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Abstract

Evaluating survival percentiles is a possible approach for the analysis of time-to-event outcomes that

moves the focus from risk to time, as the proportion of events is fixed and the time by which that

proportion is achieved is investigated. The development of statistical methods for conditional censored

quantiles has opened up the possibility to use this approach in epidemiological studies. The aim of

this doctoral thesis was to investigate the advantages of this method in epidemiology, by evaluating

survival percentiles in observational studies on lifestyle and mortality, and by extending and further

developing the statistical tools for the estimation of conditional survival percentiles.

The percentile approach was used in a large prospective cohort of about 80.000 middle-aged and

elderly Swedish men and women, with 15 years of follow-up during which 20% of the study pop-

ulation died. The impact of modifiable lifestyle factors such as fruit and vegetables consumption

(Study I), sleep duration and physical activity (Study II), and processed and non-processed red meat

consumption (Study III) on time to death were evaluated. Statistical modeling of conditional survival

percentiles was conducted using Laplace regression. The epidemiological measure of exposure-outcome

association was defined in terms of percentile difference (PD). Quantitative exposures were flexibly

modeled using splines to investigate the dose-response shape.

Low fruit and vegetables consumption (Study I) was found to be associated with progressively

shorter survival up to 3 years (PD: -37 months; 95% CI: -58, -16) when comparing those who con-

sumed 5 servings/day and those who never consumed fruit and vegetables. Long sleep duration, over 8

hours/day, (Study II) was associated with shorter survival (PD = -20 months; 95% CI: -30, -11) among

those with low physical activity, comparing with those with 7 hours of sleeping per day. In Study III,

compared with no consumption, higher intake of processed red meat (200 g/d) was associated with

shorter survival (PD: -10 months; 95% CI: -18, -3). High and moderate intakes of non-processed red

meat were associated with shorter survival only when accompanied by a high intake of processed red

meat.

Study IV and Study V introduced novel developments and extensions of the percentile approach.

Study IV presented the meaning and evaluation of survival percentiles in those situations where the

time variable of interest is attained age at the event rather than follow-up time. This change in the

time-scale has important consequences on the definition and interpretation of the survival curve and

related percentiles. The study described how to use multivariable Laplace regression models to esti-

mate percentiles of age at death conditioning on age at entry into the study, exposures, and potential

confounders. Study V focused on interaction analysis. Interaction can be evaluated on the additive or

multiplicative scale, but its assessment in prospective studies is commonly limited to the multiplica-

tive scenario. In this study the advantages of using a percentile approach in interaction analysis were

presented. A measure of interaction in terms of time was introduced and how Laplace regression can

be used to estimate a measure of interaction on the additive scale was described.

Evaluating survival percentiles provides an intuitive and flexible approach for the analysis of time-

to-event outcomes. With this method, results from prospective studies can be presented in terms of

differences in survival time, facilitating both interpretation and communication of scientific findings.

The introduction of a statistical technique to estimate conditional survival percentiles has substan-

tially enriched its potentialities and eased its application in epidemiological research. The percentile

approach should be considered as a possible complement to classical approaches and its use should be

widespread.
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1. Introduction

Epidemiology, by evaluating the determinants and distribution of the diseases at the

population level, plays a crucial role among the public health sciences. In the last

decades, epidemiological studies have provided a substantial contribution in identi-

fying modifiable lifestyle and behavioral risk factors for non-communicable diseases,

which are responsible for a large fraction of deaths worldwide. Results from epidemi-

ological studies have been used to plan interventions, to build policy decisions, and to

make public health recommendations.

To assess the public health impact of modifiable risk factors, is critical to under-

stand how these affect the time involved in developing the disease of interest and the

overall survival of the population. To take into account the time dimension of the

disease, epidemiological studies are commonly designed in a prospective setting. The

prospective cohort study, in particular, assures that all possible risk factors are as-

sessed before the subjects enrolled into the study develop the disease of interest, and

it is designed to investigate the risk of the event of interest and the time until this is

observed.

The statistical evaluation of time-to-event outcomes, due to peculiar characteristics,

can not be carried out with classical statistical methods. The most popular approach

to summarize time-to-event data is to display hazard ratios of the event according

to levels of the risk factor of interest calculated over an observational period. This

method, while providing considerable advantages, is also subject to some recognized

limitations, which often prevent results to be translated into meaningful public health

messages. Over the recent years, different alternative approaches to complement cur-

rent methodologies, such as the evaluation of survival percentiles, have been proposed,

but the hazard ratio solidly remains the most common tool adopted to summarize

results from prospective cohort studies. One explanation for the popularity of hazard

ratios in epidemiology is certainly the need of adjusting for confounders, for which

statistical models are required. Although alternative measures to summarize time-to-

event data have been proposed, their introduction has not always been complemented

by the development of regression methods for their estimation.

This thesis aims to shorten this gap in the epidemiological literature, by taking

advantage of recent methodological developments for the analysis of time-to-event out-

comes to provide a regression-based framework for the estimation of conditional survival

percentiles in epidemiological studies.
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2. Background

2.1 Lifestyle and health

Around 38 million deaths per year can be attributed to noncommunicable diseases,

also known as chronic diseases (World Health Organization, 2009). Modifiable lifestyle

factors such as dietary factors, tobacco use, harmful use of alcohol, and physical inac-

tivity, are recognized risk factors for the development of major chronic diseases such as

cardiovascular diseases, cancer, and diabetes. A recent report from the Global Burden

of Diseases has showed (Figure 2.1) that most of the worldwide number of deaths and

of life-years lost can be attributed to lifestyle and behavioral modifiable risk factors,

especially in high-income countries (Global Burden of Disease, 2015). In this scenario

it is evident the prominent role that prevention and primary care policy could play.

Changes in the lifestyle, especially in terms of improving diet, increasing levels of phys-

ical activity, and smoking cessation, have been recognized as a primary tool to reduce

the worldwide burden of deaths and diseases, and different public health efforts have

been made to promote adopting a healthy lifestyle (World Health Organization, 2004).

Figure 2.1: Global disability-adjusted life-years (DALYs) attributed to level 2 risk factors in
2013 for both sexes combined. Reproduced with permission from The Lancet, 2015.
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Epidemiology, by studying the patterns and causes of diseases in different popu-

lations, has played a leading role in understanding and quantifying the global effects

of diet and unhealthy behaviors, and a large number of observational studies have

contributed in understanding the importance of diet and healthy lifestyle behaviors in

preventing diseases. Epidemiological studies commonly evaluate the association be-

tween one exposure of interest, or the interaction between two or more exposures, and

the development of a health-related outcome, presenting results in terms of relative

changes (e.g. risk/rate).

To assess the health benefits of nutritional and behavioral factors, and to promote

lifestyle recommendations, an essential information that needs to be investigated is

how these factors influence the overall survival experience of the population (Michels,

2003; Rothman et al., 2008). However, despite the recognized relevance of evaluating

the impact of risk factors on overall mortality, observational studies often prefer to

focus on assessing the incidence of a given disease, or mortality from a specific cause.

Although these studies certainly provide insightful information, these are not enough

to fully depict the health-effects of adhering to recommended lifestyle factors.

There are different behavioral and dietary factors that are known to be either pro-

tective or harmful for specific diseases, but whose association with mortality from

all-causes is not established. Remarkable examples of controversial risk factors are the

consumption of fruit and vegetables, the daily amount of sleeping hours, and the intake

of red meat.

2.1.1 Fruit and vegetables consumption

A diet low in fruit and vegetables (FV) has been associated with higher risk of devel-

oping major chronic diseases such as CVD (Bazzano et al., 2003; Dauchet et al., 2006)

and cancer (Boffetta et al., 2010), and current dietary guidelines recommend a daily

consumption of 5 or more servings of FV (World Health Organization, 2002). Never-

theless, the association between FV consumption and overall mortality has been only

investigated by few studies with inconsistent findings (Rissanen et al., 2003; Steffen

et al., 2003; Hung et al., 2004; Genkinger et al., 2004; Agudo et al., 2007), and most

of the current knowledge on the association between FV and overall mortality comes

from relatively small studies that examined the intake of total serum carotenoids as

a marker of FV (Waart et al., 2001; Ray et al., 2006; Lauretani et al., 2008; Shardell

et al., 2011; Nicklett et al., 2012).
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2.1.2 Sleep duration

Different studies have suggested that the association between sleep duration and mor-

tality is described by a U-shape. A daily sleep duration of 7 hours has been indicated

to provide the largest benefits, while both longer and shorter sleep duration are associ-

ated with the development of adverse health conditions (Kripke et al., 2002; Gangwisch

et al., 2008; Hublin et al., 2007; Cappuccio et al., 2010). While biological mechanisms to

explain the negative effects of short sleep duration have been theorized, some concerns

have been raised on the negative effects of long sleep duration and the underlying bio-

logical mechanisms (Knutson and Turek, 2006; Stamatakis and Punjabi, 2007). Among

possible factors that could confound or mediate the U-shaped association between sleep

duration and mortality, low physical activity was found to be strongly associated with

long sleep duration, and some authors suggested that long sleep may actually represent

an epiphenomenon of comorbidity with low physical activity (Stranges et al., 2008).

This hypothesis, however, has never been tested.

2.1.3 Red meat consumption

High red meat consumption has been associated with an increased risk of various

chronic diseases (Larsson et al., 2006; Sinha et al., 2009; Chan et al., 2011; Micha

et al., 2012; Kaluza et al., 2012; Pan et al., 2012) and higher mortality (Larsson and

Orsini, 2013). The total intake of red meat is commonly evaluated by dividing the ex-

posure into processed and non-processed (fresh) meat consumption, which might have

a different biological impact on health. While the unhealthy effects of processed meat

consumption are largely established (Marmot et al., 2007), the role of non-processed

meat is still unclear. Recent studies have suggested that fresh meat consumption might

be associated with higher mortality (Sinha et al., 2009; Pan et al., 2012; Rohrmann

et al., 2013), while other have reported no association (Takata et al., 2013; Larsson and

Orsini, 2013; Kappeler et al., 2013). No studies have evaluated the joint association of

processed and non-processed meat consumption with mortality from all-causes, which

would allow understanding the interrelationship of the two components.

4



An additional common limitation of observational studies evaluating all-cause mor-

tality is the tendency of presenting results only in relative terms. However, when the

probability of the outcome is 1 (certain events) a relevant information, if not the most

relevant, is the timing to the event, as the interest lies in understanding the extent by

which possible risk factors delay or anticipate the occurrence of the event. Few studies

have so far attempted to quantify the impact of lifestyle and behavioral factors on

health in terms of survival time. The next section will present the methodologies com-

monly adopted to analyze time-to-event outcomes and introduce possible alternatives

that allow to summarize research findings in terms of time.
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2.2 Statistical methods for time-to-event outcomes

A common study design adopted in epidemiology is the prospective cohort study, where

exposures are assessed at the beginning of the observational period (follow-up) and

participants are followed until they experience the event of interest (Rothman et al.,

2008).

When data are collected prospectively, researchers are interested in investigating

both the rate/probability of the event of interest over time, and the time until this

event occurs, conditioned on independent predictors. Survival analysis is the statistical

branch dealing with methods to evaluate time-to-event variables. Different peculiar

features make survival methods unique within the field of medical statistics. First,

as the name time-to-event suggests, there are two equally interesting quantities: the

event (commonly a binary variable D), and the time T to the development of the

event (commonly a continuous variable1). The second important property is that

the time variable T is always positive and commonly skewed, with large numbers

of events observed either at the beginning or at the end of follow-up. For this reason,

standard statistical procedures that assume normality of distributions, such as the

classical linear regression, are of limited use in survival analysis. Another distinctive

feature of survival data is that they commonly include individuals for whom the event

D is not observed during follow-up. In prospective cohort studies this is generally

caused by right-censoring, which occurs when individuals are included into the study

but have not experienced the event of interest at the end of the observational period.

Two informative quantitative tools to summarize and describe the distribution of

events over time are the survival function S(t), and the hazard function h(t),2 which

are depicted in Figure 2.2.

The hazard function represents the instantaneous failure rate and is defined as the

probability that the event occurs in a specific time interval, given that the subject has

survived to the beginning of the interval, and divided by the time interval:

h(t) = lim
∆→0

Pr(t+ ∆t>T>t|T>t)
∆t

(2.1)

The survival function is defined, at any time t, as the probability of surviving beyond

t :

S(t) = Pr(T>t) (2.2)

1Sometimes, for example when data are grouped into observations, T may be treated as a discrete
random variable.

2These two functions are linked by the mathematical relation S(t) = exp[−
∫ t

0
h(u)du].

