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ABSTRACT 

Allogeneic hematopoietic stem cell transplantation (HSCT) is a treatment strategy for patients 

with hematopoietic malignancies and inborn errors of metabolism or immunodeficiencies. A 

successful clinical outcome depends on many factors, such as underlying disease, the 

patients’ status, treatment protocol, donor, graft source and occurrence and severity of 

complications such as graft versus host disease (GVHD) and infections. The scope of this 

thesis is to achieve greater understanding of clinical effects and immunological mechanisms 

of blood group differences and cellular transfusion in patients undergoing HSCT. In addition 

we investigate the impact of cell graft quality.  

HSCT can be performed across the ABO blood group barrier but the impact of blood group 

incompatibility in HSCT is debated. In scientific paper I we analyzed the impact of blood 

group differences on graft failure (GF). This is a retrospective single center study including 

224 patients who underwent myeloablative allogeneic HSCT with grafts from an unrelated 

donor in 1997-2003. Graft failure (GF) was seen in 6 patients (2.7%). Major ABO mismatch 

and HLA allele mismatch was significantly associated with GF in the multivariate analysis. 

In scientific paper II we retrospectively analyzed 310 patients receiving reduced intensity 

conditioning (RIC) HSCT in 1998-2011. We found no influence of ABO mismatch on 

overall clinical outcome. However, patients with an ABO mismatched graft required more 

blood transfusions. We then investigated antibody related complications post-HSCT. 

Autoimmune hemolytic anemia did not affect overall survival (OS) or transplant related 

mortality (TRM). Patients with ABO related antibody complications post-HSCT had inferior 

OS and more TRM. These studies imply that the role of ABO mismatches is not obvious. 

However, other factors of greater impact may override the effect of ABO donor-recipient 

differences thus obfuscating its influence. 

In scientific paper III we retrospectively investigated the impact of HSCT grafts with 

inferior quality on clinical outcome in 144 patients receiving peripheral blood stem cell 

grafts. Graft quality was measured as viability of a frozen/thawed control sample. Patients 

who received grafts with inferior quality developed acute GVHD more frequently and had 

higher TRM. Grafts with white blood cell count >300 x10
9
/L had lower viability. In 

conclusion, graft quality influence clinical outcome after HSCT, hence, conditions for graft 

storage and handling need to be optimized. 

In patients that develop mucositis or breakthrough infections after HSCT, granulocyte 

transfusions (GCX) can be used. Scientific paper IV addresses GCX treatment in 85 patients 

between 1998 and 2014. GCX can be obtained from donors pretreated with steroids only (S-

GCX) or steroids and G-CSF (GCSF-GCX). The overall response to GCX treatment was 

similar between S-GCX and GCSF-GCX but more complete responses were observed in the 

GCSF-GCX group. Patients who received GCX due to mucositis benefitted most from GCX 

whereas the effects of GCX in patients treated due to infection was not as clear. Adverse 

events (AE) were reported in 36 cases of which 6 were life-threatening or fatal pulmonary 

AEs. All severe AEs reported were seen in patients treated due to severe infection, further 

complicating the decision to use GCX treatment in these patients. 
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1 INTRODUCTION 

 

1.1 THE IMMUNE SYSTEM 

The immune system is the body’s protection against damaging agents such as pathogens 

(microbes) causing infection or cancer cells. The immune system can be divided into two 

major parts, innate immunity and adaptive immunity.  Innate immunity is quick to react and 

consists of barrier protection and cells recognizing conserved structures such as common 

surface structures of microbes. The adaptive immunity initially reacts slower when 

encountering a new pathogen but can induce memory for a fast reaction when the pathogen is 

encountered upon in the future. While the innate system recognizes only a limited number of 

structures unique to microbes, the adaptive system is able to recognize a much greater 

number of different targets and not just from microbes. The basis of a functional immune 

response is its ability to recognize “self” as opposed to “non-self”. An immune system 

reacting towards and killing normal, live cells of a person causes autoimmunity which can 

lead to disease.  

In the context of transfusion medicine and transplantation, knowledge of how the immune 

system functions is crucial since the recipient (the patient) receiving blood, an organ or stem 

cells may recognize foreign structures on transplanted/transfused cells as non-self and elicit 

an immune response.  

1.1.1 Innate immunity 

The innate immunity, also called natural or native immunity, requires no pre-exposure to a 

pathogen and can respond quickly. It consists of cellular and biochemical defense 

mechanisms that are in place before the pathogen is encountered and acts as a first line of 

defense. The innate immunity consists of several parts; barrier defense, phagocytes, proteins 

of the complement system, antimicrobial peptides, inflammation and fever.  

The physical barrier defense includes epithelial cells on the skin, in the gastrointestinal tract 

and in the respiratory system. This constant and effective barrier keeps pathogens on the 

outside. If broken, then the body is exposed to microbes surrounding us. Added to this barrier 

function some mucosal cells can produce anti-microbial peptides secreted in to the lumen (1). 

Inflammation is a process where white blood cells and plasma proteins are recruited from 

blood, accumulated in the tissue and activated. This process is mediated by pro-inflammatory 

cytokines produced by cells of the innate immune system. These cytokines, together with 

components of the complement system, cause blood vessels to dilate and increase 

permeability inducing the classic symptoms of inflammation: rodor, calor, tumor, dolor and 

functio laesa (i.e. redness, temperature increase, swelling, pain and loss of function).  

Phagocytes are cells that ingest and destroy pathogens and damaged tissue (2). Neutrophil 

granulocytes and macrophages are the two main types of phagocytes.  
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Neutrophil granulocytes are polynuclear cells and are the most abundant white blood cell 

population in the blood circulation. They are relatively short lived (a few days) and an adult 

approximately produces 10
11

 neutrophils per day.  In the cytoplasm of neutrophils there are 

granules containing enzymes involved in dismantling ingested material (microbes or debris 

from dead cells) and anti-microbial substances as defensins and cathelicidins. The neutrophil 

produces reactive oxygen species (ROS), such as hydrogen peroxide, used in killing of 

microbes (2, 3). It has now been shown that neutrophils also have a role in modulating 

adaptive immune responses through interactions with T- and B-lymphocytes (4). 

Macrophages are either tissue resident cells widely distributed in connective tissue organs or 

derived from circulating monocytes. The tissue resident macrophages are long lived cells that 

originally derive from precursor cells in the yolk sac and fetal liver during fetal life. They 

have differentiated into specialized macrophages displaying different phenotypes, depending 

on which tissue they reside in. Circulating monocytes derive from committed precursors in 

the bone marrow and migrate into tissue during inflammation. In the tissue, monocytes 

mature and differentiate into macrophages (3). 

The cells of the innate immune system express pattern recognition receptors (PRP) detecting 

conserved pathogen associated molecular patterns (PAMPs). PAMPs can be cell-wall 

components (such as lipopolysaccharide (LPS)) or nucleic acids (such as double stranded 

RNA) and are unique to microbes. Detection of PAMPs by phagocytes signals presence of 

microbes and leads to activation of the innate immune response and induction of 

inflammation. There are several kinds of PRP, the best known are the Toll-like receptors 

(TLR), a group of transmembrane receptors recognizing for example LPS (5). Macrophages 

that are activated via TLRs produce pro-inflammatory cytokines (tumor-necrosis factor 

(TNF), interleukin-1β (IL-1β) and IL-6) that orchestrates inflammatory responses and 

recruitment of white blood cells. Other examples of PRPs include dectin 1, RIG-like 

receptors and Nod like receptors (1, 6, 7).  

Elements of the immune system can also identify and react to endogenous signals released or 

expressed by stressed, damaged or dying cells. These signals are called damage associated 

molecular patterns (DAMPs) (8). 

Macrophages can engulf and kill microbes but they also possess the ability to present 

antigens to and activate T-lymphocytes. Macrophages are so called antigen presenting cells 

(APCs) and make up an important link between the innate and adaptive immune system.        

Another important professional APC is the dendritic cell (DC). Most DCs derive from the 

same bone marrow precursor as monocytes but some tissue resident DCs, such as the 

Langerhans cells in the skin, may develop from embryonic tissue. DCs can be divided into 

different types. Classical DCs resides in an immature form in tissues. When the DCs 

encounter a pathogen it becomes activated and migrate to the draining lymph node where it 

presents the microbial antigen to T-cells. Plasmocytoid DCs respond to viral nucleic acids 

and produce interferons. Follicular DCs resides in the follicles of the lymph nodes and 
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present antigens recognized by B-cells. In inflammation additional DCs can be recruited. 

Among the antigen presenting cells (macrophages, B-cells and DCs) the DCs are the most 

effective. 

Dendritic cells express PRPs. Activation of DCs by PAMPs and DAMPs enhances the ability 

of DCs to process and present antigens to cells within the adaptive immune response (T-cells) 

and lead to induction of cytokines and expression of additional co-stimulatory ligands needed 

in T-cell differentiation and expansion. Depending on the nature of the pathogen, the DC will 

direct the naïve T-cell in to the type of effector T-cell needed. 

Another strategy for identification is missing-self recognition. Natural killer (NK) cells, a cell 

specialized in intracellular pathogen defense; carry both activating and inhibitory receptors. 

The inhibitory receptors (killer cell Ig-like receptor (KIR)) recognize major 

histocompatibility complex (MHC) class I, which is normally expressed by all nucleated 

cells. Many intracellular pathogens, such as viruses, or cell stress causes loss of MHC class I 

expression on cells. The NK cell can recognize absence of MHC class I on a cell and 

subsequently kill it.  The balance between stimulation of activating and inhibitory receptors is 

believed to regulate NK cell activation (6, 9, 10). NK cells can respond to stimulation by 

TLRs as well as more specific antigen recognition receptors. Some KIRs act as activators as 

do FcγRIIIA (CD16). 

1.1.1.1 The complement system 

The complement system is a group of proteins reacting as a cascade when activated (11-13). 

Activation of complement affects the innate immunity resulting in enhancement of 

inflammation and the adaptive immune response. There are three ways of activating the 

complement system, all somewhat overlapping and with a common terminal pathway.  

Activation by the classical pathway starts with C1q recognizing and binding to pathogens or 

cell surfaces. C1q recognizes DAMPs, immunoglobulin complexes bound to the surfaces and 

structures exposed by apoptotic or damaged cells such as phosphatidylserine. The lecitine (or 

MBL) pathway recognizes mannose containing sugars on pathogens. The third pathway, 

called the alternative pathway, is constantly activated at a low level and activation is 

accelerated (“tick-over”) when encountering pathogens.  

All three pathways can also be activated on the surface of apoptotic cells but are in this 

context regulated to not activate other functions of the innate immune system in order to 

protect surrounding cells. This is in contrast to activation by pathogens when the full-blown 

capacity of the complement system is released. 

The common terminal pathway of the complement system begins with cleavage of inactive 

C3 into C3a (a mediator of inflammation) and C3b (an opsonin). C3b binds to any surface 

close by leading to opsonization, which promotes phagocytosis, and to the formation of the 

C5-C9 membrane attack complex causing lysis.  
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Healthy cells are protected against attack of the complement system by membrane bound 

structures like membrane bound cofactor protein (MCP or CD46) and complement receptor 1 

(CR1 or CD35) or regulators recruited from plasma such as factor H. The protective proteins 

act as cofactors participating in reactions leading to inactivation of C3b to iC3b or by 

preventing the formation of C3-convertases (C3 convertases cleaves C3 into C3a and C3b). 

Cells or pathogens lacking these protective surface regulators cannot control deposition of 

C3b allowing further complement activation and will, in the end, be eliminated. 

1.1.1.2 Cytokines 

Within the immune system, cells communicate either by direct contact between receptors and 

ligands or via extra cellular chemical substances. These substances are called cytokines and 

are secreted in the extra cellular compartment or in the blood. They consist of proteins and 

glycoproteins that can regulate and coordinate cell activities. (3, 14, 15). Cytokines are 

essential for communication between cells of both the innate and adaptive immunity and all 

cells of the immune system secrete at least one cytokine and often express several cytokine 

receptors. The nomenclature of cytokines is inconsistent, some are named after the function 

displayed when discovered, as tumor necrosis factor (TNF) or interferon, and some are called 

interleukin (IL) along with a number.  

Some cytokines act pro-inflammatory (TNF, IL-1β, IL-6) while others, as IL-10, suppress 

inflammation and immune response. Secreted cytokines can act on cells close by (paracrine 

signaling) or enter the circulation and function on distant sites (endocrine signaling). 

Cytokines can also function by autocrine signaling, where the cell is stimulated by its own 

secreted cytokines, for example IL-2 secretion in activated T-cells.  

A large group of cytokines are chemokines (chemoattractant cytokine). There are over 50 

different chemokines known and their main function is attracting leukocytes. In general, the 

CXC chemokines attract neutrophils to a site of inflammation, CC chemokines attract 

monocytes while both CC and CXC attracts lymphocytes, directing and organizing them in 

the lymphnode. 

In response to pathogens or cell damage, cells of the innate system (macrophages and DCs) 

secrete cytokines that attracts other immune cells. TNF and IL-1 produced by pathogen-

stimulated macrophages stimulate endothelia to produce selectins and integrin ligands 

(adhesion molecules recognized by neutrophils) and chemokines. This facilitates recruitment, 

adhesion and subsequent migration of neutrophils, monocytes and T-cells from the blood into 

the injured tissue. 

Some cytokines act in an endocrine fashion when secreted into the blood. IL-6 and IL-1 

secreted by phagocytes stimulates synthesis of acute phase proteins in the liver. The acute 

phase proteins (such as C-reactive protein (CRP)) bind to bacteria and fungi leading to 

activation of the complement system via C1q and the classical pathway. The blood levels of 

CRP are elevated during acute inflammatory reactions. 
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TNF and IL-1 can also act in the hypothalamus to increase prostaglandin production and 

thereby inducing fever, an elevation of body temperature. The function of fever is not fully 

understood but it may enhance metabolic activity in immune cells, impair metabolic actions 

in pathogens and induce behavioral changes in the host thus preventing further injury and 

infection (3, 15). 

1.1.2 Adaptive immunity 

The adaptive immunity (also called specific or acquired immunity) recognizes a large number 

of different antigens with very high affinity (diversity and specificity) and is able to respond 

more rapidly and vigorously to repeated exposures of the same antigen (memory). Cells of 

the adaptive immunity are called lymphocytes. There are two types of adaptive immune 

responses; cellular immunity mediated by T-lymphocytes and humoral immunity where 

antibodies secreted from B-lymphocytes are the main actors. The mature lymphocytes of the 

adaptive immunity first exist in a naïve form. Upon activation by an antigen they undergo 

maturation and clonal expansion. During this process a large number of effector cells are 

produced. Memory cells are also formed; long lived cells that can react fast when the antigen 

is encountered the next time. When the pathogen has been cleared, the effector cells undergo 

apoptosis while the memory cells live on and the immune system returns to its resting state, 

homeostasis (3). 

1.1.2.1 Cells of the adaptive immunity 

All lymphocytes originate from bone marrow precursors but then differentiate into T-

lymphocytes (T-cells) and B-lymphocytes (B-cells) in response to cytokines (such as IL-7 for 

T-cells) produced by stromal cells in the bone marrow or thymus.  Pro-B- or T-cells early in 

the maturation process do not express their specific receptors for antigen recognition, T-cell 

receptor (TCR) on T-cells and immunoglobulin (Ig) on B-cells. They will now undergo a 

stepwise, complex maturation process starting with genetic rearrangements of their specific 

antigen receptors. The genetic rearrangements entail production of a very large number of 

receptor variants using only a relatively small fraction of the genome.  

1.1.2.2 T-lymphocytes 

The pro-T-cells migrate from the bone marrow to the thymus for further maturation. In the 

thymus receptor gene rearrangements coding for the T-cell receptor takes place. In T-cells 

this is referred to as VDJ recombination where one random part from each of the V-, D- and J 

gene sections are combined to form a unique exon coding for the TCR of the individual T-

cell. Genetic differences in the junctions between parts from these segments also add to the 

genetic diversity (3).  

The TCR of T- cells is a heterodimer and consists of one α- and one β-chain (16). There is 

also a small subset of lymphocytes (<5%) expressing a TCR with one γ- and one δ-chain. 

These γδT-cells are not MHC-restricted and do not primarily recognize MHC-bound peptides 

but react rather in a more innate fashion (17).   
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When the immature T-cell has acquired a functional β-TCR chain they start to express the 

pre-TCR. The pre-TCR signaling is essential for further T-cell maturation. The T-cell now 

acquires CD4 and CD8 expression and the function of the TCR is tested through the 

positive/negative selection process.  T-cells that recognize major histocompatibility complex 

(MHC) class I or II together with a self-peptide and bind with a moderate avidity will be 

allowed to continue maturation (positive selection). The cell then lose the double CD4/CD8 

positivity and commit to one or the other dependent on whether the TCR recognizes MHC 

class I or II (CD4+ or CD8+, single positive). T-cells that do not recognize either MHC class 

die by neglect. If a T-cell instead binds MHC with too high avidity the cell is considered 

potentially harmful and undergoes apoptosis or, in some cases, differentiates into T-

regulatory cells. This is called negative selection and protects the body from self-reacting T-

cells, i.e. induction of self-tolerance.  The T-cells are now mature naïve T-cells and leave the 

thymus. Naïve T-cells move in the blood and lymphatic system homing to lymph nodes 

where they can encounter their antigen. If a naïve T-cells do not encounter its antigen, it 

leaves the lymph node through the lymphatic system into the blood, where it homes to 

another lymphnode (lymphocyte recirculation).   

Within the family of T-cells there are populations with functional differences, the cytotoxic 

T-cell (CD8+) and the T-helper cell (CD4+).   

The T-helper cells act as coordinators directing the immune response through production of 

cytokines and co-stimulation of other effector cells. There are different types of T-helper 

cells, Th1, Th2, Th17 and regulatory T-cells (18). Depending on what kind of pathogen the 

cells of the innate immune have encountered they will secrete different cytokines skewing the 

adaptive immune response towards the effector cells needed to overcome the pathogen in 

question.  

In case of intracellular pathogens, e.g. interferon-γ (IFN-γ) and IL-12 will be produced by 

DCs, macrophages and NK-cells promoting Th1 differentiation. The Th1 cell will produce 

more IFN-γ thus further promoting differentiation of Th1 cells. The differentiation of Th2 

cells are triggered by e.g. IL-4 produced by DCs or mastcells in response to helminthes and 

allergens. Th2 cells are important in the defense against extracellular pathogens; they induce 

IgE production and activate eosinophils and mastcells. A third type of T-helper cells is called 

Th17 cells. Th17 cells respond to TGF-β, IL-6 and IL-21 and their primary function is 

defense against certain extracellular bacteria and fungi. Th17 cells can also induce a broad 

immunological response and may be involved in tissue inflammation and autoimmunity (19, 

20).  

