aSD (5.3 vs. 6.4 mm) were significantly smaller in infants born very 

preterm as compared with infants born at term (p<0.001 for both comparisons). At the 

final assessment six months after the first comparison, these group differences 

remained highly significant: on average, the aEDD was 1.6 mm or 22% smaller in 

infants born very preterm when they were compared with those born at term (5.8 vs. 7.4 

mm, table 2). In the fetuses, the aEDD increased by +2.6 mm during the third trimester. 

In contrast, the very preterm infants only exhibited +0.9 mm increase in aEDD during the 

same developmental period (p<0.001). During the following three-month period, aortic 

growth velocity (aGV) continued unchanged (+0.9 mm) in very preterm infants, whereas 

the aGV in term controls slowed down to +1.3 mm (p<0.001 vs. fetal aortic growth), and 

the group difference in aGV was no longer statistically significant. At the end point of our 

study, aEDD did not vary in relation to the infants’ sex, postmenstrual age, maternal 

smoking in pregnancy or a family history of cardiovascular disease.   

However, we found borderline significant correlations between the infants’ aEDD and 

current weight (β= 0.42 mm/kg, r= 0.26, p= 0.07) and between infant and maternal 

aEDD (β=0.072 mm/1 mm increase in maternal aEDD, r= 0.27, P= 0.06). 

In the final multiple regression model including all three covariates (group, infant 

weight at last examination and maternal aEDD), only group belonging (very preterm-

term) contributed significantly to the variation in infant aEDD (r2= 0.54, p<0.001). The 

result of this regression analysis was the same after log-transforming infant aEDD. 
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Carotid artery diameters and growth 

At the first assessment, the cEDD was 1.7 mm (interquartile range 1.5–1.9 mm) in very 

preterm infants (no fetal data available). At term, both cEDD (2.0 vs. 2.7 mm, p<0.001) 

and the systolic diameters (cSD; 2.4 vs. 2.9 mm, p<0.001) were significantly smaller in 

very preterm infants than term infants. Three months later and at the end point of our 

study, the average group difference in cEDD was 0.43 mm, corresponding to a 14% 

smaller carotid diameter in infants born very preterm (p=0.002), table 3. 

In very preterm infants, the cEDD increased by an average of 0.3 mm during the first 

three months of postnatal life. During the next three-month period, carotid growth 

velocity (cGV) increased in very preterm infants to 0.6 mm (p=0.01 for within group 

comparison) and it was higher in preterm infants than in controls born at term (+0.31 

mm, p=0.02 for group difference). At the last examination, infant cEDD did not vary in 

relation to infants’ sex, infants’ current weight, maternal smoking, maternal cEDD or a 

family history of cardiovascular disease. 

We found no significant associations between gestational age, SD scores of birth weight 

and birth weight and the corresponding aEDD and cEDD at the final follow-up 

examination. In addition, there were no statistically significant associations between 

neonatal exposures (antenatal steroids, ventilator treatment or umbilical artery 

catheterization) or neonatal morbidity (septicemia and patent ductus arteriosus) and 

later aEDD and cEDD. 

 

5.2 STUDY II 

Aortic intima-media thickness 

At the first assessment, corresponding to a mean post-conceptional age of 28 weeks, a-

IMT was thinner in the very preterm infants compared with the age-matched controls 

assessed in fetal life. During the following investigations, three and six months later, a-

IMT was not significantly different between infants born very preterm and infants born at 

term. When related to vessel diameter, a-IMT represented 10.5% of the vessel lumen 

diameter in the preterm group at term and 9.6% three months later, compared with 8.5% 

in the control group at term and three months after term (p < 0.05 for both comparisons, 

table 2). When related to body weight three months after term, a-IMT/kg was similar in 

both groups: 104 mikrom/kg in the preterm group vs. 101 mikrom/kg in the control group 
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(p = 0.73). There was no significant association between birth weight SDS and a-IMT at 

any age. Nor was there any relationship between increased weight nor length from birth 

to final follow-up and increased a-IMT. At the end point of our study, a-IMT did not vary 

in relation to infants’ sex, maternal smoking, postmenstrual age, maternal a-IMT or a 

family history of CVD. 
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 Very preterm (n=21) Term controls (n=29) p-value 

Aortic IMT*(mm) 

IMT, 28 w 0.41 (0.31-0.46) 0.58 (0.52-0.63) † 0.001 

IMT, Term 0.45 (0.38-0.57) 0.47 (0.38-0.56) 0.78 

IMT, 3 m 0.56 (0.51-0.63) 0.58 (0.52-0.70) 0.37 

Aortic end-diastolic 
diameter*(mm) 

EDD, 28 w 3.6    (3.3-4.1) 3.4 (2.9-3.7) † 0.03 

EDD, Term 4.9    (4.1-5.6) 5.8 (5.4-6.4) < 0.001 

EDD, 3 m 5.8    (5.6-6.3) 7.4 (6.7-8.0) < 0.001 

Relative aortic IMT** 

IMT/EDD, 28 w 0.109 (0.094-0.125) 0.182 (0.168-0.196) † < 0.001 

IMT/EDD, Term 0.105 (0.092-0.118) 0.085 (0.073-0.097) 0.01 

IMT/EDD, 3 m 0.096 (0.087-0.105) 0.085 (0.077-0.093) 0.03 

*Data are median (25-75th percentile), p-values according to Wilcoxon rank-sum test. 

**Data are mean (SD), p-values according to Student´s t-test 

†Measurements performed in utero 

Table 2: Aortic measurements in millimeters (mm) of intima-media thickness (IMT), end-diastolic diameter 

(EDD) and calculation of relative intima-media thickness for the preterm and term control group at 28 

weeks of gestation, at term and at three months after term 
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Carotid intima-media thickness 

At the first assessment, the c-IMT was 0.33 (0.28–0.36) mm in very preterm infants. 