6
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Figure 2.2: Survival and hazard curves in a study population during 16 years of follow-up.

The survival function is constrained between 1 and 0 and is a monotonic non-

increasing function of time. On the other hand, the hazard function does not represent

a probability and has no upper bounds. It is continuous and always non-negative, but

differently from the survival function is free to start at any value and to move in any

direction over time.

The hazard function, by providing a dynamic description of how the instantaneous

risk of failing varies, gives little emphasis on the time component, and is an useful tool

when one wants to estimate the rate of the event over time. The survival function,

which is a monotone non-increasing function of time, is an optimal tool to combine

information on the risk of the event, and the time by which this risk is achieved (An-

dersen et al., 2012). Statistical methods to investigate time-to-event outcomes have

been mainly developed as estimators of these two functions. In the following sub-

sections, the Kaplan-Meier estimator and the Cox regression, which are the two most

popular methods used in medical research to evaluate survival data, will be presented.3

3The introductory papers of these two methods are listed among the 100 most-cited papers of all
time and occupy the first two positions in the field of statistics (Van Noorden et al., 2014). Among the
other methods for time-to-event outcomes, noteworthy are the Nelson-Aalen estimator for the cumu-
lative hazard function (defined as H(t) =

∫ t

0
h(t)dt) (Nelson, 1972), and the parametric estimation of

the survival and hazard curves through means of accelerated-failure times models (AFT) (Wei, 1992).
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2.2.1 Kaplan-Meier estimator

Kaplan-Meier is a non-parametric method to estimate the survival curve S(t), also

known as the product limit estimate of S(t) (Kaplan and Meier, 1958). The estimator

is given by

Ŝ(t) =
∏
tj≤t

(
nj − dj
nj

)
(2.3)

where nj is the number of individuals at risk at time tj and dj is the number of failures

at time tj.

The Kaplan-Meier estimator is generally used to investigate and present the ob-

served survival experience of the entire population, or stratified by different sub-

populations. In the clinical trials literature Kaplan-Meier is presented as the primary

way to analyze time-to-event data (Friedman et al., 2010). In epidemiological studies,

however, results commonly need to be adjusted for a variety of possible confounders,

to understand the effects of independent risk factors on the survival experience of the

study population. Methods to calculate survival curves while adjusting for possible

confounders (adjusted survival curves) have been developed (Nieto and Coresh, 1996;

Ghali et al., 2001; Austin and Schuster, 2014), but these are rarely applied when the

exposures-outcome associations need to be further adjusted for other relevant factors.

The Kaplan-Meier method, eventually, is generally included in observational studies as

a preliminary analysis.

2.2.2 Cox proportional-hazard model

From its introduction (Cox, 1972), the Cox proportional hazard (PH) model has rapidly

grown to become the most-widely used method to analyze survival data. The method

estimates hazard ratios (HRs), which are measures of the extent to which a covariate

increases or decreases the rate of the event, assuming that the effect of the included

covariates is multiplicative.

The basic assumption of the Cox model is that the hazards of two populations

(e.g. exposed and unexposed) are proportional over time, implying that the estimated

parameters are constant with respect of the follow-up time. A Cox model takes the

form

hi(t|xi) = h0(t)exp(xTi β) (2.4)

The hazard function hi(t|xi) is parametrically modeled as a function of the covari-

8



ates xi, while no shape needs to be assumed for the baseline hazard h0. For this reason

the model is often referred to as semi-parametric.

The Cox model has been largely explored and different books presenting the method

in details have been published (e.g. Hosmer et al. (2011); Kleinbaum and Klein (2012)).

Extensions to cover situations of time-varying effects and other methodological settings

have been also investigated, and good introductions to possible extensions of the model

can be read in Therneau and Grambsch (2000); Royston and Lambert (2011); Ander-

sen et al. (2012).

2.2.3 Definition of the time variable

The time variable T has been so far defined as the time between entering into the study

and either experiencing the event of interest or censoring. In prospective studies, how-

ever, other possible definitions of time can be chosen (Kleinbaum and Klein, 2012). A

common alternative to follow-up time is to focus on the age of the participants, defining

the time variable on the age scale. Instead of entering the study at the same point in

time, each individual is assumed to enter at his/her own baseline age, and is followed

until the age at which he/she experiences the event of interest or is censored.

The consequences of changing time-scale on the hazard function, and how this af-

fect the analyses when Cox regression is used, have been widely investigated (Lamarca

et al., 1998; Cheung et al., 2003; Thiébaut and Bénichou, 2004; Westreich et al., 2010;

Cologne et al., 2012). When data are analyzed with Cox regression, it is becoming

increasingly common to use attained age at the event of interest as primary time-scale,

as this choice allows a more flexible modeling of age in the non-parametric part of the

model (Kom et al., 1997; Liestol and Andersen, 2002; Cheung et al., 2003; Thiébaut

and Bénichou, 2004; Westreich et al., 2010; Cologne et al., 2012).

The consequences of changing time-scale on the survival function and its estima-

tors, on the other hand, have been seldom investigated.

2.2.4 Hazard ratios

Different advantages make the estimation of HRs through Cox PH regression an appeal-

ing choice for researchers dealing with time-to-event outcomes (Kleinbaum and Klein,

2012). Nevertheless, HRs are subject to some established limitations, and relying on

HRs alone to present statistical associations may prevent a correct interpretation and
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translation of scientific findings.

First, when HRs are derived with statistical models that take advantage of the PH

assumption,4 but the assumption is violated, they lose their meaning in summarizing

exposure-outcome associations, as they do not represent the average HR of the true

HRs over follow-up (Kalbfleisch and Prentice, 1981). In addition, using single estimates

to summarize situations in which the HR is varying over time would eventually pro-

duce wrong and misleading conclusions. As an illustrative example, Figure 2.3 depicts

a possible scenario in which the HR is <1 at the beginning of follow-up, and >1 after

6 years of follow-up; in such situations using a single HR to present the association

would not correctly summarize the information contained in the data.
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Figure 2.3: Hazard curves in two sub-populations during 16 years of follow-up.

4The assumption of PH is shared by parametric models for the survival and the hazard function.
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HRs are also subject to two important limitations that make challenging their

interpretation and their translation into meaningful public health measures. Such

limitations are built-in the measure, and persist even in those situation when the PH

assumption is plausible. First, HRs are unit-less measures, and the lack of information

on the background risk prevents results to be translated into transparent public health

messages (Uno et al., 2014). The baseline hazard is a clinically meaningful tool to

understand the course of the disease of interest, and is the ground against which HRs are

estimated (Royston and Lambert, 2011). For example, an HR equal to 2 implies that,

compared to a reference group, the average hazard over time of a subgroup of interest

is twice higher, but does not provide any information on the absolute background risk.

We can interpret the result in terms of relative change, but we don’t know what is

this change compared to. It has been pointed out that this lack on information on

the absolute risk makes HR’s interpretation difficult for laymen, and not sufficient

to support clinical decisions (Lytsy et al., 2012; Uno et al., 2014). It was shown, for

example, that relative measures such as the HR, when presented to doctors, exaggerate

understanding of the effect. (Naylor et al., 1992; Forrow et al., 1992; Bobbio et al., 1994;

Hux and Naylor, 1995). The importance of clear and easy-to-understand summary

measures is extremely relevant in epidemiology, as this field plays an important role in

the process of translating scientific discoveries into population health impact (Khoury

et al., 2010). This drawback of the HRs is of particular importance when studies are

investigating certain events such as all-cause mortality, as the most relevant question

is not if the event occurs, but when the event occurs.

A second major limitation of HRs is that they are dependent on the length of follow-

up, because the average HR ignores the distribution of events during the observational

period (Hernán, 2010; Uno et al., 2014). Two studies evaluating the same population

and investigating the same exposure-outcome association, but with different follow-

up lengths, could result in different estimates of the HRs regardless the sample size.

Conversely, the same HR could be obtained in two different studies but conducted over

a different follow-up time.5

5A persuasive example is given in Hernán (2010), where the HR of interest would have been 1.8
if the study had been halted after 1 year, 1.7 after 2 years, and 1.2 after 5 years, despite the PH
assumption being not violated.
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2.2.5 Alternative measures

When the hazard function contains relevant information to a specific study, and one is

satisfied with providing associations in relative terms, estimating HRs via Cox regres-

sion represents the best option to analyze time-to-event data, after careful evaluation of

the PH assumption validity. However, when the discussed limitations might represent a

threat for the analysis, interpretation, and translation of the results, researchers should

think of complementing analyses with methods that focus on the survival curve, sum-

marizing their findings with measures that directly involve time (Hernán, 2010; Uno

et al., 2014).

The most intuitive option to summarize information included in the survival curve

would be to estimate the life expectancy of the study population (mean survival), but

due to the censoring mechanism this can not be achieved unless assumptions are made.6

However, different other approaches are available, and measures of association in the

metric of time have been proposed. Among the recommended methods, calculation

of t-years survival rates, and restricted mean survival represent two appealing options

(Uno et al., 2015). Another possible approach is to focus on the median survival and

to present differences in median survival as measures of associations (Friedman et al.,

2010; Uno et al., 2014). This approach can be extended to any other percentile of

the survival distribution, offering additional insights and important advantages. This

method, commonly referred to as evaluating survival percentiles, is the main subject

of this doctoral thesis and will be thoroughly discussed in the next section. Following

sections (2.4 and 2.5) will then explore the use of regression methods to model survival

percentiles.

6Estimation of life expectancy involves computing the integral of the survival curve, which corre-
sponds to calculating the area under the survival curve. This area, however, will result equal to ∞ if
the survival curve does not go down to 0.
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2.3 Survival percentiles

In a given study population, where individuals are followed-up over time to investigate

the development of an event of interest, survival percentiles7 can be defined as the

time points by which specific proportions of participants have experienced the event.

Formally, the pth survival percentile is the time t by which p% of the study population

have experienced the event of interest, while (100 − p)% have not. For example, the

time by which half of the population has experienced the event of interest is defined as

50th survival percentile, or median survival.
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Figure 2.4: Summary of observed survival percentiles: the 25th and 50th percentiles are
depicted.

The survival curve, as defined in (2.2), described the probability of the event as a

function of time. Survival percentiles are defined by changing the perspective, describ-

ing time T as a function of the probability of the event τ . Formally, the quantile func-

7Throughout the thesis percentiles and quantiles will be often used interchangeably, as they rep-
resent the same quantity. Percentiles (p) are defined within the range 1 to 99, while quantiles (τ) are
defined within the range 0.1 to 0.99.
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tion Q(τ) is related to the cumulative distribution function F (t), where S(t) = 1−F (t),

by the relationship:

F (QT (τ)) = P (T ≤ QT (τ)) = τ (2.5)

There is an univocal correspondence between the quantile and the survival function.

When T is continuous, Q(τ) = t only if F (t) = τ , that is, the quantile function is the

minimum value of t below which a randomly selected individual from the population

will fall (100 · τ)% of the times.

In the survival curve presented in Figure 2.4, the 25th and 50th survival percentiles

are depicted (t(25) and t(50), respectively). By the time t(25) 25% of the study partic-

ipants have experienced the event of interest, while 75% have not. By t(50) the event

has been observed in half of the population.

Due to the presence of right censoring, the event might not be observed for all par-

ticipants. However, this does not represent an obstacle for the calculation of survival

percentiles, but just limits the evaluation to the range of observed percentiles (1-75 in

Figure 2.4). It is also interesting to note that the eventual inclusion of additional years

of follow-up would not influence the estimates of previously observed percentiles, but

would only possibly increase the number of percentiles that is possible to quantify.

2.3.1 Measures of association: percentile differences

When evaluating survival percentiles a straightforward measure to quantify the vari-

ability between two or more exposure groups is to calculate differences in survival

percentiles, as depicted in Figure 2.5. The figure represents the survival experience

of two populations of participants. Given a fixed proportion of events p, such as the

median (p = 50), survival percentiles are identified by calculating the time points by

which this proportion is achieved in the two different groups (exposed vs unexposed).

In the figure, t0 is the time by which 50% of unexposed individuals (grey line) have

experienced the event, while t1 is the time by which the same fraction of events has

been attained by exposed participants (black line).

The exposure effect t1 − t0 is the difference in time by which participants in the

two exposure groups experience the same outcome probability, and can be referred to

as difference in the pth survival percentiles (PDp=pth percentile difference). When

p = 50, as depicted in Figure 2.5, the measure represents the difference in median

survival. PDs are absolute measures of association directly expressed in the unit of

time (i.e. days, months, years).
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Figure 2.5: Survival percentiles in two sub-populations. The pth percentile is indicated by
the horizontal line, and the corresponding survival percentiles are displayed on the x-axis.