Some T-helper cells are regulatory T-cells that inhibit immune responses by production of 

TGF-β and IL-10, and play an important role for maintenance of self-tolerance (21, 22) 

Regulatory T-cells can be distinguished using CD25 and FOXP3, although these markers can 

also be expressed by other cells types. Secreted TGF-β and IL-2 promote differentiation of 

regulatory T-cells.  
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Cytotoxic T-cells (CD8+) are crucial in the defense against intracellular pathogens, but also 

have a central role in the body’s protection against cancer (23).To induce activation of 

cytotoxic T-cells a second signal is required consisting of co-stimulatory molecules by an 

APC. This can be augmented by T-helper cells by for example cytokine production (the third 

signal). Cytotoxic T-cells have important effector functions and are after activation able to 

induce cell death of infected cells. The killing process is highly regulated both in specificity 

and direction in order to decrease harm to surrounding cells. The cytotoxic T-cell forms a 

synapse with the infected cell where it releases granule with cytotoxic proteins (granzymes 

and perforin). Additionally, cytotoxic T-cells express Fas ligand (FasL) that binds to the 

death receptor Fas which is expressed by many cells, thereby inducing apoptosis.  

1.1.2.3 Activation of T-cells 

Stimulation and activation of T-cells by their specific antigen is necessary for their survival, 

further maturation, differentiation and clonal expansion. The TCR binds to antigens in form 

of peptides presented on major MHC molecules. MHCs are the molecules responsible for 

direct or indirect activation of the majority of the adaptive immune system. In humans, MHC 

is also called human leukocyte antigen (HLA). There are two types of MHC, class I and II. 

MHC class I is normally expressed on all nucleated cells and display peptides that are 

synthesized within the cell. The purpose of MCH class I peptide presentation is to report 

intracellular events. If the cell is infected by an intracellular pathogen peptides from the 

pathogen will be exposed on MHC class I and can be recognized by cytotoxic T-cells (CD8+) 

(24, 25).  

MHC class II is expressed by APCs; such as DCs and macrophages and B-cells (26) and are 

recognized by TCRs on T-helper cells (CD4+).  

Activation of naïve T-lymphocytes via the TCR requires simultaneous response of co-

stimulatory receptors and also presence of specific cytokines produced by cells of the innate 

immune system. Activation via the TCR without concurrent co-stimulatory activation leads to 

anergy. In order to induce proliferation and differentiation of the naïve T-cell into effector 

cells, MHC class II - TCR recognition has to occur in conjunction with co-stimulation via B7 

– CD28 and e.g. IL-12 release (27). This leads to release of IL-2 by the T-cell. IL-2 promotes 

and controls cell differentiation and proliferation in antigen activated T-cells. When the T-cell 

is activated by an APC, the T-cell produces and up-regulates the IL-2 receptor.  IL-2 acts also 

as an autocrine growth factor and has an anti-apoptotic effect thus promoting cell survival 

(28).  

1.1.2.4 B-lymphocytes 

B-lymphocytes (B-cells) belong to the humoral arm of the immune system and their main 

function is antibody (immunoglobulin; Ig) production. They can also act as a professional 

APC and express MHC class II (26).Two types immunoglobulins exists, secreted Ig that 
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neutralize toxins and participate in pathogen elimination and membrane bound Ig that 

constitutes the B-lymphocyte antigen receptors.  

The B-cell develops and matures in the bone marrow. The earliest committed B-cell 

precursor (pro-B cell) lacks an antigen specific Ig receptor. In the pro-B cell stage the first Ig-

gene rearrangements occur, starting with the heavy chains. One D-segment and one J-

segment is combined and then joined by a V-segment creating a VDJ-exon. As in T-cells, 

nucleotide substitutions at the VDJ junctions add to the diversity. The VDJ-exon is kept 

separate from the Cμ exons by the J-C intron that is retained in the primary RNA script.  This 

intron is removed later by splicing of RNA. The cell can now synthesis the μ heavy chain 

protein serving as the pre-B cell receptor and has differentiated into a pre-B cell. At this stage 

the pre-B cell begins rearranging the κ (or λ) light chain by joining one V-segment with a J-

segment forming a VJ-exon. The heavy and light chains are assembled into the IgM 

molecules expressed on the B-cell surface as the B-cell antigen receptor. 

If the Ig antigen receptor on the immature B-cell is self-reactive and binds to antigens in the 

bone marrow with high avidity they will undergo receptor editing or cell death. If the B-cell 

is not strongly self-reactive it now leaves the bone marrow for the marginal zones of the 

spleen and lymph nodes where it continues its maturation. A mature naïve B-cell co-express 

IgM and IgD and re-circulate, i.e. migrate between lymphoid organs where they reside in B-

cell follicles. The B-cell can now be activated and respond to an antigen (3). 

1.1.2.5 Antibodies and B-cell activation 

Antibodies (Ig) consist of chains (two heavy and two light chains) with a variable part in one 

end that is the antigen binding site and a constant part in the tail end (Fc part). There are five 

classes or isotypes of immunoglobulin’s; IgM, IgG, IgA, IgD and IgE. They differ in the 

heavy chains and have different characteristics and functions. IgG, IgD and IgE are 

monomeric whereas IgM is a pentamer and IgA a dimer.    

Secreted IgM leads to activation of complement and there by elimination of the pathogen. 

IgG cause opsonization for phagocytosis by macrophages and neutrophils. IgA is part of the 

mucosal immunity since IgA is mainly secreted into the lumen of the gut and respiratory 

tracts. IgE causes mastcell degranulation and thereby hypersensitivity reactions. IgM and IgD 

are the antigen receptors of naïve B-cells (3, 29-31).  

In the context of blood transfusion antibodies of IgM-type towards blood group antigens on 

red blood cells (RBC) lead to complement activation and subsequent lysis of the RBC within 

the blood stream (intra-vasal hemolysis). Antibodies of IgG-type commonly opsonize the 

RBC promoting phagocytosis and thereby removal of the RBC from the blood. However, 

some RBC antibodies of IgG type are thought to cause complement activation as well and 

intra-vasal hemolysis (32). The effect mediated by RBC antibodies relies on several factors 

such as the properties of the heavy chains of the antibody, the antibody concentration, the 

characteristics of the antigen and the amount of antigen. 
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When a naïve B-cell encounters a soluble antigen it becomes activated. Depending of the 

nature of the antigen this can require assistance from T-helper cells. In antibody responses to 

protein or peptide antigens the antigen is internalized by the B-cell and presented to an 

activated T-helper cell via MHC class II. The T-helper cell expresses CD40L that bind to 

CD40 on the B-cell stimulating B-cell differentiation and proliferation. This is referred to as 

T-dependent antigens.  

The B-cell now starts to divide and differentiate. During the antigen-induced proliferation, 

somatic mutations occur in the genes coding for the variable Ig regions. These mutations 

gradually lead to higher antigen affinity and is referred to as affinity maturation. A selection 

process takes place promoting B-cells with the highest affinity. The affinity maturation 

process is a T-cell dependent, requiring T-helper cells and CD40-CD40L interactions, and 

takes place in germinal centers of secondary lymphoid organs (i.e. lymph nodes and spleen). 

In T-dependent antigen responses the B-cell can undergo heavy chain isotype (class) 

switching (33, 34). The B-cell changes the constant regions of the heavy chain leaving the 

variable region (antigen binding part) unaltered and start producing Ig of another class; IgG, 

IgA or IgE. Class switching is regulated by cytokines produced by the activated T-helper 

cells. Viruses and intracellular bacteria promote T-helper cells of Th1 type to induce the B-

cell switching to IgG1 and IgG3, most likely through IFN-γ production. A Th2 response and 

IL-4 induces switching to IgE and IgG4. In the gastrointestinal tract TGF-β produced by T-

helper cells and other cell types in the mucosa can induce switch to IgA. 

 In antibody response to non-protein structures (such as polysaccharides, glycolipids and 

nucleic acids) the antigens are in many cases T-independent, predominantly located in 

mucosal tissues. B-cells reacting to T-independent antigens typically do not undergo class 

switch but remain producing IgM and contribute to the production of natural antibodies, i.e 

antibodies that exists in healthy individuals without apparent antigen exposure (35).   

T-independent immune responses generally give rise to short lived plasma cells whereas in a 

T-dependent response the plasma cells are long lived, residing in the bone marrow 

continuously secreting antibodies. 

In B-cell differentiation memory B-cells are produced capable of generating a rapid response 

when the antigen is encountered again. The response of naïve B-cells constitutes the primary 

humoral response and takes days-weeks to accomplish. The secondary humoral response 

mediated by memory B-cells is much more rapid, Figure 1. 
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Figure 1. The first exposure to an antigen elicits an antibody response by naïve B-cells. Effector 

cells and memory cells are produced. In the primary response IgM and subsequently IgG 

antibodies are produced. The next time an antigen exposure takes place a fast and vigorous B-

cell response by memory B-cells is generated, mainly producing large amounts of IgG. 
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1.2 ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION 
(HSCT) 

Stem cell transplantation can be performed either using autologous stem cells, where the cells 

serve as a rescue treatment after high dose chemo therapy, or with allogeneic stem cells from 

a related or unrelated donor. This thesis will focus on allogeneic stem cell transplantation. 

In patients with life threatening disease such as hematologic malignancies and inborn errors 

of metabolism or the immunedeficiencies allogeneic stem cell transplantation is a conceivable 

curative treatment. The first allogeneic HSCT studies were performed in the late 1950
th

 by E. 

Donnall Thomas et al (36). This was before the discovery of major histocompatibility antigen 

(MHC), a key feature to success in allogeneic HSCT. In the beginning the results were 

disappointing and no patient survived the treatment (37). The patients were severely ill 

patients that died in their leukemia or from graft failure, opportunistic infections and from 

what would later be recognized as graft versus host disease (GVHD). 

With increasing knowledge and experience results have improved vastly. Almost half a 

century later we now perform over 15 000 allogeneic HSCTs in Europe annually (38).   

At our center we perform 80-100 allogeneic HSCTs per year. Survival has improved over the 

years, in 2006-2009 the overall survival (OS) >3 years was 71% (39).  

1.2.1 The HSCT procedure 

When a patient is in need of an allogeneic HSCT a search for a suitable donor begins. The 

patient and his/her siblings are analyzed with regard to their human leukocyte antigen type 

(HLA), the human version of MHC. If no suitable related donor is available a search for a 

HLA-matched unrelated donor is performed in the international donor registries.  When a 

potential donor is found the donor goes through a medical examination and if he/she is 

approved a medical clearance is issued. The patient then begins the conditioning treatment. 

The hematopoietic stem cells (HSC) from the donor (hereafter called the graft) are collected 

and transported to the patient (recipient). The graft is analyzed, sometimes processed and then 

administered to the patient as an infusion. Early after the transplantation the patient is isolated 

until the leukocytes recover. The patient can be treated in reversed isolation in the HSCT 

ward or be given conditioning treatment at the hospital followed by a monitored treatment 

period at home according to the home care program (40-42).  

1.2.2 Indications for allogeneic HSCT 

The Indications for allogeneic HSCT have varied over time due to emerging new treatments. 

The main indications today are hematologic malignancies, especially acute myeloid leukemia 

and acute lymphoid leukemia (2014 EMBT Annual report (www.ebmt.org). Other 

indications for allogeneic HSCT are lymphoproliferative disorders (Non Hodgkins- and 

Hodgkins lymphoma, plasma cell disorders), myelodysplastic syndrome (MDS, 

hemoglobinopathies (as thalassemia and sickle cell disease), bone marrow failure, primary 

immune deficiencies and inborn errors of metabolism (43).  

http://www.ebmt.org/
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1.2.3 Human leukocyte antigen (HLA) and transplantation 

HLA is the human version of MHC. HLA is inherited and highly diverse, with a wide variety 

between individuals. The genes coding for HLA are located on chromosome 6. They are 

divided into HLA class I (HLA-A, HLA-B and HLA-C) and class II (HLA-DR, HLA-DP and 

HLA-DQ).  To determine the HLA type of an individual, genotyping using 6-digit high 

resolution PCR-SSP for both HLA class I (HLA-A,-B and –C) and II antigens (HLA-DRB1, 

-DQ1 and -DPA) are performed at Karolinska (44, 45). 

1.2.4 Donor selection 

To perform an allogeneic HSCT a donor that is HLA-matched on an allele level needs to be 

identified.  According to Mendelian inheritage 25% of siblings could statistically be a 

matched donor and in 30% of all patients a suitable related donor can indeed be found (46). A 

sibling donor is the first choice and, if possible, avoiding a female donor to male recipient 

(43, 47).  For the remaining two thirds of the patients a donor may be found through the 

international donor registries. Today over 26 million donors are registered at the Bone 

Marrow Donors Worldwide (www.bmdw.org). 

A full HLA match (10/10) is desirable when searching for a donor (48) but some HLA-

mismatches may be accepted for certain patients on an individual basis (49). When choosing 

a donor for transplantation additional factors have to be considered, such as cytomegalovirus 

(CMV) status, sex, age of both donor and recipient and sometimes ABO-blood group. If 

possible, the best features would be a young male donor who is matched for CMV-status and 

ABO-type (43, 46). The donor needs to be eligible, i.e. being healthy, tested negative for 

HIV, HBV, HCV and syphilis and fulfill the requirements stated in EU directives and 

national legislation.  

1.2.5 Conditioning regimes and immunosuppression 

Prior to the transplantation the patient receives a conditioning treatment with cytotoxic drugs 

and or total body irradiation. The purpose of the conditioning treatment is to create space for 

the new marrow cells, eliminate malignant cells and to prevent graft rejection. The 

conditioning protocol can be myeloablative (MAC), constructed to eradicate the recipient 

bone marrow, or reduced intensity conditioning (RIC). RIC protocols cause less organ 

toxicity and thereby less morbidity (50) and can lower the risk of transplant related mortality 

(TRM) (51). There are different RIC protocols with varying myeloablative effects, some are 

regarded as non-myeloablative. The RIC protocols rely on the graft versus leukemia (GVL) 

effect rather than on the chemo- and/or radiation therapies of the conditioning (52, 53).  In 

RIC there is a prolonged period where donor and recipient lymphocytes co-exists with two 

different antibody-producing immune systems (54).  

 The choice of conditioning regimen for a patient is based on protocols determined by disease 

requirements and the patient’s clinical status. In patients with a malignant disease who 

receive graft from an unrelated donor or umbilical cord blood anti-thymocyte globuline 

http://www.bmdw.org/
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(ATG) treatment may be added to the conditioning regimen to reduce risk of rejection and 

prevent GVHD (39, 55). 

To prevent GVHD after HSCT immunosuppressive treatment is given. Calcineurin inhibitors, 

such as cyclosporine A or tacrolimus, in combination with a short course of methotrexate, a 

drug that suppresses several cell types within the immune system, are the most common 

regimes (56).  The calcineurin inhibitor treatment inhibits T-lymphocyte function and is 

continued until immune tolerance is achieved; usually 3-6 months post HSCT, provided that 

the patient does not show signs of GVHD.  

1.2.6 Engraftment and graft failure 

After HSCT the leukocytes from the donor graft recover in the patient. This is called 

engraftment. Time to engraftment is defined as the first of three consecutive days when an 

absolute neutrophil count (ANC) in the patients’ peripheral blood reaches ≥0.5 × 10
9
/L and 

for platelets (PLT) engraftment the PLT count is to be ≥50 × 10
9
/L without platelet 

transfusions.  

Primary graft failure (GF) or rejection is defined as bone marrow hypoplasia (<10% 

cellularity) with a peripheral ANC <0.5 × 10
9
/L persisting beyond day 21 post-HSCT as 

confirmed by chimerism analysis with more >95% recipient cells. Patients are considered to 

have secondary GF if they initially show signs of engraftment and later develop bone marrow 

hypoplasia requiring frequent transfusions beyond day 60 post HSCT and no signs of donor 

cells can be detected by chimerism analysis.  

1.2.7 Chimerism analysis 

In order to assess the graft function in patients post HSCT the fraction of donor / recipient 

origin of white blood cells, chimerism, can be analyzed (43, 57, 58). Chimerism is also used 

to diagnose early relapse in patients with malignant disease when a reliable disease specific 

marker is not available (59). Signs of recipient type cells (of the same cell lineage as the 

disease) reemerging post-HSCT can be an early sign of relapse.  The Chimerism analysis 

provides important information enabling early therapeutically interventions and thereby better 

outcome for the patient. 

Chimerism analysis of white blood cells is performed on peripheral blood or bone marrow 

aspirates. Samples are collected from the recipient and donor prior to transplantation and then 

from the recipient at day+14 after transplantation and onwards according to protocol. After 

enrichment with immunomagnetic beads (Dynal
®
), PCR analysis of variable numbers of 

tandem repeats is used to distinguish donor cells from recipient for T-lymphocytes (CD3), B-

lymphocytes (CD19) and myeloid cells (CD33) (60). After 2005 a real-time PCR based on 

single nucleotide polymorphisms (SNPs) is used for chimerism (61). 

Chimerism in the red blood cell population can be assessed by using differences in blood 

groups between donor and recipient. Prior to HSCT, RBC typing of the donor and the 
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recipient is performed defining a marker, a difference in blood group between donor and 

recipient. After HSCT this marker can be used to estimate the proportion of donor- or 

recipient type red blood cells in the recipient’s blood. This was performed at Karolinska on a 

routine basis until the PCR chimerism of white blood cells was introduced. Today this is 

performed on request only. 

1.2.8 Complications after allogeneic HSCT 

The risk of complications after allogeneic HSCT depends largely on the patient’s 

immunological status at a particular time point after HSCT. The main complications after 

HSCT are infections, GVHD, relapse of the underlying disease and graft failure/rejection. 

The rate of the immunological reconstitution after HSCT is slow and dependent on several 

factors including age, GVHD, conditioning regimen, graft source, donor etc (62). For 

different cell types this period varies considerably (62-64), thus making the patient 

susceptible to different infectious agents at different times during the post-HSCT period (65) 

as illustrated in Figure 2. Additionally, even though cell numbers is restored cell function can 

be impaired for a considerably longer period. 

1.2.8.1 Infectious complications 

Barrier defense is a major part of the innate immunity. During allogeneic HSCT the barriers 

such as the gut mucosa and skin are disrupted by toxic effects of the conditioning regimen. 

This blazes a trail for bacterial and fungal infections, microbes that normally accommodate 

on the skin and in the gastrointestinal tract, to become invasive and cause disease.  The 

conditioning regimen also often leaves the patient aplastic until the neutrophils recover after 

14-28 days post HSCT (39), i.e. until engraftment. Neutrophils and monocytes are the first 

cells to recover, closely followed by the NK cells. 

Consequently, during the first month after HSCT the patient is very susceptible to infections 

(66). Both Gram-positive and Gram-negative bacteria, from the skin, mouth and gut pose a 

problem, as do Candida. For this reason prophylaxis against Candida and bacteria is often 

given to these patients (66).  

The adaptive immunity, T- and B-cells, is in many cases incomplete for a several years. The 

absolute number of T-cells regenerates quite rapidly within the first months after HSCT. 

However, the T-cell repertoire and function is still impaired for a long time. Early after HSCT 

memory and effector T-cells derive from mature T-cells originally present in the graft. Thus, 

the repertoire of antigen specificity of these T-cells are limited to antigens the donor have 

encountered prior to graft donation. Hence, the quality of the graft is of vital importance.  

Immunity against new antigens post HSCT depends on thymic output and the production of 

de-novo T-cells from hematopoiesis post-HSCT. It has been shown that thymic function, 

measured as T-cell receptor excision circles (TREC) containing T-cells, deteriorates with 

increasing age. This can further be influenced by other factors such as graft source (use of 

PBSC), use of ATG, age and GVHD which all are correlated to decreased TREC levels (67).  
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Figure 2: Immune reconstitution of different cell types expressed as cell counts (percentage of 

normal cell counts) after HSCT. The lower part of the figure shows examples of infections 

HSCT patients can contract at different time points after HSCT. Adapted from Bosch et al 2012 

Curr Opin Hematol (63). 