There are no data available for the fetal controls, because of the variation in the 

insonation angle when measuring the fetal carotid artery. At term and three months after 

term-equivalent age, there were no differences in c-IMT between the two groups. When 

related to lumen diameter, c-IMT represented 18.5% at term and 15.7% three months 

after term in the very preterm group compared with 13.8% and 13.2% in the control 

group for the respective time points during the investigation (p < 0.05 for both 

comparisons, table 3). When c-IMT was related to body weight three months after term, 

there were no significant differences between the groups: 76 mikrom/kg in the very 

preterm group vs. 68 mikrom/kg in the control group (p = 0.27). There was no significant 

association between birthweight SDS and c-IMT at any age. Nor was there any 

relationship between increased weight nor length from birth to final follow-up and 

increased c-IMT. At the last examination, infant c-IMT did not vary in relation to infants’ 

sex, infants’ current weight, maternal smoking, maternal c-IMT or a positive family 

history of CVD. 
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 Very preterm (n=21) Term controls (n=29) p-value 

Carotid IMT*(mm) 

IMT, 28 w 0.33 (0.28-0.36) - - 

IMT, Term 0.35 (0.32-0.38) 0.36 (0.31-0.39) 0.89 

IMT, 3 m 0.37 (0.33-0.48) 0.37 (0.32-0.48) 0.64 

Carotid end-diastolic diameter*(mm) 

EDD, 28 w 1.7    (1.5-1.9) - - 

EDD, Term 2.0    (1.8-2.1) 2.7 (2.4-3.0) < 0.001 

EDD, 3 m 2.6    (2.4-2.9) 3.1 (2.7-3.3) < 0.001 

Relative carotid IMT** 

IMT/EDD, 28 w 0.198 (0.166-0.240) - - 

IMT/EDD, Term 0.185 (0.165-0.205) 0.138 (0.121-0.156) < 0.001 

IMT/EDD, 3 m 0.157 (0.139-0.176) 0.132 (0.115-0.149) 0.03 

 

*Data are median (25-75th percentile), p-values according to Wilcoxon rank-sum test. 

**Data are mean (SD), p-values according to Student´s t-test 

Table 3: Carotid measurements in millimeters (mm) of intima-media thickness (IMT), end-diastolic 

diameter (EDD) and calculation of relative intima-media thickness for the preterm and term control group 

at 28 weeks of gestation, at term and at three months after term 

  



 

36 

5.3 STUDY III 

The ultrasound performances and analyses were technically feasible and reproducible 

in all 30 fetuses and in the neonatal period (intra-observer variability: 5.8% for STE and 

9.8% for conventional echocardiography, inter-observer variability 6.5% vs. 10.7% 

respectively).  

Longitudinal systolic strain 

Compared to fetal values, systolic strain values were significantly lower after birth in all 

regions of interest and in both ventricles. RV strain was still higher in comparison to LV 

and IVS, and strain was still higher at the basal parts of the heart compared to medial 

and apical regions of interest (Table 5). 

Strain rate 

Strain rate values decreased significantly in all regions of interest after birth, with the 

exception of early diastolic strain rate in the LV (Figure 9 a-c). The trend of higher strain 

rates at the base of the heart remained unchanged. Strain rate values continued to be 

higher in the RV compared to LV and IVS, although the differences became less 

pronounced (for absolute values: see tables in the published article in part two of this 

thesis). 

Myocardial velocities 

Systolic, early and late diastolic myocardial velocities increased after birth. In particular, 

velocities increased in the RV, which exhibited significantly higher velocities than the LV 

and IVS. Only systolic and late diastolic velocities in the LV and IVS remained 

unchanged (Table 4). 

Cardiac indices, ejection fraction and cardiac output 

Regarding the LV, MPI and E/E´ were almost identical pre- and postnatally. The ratio of 

early and late diastolic filling (E/A) and E´/A´ increased after birth, which was also true 

for the RV. In contrast, MPI and E/E´ decreased in the RV after birth. The ejection 

fraction according to Simpson was similar in the left ventricle even after birth. Cardiac 

output (CO) in the LV was comparable to the combined CO in utero (Table 6). When CO 

was related to birth weight, it was 232 ml/kg/min. No fetal weight estimations were 

performed. 
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  mean (SD), fetal mean (SD), neo p-value 

RV S  4.83 (1.86)  6.38 (2.34)   0.006 

 E -4.40 (1.93) -6.44 (1.54) <0.001 

 A -4.53 (2.30) -5.97 (2.52)   0.053 

LV S  4.49 (1.56)  4.44 (1.45)   0.99 

 E -4.70 (1.60) -5.51 (1.84)   0.07 

 A -4.71 (1.49) -4.22 (1.86)   0.39 

IVS S  4.27 (1.44)  4.00 (1.13)   0.46 

 E -3.28 (0.71) -5.02 (1.83)   0.002 

 A -4.11 (1.73) -4.82 (1.84)   0.10 

   

Table 4: Maximal basal velocities (cm/s) of the right ventricle (RV), left ventricle (LV) and interventricular 

septum (IVS) in systole (S), early diastole (E) and late diastole (A) in echocardiographic examinations at 

28th week of gestation (fetal) and after birth (neo).  Data are mean (SD), p-values according to paired t-test 

  mean (SD), fetal mean (SD), neo p-value 

RV basal -29.3 (6.4) -25.3 (7.3)  0.06 

 medial -26.5 (4.4) -22.6 (4.7)  0.003 

 apical -26.0 (4.9) -21.2 (5.0)  0.001 

 mean -27.3 (4.4) -23.0 (4.3)  0.002 

LV basal -23.9 (4.3) -20.0 (3.8)   0.002 

 medial -21.8 (3.3) -19.1 (2.6) <0.001 

 apical -22.1 (3.6) -19.3 (2.7)   0.02 

 mean -22.2 (2.9) -19.5 (2.1) <0.001 

IVS basal -24.3 (5.4) -20.6 (3.6)  0.01 

 medial -22.9 (4.6) -19.6 (3.5)  0.009 

 apical -22.1 (3.6) -19.9 (3.7)  0.11 

 mean -22.2 (2.9) -20.1 (3.4)  0.01 

   

Table 5: Maximal and mean systolic longitudinal strain (%) of the right ventricle (RV), left ventricle (LV) 

and interventricular septum (IVS) at the base, mid-ventricular (medial) and apex in echocardiographic 

examinations at 28th week of gestation (fetal) and after birth (neo). Data are mean (SD), p-values 

according to paired t-test  
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  Fetal Neo p-value 

 

RV SV  (ml) 3.25       (0.58)  -†  - 

 CO (ml) 443        (58)  -†  - 

 EF  (%) 65.29     (6.69) 55.51   (11.6) < 0.001 

 MPI 0.24       (0.17) 0.13   (0.04) 0.01 

 E/E´ 11.3       (5.8) 8.6       (4.5) 0.07 

 E/A 0.94       (0.39) 1.00     (0.56) 0.66 

 E´/A´ 1.12       (0.94) 1.26     (0.59) 0.48 

 

 

 

 

 

 

 

 

 

Table 6: Stroke volume (SV in ml), cardiac output (CO in ml/min), EF (%) by biplane volumetry and 

myocardial performance index (MPI), relation between max. velocities in early diastole in pulsed Doppler 