PDs can be calculated for any observed percentile. Although presenting one single

PD, such as the difference in median survival, could be enough to provide a meaningful

summary measure in the metric of time, computing and displaying PDs for all observed

percentiles would give additional insights, as it would allow to understand how the

association of interest is changing according to the proportion of events observed over

time. If one wants to present all observed PDs, a preferable option is to plot PDs as a

function of the corresponding proportion of events. Figure 2.6 displays PDs estimated

from Figure 2.5 and plotted as a function of p. PDs can be calculated as long as

exposed and unexposed participants experience the same risk of the event.
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Figure 2.6: Percentile differences as a function of the corresponding fraction of events.

2.3.2 Statistical methods for survival percentiles

The Kaplan-Meier estimator for the survival function can be used to indirectly estimate

survival percentiles and differences in survival percentiles (Altman, 1990). Median sur-

vival, for example can be derived by estimating S(t) with the Kaplan-Meier product

limit estimator and by finding the lowest point t at which S(t) ≤ 0.50. Confidence

intervals for survival percentiles and for PDs may be derived numerically (Brookmeyer

and Crowley, 1982)8 or can be constructed via bootstrap (Efron and Tibshirani, 1994).

In observational studies, however, the frequent need to adjust for potential con-

founders of the exposure-outcome association of interest, or to assess interactions be-

tween exposures in predicting the outcome, require the use of multivariable regression

models to address the research question (Rothman et al., 2008). One possibility is

to use the relationship between h(t) and S(t) to derive survival percentiles after esti-

mating an hazard-based regression model, but this non-straightforward option might

8Formal description on how to calculate confidence intervals for survival percentiles can be found
at page 94 of Lawless (2011).
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result challenging for many researchers, especially in terms of deriving confidence in-

tervals (Lai and Su, 2006). The absence of established regression-based frameworks to

estimate informative measures of associations such as PDs might largely explain their

limited application in epidemiological research, and the consistent lack of interest that

epidemiologists show towards additional measures different then the HR.

Survival percentiles are formally defined as the quantiles of a time variable. In

the last 15 years, statistical methods to evaluate conditional quantiles of possibly cen-

sored outcomes have been developed, as extensions to the classical quantile regression

approach, introduced in the statistical literature in the late ´70s. These novel statis-

tical methods offer unique modeling advantages, and have opened up the possibility

to establish a regression-based approach for the estimation of conditional survival per-

centiles.
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2.4 Quantile regression

2.4.1 Definition

Quantile regression is rapidly growing as an alternative to the classical regression ap-

proaches. Ordinary least-squares regression can estimate the mean of a response vari-

able conditional on one or more covariates. Distributions, however, may differ with

respect to other aspects than the mean alone, and focusing only on the mean may

miss important aspects of the association between outcome and covariates. Quantile

regression can estimate the conditional quantiles of a response variable, thus providing

a complete view of the effect of explanatory variables on the location, scale, and shape

of the distribution of the outcome.

Figure 2.7, which shows the relationship between a continuous exposure and the

quantiles of a response variable, is a simple example that illustrates how quantile re-

gression works. The line representing the 50th percentile (median) leaves half of the

observations above, and half below, at any given value of the covariate X. In the same

way we can define all the other regression lines; regression on the 95th percentile, for

instance, leaves 5% of the observations above and 95% below. In this example, the

effect of X on Y is different over the distribution of the outcome. While no effects

can be detected at lower percentiles, and on the median, higher percentiles of Y are

influenced by changes in the predictor X.

A first prototype of median regression was developed by the Jesuit priest Rogerius

Boscovich, who in 1757, when studying the ellipticity of the earth, introduced the idea

of minimizing the sum of absolute residuals to resolve what we would now address as

a regression problem (Boscovich, 1757). The work of Boscovich was investigated and

further expanded by Laplace and Edgeworth. However, the computational difficulty

of the method was found extremely challenging, and was not until recent years that

a formalization of quantile regression was made possible. The early origins of median

regression, which is older than mean regression by half a century,9 is not surprising,

as the median is the most immediate and intuitive measure to evaluate the central

tendency of a distribution.

The regression framework for the median of a response variable was finally pro-

posed and formalized by Wagner (1959), and extended to other quantiles by Koenker

and Bassett (1978), giving birth to the modern quantile regression. Koenker’s work

on the topic have extended for a long time-span, and his book on quantile regression

9The origins of linear regression are commonly dated to 1805, when Legendre introduced the least
squares.
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is the best available introduction to the subject (Koenker, 2005). A good introduc-

tion to quantile regression for epidemiologists can be found in Beyerlein (2014), which

discusses the advantages of the method and encourages a wider use.
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Figure 2.7: Quantile regression lines between a continuous exposure X and a continuous
outcome Y .

2.4.2 Estimation

In a quantile regression model, the quantiles of a response variable are modeled as a

function of a set of covariates. Following the notation introduced by Koenker we can

define, given a quantile τ , a response variable Yi, and a set of covariates xi, a linear

model for the conditional τth quantile as:

Qyi(τ |xi) = xTi β(τ) (2.6)

where 0 < τ < 1

Quantile estimation can be seen as an optimization problem. As in the classical

linear regression model, where the mean is the solution to the problem of minimizing

a sum of squared residuals, the median is the solution to the problem of minimizing

a sum of absolute residuals. The quantile-regression distance function can be written as
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dτ (y, q) =
n∑
i=1

ρτ (yi − q) (2.7)

where ρτ is a weight that, depending on τ , defines all quantiles estimation. When

τ = 0.5, the point q where the distance function is minimized is the median of the

distribution. The function (2.7) is piecewise linear and continuous, and it is differen-

tiable except at the points in which residuals are equal to 0. This non-differentiability

at 0 is the main reason making quantiles estimation more challenging than estimating

the mean.10 Estimation is performed through an iterative algorithm that can be re-

formulated as a linear programming problem, with estimation of coefficients for each

quantile based on the weighted data of the whole sample (Koenker and Bassett, 1978).

The Asymmetric Laplace distribution

A common option to estimate quantiles is to assume that the outcome Yi follows an

asymmetric laplace (AL) distribution and to carry out the estimation via maximum-

likelihood approach. The AL distribution can be written as

f(yi|xi, σ, τ) = exp

[
−ρτ

(
yi − xTi β(τ)

σ(τ)

)]
τ(1− τ)

σ(τ)
(2.8)

It can be shown that maximizing the log-likelihood of this distribution function cor-

responds to minimizing the objective quantile function defined in (2.7) (Koenker and

Machado, 1999). Moreover, the loss function ρτ of (2.8) assigns weights τ or (1− τ) to

the observations greater or less than xTi β(τ), respectively. The distribution is therefore

split along the scale parameter into two parts, one with probability τ to the left, and

one with probability (1 − τ) to the right. These features have made the AL distribu-

tion suitable to be applied to quantile inference (Koenker and Machado, 1999; Yu and

Moyeed, 2001; Yu et al., 2003; Geraci and Bottai, 2007; Liu and Bottai, 2009; Yue and

Rue, 2011).

10Estimating the mean can be viewed as a problem of minimization of the sum of squared residuals.
The squared distance function is differentiable at all points.
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2.4.3 Properties and features

Different advantages make quantile regression appealing and are contributing to its

growing popularity.

Equivariance

In addition to the classical equivariance properties, quantiles enjoy a stronger prop-

erty, called equivariance to monotonic transformations. Let h be a non-decreasing

function, then for any Y,

Qh(Y )(τ) = h(QY (τ)) (2.9)

In words, the quantiles of the transformed random variable h(Y ) are the transformed

quantiles of the original Y . For example, a conditional quantile of log(Y ) is the log of

the conditional quantile of Y :

Qlog(Y )(τ) = log(QY (τ)) (2.10)

This property is of particular importance in the presence of skewed distribution where

a logarithmic transformation is often used.

Robustness

Because of the nature of the minimized distance function, quantile regression es-

timates are not sensitive to outliers, that is, even a dramatic change in the highest

measurement of a distribution would not influence the median. On the contrary, the

mean of a distribution is sensible to even small changes in the outliers of the distribu-

tion.

Inference

In quantile regression approaches the bootstrap procedure (Efron and Tibshirani,

1994) is commonly preferred to derive standard errors for the estimates, given that the

assumptions for the asymptotic procedure do not always hold. The bootstrap proce-

dure offers strong flexibility to obtain standard errors and confidence intervals for any

estimates or combination of estimates.

Softwares

Quantile regression can be performed with any major statistical software. Stata pro-

vide four commands to run quantile regression (qreg), interquantile range regression
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(iqreg), simultaneous-quantile regression (sqreg), and bootstrap quantile regression

(bsqreg). The same name (quantreg) is then use for both a SAS procedure, and a R

library.

Result presentation

It is important to mention that the possibility of investigating the entire distribution

of the outcome, which is one of the main advantages of the approach, could introduce

some challenges when it comes to results presentation. When quantile methods are

used we do not have a single summary measure to describe the entire association of

interest, and a graphical presentation of the results is recommended as the optimal

tool to summarize research findings, plotting results as a function of the corresponding

quantile.

2.5 Quantile regression for censored data

2.5.1 Overview

After its first development in the past century, the quantile regression framework has

been largely expanded and established methodologies are available for bounded out-

comes (Bottai et al., 2010) and longitudinal studies (Geraci and Bottai, 2014). Various

methods have been also introduced to deal with survival outcomes.

Time-to-event data are complicated by censoring, as we are usually interested in a

response variable Ti but we only happen to observe yi = min(ti, ci). In this setting, to

estimate the parameters of a quantile regeression model (2.6) we need to minimize the

following sum of residuals, introduced in Powell (1986):

n∑
i=1

ρτ (yi −min{xTi β, ci}) (2.11)

One important methods to fit censored quantile regression models was developed

by Portnoy (2003), and is an estimation procedure that can be seen as a generalization

of Kaplan-Meier to conditional quantiles. This method, however, makes the strong

assumption that the regression models at lower quantiles are all linear (global linearity).

Peng and Huang (2008) presented an alternative to this model based on the Nelson-

Aalen estimator of the cumulative hazard function, which makes the same assumption

of global linearity. These two methods were compared to a previous approach (Powell,

1986) and showed similar performances and a modest efficiency (Koenker, 2008).

Another valuable method was introduced by Wang and Wang (2009), who proposed
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using the local Kaplan-Meier method to overcome the global-linearity assumption of

the Portnoy’s method. This approach is simpler but requires additional assumptions

that could affect the estimates.11 Other methods that have been proposed only apply

to limited settings (Koenker and Geling, 2001; Bang and Tsiatis, 2002).

In 2010 Bottai and Zhang proposed to take advantages of the important properties

that the AL distribution provides to quantiles estimation, and introduced Laplace

regression for censored data (Bottai and Zhang, 2010).

2.5.2 Laplace regression

The aim of Laplace regression is to estimate the conditional quantiles of a time variable

Ti. When Ti is censored we observe yi = min(ti, ci), and δi = I(ti ≤ ci).

The goal is to estimate the τth conditional quantile of Ti. Laplace regression as-

sumes that

ti = xTi β(τ) + ui (2.12)

where ui follows the AL distribution introduced in (2.8) and xi is a vector of covari-

ates.

Estimation of the model parameters is conducted via maximum likelihood. The

originally proposed algorithm for estimating the model has been recently improved af-

ter the introduction of a gradient search algorithm of maximization (Bottai et al., 2015).

Mathematical details on the Laplace model and estimation are reported in Appendix 1.

2.5.3 Properties and features

Laplace regression assumes the errors to follow an AL distribution because of the dis-

cussed advantages of this distribution in the estimation of quantiles. Nevertheless,

this parametric assumption, shared by other methods in quantile regression (Liu and

Bottai, 2009; Farcomeni, 2010; Lee and Neocleous, 2010; Yuan and Yin, 2010), has

been shown not to influence the performances of the model under different data distri-

butions (Bottai and Zhang, 2010; Bottai and Orsini, 2013). Simulations studies have

documented good performances of the model in terms of computational speed, preci-

sion, robustness of standard errors, and coverage of confidence intervals that was close

to the nominal value (Bottai and Zhang, 2010; Bottai et al., 2015).