 

Cytotoxic T-cells (CD8+) recover faster than T-helper cells (CD4+). CD4+ T-cells can be of 

low levels and have incomplete function for years which also affect B-cell function. The B-

cells are commonly not detectable the first months post-HSCT and those that can be seen are 

usually of recipient origin. Recipient type plasma cells have proven to be relatively resistant 

to conditioning treatment and can subside for months (54). 
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Subsequently, during the period between engraftment and the first six months after allogeneic 

HSCT the patients are susceptible to infections normally cleared by cytotoxic T-cells and NK 

cells, i.e. viral and fungal infections.   

After allogeneic HSCT the most common viral infections are caused by herpes viruses; 

cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus (HSV) and 

varicella-zoster virus (VZV). In the general population a large proportion is carriers of these 

viruses. The virus becomes latent after the primary infection and is normally carried through 

life without causing symptoms.  

Immunosuppressed individuals can reactivate CMV and the virus can cause disease in several 

organs (68). The most important factor for controlling CMV is the T-cell mediated immune 

response. In CMV infected individuals it is not uncommon to observe a solid cytotoxic T-cell 

(CD8+) response is seen. In allogeneic HSCT patients lack of T-helper cells (CD4+) is 

correlated to late CMV infections. The frequency of NK cells increase in CVM infected 

patients and studies have shown a protective role of certain NK-cell subpopulations against 

CMV reactivation and infection (10, 69). Matching of CMV-negative donors to CMV-

negative patients reduces the risk of CMV infection. 

In 90% of the population EBV is a latent infection in the B-cells. In healthy individuals the 

EBV infection is regulated by specific T-cells but in immune compromised patients control 

of the infection can be lost resulting in fast proliferation of infected B-lymphocytes causing 

post-transplant lymphoproliferative disease (PTLD), a condition associated with high 

mortality. Recipient-donor HLA-mismatch, GVHD and the use of RIC and in vivo T-cell 

depletion are known risk factors for developing PTLD. PTLD can be treated with the 

monoclonal anti-CD20 antibody rituximab, donor lymphocyte infusion (DLI) and/or adoptive 

cellular transfer with EBV specific cytotoxic T-cells from the original donor or from a third 

party, haplo-identical donor (70-72) 

Other seasonal epidemic viral infections common in the community such as adenovirus, 

respiratory syncytial virus (RSV), calici virus, influenza A and B can cause severe disease 

and even mortality in the Immunosuppressed HSCT patients (73). Invasive mold infection, 

especially aspergillus, is a complication with substantial morbidity and mortality after HSCT 

(74). Air born mold spores exist in the environment, hence total prevention for contracting 

infection is difficult. Studies have been made to identify patients at risk allowing for emptive 

or early treatment (74-76) .  

Viral infections and encapsulated bacteria such as S. pneumonia and H. influenza are still a 

potential problem in the later phase after HSCT (>100 days) especially if the patient develops 

chronic GVHD. Prophylaxis against P jirovecii is mandatory after HSCT.  
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1.2.8.2 Graft versus host disease (GVHD) and graft versus  leukemia (GVL) 

 

When the two immune systems of the recipient and the donor meet after HSCT reactions in 

both directions can occur, either rejection where the recipients (hosts) immune system reacts 

against the graft, or in the other direction where the immune competent cells from the graft 

reacts against the recipients cells (graft-versus-host). This is alloreactivity; immunological 

reactions occurring after transplantation between individuals of the same species.  

Graft versus host disease (GVHD) is one of the main challenges associated with allogeneic 

HSCT and its severe forms are related to high morbidity and mortality (43). GVHD is divided 

into an acute and a chronic form. At our center approximately 40% of the HSCT patients 

develop acute GVHD grades II-IV and 30% develop chronic GVHD (39).   

Acute GVHD typically arises within the first 90 days after HSCT and mainly affects the skin, 

gut and liver. Acute GVHD is graded from I to IV. The classical description of the underlying 

pathophysiology involves an initiation phase with tissue damage and/or pathogens 

(expressing lipopolysaccharide; LPS). This tissue damage is promoted by the conditioning 

treatment and activates host antigen presenting cells (APC). The host APC then presents 

antigens to donor T-lymphocytes. Alloreactivity is induced, as is the release of inflammatory 

cytokines such as tumor necrosis factor (TNF)-alfa, IL-1 and IL-2, leading to recruitment of 

other effector cells including neutrophils, NK-cells and macrophages. A cycle of 

inflammation and tissue injury is induced and maintained (77-79). 

 Chronic GVHD typically arises later, more than three months after HSCT and resembles 

more the clinical picture of an autoimmune disease with fibrotic features.  It mainly affects 

skin, lungs, liver, kidney, gut and oral- and eye mucosa but can occur in any organ. Both T- 

and B-lymphocytes play important roles in the underlying pathophysiology of chronic GVHD 

but how they interact and their mode of action is still not fully known (78, 80). It has long 

been suggested that chronic GVHD depends mainly on the skewing of CD4+ T-helper cells 

towards the Th2 phenotype whereas acute GVHD is predominantly a Th1 process. However, 

this paradigm is questioned with reports of a mixed Th1/Th17 phenotype in skin from 

patients with cutaneous chronic GVHD (81, 82). 

 While alloreactivity by cells of donor origin towards cells of the recipient is referred to as 

GVHD, the reaction inflicted by donor cells towards malignant cells in the recipient is termed 

graft versus leukemia (GVL) or graft versus tumor (GVT) effect. In 1990 Horowitz et al 

published a study showing decreased relapse in patients with GVHD reactions and those that 

had received non-T-cell depleted grafts (83), findings that supported the GVL effect 

described earlier (84).  

Patients with a syngeneic (identical twin) donor have been shown to have increased risk of 

relapse when compared to patients with HLA-matched sibling and no signs of GVHD (83). 

This implicates that genetic disparity between donor and recipient has an important role in 

GVL. The mechanism behind GVL and the distinction between GVL and GVHD has been 
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studied extensively (85). T-cells play a major role (86-88) and the use of donor lymphocyte 

infusions (DLI) after HSCT has been shown to mediate GVL effect (52, 89, 90). Other cells 

such as DCs and NK cells have also been suggested to take part in the mechanism of GVL 

(78, 91-94).  

The discovery of the GVL/GVT effect has had fundamental implications on the treatment 

modality HSCT per se. The use of reduced intensity conditioning (RIC) protocols relying on 

the GVL effect rather than on the chemo- and/or radiation therapies of the conditioning (52) 

have emerged thus permitting transplantation of patients with malignant disease that would 

not tolerate the more toxic myeloablative protocols (95-97).  

In summary, outcome of the HSCT patient rely on that the immune systems of recipient and 

donor origins to acquire tolerance and to balance the risk of rejection with the occurrence of 

GVHD (98). In patients with malignant disease harnessing the potential harmful effects of 

GVHD and yet maintaining sufficient GVL effect is a key feature. 

1.3  HSCT GRAFTS 

In allogeneic HSCT grafts from different sources are used, commonly peripheral stem cells 

(PBSC), bone marrow (BM) or umbilical cord blood cells (UC).  Which graft source to use 

for a patient depends on donor preference and HSCT indication (43, 99). PBSC has been 

shown to give faster engraftment (100). Since it is known to give more GVHD it is preferred 

in malignant diseases since an increased rate of mild GVHD decreases the risk of relapse (43, 

83, 101). Due to this increased risk of GVHD BM is preferred in patients with non-malignant 

disease. The overall most commonly used graft source today is PBSC (38).  

HSCT grafts contain hematopoietic cells in different stages of maturation, from stem cells 

expressing the CD34 marker on their surface to mature cells found in peripheral blood. Grafts 

of different sources contain different amounts of cells, Table 1 (102). The different graft 

sources do not just have different cell content in absolute numbers; the cells in the grafts also 

possess different characteristics. 

1.3.1 Bone marrow (BM) 

BM is collected under full anesthesia by repeated aspirations from crista illiaca. The aspirated 

bone marrow is filtered through a blood transfusion filter (170nm) into a bag. Anticoagulant 

in form of either ACD-A alone or ACD-A in combination with heparin is added.  

BM often contains larger volume, more red blood cells but less white blood cells and 

hematopoietic stem cells as compared to PBSC (Table 1)(102). The target cell dose for 

transplantation is at least >2 x10
8
 TNC/kg recipient body weight (43). Due to the large 

amounts of red blood cells in BM, ABO mismatch between donor and recipient have to be 

considered. In major ABO mismatches the BM may need processing before transplanted. 

Stimulation of bone marrow donors with G-CSF have been tried to  achieve a larger cell 

dose, thus speeding up engraftment (103) 
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Table 1    PBSC   BM   UC 

Volume mL 364 (218-1672) 945 (218-1672) 26 (18-212) 

White blood cells  x10
9
 /L 212 (156-368) 48 (8-154) 37 (15-114) 

Red blood cells (HCT) % 1.4 (0.8-2.3) 32 (20-41) -  

Platelets  x10
9
 /L 1275 (240-3640) 110 (32-242) -  

CD34+ stem cells  x10
6
 /L 875 (162-3760) 164 (18-918) 91 (8-654) 

T-lymphocytes (CD3)  x10
9
 /L 322 (23-3760) 2,3 (1-10) -  

B-lymphocytes (CD19)  x10
9
 /L 10 (2-28) 0.3 (0.1-2.7) -  

NK cells (CD56/16)  x10
9
 /L 5 (3-19) 0.2 (0.1-0.7) -  

        

TNC /kg body weight x10
8
 /kg 11 (4-18) 4.0 (1.0-13) 0.34 (0.16-1.6) 

CD34+/kg body weight x10
6
 /kg 3.0 (0.3-10) 4.4 (0.9-12.6) 0.1 (0.02-0.6) 

 

Table 1: Contents in allogeneic HSC grafts after collection from peripheral blood stem cell 

(PBSC; n=52) or bone marrow (BM; n=44) grafts at Karolinska 2013-2014. PBSC grafts are all 

collected at Karolinska from related donors, most collections are performed on Spectra Optia. 

BM grafts are from pediatric donors, related and unrelated adult donors and collected at 

different centers. Umbilical cord blood (UC) units transplanted at Karolinska 2009 (n=14), the 

numbers depicted are pre-freeze values obtained from the cord blood banks.  

Figures depict median values with range in brackets. (Unpublished data).   

1.3.2 Peripheral blood stem cells (PBSC) 

When collecting PBSC the donor is stimulated with G-CSF injections during the five days 

prior to the first collection. The collection is performed using aphaeresis technique, most 

commonly via needles in peripheral veins. The collection takes 4-6 hours where usually a 

volume corresponding to three blood volumes are processed. The target cell dose for 

transplantation is 5-10 x10
6
 CD34+/kg recipient body weight (43), two collections may be 

needed to achieve target dose. The PBSC graft differ slightly from BM grafts not just in 

blood cell numbers but also in cell composition (102, 104), with T-cells skewed towards Th2 

cytokine production, promoted expansion of T regulatory cells, induced IL-4 and IL-10 

production and impaired cytotoxicity of NK cells (105).  



 

20 

1.3.3 Umbilical cord blood (UC) 

UC is most commonly collected on voluntary basis from umbilical cord and placenta after 

birth. UC can be separated by centrifugation using dextran or HES after collection to reduce 

volume and deplete contaminating red blood cells (106, 107). However, as with all cell 

processing this results in cell losses why cryopreservation without prior separation is 

preferential if cell numbers are crucial.  The UCs are cryopreserved and kept by UC banks, 

usually in nitrogen storage tanks. UC was originally mainly used in pediatric patients due to a 

small total cell dose and their richness in stem cells. However, UC is an alternative also in 

adult patients who lacks a suitable related or unrelated donor (61, 108-111). The target cell 

dose for UC transplantation is >3 x10
7
 TNC /kg recipient body weight (43). This can be 

difficult to achieve in adults hence transplantation using two UC units can be used (double 

UC) (111). 

1.3.4 Graft storage and transportation 

In about two thirds of all allogeneic HSCT performed today a suitable HLA-matched related 

donor cannot be identified (46). In these cases an unrelated HLA-matched donor may be 

found through the international donor registries. Cell grafts from unrelated donors are almost 

always collected at distant collection sites with storage and transportation of cell grafts 

becoming a crucial link in the transplantation process. 

The conditions under which HSCT grafts are stored and transported have been studied earlier 

(112-117). Cellular graft source, cell concentration, temperature and storage/transport time 

have been described as factors influencing cell quality. Storage temperature has been shown 

to affect clinical outcome with a lower incidence of graft failure in patients whose grafts were 

stored at 4 °C compared to room temperature (118).  

The maximum storage time of HSC (PBSC in particular) is temperature dependent (112, 

113).  Jansen et al (113) have shown that after 48 hours of storage cell viability decreases 

rapidly with rising temperature. In a study by Antonenas et al (112) it was shown that PBSC 

grafts lost significantly more viable CD34+ cells when stored at room temperature compared 

to storage in 4 °C. For BM there was no significant difference between storage temperatures. 

Allogeneic PBSC grafts were shown to lose significantly more viable CD34+ cells than 

autologous grafts during storage, especially in room temperature. They speculated that higher 

WBC and platelet counts in allogeneic PBSC grafts may have caused this faster deterioration.   

In Sweden, while allogeneic HSC grafts should be infused as soon as possible, the maximum 

limit for PBSC kept in 4°C is set to 72 hours. 

1.3.5 Analysis of cell quality and viability 

Upon arrival of the grafts they are analyzed for number and recovery of CD34+ stem cells 

and sometimes also their ability to form colony forming units (CFU) (119). However, 

recovery of CD34+ cells can be difficult to assess due to variation in analysis between 

laboratories. The viability of nucleated cells in the graft can either be measured by 
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microscope based assays such as trypan blue-staining or via flow cytometry based assays by 

staining using 7-Aminoactinomycin D 7AAD or propidium iodine (PI). These methods detect 

dead cells but not cells in early apoptosis. 

All cell products are tested for microbial contamination (120). 

1.3.6 Graft processing 

HSC graft processing is generally performed for two reasons, either depleting or washing the 

graft to avoid adverse effect during infusion or enhancing/purging/selecting/depleting parts of 

the graft to achieve long term effects. In any cell processing the indication for the intervention 

has to be assessed in relation to the risk of cell-loss in the graft. 

1.3.6.1 Avoiding adverse events 

In major ABO incompatible HSCT using bone marrow red blood cell (RBC) depletion of the 

graft is often necessary due to recipient antibodies against donor ABO antigen on RBCs to 

avoid adverse events during infusion. RBC depletion can be done using different instruments 

(Cobe 2991, Cobe Spectra, Spectra Optia, Sepax) (121, 122). By centrifugation a buffy coat  

can be prepared thus depleting plasma and RBCs, and, if additional reduction of RBCs is 

required,  “double buffy coat” can be performed (123). In the “double buffy coat” packed 

RBCs (from a community blood donor) of blood group O is added to the first buffy coat 

diluting the remaining incompatible donor RBCs. The graft is then centrifuged again 

producing a second buffy coat with only few remaining incompatible donor RBC. An 

alternative for RBC depletion gradient density centrifugation with (e.g. Lymphoprep™) can 

be used as an alternative to RBC depletion (124). 

In minor ABO mismatches plasma can be depleted by centrifugation before infusing grafts to 

avoid incompatible ABO antibodies in plasma. 

Graft volume reduction is sometimes warranted, especially in pediatric recipients (125). This 

can be achieved by centrifugation and depletion of plasma supernatant or by producing a 

buffy coat.   

1.3.6.2 Graft processing for more long term effect 

In cases where a positive selection of a specific cell type is warranted selection using 

magnetic beads can be performed with for example the CliniMACS system. In pediatric 

patients with neuroblastoma engaging the bone marrow CD34 positive selection of 

autologous grafts can be performed to avoid contaminating cancer cells in the graft (126).  

Magnetic bead selection can also be applied to deplete unwanted cells. The T- (CD3) and B-

cell (CD19) depletion has successfully been used (127) to avoid GVHD in haplo-identical 

allogeneic HSCT. Today, depletion of αβT-cells can be used for avoiding GVHD in patients 

undergoing allogeneic HSCT with mismatched donors (128) or as stem cell boost in patients 

with secondary graft failure (129, 130).  The majority of T-cells in peripheral blood (95%) 
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express the αβT-cell receptor (TCR) where as 5% express the γδTCR. The γδT-cells are not 

strictly regulated by MHC molecules and are thus less likely to cause HLA-dependent 

GVHD. The rationale behind sparing the γδT-cells in graft processing is that they have been 

shown to protect against leukemia relapse (131, 132) and been associated with a protective 

role against cytomegalovirus (CMV) reactivation and disease (133). 

1.3.6.3 Cryopreservation 

To preserve cells for future use autologous HSC and allogeneic lymphocytes for donor 

lymphocyte infusions (DLI) can be cryopreserved. Allogeneic HSC are generally not 

cryopreserved due to increased risk of graft failure (134). 

Cryopreservation methods are described in more detail in the materials and methods section. 

1.3.6.4 Adverse events related to cell infusions 

At Karolinska 399 hematopoietic cell products were issued during 2014 from our cell 

processing lab. Adverse events (AE) during or after infusion were reported for 95 of these 

products (unpublished data). Most were minor AE such as shivering or nausea but severe AE 

did occur with neurological symptoms, cardiac arrhythmias and anaphylaxis.  

DMSO-related AEs in patients during infusion of cryopreserved cells are common (135). 

Washing the cells reduces the severe AEs but does not totally remove DMSO. AEs attributed 

to DMSO can still occur, especially allergic reactions (136). Pre-treatment of the patients 

with steroids and anti-histamine, regardless of thawing method, is recommended.  

Examples of other AEs that can occur during or after cell infusion are nausea, vomiting, 

fever, shivering, rash, erythema, hemoglobinuria, hypo- or hypertension, arrhythmias, tremor 

or neurological symptoms with convulsions, amnesia or affected consciousness. AEs can be 

severe, even life threatening or lethal, especially when giving cells that have been 

cryopreserved (135, 137-139).   
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1.4 BLOOD GROUPS 

In the turn of the last century Karl Landsteiner discovered that serum from some of his 

research subjects agglutinated red blood cells (RBC) from others in a certain pattern (140). 

The results were published in 1901 and led to the discovery of the blood groups A, B, O and 

AB. Others have continued the work of describing human blood groups and their clinical 

importance (32, 141, 142). 

Today, close to 300 blood group antigens have been described and registered at the 

International Society of Blood Transfusion (ISBT). Blood group antigens can be sorted in to 

four categories; systems, collections, low-incidence antigens and high-incidence antigens 

(143). A system can consist of one or more blood group antigen. The antigen must be defined 

by a human antibody targeting the antigen and must be inheritable. The genes coding for the 

blood group antigen have to be identified and sequenced, have a known chromosomal 

location and be unique, i.e. not cross-linked homologues from other genes encoding for other 

blood group systems (www.isbtweb.org). If an antigen does not fulfill these blood group 

system criteria it will be categorized as a collection, a low- or a high incidence antigen. The 

genes coding for blood group antigens are located on different chromosomes throughout the 

genome. Most blood group allelic differences are single nucleotide polymorphisms (SNP) in 

exons, introns or regulatory regions. Other genetic variation such as crossover between 

homologous genes (as RH or MNSs), nucleotide deletions or insertions causing a shift in the 

reading frame (ABO)or whole or partial gene deletions (RH, MNSs, H)  exist (144).  