(E) and 2D-S (E´) and relation between early and late diastolic max. velocities in pulsed Doppler (E/A) and 

2D-S (E´/A´) for the right (RV) and left ventricle (LV) in echocardiographic examinations at 28th week of 

gestation (fetal) and after birth (neo). Data are mean (SD), p-values according to paired t-test. † = 

measurements not performed 

  

LV SV  (ml) 2.26       (0.44) 6.27     (1.66)  - 

 CO (ml) 321        (56) 797       (214)  - 

 EF  (%) 64.66     (8.06) 63.58    (6.32)  0.57 

 MPI 0.26       (0.15) 0.26      (0.11) 0.67 

 E/E´ 11.3       (7.3) 11.9      (5.9) 0.67 

 E/A 0.95       (0.45) 1.16      (0.20) 0.12 

 E´/A´ 1.06       (0.39) 1.48      (0.71) 0.005 
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Figure 9: Changes in strain rate 

in the transitional period from fetal 

to neonatal life (in %) in the left 

(LV) and right (RV) ventricle and 

interventricular septum (IVS) in 

systole (a), early diastole (b) and 

late diastole (c) 

 

c 

a 

b 
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5.4 STUDY IV 

At term-equivalent age, we found no significant differences in cardiac function between 

infants born very preterm and at term. When we repeated the measurements three 

months later, there were still no group differences detectable by conventional 

echocardiography. However, using speckle-tracking echocardiography, we found 

significantly lower left ventricular longitudinal strain and significantly lower left ventricular 

systolic and diastolic myocardial velocities in infants born very preterm than in infants 

born at term. In addition, the postnatal increase in myocardial strain, strain rate and 

myocardial velocities seen in the left ventricle was slower in preterm infants compared to 

controls. 

Longitudinal Myocardial strain  

At term-equivalent age, there were no significant differences in LV or RV mean free wall 

strain, or IVS strain between the preterm and term infants.  

In term infants but not in preterm infants, there was a significant increase in LV free wall 

strain from birth to three months of age. There were no other statistically significant age-

related intra-group changes in strain. 

At three months of corrected age, mean free wall LV strain was significantly lower in the 

preterm infants (p=0.010), whereas IVS and RV mean free wall strain did not differ 

significantly from the values found in infants born at term (Table 7). 

Strain rate 

There were no inter-group differences in the strain rate at term-equivalent age, with the 

exception of a higher right ventricular systolic strain rate in preterm infants than in term 

infants. 

In term infants, there was a significant increase in all LV, IVS and RV strain rates from 

birth to three months of age. In preterm infants, there was a significant increase in LV 

systolic, IVS and RV early diastolic strain rates from term-equivalent age to three 

months of corrected age. 

At three months of corrected age, there were no inter-group differences in LV, IVS or RV 

strain rates (Table 9).   
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Myocardial velocity 

At term-equivalent age, there were no significant differences in maximal myocardial 

velocities between preterm and term infants.  

In term infants, all (systolic, early and late diastolic) LV and IVS myocardial velocities 

increased significantly from term to three months of age, whereas RV myocardial 

velocities remained unchanged. In preterm infants, the systolic myocardial velocity of the 

RV, the early diastolic velocity of the LV, and all IVS myocardial velocities increased 

from term-equivalent age to three months of corrected age. 

At three months of corrected age, LV diastolic myocardial velocities were significantly 

lower, both in early (p=0.003) and late diastole (p=0.009), in preterm infants than in term 

controls. There were no other between group differences in myocardial velocity at any 

region of interest (Table 8). 

Conventional echocardiography and indices 

At three months of corrected age, there were no statistically significant differences 

between preterm infants and term-born controls when it came to the measurements of 

diastolic indices such as E/A, E´/A´, E/E´ and the myocardial performance index (MPI) of 

both the right and left ventricles. There were also no group differences in the ejection 

fraction (EF), shortening fraction (SF), stroke volume (SV) and cardiac output (CO) of 

the left ventricle (Table 10) 

Covariate analyses 

Mean LV strain in all preterm infants at 3 months of corrected age was -20.0 and without 

the 4 SGA-infants it was -19.9. Corresponding means for RV strain were  

-23.9 (all preterm infants) and -23.3 (without SGA-infants), and for IVS strain: -21.9 (all 

preterm infants) and -22.2 (without SGA-infants), respectively 

Moreover, at three months of corrected age, mean myocardial strain values (all infants 

included in the analysis; n=55) did not correlate – neither in the LV or RV, nor in the IVS  

– to maternal smoking in pregnancy, BW-SDS or the infants´ body weight (p-values for 

an association ranging from 0.22 to 0.79). Similar insignificant correlations were made 

for strain rate and maximal myocardial velocities (p-values not shown). 
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Finally, there were no significant associations between the speckle tracking outcome 

variables at three months of corrected age and exposure to antenatal steroids, 

gestational age, a diagnosis of patent ductus arteriosus or bronchopulmonary dysplasia. 
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Table 7: Myocardial longitudinal strain (%) in the free wall of the left (LV) and right (RV) ventricle and the 

interventricular septum (IVS) as assessed by speckle tracking echocardiography. Preterm infants (n=25) 

are compared with controls born at term (n=30) during a 6 month period, starting at 28 weeks of 

postmenstrual age and ending at 3 months of term corrected age (53 weeks of postmenstrual age).  

Mean (SD) values. *denotes p<0.05 for within-group difference from 40 to 53 weeks of postmenstrual age.  

 28 weeks 40 weeks 53 weeks  

Region of interest Preterm Control Preterm Control Preterm Control p-value for difference 
between groups at 

53 wks 

Left ventricle (LV)        

   LV-basal   -18.6 

(3.5) 

- -19.3 

(4.6) 

-20.0 

(3.8) 

-19.8 

(4.2) 

-22.1 

(3.8) 

0.03 

   LV-mid -17.5 

(3.2) 

- -18.1 

(3.4) 

-19.1 

(2.6) 

-19.8 

(3.4) 

-21.7 

(3.8) 

0.05 

   LV-apical -17.5 

(4.2) 

- -18.7 

(3.3) 

-19.4 

(2.8) 

-20.5 

(3.4) 

-22.2 

(4.5) 

0.12 

   LV-mean -17.9 

(2.5) 

- -18.7 

(2.6) 

-19.5 

(2.1) 

-20.0 

(2.2) 

-22.0* 

(3.2) 

0.010 

Interventricular 

septum (IVS) 