11The Wang & Wang approach requires the subjective choice of a smoothing function and performs
better if independency between covariates can be assumed.
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Compared to the other available methods for censored quantiles, these have a wider

availability, being implemented in the official packages of R and SAS. However, Laplace

regression provides considerable advantages in terms of computational speed and sta-

bility, performances that have been observed in different conditions and regardless of

the assumed distribution (Bottai and Orsini, 2013; Bottai et al., 2015). Moreover, the

other available methods for censored quantile regression do not make distributional as-

sumption but are often subject to equally strong assumptions, such as the one of global

linearity (Portnoy, 2003; Peng and Huang, 2008), not required by Laplace. Laplace

regression is available as a user-friendly Stata command (Bottai and Orsini, 2013). The

introduction of this Stata procedure was crucial to allow the possibility of applying the

method on large dataset, as the implemented procedure to derive robust standard er-

rors with the asymptotic theory12 is considerably faster than the bootstrap. Appendix

2 provides a tutorial on the use of this Stata command.

It is also interesting to point out that in a sample where all observations are un-

censored, the estimation equations are identical to those of the traditional quantile

regression, as demonstrated in section 2.3 of Bottai and Zhang (2010).

Estimation of a single quantile of the distribution of Ti does not depend on the

estimation of other quantiles, despite weighted information from the entire sample

are involved in the estimation. Nevertheless, it is possible to simultaneously estimate

Laplace regression models at different quantiles, and to provide statistical tests for

differences between coefficients within and between different quantiles.

2.5.4 Laplace regression in epidemiology: modeling survival percentiles

The quantiles of a time-to-event variable T correspond to the survival percentiles de-

fined in Section 2.3. This implies that statistical methods for censored quantiles, such

as Laplace, can be used to statistically model survival percentiles as a function of co-

variates.

A common research goal in prospective cohort studies is to evaluate the effect of an

exposure E on the time until developing an adverse event D. Laplace regression can be

used to directly model the pth survival percentile of the time variable T as a function

of E and other possible predictors (Orsini et al., 2012). To simplify the mathematical

notation we can write a Laplace regression model on the pth survival percentile of T ,

conditional on E, as

12Asymptotic standard errors were not described in the original work from Bottai & Zhang and
were introduced in Bottai and Orsini (2013).
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T (p|E = e) = βp0 + βp1 · e (2.13)

In the simple situation where E is a dichotomous predictor, β̂p0 estimates the time

by which p% of participants with E = 0 experience the event (t0 from figure 2.5), while

the time by which the same fraction of events is attained by participants with E = 1 is

estimated by β̂p0+β̂p1. It naturally follows that β̂p1 is an estimate of the pth PD=t1−t0,

and indicates the difference in time by which participants with E = 1 and E = 0 expe-

rience the same fraction of events. In this simple situation (one dichotomous exposure

with no additional covariate included), survival percentiles estimated with Laplace cor-

respond to those calculated with Kaplan-Meier. When E is continuous and is included

in the model assuming a linear relationship with the pth survival percentile, the PD

estimated by β̂p1 is interpreted as the difference in time (i.e. years, months, days) by

which the specific proportion of events is achieved, for any one-unit increase in E. The

linearity assumption in the relationship between a continuous predictor and survival

percentiles can be relaxed by modeling exposures with flexible transformations such as

polynomials or splines.

The model can be further expanded by including additional covariates, thus estimat-

ing multivariable-adjusted PDs. Multiple percentiles can be estimated simultaneously,

testing coefficients within and between survival percentiles. The simultaneous estima-

tion and plotting of different percentiles, similar to the one reported in Figure 2.6,

might require some smoothing, depending on the variability across percentiles. In that

case algorithms such as the lowess can be applied. A recent approach proposed by

Frumento and Bottai (2015) allows for modeling of the quantile regression coefficients.
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3. Aims of the thesis

The overall aim of this thesis was to introduce the percentile approach to time-to-event

outcomes in epidemiology, by evaluating the impact of lifestyle factors on survival in

a large prospective cohort of Swedish men and women, and by investigating and fur-

ther developing the statistical framework for the estimation of conditional survival

percentiles.

Specific aims of the epidemiological studies on lifestyle and overall mortality were:

� To assess the dose-response relationship between FV consumption and mortality

from all-causes presenting the findings in terms of differences in survival per-

centiles (Study I).

� To evaluate the association between sleep duration and mortality across categories

of total physical activity presenting survival differences associated with combined

levels of sleeping and total physical activity (Study II).

� To investigate differences in survival across levels of total red meat consumption,

and combined levels of processed and non-processed red meat intake (Study III).

Specific aims of the methodological studies were:

� To present the consequences of changing time-scale from follow-up time to at-

tained age on the interpretation and estimation of the survival function, and

examine the use of different time scales in the estimation of survival percentiles

(Study IV).

� To investigate the insights that evaluating survival percentiles provides in the

important epidemiological topic of interaction analysis (Study V).
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4. Materials and methods

4.1 Study population

Study I, Study II, and Study III, whose specific aim was to assess the impact of lifestyle

factors on survival, used data from a large population-based cohort of Swedish men and

women. The study population was obtained by combining participants in the Cohort

of Swedish Men (COSM), and the Swedish Mammography Cohort (SMC). This same

population was also used in Study IV and Study V in the empirical example sections.

A detailed presentation of COSM and SMC is described in Harris et al. (2013).

In brief, SMC included all women born between 1914 and 1948 and residing in two

counties of central Sweden (Västmanland and Uppsala), who between 1987 and 1990

received a questionnaire and were invited to participate in the study. The question-

naire included questions on anthropometric measures, (e.g. body weight and height),

socio-demographic information (e.g. educational level, marital status), woman’s health

status, and an extensive section with question related to lifestyle and diet. In the late

fall of 1997, a second questionnaire was sent to participants who were still alive and

residing in the study area. The aim of this second questionnaire was to update all

information recorded with the first questionnaire, and to collect additional information

such as smoking status, physical activity, and other lifestyle factors. The questionnaire

was self-reported, and each participant was asked to report diet and lifestyle informa-

tion over the previous year. The dietary section consisted of a detailed 96-item food

frequency questionnaire. In total, 39,227 women (70%), aged 48 to 83, returned this

second questionnaire.

The COSM was established in 1997 when all men residing in two regions of Central

Sweden (Västmanland and Örebro), between the age of 45 and 79 years, were invited

to respond a questionnaire and invited to participate in the study. To facilitate the

combination and joint analysis of the two study populations, the self-administrated

questionnaire received by men was specular to the one that women in the SMC re-

ceived in 1997, with exception of items related to women’s health. A total of 48,850

(49%) men returned the questionnaire.

The total size of the population investigated in these studies included the 88,077

men and women who participated in the 1997 SMC and COSM. Each study was sub-

ject to specific inclusion criteria, and for Study I, Study II, and Study III, the included

sample sizes consisted of, respectively, 71,706 (38,221 men and 33,485 women), 70,973

(37,846 men and 33,127 women), and 74,645 participants (40,089 men and 34,556

women).
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All variables recorded from the questionnaire underwent internal validation stud-

ies, which were conducted by assessing detailed weekly records in a sub-sample of the

original population. The Spearman correlation coefficients between the average of four

1-week diet records and the dietary questionnaire ranged from 0.4 to 0.7 for individual

fruit and vegetable items, and for items related to the consumption of red meat (Wolk,

Unpublished data). Information on physical activity and sleeping were validated using

two 7-day activity records that were performed 6 months apart in different subgroups,

and showed a good correlation with the questionnaire variables (Spearman’s rank cor-

relation 0.6) (Orsini et al., 2008; Norman et al., 2001).

Both COSM and SMC were approved by the Regional Research Ethics Board at

Karolinska Institutet, and all participants gave their informed consent.

4.2 Outcome assessment

The outcome examined in all the studies included in this thesis was mortality for

all causes. Information on death was ascertained by linking COSM and SMC to the

Swedish Register of Death Causes at the National Board of Health and Welfare. The

link with the registries substantially increases the quality of the cohorts, as it has been

documented that 93% of all deaths in Sweden are reported within 10 days, while 100%

are reported within 30 days (Ludvigsson et al., 2009).

For Study I, at the time of performing the statistical analysis, mortality data from

the register were available up to December 2010. The follow-up for this study was

therefore closed at 31 December 2010, including a total of 13 years (January 1998 -

December 2010). During this period 11,439 deaths occurred (6,803 men and 4,636

women). At the time of conducting the analyses for Study II and Study III two

additional years of registry data were available, and follow-up was extended to the

end of 2012. A total of 14,575 deaths (8,436 men and 6,139 women) and 16,683 deaths

(6,948 women and 9,735 men), were respectively reported over the 15 years of follow-up.

4.3 Exposures assessment

The main exposures investigated in Study I, Study II, and Study III, were, respec-

tively, fruit and vegetables (FV) intake, the combined effect of physical activity (PA)

and sleeping, and processed and unprocessed red meat consumption. All these expo-

sures were assessed using information from the the self-reported questionnaire.
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Study I

Information about the daily intake of FV in the study population was obtained

by using 14 questions on vegetables consumption (carrot, beetroot, lettuce, cabbage,

cauliflower, broccoli, tomato, pepper, spinach, peas, onion, garlic, pea soup, other veg-

etables), 5 on fruits (orange, apple, banana, berry, other fruits) and one on orange

juice. Total consumption of FV was summarized into a single continuous variable, ex-

pressed as servings/day, which was obtained by converting the questionnaire responses

to an average daily intake of each item, and by adding the intake of all items together.

A total of 46% of the participants completed all 20 questions on FV, and almost 80%

reported less than 2 missing values. When aggregating items, it was assumed that

missing values for an individual food meant no intake for that particular item (Hans-

son and Galanti, 2000).

Study II

Sleep duration was assessed with a single item through which participants were

asked to report the average duration of sleep per day. This information was then

coded into 5 categories (<6 hours per day, 6-6.5 hours per day, 7 hours per day, 7.5-8

hours per day, >8 hours per day).1 Information on PA was obtained by asking the

amount of five different domains of PA. These items were composed of six predefined

activity levels for the item of work/occupational activity (from mostly sedentary to

heavy manual labor) and five to six predefined categories for the other four domains:

home/household work (from less than 1 hour to more than 8 hours per day), walk-

ing/bicycling (from hardly ever to more than 1.5 hours per day), inactive leisure-time

(i.e. watching TV/reading, from less than 1 hours per day to 6 hours per day or more),

and exercising (active leisure-time, from less than 1 hour to more than 5 hours per

week). Based on the compendium of physical activities, each domain was assigned

a specific intensity defined as metabolic equivalents (MET, kcal/kg - Norman et al.

(2001)). The score calculated for each activity was then multiplied for its reported

duration (hours) and a total daily score of PA was obtained by adding all specific ac-

tivities together.

1Information on sleep duration was collected as a continuous covariate, but eventually categorized
due to the high number of responses at specific values of the exposure.
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Study III

The total intake of red meat, assessed in grams per day, was calculated by combining

information on amount and frequency in the consumption of different types of red meat.

Participants had to report the average frequency of consumption of different types of

processed and non-processed red meat, by using 8 predefined frequency categories

ranging from never to 3 or more times per day. Non-processed red meat included

fresh and minced pork, beef, and veal. Processed red meat included sausages, hot

dog, salami, ham, processed meat cuts, liver pate, and blood sausage. Together with

the frequency, participants were asked to report, for each item, the average portion

size. All reported information were combined to derive continuous variables of total,

processed, and unprocessed meat intake. The age of the participants was taken into

account when translating frequency and portion sizes into the total information of red

meat intake.

4.4 Exposures modelling

The continuous exposures evaluated in Study I and Study III were flexibly modeled by

means of cubic splines. When dealing with continuous exposures, a simple inclusion

of a covariate in the statistical model would assume that the dose-response associa-

tion between the exposure and the outcome is linear. A common option to relax this

assumption is to categorize the continuous covariate, but this approach presents differ-

ent limitations and often rely on unrealistic assumptions (Greenland, 1995a,c; Royston

et al., 2006). Categorization of quantitative predictors, by pooling participants into

groups, implicitly assumes a step function shape for the dose-response, with a variation

in the risk only at specific values of the exposure. A consequence of this assumption

is the loss of within-category information, as it is not possible to detect differences

between individuals grouped in the same category. A second critical drawback of cat-

egorization is the subjective choice of cutoff points, which implies a loss of statistical

power and may dramatically influence the results.2

Spline transformations are a common tool to model a continuous covariate relaxing

the assumption of linearity, though avoiding the loss of information implied by the use

of categories (Greenland, 1995b; Royston et al., 1999; Steenland and Deddens, 2004;

Marrie et al., 2009). The basic idea behind splines is to split the exposure distribution

into a predefined number of intervals, placing the splits at points called knots (Dur-

rleman and Simon, 1989). The most common choice is to model each interval of the

2The following website provides excellent interactive graphs to visually explain the limitations of the
categorical approach and the advantages of using splines: http://www.le.ac.uk/hs/pl4/spline eg.html
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curve with cubic polynomials (cubic splines). Formally, a cubic spline transformation

for a predictors x, modeled with n knots values ki, i = 1 . . . n, takes the form:

G(x) = β0 + β1x+ β2x
2 + β3x

3 +
n∑
i=1

β3+imax(x− ki, 0)3 (4.1)

This function is constrained to join at the knots locations (continuity of first derivative),

and continuity of the second derivative can also be assumed to improve smoothness.