Differences in blood groups between individuals can evoke an immune response after blood 

transfusion. The recipient of a blood transfusion can form irregular antibodies against blood 

group antigens present on transfused red blood cells, i.e. alloimmunization (32). Hence, 

compatibility testing is mandatory prior to transfusion of blood. However, not all patients 

form irregular antibodies after transfusion and the mechanisms behind this immune response 

is not fully understood. Studies of the immune response after blood transfusion and 

identifying patients at risk have been made (145-149). 

A blood group is thus an allelic difference of a molecule expressed on the surface of RBCs. 

These molecules have different functions in the cell, such as transporters, channels, receptors, 

adhesion molecules, enzymes or structural proteins and many still unknown functions (150-

152). 

Blood groups, although defined on red blood cells, are expressed on many other cells and 

tissues in the human body (153, 154) and can also be present in other species and plants (155, 

156). The role of blood groups and the genetic differences in these structures between 

individuals is debated. 

During RBC development and differentiation blood groups appear at different time points 

(157-162). Several studies have investigated blood group antigen expression at different time 

http://www.isbtweb.org/
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points in cell cultures from CD34+ selected cells. This is illustrated in Figure 3. Of the blood 

group antigens analyzed K2, A and RHAG (Rh50) are among the earliest antigens to be 

expressed. Notably, ABO is expressed quite early in erythropoiesis.  

 

Figure 3: Expression of blood group antigens during erythroid cell differentiation. In this study 

erythroid cells in cell culture (CD71
++ or GPA+) were analyzed for blood group antigen expression 

using human or mouse MAbs or human sera. The results are expressed as the percentage of 

erythroid cell subset expressing a given antigen (without indication on their quantitative level of 

expression) at different time points during culture. Expression of A, K2 and RHAG is detected 

early in the cell cultures (circled).  Adapted from Bony V. et al Br J of Haem 1999 (158) 

1.4.1 ABO 

The ABO blood group system is the clinically most important blood group system due to the 

occurrence of isoagglutinins, antibodies normally present in all persons older than six months 

of age. These directly agglutinating antibodies, anti-A and anti-B, are of IgM type, reactive at 

37 °C and can activate complement in vivo. If ABO-incompatible blood is transfused to a 

person, an instant, intra-vassal hemolysis accompanied by severe symptoms such as fever, 

shivering, back-pain, anuria, hematuria, disseminated intra-vassal coagulation and circulatory 

chock can be expected. The reactions can be severe and even lethal (32). 

ABO antigens A and B are carbohydrate structures present on many cells and tissues. To the 

current day around 100 ABO alleles have been described. The genes encode for transferases 

that put N-acetyl-D-galactoseamine (blood group A) or D-galactose (blood group B) on the 

precursor chains (H) forming the ABO-active glycoproteins. The A and B transferases differ 

by only four amino acids (163-165). 



 

 25 

1.4.2 ABO and transplantation 

Because A and B antigens are distributed throughout the body and anti-A & anti-B are 

present as preformed ABO-antibodies, the ABO-system plays a pivotal role in transplantation 

(166), illustrated in Figure 4.  

                

Figure 4: Different types of ABO mismatches that can occur in transplantation:  

a.) Minor ABO mismatch where the donor has antibodies against recipient ABO antigens,  

b.) Major ABO mismatch where donor antigen is given to a recipient with preformed  

      antibodies, 

c.) Bidirectional ABO mismatch where the recipient has antibodies against donor antigens and   

     the donor has antibodies against recipient antigens, i.e. major and minor ABO mismatch.  

In liver transplantation, a major ABO mismatch is correlated to an increased risk of rejection 

and post-transplant complications (167) but a minor ABO mismatch can also affect outcome 

(168). In kidney transplantation a major ABO mismatch is generally not feasible without 

pretreatment of the patient to remove the ABO antibodies. Pretreatment protocols combine 

immune-adsorption aphaeresis with rituximab (anti-CD20) treatment and immunosuppressive 

drugs to remove ABO-antibodies, thus enabling ABO-incompatible kidney transplantation 

(169, 170).  

ABO antigens are expressed quite early in hematopoiesis, but hematopoietic stem cell 

transplantation over ABO-barrier can be performed (43, 171, 172). In relation to the HLA-

genes, ABO is carried on a different site of the genome and is inherited independently. 

Hence, a related or unrelated donor can be HLA identical but have different ABO blood 

group. The effect of ABO on clinical outcome of allogeneic HSCT will be discussed later. 

The occurrence of isoagglutinins after transplantation is dependent on the immunological 

reconstitution after HSCT. Regular antibodies against ABO antigens not present on recipient 

nor donor cells decline quite rapidly after transplantation and increase again 30 – 50 days 

post-transplant. In minor ABO mismatched transplants antibodies against recipient ABO 

antigens are usually not formed. Recipient ABO antibodies against donor antigens in a ABO 

major or bidirectional setting disappear within the same time period and usually remain 

undetectable (173, 174). In patients that receive grafts from unrelated donors, the recipient 

ABO antibodies decline faster than in cases where related donors are used (175).   



 

26 

1.4.3 Minor ABO mismatch and Passenger lymphocyte syndrome  

In transplantation of organs or hematopoietic stem cells, mature B-lymphocytes accompany 

the graft. If the transplantation is a minor ABO mismatch, some of these mature B- 

lymphocytes may produce antibodies with ABO specificity against antigens on recipient red 

blood cells. This can give rise to passenger lymphocyte syndrome (PLS), a condition that 

usually occurs 7-14 (-30) days after transplantation and can cause abrupt, mild to severe 

hemolysis in the recipient. The antibodies disappear and the condition usually resolves within 

weeks (176). The treatment is supportive. PLS is common after organ transplantation, 

particularly after lung and liver transplantation (177). 

In HSCT the picture is more complex. Some centers report frequent PLS after HSCT (178, 

179), while others rarely see this phenomenon (scientific paper II).  

1.4.4 Major ABO mismatch and persisting red cell antibodies 

After a major ABO mismatch, recipient (host) antibodies against donor ABO antigens usually 

disappear after a few weeks (173, 174). It is reported that patients undergoing major ABO 

incompatible HSCT receive more red blood cell transfusions (180).   

However, in some cases the recipient ABO antibodies persists and can do so for up to a year. 

This causes delayed hemolysis, delayed engraftment of donor red blood cells and pure red 

cell aplasia (PRCA). The patients become transfusion dependent for a long period of time 

with accompanying risk of iron overload (181). An increased incidence of transplant-

associated microangiopathy (TAM) (182) has also been reported in major ABO mismatched 

HSCT 

1.4.5 Irregular antibodies after transplantation 

Development of irregular antibodies after allogeneic HSCT can occur. If the corresponding 

blood group antigen is present on other cells and tissue, both the recipient and the donor need 

to lack the antigen in question for the patient to form antibodies.  

Irregular antibodies against non-ABO blood group antigens can also cause PLS after 

transplantation of organs and HSC (183-185).  

1.4.6 Autoimmune hemolytic anemia (AIHA) 

Autoimmune hemolytic anemia (AIHA) is a known complication after allogeneic HSCT with 

an incidence of 2% to 6%, affecting both adults and children. The median time of onset of 

AIHA is between 5 and 12 months after HSCT (186, 187). Here, the donor lymphocytes 

produce autoantibodies against donor antigen. An AIHA after HSCT is generally more 

refractory to treatment than AIHA in the general population. 
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1.5 GRANULOCYTE TRANSFUSION 

 

After allogeneic HSCT temporary severe neutropenia is common (41).  In many cases, the 

tissue damage caused by HSCT conditioning leads to mucositis, resulting in ulceration and 

inflammation of the mucosa, bringing severe pain, difficulties with enteral nutrition and 

diarrhea (188, 189). Neutropenia and mucositis result in increased susceptibility to infection 

due to damaged barrier function and a severe reduction of immune cells (190). 

In some patients with severe infection and neutropenia after HSCT or chemotherapy, 

antimicrobial treatment is not sufficient.  In these cases transfusion of granulocytes from 

relatives or community donors can be a valuable treatment option (191-193).  Granulocyte 

transfusions (GCX) have also been used at our center as a bridge to engraftment in patients 

with severe mucositis after HSCT.  

Granulocytes can also be given as prophylaxis in neutropenic patients at risk of severe 

infections in allogeneic HSCT (194).  

1.5.1 Granulocyte products for transfusions 

Granulocytes are most often obtained by leukapheresis. In some countries, pre-treatment of 

voluntary community donors using G-CSF is not recommended and alternative ways of 

obtaining granulocytes concentrates have been described using pooled buffy coats from 

whole blood donations (195, 196).   

Prior to transfusion granulocyte products must be irradiated (>25 Gy) to avoid transfusion 

associated GVHD. When transfusing granulocyte products a 170 µm transfusion aggregate is 

used. Granulocyte products are transfused within 24 hours after collection, most are given 

within hours of collection. 

It is debated whether the increment of neutrophils in peripheral blood and clinical outcome; 

survival, infection control and adverse events, is correlated to the number of granulocytes in 

the product and donor pre-treatment. (191, 197-199).  

1.5.2 Granulocyte aphaeresis  

During granulocyte collection by leukaphaeresis, sodium citrate is used as anticoagulant. 

Granulocytes and red blood cells have a similar density. To separate the granulocytes from 

the red cells, a starch is added as a continuous infusion together with the anticoagulant in the 

access tubing. Different starch brands have been used over the years (200). Typically in 

granulocyte collections at our center, 7000 mL of whole blood is processed at a rate of 60-65 

mL/min collecting 3mL/min of granulocyte concentrate.  
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1.5.3 Selection and pre-treatment of granulocyte donors 

Granulocyte donors are healthy, eligible and matched for ABO. ABO has to be matched due 

to the high amount of red blood cells in the granulocyte product. If the patient is CMV-

negative then CMV-negative donors are chosen.   

Historically, GCX donors were not pre-treated resulting in granulocyte products containing 

insufficient numbers of cells. Subsequently, pre-treating donors with steroids mobilizing 

granulocytes from the marginal pool or steroids combined with G-CSF, stimulating 

granulocyte proliferation, have increased the harvest yield significantly (197, 201, 202). At 

our center donors are pre-treated with 3 mg oral dexamethasone and 0.3 mg G-CSF 

(filgrastim, Neupogen, Amgen, Munich, Germany) as a single subcutaneous injection  12 

hours prior to collection (203, 204). 

1.5.4 Effect of granulocyte transfusions  

Clinical effects of GCX treatment have been studied over several decades with inconclusive 

results (191, 199, 202, 205). Interpretation of results is complicated by the wide variations in 

study designs, treatment indications, treatment protocols and pre-treatment protocols (191, 

192, 202, 206-208). In the Cochrane review by Stanworth et al from 2005 (reprinted in 2010) 

(193) the reviewers concluded that the evidence for GCX treatment in neutropenic patients 

with infection is inconclusive. A recent Cochrane review by Estcourt et al (2015) (194) 

regarding prophylactic use of GCX in neutropenic patients concluded that there is low-grade 

evidence of decreased risk of bacterial- and fungal infections and that this effect may be dose-

dependent.  There is a need for further studies, including comparison of clinical efficacy 

between granulocytes obtained by different pre-treatment protocols. The prospect of 

randomizing potentially lifesaving treatment has proven to be difficult (209). Further studies 

with other approaches (intention to treat) are on the way (210). 
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2 AIMS 

 

The main objective of this thesis was to achieve better understanding of the impact of blood 

group differences and transfusion related complications on clinical outcome after allogeneic 

stem cell transplantation (HSCT). Additionally, the influence of graft quality on clinical 

outcome was studied.  

The specific aims of the present thesis are: 

- To evaluate the influence of blood group differences between donor and recipient on 

clinical outcome in allogeneic HSCT and to study the clinical implications of red 

blood cell antibodies in these patients.  

 

- To study the effect of graft quality on clinical outcome in allogeneic HSCT using a 

viability analysis on frozen/thawed samples 

 

- To evaluate the effect of granulocyte transfusions in patients with severe infection or 

mucositis after allogeneic HSCT and the impact of donor pre-treatment. 
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3 MATERIALS AND METHODS 

 

3.1 ETHICS 

All studies in this thesis work were approved by the regional ethical review board in 

Stockholm.  

 

3.2 SUBJECTS AND METHODS 

3.2.1 Scientific paper I 

Scientific paper I is a retrospective study including 224 patients with leukemia who 

underwent allogeneic HSCT with grafts from unrelated donors between 1997 and 2003 at 

Karolinska University Hospital. There were 120 males and 104 females. The median age 

were 29 years (range 1-55). The diagnoses were acute leukemia (n=139), chronic leukemia 

(n=71) and myelodysplastic syndrome (n=14). All received myeloablative conditioning and 

anti-thymocyte globuline (ATG). Immunosuppression consisted of cyclosporin A and 

methotrexate (n=210) or cyclosporine and prednisolone or mycofenolate mofetil (MMF) 

(n=14).  Graft source were bone marrow (n=152) or PBSC (n=72). Two hundred patients had 

HLA-A, -B, and -DR identical donors and 24 patients had an allele-level mismatched donor 

(2 HLA-A, 9 HLA-B and 13 HLA-DR). 

3.2.2 Scientific paper II 

In this retrospective study 424 consecutive patients who underwent HSCT with reduced 

intercity conditioning (RIC) between January 1998 and August 2011 at our hospital were 

included. Of these, 114 patients with early malignant relapse (<12 months) or those who 

underwent re-transplantation were excluded due to short follow-up time, leaving 310 patients 

for analysis. The median follow-up time was 24 month (range 0.2-151 months) for all 

patients and 46 months (range 1.4-151) for surviving patients.  

Twenty-three patients with malignant disease and 12 with nonmalignant disease suffered 

from graft failure. Out of these 35 graft failures, seven patients had a sibling donor, 21 had a 

matched unrelated donor, and 7 had mismatched unrelated donors. Non-myeloablative 

conditioning was used in 9 patients and RIC in the remaining 26 patients. Graft sources were 

5 cord blood, 20 PBSC, and 10 BM.  

The patients were divided into 3 groups based on ABO compatibility (ABO match, ABO 

minor mismatch and ABO major mismatch). Bidirectional ABO mismatches were included 

in the major ABO major mismatch group. Clinical outcome was analyzed with regards to 

ABO match between donor and recipient. 
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We investigated each hemolytic complication that could arise from ABO incompatible 

transplants; passenger lymphocyte syndrome (PLS), persistent or reoccurring recipient ABO 

antibodies (PRABO) and also autoimmune hemolytic anemia (AIHA) and their impact on 

clinical outcome. Data from each patient documented in the Transfusion Medicine 

Laboratory Information System was retrospectively analyzed for results of  direct anti-

globulin test DAT and indirect anti-globulin test (IAT), transfusion history, and presence of 

detected anti-ABO antibodies. The number of transfused RBCs and platelet units during the 

first 2 and 12 months post-HSCT, respectively, were noted. Patients who fulfilled criteria for 

PLS, PRABO or AIHA were identified.  

We also analyzed transfusion requirements with regards to ABO differences between donor 

and recipient. Transfusion requirements were measured as number of transfusion (units) of 

packed red blood cells or platelets given at 0-2 months post HSCT and 0-12 months post 

HSCT. 

3.2.3 Scientific paper III 

Our aim in scientific paper III was to evaluate the influence of graft viability on clinical 

outcome. This was a retrospective, single center study including 144 patients receiving PBSC 

grafts from unrelated (n=138) or related (n=6) donors. All grafts were collected at other 

centers. Quality the grafts was assessed by the viability of white blood cells (WBC) on a 

frozen-thawed sample from the PBSC grafts.  

Prior to transplant the PBSC grafts were divided into two parts. The main part was infused 

into the patient for transplantation. A smaller part was cryopreserved in escalating doses 

based on the amount of CD3+ cells for future use as donor lymphocyte infusion (DLI).  A 

control vial was frozen together with the DLI doses to allow viability testing after 

cryopreservation. This is illustrated in Figure 5. 

In this study the median viability of the frozen-thawed sample was 64%. To analyze the 

impact of graft viability on clinical outcome this median value was set as a cutoff, i.e. a 

viability of less than 64% was considered as inferior graft quality. To compare the two 

patients groups (those with graft quality less than or more than 64%) univariate analysis was 

performed with regard to the clinical outcomes such as TRM, OS, relapse, and acute GVHD. 

Viability was also analyzed as a continuous variable by univariate analysis. 

A multivariate analysis was performed on the clinical variables (OS, aGVHD, TRM, relapse, 

CMV, and EBV-PTLD) that were significant or close to significant (p<0.1) in the univariate 

analysis. 

Next we analyzed factors influencing graft quality (those with viability less than 64% in the 

frozen-thawed vial) using simple regression.  We also investigated whether the experimental 

data from frozen-thawed vials correlated to non-manipulated graft cells just obtained after 

transport. 
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Figure 5: All PBSC grafts were divided into two parts where one was given to the recipient for 

transplantation. The other part was cryopreserved in escalating CD3+ doses for future donor 

lymphocyte infusions (DLI). At cryopreservation, a vial for quality control (viability) testing was 

frozen together with the DLI doses. 

 

3.2.4 Scientific paper IV 

In this retrospective, single center study we investigated granulocyte treatments in patients 

that have undergone allogeneic HSCT. The main objective was to compare effects and 

adverse events associated with granulocyte transfusions (GCX) between patients who 

received granulocytes from donors pre-treated with G-CSF and steroids or with steroids only. 

The indications for GCX treatment were infection with insufficient response to conventional 

treatment or severe mucositis. One patient received GCX as prophylaxis against infection. To 

our knowledge, mucositis is an uncommon indication for this treatment and previously not 

well studied.  

Patients who underwent allogeneic HSCT and were treated with one or more GCX at our 

center between 1998 and 2014 were included in the study. Eighty-seven patients were treated 

with GCX. Two patients were excluded due to treatment later than a year post-HSCT (5.6 

and 3.8 years after transplantation, respectively), resulting in 85 patients eligible for analysis. 

The median time between HSCT and GCX was 9 days (range 0-240). Malignancies (i.e. 

hematological neoplasias and solid tumors) were the most common indication for HSCT (76 

patients, 89%). The remaining 9 (11%) patients underwent HSCT due to non-malignant 
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diseases including primary immunodeficiency, inborn metabolic disorders, 

hemoglobinopathies and bone marrow failure. 

GCX treatment indications were severe infection without response to pharmacologic 

antibiotic treatment (n = 48, 59%), severe mucositis (grade 3-4 according to the WHO 

classification) (211) (n = 32, 40%) or as prophylaxis in a high-risk patient (n = 1, 1%). In 5 

cases the treatment indication was unclear due to missing documentation in the patient chart. 

To compare GCX treatment for mucositis to conventional treatment, a group of 32 matched 

controls with mucositis classified as WHO grades 3-4 who had not received GCX was 

selected for comparative analysis. 