       

   IVS-basal   -18.4 

(3.6) 

- -20.4 

(4.1) 

-20.6 

(3.7) 

-21.1 

(2.8) 

-21.7 

(3.3) 

0.48 

   IVS-midseptal -18.8 

(3.4) 

- -20.2 

(3.1) 

-19.6 

(3.5) 

-22.1 

(2.5) 

-22.2 

(3.4) 

0.86 

   IVS-apical -19.8 

(3.8) 

- -20.3 

(3.0) 

-19.9 

(3.7) 

-22.5 

(3.0) 

-23.6 

(4.7) 

0.36 

   IVS-mean -19.0 

(3.4) 

- -20.3 

(3.0) 

-20.1 

(3.4) 

-21.9 

(2.2) 

-22.5* 

(3.3) 

0.44 

Right ventricle (RV)        

   RV-basal   -20.7 

(8.9) 

- -24.7 

(7.6) 

-25.3 

(7.3) 

-25.2 

(6.7) 

-28.0 

(7.1) 

0.17 

   RV-mid -20.0 

(6.2) 

- -24.0 

(4.7) 

-22.6 

(4.7) 

-24.2 

(4.3) 

-23.9 

(6.0) 

0.86 

   RV-apical -21.0 

(4.9) 

- -21.4 

(4.7) 

-21.2 

(5.0) 

-22.2 

(7.2) 

-21.4 

(5.8) 

0.69 

   RV-mean -20.5 

(5.5) 

- -23.3 

(4.0) 

-23.0 

(4.2) 

-23.9 

(4.2) 

-24.4 

(5.2) 

0.69 
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Table 8: Maximum myocardial velocity (cm/s) in systole, early and late diastole in the left ventricle (LV), 

the interventricular septum (IVS) and the right ventricle (RV) in preterm infants (n=25) and in controls born 

at term (n=30) as assessed by speckle tracking echocardiography. Longitudinal assessments during a 6 

month period, starting at 28 weeks of postmenstrual age) and ending 3 months of term corrected age (53 

weeks of postmenstrual age).  

Median (interquartile range) values. * denotes p<0.05 for within-group difference from 40 to 53 weeks of 

postmenstrual age. 

 28 weeks 40 weeks 53 weeks  

Region of interest Preterm Control Preterm Control Preterm Control p-value for 
difference  
between 
groups  

at 53 wks 

Left ventricle (LV)        

   Systole 3.17 
(2.6-4.5) 

- 4.99 
(4.4-6.3) 

4.41 
(3.2-5.5) 

5.49 
(4.2-7.0) 

6.47* 
(5.1-7.4) 

0.27 

   Early diastole -3.74 
(-4.9;-2.7) 

- -5.79 
(-6.9;-5.1) 

-5.63 
(-6.5;-4.0) 

-7.37* 
(-11;-5.2) 

-10.9* 
(-13.1;-7.9) 

0.003 

   Late diastole -3.61 
(-5.6;-2.5) 

- -5.26 
(-6.1;-3.6) 

-4.16 
(-5.3;-3.1) 

-5.11 
(-7.0;-3.1) 

-6.95* 
(-8.9;-5.5) 

0.009 

Interventricular 
septum (IVS) 

       

   Systole 2.85 
(2.5-3.2) 

- 4.38 
(3.9-4.9) 

3.81 
(3.2-4.7) 

5.88* 
(5.3-7.2) 

5.80* 
(5.0-7.0) 

0.83 

   Early diastole -3.84 
(-5.2;-2.6) 

- -5.68 
(-7.7;-4.6) 

-4.62 
(-5.9;-3.5) 

-7.27* 
(-8.5;-6.2) 

-7.25* 
(-8.9;-6.1) 

0.90 

   Late diastole -4.14  
(-4.8;-3.5) 

- -5.33 
(-6.2;-4.2) 

-4.22 
(-5.6;-3.4) 

-6.46* 
(-7.3;-5.3) 

-7.06* 
(-9.3;-5.7) 

0.13 

Right ventricle 
(RV) 

       

   Systole 4.31  
(3.5-5.1) 

- 6.72 
(5.2-7.8) 

5.62 
(4.6-7.7) 

7.98*  
(6.7-9.2) 

7.08 
(5.6-8.7) 

0.11 

   Early diastole -4.60 
(-6.5;-4.2) 

- -7.32 
(-8.9;-5.2) 

-6.47 
(-7.6; -5.6) 

-7.55 
(-11;-4.9) 

-6.80 
(-9.8;-4.3) 

0.49 

   Late diastole -4.82 
(-7.0;-2.2) 

- -7.30 
(-8.4;-5.4) 

-5.90 
(-8.1;-3.9) 

-8.45  
(-10;-5.7) 

-5.90 
(-7.9;-4.8) 

0.05 
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Table 9: Myocardial strain rate (1/s) in systole, early and late diastole in the left (LV) and right ventricle 

(RV) and in the interventricular septum (IVS) in preterm infants (n=25) and in controls born at term (n=30) 

as assessed by speckle tracking echocardiography. Longitudinal assessments during a 6 month period, 

starting 3 months before (28 weeks of postmenstrual age) and ending 3 months of term corrected age (53 

weeks of postmenstrual age). Median (interquartile range) values. *denotes p<0.05 for within-group 

difference from 40 to 53 weeks of postmenstrual age. 

 28 weeks 40 weeks 53 weeks  

 Preterm Control Preterm Control Preterm Control p-value for 
difference 
between 
groups at 
53 wks 

Left ventricle 
(LV) 

       

   Systole -2.33 
(-2.9;-2.1) 

- -2.60 
(-3.5;-2.3) 

-2.40 
(-3.2;-2.0) 

-3.37* 
(-3.8;-2.7) 

-3.06* 
(-3.7;-2.6) 

0.53 

   Early diastole 2.78 
(2.4-3.5) 

- 3.51 
(3.1-3.7) 

3.05 
(2.7-4.0) 

3.33 
(3.1-5.1) 

4.33* 
(3.5-5.3) 

0.28 

   Late diastole 2.28 
(1.8-2.9) 

- 2.76 
(2.0-3.3) 

2.10 
(1.6-3.2) 

2.52 
(2.1-3.6) 

3.22* 
(2.2-3.9) 

0.28 

Interventricular 
septum (IVS) 

       

   Systole -2.12 
(-2.6;-1.8) 

- -2.32 
(-2.8;-1.9) 

-2.08 
(-2.4;-1.7) 

-2.62 
(-3.2;-2.0) 