In addition it can be forced to be linear before the first (left-restricted) or after the last

knot (right-restricted). For example, a spline transformation with a linear restriction

on the right tail takes the form:

G(x) = β0 + β1(−x) +
n∑
i=1

β1+i ·max(ki − x, 0)3 (4.2)

When both the right and the left tail are constrained to linearity (restricted cubic

splines) the function with 3 knots is simplified to two regression transformations:

G(x) = β0 + β1 ·G1(x) + β2 ·G2(x) (4.3)

where

G1(x) = x

and

G2(x) =
(x− k1)3

+ − (x− k2)3
+ · k2−k1k3−k2 + (x− k3)3

+ · k3−k1k3−k2
(k3 − k1)2

Fitting a restricted cubic splines function can be easily accomplished by differ-

ent statistical software and can be summarized as a two-step procedure (Orsini and

Greenland, 2011). First, the transformations of the original covariate must be gener-

ated. Second, the new variables should be included in the model in the place of the

original covariate. A simple tool to assess departures from linearity, in the restricted

cubic splines setting, is to test whether the coefficient of the second spline is equal to

zero. When right-restricted or left-restricted cubic splines are used, linearity can be

evaluated by testing the null hypothesis that the coefficients of the unrestricted spline

transformations are jointly equal to zero.
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4.5 Statistical analysis

Study I

The association between FV consumption and mortality was modeled in terms of

survival, and Laplace regression was used to calculate multivariable adjusted PDs across

levels of FV. Over the 13 years of follow-up 16% of the study population experienced

the event of interest (mortality for all-causes). To minimize data extrapolation and

to ease results interpretation we therefore decided to focus the main analyses on the

10th survival percentile, presenting association in terms of 10th PDs. Other observed

percentiles were evaluated as additional analyses and provided similar results.

Possible confounders of the association that were included in the multivariable

model comprised gender, baseline age, body mass index (BMI), total physical activity,

smoking status and pack-years of smoking, alcohol consumption, education level, and

total energy intake.

To investigate the dose-response relation between FV consumption and survival,

and to fully catch the effects at low levels of FV consumption, the main exposure of

daily FV consumption was flexibly modeled using right-restricted cubic splines with

three knots of the distribution (at 3, 5, and 8 servings of FV per day). Percentile dif-

ferences were presented using the recommended dose of 5 servings per day as referent.

Analyses were performed in Stata, version 12 (StataCorp).

Study II

The proportion of cases reported during follow-up, after the inclusion of two addi-

tional years, was close to 20%. The main analyses of this study were therefore focused

on the 15th percentile of survival. Other percentiles were evaluated in additional anal-

yses and no substantial differences in the results were observed. Differences in survival

were estimated by fitting multivariable-adjusted Laplace regression models on the 15th

survival percentiles. All multivariable analyses were adjusted for sex, age at baseline,

BMI, smoking status and pack-years of smoking, alcohol consumption, and educational

level.

The overall association between categories of sleep duration (<6 hours per day, 6-

6.5 hours per day, 7 hours per day, 7.5-8 hours per day, >8 hours per day) and survival

was evaluated in a multivariable-adjusted model using the group of participants who

slept 7 hours per day as reference category.

Next, the interaction between the categorical variables of sleep duration and phys-

ical activity (tertiles: <39.3, 39.3-44.2, >44.2 MET-hrs/day) was assessed. A p-value

for interaction was obtained by simultaneously testing the product terms of the indica-
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tor variables equal to zero. The association between sleep duration and mortality was

then evaluated over tertiles of total PA.

All analyses were performed in Stata, Version 12 (StataCorp).

Study III

The proportion of cases observed during follow-up was similar to the one reported in

Study II, and the main analyses were focused on the 15th percentile of survival. Eval-

uating other percentiles within the observed range did not influence the results.

First, the dose-response association between total red meat intake and survival

was investigated. The main exposure was flexibly modeled by means of restricted cu-

bic splines, with 3 knots at fixed percentiles of the distribution (31, 77, and 140.5

grams/day), and using no consumption of red meat as reference value.

To evaluate the joint association of processed and non-processed meat consumption

in predicting survival, an interaction term between the two exposures was included in

the model. The overall p-value for statistical interaction was obtained by testing the

four regression coefficients of the interaction terms between splines (two cubic splines

for processed meat multiplied by two cubic splines for non-processed meat) jointly

equal to 0. For this analysis the median value of consumption for processed and non-

processed red meat (30.6 grams/day and 44.5 grams/day, respectively) were used as

reference group.

PDs across levels of processed and non-processed meat were estimated with Laplace

regression models on the 15th survival percentile, further adjusting for baseline age,

gender, BMI, total physical activity, smoking status, alcohol consumption, energy in-

take, educational level, fruit and vegetables consumption, and prevalence of diabetes.

All analyses were performed in Stata, Version 13 (StataCorp).
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5. Results

5.1 Study I - Fruit and vegetables and survival

In this study the association between fruit and vegetables consumption was modeled

in terms of survival time by using splines transformations. The overall 10th survival

percentile was 116 months (95% CI: 114, 118), meaning that 90% of the cohort was

still alive after 9.6 years of follow-up.

Figure 5.1 depicts the dose-response association between FV consumption and sur-

vival. A strong departure from linearity was detected, observing a substantial increase

in survival up to 5-6 servings/day of FV. Higher levels of consumption were not sta-

tistically associated with an additional increase in survival. Compared with a FV

consumption of 5 servings/day, lower levels were progressively associated with shorter

survival up to 3 years for those who never consumed FV (10th PD= -37 months; 95%

CI: -58, -16).
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Figure 5.1: Multivariable adjusted 10th percentile differences (differences in months by which
10% of the cohort has died) as a function of fruit and vegetable consumption. Dashed lines
represent 95% CIs. The reference value is 5 servings/dat, and the histogram shows the
distribution of fruit and vegetable consumption in the cohort. The statistical model was
adjusted for gender, baseline age, body mass index, total physical activity, smoking status
and pack-years of smoking, alcohol consumption, education level, and total energy intake.
The main exposure was modeled with right-restricted cubic splines.
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5.2 Study II - Sleep duration and survival across levels of phys-

ical activity

This study aimed to assess the association between sleep duration and mortality across

categories of PA. The overall association between sleep duration and mortality con-

firmed a pronounced U-shape, with participants sleeping an average of 7 hours per day

experiencing the longest survival (Table 5.1). Compared to the reference group, 15%

of men and women with the lowest (<6 hrs) and highest sleep duration (>8 hrs) died

about 1 year earlier (15th PD= -12 months; 95% CI: -19, -6 and 15th PD= -20 months;

95% CI: -26, -14, respectively).

A significant interaction between sleep duration and PA in predicting mortality was

observed (p for interaction <0.001), and the association between sleep duration and

mortality was different across levels of PA (Table 5.1). Short sleep duration, less than 6

hours per day, was associated with shorter survival throughout the entire distribution

of PA. Long sleep duration, more than 8 hours per day, was associated with signifi-

cantly shorter survival (15th PD= -20 months; 95% CI: -30, -11) only among those in

the lowest tertile of PA. No significant associations were observed between long sleep

duration and mortality for those with medium or high levels of PA.
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Table 5.1: 15th Percentile differences in survival according to categories of sleep
duration, overall, and stratified by tertiles of total physical activity

Mean Sleep Duration, hours/daya N Cases 15th PD 95% CI

Overall

<6 2,982 882 -12 (-19, -6)

6–6.5 13,194 2,812 -4 (-9, -2)

6.6–7.4 27,891 4,599 0 Referent

7.5–8 22,972 5,032 -3 (-9, -1)

>8 3,934 1,250 -20 (-26, -14)

First tertileb

<6 316 109 -27 (-51, -3)

6–6.5 2,309 495 -10 (-18, -2)

6.6–7.4 7,375 1,147 0 Referent

7.5–8 7,167 1,525 -4 (-10, 2)

>8 1,563 549 -20 (-30, -11)

Second tertilec

<6 708 182 -15 (-26, -4)

6–6.5 3,700 673 0 (-7, 7)

6.6–7.4 7,618 1,148 0 Referent

7.5–8 5,811 1,164 -5 (-11, 0)

>8 886 226 -7 (-21, 8)

Third tertiled

<6 1,135 286 -11 (-21, -1)

6–6.5 4,375 839 -8 (-14, -2)

6.6–7.4 7,735 1,211 0 Referent

7.5–8 7,167 967 -3 (-9, 3)

>8 484 107 -5 (-19, 9)

aMedian values for sleep duration are 5, 6, 7, 8, and 9 hours/day for the categories
of less than 6, 6 6.5, 6.6–7.4, 7.5–8, and more than 8 hours/day, respectively.
bFirst tertile (low physical activity) = <39.3 (median, 37) MET hours/day.
cSecond tertile (medium physical activity) = 39.3–44.2 (median, 42) MET hours/day.
dThird tertile (high physical activity) = >44.2 (median, 47) MET hours/day.

36



5.3 Study III - Processed and unprocessed red meat consump-

tion in predicting mortality

This study’s aim was to investigate the combined role of processed and unproccesed

red meat in predicting mortality. The dose-response association between red meat and

survival showed a significant departure from linearity (p-value<0.001)(Figure 5.2). A

considerable decrease in survival was only observed at levels of consumption higher than

100 g/day of red meat. Compared with participants who never consumed red meat,

those consuming 200 grams/day lived about 1 year shorter (15th PD= -10 months;

95% CI: -18, -3). Increased consumption up to 300 g/day was associated with almost

2 years of shorter survival (15th PD= -21 months; 95% CI: -31, -10).
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Figure 5.2: Multivariable adjusted 15th percentile differences (differences in months by which
15% of the cohort has died) as a function of red meat consumption, with the null consumption
as referent. Dashed lines represent 95% CIs. The histogram shows the distribution of red
meat consumption in the cohort. The statistical model was adjusted for baseline age, gender,
BMI, total physical activity, smoking status, alcohol consumption, energy intake, educational
level, fruit and vegetables consumption, and prevalence of diabetes. The two exposures were
modeled by means of restricted cubic splines.
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When investigating the joint effect of processed and non-processed red meat in pre-

dicting survival we observed a non-significant interaction between the two predictors

(p-value for interaction=0.6). However, this did not prevent the association between

non-processed red meat consumption and survival to be substantially different across

levels of processed red meat intake (Figure 5.3). Comparing to participants with me-

dian consumption of processed and non-processed meat, higher intake of non-processed

meat was associated with shorter survival only if combined with higher processed meat

consumption (when consuming 100 g/day of both processed and non-processed meat:

15th PD= -19 months; 95% CI: -37, -2). High processed meat consumption was instead

associated with shorter survival regardless the consumption of non-processed meat.
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Figure 5.3: Multivariable adjusted 15th percentile differences as a function of combined
levels of processed and non-processed red meat consumption. An interaction term between
processed and non-processed meat is included in the model. The median consumption is used
as reference. The model was adjusted for baseline age, gender, BMI, total physical activity,
smoking status, alcohol consumption, energy intake, educational level, fruit and vegetables
consumption, and prevalence of diabetes. The two exposures were modeled by means of
restricted cubic splines.
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5.4 Study IV

5.4.1 Consequences of changing the time scale

The description of the survival function provided in section 2.2, and the interpretation

and estimation of survival percentiles as presented in section 2.3 and 2.5, are only valid

if follow-up time is chosen as time-scale of the study. Changing the time scale to at-

tained age strongly influences the way the survival curve is interpreted and estimated

(Royston and Lambert, 2011; Lawless, 2011).

When follow-up time is used, all participants enter the study at the same time point

and are followed until they experience the event of interest or are censored (top-left

panel of Figure 5.4). The first consequence of changing time scale to attained age is

that participants enter the study at different values of the time variable. Entries into

the study are spread over the age range (delayed entries) and left-truncation is intro-

duced.1

The presence of delayed entries complicates the interpretation of the survival curve,

and changes the location of censored observations. Delayed entries are depicted in the

top-right panel of Figure 5.4. The consequences of changing time-scale on the censor-

ing mechanism are illustrated in the middle panels of Figure 5.4, which show a simple

situation of a closed cohort observed for 15 years, during which 20% of the partici-

pants die, and the other 80% are regarded as censored observation. When focusing on

follow-up time (middle-left panel), cases are distributed across the follow-up period,

and all censoring occurs at the end, assuming no losses to follow-up. Any attempt

to estimate survival percentiles above the 20th (such as the median survival) would

require data extrapolation beyond the range of observed data. By changing the time

scale to attained age (middle-right panel), censored observations distribute across the

entire range of age, making possible the estimation of higher percentiles, up to the 99th

if the oldest participant is a case.