Granulocyte donors were voluntary, eligible, ABO- and RhD compatible blood donors. 

CMV-negative patients were given granulocytes from a CMV-negative donor. GCSF-GCX 

donors were pre-treated with 3 mg oral dexamethasone and 0.3 mg G-CSF (filgrastim, 

Neupogen, Amgen, Munich, Germany) as a single subcutaneous injection 12 hours before 

collection. S-GCX donors received 100 mg hydrocortisone (Solu-Cortef, Pfizer Inc. New 

York, USA) as a single intravenous injection 15 min before first collection and then 3 mg oral 

dexamethasone per 12 hours before subsequent collections.  

At our center until 2005 only S-GCX was given. After 2005 G-CSF was added to the 

mobilization protocol although some GCX after 2005 are S-GCX (steroid pretreatment only). 

This was either due to time-limitation (collection was performed the same day as requisition) 

or low recipient body weight.   

Leukaphaeresis was performed on CS3000 (Baxter Healthcare, Deerfield, IL, USA) until 

2002. From 2003 a Cobe Spectra (Terumo BCT, Lakewood, CO, USA) and the PMN 

program was used.  

Treatment response for infection and mucositis was classified as none, partial or complete, 

Table 2. Treatment response for the patient receiving prophylactic GCX was not assessed in 

this study.  

Table 2 Complete Response Partial Response 

Indication:   

Infection CRP  decrease  >50% 

Normalized body temperature 

Resolution or marked reduction of 

pulmonary, urinary or local infection 

symptoms 

CRP decrease  <50% 

Improvement but no resolution of 

symptoms and clinical findings 

Mucositis Resolution of mucositis symptoms or 

reduction > 2 grades on WHO oral 

mucositis score 

Reduction in mucositis related symptoms 

or reduction 1 grade on WHO oral 

mucositis score  

Table 2: Classification of treatment response after granulocyte transfusions 
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Mucositis was graded according to the WHO classifications (212).  

Adverse events were graded according to a grading system adapted from Sanders et al(213). 

AEs were classified as febrile, inflammatory, allergic, transfusion-related acute lung injury 

(TRALI), hypotension, transfusion-related septicemia, hemolysis, circulatory overload or a 

combination of these. The different AEs were then graded on a scale from 1 to 5, with 1 

signifying mild, 2 moderate, 3 severe, 4 life-threatening and 5 fatal. 

GCX carries a known risk of serious pulmonary side effects (202, 208). We investigated risk 

factors for severe pulmonary side effects of granulocyte treatment. To analyze the 

circumstances of previous pulmonary symptoms and pulmonary AEs, we studied the entire 

patient cohort for pulmonary radiologic examinations before and after GCX. We divided the 

patients into three groups before and after GCX depending on pulmonary x-ray findings:  

- Patients with pulmonary infiltrates 

- Patients with minor pathological findings on pulmonary X-rays (no infiltrates) 

- Patients without any pathological findings on pulmonary radiographs 

We then studied if patients changed between groups after GCX treatment. 

 

3.3 STATISTICS 

Overall survival (OS) was calculated using the Kaplan-Meier method and compared with the 

log-rank test. Survival time was calculated from the day of transplantation until death or last 

follow-up. The cumulative incidence of transplant related mortality (TRM), relapse, graft 

failure (GF) and GVHD were obtained using an estimator of cumulative incidence curves. 

Patients were censored at the time of death or last follow-up. 

Predictive analyses for relapse, TRM, GF and GVHD were performed with the proportional 

sub-distribution hazard regression model of Fine and Gray.23 Predictive analyses of OS were 

performed using the Cox proportional hazards model. Logistic regression was used for 

predictive analysis of CMV infection, PTLD, PRABO, PLS and AIHA. Factors with a p 

value of equal to or less than 0.10 in univariate analysis were included in the multivariate 

backwards elimination regression analysis.  

Continuous clinical outcome variables were compared with the Mann-Whitney U test or 

Kruskal-Wallis ANOVA and categorical variables using Fisher’s exact test or chi-square test. 

Analyses were performed using computer software: cmprsk package, developed by R. Gray, 

June 2001; S-Plus 6.2 software (Tibco software, US); the Statistica software (Statsoft, US, 

MA); Microsoft Office Excel 2007 (Microsoft Corp., Redmond, WA); or R Version 3.0.2 

[2013-09-25], (“Frisbee Sailing,” VC 2013 The R Foundation for Statistical Computing, 

Platform: i386-w64-mingw32/ i386 [32-bit]). 
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3.3.1 Scientific paper I 

The primary endpoint in scientific paper I was the predictive factors for graft failure (GF). 

The predictive factors analyzed for graft failure were ABO-, RhD-, MNSs-, or Kidd  

mismatch, sex, recipient age, disease stage, TNC dose/kg recipient, CD34+ dose/kg recpient, 

donor sex, donor age, HLA A, B or DR mismatch, HLA C mismatch, HLA C, DP or DQ 

mismatch, conditioning regime (busulfan or TBI), ATG type (thymoglobuline or other) and 

stem cell graft source (bone marrow or PBSC). 

3.3.2 Scientific paper II 

The clinical outcome and risk factors for patients with PRABO, PLS or AIHA were analyzed 

in scientific paper II. We also analyzed clinical outcome and transfusion needs dependent on 

ABO compatibility. 

Factors analyzed were ATG, diagnoses, graft type, donor type, disease stage, GVHD 

prophylaxis, conditioning, GVHD, donor age, granulocyte colony-stimulating factor (G-CSF) 

after HSCT, herpes virus serology and sex mismatch between donor and recipient. 

3.3.3 Scientific paper III 

In scientific paper III we analyzed the correlation between the measured graft quality and 

clinical outcome and infections (CMV, PTLD). Graft quality was assessed by viability testing 

of control vials from the cryopreserved fraction (the frozen/thawed sample). 

Risk factors for clinical outcome analyzed were: recipient age, recipient sex, diagnosis, 

disease stage, donor type (related or unrelated), HLA mismatch, immune suppressive drugs 

used, ABO blood group mismatch, CD34 dose/kg recipient, TNC dose /kg recipient, donor 

age, reduced conditioning regime (RIC), female donor to male recipient, recipient CMV 

serology positive, acute GVHD I-IV, acute GVHD II-IV, CD3+, CD4, CD16/56+ and 

CD19+ cell doses/kg recipient. 

Correlation between viability measured in the control vials from the cryopreserved fraction 

and factors influencing graft quality (WBCs, PLTs, CD34, CD3, CD19, CD56/16, time in 

transit and storage and temperature after transport) were calculated using simple regression or 

Mann-Whitney U test.  

3.3.4 Scientific paper IV 

In scientific paper IV we analyzed factors influencing outcome after GCX transfusions in 

HSCT patients.  

Factors analyzed were indication for GCX (infection, mucositis) and donor pre-treatment 

(steroids only or G-CSF and steroids) and were assessed regarding treatment response, 

adverse events and clinical outcome. 

The effects of GCX on incidence of GVHD, survival, relapse, graft failure were studied. 
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3.4 AN INTRODUCTION TO THE METHODS USED IN THIS THESIS WORK 

 

3.4.1 Flow cytometry 

Flow cytometry is used for analyzing white blood cell markers, stem cells (CD34) and 

viability (7AAD/CD45) as part of clinical routine. For additional viability assessment of 

cellular grafts Annexin V has also been implemented at our laboratory.  

In flow cytometry analysis particles/cells are labeled using either a dye, such as 7AAD 

selectively staining DNA in dead or dying cells, or a specific flourochrome-conjugated 

antibody targeting epitopes on particles/cells. The cells, suspended in a liquid flow, pass a 

laser and a set of detectors one by one at a rate of up to thousand particles per second. The 

cells size and granularity are detected as forward and side scatter. If a cell is stained by dye or 

expresses an antigen targeted by the specific antibody, the flourochrome will emit an energy-

pulse when hit by light at a specific wave length from the laser. This energy is detected by the 

instrument, transformed in to a charge-pulse (mV) which is amplified and displayed in a 

histogram (with one dimension) or as a plot (showing two dimensions).   

The flow cytometer instruments used in this thesis work are FACS Calibur (Becton 

Dickinson) or FC500 (Beckman Coulter). 

3.4.1.1 CD34 analysis 

The CD34 analysis at Karolinska is performed using a single platform flow cytometry 

analysis based on the ISHAGE gating strategy (214). Briefly, about 1 × 10
6
 cells is added to 

an TruCount™ tube (Becton-Dickinson) and incubated with 7AAD, a CD34-PE conjugated 

antibody and a CD45-FITC conjugated antibody. The red cells are then lysed before analyzed 

using a flow cytometer.  The ISHAGE (214), serves to reduce variability in the analysis, both 

within and between laboratories.   

3.4.1.2 Viability using 7-Aminoactinomycin (7AAD) and CD45 

7-Aminoactinomycin D (7-AAD) is a compound that binds to DNA. It does not readily pass 

through intact cell membranes hence live cells or cells in early apoptosis will remain 

unstained. Only dead cells or cells with compromised membranes (permeabilized or 

disrupted) will be stained. In short, white blood cells are incubated with 7AAD and CD45-

FITC conjugated monoclonal antibody. If there are red blood cells present they are lysed 

using IOTest3 Lysing Solution, prior to analysis on a flow cytometer. 

3.4.1.3 Apoptosis and Annexin V 

There are a number of different analyses that are used to distinguish cells in apoptosis (215). 

Annexin V was first described by Koopman et al in 1994 (216) as a method for detecting 

apoptotic cells. In healthy cells the plasma membrane is asymmetrical retaining 

phosphatidylserine (PS) on the inner leaflet.  During the early stages of apoptosis PS is 
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flipped from the inner leaflet of the plasma membrane to the outer without affecting plasma 

membrane integrity. Annexin V is an anticoagulatory protein that binds to PS in a Ca
2+

 

dependant matter. We use Annexin V conjugated with FITC in an assay combined with 

7AAD. In short, graft cells are washed once with a Ca
2+ 

containing buffer and centrifuged. 

The cells are then labeled with Annexin V and 7AAD, incubated, and immediately analyzed 

by flow cytometry. 

                                     

Figure 6: Cells from a PBSC graft are co-stained with Annexin V and 7AAD and analyzed on 

flow cytometer. First the cells are gated with forward and side scatter. All cells in the white 

blood cell region are then brought in to the next gate displaying Annexin V and 7AAD shown 

here. Cells in the lower left quadrant (green dots) are considered to be alive. In the upper left 

quadrant apoptotic cells binding Annexin V can be seen. Dead cells stain both for Annexin V 

and 7AAD and are seen in the right (pink dots).  

 

We chose to use Annexin V, out of a number of possible markers of apoptosis, since it is a 

robust analysis suitable to a clinical routine laboratory. The analysis has one drawback, its 

calcium dependence (217). All our HSC-products contain citrate as anti-coagulant; the 

mechanism of citrate is binding calcium. This requires a washing step with calcium buffer to 

be performed prior to the Annexin V analysis. The validation performed before 

implementation demonstrated that it did not affect the results (data not shown). 

 

3.4.2 Cryopreservation of HSC and lymphocytes 

Several cryopreservation protocols exist primarily differing in cryopreservation solutions and 

freezing rate (218, 219). Most laboratories use dimethyl sulfoxide (DMSO) as cryoprotectant, 

suspended in either plasma or human serum albumin (HSA) with heparin. Plasma contains 

citrate hence additional anticoagulant, such as heparin, is not required. DMSO penetrates the 

cells preventing intra cellular crystal ice formation protecting the cells from damage when the 

freezing point is reached. The DMSO concentration is commonly 10 or 5%. The 5% 
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concentration is shown to be at least as effective (220, 221), if not better improving post-thaw 

viability (222). DMSO is toxic to non-frozen cells and exposure times should be limited.  

An additional extra cellular cryoprotectant, i.e. hydroxyl ethyl starch (HES), is added in some 

protocols (223). HES does not penetrate the cell plasma membrane and is believed to protect 

the cells by restricting water movement, preventing intra cellular dehydration and protecting 

the cell against extra cellular ice crystals (218, 223). 

When the cells are mixed with cryosolution and put in a cryopreservation bag they should be 

frozen immediately to avoid DMSO exposure. The freezing rate is important for cell viability 

(219, 222). Controlled freezing rates using a nitrogen based freezing device can be used, 

commonly freezing the cells at -1 °C /min the first 40 minutes then -10 °C /min until a final 

temperature of 80-100 °C is reached. Another option is to use the uncontrolled freezing rate 

(224-228). In this case the cryobags are put in a -80 °C mechanical freezer for at least two 

hours and then the cell components are moved to their final storage in liquid-or gas phase 

nitrogen tanks or low-temperature (<-135 °C) mechanical freezers . 

Cryopreserved cells are then stored in tanks containing liquid or gas-phase nitrogen or, in 

low-temperature mechanical freezers. How long the cryopreserved cells can be stored is not 

known. However, studies have shown that cryopreserved cells remain viable for at least a 

decade (229-232). If the cryopreserved grafts are form ineligible donors with positive viral 

infectious disease markers (such as HBV, HCV or HBV) the grafts cannot be submerged in 

liquid nitrogen due to risk of transmitting viral disease (233). 

At our center we use a plasma and UFR-protocol for cryopreservation of cells. The cells are 

suspended to equal volumes of a cryopreservation solution (consisting of blood group AB 

blood donor plasma and 20% DMSO) to a final concentration of 10% DMSO. The cells are 

then frozen in a    -80°C mechanical freezer (UFR) and subsequently transferred for further 

storage in either liquid- or gas-phase nitrogen tanks or -150 °C mechanical freezers. Cell 

concentration during cryopreservation is set at a maximum of 200 x10
9
/L WBC (234, 235). 

Cryopreserved cells can be given directly after thawing (no-wash) or thawed and washed. 

When no wash is performed, the cells are thawed quickly in a 37 °C water bath bed-side and 

infused immediately to the patient. If the cells are washed prior to infusion, the cryopreserved 

cells are thawed quickly in a 37 °C water bath at the cell processing laboratory and  washed, 

by a dilution/centrifugation step, before distributed to the ward and given to the patient. The 

washing procedure removes most of the DMSO from the cell component reducing DMSO 

toxicity in the patient (236, 237).  At our center all autologous HSC to adult patients are 

washed prior to infusion (238). Other cells are thawed bed-side and directly infused.   
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3.4.3 Aphaeresis 

The word aphaeresis means taking away and in this context aphaeresis is used to separate 

blood into components. This is done by centrifugation or filter/adsorption columns. 

Aphaeresis can be used to collect cells or for therapeutic reasons. 

Filter columns are, for example, LDL-filters used to remove low-density lipoprotein (LDL) 

from plasma in patients with severe inherited hypercholesterolemia, Adacolumn filters that 

remove nucleated cells in patients with inflammatory bowel disease, or columns removing 

antibodies, by targeting either the Fc-part of the antibody and thus removing 

immunoglobulin’s in general or by targeting the variable part of the antibody removing 

antibodies of a certain specificity such as ABO antibodies in major ABO incompatible organ 

transplantation. 

In leukaphaeresis a centrifuge technique is used to separate blood based on the density of 

each cell. The densities of different cell types are depicted in figure 7. 

 

  

Figure 7: a.) The elements of whole blood separate according to density when exposed to 

centrifugation. b.) The cell count in whole blood  and the density of the different blood cells and 

are visualized.  

Briefly, blood is drawn at an access point from a peripheral or central vein and led into the 

centrifuge in the aphaeresis device. The blood is separated and the desired blood fraction (in 

leukaphaeresis it is a fraction of the white blood cells) is collected and led in tubings into the 

collection bag. The rest of the blood is returned to the donor/patient through a return point in 

a peripheral vein (usually the other arm) or to the central vein. Any fraction of the blood can 

be collected or removed using a centrifuge aphaeresis device. Different anticoagulants can be 
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used, ACD-A, sodium citrate, CPD or heparin. The amount of blood processed through the 

device depends on how much cells or plasma needs to be collected or removed. 

                      

Figure 8: Apheresis devises; Spectra Optia and Cobe Spectra  (Pictures of aphaeresis devises: 

Copyright, Terumo BCT, Inc. Used with Permission) 

3.4.4 Analysis of Blood group and antibodies against blood group antigens 

A persons ABO blood group is determined by analysis of ABO antigens on red blood cells 

(direct typing) and the presence of anti-A or anti-B in plasma (reverse typing) according to 

routine methods using an automated system (AutoVue; Ortho Clinical Diagnostics, Raritan, 

NJ) or manually using tube or gel techniques (Bio-Rad Laboratories, Herts, UK) (239).  

Screening for irregular antibodies or auto-antibodies is performed using the indirect anti-

globuline test (IAT) with gel technique (ID-Coombs Anti-IgG; Bio-Rad Laboratories) or with 

the AutoVue system utilizing antihuman globulin, (AHG) anti-IgG.  

Direct anti-globulin test (DAT) was analyzed using a manual tube method (239) or a gel 

technique (ID-Liss Coombs, DC-Screening I; Bio-Rad  Laboratories). After 2005 the 

automated AutoVue system (Ortho Clinical Diagnostics) was used. 

In patients with a positive DAT the antibodies can be eluted in order to determine their 

specificity by IAT in gel technique. The elution method used is cold acid elution with ELU-

KIT II (Gamma Biologicals, Houston, TX).  

In major ABO mismatched HSCT the anti-A or –B titer of the recipient is determined using 

tube or gel techniques (239). If donor RBCs are available these are used for titer 

determination, otherwise a test cell RBC of the same ABO blood group is used. 

Chimerism of RBCs is assessed by RBC typing of the donor and the recipient prior to HSCT 

defining a marker, a difference in blood group between donor and recipient. After HSCT this 

difference in blood group can be used to estimate the proportion of donor- or recipient type 

red blood cells in the recipients’ blood. This is performed by blood typing using tube 

technique and monoclonal antibodies. After incubation and centrifugation the reaction is read 

and the percentage free RBCs are assessed using a microscope.  
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4 RESULTS AND DISCUSSION 

 

4.1 BLOOD GROUPS IN HSCT (SCIENTIFIC PAPERS I AND II):  

Scientific paper I and II were performed as single center retrospective studies studying the 

impact of blood groups in allogeneic HSCT. Scientific paper II has two perspectives; one is 

the impact of ABO differences in donor and recipient and their implication on clinical 

outcome. The other perspective is the impact of detected ABO antibodies. The results from 

scientific paper I and II with regards to the impact of blood groups on clinical outcome will 

be presented and discussed together (Part 1). The impact of detected ABO antibodies will be 

discussed separately (Part 2).  

 

4.1.1 Part 1: The impact of blood groups on clinical outcome after allogeneic 
HSCT 

4.1.1.1 Results of scientific paper I: Major ABO Blood Group Mismatch Increases the 

Risk for Graft Failure after Unrelated Donor Hematopoietic Stem Cell 

Transplantation 

 

Among the 224 patients included in this study 89 (40%) patients received an ABO identical 

graft, 67 (30%) received a major ABO mismatched graft and 68 (30%) were minor 

mismatched. A bidirectional mismatch was found in 16 (7%) cases.  

