
 

DEPARTMENT OF MICROBIOLOGY, TUMOR AND CELL 

BIOLOGY 

Karolinska Institutet, Stockholm, Sweden 
 
 
 
 
 
 
 
 
 
 
 

NK CELLS AND MISSING SELF 
RECOGNITION: GENETIC CONTROL, 

MHC CLASS I DEPENDENT EDUCATION 
AND POTENTIAL USE IN CANCER 

THERAPY 
 
 
 

Stina L Wickström 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Stockholm 2015 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
All previously published papers were reproduced with permission from the publisher. 

Published by Karolinska Institutet. 

Printed by Universitetsservice US-AB 

© Stina L Wickström, 2015 

ISBN 978-91-7676-046-8 
 
The cover picture is drawn by Ronja Wickström 6 years old. 



 

NK CELL S AND MI SSING SELF RE CO GNITION: GENETIC CONTROL, 
MHC CLASS I DEP ENDENT EDUCATION AND POTENTIA L USE IN 
CANCE R THERAP Y 

THESIS FOR DOCTORAL DEGREE (P h.D.) 

 

By 

 

Stina L Wickström 

 
Principal Supervisor: 

Maria H Johansson 

Karolinska Institutet 

Department of Microbiology, Tumor and Cell 
Biology 

 

 
 

Co-supervisor(s): 

Klas Kärre 

Karolinska Institutet 

Department of Microbiology, Tumor and Cell 

Biology 
 

 
 

Hanna Sjölin 

Lund University 
Department of Experimental Medical Science 

Division of Immunology 

 
Opponent: 

Werner Held 
University of Lausanne 

Department of Ludwig Center for Cancer Research 
 

 
 

Examination Board: 

Yenan Bryceson 

Karolinska Institutet 

Department of Medicine 

Division of Center for Infectious Medicine 

 
Lisa Westerberg 

Karolinska Institutet 
Department of Microbiology, Tumor and Cell 

Biology 
 

 
 

Kristoffer Hellstrand 

University of Gothenburg 

Sahlgrenska Cancer Center at Institute of 
Biomedicine 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Till mina underbara barn Ronja och Emil 



ABSTRACT 
 

NK cells belong to the innate immune system and are important in the defense against virus 

infections and malignant cells. They mediate their effector functions via release of cytotoxic 

granules and by cytokine production which can influence the status of other (immune) cells. NK 

cells are regulated by germline encoded receptors, both activating and inhibitory, recognizing 

molecules that are induced upon infection or cellular stress and self ligands respectively. Ly49 

receptors (Ly49r) make up the largest NK cell receptor family in mice. It contains both activating 

and inhibitory receptors most of which bind to major histocompatibility complex class I (MHC I) 

molecules. NK cells patrol tissues and inspect surrounding cells for alterations in activating ligands 

and MHC I expression, balancing the input for decision of response. If the activation exceeds the 

inhibition, the target cell is eliminated. This ability to sense loss of self MHC I is referred to as 

missing self recognition. It can be directed against virus infected cells and tumor cells which often 

downmodulate MHC I, while they upregulate activating ligands. 

NK cells are educated via Ly49r-MHC I interactions to ensure self-tolerance and reactivity 

against aberrant cells. MHC I dependent education influences the NK cell population in at least two 

ways; modulation of responsiveness of each cell and skewing of the inhibitory receptor repertoire, i 

e the frequencies of NK cells expressing different combinations of Ly49r. The main aim of this 

thesis has been to study missing self recognition and MHC I dependent NK cell education and how 

these phenomena are influenced by different factors. 

In paper I, we characterized a genetic defect leading to Impaired Missing Self Recognition, in a 

mouse strain that we have termed IMSR mice. These mice had originally been developed by 

targeting a non-classical MHC gene, but the defect and the IMSR defect segregated independently. 

The IMSR mice were found to have a normal number of NK cells, which retained some functions, 

while missing self rejection and some activation pathways were partly or completely impaired. This 

defect was found to be NK cell intrinsic; it was not due to total lack of inhibitory receptors function, 

nor lack of MHC dependent education. 

In paper II and III we investigated how NK cells respond to altered inhibitory input from the 

environment in the host. Antibody mediated inhibitory receptor blockade was used as a tool to 

reduce the inhibitory input, which led to two different effects on the targeted NK cell populations 

1) increased in vivo elimination of MHC I
+ 

tumor cells without breaking tolerance towards normal 

healthy cells (paper II) and 2) induction of hyporesponsiveness i e reduced in vitro responsiveness 

or reduced capacity to eliminate MHC I
- 
spleen cells. Importantly, elimination of MHC I

- 
tumor 

cells was maintained. This was also investigated in an adoptive transfer model where the NK cell 

responsiveness could be either increased or reduced, depending on the MHC I expression in the 

recipient host (paper III). In conclusion, we found that NK cells can retune their responsiveness 

upon altered inhibitory input, but that responsiveness levels are adapted to healthy cells, still 

allowing efficient killing of tumor cells of the same missing self phenotype. 

In paper IV, we investigated whether skewing of the inhibitory receptor repertoire occurs 

already during NK cell development, before they reach the blood and the spleen. We found that the 

process leading to overrepresentation of NK cells expressing only one self MHC receptor is 

initiated during in the bone marrow already at the first NK cell developmental stage where 

inhibitory Ly49 receptors are expressed. This is most probably influenced both by selective 

proliferation and apoptosis. 
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1    INTRODUCTION 
 
1.1 THE DISCOVERY OF NATURAL KILLER CELLS AND THEIR 

REGULATION BY MHC GENES 
 

Natural Killer cells (NK cells) were discovered and described in 1974 by Rolf Kiessling, 

Hans Wigzell and Eva Klein after first having been being considered as “background 

noise” in assays searching for cytotoxic T cells in tumor bearing and normal individuals. 

They represented a new cell type detectable in non-immunized mice, with a rapidly 

occurring, natural in vitro cytotoxicity against YAC-1, a lymphoma induced by Moloney 

leukemia virus. (1). The follow up paper from the same group showed that these new 

cytotoxic cells could be found in mice from 3-10 weeks of age and were most abundant in 

the spleen (1-5% of spleen cells), although they could also be found in lymph nodes (LN) 

and bone marrow (BM) (2). They described their finding as follows: “We have found a 

spontaneously occurring cell with cytolytic activity against in vitro grown Moloney 

Leukemia cells. It is present predominantly in the spleen of normal, young mice with 

limited activity to be found in other lymphoid organs….. At present we can only conclude 

that the present killer cells have a morphology of small lymphocytes” cited from (1). 

Competition studies suggested that these new killer cells were mainly reactive against 

Moloney leukemia virus antigens (Ag). However, this was already proven to be incorrect 

by Herberman et al. the same year who in an independent but similar study in the mouse 

showed that natural cytotoxicity occurred against various tumor targets, not only virus 

induced (3). Both groups came to the conclusion that the cytotoxicity observed was not 

mediated by T cells, B cells or macrophages, nor was it likely to reflect so called antibody 

dependent cell mediated cytotoxicity (ADCC) (2, 4). These newly found cytotoxic cells 

were termed ”natural” Killer cells (NK cells) in the paper of Kiessling et al., a name 

originally suggested by Eva Klein. 

 

One of the first published studies on human NK cells by Pross et al. showed that natural 

cytotoxicity varied between different donors but was stable over time in the same 

individual. This study also suggested that the cytotoxicity of human NK cells can at least 

in part be mediated through ADCC, since removal of Fc receptor expressing cells and lack 

of antibody (ab) coating of target cells in some settings could abolish the natural 

cytotoxicity (4a).   A third paper from Kiessling et al. in 1975 investigated the genetic 

control behind the natural cytotoxicity and its correlation with tumor resistance in vivo. 

By injection of YAC-1 cells subcutaneously into several F1 crosses between A/Sn (from 

which YAC-1 cells had originated) and other mouse strains with different MHC I (H-2
a 

or 

H-2
b
) they found that rejection efficiency against tumors as well as levels of NK 

cytotoxicity were both controlled by genes linked to the H-2 locus. In 1977 the first 

connection between NK cells and radioresistant rejection of bone marrow (BM) grafts was 

published (5). It was known from before mainly through studies of Cudkowicz et al that 

F1  hybrid mice rejected not only completely allogeneic but also parental hematopoietic 

grafts via a poorly characterized mechanism that was radioresistant. The 1977 study 
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showed that mouse NK cells and BM graft resistance shared many common features; both 

phenomena emerged at the age of three weeks, both were quite resistant to total body 

irradiation, both were sensitive to depletion of cells in the bone marrow and both could be 

suppressed by repeated injection of parental spleen cells in to F1 hybrids. 

 

Already at this stage within five years of the discovery, speculations on the importance of 

NK cells in regulation of hematopoiesis and tumor surveillance were put forward. After 

that, the NK cell field became influenced by the mainstream interest in immunology at 

that time, and many studies addressed the capability of NK cells to produce and respond to 

different cytokines as well as their involvement and role in infections. However, the key 

principles behind their specificity remained elusive. 

 

In the 80´s Klas Kärre et al. postulated the “missing self” hypothesis to explain how MHC 

genes could control hybrid resistance mediated by NK cells. It was based on the 

assumption that NK cells expressed inhibitory receptors that recognized self MHC I 

molecules; when an NK cell failed to recognize some self MHC I molecules e g on a 

grafted parental bone marrow cell, this would lead to NK cell activation. NK cells would 

thus recognize “missing self”, rather than the presence of a foreign antigen. To further 

investigate and test the missing self hypothesis they showed that in vivo rejection of 

lymphoma cells was strongly dependent on the expression of syngeneic H-2 molecules: 

H-2
- 
tumor cell variants failed to grow in syngeneic mice while H-2

+ 
tumor cells seemed 

resistant to rejection (6). This phenomenon was T cell independent but NK cell dependent; 

an even stronger reduction of tumor burden was observed when H-2
- 
cells were inoculated 

into athymic nude mice, while they grew out when mice were NK cell depleted (7).  The 

missing self hypothesis was later further strengthened by studies of MHC I transfected 

tumor cells and MHC I transgenic mice, and most importantly, by identification of 

inhibitory MHC I specific receptors, both in mice (8, 9)and humans (10, 11). 

 
1.2   NK CELLS TODAY 

 

Today, we understand that NK cells belong to a special branch of the innate immune 

system  containing different types of innate lymphoid  cells  (further discussed  below) 

which can initiate a rapid immune response to viral infections and intracellular pathogens 

((12-17)(18)). NK cells are also important in tumor surveillance, in elimination of virus 

infected cells and reactions associated with hematopoietic grafts, such as host-versus-graft 

rejection and graft vs leukemia reactivity (19-22). In addition, they are of importance 

during reproduction: they accumulate in the maternal-fetal interface in the placenta and 

influence the development of the fetus, most probably by taking part in the regulation of 

angiogenesis and blood flow to the placenta (23). 

 

NK cells are characterized as bone marrow derived large granular lymphocytes that 

constitute about 3-5% of spleen cells in the mouse and 5-15% of human peripheral blood 

(24, 25). Cell surface markers are used to identify NK cells: they are characterized by 

absence of CD3, TCR and Ig in combination with expression of NK1.1 or Dx5 in mice, 
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and of CD56 in humans (26-28). In both species, NK cells can be identified by expression 

of NKp46 (however, NKp46 can also be expressed by other ILC populations, see below 

(29, 30). 

 

Natural Killer cells are found also throughout the body in different tissues, for example 

bone marrow, spleen, lymph nodes, liver, lung, pancreas, joints and placenta. They can 

display organ specific functions at different sites ((26, 27) and reviewed in (31, 32)). 

 

It is usually considered that two main criteria need to be fulfilled in order to classify a cell as 

part of the adaptive immune system 1) the receptor used to recognize the antigen should be 

generated by gene rearrangement and 2) the repertoire should be further selected by clonal 

deletion, survival and expansion and ultimately generate immunological memory. Each NK 

cell expresses a variety of receptors, both activating and inhibitory, and is regulated by a 

balance between these two different types of receptors (reviewed in (33)). NK cell receptor 

genes are germ line encoded, they do not go through rearrangement to achieve diversity and 

specificity, as required for assembling B and T cell receptors (reviewed in (34)).  Regarding 

the second criterion there is a debate in the NK cell field. The original view was that the 

whole (or most of the) NK cell population can be rapidly activated upon stimulation to 

mediate effector functions and proliferate, but without differences between subsets or clones, 

and without subsequent generation of immunological memory. They would thus give the 

same response in the second encounter with the same pathogen while B and T cells exhibit a 

much faster, more potent response during a secondary infection. But more recent studies, 

mainly in relation to virus infections, indicate that certain NK cell subsets can expand, 

resulting in long-lived effector cells that act more efficiently in a second encounter of the 

same pathogen (see section 1.10 below). However, NK cells are still usually referred to as 

being part of the innate immune system, since they do express several germline encoded 

receptors and the nature of their “memory” remains uncertain. 

 

NK cells mediate their effector functions through both contact dependent and contact 

independent mechanisms. Upon cognate interaction NK cells can directly lyse the target 

by delivery of continuously produced granules containing perforin and granzymes or by 

inducing apoptosis through death receptor mediated pathways such as Fas-L and TRAIL 

(35, 36) and reviewed in (37). NK cells do not express TRAIL except for an immature NK 

cell population in the liver which can exert function through TRAIL and also further 

develop to give rise to mature NK cells (38). NK cells can recognize and kill antibody 

coated targets through binding via the Fc receptor in the so called ADCC reaction (27, 

39). Upon activation, NK cells can secrete cytokines, chemokines and growth factors such 

as IFNγ, TNF-α, MIP-1α/β and GM-CSF. This can lead to direct control of infections. 

Alternatively, it can alter the immune response by activation and maturation other cell 

types (27, 40, 41). NK cells need several factors to be functional, such as IL-15, IL-12 or 

IL-18. There is evidence that IL-15 has to be presented by either macrophages or dendritic 

cells (42-44). 
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The last decades much more have been learned about the regulation of NK cell activity; 

activating and inhibitory receptors, NK cell education status, responses to and secretion of 

cytokines - both pro- and anti-inflammatory.  One, if not the most important, regulatory 

mechanism of NK cell reactivity is the “missing self” recognition. The molecular 

mechanisms behind this reaction are partly known, but they are far from clear and still 

under investigation. The NK cell research field today continues to search for and 

characterize basic features of the cells and their interactions with the environment, but 

attempts to exploit NK cell manipulation for clinical purposes have also started. 

 
1.3   NK CELL DEVELOPMENT 

 

The cells of immune system are called leukocytes and are all generated from hematopoietic 

stem cells in the bone marrow. The immune cells are further divided into a myeloid and a 

lymphoid cell lineage dependent on different developmental steps further discussed below. 

The adaptive immune system contains the B and T lymphocytes which are generated in the 

lymphoid cell lineage. These cells express antigen specific receptors and are called adaptive 

since they can give rise to a faster and more efficient  immune response upon a second 

encounter with the same antigen. The innate immune system contains several cell types, both 

of the myeloid and the lymphoid cell lineage. They express an array of germ line encoded 

receptors, some of which show a broader specificity. Examples of cells belonging to the 

innate immune system are macrophages, granulocytes, dendritic cells which are the main 

antigen presenting cells, with the power to activate and regulate the adaptive immune system, 

and NK cells. Development of hematopoietic cells occurs in the bone marrow and is divided 

into several steps, each phase controlled by cytokines, activation of transcription factors and 

interaction with stromal cells in the bone marrow. Different combinations of these factors 

contribute to the decision for the next differentiation step. Whether the development is 

completed when the cell exits the bone marrow depends on cell type, for example the NK cell 

is functional and ready while T cells need further development in the thymus. 

 
1.3.1  Commitment to the common lymphocyte linage 

 

The transition to go from pluripotent hematopoietic stem cells (HSC) to a committed 

lymphoid progenitor, ELP and CLP (early or common lymphoid progenitors respectively), is 

dependent on specific gene expression. Both ELP and CLP can give rise to all 3 lymphoid 

cell types; B, T and NK cells.(45, 46).  It has been shown that several transcription factors 

(TF) are important in this process. TFs important in the generation of lymphoid progenitors 

are the Ikaros and Ets families ((47, 48) and reviewed in (49-51)). The involvement of these 

transcription factors is indicated by the fact that Ikaros deficient mice lack all T, B and NK 

cells and that the loss of Ets-1 leads to the absence of NK cells in the bone marrow, lymph 

node and spleen while the family member PU.1 affects all lymphoid cells, although mainly B 

and T cells, and also the development of some myeloid cell types (52). The transition from 

ELP to CLP has been shown be at least partly regulated by Helix-loop-Helix (HLH) proteins 

which can act as both transcription activators and inhibitors. Mutant mice lacking an 

inhibitory Helix-loop-Helix protein, Id2, have no NK cells (53). 
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1.3.2  Commitment to the NK cell lineage 
 

The first identification of a committed NK cell progenitor was done in vitro: Lin
- 

CD3
- 

CD122
+
NK1.1

-
Dx5

- 
cells were shown to give rise to NK1.1

+ 
cells only but not to T or B cells 

(54).  These committed NK cell progenitors had transcripts for IL-15Ra chain, Ets-1, Id2 and 

GATA-3. GATA-3 is needed to achieve mature NK cells with Ly49r expression and proper 

function (55).  NK cells were suggested to develop via the following stages:  CD122
+
NK1.1

- 

Dx5
- 

- CD122
+
NK1.1

+
Dx5

- 
- CD122

+
NK1.1

+
Dx5

+
. Ly49 expression was acquired at the 

second stage and fully cytotoxic functions were achieved in the most mature population (54). 

 
More recently an additional intermediate step on the way from CLP to NKP has been 

identified (pre-NKP) and the definition of the NKP was refined (rNKP) (56). Pre-NKPs 

lacked CD122 expression but both pre-NKP and (r)NKP developed to functional Ly49 

expressing NK cells, but not to T or B cells, in vivo after transfer to an immune deficient 

host. 

 

In vitro cultures and the use of different knockout (KO) mouse strains, show the importance 

of several critical factors such as cytokines and transcription factors in the development of 

NK cells from CLPs. NK cell development and differentiation in vitro to a mature and 

functional cytotoxic cell requires cytokine cocktails in combination with stromal cell 

interactions (57-59). In vitro cultures with only cytokine supplements generated small 

amounts of cytotoxic cells but did not lead to Ly49 receptor expression or mature NK cells 

(see  below).  Mice  deficient  for  IL-2,  -7  and  -15  have  shown  that  these  cytokines  are 

important for NK cell maintenance and function but not for development per see, at least not 

at the early stage (60, 61). 