Estimators of the survival function such as Kaplan-Meier are impacted by the

change in the time-scale. When age is chosen as primary time scale the survival curve

can still be estimated (bottom-right panel of Figure 5.4) but becomes hard to interpret,

as it does not represent, at each age point, the age by which specific proportion of the

populations have experienced the event of interest. Because of the presence of delayed

entries, the Kaplan-Meier estimator and the survival function itself become conditioned

1Left-truncation defines a mechanism such that it is only possible to observe outcomes above the
truncation limit. Differently from censoring mechanisms, truncation is due to a systematic selection
process inherent to the study design.
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on having survived up to the earliest truncation time (Mackenzie, 2012).
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Figure 5.4: Consequences of changing the time scale from follow up time (left-column) to
attained age (right column) on participants’ entry (first row), cases and censoring distribution
over time (second row; histogram, cases: gray dots, censoring) and survival curve (third row).
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5.4.2 Interpretation and estimation of survival percentiles

Despite losing its interpretation, the curve depicted in the bottom-right panel of Figure

5.4 maintains the mathematical properties of a survival function as presented in Sec-

tion 2.2. Therefore, the curve can be seen as a summary of the percentiles of the time

variable of attained age at the event. The interpretation of these percentiles, despite

conditioning on having survived up to the earliest truncation time, remains hard. The

pth percentile of age is not interpreted as the age by which p% of the study population

has experienced the event of interest. It may occur, for example, that by age a, less

than p% of participants have actually entered the study.

An intuitive way of taking into account the presence of delayed entries, simplifying

the interpretation of the percentiles of attained age, is to condition each individual

survival experience on his/her baseline age. Let us assume a simple situation in which

participants may enter the study at three different baseline ages (55, 65, or 75 years).

Figure 5.5 depicts the survival curves for the three different sub-populations, defined

by their baseline age, and assuming attained age at the event as time scale. In this

situation, given a percentile p (in the figure p=25), the age points a1−3 can be inter-

preted as the ages by which p% (25%) of participants in each group have experienced

the event.

Following the notation introduced in (2.13), to build a statistical model for condi-

tional percentiles of attained age we change the time variable from follow-up time T , to

attained age A. A is censored, and we observe, for each participant i, zi = min(ai, bi) -

that is - the smaller value between the attained age at the event, ai, and the attained

age at the end of follow-up (or at censoring), bi.

By fitting a censored quantile regression model, such as Laplace, on a given per-

centile of the distribution of attained age with the only the intercept β0, we provide

a crude estimate of the percentile, such as the median age at event when p=50. This

estimate, however, corresponds to the one obtained with the Kaplan-Meier estimator

using age as the primary time scale, and shares the same limitation previously de-

scribed.

However, it is possible to include age at baseline as a covariate in the statistical

model, thus conditioning the estimates of attained age at the event on the individual

age at baseline. For example, using the simple situation presented above with three

possible values of baseline age, a regression model on the pth survival percentile, ad-

justed for age at baseline, could be used to predict the same estimates a1−3 represented

in Figure 5.5.
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Figure 5.5: Survival curves, and survival percentiles, for three different groups of participants
defined by their age at entry, when attained age at the event is chosen as primary time-scale.

Age at baseline is commonly assessed as a continuous covariate. It could be included

in the model as a numerical predictor without any transformation, but this would

assume a linear relationship between age at baseline and the percentiles of age at

death. To relax this assumption, the inclusion of a function of age at baseline, such as

a categorized covariate or a mathematical transformation, is commonly preferred. A

Laplace regression model for the pth percentile of attained age takes the form:

A(p|age baseline) = βp0 + βp1 · f(age baseline) (5.1)

It is important to note that inclusion of a function of age at baseline implies that

a certain fraction of extrapolation on some covariate patterns will be unavoidable,

regardless the chosen percentile.

To assess the impact of an exposure E on the pth survival percentile, the model

can be further conditioned on E:

A(p|E = e, age baseline) = βp0 + βp1 · f(age baseline) + βp2 · e (5.2)
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For a given p, the estimate of βp2 expresses the difference in the pth percentile

of attained age between exposed and non-exposed participants, conditioned on base-

line age. When p = 50, the model estimates differences in median age at the event.

Further inclusion of other covariates would estimate multivariable-adjusted percentile

differences. An implicit assumption of model (5.2) is that the effect of the main expo-

sure on the pth percentile of age at death is constant across levels of age at baseline.

This assumption might be relaxed by including in the model a term for interaction

between baseline age and the exposure of interest.

5.4.3 Review of the results from Study III

To illustrate the use of Laplace regression to model percentiles of attained age at the

event, the main result of Study III were replicated by evaluating differences in median

age at death according to levels of total red meat consumption in the COSM/SMC

cohort. Analyses from Study III were replicated step by step with the only difference

that the outcome for each participant was defined as the age at death and that the

Laplace regression model was fitted on the 50th percentile of this new time variable.

While Figure 5.2 reported the main result by presenting the dose-response association

between total red meat consumption and the 15th percentile of time since entry into

the study, Figure 5.6 illustrates the dose-response association between total red meat

consumption and the median age at death.
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Figure 5.6: Multivariable adjusted differences in median age at death, with the null con-
sumption as referent. Dashed lines represent 95% CIs. The histogram shows the distribution
of red meat consumption in the cohort. The model was adjusted for baseline age, gender,
BMI, total physical activity, smoking status, alcohol consumption, energy intake, educational
level, fruit and vegetables consumption, and prevalence of diabetes. The two exposures were
modeled by means of restricted cubic splines.
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5.5 Study V

5.5.1 Interaction in epidemiology

Despite the rapid growth of epidemiological activity over the last decades, different

epidemiological concepts are still underdeveloped and subject to methodological con-

troversies (Rothman et al., 2008). One major example is the epidemiological concept of

interaction, which is of primary interest to understand the main and combined effects of

two concurrent risk factors in the development of a disease. The concept of interaction

in epidemiology, and possible statistical tools to assess it in observational studies, have

been investigated for over 40 years (Rothman, 1974). Nevertheless, interaction remains

a popular topic in the epidemiological literature, and no agreement has been reached

on its definition, neither established tools for its estimation are defined. Recently, the

current literature on interaction analysis was reviewed in a textbook (VanderWeele,

2015), and summarized in a tutorial that currently represents the best available intro-

duction to the topic (VanderWeele and Knol, 2014).

This final study aimed to investigate the advantages that evaluating survival per-

centiles provides to the topic of interaction analysis, by defining the concept of inter-

action between two exposures in the metric of time, and investigating its properties,

estimation tools, meaning, and public-health implications.

5.5.2 Interaction assessment in time-to-event analysis

Interaction refers to the situation in which the effect of an exposure on the outcome

may depend on the value of another exposure. It is commonly assessed as a departure

from additivity or multiplicativity of the effects. When the combined effect of two ex-

posures is the sum of the two main effects, than we are in the presence of additivity

of the effects and there is no interaction on the additive scale. When the combined

effect is equal to the product of the two main effects, we are instead observing a perfect

multiplicativity of the effects, and we are in the absence of interaction on the multi-

plicative scale. It simply follows that, given these definitions, absence of interaction

on one scale is likely to imply the presence of interaction on the other scale (Rothman

et al., 1980; Greenland, 2009). Various studies have underlined the important public

health meaning of additive interaction, which can be used to assess which subgroups

of individuals are to be treated (Saracci, 1980; Rothman et al., 2008; Greenland, 2009;

Knol et al., 2011; VanderWeele and Knol, 2014). In general, presenting both additive

and multiplicative interaction would provide a complete picture of how two exposures
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interact in predicting the outcome, and this procedure has been widely recommended

(Botto and Khoury, 2001; Von Elm et al., 2007; Knol and VanderWeele, 2012; Vander-

Weele and Knol, 2014). However, despite these recommendations, this practice remains

uncommon (Knol et al., 2009).

An important distinction must be made between biological and statistical inter-

action (Rothman, 1974; Rothman et al., 1980; Thompson, 1991; Greenland, 1993;

Rothman, 1995). Statistical interaction, which is usually assessed by including in the

regression model a product-term between the two exposures of interest (Greenland,

1983), arises from a statistical model and should not be used to draw biological conclu-

sions (Siemiatycki and Thomas, 1981; Thompson, 1991; Cordell, 2002; Rothman et al.,

2008). The evaluation and interpretation of interaction in epidemiological studies is

strongly dependent on the scale of the model chosen to analyze data, which can be

either additive or multiplicative (Rothman et al., 2008). Inclusion of a product term

between two exposures in an additive model will serve as a test for additive interaction,

while inclusion of a product term in a multiplicative model will test for departures to

multiplicativity of the effects.

In time-to-event analysis, given the multiplicative nature of the Cox PH regression,

interaction analysis is generally limited to the multiplicative scale. Measures to esti-

mate additive interaction in time-to-event analysis have been proposed, the principal

one being the relative risk due to interaction (RERI) (Li and Chambless, 2007), which

can be calculated, after fitting a Cox model, with the following formula:

RERIHR = eβ1+β2+β3 − eβ1 − eβ2 + 1 (5.3)

The RERI, however, is subject to some limitations, as it is best suited in the presence

of rare outcomes, and only provides indication of the direction of the interaction effect

but not on its magnitude (Skrondal, 2003).

46



100 %

(1-p)%

Su
rv

iv
al

 P
ro

po
rt

io
n 

(%
)

0 t01 t11t00    t10
Follow-up time

G=0; E=0
G=1; E=0
G=0; E=1
G=1; E=1

Figure 5.7: Survival percentiles according to combined groups of two dichotomous exposures
E and G.

5.5.3 Additive interaction in the metric of time

Let G and E be two binary exposures, which can take values 0 or 1, and are both risk

factors for the event D. Figure 5.7 presents a possible survival experience for the four

combinations of the two exposures (i.e G = 0, E = 0;G = 1, E = 0;G = 0, E = 1;G =

1, E = 1). Given a fixed proportion of events p, the pth survival percentiles for each of

the four groups (t00, t01, t10, t11) are displayed in the figure. The difference (t11 − t00)

represents the difference in the pth survival percentile between participants with both

exposures and participants with none. The quantities (t10− t00) and (t01− t00) are PDs

between participants with the only exposure G or E, respectively, and participants

with none exposure. Following the conventional notation introduced in terms of risk

(Rothman et al., 2008; VanderWeele and Knol, 2014), the following measure can be

calculated to describe interaction between G and E at the pth percentile:

Ip = (t11 − t00)− [(t10 − t00) + (t01 − t00)] (5.4)
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This difference, calculated as an additive measure, can be rewritten as t11 − t10 −
t01 + t00 and represents a measure of additive interaction in the metric of survival

time. It expresses to what extent the difference in survival due to the presence of

both exposures exceeds the sum of survival differences due to each specific exposure.

Comparing this measure with 0 we can define the interaction as super-additive, if greater

than 0, or sub-additive if smaller than 0. This measure of interaction can be evaluated

at any observed percentile, allowing to investigate how the interaction between two

risk factors of interest is changing according to the fraction of events considered over

time.

5.5.4 Model-based estimation

To evaluate the impact of the two binary exposures G and E and their interaction

on the pth survival percentile of the time variable T in a regression-based framework,

we can include a product term in a statistical model for the conditional pth survival

percentile, such as Laplace regression:

T (p|G = g, E = e) = βp0 + βp1 · g + βp2 · e+ βp3 · g · e (5.5)

From (5.5) it is possible to estimate the pth survival percentiles for the four combi-

nations of the two exposures, corresponding to the time points displayed in Figure

5.7.

t00 = T (p|G = 0, E = 0) = βp0 + βp1 · 0 + βp2 · 0 + βp3 · 0 = βp0

t10 = T (p|G = 1, E = 0) = βp0 + βp1 · 1 + βp2 · 0 + βp3 · 0 = βp0 + βp1

t01 = T (p|G = 0, E = 1) = βp0 + βp1 · 0 + βp2 · 1 + βp3 · 0 = βp0 + βp2

t11 = T (p|G = 1, E = 1) = βp0 + βp1 · 1 + βp2 · 1 + βp3 · 1 = βp0 + βp1 + βp2 + βp3

With a simple calculation we can observe that the measure of additive interaction

introduced in equation (5.4) is estimated by the parameter βp3. If βp3 > 0 we are in

the presence of super-additive interaction between G and E. If βp3 < 0 the interaction

is sub-additive. The statistical test associated with the parameter βp3 can hence be

viewed as a test for additive interaction in the metric of time. Model (5.5) can be

extended to include additional covariates, and the interpretation of the product term

coefficient as a measure of additive interaction remains valid after conditioning on the

additional covariates.