Graft failure (GF) occurred in 6 (2.7%) patients with a median of 64 days (range 23-132) 

after HSC; 3 had primary GF and 3 secondary GF. The only factors significantly associated 

with GF were ABO mismatch (odds ratio [OR] 14.9, 95% confidence interval [CI] 2.01-110, 

p =0.008) and HLA-A, -B, or -DR allele level mismatch (6.42, 1.19- 34.8, p=0.03).  In 

patients with and without major ABO mismatch, the incidence of GF was 7.5% (5 of 67) and 

0.6% (1 of 157), (p=0.02) respectively. In patients with and without HLA allele level 

mismatch, the incidence of GF was 8.3% (2 of 24) and 2.0% (4 of 200) (p=0 .09), 

respectively.  In patients with both a major ABO mismatched and an HLA-allele mismatched 

donor (n = 5), the incidence of GF was 20%, figure 9. None of the patients without risk 

factors developed GF. 

In this study the main graft source was bone marrow. Removal of RBCs from ABO major 

mismatched bone marrow (BM) grafts led to a decrease in total nucleated cell (TNC) count 

by 20%. However, there was no statistical differences between the TNC counts in ABO 

major mismatched BM grafts (after RBC removal) with all ABO non-major mismatched BM 

grafts (no RBC removal), (2.5 [range 0.2-17.0] versus 2.6 [range 0.7-13.1], p=0.5). 

Furthermore, graft failure was not affected by cell counts in BM grafts ABO major mismatch 

(with or without GF, 2.2 [range 0.7-14.0] versus 2.5 [range 0.2-7.0], p=0. 8). 
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Figure 9: Cumulative incidence of graft failure (GF) depending on number of risk factors (RF) 

found in the multivariate analysis.  Risk factors were ABO major mismatch and HLA allele 

mismatch). 

There was no difference in pre-HSCT ABO antibody titers between patients with and without 

GF in major ABO mismatched transplants. The IgG antibody titers were 16 (8-128) and 32 

(1-1000), the IgM titers 8 (range 1-32) and 32 (range 1-1000) in patients with and without 

GF, respectively (Ns). 

A blood group antigen RhD mismatch was found in 53 (24%) cases, a MNSs mismatch in 

144 (64%), and a Kidd (Jka/b) mismatch in 99 (44%) cases. No correlation between other 

blood group antigens (Rh, MNSs, and Kidd) and graft failure was found.  

 

4.1.1.2 Results of scientific paper II: Analysis of Donor and Recipient ABO 

Incompatibility and Antibody-Associated Complications after Allogeneic Stem Cell 

Transplantation with Reduced-Intensity Conditioning 

 

Among the 310 patients included in this study 145 had an ABO identical donor, 66 received 

grafts from a minor ABO mismatched donor and 95 had a major or bidirectional ABO 

mismatched donor. No significant differences were observed between the ABO-matched and 

–mismatched groups in overall survival (OS), transplant related mortality (TRM), acute 

GVHD grades II to IV, chronic GHVD, or graft failure by multivariate analysis, Table 3. 
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Outcome  AB0 identical  

(n=145) 

Minor AB0 MM  

(n=66) 

Major AB0 MM 

(n=95)  

 

OS 63% 53% 66% Ns 

RFS 68% 67% 76% Ns 

TRM 23% 26% 24% Ns 

aGVHD II-IV 27% 30% 38% Ns 

cGVHD 37% 29% 29% Ns 

GF 18/145, 12% 7/66, 11% 10/95, 11% Ns 

Table 3: The impact of ABO match on clinical outcome (scientific paper II suppl.table). 

 

4.1.1.3 Discussion: Impact of blood group antigens on clinical outcome 

 

In scientific paper I we found a correlation between major ABO mismatch, especially in 

combination with HLA-mismatch, and graft failure. In contrast to the results in scientific 

paper I we found no correlation between ABO mismatch and graft failure in scientific paper 

II. The two studies differ in study population and in date of transplant. In scientific paper I we 

studied 224 patients with leukemia receiving full myeloablative conditioning between 1991-

2003, whereas in paper II patients receiving RIC treatment in 1998-2011 where studied. At 

our center graft failure has remained at the same level over this whole period (39), thus 

excluding different time periods as explanation for the difference between these two studies. 

ABO major mismatch was also identified as a risk factor for GF in o another study 

(Remberger et al) at our center (240) but in the study by Olsson et al (241) ABO mismatch 

was significant in the univariate analysis but not in the multivariate analysis.  

A large observational study by Seebach et al (CIBMTR database) including over 3000 

patients with leukemia showed no impact of ABO differences between donor and recipient on 

survival, TRM, relapse or chronic GVHD (180). In this study they did find a prolonged 

engraftment of, both neutrophils- and red blood cell engraftment. The latter was measured as 

prolonged transfusion dependence. Additionally, the patients receiving bidirectional ABO 

mismatch had more severe acute GVHD (grade III-IV), but given there was no influence on 

TRM or OS, these results should be interpreted with caution. The graft sources were bone 

marrow.  Although the transplanted cell dose did not differ between the groups in scientific 

paper I or in the study by Seebach et al (180), the grafts given in major and bidirectional 

ABO mismatched patients were most probably red blood cell reduced. All interventions with 

bone marrow grafts affect cell dose (121) or compromise cell composition which may 

influence engraftment and risk of graft failure.   
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 In a recent study by Olsson et al 2015 risk factors for GF were analyzed in 1278 patients 

with reported GF out of 23 000 patients in the CIBMTR database (242). Here, major ABO 

mismatch was identified as a risk factor for GF (both in HSCT with related or unrelated 

donor and independent of BM or PBSC graft source). Major ABO mismatch remained a risk 

factor when adjusting for cell dose. 

The association between GVHD and minor ABO has been described by others as reviewed 

by Stussi et al (243). It is speculated that donor type ABO antibodies bind recipient 

endothelial ABO antigen, causing tissue damage and evoking an acute GVHD reaction. This 

could not be confirmed in our study, scientific paper II, nor in the Seebach study (180). 

The impact of ABO on clinical outcome after allogeneic stem cell transplantation is still 

debated (175, 180, 243-245). Reported results are conflicting but these studies do differ in 

patient cohorts and in treatment- and transfusion regimes. The effect of ABO may become 

more apparent as transplant techniques advances and transplant indications change. Other 

factors of greater impact may override the effect of ABO donor-recipient differences thus 

obfuscating its influence and complicating analysis and the interpretation of results. 

 

4.1.2 Part 2: ABO antibodies in allogeneic HSCT, complications and effect 
on clinical outcome 

 

4.1.2.1 Results of scientific paper II: Analysis of Donor and Recipient ABO 

Incompatibility and Antibody-Associated Complications after Allogeneic Stem Cell 

Transplantation with Reduced-Intensity Conditioning 

 

In scientific paper II we investigated hemolytic complications that could arise from ABO-

incompatible transplants; passenger lymphocyte syndrome (PLS), persisting or recurring 

recipient ABO type antibodies (PRABO) and also autoimmune hemolytic anemia (AIHA) 

and their impact on clinical outcome. The results are summarized in Table 4. We also 

analyzed transfusion requirements with regards to ABO differences between donor and 

recipient.  

Outcome  PLS AIHA PRABO 

Yes No Yes No Yes No 

OS 0% 61% *** 72% 62% 17% 73% ** 

RFS 0% 75% ** 75% 70% 33% 78% * 

TRM 33% 22% 19% 24% 50% 21% * 

aGVHD II-IV 50% 32% 0% 33% * 51% 30% 

cGVHD 0% 34% 13% 34% 25% 34% 

Table 4: Outcomes in PLS, PRABO and AIHA patients.  * p<0.05, ** p<0.01, *** p<0.001 
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 Passeger lymphocyte syndrome (PLS) 

In this study we defined PLS as the presence of donor type anti-A and/or anti-B antibodies 

either on the recipient’s RBCs or in recipient plasma during the first month after minor ABO 

mismatch HSCT. Based on these criteria, we found 6 patients that had PLS. Survival in PLS 

patients was 0% compared to 61% of patients without PLS (P <0 .001) (Figure 10 A). There 

was no difference in TRM in PLS patients compared to patients without PLS (33% versus 

22%, ns). Risk factors for PLS in univariate analyses were transplants with unrelated donors 

(p=0 .02), the absence of methotrexate (p=0.03), and nonmyeloablative conditioning for solid 

tumor (p=0.016). A multivariate analysis was not possible since all PLS patients had an 

unrelated donor and had received ATG. The causes of death in PLS patients were progressive 

disease of solid tumor (n = 4) and pneumonia (n = 2). The graft source did not affect PLS 

incidence. 

Recurring recipient type ABO antibodies (PRABO) 

Of the 95 patients receiving a major ABO mismatched HSCT, 12 patients had anti-A/B 

antibodies detectable >3 months post-transplant and hence were classified as individuals with 

persistent or recurring recipient type ABO antibodies (PRABO). Patients with PRABO had 

more complications post-HSCT. They had a greatly decreased 3-year survival (17% versus 

73%, p=0 .002) (Figure 10 B), a significantly higher TRM (50% versus 21%, p=0.03), and 

more RBC and platelet transfusion needs compared to patients without PRABO receiving a 

major ABO mismatched HSCT. 

The clinical picture of these 12 patients is as follows. Three had a picture consistent with  

pure red cell aplasia (PRCA), that is, low reticulocyte count in peripheral blood, normal 

lactate dehydrogenase, and normal or subnormal levels of platelet. Two patients had normal 

or high cell content in the bone marrow, a normal erythropoiesis, normal or high levels of 

reticulocytes in peripheral blood, low number of platelets and high levels of lactate 

dehydrogenase. Hemolysis resolved in these 2 patients without other treatment than ABO-

compatible RBC and platelet transfusions. The remaining 7 patients presented with varying 

degrees of hemolysis, poor marrow function with mixed chimerism, and/or cytomegalovirus 

infections. In four of these patients, transplant indication was solid tumors. Two also had 

unspecific anti-RBC auto-antibodies and HLA antibodies. 

The use of G-CSF treatment of the patients post-HSCT was the only significant risk factor 

identified by univariate analysis for PRABO after major ABO mismatch HSCT (p=0.04). 

There was also a trend for patients treated for solid tumors (p=0.06). PRABO incidence was 

independent of the graft source used.  

We found no correlation between PRABO and anti-A/anti-B antibody titers in recipient 

plasma prior to HSCT.   
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Figure 10: Cumulative survival in A) patients with or without PLS in minor ABO transplants 

and,  B) patients with and without PRABO in major ABO transplants. Patients with PLS or 

PRABO have significantly lower survival. 

 

Autoimmune hemolytic anemia (AIHA) 

In scientific paper II we defined AIHA as patients with positive direct anti-globulin test 

(DAT) and positive indirect anti-globulin test (IAT) after transplantation. The antibodies 

should be non-ABO specific antibodies.  We identified 12 (4%) patients with AHIA after 

HSCT.  There was no association between AIHA and a decrease in OS or increase in TRM. 

However, patients with AIHA did not experience any acute GVHD grades II to IV, which 

was significantly lower than patients without AIHA (p=0 .04).  

Risk factors for AIHA identified by univariate analysis were; use of ATG (p < 0.01), stem 

cells from unrelated donors (p=0 .047) and younger donor age (<38 years) (p=0.03). We also 

found that patients seropositive for 0 to 2 herpes viruses before HSCT were more likely to 

develop AIHA than those positive for 3 to 4 herpes viruses (p=0.02). The incidence of acute 

GVHD was lower in AIHA patients than patients without AIHA (p=0 .006). In the 

multivariate analysis, only patient virus serology before HSCT was significantly associated 

with AIHA (odds ratio, .22; 95% confidence interval, 0.06 to 0.8; p=0.02). The use of an 

unrelated donor had a strong trend as risk factor for AIHA (odds ratio, 7.38; 95% confidence 

interval, 0.92 to 59.5; p=0.06). It was not possible to analyze the effect of ATG and acute 

GVHD since all AIHA cases received ATG and had no acute GVHD. The graft source used 

did not affect the incidence of AIHA. 

There was a higher prevalence of positive DAT after HSCT in patients receiving ABO-non 

identical, rather than ABO –identical, graft HSCT (p=0.001). A positive DAT in itself did not 

significantly affect outcome of OS, TRM, and graft failure. 



 

48 

Transfusion requirements after allogeneic HSCT 

Patients with minor and major ABO incompatibility required significantly more RBC 

transfusion at both 2 and 12 months post-HSCT compared with the ABO-matched group 

(Table 5 A).  Patients with major ABO mismatch also required more platelet transfusions. In 

addition, patients with PRABO needed more transfusions than patients where no persistent 

recipient type ABO antibodies had been detected (Table 5 B).  

 

 

Table 5 A RBC+2 months PLT+2 months RBC+12 months PLT +12 months 

ABO Identical  2 (0-34)  1 (0-48)  4 (0-98)  4 (0-77)  

ABO Minor 

mismatch  
4 (0-50) **  1 (0-31)  9 (0-88) **  3 (0-74)  

ABO Major 

mismatch  
5 (0-45)  ***  2 (0-41) *  8 (0-282) **  4 (0-115)  

Kruskal-Wallis  p<0.001  p=0.08  p=0.002  p=0.19  

 

Table 5 B RBC+2 months PLT+2 months RBC+12 months PLT +12 months 

No recipient type 

ABO ab  (n=70)  
4 (0-45)  2 (0-27)  6 (0-282)  2 (0-115)  

PRABO ( n=12)  11 (0-42)  6 (0-41)  44 (6-92)  14 (0-70)  

Kruskal-Wallis p= 0.013  p=0.06  p<0.001  p<0.001  

 

Table 5: ABO incompatibility and transfusion requirement. A.) Transfusion requirements in 

ABO minor or major mismatch versus ABO identical. B.) Transfusion requirements in major 

ABO mismatch in patients with or without PRABO. 

Numbers indicate the median number of units transfused per patient during the time period 

stated. PLT indicates platelet transfusions and RBC red blood cell transfusions.  

* p<0.05, **p<0.01, ***p <0 .001 versus ABO match. 
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4.1.2.2 Discussion: Clinical effect of PLS and PRABO 

 

In scientific paper II we focused on patients receiving reduced intensity conditioning since 

this conditioning regime does not totally eradicate recipient immune cells, enhancing the risk 

of antibody mediated complications (179, 246). 

The occurrence of PLS after HSCT is described by several centers. However, some centers 

report frequent PLS after HSCT (178, 179, 247), while others, like us, and rarely see this 

phenomenon (scientific paper II). At our center we screened for PLS using DAT and reversed 

typing at every blood requisition from day 0 to one month post-HSCT.  This minimizes 

missing patients in the study strengthening the incidence analysis.  We identified 6 patients 

with donor ABO antibodies after HSCT out of 66 minor ABO mismatch patients, thus 

meeting our criteria for PLS in this study. None of the patients displayed clinical hemolysis. 

PLS has long been reported in organ transplantation and the risk is related to the amount of 

lymphoid tissue the organ contains and the use of cyclosporine alone as immune suppressant 

(without metothrexate) (176) PLS with high frequency after HSCT have been reported  (178, 

247-249). Worel et al reported an incidence of 4 out of 11 patients receiving 

minor/bidirectional HSCT. The patients in this study had hemolysis that was treated by red 

blood cell exchange. After 2001, this center performed prophylactic red blood cell exchange 

for all patients undergoing minor ABO mismatched transplants with a donor-against-recipient 

type ABO titer over 32. Bolan et al reported of massive hemolysis treated with compatible 

transfusions. Both of these studies reported death related to hemolysis.  

Previously reported risk factors for PLS in HSCT are immunosuppression using cyclosporine 

without methotrexate, the use of PBSC and reduced intensity conditioning (181, 248, 250). 

The absence of methorexate was confirmed as a risk factor for PLS in our study (scientific 

paper II) as was non-myeloablative conditioning and use of unrelated donors. Methotrexate 

was not used in the Bolan study and in the Worel study, MFF was given but the authors 

speculate in a later paper that the MFF dosage was probably insufficient (178). Increased 

vigilance by the transplant physician for signs of hemolysis is warranted if an immune 

suppression regime is used that does not use methotrexate or an equivalent B-cell suppressing 

drug.  

Our study showed that few patients had donor ABO antibodies with little to no clinical 

hemolysis at our center. As a direct result of this study, standard operating procedures at the 

blood bank, in consensus with the HSC transplant physicians, were changed removing the 

requirement for DAT and reversed typing in all blood requisitions in minor ABO-

mismatched HSCT during the first month post-HSCT. 

In scientific paper II, PLS was associated with poor survival. This was not due to hemolysis, 

which was minor or non-detectable. However, four out of six patients died due to 

relaps/progression in solid organ tumors where overall results are generally poor.  
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Zaimoku et al reported that regular ABO antibodies and PLS preceded the onset of acute 

GVHD (247). In their study 6/18 patients developed PLS and moderate hemolysis. All PLS 

patients developed acute GVHD, compared to 3/13 in the non-PLS patient group. Also 

survival was poor and TRM high (4/5 PLS patients died). This was also described in a case 

report by Salmon et al (251). This suggests that antibodies may play a role in the 

development of acute GVHD. Of note though, the donor cells in the Zaimoku study were 

cryopreserved before HSCT. Cryopreservation may alter cell composition.  A relation 

between PLS or minor ABO mismatched HSCT and acute GVHD could not be confirmed by 

our study (scientific paper II).  

In major ABO mismatched transplants delayed hemolysis or pure red cell aplacia (PRCA) 

can occur, usually months after the transplantation. These conditions are attributed to 

recipient type ABO antibodies targeting antigens on donor red blood cells (181). In delayed 

hemolysis the patient presents with high or normal reticulocytes, high lactate dehydrogenase 

(LD), normal cell count in bone marrow samples and normal or vivid erythropoiesis. In our 

study we found two PRABO patients with delayed hemolysis. Both patients received RBC 

and platelet transfusions and eventually the condition resolved. Patients can also develop 

PRCA, a condition with low reticulocytes, low erythroid precursors but adequate myeloid, 

lymphoid and megakaryocyte cell lines in bone marrow, donor cell types in white blood cell 

chimerism and transfusion dependence. It is speculated that  the recipient anti-donor-ABO 

antibodies enter the bone marrow and destroy erytroid precursors (181) but the mechanism 

behind PRCA is not fully known.  

It has been proposed that reduction of pre-transplant ABO antibody titers could reduce 

incidence of PRCA leading to faster red cell engraftment (252-254). PRCA develops later in 

the post-HSCT process and considering that there is no correlation between pre-HSCT anti-A 

and/or anti-B titer and PRABO (scientific paper II) or PRCA (255) there is not an obvious 

pathophysiological explanation for an intervention that reduces pre-transplant antibodies. 

Additionally, it is reported that there is no correlation between ABO-titers and level of 

plasma cell chimerism in peripheral blood (54).One can speculate that recipient ABO 

antibodies have an adverse effect on donor erythroid progenitor cells at the time of transplant 

inflicting harm that lingers. However, PRCA subsides when persisting recipient ABO 

antibodies diminish months after HSCT, speaking against such a hypothesis (255). Risk 

factors for PRCA are not fully known but the use of non myeloablative conditionings may 

enhance the risk for PRCA (246, 256). The only risk factor for PRABO in scientific paper II 

was the use of G-CSF.   