-2.60* 
(-3.1;-2.2) 

0.75 

   Early diastole 2.72 
(2.0-3.1) 

- 2.62 
(2.2-3.2) 

2.32 
(2.0-2.9) 

3.22* 
(2.9-4.3) 

3.44* 
(2.6-4.3) 

0.93 

   Late diastole 2.45 
(1.8-2.9) 

- 2.47 
(1.9-2.9) 

1.88 
(1.5-2.4) 

2.56 
(2.0-3.0) 

2.57* 
(2.2-3.4) 

0.23 

Right ventricle 
(RV) 

       

   Systole -2.79 
(-3.2;-2.6) 

- -3.81 
(-4.1;-3.1) 

-2.70 
(-3.7;-2.3) 

-4.17 
(-4.7;-2.8) 

-3.79* 
(-5.3;-3.3) 

0.38 

   Early diastole 3.20 
(2.3-3.5) 

- 3.59 
(2.8-4.5) 

3.00 
(2.3-4.3) 

4.54* 
(3.9-5.5) 

4.16* 
(2.9-6.1) 

0.82 

   Late diastole 2.64 
(2.1-3.1) 

- 3.33 
(2.5- 4.2) 

2.30 
(1.7-3.0) 

2.90 
(2.2-4.1) 

3.53* 
(2.7-4.3) 

0.38 
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Table 10: Cardiac function in preterm infants (n=25) and in controls born at term (n=30) as assessed by 

conventional echocardiography and calculated indices. Longitudinal assessments during a 6 month 

period, starting 3 months before (28 weeks of postmenstrual age) and ending 3 months of term corrected 

age (53 weeks of postmenstrual age).  

 28 weeks 40 weeks 53 weeks  

 Preterm Control Preterm Control Preterm Control p-value for  
between group 
difference at  

53 wks 

Right ventricle (RV)        

E/A 0.96 
(0.39) 

- 1.04 
(0.27) 

1.01 
(0.59) 

1.23 
(0.61) 

1.00 
(0.37) 

0.10 

E´/A´ 1.29 
(0.61) 

- 1.09 
(0.40) 

1.27 
(0.58) 

1.17 
(0.69) 

1.33 
(0.72) 

0.46 

E/E´ 9.31 
(3.16) 

- 11.28 
(4.90) 

8.59 
(4.60) 

11.01 
(5.70) 

10.63 
(4.26) 

0.81 

MPI 0.20 
(0.13) 

- 0.06 
(0.01) 

0.13 
(0.04) 

0.09 
(0.05) 

0.12 
(0.07) 

0.50 

Left ventricle (LV)        

EF, % 62.8 
(7.1) 

- 60.7 
(6.8) 

63.6 
(6.3) 

60.2 
(8.9) 

61.3 
(6.4) 

0.59 

E/A 0.98 
(0.33) 

- 1.28 
(0.50) 

1.13 
(0.24) 

1.16 
(0.55) 

1.20 
(0.25) 

0.71 

E´/A´ 1.14 
(0.58) 

- 1.41 
(0.74) 

1.49 
(0.71) 

1.70 
(0.50) 

1.52 
(0.59) 

0.45 

E/E´ 15.93 
(7.4) 

- 14.84 
(4.53) 

12.00 
(6.02) 

11.75 
(4.29) 

9.60 
(4.21) 

0.06 

MPI 0.24 
(0.13) 

- 0.25 
(0.14) 

0.26 
(0.11) 

0.30 
(0.11) 

0.22 
(0.09) 

0.07 

SF, % 32.1 
(6.8) 

- 31.2 
(6.6) 

30.0 
(5.3) 

33.0 
(6.2) 

32.2 
(3.8) 

0.55 

SV, ml 2.3  
(0.9) 

- 5.3  
(1.7) 

4.8  
(1.6) 

7.4  
(2.3) 

7.7  
(2.1) 

0.60 

CO, ml 347  
(157) 

- 795 
(280) 

797 
(214) 

1054 
(319) 

1112 
(356) 

0.52 
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6 DISCUSSION 

The fundamental aim of this thesis was to investigate cardiovascular physiology during 

the first six months of postnatal life after preterm birth. Studies I and II illustrate changes 

in the vascular tree, study III shows the feasibility and reproducibility of conventional and 

speckle-tracking echocardiography in fetuses and neonates, and study IV compares 

cardiac function in preterm and term infants using both conventional and speckle-

tracking techniques. 

Study I demonstrates three major and novel findings: first, the data confirms our 

hypothesis that the aortic narrowing previously found in children and adolescents born 

very preterm has a perinatal origin, occurring during the developmental period that 

corresponds to the third trimester of pregnancy. Secondly, infants born very preterm 

exhibit smaller carotid arteries, suggesting that impaired growth of the arterial vascular 

tree may be a generalized phenomenon induced by very preterm birth. Thirdly, fetal 

aortic growth velocity is found to be high and the aortic diameter increases by 60% 

during the third trimester of pregnancy. This rapid and physiological aortic growth 

decelerates dramatically after birth. 

The effect of preterm delivery on arterial growth is not only abrupt – as it occurs 

immediately after birth – but it is also strong: already six months later, the aorta is 22% 

and the carotid artery 14% narrower compared to infants born at term. An important 

factor for this patient group is the fact that there is apparently no compensation for the 

initial growth retardation. In previous studies of healthy adolescents born preterm, the 

aortic cross-sectional area was still 16-19% smaller than in healthy controls born at 

term. The mechanical properties, flow characteristics and compliance of the great 

arteries in preterm individuals will be an important topic for future research. 