48



6. Discussion

This doctoral thesis aimed to introduce in the epidemiological literature the percentile

approach to the analysis of time-to-event outcomes. The method was first applied on

a large prospective cohort of Swedish men and women to assess the association be-

tween lifestyle factors and mortality in terms of survival time. These applied studies,

which addressed important topics within the field of nutritional epidemiology, were

also crucial to explore the advantages of the percentile approach in terms of estimating

and presenting results, and provided the root from which the presented methodological

developments took place.

This work helped exploiting the advantages of evaluating survival percentiles and

provided considerable added value to the fields of nutritional epidemiology and epi-

demiological methods.

6.1 Advantages of the approach

Studies I-II-III were well received by the scientific community and by the media. To-

gether with the novelty of the findings, three main methodological aspects have largely

contributed to improve the quality of these studies: the benefits that presenting time-

based measures of association provides to medical research; specific advantages of fo-

cusing on survival percentiles; beneficial properties of the adopted statistical method

for the estimation of survival percentiles.

Time-based measures of association

Presenting statistical associations with measures that reflect the absolute difference

in survival time provides epidemiological studies with considerable advantages in in-

terpreting the results, and facilitates their translation to the general public.

The first advantage of time-based measures of association is that they provide an

estimate of the magnitude of the effect, thus overcoming a major limitation of relative

measures, such of the HR, described in Section 2.2.4. A measure like the PD conveys

information on the excess in survival (i.e. years, days, months) in one group (exposed),

as compared to survival in the unexposed group.

Moreover, a measure of exposure-disease association that depicts the difference in

survival might be more intuitive and easier to interpret for patients and laymen. Such

a measure would provide additional value in clinical and public health decision-making,

when individuals are recommended to adhere to a given health recommendation. The

notion of clinical meaningfulness has been often underlined as essential to understand
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treatment effects and statistical associations (Kraemer et al., 2003; Snapinn and Jiang,

2011). Kirk (2001) articulated that ’behavioral scientists are interested in answer-

ing three basic questions: first, is an observed result real or should it be attributed to

chance? Second, if the result is real, how large is it? Third, is the result large enough

to be meaningful and useful?’ Presenting time-based measures of associations, when

evaluating time-to-event outcomes, substantially aids results interpretation and facili-

tates the translation of results from epidemiological studies into relevant public health

messages, easing the development of recommendations and public care policies.

The advantages of focusing on a measure that provide a time dimension to the

association turned out to be extremely relevant when investigating the context of in-

teraction analysis in Study V. In survival analysis, in fact, no measures of additive

interaction, also including information on the magnitude of the interaction effect, were

previously available. By focusing on survival percentiles, it was possible to define a

measure of additive interaction in the metric of time that represents the excess/decrease

in survival due to the presence of both the exposures of interest, thus providing a re-

markable contribution to the field.

Survival percentiles

Among the possible methods to calculate time-based measures of association, the

survival percentile approach that was herein presented provides specific additional ad-

vantages.

First, survival percentiles are perfectly suited to evaluate those situations in which

the association of interest is changing over time. By focusing on different percentiles of

the observed distribution of events, the association can be evaluated over time, without

necessarily assuming a constant effect. A graphical presentation of the associations at

various percentiles can be used to assess how this is changing as the proportion of cases

increases over time.

Another benefit accrued from estimating survival percentiles is their intuitive inter-

pretation at the individual level. For example, if the 10th survival percentile in a study

population is equal to 10 years, we can conclude that 10% of participants experience

the event of interest during the first 10 years. By modeling survival percentiles as a

function of covariates, these can be predicted for different covariate patterns, and will

indicate the time by which participants with specific characteristics achieve a given

proportion of events.

Moreover, evaluating survival percentiles allows focusing on the actually observed

fraction of cases during follow-up. Presenting differences in median survival may be
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appealing because of the simple interpretation of this measure, but it is not common

that half of the population has experienced the event of interest during follow-up, and

the estimation of median survival would require some data extrapolation. This can be

avoided by simply focusing on lower percentiles. This feature is of particular interest

in prospective cohort studies when a low fraction of cases is observed, as it typically

occurs when dealing with rare outcomes, or when a large fraction of the population is

still event-free at the closing of follow-up.

Nevertheless, interpreting specific percentiles such as the 15th estimated in Studies

II-III, may not be as straightforward as interpreting the median. Study IV provided

a substantial contribution to address this problem. Because of the introduction of

delayed entries, a higher number of percentiles is commonly observed when moving

the focus from the distribution of survival time to the distribution of attained age.

It is pretty common, in prospective cohort studies, that the median age at death is

observed even when a low fraction of deaths is documented. Interpreting differences

in the median age at event is considerably simpler than interpreting differences in the

15th survival percentile. In Section 5.4.3 results from Study III, originally calculated

by focusing on the 15th survival percentiles, were replicated by evaluating median age

at death. Results were consistent with the previous, showing the negative effects of

red meat at higher values of consumption, but the interpretation of results in terms of

differences in median age at death was considerably easier.

Laplace regression

The properties discussed in Section 2.5.3 make Laplace regression a primary choice

to model conditional survival percentiles. Laplace offers various advantages in terms

of computational speed, estimation performances, and model flexibility. It does not

make assumptions required by other methods (such as the one of global linearity) and

has shown good performances under different settings and distributional scenarios.

Study IV of this thesis was the first to introduce Laplace regression in the epi-

demiological literature and to discuss its properties and advantages. This study, which

presented the consequences of changing time scale on the interpretation and estimation

of the survival function, has improved the potentialities of Laplace regression, extend-

ing its possible use to those common situations in which age is of higher interest than

follow-up time.
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6.2 Added value to nutritional epidemiology

Studies I, II, and III, addressed relevant and controversial topics within the field of

nutritional epidemiology.

Study I was the first to evaluate the dose-response relationship between FV con-

sumption and mortality using flexible tools such as splines, and to provide a time-

dimension to the association. The methodological strength of the study helped to

clarify the effects of low levels of FV intake, which were inconsistent from previous

studies. Large part of these inconsistencies might be due to the use of the categorical

approach to model the main exposure of FV intake, while it would be reasonable to

expect large beneficial effects already at low levels of FV consumption. Moreover, a

small number of studies had previously investigated the association between FV con-

sumption and overall mortality, which represents a primary information to understand

the health benefits of the nutrients and to plan dietary recommendations. Strengths of

the study include the population-based and prospective design, the large sample size,

the completeness of ascertainment of deaths through the National Register, and the

detailed information on diet. A possible limitation of the study lies in the self-reported

nature of the exposure, which can lead to a certain amount of misclassification error.

Study II was the first study to examine the association between sleep duration and

survival across levels of total PA, evaluating a suggested hypothesis to explain the

negative effects on health of long sleep duration. The lack of association between long

sleep and survival among physically active participants seems to support the hypothesis

that the previously reported result might be partly explained by comorbidity with low

physical activity. This study shared the same population-related strengths of Study I.

The main limitation, together with the self-reported nature of the exposure, was the

lack of specific questions about sleep quality and factors that could affect the results

such as sleep apnea, depression, and employment status.

Study III faced the controversial issue of the health effects of a regular consump-

tion of red meat. Despite the inconsistency of scientific findings, various researchers

have started recommending not to eat red meat (Cross et al., 2007; Pan et al., 2012).

Results from this study, however, suggest that the association between red meat con-

sumption and mortality might be largely due to the consumption of processed meat.

The evaluation of the combined consumption of processed and non-processed meat, in

fact, showed that non-processed meat alone was not associated with shorter survival.

Together with the strengths described for Study I and Study II, an additional strength

of this study was the detailed information on red meat consumption, which allowed

dividing the exposure into processed and unprocessed meat.

52



6.3 Added value to epidemiological methods

Among the public health disciplines, epidemiology is the one where methodology is

more relevant and occupies a role of primary importance (Saracci, 1999; Jewell, 2003),

and the constant need of methods development in epidemiology has been largely un-

derlined (Rothman et al., 2008). The last 50 years have seen a rapid worldwide growth

of epidemiological practice. However, the increased number of epidemiological studies

and the improved quality of collected data, have not been always accompanied by the

development of novel methods (Pearce and Merletti, 2006).

At the same time, epidemiologists are generally reluctant to accept novel methods,

and often prefer to rely on classical approaches, which are as established as they are

misused. Weed (2001) has described this common situation as a mismatch between

practice and theory. This wide gap between theory and practice indicates that newly

developed methods can not stand alone, but need to be accompanied by practical tools

to facilitate their assimilation, and by numerous practical examples illustrating their

use.

This thesis has attempted to move in this direction, easing the crossing between the

development of the method and its application. The percentile approach was applied in

epidemiological studies to address primary research questions, and the interpretation

and advantages of the approach were presented through the use of practical examples.

The simultaneous proceeding of the development of the approach and its application

in prospective cohort studies may be probably regarded as one of the main strength of

this work.

53



7. Final remarks

7.1 Future research

Nutritional Epidemiology

Results from Studies I-II, and III, have contributed to understand the overall effects

on health of lifestyle and dietary factors, but they are far from being the final word on

the examined topics. Study I largely confirmed the beneficial contribution of a regular

consumption of FV. Future studies might investigate the association between FV and

survival from cause-specific mortality, to assess the contribution of concurrent causes

of death to the reported results.

Study II showed an interrelationship between sleep duration and PA, suggesting

that the negative effects observed at high levels of sleep duration may be attributed to

comorbidity with low PA. This, however, remains an hypothesis and requires additional

studies to investigate these two lifestyle factors and their interaction in predicting mor-

tality.

Study III concluded that the negative effects of a regular consumption of red meat,

reported by different studies, might be largely due to the consumption of processed

meat. The conclusion that fresh red meat is not associated with harmful effects, how-

ever, is not supported by different researchers, physicians, public health officers, media,

and laymen. Further studies on the topic are definitely warranted to fully depict the

health-effects of red meat consumption.

Finally, a relevant topic that should be investigated are the health-related effects

of combined lifestyle factors. The survival percentile approach could be used to assess

the overall difference in survival between participants adhering to different health rec-

ommendations and participants who do not meet the recommended thresholds, thus

providing an overall estimate, in terms of survival time, of the benefits of an healthy

lifestyle.

Epidemiological methods

The studies presented within this doctoral thesis have only made a first step in

introducing the percentile approach in the epidemiological literature and in exploiting

some of its advantages. A first necessary goal for future research is to increase the

regular application of the method, to expand its dissemination and to understand its

limitations and the methodological aspects that need further development. Some of

the aspects that require further investigation can already be identified.

First, as common in methods dealing with quantiles, an important argument is
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to find the optimal tool to present the results. In epidemiology this issue is usually

more challenging, as it is common that the evaluation of a single exposure-outcome

association requires extensive analyses under different scenarios (e.g. multiple adjust-

ments, different modeling techniques, sensitivity analyses), and various results need

to be presented. To fully depict the association between the exposure of interest and

the survival distribution, the percentile approach would recommend each model to be

evaluated and presented at all observed percentiles, but this option may often turn out

to be unfeasible. In Studies I-II-III, for example, it was chosen to limit the results pre-

sentation to one single percentile, replicating the only main model at other percentiles

as an additional analysis.

Another objective for future research would be to provide a detailed comparison

between the percentile approach and other methods that can be used to derive time-

based measures of associations in the context of observational epidemiology, discussing

advantages and limitations of each method.

The statistical modeling of conditional survival percentiles also deserves additional

consideration. Laplace regression has been used throughout this thesis because of the

discussed advantages of this method. Nevertheless, the mathematical properties of

Laplace should be further investigated, and additional studies are needed to explore

its advantages, limitations, and the potentialities of the method in epidemiology. One

important issue is that Laplace, at the moment, is only available in the statistical

software Stata. The development of a SAS procedure and a R package to implement

the method would provide a considerably larger number of researchers to use this tool.

Finally, it should be stressed that all the presented advantages of evaluating survival

percentiles in epidemiology are not conditioned on using Laplace regression. Further

development of other methods to model conditional percentiles of censored outcomes

would certainly improve the potentialities of the percentile approach.