It has been shown that engraftment of erythrocytes measured as increased transfusion 

dependence, is prolonged after major ABO mismatched transplantation (175, 180) and that 

this seems to be independent of transplantation cell dose. This was confirmed in our study 

(scientific paper II). PRABO patients also needed more transfusions than patients without 

PRABO. This further implicates involvement of ABO immunoglobulins causing increased 

transfusion requirements. Blin et al (175) showed that ABO regular antibodies disappeared 
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faster after HSCT from unrelated donors related donors. They also showed that patients with 

grafts from related donors experiencing acute GVHD grade III-IV cleared the recipient type 

ABO antibodies faster than the patients without acute GVHD. This indicates that donor – 

recipient disparity influences persistence of recipient ABO antibodies. The use of non-

myeloablative conditioning has also been shown to give longer erythroid engraftment and 

prolonged persistence of ABO antibodies in major ABO mismatched transplants (246).  

In scientific paper II we found that patients with minor or major ABO mismatches also 

required more platelet transfusions, as did the two patients with PRABO that presented with 

hemolysis but normal erythropoiesis. We speculate this due to platelets also expressing ABO-

antigens. 

In conclusion, differences in recipient-donor ABO blood groups can give rise to different 

complications presumably due to antibodies. The cause, mechanism and effect of the 

complication depend on when the complications occur in relation to the time of transplant. 

These complications can be divided into three groups; immediate, early and later. The 

presences of ABO antibodies can also be associated with clinical outcome factors such as OS, 

TRM and GVHD. Several interventions and treatment options have been proposed and 

reported. The impacts of these are difficult to assess due to the differences in complication 

frequencies between centers and small study population cohorts. The complications discussed 

and the proposed interventions are summarized in Table 6. 
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Table 6 Immediate  

Day 0:  

during or after HSCT 

Early  

Day +7-14 (-30) 

 

Later  

Day +90 

Outcome effects 

Any time point  

post HSCT 

Type of 

complication 

 

Adverse events (AE) 

during HSC infusion 

Hemolysis of 

recipient type RBC 

Hemolysis of donor 

type RBC 

Reported as risk 

factor for: 

Mechanism in: 

Minor ABO ABO incompatible 

red blood cells in BM 

PLS  

(Donor derived 

antibodies against 

recipient antigen ) 

 Acute GVHD (243) 

Major ABO ABO incompatible 

plasma in BM or 

PBSC 

 PRABO 

(Recipient 

antibodies against 

donor antigen) 

causing PRCA or 

delayed hemolysis 

Prolonged red cell 

engraftment (180, 

248) 

Prolonged neutrophil 

engraftment (180) 

GF (242, 257) 

Bidirectional ABO incompatible 

plasma and RBC in 

BM or PBSC 

PLS  

(Donor derived 

antibodies against 

recipient antigen ) 

PRABO 

(Recipient 

antibodies against 

donor antigen) 

causing PRCA or 

delayed hemolysis 

Acute GVHD (180) 

Interventions: 

Conventional 

Interventions  

Depletion of 

incompatible RBC 

and/or plasma in HSC 

graft 

Transfusion with 

compatible blood 

Transfusion with 

compatible blood 

 

 

Proposed 

alternative or 

additional 

interventions: 

Reduction of ABO 

antibodies in recipient 

plasma prior to HSCT  

by: 

- TPE or antigen/Ig 

specific columns) 

(253)  

- Transfusion of 

donor type plasma  or 

RBC (252, 254) 

Pre-emptive RBC 

exchange  (178) 

 

 

 

 

TPE or Ig immune 

adsorption (258),  

anti-thymocyte 

globulin, 

erythropoietin, 

corticosteroids, 

rituximab, 

DLI 

Tapering of 

Immune 

suppressive drugs  

(255) 

Avoiding ABO 

incompatibility 

between donor and 

recipient if possible. 

Plasma depletion of 

graft and avoidance 

of donor type plasma 

products (247) 

 

Table 6: Summary of ABO-antibody related complications after allogeneic HSCT. The 

complications are shown in separate columns as immediate, early, and late complications,  and 

transplant outcome. For each complication the mechanisms behind and conventional as well as 

proposed interventions are summarized.  
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4.1.2.3 Discussion: AIHA after allogeneic HSCT 

 

AIHA post-allo HSCT is a condition independent of ABO match between donor and 

recipient, where donor derived antibodies reacts against donor antigens. The incidence of 

AIHA was 4% in our study, which is in agreement with other reports (186, 187, 259).  AIHA 

did not provide an increased risk for TRM or inferior OS which have been reported by others 

(186, 187, 259). This may be due to differences in AHIA definition in the different studies 

but could also potentially be due to differences in conditioning regimes and/or 

immunosuppressant. 

 In our study, identified risk factors for development of AIHA were unrelated donors and 

patient sero-positivity for less than 3 herpes viruses. Patients with sibling donors, absence of 

both ATG and acute GVHD, had a decreased risk of AIHA development. Previous studies 

reported that unrelated donors confer an increased risk of AIHA (187, 259). The use of 

unrelated donors and virus serology was also significant in multivariate analysis in our study. 

Because all unrelated donors were treated with ATG, it was not possible to analyze this factor 

in multivariate analysis.  

Viral reactivation after HSCT is primarily controlled by natural killer cells and effector T 

cells. In our study, patients with positive serology before HSCT for 0 to 2 herpes viruses 

compared with 3 to 4 had a higher risk of AIHA. As a consequence, individuals with less 

prior virus exposure will have a higher risk of a primary infection after HSCT. It has been 

shown that a strong T cell-mediated immune activation can lead to autoimmune diseases due 

to both molecular mimicry and bystander activation (reviewed in (260)). 

Interestingly, the 12 AIHA patients had a significantly lower risk of developing moderate-to-

severe acute GVHD. That all patients with AIHA lack the occurrence of acute GVHD is 

difficult to explain. It can be speculated that either the acute GVHD per se or the following 

corticosteroid treatment and prolonged immune suppression inhibited B-cells responsible for 

AIHA, but no literature on this topic can be found. Although ATG and acute GVHD could 

not be analyzed by multivariate analysis, it might also be possible that acute GVHD is merely 

dependent on the presence of ATG. 

 For the association between GVHD, herpes virus serology and AIHA, we can speculate that 

among herpes viruses, EBV is harbored in B cells. Herpes virus antigens may also be a 

stimulus for alloreactivity with induction of acute GVHD and the corresponding graft-versus-

autoimmune effect with elimination of antibody-producing cells and hence decreasing the 

risk 
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4.2 VIABILITY AND GRAFT QUALITY 

 

4.2.1 Scientific paper III  Quality of the hematopoietic stem cell graft affects 
the clinical outcome of allogeneic stem cell transplantation 

 

We have observed that the viability of WBCs in frozen-thawed samples, measured by 

7AAD/CD45, has a much wider spread than the viability of the non-cryopreserved graft 

observed at the time of arrival. We speculated that the thawed vial could be used as a “stress 

test” for the graft and give a better indication of its quality than viability measured on fresh 

cells after transport.  

Graft quality and effect on clinical outcome 

In this study the median viability of the frozen-thawed sample was 64%. We set this median 

as a cutoff and divided the patients into two groups, those with inferior graft quality (viability 

<64%) and those with better quality (viability>64%), enabling us to analyze the impact of 

graft quality on clinical outcome.  

We found that acute GVHD of any grade was more prevalent in patients receiving PBSC 

grafts of low quality than those of better quality (72% vs. 57%, p=0.02; aGVHD Grade 0 

[n=52], Grade I [n=31], Grade II [n=49], Grades III-IV [n=12]). Transplant related mortality 

(TRM) was also significantly higher in patients receiving grafts of inferior quality (22% vs. 

8%, p=0.03). The graft quality did not significantly affect the incidence of OS or relapse. 

Figure 11. 

There was no difference in engraftment measured as numbers of platelets (PLT)>50 × 10
9
/L 

and neutrophil concentration (ANC) >0.5 × 10
9
/L in peripheral blood. Similarly, there was no 

difference in the number of graft rejections  between patients receiving grafts of inferior or 

better graft quality, n=4 (5.3%) and n=2 (2.9%) respectively (p=0.68). 

In our study, both acute GVHD and TRM were correlated with inferior graft quality, and no 

difference was observed in engraftment time or OS (Figure 11). Our data suggest that 

engraftment and OS, clinical variables that are often used to assess graft quality, may not be 

of adequate sensitivity to be the sole factors used for quality assessment of grafts. 

We found a correlation between acute GVHD and graft quality measured as viability <64% 

on frozen-thawed sample. Lazarus et al (261) did not find any association between the time in 

transit and acute or chronic GVHD. These conflicting results might be due to that assessment 

of graft quality in our study was more a test of general quality of the cells rather than the 

impact on GVHD by a single variable (transport time). 
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Figure 11: The effect of graft quality on clinical outcome after HSCT. The cumulative incidence 

for a specific outcome variable is plotted as a function of patients receiving PBSCs with inferior 

(viability <64% in the frozen-thawed sample) or better (viability >64% in the frozen-thawed 

sample) graft quality. Outcome variables shown are the cumulative incidence of  (A) acute graft 

versus host disease (acute GVHD); (B) transplant related mortality (TRM); (C) overall survival 

(OS) and (D) relapse. 

The dose of CD34+ cells and total nucleated cells did not affect clinical outcome in this 

study, nor did the CD3+, CD4+, or CD19+ cell dose. However, a higher natural killer (NK) 

cell dose was associated with less CMV infection (p=0.03 in the multivariate analysis). 

There is a known association between NK-cell biology and CMV infection (reviewed in 

Della Chiesa et al (9)). Studies have shown a protective role of certain NK-cell 

subpopulations against CMV reactivation and infection (10, 69). Others have shown a clear 

effect in the other direction, of CMV reactivation modulating the NK-cell repertoire in 

healthy individuals and after HSCT (10, 262). Studies have shown an impact of the graft 

composition on different clinical outcomes (263-265) but to our knowledge no studies have 

shown a correlation between a protective effect against CMV and the NK-cell dose in the 

graft. 
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Factors affecting graft quality 

In our study the PBSC grafts with inferior quality (<64% viability of the frozen-thawed 

sample) had significantly higher WBC and PLT concentrations compared to grafts with better 

quality (viability >64%),( Figure 12). The CD34+ concentration was higher in the inferior 

quality grafts (median  2055 ×10
6
/L vs. 1590 ×10

6
/L,  respectively; p<0.001) as was the 

concentration of CD3+ cells  (median, 74.8 ×10
9
/L vs. 64.3 ×10

9
/L; p=0.05).The total number 

of nucleated cells (TNC; p=0.04) and number of CD34+ cells (p=0.03) per kilogram recipient 

bodyweight were significantly higher in grafts with inferior quality compared to those with 

better quality. 

Figure 12: Cellular contents and subsets in grafts with inferior quality (viability <64% in the 

frozen-thawed vial) and better quality (viability > 64%). *p=0.05, **p=0.01, ***p < 0.001.  

 

Factors influencing graft qualities during liquid storage and transportation have been studied 

previously (112-117, 134, 261, 266). The picture is complex and multi-factorial. Temperature 

and duration of storage and transport are known to affect recovery of CD34+ stem cells. The 

optimum temperature for PBSC storage and transport is 2-8 °C according to Antonenas et al 

(112) and Jansen et al (113). Additionally, Jansen and colleagues showed that the WBC 

concentration affects graft CD34+ cell viability in a time and temperature-dependent manner. 

In scientific paper III we confirmed the influence of time from collection to transplantation on 

graft quality. The median viability in grafts infused the day after collection was 67% 

compared to 60% for graft transplanted 2 days after collection (p=0.004). The time from 
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collection to transplant can only be influenced to a certain extent since transit is a necessity 

for unrelated donor HSCT. Hence, other factors influencing graft quality need to be 

optimized as well. 

In our study there was no significant difference in the PBSC graft temperature on arrival 

between those grafts with low (<64% viability in frozen-thawed sample) and better quality 

(>64% viability). However, in our study, temperature was a single-moment measurement at 

the time of arrival and does not reflect the total transit–storage duration. It is well established 

that storage and transit temperature affects CD34+ cell viability (112, 113, 117). 

Furthermore, temperature during storage and transit can be a risk factor for graft rejection 

(118). 

Many studies assessing cellular viability are performed using WBC concentrations far below 

the cell concentrations we see in PBSC of today (112, 113, 117).  In our study the WBC 

concentration ranged from 78-659 ×10
9
/L with a mean of 239 ×10

9
/L.  When requesting 

PBSCs from unrelated donors at other centers, we specifically request that the cell graft is to 

be diluted with donor plasma if the WBC count is higher than 300 ×10
9
/L. 

Applying a WBC cutoff of 300 × 10
9
/L in revealed that grafts with higher WBC 

concentrations (n=27) had significantly lower viability in frozen-thawed samples than grafts 

with a WBC concentration of less than 300 ×10
9
/L (n=117; median, 54% vs. 66%, p<0.001). 

Since 27 grafts arrive at our center during the study period with WBC concentration >300 

×10
9
/L this request is not always met. In light of these findings we have altered our routine to 

request addition of donor plasma in all PBSC grafts to be transported, reducing the need for 

cell enumerations at the time of transit. It is also now possible, in some aphaeresis devises, to 

add plasma to the collection bag during the aphaeresis procedure which is helpful in countries 

prohibiting the addition of plasma using sterile connectors outside clean room facilities.  

 

The viability analysis 

In this study, the median viability of fresh PBSC was 97% (range, 82%-100%) while the 

median viability on frozen-thawed samples was 64% (range, 24%-96%). No clear correlation 

could be found between the viability of WBCs using 7AAD/CD45 on freshly arrived PBSC 

grafts compared to frozen-thawed vials (Figure 13).  There was no correlation between the 

viability of frozen-thawed cells and the percentage of MNCs in the arriving graft, thus 

excluding loss of granulocytes to explain the differences. 
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Figure 13: Viability of fresh and frozen/thawed samples. No clear correlation could be found 

between the viability of WBCs using 7AAD/CD45 on freshly arrived PBSC grafts compared to 

frozen-thawed vials. 

 

It can be speculated that graft cells in early apoptosis upon time of transport arrival may be 

pushed into cell death by the freezing-thawing process becoming positive in 7AAD staining. 

However, this approach relies on a cryopreservation method and the extra processing step 

may induce additional variation and is thus not suitable as a routine method. The need for 

additional analysis has been identified by others (134, 266-268) in addition to the in vitro 

markers used today (CD34+ recovery, cell viability and CFUs).  To distinguish early 

apoptosis, staining for apoptosis using a marker such as annexin V would be useful (267, 269, 

270).  It has been clearly shown in vitro that the use of, annexin V for example, as a marker 

for apoptotic cell death is a good complement to markers for cell death. 
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4.3 GRANULOCYTE TRANSFUSIONS IN ALLOGENEIC HSCT 

 

4.3.1 Scientific paper IV:   Granulocyte transfusion against mucositis and 
infectious complications after allogeneic hematopoietic stem cell 
transplantation 

   

In total, 421 granulocyte transfusions (GCX) were given to 85 patients, with a median of 4 

(range 1-33) granulocyte units transfused per patient. The median number of days between 

HSCT and GCX was 9 (range 0-240). Most transfusions were given daily. Forty-one (48%) 

patients received GCX from donors stimulated with steroids only (S-GCX) while 44 (52%) 

received GCX from donors pre-treated with steroids and G-CSF (GCSF-GCX).  

The patient groups (S-GCX/GCSF-GCX and mucositis/infection) did not differ significantly 

with respect to patient characteristics. 

The cell doses were on average 5 fold higher in GCSF-GCX products than in S-GCX 

products (median 53 × 10
9
 vs. 10 × 10

9
 leukocytes, respectively, p <0.001). The increment of 

leukocyte and absolute neutrophil counts (ANC) were significantly larger in patients treated 

with GCSF-GCX products, Figure 14. 

 

Figure 14: Leukocyte counts (A) and absolute neutrophil counts (B) in peripheral blood of 

GCX-treated patients. Whiskers indicate 95% confidence interval (red: GCSF-GCX ; blue: S-

GCX). *p<0.05, **p≤0.01, ***p < 0.001 

 

The overall response rate (including both partial and complete responses) were similar in 

patients treated with either GCSF-GCX or S-GCX (83% and 82%, respectively) but there 

were significantly more complete responses in the GCSF-GCX group compared to the S-

GCX group (63 vs. 30%, p <0.01), Figure 15. 
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Figure 15: Response to granulocyte transfusion. The percentage of complete, partial and no 

responses to treatment for all patients, for patients treated due to mucositis and for patients 

treated due to infection.   

In patients with mucositis a similar overall response rate in the GCSF-GCX and S-GCX-

treated patients (86% and 89%, respectively) was observed.  However, the rate of complete 

responses was fivefold higher in the GCSF-GCX group (57 vs. 11%, p = 0.04). A trend 

towards more complete responses was also observed when analyzing patients treated for 

infection (68 vs. 38%, respectively, p = 0.07). Of the three patients with local bacterial 

infections treated with S-GCX, two had a partial response and one showed a complete 

response. All six patients receiving GCSF-GCX for local bacterial infections showed 

complete treatment responses. 

It is debated whether the increment of neutrophils in peripheral blood or clinical outcome, i.e. 

survival, infection control and adverse events, is correlated to the number of granulocytes in 

the product. Some studies have shown correlation between dose, increment and effect (197, 

198). The tissue infiltration of transfused granulocytes at the site of infection may precede a 

rise in peripheral blood count and therefore the effect of GCX may not be reflected by 

increment (191, 199) . A recommended dose of granulocytes at 3×10
8
/kg has been suggested 

(199).  In the Council of Europe´s current (2015) guidelines the recommendation is  
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1.5-3.0 ×10
8
 /kg (271). In the UK a granulocyte aphaeresis product should contain >1 × 10

10
 

granulocytes/unit and for whole blood derived granulocytes from 10 buffy coats >5 × 10
9
 

granulocytes/ unit (adults: 1-2 units /day, children 10-20 mL/kg) (Red Book chapt. 7: 

www.transfusionguidelines.org ). This transfusion dose have also been confirmed in the 

Cochrane review from 2015 by Estcourt et al (194) looking at prophylactic GCX and in the 

Cochrane report from 2005 by Stanworth et al (193) reviewing GCX for treatment of 

infections. 

In our study the median granulocyte transfusion dose of was 5.3 × 10
10

 for GCSF-GCX and 

1× 10
10

 for S-GCX. Based on the standards mentioned above, the doses in many of the S-

GCX patients were sub-optimal. When looking at response to treatment, the number of non-

responders was the same in S-GCX and GCSF-GCX groups. However, the number of 

complete responders was higher in the GCSF-GCX group and this may be a result of the 

differences in cell dose. 

Adverse events (AE) associated with GCX treatments were experienced by 36 patients (9% 

of granulocyte transfusions). More AE were reported in patients receiving GCSF-GCX 

(n=18, 14%) than those receiving S-GCX (n=18, 6%; p=0.02), see Table 7. Twenty-seven 

were mild to moderate reactions, defined as grade 1-2, with symptoms such as fever, chills, 

head ache, chest pain, rash or emesis. All symptoms in grade 1-2 AEs were transient and well 

manageable with symptomatic treatment. Three patients experienced grade 3 AE, one 

paroxysmal supra-ventricular tachycardia and two patients developed respiratory distress. Six 

patients developed grade 4-5, AEs with life threatening or lethal respiratory distress requiring 

oxygen treatment and, in some cases, acute intubation. All the severe pulmonary reactions 

were seen in patients treated with GCX due to severe systemic infection. Patients with local 

(non-pulmonary) infections had no reported severe AE. 