As previously mentioned, the extra-uterine condition has an immediate and important 

influence on vessel growth in preterm infants and future studies will have to clarify the 

exact mechanisms. To date, three different hypotheses have been discussed in the 

scientific literature. Firstly, the reduction of flow in the great arteries after the 

premature uncoupling of the placental circulation results in lower shear stress. As 

normal shear stress activates transcriptional factors of the expression of vascular 

endothelial derived growth factor receptors, and is therefore essential for adequate 

vessel growth151, a reduced mechanical stimulus might lead to impaired vessel 

development.  
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Secondly, many preterm infants suffer from severe undernutrition during the first 

weeks of life152. This insufficient nutritional status is not just present in infants with fluid 

restriction153. The current recommendations for preterm infants are to provide nutrients 

that are approximately the same as the requirements for the rate of growth and 

composition of weight gain for a normal fetus of the same conceptional age. However, 

these aims are rarely achieved or maintained in preterm infants during their hospital 

stay154,155. In a prospective study from England, which included more than 100 infants 

with a gestational age ≤ 34 weeks, the cumulative energy and protein deficit at the end 

of the fifth week were 813 and 382 kcal/kg and 23 and 13 g/kg in infants ≤ 31 weeks 

and ≥ 31 weeks, respectively156. As the recommended dietary intakes are based on 

maintenance of normal growth and not catch up growth, it is not surprising that catch-

up usually occurs after hospital discharge and is not completed before the age of two 

to three years. Interestingly, slow weight gain during the first year of life has been 

associated with an increased risk for CVD157. In general, postnatal malnutrition and 

growth retardation are considered as inevitable in preterm infants, and there is no 

evidence that more aggressive enteral or parenteral feeding can be achieved without 

adverse effects. However, it is unclear why growth retardation should have a particular 

effect on the vascular tree, as all values for diameters at the end-point of our studies 

were corrected for current body weight. Without knowing the exact mechanisms, we 

can assume that vascular growth might be particularly sensitive to undernutrition 

during the first months of postnatal life. 

Thirdly, IGF-1 levels reach a peak at late gestation that will be missed by preterm born 

infants. IGF-1 not only regulates elastin incorporation in the arterial wall59,62, it is also 

essential for normal vessel growth in humans60,61. Down-regulation of IGF-1 by 

placental insufficiency has been associated with thinner and stiffer umbilical arteries63. 

Accordingly, the arteries of preterm infants might grow at a slower rate since they are 

also deficient in IGF-1. In addition, they suffer from insufficient vascularization of the 

retina, a process that precedes ROP67. In our study population, only one infant 

developed ROP, but almost all of them displayed significant narrowing of the large 

arteries. This observation and the physiology of elastin deposition into the wall of the 

great arteries might indicate that the elastic arteries are even more sensitive to 

insufficient IGF-1 concentration than the capillaries.  
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In Study II we illustrate a relative intima-media thickening of the great arteries in 

infants born preterm compared to the healthy control group. This is due to smaller 

vessel diameters found in study I and cannot be attributed to fetal growth restriction as 

these children were excluded from this study. Three months after term, a-IMT 

represented 9.6% of the lumen diameter compared to 8.5% in term infants, c-IMT 

15.7% versus 13.2%, respectively. Data are available from a large cohort of young 

adults born with very low birth weight, which demonstrated relative but not absolute 

intima-media thickening92. Thus, it seems possible that changes in the arterial vessel 

wall persist until adulthood. A small study of preschool children in Japan agreed with 

our findings, as it showed that the mean aortic IMT of the preterm group was 

significantly thicker compared to controls158.  

However, the question remains about whether relative intima-media thickening signals 

an atherosclerotic disease process or whether it is a physiological and transient 

adaptation towards reduced aortic blood flow in the newborn infant, as a result of the 

cessation of the umbilical and placental circulation159. The physiology of reduced shear 

stress and the development of “adaptive intima-media thickening”160 seems to be 

reasonable in the perinatal period. In fact, intimal proliferation is considered to be a 

normal process in early childhood by some authors, observing coronary intimal 

proliferation in almost 100% of children between one and five years old, who died from 

causes unrelated to the cardiovascular system161. Other studies indicate that “real” 

atherosclerotic lesions develop through a number of morphological changes, and that 

foam cells and fatty streaks are present both in aortas and coronary arteries of infants 

who died in fetal life or as a consequence of sudden infant death syndrome69.  

However, there is no explanation currently available why preterm infants exhibit equal 

IMT compared to infants born at term, even though their vessels are much smaller. 

Again, IGF-1 seems to play an important role, as lower concentrations have been 

associated with thicker aortic IMT162. This association has been shown in growth 

restricted infants who suffer from insufficient IGF-1 levels during periods of gestation, 

but might also be valid in the preterm population, as they are IGF-1 deficient after birth. 

The lack of knowledge about the exact biochemical mechanisms of atherosclerosis later 

in life might explain, why the results of studies that have investigated IMT in adults who 

were born with low birth weight are contradictory. There is still considerable concern, 

that other influences during various decades of life might play a more important role than 

early developmental programming in terms of disease evolution. 



 

50 

In study III we observe changes in myocardial function in the transitional period from 

fetal to neonatal life in a healthy and homogenous group of infants. To date, there 

have been quite a few published studies on myocardial performance both in fetus and 

neonates, but to our knowledge, this is the only study that has investigated the same 

individuals before and after birth. Assessing cardiac function by using the speckle- 

tracking technique in both fetuses and newborns is feasible and reproducible. We 

describe a significant decrease in longitudinal strain and strain rate and increased 

myocardial velocities after birth compared with those of the fetus. This might be 

because of changes in loading conditions and the closure of fetal shunts. After an 

initial drop in right ventricular preload, due to the cessation of the umbilical flow, right 

ventricular preload is expected to rise, as the negative pleural pressure after lung 

expansion results in increased venous return and a less restrictive ventricular function. 

This is illustrated by the E/A-conversion after birth95. Additionally, left ventricular 

preload rises after birth, because pulmonary resistance and right ventricular afterload 

decrease and pulmonary blood flow increases96. Finally, arterial blood pressure as a 

proxy for left ventricular afterload increases postnatally163.  

When we compare our measurements from speckle-tracking echocardiography during 

the feto-neonatal transition with conditions of important changes in load that were 

produced by medical or pharmacological interventions, we find that changes in STE 

measurements illustrate changes in loading conditions accordingly45-47,164-168. 

However, right ventricular strain and strain rate values were expected to be higher 

after birth as pulmonary resistance decreases. This was actually not the fact. These 

observations were confirmed in a later study by Jain et al, who did not find an 

appreciable effect on right ventricular echocardiographic measures during early 

postnatal life169. The authors of that study argued that physiological changes after the 

decrease in right ventricular afterload might not be large enough and the contractile 

properties of the myocardium too immature to be able to affect STE-derived values. In 

our opinion, this argument is not completely convincing, because the strain values 

have been shown to be very sensitive to changes in loading conditions45.  

One limitation of study III is the use of so-called dummy ECG, which is defining systole 

and diastole by the opening and closure of valves. Obviously, electrical and 

mechanical systole and diastole are different in terms of timing, but peak values in 

strain, strain rate and velocity should not be affected by temporal delays. In any case, 

there is really no alternative to the use of dummy ECGs in fetal cohorts. In all postnatal 



 

 51 

examinations, we used ECGs and not valve movements because the software defined 

heart cycles automatically and we did not want to introduce a possible bias by 

manually defining heart cycles. 