 
1.3.3  NK cell maturation 

 

When a pre-NKP has become an NKP, the NK cell has a long way to go before it becomes a 

mature and functional cytotoxic cell. This developmental process includes several 

intermediate stages, differently named by different investigators. Here the steps will be 

referred to as stage I-IV (classification by Yokoyama) (62), (see figure 1 for additional steps 

and combined nomenclature). These steps are defined by expression of cell surface markers, 

integrins and receptors, and selective proliferation ((62) and reviewed in (63)). Some of these 

markers are expressed transiently while others are permanently expressed. The first step is 

defined by expression of CD122 and approximately 10% of these NK cells express the 

activating receptor NKG2D (stage I) (61). This is followed by up-regulation of NK1.1 (NKR- 

P1c), the inhibitory receptor CD94/NKG2A and the death receptor TRAIL (stage II). All 

these markers are expressed on fully mature NK cells, except for TRAIL which is mainly 

found at stage II and III but can be up-regulated on mature NK cell after stimulation. At stage 

II, the integrin Mac-1 (CD11b) and CD43 start to be expressed initially at a low level that 

will increase with NK cell maturation. At stage III, Ly49 receptors are expressed together 

with the tyrosine kinase receptor c-kit and αv integrin. Stage IV is characterized by high 

expression of Dx5 (integrin α2), down-regulation of the integrin αv and NK cell expansion by 
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massive proliferation. In stage V, NK cells are fully mature with high expression of Mac-1, 

CD43 and full cytotoxic capacity. How different transcription factors such as GATA-3, T-bet 

and MEF regulate these maturation steps after commitment to the NK cell linage is not fully 

understood and will not be discussed here. 
 
 
 
 
 
 
 
 

HSC 

TF 

Ikaros 

PU.1 

 
 
 
 
 
ELP 

 
TF 

E2A 

 
 
 
 
 
CLP 
 

 
 
 
 

? 

 

 
 
 
 
 
 
 
 
TF 

Id2 

 

 

Pro- 

T cell 
 

 
Pro- 

B cell 

 

 

Pre NKP iNK mNK 
Maturation 

stages 
- NK 

I II+III IV+V 

 

Markers 

Il-7Rα 

CD244 

CD27 
NKG2D 

CD122 

TRAIL 

NK1.1 

NKG2A 

LY49r 

C-kit 

DX5 

MAC-1 

CD43 
 
 
 

Figure 1, Described in section 1.3.1-3, nomenclature according to Yokoyama and Di Santo 
 

 

1.3.4  Maturation based on CD27 and CD11b expression 
 

The late maturation process and the acquisition of functional competence can be further 

divided into sub-steps. NK cells can be divided in to 4 different subgroups based on CD27 

and Mac-1 expression (62, 64-66). CD27 is a member of the TNF super family and its 

expression has been shown to correlate with increased survival and maturity in T and B cells 

(67). Activation of NK cells through CD27 can induce cytokine production (68, 69) 

Macrophage-1 antigen (Mac-1, CD11b, Integrin αM) is an integrin expressed on several 

leukocytes and is important in several processes such as cell adhesion and migration (70). 
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Adoptive transfer together with gene expression analysis showed the following sequential 

maturation stages CD27
lo
Mac-1

lo  
(DN) – CD27

hi
Mac-1

lo  
– CD27

hi
Mac-1

hi  
(DP) – 

CD27
lo
Mac-1

hi 
(62). The ability to proliferate was highest in the DN subpopulation and 

decreased with every successive maturation step. The intermediate DP population is the most 

functionally  active  regarding  cytotoxicity,  cytokine  production  (IFNγ,  GM-SCF),  has  a 

greater proliferating potential and is the most migratory population responding to chemokine 

stimulation. Mac-1
hi 

but not Mac-1
lo 

expressing NK cells from bone marrow, spleen and liver 

produce IFNγ in response to cytokine stimulation (62, 66). The most mature NK cell 

population, CD27
lo
Mac-1

hi
, has an increased expression level of the self-specific inhibitory 

receptors Ly49C/I and KLRG-1 (an inhibitory receptor expressed on fully mature NK cells, 

for description see below) compared to cells from the other developmental stages. These fully 

mature NK cells have a low functional level e g poor cytokine production capacity, almost no 

cytotoxic function, low or no chemotactic activity and reduced proliferation. Hayakawa et al. 

speculate that the most mature NK cells may represent a long lived/senescent NK cell 

population due to the reduced proliferation (65). NK cell subsets based on CD27Mac-1 

expression also display different tissue distribution. Spleen and liver contain all maturation 

steps while the bone marrow and lymph nodes contain mainly immature and DP cells and the 

blood and lungs are mainly sources for fully mature NK cells. 

 
1.3.5  Innate lymphoid cells 

 

During the last years of research, a new branch of the innate immune system has been 

characterized, the innate lymphoid cells (ILCs) which earlier only comprised NK cells 

(reviewed in (71-73)). The innate lymphoid cells differentiate from a common lymphoid 

progenitor (CPL) in an IL-2 dependent manner and none of them express an antigen specific 

receptor. There are multiple systems suggested for how to group ILCs. According to the 

classification system by Diefenbach et al., there are four subgroups of ILCs; cytotoxic ILCs 

(NK  cells)  and  cytokine  producing  ILCs  (ILC1-3).  ILCs  are  mostly  located  at  barrier 

surfaces, such as in the interface of the intestine, were they protecting us from pathogen 

invasion. The innate lymphoid cells differentiate from a common lymphoid progenitor (CLP) 

(like T cell, B cells and NK cells) in an IL-2 dependent manner. It has been suggested that the 

ILCs develop from a common innate lymphoid progenitor (CILP), an intermediate step 

between CLP and pre-NKP/NKP (see fig 1). The subgroups of ILC1-3 are divided due to 

their  developmental  requirements  (expression  of  transcription  factors)  and  their  mature 

effector  functions.    ILC1  is  defined  as  NKp46
+
NK1.1

+
cells,  produce  IFNγ  (enhancing 

response against intracellular bacteria) and are found preferentially in the small intestine and 

liver. ILC2 express the IL-7 receptor, the IL-2 high affinity receptor CD25 and can stimulate 

a Th2 response by production of type 2 cytokines e g IL-4, -5, -9 and -13. ILC3 consists of 

many cell populations which express the transcription factor RoRγt, but differ in NKp46 

expression. A population of both ILC2 and ILC3 have the possibility to regulate T cell 

responses, ILC2 have a direct and indirect effect on TH2 responses via expression of MHC II 

molecules and via production of type 2 cytokine while the ILC3 can induce T cell anergy by 

expression of MHC II without any additional co-stimulatory receptors. In addition ILC3 can 



8  

produce several cytokines such as IL-17 and -22, and are important in immunity against 

extracellular bacteria. A recent study by T Kim et al. showed that the RoRγt
+ 

ILCs are 

important for creating a good stromal environment participating in the development and 

function (e g elimination by RMA-S in vivo) of NK cells (74). 

 
1.4   NK CELL RECOGNITION: MAJOR HISTOCOMPATIBILITY COMPLEX 

 

NK cells express activating and inhibitory receptors. Both categories include receptors that 

bind MHC I and receptors that bind to other ligands (75). Inhibitory NK cell receptors carry 

intracellular signaling motifs (immunoreceptor tyrosine based inhibitory motif, ITIMs), that 

transfer the inhibitory signal into the cell. The activating receptors lack intrinsic signaling 

motifs and depend on association with transmembrane adaptor proteins such as DAP12 and 

DAP10. These adaptor proteins carry different signaling motifs in their intracellular parts and 

transfer the activating signals into the cell. In the early 90’s the first MHC I specific receptor 

(Ly49A) and the NK cell gene complex (NKC) located on chromosome 6 were discovered in 

mice by Yokoyama and colleges (8, 76). NKC codes for many NK cell receptors, including 

the main receptor families Ly49 and NKR-P1 (8, 76).The molecules of the largest NK cell 

receptor family in mice, C-type lectin-like Ly49 receptors, recognize different alleles of 

MHC I (77). Both of these receptor families are type II transmembrane glycoproteins that 

belong to the C type lectin-like family. 

 

There is an extensive homology between the extracellular domains of the different Ly49 

receptors, e g almost 90% homology between the inhibitory Ly49A and the activating Ly49D 

receptor (both recognizing H-2D
d
; hereafter referred to as D

d
). However, they still interact 

differently with the D
d  

molecule (75). The main difference between activating and inhibitory 

receptors  is  in  the  intracellular  signaling  part  where  the  former  signal  via  the  adaptor 

molecule DAP-12 (via immunoreceptor tyrosine based activating motifs, ITAM) and the 

latter via ITIM (see below). The receptor family mediating the corresponding function in 

humans is the killer immunoglobulin-like receptors (KIR) which also contain both activating 

and inhibitory family members. This family can also be divided in two groups of receptors 

which differ in their cytoplasmic tail, short or long, and for which signaling is mediated via 

DAP12 or ITIM respectively (75b). 

 

To be able to understand how the NK cell function and responsiveness are influenced by 

MHC I interactions, the MHC will be briefly discussed with focus on parts important for this 

thesis. The major histocompatibility complex (MHC) is called histocompatibility-2 (H-2) in 

mouse and human leukocyte antigen (HLA) in humans. It contains three sets of genes; class I, 

II and III, and is located on chromosome 17 in the mouse and 6 in the human. Mice have two 

or three MHC Ia loci; K, D and some strains also express L. The equivalent genes in humans 

are; HLA-A, -B and –C. Examples of non-classical MHC Ib genes in the mouse are Qa-1
b

 

and in human HLA-G, -E and MICA and B. MHC I molecules are expressed on almost all 

cell types at various levels and presents mainly intracellularly derived peptides for cytotoxic 

T cells while MHC II is expressed on antigen presenting cells such as dendritic cells and B 

cells (upon activation) and their major task is to present extracellular peptides to T helper 
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cells. MHC I is subdivided into class Ia and Ib where Ia is called classical and Ib is called 

non-classical MHC I; both subclasses are important for NK cell education and proper 

function. 

 

The MHC I molecule is composed of one membrane anchored α-chain that non-covalently 

associates with shorter β2-microglobulin (β2m) subunit encoded outside of the MHC complex 

(on chromosome 3 in mouse and 12 in human). For a MHC I molecule to be presented on the 

cell surface the α-chain needs to be associated with a β-chain and the complete molecules has 

to be loaded with a peptide. Cells lacking the β-chain express only very low levels of unstable 

MHC I molecules. MHC I molecules are loaded mainly with peptides from intracellular 

proteins which are transported from the cytoplasm into the endoplasmatic reticulum (where 

the MHC I molecule is assembled) by the protein transporter associated with antigen 

processing (TAP). Cells deficient for TAP, such as the RMA-S line used in this thesis, also 

express low levels of MHC I. 

 

MHC is one of the most polymorphic chromosome regions leading to an enormous variation 

between individuals. This variation increases the number of antigen peptides that can be 

presented at the population level, resulting in a higher chance that the species will survive 

infections with different pathogens. Different inbreed mouse strains carry different MHC 

haplotypes (genotypes). This makes it possible to study influence of allelic variation with 

known differences. For this thesis, mice carrying different genotypes for MHC I have been 

used (Table 1). 
 

Other molecules related to MHC molecules but not encoded in the in the MHC region are the 

CD1 molecules. The CD1 family molecules, as MHC I, associate with β-chain but present 

glycolipids for NKT cells, T cells with a invariant T cell receptor and expression of some NK 

cell markers. 

 
 

Table 1. Mouse strains, MHC I molecules and Ly49r relevant for this thesis 

 

Mouse strain 
 

Haplotype/ molecules expressed 
 

Educating receptor 
 

B6 H-2
b
; K

b 
and D

b
 

 

Ly49C and I 
 

IMSR (B6) H-2
b
; K

b 
and D

b
 

 

Ly49C and I 

β2m
-/- 

and TAP 
-/-

 H-2
b
; low levels expressed 

 

(Ly49C and I) 

K
b 

single H-2
b
; K

b
 

 

Ly49C and I 

D
d 

single H-2
b
; D

d
 

 

Ly49A, and G2, 
 

D8 H-2
b
; K

b
, D

b 
and transgenic D

d
 

 

Ly49A, G2, C and I 
 

129 H-2
b
; K

b 
and D

b
 

 

Ly49I (V and O)* 
 

*Tetramer binding has been demonstrated but if they are also educating is unknown. 
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1.5   NK CELL RECOGNITION: RECEPTORS 
 
1.5.1  Inhibitory NK cell receptors 

 
1.5.1.1   Ly49, KIR and NKG2 families 

 

As mentioned above, activating and inhibitory Ly49 receptors belong to the C type lectin-like 

receptor family. The NK gene complex code for 8-18 different Ly49 genes, depending on 

mouse strain, with extensive allelic polymorphism (8, 78, 79). Most of the genetic studies 

were performed in B6 and 129 mice (80, 81). The 129 and B6 mice (used as wild type, wt, in 

many studies) share some genes and alleles but they also possess strain specific genes. Some 

alleles have occurred through duplication (79). The B6 genome codes for ten Ly49 receptors, 

eight of which are inhibitory, Ly49A,-B, -C, -E, -F, -G2, -I, and –J. Two of these genes 

encode for activating receptors, Ly49D and –H, which are described in the next section (82, 

83). All receptors are not expressed on all NK cells, the Ly49 genes are expressed 

independently of each other on different subpopulations of NK cells in an overlapping 

fashion, creating a diversified NK cell repertoire (84, 85). The inhibitory receptor consists of 

two  disulfide-linked  homodimers,  each  with  a  cytoplasmic  tail  containing  ITIMs  that 

transfers the signal in to the cell (77). The best characterized inhibitory Ly49 receptors are 

Ly49A and Ly49G2) both binding to D
d
, and Ly49C, binding to K

b  
(86, 87). A number of 

studies have addressed how Ly49r bind to MHC I and to which allele(s) each receptor binds. 

Hanke et al. studied Ly49r specificity using cell-cell adhesion assays in combination with 

MHC I/peptide tetramer staining (88). Only Ly49C and -I interacted with H2
b 

products while 

five Ly49r bound to H2
d  

products, including Ly49A and G2  which is of importance in this 

thesis. However, there are conflicting data regarding whether Ly49A can bind also to K
b 

(88- 

90). 

 
In humans, the highly polymorphic killer cell immunoglobulin like receptor (KIR) family 

encodes monomeric receptors recognizing MHC I. The activating KIRs have a short (S) 

cytoplasmic tail while the inhibitory have a long (L) cytoplasmic tails (containing 2 ITIM 

motifs), which is reflected in the terminology, e g KIR2DS1 or KIR2DL1. These receptors 

are completely lacking in mice while only one Ly49 pseudogene has been found in humans 

(33, 91, 92). 

 

Different inhibitory Ly49r and KIRs recognize different MHC I alleles, making it possible for 

certain NK cells to react on down-modulation of one specific MHC I molecule in missing self 

recognition (see discussion below) (82, 88, 93-95). In order to recognize and bind to MHC I 

molecules, Ly49 receptors require that a peptide is bound in the MHC I pocket inducing the 

correct conformational structure (96). Ly49 receptors are not peptide specific in the same way 

as the T cell receptor but there are data suggesting that some Ly49r can display selectivity, i e 

some peptides are non-permissive for K
b  

recognition by Ly49C and I (89, 96, 97).The 

binding affinity of Ly49 to MHC I molecules may be influenced by carbohydrates on the 

MHC molecules, but this probably does not alter the binding specificity (98, 99) 
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CD94/NKG2A, which also belongs to the C-type lectin like family, represents a third type of 

receptor recognizing MHC I molecules. The CD94 and NKG2 genes are genetically linked 

and are expressed both in mice and humans (100-104).  Both the murine and human genome 

contain several genes for NKG2 receptors, A, C and E in mice and A, C, E and F in humans, 

but only NKG2A is coding for an inhibitory receptor (101, 103-107). The CD94 molecule 

can be expressed as a homodimer, without the capability to bind Qa-1 or HLA-E or mediate 

intracellular signaling, or together with a NKG2 molecule (104, 108). CD94/NKG2A is a 

disulfide-linked heterodimer with allelic variation (109-111). The NKG2A receptor monitors 

the MHC I expression by binding non-classical MHC I molecules, Qa-1 and HLA-E (102, 

108, 112, 113) in mice and humans respectively. Qa-1 and HLA-E present peptides from the 

leader sequence from some but not all MHC I alleles in a TAP-dependent manner (114, 115). 

In wild type (wt) B6 mice, Qa-1 presents peptides derived from D
b 

but not from K
b
. 

CD94/NKG2A presents a second layer of MHC I recognition. Why has evolution preserved 

two modes of inhibitory MHC I recognition? It could be that CD94/NKG2A can sense only a 

broader loss of MHC I since it can bind to leader sequences from several MHC I molecules, 

while Ly49r can sense a delicate change in MHC I expression where only one out of several 

MHC I is down-regulated. Both alternatives have been observed in different unhealthy 

settings, e g in certain viral infections or by tumors, indicating a requirement for both. The 

NKG2A system might have evolved first, but it was not enough and therefore an extra layer 

of surveillance was added. However, in the B6 mice the Qa-1-NKG2A system is the only 

system surveilling loss of the D
b 

MHC I molecule since no Ly49r bind strongly to D
b 

in the 

B6 mice (88). 

 
NK cells also express inhibitory receptors recognizing other ligands than MHC I ligands. The 

NKC on chromosome 6 contains genes coding for three receptor families of C-type lectin- 

like transmembrane glycoproteins, Ly49r and NKG2/CD94 described above and the NKR-P1 

gene family (9, 81, 116, 117) The NKR-P1 family is polymorphic and in B6 mice, it consists 

of NKR-P1A , -C, - B/D and –F. Only the NKR-P1A gene has been found in humans (118- 

123). Other mouse strains encode for additional NKRs. The B6 strain code for NKR-P1B
B6

 

(or sometimes referred to as NKR-P1D) (124). (120). Both NKR-P1B and-D are inhibitory 

and recognizes Ocil/Clr-b, which is also a C-type lectin-like transmembrane glycoprotein 

encoded in the NKC. It is expressed on a wide array of hematopoietic cells: myeloid cells, T, 

B and NK cells but not on erythrocytes (121, 122, 125). There have been speculations 

regarding the importance of the NKR-ligand interaction as an additional MHC independent 

missing self system, see section 1.9.3 . 