One important issue that has received little attention is the application and mean-

ing of the percentile approach when investigating specific outcomes whose occurrence

is not certain. Extensions of the method to other endpoints rather than all-cause mor-

tality does not represent a substantial methodological threat, but makes interpretation

of results less intuitive. In addition, when investigating the time to developing specific

conditions, one may need to take into account the presence of competing events. A

framework to evaluate survival percentiles in a competing-risk setting has never been

investigated.

When focusing on survival percentile, statistical associations could be also pre-

sented in terms of percentile ratios (Uno et al., 2014), which provide an estimate of
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the exposure-outcome association at the pth survival percentiles in relative terms. An-

other interesting aspect that future research might address is to use the properties

of the quantiles to develop a regression-based framework for estimating multivariable-

adjusted percentile ratios.

7.2 Conclusion

Our findings have provided significant contributions to understand the association be-

tween lifestyle factors and survival:

� A daily consumption of 5 servings/day of fruit and vegetables is associated with

the longest survival. Lower levels of consumption are associated with shorter

survival up to 3 years for individuals who do not consume fruit and vegetables

(Study I).

� Sleep duration below and above 7 hours per day are associated with progressively

shorter survival. However, the association between long sleep duration and sur-

vival might be partly explain by comorbidity between long sleep duration and a

low level of physical activity (Study II).

� Higher levels of red meat consumption are associated with shorter survival. How-

ever, the negative effects are largely due to the consumption of processed red

meat, as unprocessed red meat alone was not associated with shorter survival

(Study III).

The methodological studies have contributed to the development of the percentile

approach to time-to-event outcomes and have presented some of its advantages:

� The percentile approach provides a flexible method to evaluate the survival dis-

tribution, and to understand the link between the risk of experiencing an event

of interest and the time by which this is attained. The introduction of a statis-

tical technique to estimate conditional survival percentiles, and its extension to

evaluate percentiles of attained age at the event, has substantially enriched its

potentialities and allowed its application in epidemiological research (Study IV).

� Evaluating survival percentiles substantially contributes to the analysis of inter-

action, as it allows deriving a measure of additive interaction in the metric of

time (Study V).
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Appendix

Appendix I - Details on Laplace regression

Laplace regression aims to estimate the τth conditional quantile of Ti. A more general

form of the model introduced in (2.12) can be defined by also including the scale

parameter σ(τ):

ti = xTi β(τ) + σi(τ)ui (7.1)

Conditionally on xi, Ti is assumed to follow an AL distribution with probability density

function

f(ti|xi, σ, τ) = exp

[
I(ti ≤ xTi β(τ)− τ)

ti − xTi β(τ)

σ(τ)

]
τ(1− τ)

σ(τ)
(7.2)

and cumulative distribution function

F (ti|xi, σ, τ) = exp

[
I(ti ≤ xTi β(τ)− τ)

ti − xTi β(τ)

σ(τ)

]
(τ − I(ti > xTi β(τ)))+I(ti > xTi β(τ))

(7.3)

In the presence of censored observations, Yi is observed in the place of Ti and the

log-likelihood function, based on (7.2) and (7.3), can be written as proportional to

ln{β(τ), σ(τ)|yi,xi, δi} =
n∑
i=1

δi

{
(ωi − p)

yi − xTi β(τ)

σ(τ)
+ log

τ(1− τ)

σ(τ)

}
+(1− δi)ωi log

[
1− τ exp

{
(1− τ)

yi − xTi β(τ)

σ(τ)

}]
+(1− δi)(1− ωi)

{
log(1− τ)− τ yi − xTi β(τ)

σ(τ)

} (7.4)

where δi = I(ti ≤ ci) and ωi = I(yi ≤ xTi β(τ))

Estimation is then performed by maximizing the first derivatives of ln{β(τ), σ(τ)|yi,xi, δi}
with respect to β(τ) and σ(τ), which are

Sn{β(τ)} =
1

σ(τ)

n∑
i=1

xi

{
τ − ωi − ωi(1− δi)

τ − 1

1− F (yi|xi)

}
(7.5)
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Sn{σ(τ)} =
1

σ(τ)

n∑
i=1

[
yi − xTi β(τ)

σ(τ)

{
τ − ωi − ωi(1− δi)

τ − 1

1− F (yi|xi)

}
− δi

]
(7.6)

These equations do not have a closed form solution and an iterative procedure can

be adopted. The original paper introducing Laplace regression suggested to use an

algorithm proposed by Nelder and Mead (Nelder and Mead, 1965), and to complete

inference on the parameters by bootstrap. Recently, a gradient search algorithm for

estimating quantiles has been introduced and is currently adopted for the estimation

of Laplace regression (Bottai et al., 2015).

This algorithm, similarly to the Newton-Raphson, is based on the gradient of the

log-likelihood that generates a finite sequence of parameters values along which the

likelihood increases. It has a wide applicability, and it may be regarded as a general

algorithm for unconstrained optimization of any objective continuous, concave, and

first-order differentiable function. The algorithm has shown a remarkable computa-

tional speed, through a large simulation study.

Specifically, based on the Laplace-likelihood defined in 7.4, we can defined the gra-

dient

g(β(τ)) = −
n∑
i=1

xi(Iyi≤xT
i β(τ) − τ) (7.7)

that has the property of being equal to the first derivative of ln with respect to β(τ) at

all points of the parameter space. The algorithm searches the positive semi-line in the

direction of g(β(τ)) for a new parameter value at which the likelihood is larger, stop-

ping when the change in the log-likelihood is below a pre-specified tolerance threshold.

Koenker (2011) raised some concerns about the performances of Laplace regression,

which were largely addressed by the authors of the original paper (Bottai and Zhang,

2011). Laplace regression, like the majority of methods dealing with censored data,

presents a small bias. However, the method has a low mean squared error and different

studies have consistently showed its good performances in estimating regression param-

eters under different simulation scenarios (Bottai and Zhang, 2010; Bottai and Orsini,

2013; Bottai et al., 2015; Bellavia et al., 2015b). Laplace is, at the moment, the best

available technique to estimate conditional survival percentiles. Future methodological

studies are nonetheless recommended to optimize its performances and deeply explore

its mathematical properties.
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Appendix II - Stata Tutorial

The command laplace to fit Laplace regression models in Stata can be downloaded

and installed with the following code:

net install laplace, from(http://www.imm.ki.se/biostatistics/stata) replace

To illustrate the use of the command the dataset kidney ca will be used. This

dataset includes data from a clinical trial on 347 patients with metastatic renal carci-

noma, who were assigned to standard (interferon-α - IFN) or novel (oral medroxypro-

gesterone - MPA) treatment. The dataset can be downloaded and opened in Stata by

typing:

use http://www.imm.ki.se/biostatistics/data/kidney ca, clear

Dichotomous exposures

The main variables of the dataset are survtime, which represents the time to event or

censoring, in days, the failure status cens (0 = censored, 1 = death), and trt, a binary

variable indicating the assigned treatment. A total of 322 patients died during follow-

up (93%), so that it is possible to estimate, without data extrapolation, all survival

percentiles from the 1st to the 93th.

First, we fit Laplace regression models on the 25th, 50th, and 75th percentile of

survival, without including any covariate in the model.

T (p) = βp0 (7.8)

with p=(0.25, 0.50, 0.75).

These three models can be fitted in Stata by one single fit. Laplace models are

estimated by writing the command laplace followed by the outcome and eventual

covariates (none in this first example). The failure information and the desired quantiles

must be indicated among the options. The same results of this crude models can be

obtained by calculating survival percentiles from the Kaplan-Meier estimates of the

survival function (command stci, also reported).
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1. qui: stset survtime, failure(cens) scale(30.4)

. laplace _t, failure(cens) quantile(.25 .5 .75)

Laplace regression No. of subjects = 347

No. of failures = 322

Robust

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

q25

_cons 3.05922 .3233314 9.46 0.000 2.425502 3.692938

q50

_cons 7.960537 .6174112 12.89 0.000 6.750433 9.17064

q75

_cons 16.51316 1.156959 14.27 0.000 14.24556 18.78075

. stci, p(25)

failure _d: cens

analysis time _t: survtime/30.4

no. of

subjects 25% Std. Err. [95% Conf. Interval]

total 347 3.059211 .3939976 2.30263 4.01316

. stci, p(50)

failure _d: cens

analysis time _t: survtime/30.4

no. of

subjects 50% Std. Err. [95% Conf. Interval]

total 347 7.960526 .5702351 6.90789 9.17763

. stci, p(75)

failure _d: cens

analysis time _t: survtime/30.4

no. of

subjects 75% Std. Err. [95% Conf. Interval]

total 347 16.51316 1.410827 15.0658 20.8882

The first 25% of the study population experienced the event of interest after 3 months.

Median survival was equal to 8 months. After 16.5 months 75% of the population has

experienced the event of interest while 25% was still event-free.

1The stset command is included to change the unit of the time variable from days to months.
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We now model survival percentiles as a function of the assigned treatment, to

estimate PDs across treatment groups at the 25th, 50th, and 75th percentile.

T (p|trt) = βp0 + βp1 · trt (7.9)

with; p=(0.25, 0.50, 0.75). In Stata:

. laplace _t trt, failure(cens) quantile(.25 .5 .75)

Laplace regression No. of subjects = 347

No. of failures = 322

Robust

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

q25

trt 1.477664 .7145055 2.07 0.039 .0772591 2.878069

_cons 2.500004 .3734526 6.69 0.000 1.768051 3.231958

q50

trt 3.107737 1.220632 2.55 0.011 .7153415 5.500132

_cons 6.809208 .7192481 9.47 0.000 5.399508 8.218909

q75

trt 3.813401 4.01896 0.95 0.343 -4.063616 11.69042

_cons 15.88817 1.605474 9.90 0.000 12.7415 19.03484

The first 25% of events occur 1.5 months later in the treated group, while median

survival was delayed by 3 months.

This analysis can be extended by further adjusting for additional covariates. For

example, the dataset include information on baseline age (variable age), which can be

included in the model to estimate age-adjusted differences in survival percentiles:

T (p|trt, age) = βp0 + βp1 · trt+ βp2 · age (7.10)

p=(0.25, 0.50, 0.75). In Stata:
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. laplace _t trt age, failure(cens) quantile(.25 .5 .75)

Laplace regression No. of subjects = 347

No. of failures = 322

Robust

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

q25

trt 1.60993 .7489187 2.15 0.032 .142076 3.077783

age .0222974 .0350038 0.64 0.524 -.0463087 .0909035

_cons 1.164572 2.088221 0.56 0.577 -2.928266 5.25741

q50

trt 3.046283 1.218155 2.50 0.012 .6587419 5.433824

age -.0090226 .0627681 -0.14 0.886 -.1320458 .1140005

_cons 7.339 3.686768 1.99 0.047 .113067 14.56493

q75

trt 3.816384 4.261885 0.90 0.371 -4.536758 12.16953

age -.0185994 .1421905 -0.13 0.896 -.2972876 .2600888

_cons 16.95907 8.946016 1.90 0.058 -.5747974 34.49294

Adjusting for baseline age did not substantially change the treatment effect.

Continuous exposures

Inclusion of a continuous exposure in the model will implicitly assume that the rela-

tionships between the predictor and the estimated survival percentiles are all linear.

To relax this assumption and test for possible non-linear associations we can serve of

spline transformations with the Stata command mkspline and plot the dose-response

with the command xblc (Orsini and Greenland, 2011).

The kidney dataset includes information on the continuous predictor of blood

hemoglobin content (g/dl, variable haem), which is a possible predictor of survival.

The next Stata window shows how to estimate the age-adjusted association between

hemoglobin level and median survival (50th percentile), flexibly modeling the exposure

with restricted cubic splines, and plotting results with the median value of the covariate

as reference.
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. mkspline haems = haem , nk(3) cubic display

knot1 knot2 knot3

haem 9.7 12.3 14.7

. laplace _t haems* age, failure(cens) quantile(.5)

Laplace regression No. of subjects = 347

No. of failures = 322

Robust

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

q50

haems1 2.246168 .6158796 3.65 0.000 1.039067 3.45327

haems2 -.4479796 .994397 -0.45 0.652 -2.396962 1.501003

age .0534481 .0622114 0.86 0.390 -.068484 .1753801

_cons -21.01797 8.240127 -2.55 0.011 -37.16833 -4.867622

. qui levelsof haem

. qui xblc haems*, cov(haem) ref(12.3) at(`r(levels)´) line
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The graph shows that higher hemoglobin content was approximately linearly associated

with progressively longer median survival.
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