Our findings, in both the fetal and postnatal states, agree well with other studies that 

used the same ultrasound equipment and algorithm for STE108,111,136,170. However, the 

sample size in our as well as in many of these studies has been limited. In order to 

develop nomograms with sufficient statistical power, it will be necessary to perform 

much larger studies with comparable protocols at different gestational and postnatal 

ages, correcting for frame and heart rates and extrapolating for gender and race. One 

important step to reduce inter-vendor variability occured recently, when the American 

Society of Echocardiography and the European Association of Cardiovascular Imaging 

published a consensus document to standardize nomenclature and technical approach 

in STE171. 

 

The main finding in study IV is that speckle-tracking echocardiography detects 

significant changes in left ventricular function six months after preterm birth. However, 

no differences between preterm and term infants were seen at term-equivalent age, 

meaning that alterations in function evolve over time and can be interpreted as an 

early adaptive process. We measured significantly lower left ventricular longitudinal 

strain and systolic and diastolic myocardial velocities three months after term-

equivalent age in preterm infants compared to controls. The differences cannot be 

explained by differences in heart rate or blood pressure or other factors such as 

growth restriction or maternal smoking. Our findings may be one of the earliest 

indications reported so far of a potentially long-lasting change in cardiac development 

after preterm birth. This interpretation is supported by adult data. In a cross-sectional 

study of 20 to 39-year-old adults who were born preterm6, functional cardiovascular 

magnetic resonance imaging revealed significant reductions in left ventricular 

longitudinal strain and strain rate, as well as in left ventricular systolic and diastolic 

myocardial velocities. In addition to functional alterations, left ventricular shape, size and 

mass were also found to differ from the heart structure in adults born at term. The 

authors of that study concluded that adults born very preterm exhibited structural 

changes of the left side of the heart corresponding to ten years older age or nine units 

higher BMI, even after adjusting for other risk factors such as blood pressure. 



 

52 

Accelerated cardiovascular ageing may be an important contributory factor to the 

increased cardiovascular morbidity and mortality reported in adults born preterm172.  

With regard to the right ventricle, there were no significant differences between the 

groups. This might be due to a better adaptation of the originally dominant right ventricle 

that is exposed to a comparable postnatal situation with increased pulmonary 

resistance, due to open fetal shunts after preterm birth. Developmental changes in right 

ventricular function, seen in adults who were born preterm, might therefore occur after 

the investigational period of our study145. 

In a comparable cohort of clinically stable preterm infants born before 30 weeks of 

gestation, Hirose et al140 detected altered diastolic function already one month after 

preterm birth. The examiners used conventional and speckle-tracking techniques and 

reported lower ratios of early to late diastolic filling, lower basal circumferential strain 

rate in early diastole and higher strain rates in late diastole. As this hemodynamic 

situation resembled the fetal condition, the authors concluded that there might be a 

delay in myocardial maturation after preterm birth. These findings are particularly 

interesting, as they confirm our observation of altered diastolic function after very 

preterm birth at an even earlier stage. In contrast, systolic function was conserved in 

that study, which is consistent with our measurements at term-equivalent age. It would 

have been valuable to extend the follow-up of that study in order to investigate possible 

changes even in systolic function.  

The observed alterations in strain and myocardial velocities in our study are subtle and 

do not involve clinical symptoms or indications for treatment or intervention. This is also 

true for an animal study with lambs that were delivered preterm99. Although there was 

no evidence of cardiac dysfunction nine weeks after term equivalent age, irreversible 

myocardial changes were present in both ventricles on autopsy. These changes implied 

excessive deposition of extracellular matrix in the myocardium in order to maintain 

ventricular wall integrity. They also displayed an inflammatory reaction that is found in 

patients with arterial hypertension. This observation confirms our hypothesis that the 

immature myocardium of the left ventricle is probably not able to cope with the sudden 

rise of systemic arterial pressure at birth. 

The vascular changes that are described in studies I and II might provide an additional 

factor for an increase in the left ventricular work load after preterm birth. According to 

Laplace´s law, the compliance of the aorta is reduced due to narrower diameters and 
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thicker walls, with elastin deficiency leading to increased stiffness and pulse wave 

velocities. The reflected pulse wave arrives earlier in late systole in the central aorta and 

increases left ventricular afterload and myocardial oxygen consumption173. This 

phenomenon is interesting, because the increase of aortic pulse wave velocity has been 

shown to be an independent risk factor of coronary heart disease and stroke174. In 

summary, vascular remodeling promotes myocardial remodeling. 

The strengths of all of our studies include the prospective inclusion of participants, the 

longitudinal design and the comparison with a healthy control group in studies I,II and 

IV. The same experienced investigator performed all the recordings, data analyses were 

performed by an independent examiner who was blinded for group belonging in studies 

I, II and IV. We controlled for possible confounders, with all measurements being 

adjusted for current body weight at the final control. Maternal data was acquired at the 

final examination in order to be able to control for genetic influences on outcomes. 

Established methods were used when available, and protocols for novel techniques 

(e.g. frame rate intervals for image acquisition) were guided by the recommendations 

used in comparable studies. The echocardiographic tool provided by the manufacturer 

was adjusted to fetal and infant conditions when necessary.  

The limitations of the studies include the small number of infants, the relatively long 

intervals between examinations and the total follow-up time being restricted to six 

months after birth in the preterm group. Additionally, the cohort represented a 

convenience sample and did not include all consecutive births during the study period. 

In addition, the fairly narrow range of gestational ages in the preterm group, from 26 to 

30 weeks, makes it difficult to draw conclusions concerning other preterm infants with 

different gestational ages.  

Apparently, the question if and how the detected changes in the vascular structure and 

cardiac function will signal for cardiovascular disease later in life, cannot be answered in 

our studies. However, the analogy of our results and those obtained in studies with 

adults who were born preterm is striking and supports the hypothesis of a perinatal 

origin of cardiovascular alterations in this patient group. 
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7 CONCLUSION AND FUTURE PERSPECTIVES 

The main result of this thesis indicates that significant changes in the cardiovascular 

development occur already during the first six months of postnatal life following preterm 

birth. These changes involve both the vascular tree and the cardiac function, two entities 

that are tightly connected, since alterations in the vascular anatomy and function will 

influence cardiac function and vice versa. Advances in echocardiographic technique and 

the use of novel myocardial imaging facilitate the analysis of cardiac function in preterm 

infants. This particular patient group has not been investigated extensively by functional 

echocardiography, although indications of an early developmental contribution to later 

adverse cardiovascular events have been presented in the last 30 years175. The fact that 

a larger number of preterm individuals are now entering the age when cardiovascular 

disease is becoming more apparent, will enable researchers to study disease 

development and underlying mechanisms to a greater extent and in larger cohorts. 