 
1.5.1.2   KLRG1 

 

KLRG1, Killer cell lectin like receptor 1, is expressed on murine and human NK cells and on 

activated T cells (126, 127). In the mouse, KLRG1 belongs to the family of C-type lectin like 

receptors encoded on the same chromosome but distal to the NK cell gene complex 

containing the Ly49r and NKR-P1 receptors. It is expressed as a monodimer that can use 

disulfide bonds to create di-, tri- and tetramers on approximately 30-50% of the NK cells 
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(128, 129). In NK cell biology, KLRG1 is considered a maturation marker since it is 

expressed on fully mature, CD27
lo
Mac-1

hi 
NK cells, which are less cytotoxic and less prone 

to proliferate, but respond to cytokine stimulation with e g IFNγ production. However, 

KLRG1 is not needed for normal NK cell development and maturation (66, 130) . KLRG1 

can be acquired upon homeostatic or virus induced proliferation (131, 132). KLRG1 binds to 

classical cadherins (E, N and R) which are expressed on epithelial cells and are used for cell- 

cell contacts. Cadherins are sometimes downregulated in tumors, possibly to avoid infiltration 

of immune cells (133). Early studies displayed contradictory results regarding the influence 

of KLRG1 on NK cell function. Gründemann et al. showed that target cells expressing high 

levels of E-Cadherin did not inhibit the killing of the target by IL-2 activated NK cells (133). 

On the other hand, other groups showed that blocking of KLRG1 restores killing of targets 

expressing  E-cadherin,  and  that  antibody  crosslinking  of  KLRG1  can  inhibit  IFNγ 

production, hence indicating an inhibitory function of KLRG1 (134, 135). Furthermore it has 

been reported that it signals via ITIMs recruiting SHIP-1 and SHP-2 upon phosphorylation 

(136). 

 
1.5.1.3   The SLAM family member 2B4 

 

The  murine  and  human  2B4  receptors  were  discovered  by  screening  of  monoclonal 

antibodies that would activate NK cells (137, 138). The 2B4 receptor belongs to the SLAM 

(signaling lymphocytic activation molecule) receptor family and is composed of two Ig-like 

domains and a cytoplasmic tail containing four specific signaling motifs (immunoreceptor 

tyrosine-based switch motif, ITSM) which defines the common signaling pathway used by 

the SLAM-receptor family (see section 1.7.4) (139, 140). 2B4 is expressed on almost all 

immature and mature NK cells, both in mice and humans, and it binds to CD48 which is 

constitutively expressed  on  all  hematopoietic cells  (137,  138,  141).The  SLAM  receptor 

family is mainly important in recognition of hematopoietic target cells which express their 

ligands (142). 

 

In mice, and maybe also in humans, 2B4 can mediate activating as well as and inhibitory 

signals. Some data indicate that it may be mainly inhibitory since blocking of 2B4 can lead to 

increased tumor control, and NK cells from 2B4 deficient mice have displayed increased 

function against CD48 expressing targets (137, 143). 

 
1.5.2  Cell surface molecules involved in NK cell activation 

 

One of the first discovered and most studied activating NK cell receptors is the low affinity 

receptor for IgG, the CD16 (FcγRIII) first described on mouse NK cells by Kumar and 

colleagues (39, 144). It is a glycoprotein belonging to the Ig superfamily. CD16 binds to the 

Fc part of antibodies and can thereby mediate ADCC. This is a function that connects the 

innate and adaptive immune system, since it allows the NK cells to kill target cells labeled for 

destruction by specific antibodies produced by B cells. This function is likely responsible for 

at least part of the effects when monoclonal antibodies against tumor cells are used in cancer 

treatment. 
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1.5.2.1   Activating NK cell receptors 
 

As mentioned above, the Ly49 receptor family also includes activating members, Ly49D and 

–H in B6 mice. The Ly49D receptor associate with DAP12, containing ITAM signaling 

motifs,  and is therefore capable of inducing cytotoxicity after antibody induced ligation or 

binding to its ligand D
d 

(145). Other activating Ly49r (not expressed in the B6 mouse) are, 

Ly49P and –W, which also interact with H-2
d 

(146, 147). The Ly49H receptor expressed in 

B6 mice recognize the protein m157 expressed on cells infected with the murine 

cytomegalovirus (MCMV) (148-150). This protein is encoded in the virus genome and 

resembles MHC I in structure. It is possible that it has evolved as an immune evasion 

strategy, since the m157 also binds to the inhibitory Ly49I in other mouse strains such as 129 

mice. 
 
The NKR-P1 family introduced above also contains activating receptors (119, 120, 123). 

NKR-P1C is an activating receptor with yet no known ligand, but it’s recognized by the 

NK1.1 antibody and frequently used as a marker for NK cells in the B6 mouse strain. 

 

There is also a group of receptors that has mainly been studied in humans, the natural 

cytotoxic receptors (NCR). In humans this “family” consists of four members. NKp30, 

NKp46 and NKp80 are expressed on resting human NK cells while the fourth member, 

NKp44, is expressed only on a subset of NK cells upon IL-2 activation, as reviewed in (151). 

It has been reported that at least NKp30, NKp46 and NKp44 can trigger cytotoxicity against 

both tumor and virus infected cells (152). This effect is mediated through recognition of 

different ligands or epitopes; NKp30, NKp44 and NKp46 recognizes viral hemagglutinins 

from several virus strains but intracellular proteins are also recognized, such as HLA-B 

transcript 3 by NKp30 (153, 154) and reviewed in (155). NKp44 has been shown to bind to 

ligands that are up-regulated during HIV infection leading to lysis and spreading of the virus. 

 

Biassoni et al. discovered a new gene encoding for a murine homologue to the human NKp46 

and termed it MAR-1. It has later been renamed to NKp46 (156). It is the only NKR 

homologue found in mice so far. At least in mice, NKp46 is expressed early in NK cell 

development and it is present on almost all mature NK cells (156). (29). NKp46 is an 

activating receptor. (156). It is important for resistance against some viral infections and 

tumors, through binding to Hemgglutinins and unknown ligands respectively (154, 157). The 

third MHC I binding C-type lectin-like receptor family mainly contains activating receptors, 

the heterodimers CD94/C, -E (and in humans also –F) and the homodimer NKG2D. In mice 

and human, NKG2C (and –E in mice) associates with the intracellular adaptor molecule 

DAP-12 to mediate intracellular signaling (104, 158-160). NKG2D has been extensively 

studied. It recognizes molecules that are up-regulated on cells by stress and it is essential for 

resistance against some experimental cancers, through activation of NK cell mediated 

cytotoxicity (19, 161, 162). This activating receptor is expressed on almost all mouse and 

human NK cells and it is encoded by a non-polymorphic single gene (101, 163). NKG2D is 

distinct from the other NKG2 family members by several criteria, for example it is expressed 

as a homodimer. In mice, the NKG2D receptor exists in 2 isoforms, NKG2D-L (long) and 
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NKG2D-S (short). NKG2L is mainly associating with the adaptor molecule DAP-10 while 

the NKG2D-S isoform is transcribed after activation and can associate with both DAP-10 and 

DAP-12 (164, 165). It is thought that DAP-10 mainly mediates cytotoxicity while NKG2D 

DAP-12 signaling leads to both high cytotoxicity and cytokine production (166).  Human NK 

cells only express the NKG2D-L isotype which mediates both cytotoxicity and cytokine 

production by signaling through DAP-10 (167, 168). 

 

In mice, NKG2D recognize several glycoprotein as ligands; retinoic acid early inducible-1 

(Rae-1) isoforms α, β, γ, δ and ε, murine ULB-binding like transcript-1 (MULT1) and 

histocompatibility 60 (H60) (169-171). These ligands are induced by Toll like receptor 

signaling, virus infection or products generated via the heat shock and DNA damage pathway 

(in response to for example irradiation), leading to expression on many tumor cells, 

strengthening the relevance of NKG2D activation by cellular stress (172), reviewed in (173, 

174). 
 
In humans, NKG2D binds to ligands in a group of proteins called ULBP (up to six variants) 

and 2 ligands encoded by the MHC complex,  MHC I chain-related proteins A and B, MICA 

and MICB (175, 176). These ligands has also been shown to be up-regulated through the 

DNA damage and heat shock pathway upon cellular stress and cell transformation (reviewed 

in (177). 

 

NKG2D ligands, both in mice and human, have been found in a soluble form. The relevance 

of these is not totally clear, however recent studies in mice have shown that Rae-1g and 

Mult1 in soluble forms in certain situations can mediate an enhanced anti-tumor effect (171, 

178). 
 

 

1.5.2.2   Adhesion molecules and NK cell function 
 

In addition to the receptors discussed above, different adhesion molecules such as DNAM-1 

and LFA-1 are important in regulating NK cell functions. In mice, DNAM-1 (adhesion 

molecule and activation receptor DNAX accessory molecule 1) is expressed approximately 

on 50% of the NK cells and recognizes CD155 (Poliovirus Receptor, PVR) (386). DNAM-1 

is involved in regulating NK cell cytotoxicity against tumor and virally infected cells (179, 

180). In addition, the expression of DNAM-1 correlates with the NKs cell educational status, 

i e inhibitory input and responsiveness, implicating a role for DNAM-1 in NK cell education 

(181). LFA-1 (Leukocyte function-associate antigen-1) recognizes ICAM-1, -2 and -3. The 

latter are up-regulated on endothelial cells during the early inflammatory response, making it 

possible for the leukocyte to attach and “roll” as a first step for entering the infected tissue. 

LFA-1 is necessary for signaling through the activating co-stimulatory molecule DNAM-1. 

This was shown by using NK cells from patients with a deficient β1 integrin (leukocyte 

adhesion syndrome). These NK cells had deficient DNAM-1 mediated cytotoxicity that could 

be rescued by restoring the LFA-1 cell surface expression by genetic reconstitution. 
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1.5.2.3   Activating receptors are used simultaneously in combination 
 

Many of the activating NK cell receptors have been suggested to be co-receptors since they 

need to be activated simultaneously with another type of receptor in order to lead to proper 

activation for cytotoxicity and cytokine production in resting cells (182). Human resting NK 

cells have a restricted regulation of their activation compared to IL-2 pre-activated NK cells. 

In experiments with IL-2 activated human NK cells all receptors tested (CD16, NKp46, 

NKG2D, 2B4 and DNAM-1) could induce in vitro cytotoxicity independently of other 

receptors.  Resting  NK  cells  on  the  other  hand  required  co-signaling  through  pairs  of 

activating receptors to induce cytotoxicity or cytokine secretion. It was observed that the 

activating receptors synergize in different constellations, i e most of them did not enhance 

function of all of the other receptors. (182-184). No receptor tested in the study could by itself 

induce NK cell response, with exception of the CD16 receptor. Bryceson et al. suggested the 

term co-activation receptors to describe these receptors that can only function in synergistic 

pairs. 

 
1.6   NK CELLS AND TARGET CELL ELIMINATION 

 

When an NK cell meets a potential target the contact surface that is formed between the two 

cells is called the immune synapse. This formation facilitates receptor interaction and 

signaling. If the NK cell decides to eliminate the target a lytic hit will occur in the synapse, 

mediated by release of cytotoxic granules containing perforin and granzymes. When a 

cytotoxic granule is released from the NK cell to the interaction interface, the vesicle and 

plasma membrane fuse, leading to exposition of molecules on the NK cell surface, including 

lysosomal- associated membrane protein-1 (LAMP-1). LAMP-1 (CD107a) is often used as a 

marker of NK cell mediated degranulation in different functional assays (185). 

 
1.7   NK RECEPTOR SIGNALING PATHWAYS 

 
1.7.1  Activating receptor signaling pathways 

 

In this section I will present an overview of the signaling pathways mentioning some of the 

main players and principles, reviewed in (166, 186-189). 

 

The majority of the activating receptors (such as Ly49r, CD16, NKR-P1C and NKp46) need 

to associate with adaptor molecules to be stably expressed and to be able to signal. All 

receptors do not associate with all adaptor molecules. The adaptor molecules DAP12, CD3 

and FcεRI-γ contain ITAMs in their cytoplasmic tail. Upon activation and receptor 

crosslinking, the two tyrosines (Y) in the ITAM motif (YxxL-x6-8-YxxL) become 

phosphorylated by Src family kinases (Fyn, Lck, Src, Yes, Lyn and Fgr), and act as docking 

sites for Syk family kinases (manily Syk but also Zap70). Activation of Syk family kinases 

lead to triggering of downstream signaling via phosphatidylinositol-3-OH kinase (PI3K) and 

Vav-2/3, phospholipase C-γ PLCγ (PLCγ-1 and 2) and the adaptor protein growth factor 

receptor-bound protein 2 (Grb2). Activating signaling results in proliferation, cytokine and 

chemokine production and cytoskeleton rearrangements needed for cytotoxic granule release. 
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NKG2D preferentially associates with DAP10 carrying a different signaling motif, YINM 

(YxxM). It has been suggested that DAP-10 signaling is initiated by phosphorylation via 

either Src family kinases or by the kinase Jak3. After phosphorylation, the short cytoplasmic 

tail of DAP-10, containing one signaling motif, can recruit two signaling molecules; (Grb2) 

and the phosphatidylinositol-3-OH kinase (PI3K) via the binding site p85. Signaling through 

both molecules are needed for full activation (maximal Ca
+  

influx) but since their binding 

sites overlap only one of them can bind at the time. Only the Grb2 pathway (via Vav-1) can 

by itself trigger cytotoxicity. Studies using mutations in the different binding sites for Grb2 

and p85 has led to the conclusion that Grb2 signals through vav-1, SLP-76 and PLC-γ2. 
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Figure 2, Activating NK cell signaling described in 1.7.1 and 2 
 
 
 

 
1.7.2  DNAM-1 and LFA-1 signaling 

 

An interesting signaling pathway involves the DNAM-1/LFA-1 constellation. When the 

DNAM-1 receptor is activated by crosslinking, it is recruited to lipid rafts and tightly bound 

to the cytoskeleton in the immune synapse (190). Crosslinking also induces phosphorylation 

of the intracellular domain by protein kinase C (PKC) which makes it possible for DNAM-1 

to associate with LFA-1 (191, 192). The DNAM-1-LFA-1 association is necessary for 

DNAM-1 signaling; there is reduced DNAM-1 cytotoxicity in patients with leukocyte 

adhesion deficiency syndrome (191). After association LFA-1 recruits the Src kinase Fyn that 
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helps to phosphorylate another binding site on DNAM-1 leading to signaling via SLP-76, 

Vav-1 and PLCγ2. It has been speculated whether DNAM-1 may be involved in the synapse 

formation since it binds both to the cytoskeleton and the adhesion molecule LFA-1. 

 
1.7.3  Inhibitory receptor signaling pathways 

 

The largest families of inhibitory receptors in mice and humans are the Ly49 and KIR 

families respectively, reviewed in (166, 186, 193). Ly49 receptors mediate their inhibitory 

signal by being within a close distance to the activating receptor signaling molecules. 

Crosslinking of the inhibitory receptors themselves leads to weak phosphorylation (activation 

of the signaling motif) while simultaneous crosslinking of inhibitory receptors and activating 

receptors lead to a higher degree of phosphorylation. Phosphorylation of ITIMs 

(V/IxYxxL/V) is probably dependent on Src family kinases. Phosphorylated ITIMs on Ly49r 

serve as a docking site for two SH2 domain containing protein tyrosine phosphatases 

(deactivators), SHP-1 and SHP-2, (194) but can also recruit the lipid phosphatase SHIP- 

1(166). Ly49r preferentially associate with SHP-1/SHP-2 while KLRG1 mainly recruits 

SHIP-1 (136). After recruitment of phosphatases to ITIM motifs, they may inhibit NK cell 

effector function and proliferation via dephosphorylation of proteins important in NK cell 

activation. Vav-1 has been shown to be one of the main targets for dephosphorylation since it 

is a key component in many activating signaling pathways. Further, ITIM mediated inhibition 

in human NK cell results in two separate inhibitory mechanisms 1) SHP-1 targeting Vav1 for 

dephosphorylation  and  2)  tyrosine  phosphorylation  of  Crk  (195).  Crk  in  complex  with 

another molecule are involved in actin organization in the synapse. There are speculations 

regarding if this phosphorylation and loss of complex formation might lead to reduced actin 

synapse formation. 
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Figure 3, inhibitory NK cell receptor signaling described in 1.7. 3-4 

 

 

1.7.4  The SLAM family member 2B4; activating or inhibitory? 
 

2B4, like other SLAM family members, has four tyrosine-based ITSM in its cytoplasmic tail 

and can mediate both activating and inhibitory function. 2B4 can recruit several signaling 
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molecules that belong to the SLAM-associated protein family (SAP) and contain a SH2 

domain. In mice, three different signaling molecule recognize the ITSM: SAP, EAT-2 

(Ewing´s sarcoma-activated transcript-2) and ERT (EAT-2 related transducer), although ERT 

has been shown to only be expressed in cytokine activated NK cells (196, 197). There are 

conflicting data regarding when 2B4 has an activating or inhibitory function and how this 

process is regulated in mice. Further, human 2B4 is thought to be mainly activating and 

express only SAP and EAT-2 (183). 

 

There are data showing that both SAP and EAT-2 can promote activation in two ways; by 

further activate the signaling cascade and by blocking the access for inhibitory signaling 

molecules (SHIP-1) to bind to the cytoplasmic tail and thereby initiating inhibition (196, 

198). Upon 2B4 ligation, ITSM becomes phosphorylated probably by a Src kinase which 

enables recruitment of SAP and/or EAT-2. SAP recruits Src family protein tyrosine kinase 

Fyn (via SH3 domain binding to SAP via an arginine at position 78 (SAP-78). Activation of 

Fyn leads to phosphorylation of Vav-1. Activation of SAP is important for increased 

conjugate formation,  cytotoxicity and  cytokine production  (142,  198).  However,  EAT-2 

mediate activation via PLCγ2 and Ca
+  

signaling to accelerate polarization and release of 

cytotoxic granules (196). 

 
There are data showing both inhibitory and activating functions of 2B4. Chlewicki et al. 

showed that loss of 2B4 signaling, either via blocking or in KO mice, leads to increased 

elimination of target (RMA-S CD48
+
) cells and increased IFNγ production (199). However, 

Dong et al. and Pérez-Quintero et al. have shown that the different functions of 2B4 depend 

on if the target is of hematopoietic origin or not, that lack of functional SAP or EAT-2 leads 

to reduced killing (of CD48
+ 

targets) and IFNγ response compared to wt NK cells (142, 196, 

198) 
 
Chlewicki et al. proposed a dual regulatory function of 2B4, in both mouse and men, and that 

the outcome is determined by several factors: receptor expression, level of crosslinking and 

the amount of available adaptor molecules (SAP) (199). Data indicated that SAP may be the 

limiting and controlling factor in the system. The authors speculated that if there is too much 

crosslinking of 2B4, there will not be enough SAP to bind and block 2B4 interaction with 

negatively signaling adaptors ( SHIP-1), mediating an inhibitory signal. This would function 

as a mechanism to protect healthy cells expressing CD48 from elimination. Loss of 2B4- 

CD48 interaction has been observed to result in NK cell dependent in vivo and in vitro killing 

of syngeneic NK cells (200). A recent study provided evidence for 2B4 expression on many 

dendritic cell (DC) subtypes and that the 2B4-CD48 interaction between DC-NK cells 

influences the NK cell activity. DC from 2B4 KO mice induced a higher in vitro 

responsiveness upon co-culture (201). 