Table 7: Adverse Events  All patients 

n=85 

S-GCX 

n=41 

GCSF-GCX 

n=44   

     Total granulocyte units transfused n=421 n=287 n=130 

 

     All adverse events 36 (9%) 18 (6%) 18 (14%) p=0.02 

     Severe adverse events; Grade 4-5 6 3 (1.0%) 3 (2.3%) Ns 

     
Table 7: Reported adverse events (AE) in patients receiving granulocyte transfusions from 

donors stimulated with steroids only (S-GCX) or steroids and G-CSF (GCSF-GCX). Patients 

receiving GCSF-GCX had significantly more AE (p=0.02). The frequency of reported severe AE 

(grade 4-5) did not differ between the groups.  
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Only one out of six patients with severe pulmonary AEs did not have respiratory symptoms 

prior to GCX. Therefore we investigated the circumstances of previous pulmonary symptoms 

and pulmonary AEs, with regard to findings on pulmonary radiologic examinations before 

and after GCX in the entire patient cohort as seen in Figure 16. 

 

Figure 16: Pulmonary findings in patients prior to and after GCX treatment. 

The majority of patients did not experience clinical pulmonary symptoms and had no adverse 

pulmonary x-ray findings. Six out of 18 patients with pulmonary infiltrates prior to GCX 

improved their radiological lung status. Four of these six patients had fully resolved 

pathological findings. Twelve of the patients had remaining pulmonary infiltrates after GCX 

treatment. Fifty-one patients did not have any pulmonary x-ray findings prior to GCX. Seven 

of these developed such during treatment, three had minor findings and four had infiltrates. 

Pre-existing lung infiltrates have been linked to pulmonary AEs in GCX recipients (208). As 

a consequence, pulmonary infiltrates are a relative contra-indication to GCX at our center. In 

this study, a majority of patients that developed life-threatening or fatal pulmonary AEs had 

symptoms and pathological radiology findings prior to granulocyte transfusion. However, 

there were also patients that had lung infiltrates prior to GCX whose pulmonary symptoms 

improved after the treatment and one patient that developed a fatal pulmonary AE who lacked 

prior pulmonary infiltrates. This indicates that even though a pre-existing pulmonary 

inflammation is a risk factor for pulmonary AEs, this correlation is not absolute. Pulmonary 

infiltrates will remain as a relative contra-indication for GCX treatment at our center. 

The finding that severe pulmonary AEs were only seen in patients with an underlying 

systemic infection suggests that a previously existing inflammatory response predisposes to 
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severe pulmonary AEs after transfusion, as has been previously described for transfusion-

related lung injury (TRALI) (272, 273). The clinical presentation of pulmonary AEs in GCX 

treatment are similar to that in TRALI (273). In TRALI, a two-hit mechanistic hypothesis has 

been proposed. The “first hit” is constituted by an ongoing inflammatory response in the 

patient and the “second hit” is effected by the blood product in different manners (272, 273). 

Supporting evidence for the two hit hypothesis has been published, such as a pre-transfusion 

increase of serum cytokine in patients who developed TRALI (272). We speculate that 

similar mechanisms are involved in the pulmonary AEs after granulocyte transfusion. The 

first hit would be formed by a systemic or pulmonary inflammatory state in the patient and 

the second hit would depend on the effector functions of the transfused granulocytes. An 

inflammatory response in the lung tissue would recruit the transfused granulocytes while a 

systemic inflammation could induce activation of the transfused neutrophils in the blood 

stream, causing them to adhere and extravasate in the first capillary bed encountered (i.e. the 

lungs after central venous infusion). This may partly explain why only patients with systemic 

infection were affected by severe pulmonary AEs in this cohort.  

Next we analyzed the impact of granulocyte transfusions on clinical outcome.  

The overall one year survival (OS) was 47% in the entire patient cohort. OS was significantly 

better for patients treated with GCSF-GCX than those treated with S-GCX (59% vs. 34%, 

p<0.01), Table 8 and Figure 17. OS was better for patients treated for mucositis than those 

treated for infection (62% vs- 40%. p = 0.02). There was no difference in one-year OS 

between patients treated with either GCSF-GCX or S-GCX for infection but in patients 

treated for mucositis there was a trend towards a higher OS in those receiving GCSF-GCX 

(p= 0.08). There was no significant difference in OS between patients treated with GCX due 

to mucositis and the matched controls receiving conventional mucositis treatment.   

Table 8 All patients 

n=85 

S-GCX 

n=41 

GCSF-GCX 

n=44   

    

  

  

acute GVHD grade II-IV 38 (45%) 20 (49%) 18 (41%) Ns  

    

  

  

Acute GVHD grade III-IV 12 (15%) 8 (20%) 4 (9%) Ns  

    

  

  

Rejection or graft failure 7 (8%) 3 (7%) 4 (9%) Ns  

          

Overall survival (OS) 47% 34% 59% p<0.001 

     
Table 8: Clinical outcome in patients receiving granulocyte transfusions from donors stimulated 

with steroids only (S-GCX) or steroids and G-CSF (GCSF-GCX). Patients who received GCSF-

GCX had significantly better overall survival (OS). 
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Figure 17: Overall survival (OS) up to 550 days after GCX treatment. S-GCX is displayed as 

“Steroids only” while the “GCSF-GCX” group as “Steroids & G-CSF”. Figure e) displays 

mucositis patients (“patients”) who have received GCX treatment and matched control patients 

(“controls”) who have not received GCX. 
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The significantly better OS in patients treated for mucositis compared to patients treated for 

infection is expected, as patients with treatment-refractory infection have a poor prognosis, 

while severe mucositis has only a moderately increased mortality risk (274, 275).  

Patients treated with GCSF-GCX had a higher OS compared to patients treated with S-GCX. 

This is encouraging and might be partly due to the increased rate of complete responses when 

using GCSF-GCX compared to S-GCX. However, patients that received GCSF-GCX were 

all treated after 2005 when G-CSF was added to the granulocyte donor pre-treatment 

protocol. OS in HSCT patients has increased over time at our center (39) and, since this is a 

retrospective analysis that included patients from 1998 to 2014, changes in supportive care, 

treatments and infectious prophylaxis might constitute confounding factors.  

The cumulative percentage of acute GVHD grades II-IV has been 30-37% in all patients who 

underwent allogeneic HSCT at our center during 2001-2009 (39).  We did not see any 

increased rate of acute GVHD grades II-IV in patients receiving GCX treatment (p=0.23). 

The rate of rejection (9%) in this study was slightly higher but not significantly increased 

(p=0,9), than what is usually seen at our center (5-6% in the last decade; (241)). There was no 

significant difference in acute GVHD or rejection/graft failure between patients receiving S-

GCX or GCSF-GCX, Table 8. 

 

We studied the effects of GCX treatment using granulocytes from donors pretreated with 

steroids only (S-GCX) or with steroids and G-CSF (GCSF-GCX) in patients with mucositis 

or infection.  We found no evidence that granulocyte transfusions negatively impact clinical 

outcome (OS, acute GVHD or rejection/GF). The overall response rate to GCX was similar 

between these groups but there were more complete responders in the GCSF-GCX group.  

Patients with mucositis seemed to benefit more from GCX treatment, especially from GCSF-

GCX, and although the total numbers of AEs were not significantly different to that in 

patients receiving GCX for infection, there were no reported severe AEs in the mucositis 

group. In patients with severe infection the picture was not as clear, although some patients 

did respond to treatment. In addition, the risk for severe pulmonary AE, in patients with 

infections complicated the decision to use granulocytes to treate these patients.  

In a Cochrane review by Stanworth et al (193) from 2005 (reprinted in 2010), 8 randomized 

controlled trails including 310 patients with neutropenia treated with GCX for infection were 

analyzed. The reviewers concluded that the evidence for GCX treatment in these patients was 

inconclusive.  

Recently, results from a multicenter randomized controlled trail (RING study) were published 

by Price TH et al (209). In this study, there was no overall effect of granulocyte transfusion 

on the primary outcome (survival after 42 days and infection clearance). However, the 

enrollment in this study only reached half of what was planned, thus, as the investigators 

concluded, the study lacks sufficient power to detect clinical effect. In a post-hoc analysis 
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they investigated the role of cell dose and found that patients receiving >6 x10
8
 neutrophils 

/kg did significantly better than patients receiving lower doses (<0.6 x10
8
/kg) or controls.    

Thus, the data supporting beneficial effect of GCX in patients suffering from severe infection 

is still inconclusive. In our study, GCX had no significant detrimental effect on clinical 

outcomes (OS, GVHD and GF/rejection). However, severe AEs were only found in patients 

with severe infection which has to be considered when deciding to use GCX in these patients. 
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5 CONCLUDING REMARKS AND FUTURE PROSPECTS 

 

Many factors influence the outcome after allogeneic stem cell transplantation. The main 

objective of this thesis was to reach better understanding of the impact of blood group 

differences, transfusion related complications and graft quality on clinical outcome. This 

thesis work contributes with pieces to the gigantic HSCT “gig saw puzzle” of answers, 

questions, data, confounding- and interacting factors. 

Scientific paper I & II: 

In scientific paper I we found that in leukemia patients undergoing allogeneic HSCT with full 

myeloablative conditioning there is an increased risk for graft failure in major ABO 

mismatched donor-recipient pairs, especially in combination with HLA-mismatches. 

In scientific paper II we found no impact of ABO donor-recipient mismatch in patients 

receiving reduced intensity conditioning. Other factors of greater impact may override the 

effect of ABO donor-recipient differences thus obfuscating its influence and complicating 

analysis and interpretation of results. 

Patients undergoing ABO-non identical HSCT require more red blood cell and platelet 

transfusions after HSCT. 

The presence of ABO antibodies, of donor- or recipient type, not normally found post-HSCT 

was associated with inferior survival and higher incidence of transplant related mortality. The 

immunological mechanisms behind this are not fully known, why further studies are needed. 

The ABO mismatch in itself did not affect clinical outcome, thus the ABO mismatch do not 

explain this finding. 

 Scientific paper III:  

The data from scientific paper III shows that inferior graft quality, measured as viability on 

frozen-thawed samples from PBSC grafts, was associated with increased incidence of acute 

GVHD and TRM. Our study suggests that the clinical follow-up after cell collection and 

processing as measurement of graft quality needs to be more elaborate and include more 

variables such as GVHD and TRM. To solely rely on engraftment and survival data is not 

sufficient as clinical variables for assessment of graft quality.  

Further studies are needed to optimize conditions for graft storage and handling. There is also 

a need for better analyses to assess graft quality in routine transplantation care and for use in 

validation of cell handling and storage conditions. 

At our center Annexin V has been set up for evaluation of apoptosis in grafts. We plan to do 

follow-up of these data. Preliminary results look promising and were presented at ISBT in 

London 2015 as an abstract/poster (276). 
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Scientific paper IV: 

In scientific paper IV we could show that neutropenic patients with mucositis seemed to 

benefit from granulocyte transfusions. For neutropenic patients with infections the effects of 

treatment were not as clear. In addition, the risk for severe pulmonary adverse events 

complicates the decision to use GCX treatment in patients with systemic infections. Further 

studies of GCX treatment of patients with severe infections during neutropenia are needed. 

The granulocyte cell dose needed to achieve effect of GCX treatment is still not fully 

elucidated and needs further investigation.  

We plan to test a different production method using buffy coat derived granulocytes from 

whole blood donations (195, 196, 277). By this we hope to achieve a faster delivery of 

granulocyte products to severely ill patients and sparing G-CSF and steroid treatment of 

healthy community donors. The two main issues, and thus the study endpoints, with these 

buffy coat derived granulocyte products are cell dose (and yield) and granulocyte function. 

We plan to start pilot production this autumn to establish protocol.    
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6 POPULÄRVETENSKAPLIG SAMMANFATTNING PÅ 
SVENSKA 

 

Allogen blodstamcellstransplantation är en livräddande behandling för patienter med maligna 

blodsjukdomar till exempel akuta och kroniska leukemier, medfödda 

ämnesomsättningssjukdomar eller ärftliga immundefekter.  

När en patient behöver transplanteras söker man efter en lämplig donator av blodstamceller. 

Donatorn behöver ha samma vävnadstyp som patienten, vara HLA-lik. En tredjedel av alla 

patienter har en HLA-lik, lämplig donator i familjen, vanligen ett syskon. För de resterande 

två tredjedelarna av patienterna söker man efter en donator i de internationella 

benmärgsregistren. Att hitta en donator kan vara svårt eftersom det finns en stor variation i 

HLA mellan individer. Donatorer kan därför finnas långt bort, även på andra kontinenter, 

vilket ställer stora krav på logistik och transporter. 

När en lämplig donator hittats och godkänts efter medicinsk undersökning kan 

förbehandlingen av patienten med cytostatika och/eller strålning påbörjas. Förbehandlingen 

kallas konditionering och syftar till att slå ut eventuellt kvarvarande cancerceller samt slå ut 

patientens egen benmärg och därmed bereda plats åt den nya benmärgen. Konventionell 

konditionering slår helt ut patientens benmärg helt men det finns även mindre hårda 

konditioneringsprotokoll, reducerad konditionering, som ibland lämnar kvar en del av 

patientens egen benmärg.  

Blodstamceller, eller graft, kan doneras på olika sätt: benmärg, perifera blodstamceller eller 

navelsträngsblod. Benmärg skördas med sprutor ur donatorns höftbenskammar under narkos. 

Vid skörd av perifera blodstamceller ges ett tillväxthormon till donatorn i fem dagar vilket får 

blodstamceller att vandra från benmärgen ut i blodet. Blodstamcellerna i blodet kan sedan 

skördas med så kallad aferesteknik. Navelsträngsblod från navelsträng och moderkaka 

doneras av frivilliga mammor efter förlossningen och förvaras fryst i navelsträngsblodbanker.  

Vilket konditioneringsprotokoll och vilken graft sort man väljer beror på patientens sjukdom 

och tillstånd.    

När patienten genomgått sin konditionering skördas blodstamcellerna (graftet) på den plats 

där donatorn är och transporteras till patientens sjukhus. Graftets innehåll och kvalitet 

analyseras och ibland behöver graftet behandlas för att minska risken för att patienten ska få 

en negativ reaktion. Därefter ges graftet till patienten som en transfusion. Patienten har efter 

konditioneringen nästan inga vita blodkroppar i blodet och är extremt känslig för infektioner. 

Det tar mellan två och fyra veckor från att graftet transfunderats till att de donerade 

blodstamcellerna börjat bilda nya blodkroppar.   
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Transplantation med allogena blodstamceller kan utföras även om patienten och donatorn har 

olika blodgrupper, exempelvis om patienten är blodgrupp A och donatorn O. Hur 

blodgruppsskillnader påverkar patienten vid transplantationen är dock inte helt klarlagt.  

 

I den här avhandlingen har vi studerat hur blodgruppsskillnader mellan patient och donator 

samt antikroppar mot röda blodkroppar påverkar transplantationen. Vidare har vi studerat hur 

kvaliteten på graftet påverkar patienten. I det sista arbetet har vi studerat hur det går för 

patienter som fått transfusioner med vita blodkroppar (granulocyter) efter transplantationen 

på grund av svåra infektioner och svår mucosit (slemhinneinflammation i munnen).  

I arbete I, som är en retrospektiv (tillbakablickande) studie, ingick 224 patienter som 

behandlats med transplantation av allogena blodstamceller på grund av leukemi mellan 1997 

och 2003. Vi tittade på hur skillnader i blodgrupp mellan donator och patient påverkade 

risken för så kallad graft failure, det vill säga att graftet inte fungerar i patienten efter 

transplantationen. Sex av dessa patienter hade graft failure. Vi fann att risken för graft failure 

var högre hos patienter med olika blodgrupper och hos patienter med HLA-missmatcher 

(olikheter i HLA).      

Arbete II är också en retrospektiv studie men här studerade vi 310 patienter som 

förbehandlades med så kallad reduced intensity conditioning mellan åren 1998 och 2011 med 

avseende på hur blodgruppsskillnader och antikroppar mot röda blodkroppar påverkat 

transplantationen. I den här studien kunde vi inte påvisa att blodgruppsskillnader påverkande 

transplantationen. Patienter med annan blodgrupp än donatorn behövde dock fler 

blodtransfusioner än de med lika blodgrupp. Vidare såg vi att patienter som drabbades av 

blodgruppsspecifika antikroppskomplikationer hade sämre överlevnad. 

Resultaten av dessa två studier visar på svårigheten i bedömningen av vilken roll 

blodgruppsskillnader spelar vid transplantation med blodstamceller. Sannolikt döljer andra, 

mer betydelsefulla, faktorer en eventuell effekt av skillnader i blodgrupper.  

I arbete III har vi studerat hur kvaliteten på graftet (blodstamcellerna) påverkar patienten. Vi 

har mätt graftkvalitet genom att analysera viabilitet på ett fryst/tinat prov från graftet. 

Viabilitet mäter procenthalten levande celler i ett prov. Att mäta viabilitet direkt på graftet är 

inte tillräkligt noggrant, om man fryser och tinar provet innan analys så blir metoden 

känsligare. Det visade sig att gruppen patienter som transplanterades med graft av sämre 

kvalitet (det vill säga hade lägre viabilitet) fick mer komplikationer med akut transplantat mot 

värd reaktion (graft versus host disaese, GVHD) och avled i högre grad i så kallad 

transplantationsrelaterad mortalitet. Vidare noterade vi att en bidragande orsak till dålig 

graftkvalitet var höga cellkoncentrationer.  

Denna studie visade att graftkvalitet påverkar hur det går för patienten efter transplantationen. 

Det är därför av stor vikt att förvaring och transport av graft sker under optimala 

förhållanden. 
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Arbete IV. Vissa patienter som transplanterats med blodstamceller kan under första tiden 

efter transplantationen drabbas av svåra infektioner och svår så kallad mucosit 

(slemhinneinflammation i munnen). Dessa patienter kan under en tid efter transplantationen 

behöva transfunderas med vita blodkroppar (granulocyter) från friska blodgivare. Vid 

granulocytgivning förbehandlas blodgivaren antingen med kortison enbart eller med kortison 

och tillväxthormon i kombination. I denna studie ingick 85 patienter. Patienterna svarade 

totalt sett på behandling i lika hög grad oavsett vilken förbehandling blodgivaren fått. Dock 

var det fler som blev helt återställda av de patienter som fått granulocyter där blodgivaren 

förbehandlats med en kombination av kortison och tillväxthormon. Patienter som behandlats 

med granulocyttransfusioner på grund av mucosit hade god effekt av behandlingen. För 

patienter som behandlades på grund av svår infektion är bilden inte lika tydlig, vissa har 

effekt av granulocyttransfusioner och andra inte. Totalt erfor 36 patienter någon biverkan vid 

en granulocyttransfusion. Det var ingen skillnad i biverkningsfrekvens beroende på vilken 

förbehandling blodgivaren fått. Av dessa 36 biverkningar var 6 allvarliga lungbiverkningar. 

Samtliga svåra biverkningar var hos patienter som behandlats på grund av svår infektion 

vilket ytterligare försvårar bedömningen om granulocyttransfusioner bör ges till en patient 

med svår infektion. 
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