As it has not been possible to prevent preterm births so far, we will have to manage 

patients with remodeled hearts and vessels in the future. Transitional hemodynamics 

include the preterm rise in left ventricular pre- and afterload, a process that is probably 

causing long-lasting alterations in the premature myocardium and leading to a growth 

arrest of the large arteries. 

The knowledge about early changes in cardiac and vascular function will hopefully 

enable us in the future to predict disease risk in early life and to design strategies of 

lifestyle intervention and medical treatment, thus reducing the risk burden of 

cardiovascular disease in the growing population of individuals who are born preterm.  
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8 DEUTSCHE ZUSAMMENFASSUNG 

Die Anzahl der Frühgeburten und der kardiovaskulären Todesfälle nimmt weltweit 

stetig zu. Die Ursachen für beide Entwicklungen sind vielfältig und offenbar nicht 

miteinander verknüpft. Gleichwohl scheinen Frühgeborene  ein erhöhtes Risko für 

Herzkreislaufprobleme wie z.B. Bluthochdruck, koronare Herzerkrankung und 

Schlaganfälle zu haben, auch wenn die genauen Mechanismen weiterhin unbekannt 

sind. 

Die Grundidee dieser Doktorarbeit war es, den frühen Ursprung der Veränderungen 

sowohl des Gefäßsystem als auch der Herzfunktion nachzuweisen, unter denen 

Erwachsene leiden, die ehemals zu früh geboren wurden. Zu diesem Zweck führten 

wir eine Verlaufsstudie durch, welche einerseits den Gefässdurchmesser und die 

Intima-Media-Struktur der Aorta und der Halsschlagader, andererseits die 

Herzfunktion während der ersten sechs Monate nach Geburt untersuchte. Neben 

etablierten Ultraschallverfahren verwendeten wir innovative Technologien wie 

Speckle-Tracking-Echokardiographie, die durch die direkte Beurteilung des 

Herzmuskels die Diagnose subtiler funktioneller Beeinträchtigungen möglich 

gemacht haben. 

Im Vergleich mit gesunden Neugeborenen zeigten sich signifikante strukturelle und 

funktionelle Veränderungen der Gefäße und des Herzens. Die untersuchten Arterien 

waren deutlich schmaler und die Intima-Media bezogen auf den Gefäßdurchmesser 

verdickt. Darüberhinaus fanden wir deutliche Unterschiede in der linksventrikulären 

systolischen und diastolischen Funktion des Herzens. Offenbar führt die vorzeitige 

Umstellung zum nachgeburtlichen Blutkreislauf zu einem Umbau des Herzmuskels 

und zu einer Beeinträchtigung der Funktion. 

Die Tatsache, dass ähnliche Veränderungen sowohl des Gefässsytems als auch der 

Herzfunktion bei zu frühgeborenen Erwachsenen nachweisbar sind, legt die 

Vermutung nahe, dass die hier beschriebenen Befunde bis ins Erwachsenenalter 

fortbestehen – mit möglicherweise negativen Auswirkungen auf die Gesundheit. Da 

auch weiterhin Frühgeburten in gewissen Situationen unvermeidbar und 

physiologische Gesetzmässigkeiten wie die abrupte Zunahme der kardiellen 

Nachlast nicht zubeeinflussen sind, werden wir in Zukunft deutlich mehr Kinder und 

Erwachsene mit einer grundsätzlich anderen Physiologie der Gefässe und des 

Herzens zu behandeln haben. Frühzeitige und regelmässige Nachuntersuchungen 
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von Frühgeborenen werden notwendig sein, um die exakten Mechanismen besser 

zu verstehen und die stetig steigende Anzahl Frühgeborener adequat zu behandeln. 
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9 SVENSK SAMMANFATTNING 

Antalet barn som föds för tidigt och överlever till vuxen ålder ökar. Samtidigt ökar 

hjärtkärlsjukdomar på många håll i världen. Även om en koppling mellan för tidig 

födelse och hjärtkärlsjukdom förefaller långsökt, så finns idag forskning som visar på 

en ökad risk för underburna barn att drabbas av högt blodtryck, hjärtinfarkt och 

stroke. Orsakerna bakom dessa samband är okända. 

Den övergripande frågeställningen i denna avhandling handlar om att söka belägg 

för ett perinatalt ursprung som skulle kunna predisponera för tidigt födda till senare 

hjärtkärlsjukdom. För detta ändamål genomfördes en longitudinell 

observationsstudie av hjärtfunktion, artärdiametrar och intima-media tjocklek under 

de första sex månaderna efter tidig födsel. Utöver väletablerade ultraljudsmetoder, 

tillämpades ny teknik, s.k. speckle-tracking ekokardiografi. Den nya tekniken har det 

gjort möjligt att upptäcka subtila förändringar i hjärtfunktion även hos små individer. 

För tidigt födda barn uppvisade en avvikande utveckling av hjärtkärlsystemet jämfört 

med friska barn födda i fullgången tid. De undersökta artärerna (aorta och a. carotis 

communis) var betydligt smalare och kärlens intima-media var tjockare hos för tidigt 

födda barn jämfört med fullgångna barn. Dessutom fann vi signifikanta skillnader i 

systolisk och diastolisk vänsterkammarfunktion, som sannolikt återspeglar den för 

tidigt födda hjärtmuskelns anpassning till extrauterint liv. 

Resultaten visar att den tidiga kardiovaskulära utvecklingen förändras av för tidig 

födelse. Det kan inte uteslutas att denna tidiga påverkan kvarstår – barn och vuxna 

som föddes för tidigt har i andra studier uppvisat liknande förändringar i både hjärt- 

och kärlsystemet.   

Än så länge har för tidig födelse inte gått att förebygga. Eftersom 

cirkulationsomställningen vid födelsen är livsnödvändig, så kommer vi i framtiden att 

möta fler barn och vuxna med en modifierad fysiologi av hjärt- kärlsystemet till följd 

av för tidig födelse. Fortsatt uppföljning av dessa individer kommer att behövas, dels 

för att bättre förstå de underliggande mekanismerna och den långsiktiga betydelsen, 

dels för att genom tidig upptäckt och prevention av kliniska komplikationer förbättra 

den kardiovaskulära hälsan i den växande gruppen av för tidigt födda individer. 
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