 

As will be discussed later in this thesis, NK cells may adapt to “abnormal” signaling input in 

various knockout mice by retuning of their activation threshold. Interpreting results from 

knockout mice may thus be very difficult. How deficiencies in some of these molecules, 
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important in activation or inhibitory pathways, affect the NK cell pool and functions will be 

further discussed in the results and discussion section in relation to the IMSR mice. 

 
1.8   LY49 NK CELL RECEPTOR REPERTOIRE FORMATION 

 
1.8.1  General pattern of Ly49r expression 

 

As mentioned above, mice carry eight or more Ly49 genes (8, 78, 79). Each MHC I specific 

receptor, Ly49 and CD94/NKG2A, is expressed on individual NK cells in an overlapping, 

partly stochastic fashion. Thus, individual NK cells may express from zero to several Ly49 

receptors, the common range being one to five (84, 202-204). Different Ly49r recognize 

different MHC I alleles, but since the genes for receptors and ligands are located on separate 

chromosomes (6 vs 17) they are inherited independently. This means that individual NK cells 

can express receptors specific for non-self MHC I allele, and sometimes only such receptors, 

i e they lack receptors for self MHC I. The same principle is true for the human KIR receptor 

system (389) and as I will discuss below this has implications for the development and 

function of NK cells. Regarding receptors, their expression and importance for NK cell 

education, I will from hereon only discuss the murine system, since that is of highest 

relevance for this thesis. 

 
1.8.2  Ly49 receptor acquisition 

 

NK cells start to express the CD94/NKG2A receptor at development stage II (NK1.1
+
) and 

they proceed to express Ly49 inhibitory receptors at stage III (c-kit
+  

αv  
+
). Once Ly49r 

become appear on the NK cell, the expression pattern is stable over time (62, 95, 205, 206). 

 
Little is known about the forces that drive the process of receptor acquisition. It has been 

shown in vitro that CD94/NKG2A expression can be achieved by differentiating NK cell 

progenitors by cytokine stimulation (207, 208), while initiation of Ly49 receptor expression 

needs additional undefined signals from interaction with bone marrow stromal cells (209). 

The critical signal for induction of expression of Ly49r is not known but IL-15 has been 

suggested to play a role. In one study of IL15 deficient mice, both the NK cell number and 

the Ly49 expression could be rescued by administration of exogenous IL-15 (210). On the 

other hand, there are data from two groups showing that NK cells development can still 

proceed in the absence of IL-15. Although these studies revealed that the NK cells from these 

mice are of a less mature phenotype (Mac-1
lo 

and CD43 
lo
), the NK cells had normal Ly49 

expression levels (Ly49A, -G2 and D) and effector functions (cytotoxicity and cytokine 

production) (61). 

 
1.8.3  Allelic expression of Ly49 genes 

 

As mentioned in the beginning of this section, MHC I specific receptors are expressed in a 

partly stochastic pattern. All individuals possess two alleles for each gene - one on each 

homologous chromosome. It has been shown for both Ly49A, -C and –G2, that in almost all 

NK cells, only one of the two alleles is expressed (211, 212). This was first observed by Held 

et al. who initially termed this process “allelic exclusion” (213).   They showed that the 
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process did not involve termination the expression of all Ly49 alleles on the same 

chromosome, it was rather affecting each locus independently (213). Among NK cells 

expressing only one Ly49A allele, the frequency of the allelic expression was divided equally 

between the two chromosomes. In addition, it was also seen that expression from both alleles 

could occur (for Ly49A and G2 but not for C), and that the frequency of the bi-allelic 

expressing cells was close to the frequency obtained by multiplying the mono-allelic 

frequency. Held et al. suggested two models for how this can occur: 1) “independent control” 

meaning that this process could be regulated by several “trans-acting factors”, each regulating 

the expression of a separate Ly49 gene, and every “trans-acting factor” would be active 

during a limited time frame in the sequential order of receptor acquisition or 2) “competitive 

control”, all genes are controlled by the same set of factors but some/one of these “trans- 

acting factors” could be in limited access leading to competition accounting for that only one 

allele is expressed. The ordered expression (to be further discussed below) could be due to 

that different Ly49 genes are only available during a limited time period due to differences in 

their promoters (213). 

 

The second model would result in lower levels of the Ly49 receptors compared to unlimited 

access of regulatory factors. This has been shown for Ly49A, for which the level of 

expression depends on the transcription factor TCF-1. In mice heterozygous for TCF-1, the 

NK cells display approximately a 50% reduction in Ly49A expression compared to TCF-1 

homozygous mice, indicating that the transcription factor is the limiting factor (214). Further, 

TCF-1 deficient mice have alterations in their Ly49r defined NK cell repertoire in a MHC I 

independent manner. TCF-1 seems to activate transcription of  Ly49A and –D (reduced 

expression in TCF-1 β2m
-/-  

mice) while suppressing expression of Ly49G2 and –I, leaving 

Ly49C unaffected (214, 215). 
 
It is still unknown if there is monoallelic expression and if so which mechanism(s) control it. 

The “competitive control” hypothesis fits best with the additional discoveries that have been 

made. There is an emerging field studying different promotors, bi-directional transcription 

and if there is any common transcriptional factor used at low level to ensure monoallelic and 

reduced Ly49r expression but no such TF has been found. However, it has been shown that 

the expression pattern is depending on multiple promoter regions of which some are 

bidirectional. Independent of underlying cause, epigenetic mechanisms such as DNA 

methylation has been shown to preserve the established monoallelic expression (216). An 

interesting finding is that monoallelic expression might be influenced by MHC I expression 

(217). It is not known if this leads to important functional consequences, however it is of 

interest if MHC I has a third effect on the NK cell pool. 

 
1.8.4  Ordered and stable Ly49 gene expression 

 

Regardless of the mechanisms activating the expression of Ly49r, there is evidence that the 

different loci become expressed in an ordered fashion. To study this, two different approaches 

were used with slightly different but not necessarily conflicting outcomes. Early transfer and 

in vitro (stroma cell culture) experiments showed that CD3
-
NK1.1

+ 
NK cells could generate 
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Ly49G2,-C/I and -F expressing NK cells, in that order, while Ly49A expression was only 

observed when CD3
-
NK1.1

- 
precursors were used, indicating that Ly49A commitment 

occurred before NK1.1 expression (205, 209). Ly49 receptors were thus expressed in the 

order of Ly49A-Ly49G2-Ly49C/I. Two models were suggested to explain this; 1) either the 

genes are expressed individually in a sequential fashion starting with expression of only 

Ly49A and then proceeding as stated above or 2) initially all genes are on, but their 

expression is terminated in an ordered way, losing the ability to express Ly49A first and in 

the end genes for only Ly49C/I can be activated. 

 
In the second approach, RT-PCR of RNA was used to identify the kinetics of Ly49 receptor 

expression on NK cells in in vitro culture (84). The result from this study showed that 

receptors could be detected in “sets”. The first set is CD94, -NKG2A, -C and Ly49B, 

expressed in all analyzed NK cell clones. This group was followed by early Ly49r, Ly49G2 

already at day 4 and Ly49C/I begun to be expressed at day 4-7. The group of Ly49A, -D, -E 

and –F was observed later, at day 21. So, here the expression order was Ly49G2, Ly49C/I 

and ending with Ly49A, different from the results reviewed above (84). Analyses of gene 

expression of NK cells in late cultures revealed that some clones expressed for example 

Ly49D but not Ly49C or –I indicating that all genes are not expressed at the same time (84). 

This approach is more a direct study on the actual gene expression, so it is possible that the 

Ly49 genes are transcribed in a different order compared to the order of cell surface 

expression. 

 

In addition to the knowledge regarding the ordered pattern of inhibitory Ly49 receptor 

expression, Smyth et al. showed that Ly49H and -D are expressed after inhibitory Ly49r 

expression in a non-random fashion e g they are often co-expressed and even at a higher 

frequency on NKG2A negative cells (218). 

 

Regardless of order of expression or mechanisms controlling activation of NKG2A and 

specific alleles of Ly49 receptors, several studies have shown that once a gene/allele for 

receptor expression is activated the expression of that receptor is stable over time. This has 

been shown both in vivo in the periphery after transfer (both NKG2D and Ly49r) and in vitro 

in IL-2 cultures (Ly49r) (95, 205, 206, 219). The regulation of Ly49 transcription has still not 

been thoroughly elucidated, but a complex regulation system is emerging, involving multiple 

promoter regions of which some are bidirectional, as well as epigenetic mechanisms to 

maintain expression (220). 

 
1.9 MHC I REGULATED NK CELL EDUCATION; A PROCESS WITH AT LEAST 

TWO CONSEQUENCES 
 

It is now established that MHC I molecules of the host influence the NK cell pool in at least 

two different ways: 1) by shaping the NK cell repertoire such that NK cell subsets expressing 

1-2 self-specific inhibitory receptors become overrepresented and 2) by determining the NK 

cell responsiveness at the single cell level. These processes are called repertoire skewing and 
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“licensing” or “arming/disarming” respectively. These two outcomes together represent 

combined NK cell education and will be discussed below. 

 
1.9.1  Skewing of the NK cell repertoire 

 

The first real evidence for host MHC I influence on the NK cell repertoire was published by 

Held et al. (221). I They compared Ly49A, C and G2 either expressed separately or in 

combination on spleen NK cells from H-2
d
, H-2

b 
and MHC I deficient mice. The major 

alterations in Ly49 receptor expression were found among the subsets expressing two or three 

receptors. NK cells from MHC I deficient mice had approximately a 3 fold higher fraction of 

cells co-expressing Ly49A/C or Ly49A/G2 compared to NK cells from H-2
d 

mice. A reduced 

number of single receptor-expressing NK cells were also observed, but it was not as 

pronounced. These early data suggested that there is an MHC I-dependent process specific 

for sharpening the self-specific inhibitory receptor repertoire which disfavors multiple 

receptor expressing cells (thereby decrease the average no of Ly49 receptors/cell). This 

phenomena is called “skewing of the NK cell repertoire”, where repertoire refers to the 

different NK cell subsets expressing 0-5 inhibitory receptors (204, 221). It should be noted 

that this was at the time studied with limited antibody panels. Today, it is possible to do a 

more complete analysis with slightly different or at least refined conclusions, as discussed 

below. 

 

This general pattern was confirmed by Salcedo et al. studying Ly49A, -C and -G2. They 

observed a reduction of each respective Ly49r in the presence of its cognate MHC I ligand 

(222). An interesting finding in this paper was that very limited amount of MHC I expressed 

on TAP-deficient (both MHC I deficient) was sufficient to introduce skewing of the NK cell 

repertoire. This was shown by a higher frequency of Ly49C expressing cells in NK cells from 

β2m-deficient mice compared with TAP-deficient mice (TAP
-/- 

have a slightly higher MHC I 

expression then β2m
-/-

). 

 
To explain how repertoire skewing could appear, the Raulet group postulated 2 models; “the 

two step selection model” and the “sequential model”. Both these models are built around the 

theory that each NK cell must express at least one self-specific inhibitory receptor to ensure 

self-tolerance. However, it is now known that this assumption is incorrect since NK cells 

expressing no inhibitory receptor for self MHC I have been described.  Skewing may not be 

important for self-tolerance but both models in modified form can still explain the observed 

pattern. However, skewing may nevertheless be important to shape the NK cell repertoire, 

perhaps to ensure existence of sufficiently many NK cells that can selectively recognize lack 

of a specific MHC I allele. 

 
1.9.1.1   The selection model 

 

The selection model postulates that the Ly49 receptor expression starts with a stochastic 

process where each individual NK cell switches on expression of one or a number of 

inhibitory receptors, some being self-specific, others lacking a self MHC I ligand in the host. 

Each NK cell would then go through two steps of selection, similar to T cell selection, with a 
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positive selection step to secure that the NK cell recognize self MHC I by expressing at least 

one self-specific inhibitory receptor to achieve self-tolerance (for how self-tolerance is 

established see education section 1.9.2 ). The second selection step, negative selection, would 

eliminate cells with many self-inhibitory receptors, to ensure that the NK cell have a 

functional repertoire that can sense loss of MHC I alleles in an efficient way. 

 
1.9.1.2   The sequential model: 

 

The selection model suggests that the developing NK cell adds expression of one receptor at 

the time in a sequential, but random fashion. After each round (of new receptor expression) 

the NK cell tests the MHC I mediated inhibitory signal sensed on cells in the environment. If 

the signal is too weak or missing, the NK cell will be allowed to express additional Ly49 

receptor followed by a new signal control step. When the MHC I inhibitory interaction is 

strong enough the process is terminated. This theory would ensure self-tolerance since the 

cell would continue this process until at least one self-specific receptor is expressed and the 

co-expression of self-specific inhibitory receptors would be minimized due to prevention 

from expressing additional receptors. 

 
1.9.1.3   Comparison of the two models 

 

Several  studies  have  been  performed  to  establish  the  mechanism  that  controls  MHC  I 

dependent skewing of the repertoire. Held et al. used Ly49A transgenic mice expressed on H- 

2
d
, H-2

b 
and MHC-deficient background and studied expression of Ly49A, -G2 and -C (223). 

The major effect of the Ly49A transgene on expression was observed in the endogenous 

Ly49G2/A population where the expression was significantly reduced (~3 fold) in H-2
d 

mice, 

moderately reduced in H-2
b 

and unchanged in MHC I-deficient mice. All strains still showed 

Ly49G2/A co-expression and Ly49C expression was almost unaffected in all strains. Further, 

endogenous Ly49A RNA levels were reduced in H-2
d 

but not in MHC I deficient mice upon 

transgenic expression. These data are in favor of the selection model since the sequential 

model states that if strong inhibition is mediated all additional receptor acquisition will be 

stopped. The transgenic mice continued to express endogenous Ly49A and –G2 at reduced 

levels and Ly49C at almost normal levels which could be allowed in the selection model 

since Ly49C is a non-self-specific receptor in H-2
d 

mice. 

 

As described above, Williams et al. cultured NKPs on stromal cells to achieve Ly49 

expression and analyzed the gene expression profile (via PCR) of NK cells after 4, 7 and 21 

days in culture. This in vitro study showed that the Ly49 receptors were acquired in a 

sequential fashion and not all expressed at once.(84). 

 

Two in vivo studies showed evidence for regulation of the Ly49 receptor repertoire according 

to the sequential model using either transgenic mice or several mouse strains expressing 

different MHC I alleles. Fahlén et al. generated Ly49A, -C and Ly49A/C transgenic mouse 

strains on several H-2 backgrounds. The most clear cut data were obtained in the Ly49C 

transgenic mice on H-2
b 

background (224).  Ly49G2, -D and A were all down-regulated on 

NK cells in these mice despite lack of ligands for Ly49G2 and-D and presence of only a 
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weak Ly49A ligand in these mice. These results are consistent with a sequential model since 

the total receptor expression is reduced while, according to the selection model, non-self- 

specific inhibitory receptors would be allowed at a normal frequency. 

 

Hanke et al. studied co-expression of the NK cell Ly49 receptor on NK cells from eight 

congenic mouse strains in correlation to MHC class deficient mice (225). This study is one of 

the first analyzing several Ly49 receptors separately, which was possible due to the 

development of monoclonal antibodies specific for Ly49I and -F. The results indicated that 

all MHC I alleles examined, have an impact and influence the skewing of the NK cell 

repertoire. Co-expression was reduced even in the presence of MHC I ligand for only one of 

the receptors, favoring the sequential model for repertoire skewing. 

 

More recent studies have been performed by members of our group. In the first, two in silico 

models were developed; one to simulate the two-step selection model and one for the 

sequential model. The models were designed to simulate receptor repertoire formation in four 

different single MHC I gene expressing mouse strains; K
b
, D

b
, D

d 
and L

d
. The results were 

fitted to expression of Ly49A, -C, -G2 and -I in MHC I deficient mice and modeled for three 

of these receptors at a time (226). The data were then compared with actual expression of 

receptors on NK cells from these mouse strains, as determined by antibody staining and 

analysis by flow cytometry. The data confirmed that Ly49AG2 co-expression was reduced in 

in D
d 

and L
d 

mice but not in K
b 

and D
b 

mice lacking the ligand for these receptors. 

Interestingly it was found that the fraction of NK cells expressing a single self-specific 

inhibitory receptor was increased. When the experimental data was compared with the 

probabilities generated in silico, the modeling according to the two-step selection model 

predicted the outcome with a higher score. 
 

Brodin et al. generated single MHC I hemizygous and homozygous D
d 

single transgenic mice 

where the former expressed approximately 50% of the D
d 

levels observed in the latter.  The 

increase in D
d  

levels resulted in ~50% reduction of Ly49Asp (single positive, negative for 

Ly49C, -G2, -I and NKG2A) indicating an MHC I dose dependent regulation of the Ly49 

receptor expression (204). All other receptors were expressed at the same level in both 

transgenic mice. Furthermore, the expression of D
d 

skewed the NK cell repertoire by 

enriching for NK cell subsets expressing one to two self-specific receptors (but negative for 

all the other receptors) while reducing the frequency of NK cells expressing three-five self- 

specific inhibitory receptors in comparison to NK cells from MHC I deficient mice. The 

Ly49Asp NK cells showed an MHC I dose dependent reduction in apoptosis and increased 

sensitivity to cytokine stimulation compared to MHC I deficient mice. 

 

The study also provided information on MHC dependent influence on NK cells expressing 

the activating Ly49D receptor, also recognizing the D
d 

molecule. NK cells expressing Ly49D 

without any additional inhibitory MHC receptors are thus potentially autoreactive in D
d 

mice. 

Ly49D single positive cells (negative for inhibitory Ly49r and NKG2D) had an increased 

frequency of staining positive for the apoptotic marker Annexin V compared to MHC I 

deficient mice. This suggested that apoptosis could be the mechanism to eliminate potentially 
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self-reactive  NK  cell  subsets.  In  conclusion,  the  study  confirmed  and  expanded  the 

knowledge regarding MHC I dependent regulation of the NK cell repertoire by selecting 

against cells co-expressing self-specific inhibitory receptors. Further, data indicated that 

proliferation and apoptosis could be mechanisms regulating the observed skewing of the NK 

cell repertoire. 

 

Taken together these data show that MHC I expression regulates the NK cells receptor 

repertoire, perhaps to enrich for the subsets that may be most efficient in detecting lack of a 

single MHC I allele. The exact mechanisms regulating the process are still not known. All 

studies mentioned above have been performed on mature NK cells from the spleen, except 

for the PCR analysis of RNA expression performed on NK cells generated from NKP cells. 

These studies do not reveal if the skewing phenomenon is a peripheral mechanism (due to 

interactions and signals in mature cells) or if it occurs in the bone marrow during NK cell 

development. In addition, the possible processes involved in regulation of the skewing such 

as proliferation and/or apoptosis, is unknown. This topic was further studied in paper IV. 

 
1.9.2  Acquisition and control of NK cell responsiveness and NK cell 

tolerance 
 

Early in vitro and in vivo studies show that lack of MHC I is enough to render otherwise 

normal cells sensitive to NK cell mediated killing. These studies also showed that NK cells 

from an MHC  I deficient host are self-tolerant to MHC
- 
but otherwise normal cells, although 

they still have the capacity to kill other types of targets cells (227-230). These findings raised 

questions regarding how NK cells become self-tolerant towards normal cells. A term 

frequently  used  in  discussions  regarding  NK  cell  education  is  responsiveness. 

Responsiveness is defined by the NK cell’s capability to respond to activating signals through 

degranulation or cytokine production, where low and high responders are called 

hyporesponsive and hyperresponsive/responsive respectively 

 

As reviewed in the previous section, the first hypotheses explaining how NK cells achieve 

tolerance towards self-postulated that all NK cells express “at least one” self-specific 

inhibitory receptor, thus autoreactive NK cells should not exist but should have been deleted 

or adapted to express a self-specific receptor. With the development of techniques and 

antibody reagents, making it possible to co-stain for all known MHC I specific inhibitory 

receptors on the same NK cell, the “at least one” model could later be proven incorrect. NK 

cell subsets lacking expression of any MHC I self-specific inhibitory receptor were 

demonstrated  and  studied.  However,  already  during  the  90’s  the  question  was  raised 

regarding if autoreactive NK cells actually were irreversibly deleted, since they could be 

detected in certain situations. 

 

MH Johansson et al. showed, already in 1997, dynamic features for NK cell tolerance using 

D
d  

transgenic B6 mice “DL6”, in which the transgene was inherited as a single dominant 

gene, but showed a mosaic expression pattern. Between 20-70% of the cells in these mice 

expressed the D
d 

transgene (231). NK cells from these mice were tolerant in vivo towards H- 
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2
b  

bone marrow grafts but rejected MHC I deficient targets. In vitro tolerance for self was 

broken upon short separation time of D
d+  

vs D
d- 

NK cells in vitro, leading to killing of D
d- 

cells by the D
d+ 

NK cell population. This indicated that the autoreactive cells are still present 

and that there may be a need for constant exposure to MHC ligand deficient cells to set and 

retain tolerance. 

 
A new era in the research on NK cell education was initiated in parallel by the Raulet and 

Yokoyama laboratories using the possibility to study potentially autoreactive NK cells at the 

single cell level. Both laboratories published similar results showing that NK cells without a 

self-specific inhibitory receptor exists and that they are self-tolerant. Although the data were 

quite similar, two different hypotheses regarding how this self-tolerance is achieved were 

presented (see below). 

 

Fernandez et al. showed by cell surface staining that there exists a subpopulation 

(approximately 10% of the total NK cell pool) of NK cells in B6 mice which do not express 

any known MHC I self-specific inhibitor receptor and do most probably not express an 

unknown self-specific receptor (203). This population was defined by the lack of expression 

of Ly49C/I/NKG2A- (CI/NKG2A-) while the population expressing self-receptors in B6 

mice (Ly49C/I/NKG2A
+
) was called CI/NKG2A

+
. This NK cell subpopulation was self- 

tolerant and responded poorly (almost as bad as MHC I deficient NK cells) in cytotoxicity 

assays against YAC-1, and β2m-deficent Con A blasts compared to CI/NKG2A
+ 

NK cells. It 

also showed a reduced IFNγ production in response to various in vitro stimuli such as YAC- 

1, RMA-Rae-γ, β2m
-/-

-Con A blasts, as well as a weak response to antibody crosslinking of 

activating   receptors,   such   as   NK1.1   and   Ly49D.   In   other   words,   it   displayed   a 

hyporesponsive phenotype. However, the subset could still mediate function after positive 

stimulation   with   PMA   and   responded   to   Listeria   stimulation   indicating   that   this 

subpopulation has the capability to respond at least in some situations.  The CI/NKG2A
- 

NK 

cell subset had a normal phenotype regarding expression of other receptors and maturation 

markers. A decrease in KLRG1 expression, similar to what has been observed in MHC I 

deficient mice, was observed. The authors put forward a hypothesis stating that NK cells, 

during development and inhibitory receptor acquisition, interact with cells in their 

environment which influence the responsiveness of the NK cells. The model was termed the 

disarming model. It states that an NK cell is responsive by default and to remain responsive it 

needs to receive an inhibitory signal via a self-specific inhibitory receptor. If the NK cell 

lacks such receptors and signals it will become hyporesponsive by an active process to ensure 

self-tolerance. 

 

On the other hand Kim et al. suggested a hypothesis for NK cell self-tolerance called the 

licensing model (202). It postulated that all NK cell are non-functional /unlicensed from the 

beginning and upon interaction between an NK cell expressing self-specific inhibitory 

receptor and cognate MHC I molecules functional competence and a licensed state is 

conferred to the NK cell. Thus, NK cells without a self-receptor are self-tolerant by nature 

and those who are not potentially self-autoreactive receive the license to kill due to inhibitory 
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receptor interaction. This hypothesis was based on data showing that NK cells expressing 

self-specific inhibitory receptors, both in two different wild type mouse strains and in two 

transgenic mouse strains expressing only one MHC class I allele, display an increased IFNγ 

response after antibody crosslinking of activating receptors compared to the same NK cell 

population from an MHC I deficient host. Furthermore, NK cells expressing a modified 

Ly49A receptor with an ITIM mutation in H-2
d  

mice failed to mediate an increased IFNγ 

production upon stimulation, suggesting that the licensing signal might be dependent on the 

inhibitory Ly49 receptor itself, in this case Ly49A. Yokoyama and colleagues suggested that 

licensing may occur through activating signals by Ly49 receptors in an ITIM dependent, but 

a SHP-1 independent, way which results in a functionally responsive NK cell. 

 

These two pioneering papers in the field of immune cell education changed the whole NK 

cell research in several ways, both the view on NK cell development and the way by which 

investigators analyze the NK cell pool. 

 

A third model is “the rheostat model” was postulated by Petter Höglund and colleagues (232- 

234). It states that responsiveness in NK cells is not a fixed and absolute state (on or off), 

instead it is a dynamic quantitative feature that can change over time to adapt or retune to the 

host environment by monitoring the balance between activating and inhibitory input. 

According to the rheostat model, NK cells receiving stronger inhibitory signals will achieve 

higher responsiveness. Strong inhibitory signals could be due to expression of an inhibitory 

receptor for a MHC I allele with high educating impact: some MHC I alleles are better than 

others at educating NK cells and tuning up NK cell responsiveness. Strong inhibitory signals 

could also be due to co-expression of multiple inhibitory receptors actin in synergy. This 

highly responsive NK cell population will be able to respond with multiple functions, 

degranulation (CD107a) and cytokine production (e g IFNγ), and also have a stronger 

response per cell (i e produce more IFNγ). 

 

This model was suggested based on old and new findings. Early studies regarding NK cells 

and self-tolerance have shown that this mechanism is reversible. As mentioned above, MH 

Johansson showed in the 90ths that when the MHC I environment is altered the NK cell can 

change and reset its capability to eliminate a specific target cell type. 

 

Further S Johansson et al. showed that NK cell education is influenced by both the quality 

and the quantity of inhibitory signaling in the NK cell (235). This was shown by using several 

mouse strains expressing a single MHC I allele and measuring the MHC I educating impact 

by in vivo rejection of MHC I deficient targets. Rejection, i e the reactivity of the NK cell 

population, was not only influenced by the impact strength of MHC I molecules but also by 

the frequency of NK cell expressing a receptor for the MHC I allele. Later, it was shown by 

the same authors that each Ly49r have a broader capacity than previously expected to bind to 

different MHC I alleles influencing the responsiveness of the NK cell. By studying in vitro 

responsiveness of specific NK cell subsets from mice expressing only one specific MHC I 

allele they observed that single positive NK cells, for either Ly49A,-C,-G2 or-I, in four 

different  single  MHC  I  expressing  mouse  strains,  displayed  a  higher  frequency  of 
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degranulation after stimulation compared to MHC class I deficient mice. This indicated that 

all of the inhibitory receptors had interacted with all MHC I alleles leading to acquired 

responsiveness though licensing. 

 

This concept was further proven by Brodin et al. by correlating the amount of inhibition to 

the responsiveness at the single cell level. NK cells receiving a higher degree of inhibitory 

input, either by expressing several inhibitory receptors or by coming from an animal 

expressing several MHC I educating alleles, showed increased degranulation or IFNγ 

response (233). Using D
d 

hemizygous and homozygous mice the same authors also showed 

that NK cells expressing a single inhibitory receptor from homozygous mice with a higher 

expression of a strong MHC I educating allele had an increased responsiveness and capability 

to respond to activating stimuli with several functions, such as degranulation and cytokine 

production, compared to the same NK cell subset from a hemizygous animal. This indicated 

that the expression levels of an MHC I allele directly controls the NK cell function and 

responsiveness. The rheostat model states that the NK cell education depends on the quantity 

of inhibitory input. The net balance between the inhibiting and activating signals will 

determine the responsiveness i e NK cells receiving strong signals will be able to respond 

strongly with several functions compared to NK cell receiving a weak signal. Furthermore the 

system is tunable over time, dependent on how much inhibitory signals an NK cell perceives. 

 

As previously described, MHC I influences the Ly49 inhibitory receptor repertoire by 

skewing the repertoire enriching for subsets expressing one or two self-specific inhibitory 

receptors. However, the inhibitory receptor KLRG1, not recognizing MHC I, is also 

influenced by MHC I expression but in a different manner than the Ly49 receptors, i e there 

is a higher frequency of NK cells expressing KLRG1 in the educated (Ly49r
+
) NK cell 

population (128, 204). One of the first studies on murine NK cells and KLRG1 showed that 

the expression was up to 3 fold reduced in MHC-deficient mice (β2m
-/-

, Tap
-/-

, K
b
D

b-/-
). The 

same study also revealed that a strong MHC I ligand increased the expression of KLRG1 

further, thus NK cells from H-2
d 

expressing mice had a higher frequency of KLRG1 

expression compared to NK cells from mice expressing H-2
b
. Although KLRG1 does not 

directly bind to MHC I, the expression may be dependent on signaling generated from MHC 

I-Ly49r interactions since loss of the signaling molecule SHP-1 reduced the KLRG1 

expression (128). KLRG1 expression by NK cells has thus been found to correlate with 

education. However, KLRG1 expression is influenced by other processes as well, such as cell 

proliferation and activation (131, 132). The importance of KLRG1 function in NK cell 

biology in general (and education in particular) is not fully understood. There are indications 

that KLRG1 binds to monomeric E-cadherin and by multiple interactions inhibits NK cell 

function (236, 237). KLRG1 binds to a conserved region, allowing it to monitor expression of 

several  cadherins  and  may  thus  mediate  MHC  I  independent  missing  self  recognition 

important for tumor surveillance (237). 
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1.9.3  MHC I independent missing self recognition and education 
 

Another receptor binding to a self-ligand is the receptor 2B4 binding to CD48 expressed on 

cells of hematopoietic origin. Lee et al. studied NK cells from 2B4 deficient mice using RMA 

(CD48
+
) and RMA-S (CD48

+
) tumor cells in vitro and in vivo. They found that 2B4 deficient 

mice eliminated the two targets with the same pattern as wt mice (increased killing of RMA- 

S due to missing self), however the total responses were increased against both targets i e 2B4 

mediated  inhibition  occurs  independently  of  the  MHC  I  system  (238).  However,  upon 

introduction of Rae-1ᵧ, both the 2B4 and MHC I dependent inhibition were overriden leading 

to an almost identical efficient elimination of both RMA-Rae-1ᵧ and RMA-S- Rae-1ᵧ by 

either 2B4 or wt NK cells. Further, in vivo subcutaneous tumor outgrowth assay showed that 

NKG2D ligand expression could override the influence of both inhibitory systems, although 

RMA-Rae-1ᵧ tumors grow out at later time points. In addition, at an early tumor stage, either 

missing  self  recognition  or  activating  ligands  per  se  were  enough  to  induce  tumor 

elimination. However, both systems were needed to induce complete regression. The authors 

conclusion was that 2B4 is an MHC I independent inhibitory pathway sensing self via CD48 

and that stressed induced ligands can bypass both inhibitory systems. 

 

The accepted concept regarding NK cell education is that NK cells via Ly49 receptors are 

educated on MHC I ligands and therefore receive responsiveness and the capability to 

perform missing self rejection of MHC ligand deficient, but otherwise normal host cells. 

However, other self ligands have been shown to influence this function. Ly49A, but not other 

Ly49r, has been shown to bind to a non-classical MHC I molecule, H2-M3, which is mainly 

expressed on B cells (239). H2-M3 influences the education and responsiveness of the 

Ly49A
+  

population since mice deficient in H2-M3 show a reduced NK cell responsiveness 

and tolerance to H2-M3-deficient bone marrow compared to wild type mice which reject 

such cells. 

 

Further, there are data indicating the importance of MHC I independent missing self rejection 

via the inhibitory receptor NKR-P1B using Clrb-deficient mice (125, 240). Clrb
-/-  

NK cells 

have a higher expression of NKR-P1B compared to wild type NK cells, similar to increased 

Ly49r expression on NK cells from MHC I-deficient animals. Interestingly, Clrb
-/- 

bone 

marrow  was  rejected  in  wild  type  mice  in  a  NKR-P1B
hi   

NK  cell  dependent  manner, 

indicating a missing self function of the NKR-P1B-Clrb system. In vitro stimulation with 

NK1.1 or IL-12 showed differences in IFNγ release between Clrb
-/- 

and wild type NK cells 

but not between NKR-P1B
hi 

and NKR-P1B
lo 

from Clrb
-/- 

mice. However the differences 

observed regarding NK1.1 treatment could be due to reduced NK1.1 expression by the Clrb
-/- 

NK cells. Rahim et al. also studied the NKR-P1B-Clrb system, with focus on NKR-P1B 

receptor deficient mice (241). These mice had a normal phenotypic expression, although a 

reduced KLRG1 expression similar to NK cells from MHC I-deficient mice was observed. 

The NKR-P1B-deficient mice showed a normal IFN response towards in vitro stimulation 

and among the wild type NK cells a higher responsiveness was observed when both NKR- 

P1B and Ly49C/I was expressed, compared to expressing them separately or not at all. In 
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vivo elimination studies revealed that in vivo pre-activated wild type NK cell could reject 

Clrb
-/- 

spleen cells while this capacity was eliminated in the NKR-P1B-deficient mice. 

However, the NK cells from the NKR-P1B-deficient mice had an increased rejection of MHC 

I-deficient spleen cells compared to wild type mice, while both could reject double Clrb
-/- 

MHC I- target cells with a high efficiency. Taken together these two studies using the NKR- 

P1B-Clrb system indicates that the expression of the NKR-P1B receptor can contribute to the 

NK cell education, total responsiveness and that the receptor may have a parallel (to Ly49r- 

MHC I) missing self recognition function regulating for example rejection of bone marrow 

transplants. 

 

In conclusion these data indicate that there are several missing self recognition systems 

influencing the NK cell overall responsiveness and decisions regarding if a potential target 

cell should be eliminated or not. This sheds some light on how complicated and tightly 

regulated the NK cell system is. Although the Ly49r-MHC I interactions may have the 

strongest influence, all pieces will be weighed and summed up shifting the balance towards 

activation or inhibition. 

 
1.9.4  NK cell education and the influence of Ly49-MHC I cis-interactions 

 

Ly49 receptors on NK cells can interact with MHC I ligands in either trans (on another cell in 

the environment) or in cis (on the NK cell itself). There are conflicting data and 

interpretations regarding how much each interaction contribute to the functional and 

educational status of the NK cell. 

 

Early studies by our group and others showed that cell surface levels of Ly49A as detected by 

antibody staining in flow cytometry were lower in MHC I ligand expressing mice compared 

to ligand-negative (242, 243). Furthermore, in studies of NK cell from mosaic D
d 

transgenic 

mice, all NK cells (D
d+ 

and D
d-) 

down modulated Ly49A levels in vivo, while only the D
d+ 

NK cells kept Ly49A levels low upon in vitro culture. This suggested that D
d 

ligands on the 

NK cell itself could interact with Ly49A and modulate expression levels (244). 

 
In addition NK cells were shown to take up MHC I alleles via trogocytosis from surrounding 

cells, influencing the NK cell function (245, 246). Sjöström et al. showed that B6 NK cells 

expressing Ly49A could upon transfer to a Balb/c (H-2
d
) mouse acquire D

d  
molecules on 

their cell surface already 20 min after transfer. This phenomenon was also seen for K
b 

and the 

Ly49C  receptor  in  transfers  of  MHC-class  I-deficient  NK  cells  to  a  K
b   

expressing 

environment. Transfer of D
d 

to Ly49A
+ 

cells in vitro reduced Ly49A mediated NK cell lysis 

of sensitive targets but the Ly49A
+ 

cells that acquired D
d 

molecule could still be inhibited by 

targets expressing the D
d 

molecules. 
 

One of the first papers demonstrating cis interactions shows that Ly49A binds to D
d 

using the 

same binding site in cis and in trans interactions, indicating that cis interaction can prevent 

the NK cell from binding in trans and thereby become inhibited (247). Moreover, Ly49A
+ 

NK cells from a D
d  

expressing animal were less inhibited by target cells, both in IFNγ 
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response and target cell lysis, than NK cells from a D
d- 

mouse indicating that cis interaction 

can influence NK responses by limiting inhibition from trans interactions. 
 

Andersson et al. showed using a GFP-D
d 

molecule that D
d 

is specifically acquired by Ly49A
+ 

but not by Ly49A
- 

NK cells from a B6 mouse while acquisition by NK cells expressing an 

endogenous D
d  

ligand was reduced by approximately 90% due to occupancy (248). 

Acquisition could only partly be restored by acidic treatment (removing the endogenous cis- 

bound D
d
), suggesting a 60% reduction in Ly49A cell surface receptors on NK cells from a 

D
d 

expressing mouse compared to those from a B6 mouse and that 75% of the Ly49A 

receptors  expressed  are  bound  in  cis.  Thus,  only  25%  of  the  expressed  molecules  are 

available for trans interactions and inhibition via MHC I ligands on potential target cells. 

These data explain the reduced inhibition of D
d+ 

Ly49A
+ 

cells described above. 

 

In later studies the role of cis vs trans interaction in NK cell education has been investigated. 

The data are conflicting. Kim et al. showed that the educational process, licensing, of Ly49A
+ 

NK cells depended on a functional Ly49A receptor since the responsiveness was decreased 

when the inhibitory signal was lost (202). Chalifour et al. took this a step further and analyzed 

if Ly49A dependent education was mediated through a cis or trans interaction or both (249). 

NK cells  expressing an  Ly49A receptor with a mutation  in the stalk  region making it 

incapable to bind to MHC I in cis, hence only binding to MHC I in trans, was still fully 

capable to be inhibited via D
d
.  However, NK cells from a D

d+  
host expressing the mutant 

Ly49A receptor displayed a reduced killing of H-2
b 

lymphoblasts in vitro compared to 

wtLy49A
+ 

NK cells from a D
d+ 

host, suggesting that cis interactions were important for 

education. In addition, expression of Ly49A on NK cells in an H-2
b 

animal reduced the 

responsiveness, both missing self killing and IFNγ production, by the NK cells. This was 

presumably due to the presence of a non-educating receptor (Ly49A) since it could be 

restored by introduction of the D
d  

molecule. However, introduction of D
d  

molecules could 

not restore reduced responsiveness in NK cells expressing the mutant Ly49A, indicating a 

role for cis interaction in education. 
 

Further, NK cells from an H-2
b 

animal (B6; educated mostly via Ly49C and I) co-expressing 

Ly49C and -A had a reduced IFNγ production compared to Ly49C
+
A

- 
NK cells. The 

responsiveness could be restored upon D
d  

expression or by artificially creating Ly49A-cis 

interaction in an H-2
b 

animal by Ly49A antibody binding, indicating a negative effect of the 

unengaged inhibitory receptor, thus dampening the NK cell responsiveness. These data 

indicate that Ly49r-MHC I cis interactions, in the case of Ly49A, may be involved in tuning 

the NK cell responsiveness both positively in response to cis ligand interactions but also by 

reducing the function of NK cells in absence of a cis-bound ligand. 

 

At the end of 2013 two papers were published at approximately the same time, one stating 

that only Ly49-MHC I interactions in trans are of importance for NK cell education while the 

other argued that both cis and trans interactions are needed for education and maintenance of 

responsiveness. 
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Ebihara et al used an inducible MHC I single-chain-trimer: K
b
-β2m-peptide (K

b
-tg) on MHC 

I-deficient background and observed that Ly49C
+  

(vs Ly49C
-
) NK cells became responsive 

already at day one after MHC I up-regulation while responsiveness of Ly49A
+ 

(vs Ly49A
-
) 

cells was not changed (250). This system was used to analyze the influence of cis vs trans 

interactions on NK cell education. K
b 

negative NK cells transferred into a K
b
-tg environment, 

followed by K
b 

induction, gained responsiveness in the Ly49C
+ 

subset while K
b
-tg NK cells 

transferred into a K
b 

insufficient host (followed by induction) remained low responders. This 

indicated that Ly49-MHC I interactions in trans (occurring only in the former situation) play 

a major role in NK cell education. Trogocytosis, i e transfer of K
b  

molecules from host to 

donor K
b  

negative NK cells occurred but it was unspecific since both Ly49C
+  

and Ly49C
- 

NK cells gained K
b  

expression. This could result in cis-interactions on donor Ly49C
+  

NK 

cells. However, since donor K
b
-tg NK cells did not get licensed in K

b
-negative host (despite 

cis interactions), cis interactions may not be sufficient for licensing. In addition, regardless of 

if NK cells expressed K
b 

or not, they only became licensed upon interaction with K
b 

on 

hematopoietic cells while they remained unlicensed if K
b 

was only expressed on the stromal 

cells. In conclusion this study suggests that the NK cell is educated via MHC I interactions in 

a trans and depends on MHC expression on hematopoietic cells. Further, the process can be 

independent from development and there are no clear alterations in the NK cell phenotype 

after licensing has occurred. It should be noted that the results do not exclude a role for cis 

interactions in education. It cannot be excluded that K
b
-negative NK cells were influenced by 

ligands acquired by trogocytosis. 

 
However, Bessoles et al. used two different models to study the loss of MHC I interactions in 

either cis or trans (251). In the first model the D
d  

molecule was depleted from the system 

either in cis (from NK cells) or in trans (from T cells). In the second model Ly49A was 

altered so that it could only interact with MHC I either in cis or trans. Both systems showed 

that cis and trans interactions are both important to gain fully functional NK cells and that 

mainly cis interactions influence the MHC I receptor repertoire. Loss of either cis or trans 

interaction led to impaired in vivo missing self rejection and reduced CD107a responses after 

in vitro stimulation. Similarly, NK cells educated only via cis interactions or only via trans 

interactions did not display D
d 

dependent increase in IFNγ production. These results indicate 

that the NK cell require interactions to MHC I both in cis and in trans to become fully 

functional i e perform missing self rejection and to fully respond to in vitro stimulation. 

 

In conclusion there are different opinions regarding the role of cis vs trans interactions in 

education. However, the cis and trans interactions may be responsible for different parts of 

the education.  The data  suggests  that  cis  interaction  may be more important  to  ensure 

skewing of the repertoire. Bessoles et al. showed that both cis and trans interactions were 

needed to gain full NK cell responsiveness while Ebihara et al. suggested that only the trans 

interaction was needed, however a role for cis interactions could not be completely excluded 

by their data. Thus data from both groups are compatible with a model where both cis and 

trans interactions are involved in education. 
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1.10 NK CELLS AND IMMUNOLOGICAL MEMORY 
 

NK cells are innate cells with a lymphoid origin but the classification as an innate cell and 

the notion that previous antigen encounters are irrelevant for NK cell responses has been 

questioned. NK cells are similar to B and T cells in several aspects. They go through 

several  maturation  steps  and  an  educational  process  to  acquire  fully  functional 

competence (described above) which raises the question if they should be classified as 

belonging to the adaptive immune system. This question has become emphasized by 

several groups who have found indications of immunological memory with long lived NK 

cells and an increased response upon a second pathogenic challenge. 

 

One of the first studies regarding if NK cells could generate an antigen specific response 

involved contact hypersensitivity after administration of a chemical hapten (252). This 

was done in mice lacking T and B cells, where it was observed that the contact 

hypersensitivity to certain haptens was NK cells mediated; NK cell depletion eradicated 

the response and transfer of liver-derived Ly49C/I
+ 

NK cells from hapten-exposed mice to 

naïve mice could induce the higher response. It was antigen specific since an enhanced 

response was observed by a second injection with the same chemical, with persistence up 

to a month after the injection, while injection of a different hapten did not induce an 

increased response. Memory was only transferred via the liver NK cell population 

expressing inhibitory receptors for self MHC I e g Ly49C/I and in a NKG2D dependent 

fashion. These data may imply that licensing via the inhibitory receptor is a prerequisite 

for acquisition of NK cell memory although the receptor responsible for the hapten 

recognition is unknown. 

 

One of the most used virus infection models in NK cell research is murine 

cytomegalovirus (MCMV), where the NK  response has been  characterized in detail. 

Major  breakthroughs  in  this  field  were  made  by  the  groups  of  Welsh,  Vidal  and 

Yokoyama by showing that the recognition of MCMV infected cells is dependent on the 

Ly49H
+ 

receptor (expressed by approximately 40-50% of naïve NK cells from B6 mice) 

and that it binds to the virus encoded protein m157 on infected cells. (150, 253, 254). The 

Ly49H-m157 interaction leads to clearance and virus control. In addition, Sjölin et al. 

strengthened the evidence by showing that the DAP12 signaling molecule coupled to 

Ly49H is crucial to gain resistance to the virus (255). During an MCMV infection, the 

Ly49H
+  

population undergo antigen specific proliferation and expansion; the lack of 

m157 during the MCMV infection does not result in proliferation of the Ly49H
+  

subset 

(256). 

 

In more recent studies Lanier and colleagues used the MCMV model to analyze NK cell 

memory (257). When Ly49H expressing NK cells were transferred to MCMV infected 

mice lacking expression of a functional Ly49H receptor the transferred NK cells expanded 

100-1000 fold and mediated virus clearance. These NK cells were more responsive upon a 

second virus challenge, as measured by degranulation and IFNγ production. The 

transferred NK cells could be detected in several organs such as liver and spleen and 
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persisted up to 2 months after the infection was cleared. The transferred NK cells could 

even be transferred to a second and a third host and continued to proliferate and expand. 

Further, transfer of a Ly49H
+ 

NK cells from a virus experienced host could protect 

neonatal mice from deadly infection. In correlation to education, it is the uneducated 

hyporesponsive NK cells, Ly49C/I negative, within the Ly49H population, that are the 

most proliferative and important in protection against MCMV infections (258). These data 

show that NK cells can be more long lived than the originally determined lifespan with a 

half-life of 17 days (259). It also implies the existence of some sort of memory since the 

competence can be transferred to a second host with the ability to give a more pronounced 

response compared to naïve mice. 

 

Yokoyama’s lab searched for possible memory-like effects with a different approach 

(260). Spleen cells were activated in vitro with IL-12, IL-18 and a low dose of IL-15, 

fluorescently labeled and transferred into naïve hosts. The cytokine activated NK cells 

produced high amounts of IFNγ during the first week after transfer but after that returned 

to background levels. When activated and transferred NK cells were in vitro re-stimulated 

with either cytokines (IL-12 and -18) or crosslinking of activating receptors, they 

responded by IFNγ production. These results were observed up to 4w after transfer and 

indicate that an NK cell intrinsic effect accomplished by cytokine activation can create 

memory-like NK cells with increased life span and responsiveness upon a second 

challenge (261). 

 

In conclusion these studies implies the existence of a memory-like feature since the 

competence can be transferred to a second host with the ability to give a more pronounced 

response compared to naïve mice. However, if this is memory, as defined for T and B 

cells, is still unclear. 

 

As mentioned above, MCMV infection leads to expansion of the NK cell population 

expressing the virus specific activating receptor Ly49H. Similar to this expansion, it has been 

shown in humans that HCMV seropositivity can drive long lasting expansions of NK cell 

populations expressing certain activating receptors, the most dominant is NKG2C but also 

some of the activating KIRs are expressed. They represent a “memory pool” with enhanced 

function such as IFNγ production (262-265). Schlums et al. recently showed that among 

healthy adults there was a correlation between seropositivity and expansion of NK cell 

populations lacking the intracellular signaling molecules FcεRγ, SYK and EAT-2 (266). 

Further, reactivation of HCMV infection after a hematopoietic cell transplant could 

specifically lead to expansion of NK cell populations lacking those signaling molecules while 

seronegative patients or patients with no reactivation of their CMV infection had no 

alterations in their expression pattern, indicating that the expansion is caused by the HCMV 

infection.  The  NK  cells  negative  for  FcεRγ,  SYK  and  EAT-2  displayed  an  adaptive 

phenotype (with a distinct expression pattern of receptors), altered response pattern and 

increased proliferation and survival as a response towards infected cells and ITAM- 

dependent signaling. Together Schlums et al. and Lee et al. has shown that the lack of the 
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EAT-2    and    SYK    signaling    molecules    is    probably    due    epigenetic    alterations 

(hypermethylations) (159, 266). 
 

 

1.11 NK CELLS AND CANCER 
 

Cancer is one of the most growing health problems today. Standard therapeutic procedures 

such as surgery, irradiation and chemotherapy have been proven to be efficient against the 

primary tumor but less successful against aggressive metastatic diseases. New types of 

therapies are on their way including more specific targeting approaches directly aiming at the 

inhibition of tumor-specific pathways and proteins. Another more recent approach is 

immunotherapy focusing on using the destructive properties of the immune system to induce 

anti-cancer activity. This is done by 1) by boosting an existing anti-tumor immune response 

or increasing the tumor recognition by peptide (for example a tumor antigen) or cell-based 

(DC or whole tumor cell) vaccines to produce cellular memory via B and T cells or 2) by 

generally activating an anti-tumor effect via administration of cytokines, such as IL-2, to 

enhance proliferation and function or via effector molecules (antibodies) and immune cells, 

such as NK cells, without generating immunologic memory. 

 
1.11.1 Immune surveillance 

 

In the 1950s Burnet proposed a theory of immune surveillance against cancer and this was 

further developed during the late sixties when the T cells were discovered (267, 268). In its 

original form the theory states that effector cells, T cells, of the immune system are constantly 

searching for and eliminating tumor cells and thereby guarding us from tumors. However, in 

the mid-seventies it was found that athymic nude mice, lacking T cells, did not develop more 

spontaneous cancer than control mice, although they were extremely susceptible to tumor 

formation after polyoma virus infection. In the late seventies, in the beginning of the NK cell 

era, many investigators took an interest in these newly discovered cells as possible actors in 

immune surveillance. To test the involvement of NK cells and to learn if NK cells had 

evolved to protect us from cancer, scientists asked questions such as; do mice completely 

lacking or carrying deficient NK cells develop more spontaneous tumors than wild type 

mice? 

 

Early studies were comparing homozygote C57BL (B6) mutant beige (bg) mice bearing a 

partial NK cell deficiency to heterozygote or normal B6 mice in different settings to evaluate 

the importance of NK cells in tumor development. In summary it was shown that NK cell 

deficient mice had an increased tumor growth and faster death after administration of 

syngeneic leukemia cell lines or by spontaneously developing tumors and had a reduced in 

vitro cytotoxicity. Further, the mutant mice had increased frequency of metastases in the lung 

when using an NK cell sensitive target but had the same amount of tumors as the controls 

when NK cell insensitive target was used (269-271). 

 

Using the B6 beige mice as a model for selective, total NK cell deficiency has been 

questioned since the NK cells are not completely deficient and these mice also have a 
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cytotoxic T cell, granulocyte and platelet deficiency. So other mice and approaches or 

techniques were used to prove the involvement of NK cells in immune surveillance. 

 

Perforin-deficient mice were used to show that NK cells are needed for in vitro and in vivo 

elimination of RMA-S and YAC-1 tumor cells and could protect against lung metastasis in 

two different tumor models. Perforin dependent mechanisms were the major contributors to 

tumor protection (272, 273). 

 

It took many years and technology improvement to be able to generate a mouse that is only 

deficient in NK cells and no other parts of the immune system. Kim et al. used a transgenic 

mouse which lacks almost all NK cells but still have a normal frequency of B and T cells and 

almost equivalent frequency of NKT cells to wild type (274). These mice had a reduced in 

vitro and in vivo elimination of the NK cell sensitive targets YAC-1 and RMA-S tumor cells. 

In addition they had a 60-fold increase of lung metastases caused by injection of B16 

melanoma compared to wild type mice. 

 

Other ways of studying the role of NK cells in immune surveillance and tumor growth has 

been to deplete NK cells by antibody administration or to target e g activating receptor genes. 

As above, many groups have investigated this and it is today an accepted method and used as 

a standard control in almost all in vivo assays involving NK cells. One of the first studies was 

performed by Okumura et al. using anti-asialoGM1 serum to deplete NK cells in BALB/c 

nude mice and then challenging them with syngeneic tumor cells or YAC-1 cells (275). 

Depletion of NK cells resulted in a much higher frequency of tumors and increased tumor 

size. In addition they found that carcinogen induced tumors grew out faster when the mice 

had been NK cell depleted. NKG2D-deficient mice were generated and had normal NK cell 

functions except for the NKG2D signaling. The mice showed an increased and faster 

incidence of both malignant prostate adenocarcinomas and B cell lymphoma but had no 

effect on the development of carcinogen induced sarcomas compared to the controls (161). 

 

The general conclusion from these studies is that NK cells can participate in immune 

surveillance but the effect of NK cells depend largely on the tumor itself. Tu et al. used 

NKC
KD 

mice (mice lacking Ly49r on 80% of their NK cells) to test the influence of MHC I 

specific inhibitory receptors in immune surveillance (276). These mice had an increased 

sensitivity to various MHC I-deficient tumors while MHC I sufficient tumors grew equally 

well in both NKC
KD 

and wild type mice. Introduction of Ly49I on NKC
KD 

background 

restored the tumor elimination capacity in the NKC
KD 

mice illustrating the influence of Ly49r 

and education in immune surveillance against MHC I-deficient tumors. Moreover in a 

spontaneous B cell lymphoma model there was an earlier onset in NKC
KD 

mice and isolated 

tumors from NKC
KD 

mice had a decreased MHC I expression, suggesting that tumor editing 

to escape T cells occurred in absence of missing self reactivity by NK cells. 

 

As mentioned in the beginning of this thesis, NK cells were discovered as cells which had a 

natural capacity to kill and eliminate tumor cells. So why cannot our NK cells protect us from 

cancer? First, NK cells are quite few, so even if they able to kill and eliminate they are simply 
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in many cases not efficient enough to eliminate the cancer cells as fast as the cancer cells are 

growing. Another problem is that NK cells are often located in the periphery of the tumor and 

do not have access to all tumor cells. However, even if they are in the right location the tumor 

itself or the tumor milieu can dampen the NK cell function. 

 
1.11.2 Therapies based on transplantation or adoptive transfer of cells 

 

In early clinical studies, NK cells were used as a tool to treat cancer based on cytokines such 

as  IL-2  administered  systemically.  The  idea  was  to  improve  the  NK  cell  count  by 

proliferation and to boost their function, with or without prior adoptive transfer of ex vivo IL- 

2 activated NK cells (lymphokine activated killer, LAK cells). This early type of treatments 

failed since the high dose of IL-2 caused systemic toxic effects, e g in the form of vascular 

leakage and cardiopulmonary complications; furthermore it could be lethal to the NK cells 

which died by exhaustion (277). Today the field has developed and NK cells can be either 

efficiently expanded ex vivo or generated from hematopoietic stem cells from the bone 

marrow or from umbilical cord blood. In vitro development of NK cells is performed via 

standardized protocols including cytokines only or in combination with feeder stroma cells 

(278, 279). 

 

Another up-coming source of NK cells that can be infused into patients are malignant NK 

cell lines for example NK-92 which is derived from an NK cell lymphoma. (280). Two phase 

1 clinical trials have shown that infusion of pre-irradiated NK-92 cells into patients with 

different solid (such as sarcomas, blastomas, malignant melanomas) tumors is a safe 

procedure and that the cells can persist in the circulation at least 48h after administration. 

Some of the patients had a stable disease after the infusion (281, 282). 

 
1.11.2.1 Therapy based on transplantation of hematopoietic (stem) cells 

 

Allogeneic hematopoietic stem cell transplantation is perhaps the best treatment for blood 

cancers such as leukemia and lymphoma. The donor T cells are known to promote 

engraftment and elimination of cancer cells via graft-versus-leukemia effects. The drawback 

is that mature donor T cells sometimes also recognize the recipient’s healthy cells, resulting 

in graft-versus- host disease, a serious and sometimes lethal complication. Donor T cells can 

be depleted before the transplantation but this increases the risk of opportunistic infections 

and can reduce graft-versus-leukemia effects. NK cells are among the first cells to be 

regenerated and show functional capacity, e g cytotoxicity, after transplantation. 

 

In the setting of transplantation or adoptive transfer, the KIR/ligand mismatch (in the graft- 

versus-host direction) is used to achieve alloreactivity. This means that the recipient lacks at 

least one KIR-ligand present in the donor (KIR incompatibility), so that the educated NK 

cells can perform missing self reactivity against the tumor cells (279). This genetic 

combination is sometimes achieved in haploidentical stem cell transplantations were the 

recipient and the donor are matched for only one HLA haplotype. Ruggeri, Velardi et al. are 

pioneers in this field (21, 22).  In the first report they studied 60 leukemia patients where 20 

were transplanted with a KIR-HLA epitope mismatch. They found that the donor derived NK 
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cells of these patients killed the recipient’s leukemia cells without causing graft-versus- host 

disease (21). In the second extended study 34 out of 92 acute myeloid leukemia patients were 

predicted to have a graft versus host NK alloreactivity. There was a clear correlation between 

such KIR-HLA class I ligand mismatch and reduced risk for leukemia relapse, the probability 

of relapse free survival in 5 years was 60% in the patients receiving alloreactive NK cells 

compared to 5% in the group receiving NK cell without a mismatch (22). They also used 

NOD/ SCID mice, tolerating human cells since they lack lymphocytes, to infuse either AML 

cells alone or in combination with either non-alloreactive or alloreactive NK cells. The mice 

only survived when they had been given alloreactive NK cells. Furthermore, they found that 

alloreactive NK cells can prevent graft-versus-host disease by eliminating recipient APC 

which can prime T cells. In a further extended study adding up to a total of 112 acute myeloid 

leukemia patients the same pattern was observed, only the patients receiving alloreactive 

donor NK cells showed a decrease in relapse and an increased overall survival (283). 

 

Stern et al. observed increased survival after 5 years following a haploidentical stem cell 

transplantations, particularly if the alloreactive NK cells came from the mother rather then 

from the father (284). 

 

More refined and detailed studies focusing on the specificity and phenotype of the allogeneic 

NK cell populations after haploidentical HSCT have shown that not only the inhibitory KIR- 

ligand mismatch can influence the outcome after treatment; also the activating KIRs can play 

a role, both for preventing leukemia relapse and infections (285, 286). This effect was only 

observed in settings with NK cell alloreactivity and might be mediated by the capacity of the 

activating KIR to override NKG2A mediated inhibition (287). These results may help in 

selection of the most “optimal donor” in the future. 

 

The effect of KIR ligand incompatibility has also been studied in hematopoietic stem cell 

transplantations conducted on partially HLA matched unrelated donors rather than 

haploidentical donors. Giebel et al. studied patients with myeloid malignancies(288). Patients 

receiving transplants with KIR ligand incompatibility had an increased probability for both 

disease free and overall survival at 4.5 years after transplantation.  However, several other 

studies have reported different outcomes. Davies et al. tested the impact of HLA allele 

mismatch for at least one allele on 175 patients with acute myeloid or chronic myeloid 

leukemia who received unrelated donor bone marrow transplantations (289). They found a 

trend towards reduced severe graft versus host disease and an increased survival in patients 

without KIR mismatch. Farag et al. studied 1571 patients treated with unrelated donor 

transplantation for myeloid malignancies (290). The KIR ligand matched group had the 

lowest risk of treatment failure and increased survival but there was no difference in leukemia 

relapse between the matched or mismatched groups. The different outcomes in these studies 

may reflect the different conditioning used and/or the preparation of the bone marrow/cell 

graft; for example Giebel et al. used protocols involving T cell depletion while Davies did 

not. 
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Other recent studies have focused on alternative sources of grafts such as umbilical cord 

blood, which carry an NK cell population that is most active after transplantation and 

additional receptors contributing to NK cell activation and anti-tumor effects. There are 

conflicting data regarding the effect of KIR ligand mismatch also in these studies. Willemze 

et al. showed increased survival and reduced relapse occurrence after KIR ligand mismatch in 

umbilical cord blood transplantation (291). However, Brunstein found negative effects 

associated with KIR ligand mismatch, such as increased risk for death and graft-versus-host 

disease after transplantation of umbilical cord blood with reduced conditioning (292). The 

differences observed could be due to different conditioning protocols and/or to whether one 

or two units of cord blood were used. 

 

According to the missing self model, NK cell mediated graft-versus-leukemia effects can be 

achieved when an educated NK cell recognize a leukemia cell in the recipient lacking the 

cognate HLA ligand. However, some studies observe graft-versus-leukemia effects in an 

HLA-matched or KIR ligand matched setting. Yu et al. showed that the hyporesponsive NK 

cells expressing KIR for a non-self HLA class I ligand from a matched donor could become 

activated and produce more IFNγ and become more cytotoxic against tumor targets lacking 

cognate HLA ligand (293). Both effects were transient and gone by 200 days after 

transplantation. However, other studies have shown disparate results. Björklund et al. made a 

retrospective analysis on patients with myeloid malignancies treated with HLA matched stem 

cell transplantation from a sibling (294). In contrast to Yu, Björklund et al. observed that NK 

cells which were NKG2A
-
KIR

+  
for a non-self HLA class I ligand were very similar to 

NKG2A
-
KIR

- 
hyporesponsive immature NK cells both in early and late phase (up to 6 moths) 

after transplantation. Furthermore, Haas et al. used a cohort of 60 patients receiving either 

KIR-ligand matched or mismatched HSCT transplants from either unrelated bone marrow, 

peripheral blood or umbilical cord blood grafts to study long term effects on NK cell 

education (295). Transplanted NK cells displayed a reduced responsiveness during the first 

period (at least 100 days) after transplantation but normalized within a year and remained 

stable for three years thereafter. Using donor HLA ligands they observed a rapid and stable 

educational pattern after HLA-mismatched transplantation which seemed to be determined by 

donor cells i e hematopoietic cells. 

 

It has also been shown that other factors than mismatch of inhibitory HLA specific receptors 

contribute to NK cell mediated graft-versus-leukemia effects, which might contribute to why 

increased NK cell activation and tumor elimination is observed in HLA matched 

transplantations.  Pende et al. tested the expression of activating ligands on both myeloid and 

lymphoblastic leukemia cells and their relevance for tumor lysis (296).  Antibody blocking of 

the activating receptors NKp30, NKp46 and DNAM-1 effectively inhibited lysis of myeloid 

derived leukemia while only partly inhibiting lysis of lymphoblastic leukemia. Blocking of 

NKG2D had a mild effect on leukemia cell lysis independently of origin. The results from the 

antibody  blockade  were  explained  by  a  generally  high  expression  level  of  ligands  for 

DNAM-1 (poliovirus receptor, PVR, and Nectin-2) but low levels of ligands for NKG2D 

(ULBP)  or  2B4  (CD48)  by  several  myeloid  leukemia  subtypes,  while  lymphoblastic 
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leukemia showed variable expression. The latter tended to co-express activating ligands in 

variable combinations In conclusion, the results suggest that the outcome of the treatment 

depend on many factors, such as responsiveness of the NK cell (educational status), 

expression of activating receptors including KIRs and not least, the variability of the cancer 

cells. 

 
1.11.2.2 Therapy based on transfer of NK-cells 

 

Another way of increasing NK cell number or gain NK cell cytotoxicity is to adoptively 

transfer NK cells alone or together with stem cells/bone marrow in a hematopoietic cell 

transplant. In the initial NK cell adoptive transfer studies, autologous (from same individual) 

ex vivo expanded and activated NK cells were used in combinations with low doses of IL-2. 

The upside of the studies was that the treatment could be performed without any severe side 

effects and that low doses of IL-2 could be administrated to achieve an increase in the NK 

cell  number.  However,  the  big  drawback  was  that  the  NK  cells  displayed  reduced 

cytotoxicity in vivo and that the treatment had a limited effect in the cancer patients (297). 

The lack of anti-cancer reactivity by the autologous NK cells was mainly due to KIR-HLA 

class  I  interactions  between  the  NK  cell  and  the  tumor  cell,  i  e  limited  missing  self 

recognition (298, 299). 

 

More recently, adoptive transfer of alloreactive mature haploidentical NK cells has been 

investigated, such cells should perform missing self recognition on recipients tumor cells. 

Benefits with this method are that the patient receives mature functional NK cells and that 

less immune suppression is needed, leading to reduced occurrence of opportunistic virus 

infection. Miller et al. as well as Curti et al. have shown that adoptive transfer of 

haploidentical mature NK cells can increase survival in patients (total 56 patients tested), 

most suffering from acute myeloid leukemia but also other cancer types (300, 301). However, 

this field needs to be further explored. 

 
1.11.3 Improving NK cell infiltration and cytotoxicity against tumors in vivo 

 

The ability to generate, expand and culture NK cells for adoptive transfer in an efficient way 

opens up more possibilities. As stated above, it appears that some cancers may be resistant to 

immune attack due to lack of infiltrating NK cells or due to reduced responsiveness of the 

NK cells caused by the tumor milieu. NK cell activity and infiltration in the tumor can be 

improved by manipulation of the NK cell (homing capacity) or the tumor (by upregulation of 

activating ligands, homing receptors or secretion of chemo-attractants). NK cell activity and 

function can be enhanced by administration of cytokines, such as IL-2, IL-12, IL-15, IL-18 

and IL-21, either separately or combinations (302). Since high doses of IL-2 can lead to 

systemic toxicity, IL-2 dependent NK cell proliferation and activation may instead be 

achieved by autocrine secretion of   IL-2 using genetically modified NK cell line NK-92 

(303). Further, NK cell function (NK cell line or human NK cells) can also be improved via 

transduction with a chimeric receptor with specificity for a certain cell type or a certain tumor 

antigen to increase cytotoxicity (304, 305). 
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It is also possible to make the tumor cells more sensitive to NK cell mediated killing for 

example via inducing up-regulation of death receptors or activating ligands. Doxorubicin is a 

chemotherapeutic drug that can make tumors more sensitive to NK and T cell mediated 

killing via increased expression of the death receptor TRAIL-R (TRAIL- tumor necrosis 

factor-related apoptosis-inducing ligand) (306). 

 

Another way of making tumor cells more NK cell sensitive is to induce expression of 

activating ligands, shifting the balance towards activation and target lysis. For many years 

anti-cancer agents has been used as treatment, mainly because of their direct cytotoxic effect 

on tumor cells. Many of these agents target DNA and induce DNA damage leading to cell 

cycle arrest; and activation of the DNA repair system. If the damage is too severe the cell will 

activate the apoptotic pathway and commit suicide. A problem is that these agents can induce 

DNA damage to all highly proliferating cells, targeting for example cells from the bone 

marrow, hair follicles and epithelial cells in the gastrointestinal track, inducing side effects. 

Other complications are that many tumors are deficient in their activation of the apoptotic 

pathway, by mutations in key genes such as p53. 

 

A more newly discovered function by some of the anticancer agents is that they also activate 

the host immune system, for example the NK cells.  One way of activating NK cells is by 

upregulation of activating ligands on tumor cells. NKG2D is one major receptors used by NK 

cell to eliminate tumor cells. As elaborated in section 1.5.2.1 the expression of NKG2D 

ligands (in human MICA, MICB and ULBP and in mouse Rae-1γ, H60 and Mult1) are in 

general very low at the normal state (reviewed in (307)). But they are often induced by stress 

and the DNA damage pathway in tumors and virus infected cells (172, 173). Several anti- 

cancer compounds are known to induce up-regulation of NKG2D ligands either in a defined 

or an undefined way. For example, melanoma patients are often treated with Dacarbazine 

(DTIC) which has been shown to have a antitumor effect both in human and mice and by an 

undefined way enhance expression of NKG2D ligands on melanoma cells(308). The NK cell 

recognizes the ligand on the tumor cell and becomes activated, kills the melanoma cell and 

produce IFNγ. Production of IFNγ increases the level of MHC I on the tumor cell, making it 

a potential target for cytotoxic T cells (CTL). Khallouf et al. used a mouse model for 

pancreatic cancer and showed that the anticancer effect by the combination of 5-flourouracil 

(5-Fu) and IFNα was due to enhanced NKG2D ligand and MHC I expression resulting in 

activation of NK cells, CTL and DCs (309). 

 

Another way to make NK cells more reactive against tumor cells is to remove components in 

the tumor microenvironment that can cause immunosuppression (reviewed in (310). It has 

been shown that myeloid-derived suppressor cells (MDSCs) have a negative effect on 

lymphocytes by generating reactive oxygen species (ROS). High levels of reactive oxygen 

species in the extracellular space can induce cell and tissue damage. T cells and NK cells are 

sensitive to reactive oxygen species which can induce reduced cytotoxicity by alterations in 

activation pathways. Hellstrand et al. have developed the use of the drug histamine 

dihydrochloride in combination with a low dose of IL-2 as a treatment for AML patients in 
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their first complete remission after chemotherapy (310, 311). This drug/cytokine combination 

has  been  shown  to  increase  T  and  NK  cell  activity in  cancer  patients  and  reduce  the 

frequency of relapses in acute myeloid leukemia patients (311-314). The suggested 

mechanism behind this effect is that histamine reduces the production of reactive oxygen 

species by myeloid cells, resulting in restored cytotoxicity and sensitivity to IL-2 in T and 

NK cells (314, 315). 

 
1.11.4 Activation of NK cell via antibody treatment 

 

Antibodies can be used to activate or guide NK cells to attack tumor cells. There are two 

general types of activation 1) the antibody targets a structure on the tumor cell, thereby 

inducing ADCC upon (CD16/FcγIIIA) receptor recognition of the Fc part of the antibody 2) 

antibody blockade of self-specific inhibitory receptors on the NK cells, inducing missing self 

recognition and killing. The ADCC reactivity may contribute to the anti-tumor effects 

observed in patients treated with monoclonal antibodies. 

 

Trastuzumab (Herceptin®) is a humanized antibody binding to the growth factor receptor 

Her2/neu expressed by breast carcinoma cells. Retuximab (Rituxan®), is a monoclonal 

antibody binding to CD20 expressed on B cells and B cell lymphomas (316, 317). For both of 

both these antibodies, the evidence in the literature suggests that the anti-tumor effect may be 

due both to ADCC and direct effects on the tumor cells (receptor-ligand blockade or a direct 

apoptotic effect). 

 

Unfortunately, in the case of rituximab, many of the patients respond poorly to the treatment. 

Failure of this type of treatment can be due to neutralizing antibodies that block the Fc 

interaction, or polymorphisms in the gene encoding the Fc receptor leading to variation in its 

binding affinity to antibody. It can also be due to that the Fc part of the antibody binds to an 

inhibitory Fc receptor (FcγIIB2) expressed on monocytes and macrophages, thereby reducing 

the total anti-tumor activity (320). 

 

Ravetch et al. have studied the role of activating Fc receptors and ADCC in treatment with 

antibodies against tumor antigens, by generating mutant mice lacking the γ chain necessary 

for assembly of various Fc receptors expressed on murine innate immune cells such as NK 

cells (318). They showed that Fcγ receptor deficient mice were normal with respect to in vitro 

NK mediated killing of YAC-1 cells while they had lost the ability to kill antibody coated 

targets via ADCC. To test if the Fcγ receptors and ADCC are important in tumor immunity in 

vivo, the mutant mice were used to study development of syngeneic melanoma metastasis 

after passive or active immunization (319). In both set-ups, the wild type mice treated with 

passive or active immunization against a melanoma antigen showed significantly reduced 

metastasis compared to untreated wild type mice. However, the Fcγ-deficient animals did not 

acquire any immune protective effect after any of the treatments despite that the active 

immunization induced both B and cytotoxic T cell responses. These data indicate that the Fcγ 

receptor mediating ADCC is important for antibody mediated tumor immunity in vivo. 
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In a follow up study the same group showed that the efficiency of any given treatment 

depends on the net effect on many pathways. The inhibitory FcγRIIB receptor is expressed on 

myeloid effector cells, such as monocytes and macrophages, and on B cells to negatively 

regulate antibody production. 

 

FcγRIIB-deficient mice were generated to test if this receptor influences the outcome of 

antibody mediated anti-tumor activity in vivo. Without treatment, the deficient mice 

developed melanoma metastasis in a manner comparable to wild type mice. However, when 

treated with the antibody against melanoma antigen, the FcγRIIB-deficient mice gained 

significantly more protection by the treatment; they developed less lung metastases than 

antibody treated wild type mice. Furthermore they tested how both the activating Fcγ and the 

inhibitory receptors contribute to function and end-result of two known pharmaceutically 

approved antibody treatments, trastuzumab and rituximab described above. The anti-tumor 

effects of trastuzumab and rituximab were studied using xenograft models based on human 

breast carcinoma and B cell lymphoma respectively. They intercrossed the activating Fcγ and 

the inhibitory FcγRIIB-deficient mice to athymic nude mice (320). In both tumor models, the 

tumors grow and spread equally well in non-treated mice. Treatment with trastuzumab or 

rituximab inhibited tumor growth and development almost completely in control mice while 

in the Fcγ-deficient mice very little protection was observed. However, treating FcγRIIB 

receptor deficient mice lacking the inhibitory Fc receptor with the mouse antibody equivalent 

to trastuzumab resulted in less tumor burden, indicating that other pathways and other cells 

than NK cells are important for tumor eradiation and treatment success. To further prove the 

role for Fc receptor mediated ADCC, the mouse trastuzumab was modified via point 

mutations. These mutations lead to reduced binding to Fc receptors on the effector cell, 

resulting in reduced tumor rejection. 

 

Other groups have studied the how the efficacy of the ab treatment can be optimized although 

the patients have Fc receptor polymorphisms. Busfield et al. developed a humanized 

antibody with improved ADCC capacity targeting the IL-3 receptor expressed in on many 

tumor cells and blasts from acute myeloid leukemia patients (321). This antibody had been 

engineered to achieve increased affinity to CD16, which augmented both in vitro ADCC 

mediated killing and in vivo elimination of leukemic cells. In addition, treatment with the 

antibody increased in vitro elimination of leukemia cell by NK cells from acute myeloid 

leukemia patients. (321). 

 

Taken together these studies show the importance of considering the whole picture, in this 

case the whole immune system, and how it is affected, and not a particular cell type. They 

also address the importance of designing the antibody for optimal effect, either by high 

affinity to the Fcγ receptor and low binding capacity for the inhibitory FcγRIIB receptor, or 

by combining improved efficacy with a specific target increasing the overall function. 
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1.11.4.1 Increased NK cell activity induced by self-specific inhibitory receptor blockade 
 

The second type of antibody treatment used to activate anticancer effects by NK cells is based 

on blockade MHC I binding inhibitory receptors. This is a more specific way of activating 

NK cells, and at least in theory, only the NK cells that have been educated for missing self 

recognition, the most responsive NK cells. In addition, this type of treatment can be used 

when the tumor expresses HLA/MHC I, when other approaches may fail due to the strong 

inhibition overriding the desired NK cell activation. The effect of blocking inhibitory 

receptors on NK cells has been studied by many groups, both in mice and in humans. Koh et 

al. were the first to block self-specific inhibitory receptors for MHC I in the mouse, aiming to 

induce missing self recognition of tumor targets expressing MHC I. They used F(ab’)2 

fragments of the antibody 5E6, blocking the murine inhibitory receptor Ly49C and I. They 

observed increased killing of syngeneic MHC I expressing cells (e g C1498 tumor cells) in 

vitro and in vivo in a NK cell dependent manner (322-324). This concept had not really been 

developed further at the time the studies in this thesis were initiated. It has now applied in 

several settings and explored mechanistically, and the concept of NK cell inhibitory receptor 

blockade is currently in clinical trials. The topic will be further discussed in result/discussion 

section 3.5. 

 
1.11.4.2 Checkpoint blockade 

 

Removal of inhibition, as described above, is used to tilt the balance towards NK cell 

activation and target elimination. This concept is quite similar to what has been termed 

immune checkpoint blockade, a term that is mainly if not exclusively used for T-cell 

regulation. Indeed, immune checkpoint blockade was developed to activate antitumor activity 

by T cells. Checkpoints are inhibitory pathways controlling the immune system to ensure 

self-tolerance, and minimize the risk for tissue damage caused by a too strong or sustained 

immune response. Immune checkpoints are characterized by a receptor-ligand interaction 

which can be targeted by either antibody blockade or by introducing recombinant receptor or 

ligand. Antibodies can be used to target receptors or ligands on lymphocytes to increase 

antitumor activity instead of targeting the tumor cells directly. T cell activation is regulated 

via two signals, binding of a specific Ag to the T cell receptor and a co-stimulatory signal 

(CD28 binding to CD80 or CD86 on the antigen presenting cell). The activation is inhibited 

by CTLA4 (mediating inhibitory signals) on T cells also binding to CD80 and CD86 on the 

antigen presenting cell, dampening the activation. CTLA4 was the first immune checkpoint 

regulating antibody to be approved for clinical use, in patients with metastatic melanoma. 

There is a positive effect on overall survival and a significant number of dramatic, durable 

responses, which for this patient group represents a remarkable progress (325). Blocking the 

inhibitory pathway is associated with a potential risk of toxicity due to a sustained immune 

response, and severe adverse effects of autoimmune or inflammatory nature develop in 

approximately 20% of patients. In the last year, drugs for blockade of another checkpoint; 

PD-1/PD-L1 has been approved for melanoma and lung cancer (326). 
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1.12 IMMUNODEFICIENCIES 
 
1.12.1 Primary immunodeficiencies 

 

This thesis is mainly about murine NK cells with some comparative comments on human NK 

cells in relevant sections, such as the one on clinical application above. The following section 

on immunodeficiencies will deal exclusively with the human system, since the development 

of clinical observations and basic immunology has provided a great opportunity to learn more 

about NK cells and how important they are for our wellness. What we can learn from the 

mouse system will be presented in the discussion together with experimental results obtained 

during the thesis studies. 

 

Primary immunodeficiencies (PIDs) represent a collective name for disorders that is caused 

by the inborn lack or a dysfunctional component of the immune system. This weakens the 

individual’s immune system and host defense against unwelcome intruders. Many of these 

patients are diagnosed as babies or in young life due to recurring and persistent infections 

such as bacterial or opportunistic virus infections (i e herpes simplex virus or Epstein bar 

virus). Milder defects can be diagnosed later in life. To be defined as a primary 

immunodeficiency the cause of the disease must be direct and persistent and not induced by 

circumstances such as medication or infection. Primary immunodeficiencies are caused by a 

genetic defect; most of these affect more than one function or cell type of the immune system 

and  quite  many  of  the  genetic  alterations  have  been  identified  and  explored  at  the 

biochemical level. Some defects cause a developmental arrest, resulting in lack of one or 

more subsets of cells; others do not influence development as much as effector functions in 

mature cells. Different defects generate different symptoms. Other defects can cause 

autoimmunity or even cancer. To treat the patient hematopoietic stem cell transplantation is 

needed. NK cells can be affected by immunodeficiency syndromes. For example, in some 

form  of  severe  combined  immunodeficiency  (SCID)  the  developmental  of  NK  cells  is 

arrested in parallel with impaired T cell and/or B cell development (327). 

 

There are also defects that affect a distinct function in mature lymphocytes. Hemophagocytic 

lymphohistocytosis is a  lymphoproliferative disorder which can be subdivided into primary 

or secondary HLH (reviewed in (328)). Primary HLH or Familiar hemophagocytic 

lymphohistocytosis (FHL) is a group of diseases, FHL1-5, each caused by different mutations 

with an autosomal recessive inheritance. These patients are often infants with life threatening 

symptoms, which is due to a defective T and NK cell cytotoxicity. The common denominator 

between the mutations is that they disturb either the granule content or delivery in cytotoxic 

lymphocytes. This results in an overstimulated immune system causing massive cytokine 

production and infiltration. Familiar hemophagocytic lymphohistocytosis type 2 can be 

caused by different mutations in the perforin gene PRF1 resulting in low or absent levels of 

perforin (constitutively expressed by NK cells, memory CD8 T cells) in cytotoxic T and NK 

cells (329, 330). Common manifestations are reoccurring severe infections and malignancies 

in both children and adults (331-334). The only cure is hematopoietic stem cell 

transplantation. For secondary or acquired HLH which can occur later in life there have been 
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associations to triggering via virus infections. HLH is not a single disease, it is rather several 

syndromes caused by an uncontrolled immune system with massive inflammation. 

 

Other primary immunodeficiencies result in severely impaired development of only one of 

the three lymphocyte lineages. The DiGeorge syndrome involving a thymic defect leads to 

selective T cell deficiency. Brutons X-linked agammaglobulinemia involving a defective 

signaling molecule leads to B cell deficiency. There is also a special branch of primary 

immunodeficiencies that involves a selective NK cell deficiency (NKD). As in the case of 

primary immune deficiencies affecting T and B cells, NK cell deficiency is defined as a 

persistent abnormality in the patient that is stable over time and not induced by as 

environmental alternation as mentioned above. To be defined as a selective NK cell 

deficiency the defect must only affect the NK cell population by size, function or both; it 

must not affect other cell types of the immune system. For example perforin deficiency, 

mention above, is a primary immunodeficiency but not a NK cell deficiency since it also 

affects cytotoxic T cells (335). In fact many primary immunodeficiencies affect the NK cell 

population in several ways such as impaired development, survival or cytotoxic function but 

they also affect other parts of the immune system reviewed in (336-338). 

 

Two types of selective NK cell deficiency have been observed, for which the terms classical 

natural killer cell deficiency (CNKD) and functional natural killer cell deficiency (FNKD) 

have been proposed (336). Classical natural killer cell deficiency is currently defined by the 

complete lack of NK cells in peripheral blood or that NK cells constitute less than 1% of 

peripheral blood lymphocytes. In functional natural killer cell deficiency on the other hand 

there is an almost normal NK cell count in the peripheral blood, but the NK cells are non- 

functional. Both types of NK cell deficiency lead to decreased host defense and increased 

occurrence of virus infections. Both classical and functional natural killer cell deficiency is 

further subdivided by the genetic mechanisms causing the deficiency. The disorders 

discovered so far are termed CNKD1, CNKD2 or FNKD1. 

 
1.12.2 Classical NK cell deficiencies 

 

The first patient with classical NK cell deficiency was documented in 1989.Today at least 19 

patients have been identified, all presenting with the absence or severely reduced number of 

NK cells in the peripheral blood. Furthermore the few NK cells that were found lacked 

cytotoxic capacity.  Many of these patients died prematurely and more than 50% developed 

severe infections with a virus in the Herpes virus family. Three patients have been treated 

with hematopoietic stem cell transplantations, two with a great success (339).  There are two 

known genetic mechanisms causing classical natural killer cell deficiency, CNKD1 and 

CNKD2. The first (CDNKD1) case was caused by haploinsufficiency in the transcription 

factor GATA2. GATA2 is important for correct NK cell development (379). CNKD2 is 

caused by a mutation in the gene minichromosome maintenance 4 (MCM4) which is 

important for correct DNA replication (380). Patients with CNKD2 have a reduced total 

number of NK cells but a higher frequency of immature NK cells) in the small NK cell 

population found. The total NK cells population from these patients shows a low cytotoxicity 
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against known targets, which could be due to lack of mature cells (381). It could be due to 

that the perforin containing mature NK cells are simply too few or that a mutation in MCM4 

impairs NK cell function. 

 
1.12.3 Functional NK cell deficiency 

 

When a patient has no other deficiencies in the immune system except dysfunctional NK 

cells, they are categorized as functionally NK cell deficient (382, 383). These patients have a 

normal total NK cell count but the NK cells lack the cytotoxic capacity. Today only one 

single gene defect is known to cause functional NK cell deficiency, FNKD1, which is a 

mutation in the gene encoding for the receptor CD16, known to be the most important 

receptor for NK cell mediated ADCC. This mutation is in the extra cellular part of the 

molecule but does not affect the CD16-antibody binding, and paradoxically these patients 

show a normal ADCC capacity (384). At least three patients have been diagnosed with 

FNKD1, all of them presenting with recurrent virus infections and with reduced NK mediated 

cytotoxicity against the K562 cells in the clinical immunology testing (382, 385 ). The lack of 

cytotoxicity could be due to that CD16 normally can bind to CD2, a member of the SLAM 

receptor family that can induce spontaneous cytotoxicity, but the mutated CD16 lack this 

capability and can therefore not act as a costimulatory receptor and cytotoxicity will be 

abrogated (as discussed above, most NK cells receptors except CD16 needs to function in 

pairs to be able to give fully activation). 
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2  AIM 
 

The overall aim of thesis has been to study missing self recognition by NK cells and how 

they are educated by host MHC I molecules to perform this function; in particular, whether 

these processes can be manipulated in an experimental therapeutic setting, as well as their 

relation to a new type of immune defect in the mouse. 

 

Paper I) To characterize the deficient missing self recognition displayed by the Impaired 

Missing Self Recognition (IMSR) mice. 

 
 Is the observed NK cell defect due to the targeted gene in these mice? 

 Is the IMSR NK cell deficiency due to lack of any activating or inhibitory receptor? 

 Are the inhibitory receptors functional i e can they mediate inhibition? 

 Is the observed missing self deficiency intrinsic to the NK cell or/and is it due to lack 

of education? 

 

Paper II) To evaluate if it is possible to manipulate missing self recognition by inhibitory 

receptor blockade in vivo to enhance elimination of syngeneic MHC I
+ 

tumor cells 

 

 Is it possible to mimic missing self recognition and thereby enhance elimination of 

MHC I
+ 

sufficient tumor cells in vivo without breaking tolerance towards self? 

 Can self-tolerance be secured during a longer treatment period and is the anti-tumor 

sustained (important issues for clinical application)? 

 Can the anti-tumor effect be further enhanced by already establised treatments such 

as cytokine stimulation? 

 

Paper III) To study if NK cells can retune their responsiveness upon/due to altered MHC I 

expression 

 
 Is it possible to retune the NK cell responsiveness by altering the inhibitory input, 

either via inhibitory receptor blockade or via transfer of mature NK cells to an 

altered host? 

 If the responsiveness is increased (up-tuned) are NK cells still self-tolerant? 

 Do the retuned NK cells display any phenotypical changes? 

 Is the reduced responsiveness in inhibitory receptor blockade caused by crosslinking 

of receptors leading to direct induction of inhibitory signals in the effector function? 

 

Paper IV) To investigate if the observed skewing of the inhibitory receptor repertoire 

occurs already in the bone marrow during NK cell development 

 

 At which NK cell developmental stage does the skewing of inhibitory receptor 

repertoire occur? 

 Which mechanistic processes are involved in creating the enrichment for certain 

populations, increased proliferation or reduced proliferation? 
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3  RESULTS AND DISCUSSION 
 

In this section of the thesis I will focus on those of my discoveries that I think are most 

interesting, and also on some data that have not been published. I will not follow the order 

of the papers, instead I will discuss them in an integrated way, under six different themes, 

sometimes referring to more than one of them under each theme. For all results and details 

you are welcome to read the papers (I-IV). 

 
3.1   GENETIC DEFECTS AFFECTING NK CELLS 

 
As mentioned in the introduction, selective NK cell defects in humans are classified by 

either lack of NK cells or impaired function of NK cells (with normal numbers). These 

defects are caused by a few known mutations. However, the murine system can be 

manipulated both specifically, by targeting a certain gene. This has been used to show the 

importance of different molecules in NK cell function. NK cells from an MHC I-deficient 

host are hyporesponsive due to lack of licensing/arming via the MHC I self specific 

inhibitory receptors. Although many defects are intentionally induced, others have arisen 

spontaneously and some of them are of unknown basis. 

 
In paper I we characterized a defect observed in a mouse strain, termed IMSR - Impaired 

missing self recognition. As the name implies, this mouse strain shows impaired missing 

self recognition; it lacks the ability to eliminate target cells lacking MHC I. 

 
The IMSR defect was discovered in a gene targeted “KO” mouse strain deficient for a non- 

classical MHC I like gene, CD1, but with otherwise normal MHC I expression. We 

unexpectedly observed that the mice had severely impaired capacity for NK cell mediated 

rejection of MHC I-deficient cells. Control experiments with independently derived KO 

strains for the same gene, as well as F1 and F2 intercrosses with B6 mice indicated that the 

functional NK cell defect was not caused by the targeted gene, that the trait was recessive 

and that the two phenotypes, IMSR and deficiency in CD1 expression, segregated 

independently. 

 
IMSR mice were similar to wt B6 mice in terms of NK cell number as well as NK cell 

surface phenotype regarding activating receptors and maturation markers. All receptors 

expressed in B6 mice are also expressed/present in the IMSR mice. However, there was a 

significantly altered inhibitory receptor repertoire, as evaluated by a large panel of 

antibodies to activating and inhibitory receptors (see section 3.4.2). In vivo, the NK cells 

showed a severely impaired capability for missing self rejection of normal spleen cells 

(β2m
-/-

)  as  well  as  of  tumor  cells  (RMA-S).  Kinetic  studies  and  tumor  outgrowth 

experiments revealed a profound defect rather than just a delay in missing self rejection. 

Experiments  with  mixed  bone  marrow  chimeras  indicated  that  the  defect  is  NK  cell 

intrinsic and not due to the host environment. In vitro assays also showed a prominent 

defect in missing self recognition, which in most settings could not be overcome with 

cytokine stimulation. In contrast, there was a normal or only partly impaired capacity with 
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respect to other NK functions, such as ADCC and NKG2D dependent cytotoxicity. 

Furthermore,  positive  allorecognition  by NK  cells  in  vivo  was  not  affected:  the  mice 

showed a normal capacity for DAP-12 dependent rejection of MHC disparate (D
d
) cells. 

However, NKG2D dependent elimination of tumor targets in vivo was severely impaired. 

For discussion regarding NKG2D and Ly49D see section 3.1.2. 

 
Our results indicate that this mouse strain has a genetically based, NK cell intrinsic and 

almost selective deficiency in the killing pathway used to sense missing self. Our data 

argued against possible causes like a complete lack of inhibitory receptors or lack of one or 

several known activating receptors. As discussed in paper I, lack of inhibitory receptors, 

lack of functional signaling molecules or other cell types has been shown to influence NK 

cell function in different ways, but none of the known characterized defects is really 

consistent with the one observed in the IMSR mice. 

 
The defect may be possible to identify by whole genome sequencing after backcrossing the 

IMSR defect appropriately on the B6 background. At this stage, one can only speculate 

regarding the cause of the observed NK cell phenotype in the IMSR mouse. First, the 

inhibitory receptors or their signaling pathway may be non-functional, which could disturb 

missing self recognition while leaving other NK functions relatively intact. Second, the 

dysfunction may involve an unknown activating receptor or signaling molecule, critical for 

missing self recognition but no other types of activation. Third, at steady state, the NK cell 

may receive too much activating or inhibitory signals inducing hyporesponsiveness either 

via “cross-tolerance” or a too high activation threshold to overcome.  I will discuss these 

possibilities below. 

 
3.1.1  Are abnormal inhibitory receptors causing the NK cell deficiency? 

 

Even if NK cells from IMSR mice expressed inhibitory Ly49 receptors, it was possible that 

these cannot signal, and the lack of missing self recognition would thus due to absence of 

MHC I dependent education similar to what is observed in an MHC I (or Ly49r) deficient 

mouse. (203, 340-342) NK cells from MHC I-deficient mice are tolerant towards “self”, i e 

normal cells lacking MHC I expression. The lack of inhibitory signals from educating 

interactions results in hyporesponsiveness, an inability to respond sufficiently when 

triggered via activating receptors, due to an increased activation threshold. Although MHC 

I-deficient NK cells are hyporesponsive they still have functional inhibitory receptors and 

the ability to use them and interact with MHC I when the opportunity occurs, see below and 

paper III. Further, NK cells in mice lacking SHP-1 and hence the capability to signal via 

inhibitory receptors, are also hyporesponisve, unable to perform missing self reactivity and 

control tumors in vivo (342, 343). 
 

We compared missing self recognition in IMSR and β2m
-/- 

mice by studying the animals´ 

capacity to eliminate MHC I-deficient tumor cells, RMA-S, in vivo. Both IMSR and MHC 

I-deficient NK cells were capable of an increased elimination of RMA-S cells compared to 

the MHC I expressing counterpart RMA, although with a significantly reduced efficiency 
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compared to wild type mice (data not shown). This indicates that NK cells from IMSR and 

MHC I-deficient mice both can be inhibited via their inhibitory receptors. 

 
In addition to what was presented in paper I, we later studied in vitro killing of Con A- 

activated T cell blasts (Con A blasts) by IL-2 activated IMSR and B6 NK cells. In this 

setting  we  actually  observed  a  significant  increase  in  killing  of  β2m
-/-   

Con  A  blasts 

compared to killing of B6 Con-A blasts (data not shown). This was only observed in the 

highest effector target ratio (1:100) and killing was not as efficient as by B6 NK cells. In 

this set-up the cytokine pre-activation could partly override the deficiency normally 

displayed by the IMSR NK cells. In another set of experiments, we used IL-2 activated 

Ly49A
+ 

NK cells, isolated by FACS sorting, in a cytotoxic assay against tumor targets with 

or without expression of the D
d 

ligand. The IMSR NK cells were inhibited via the Ly49A- 

D
d 

interaction to the same extent as NK cells from wild type mice. Another important 

evidence that the inhibitory receptors of IMSR NK cells are functional is that they display 

the pattern of skewing of the NK cell repertoire consistent with education and inhibitory 

input. This will be further discussed in section 3.4.2 and 3.4.3. ). Taken together these data 

indicate that when we push the system either by increasing activating ligands on target cells 

or  by  cytokine  activating  the  NK  cells  we  can  detect  reactivity  regulated  by  MHC 

inhibitory  receptors,  showing  that  IMSR  NK  cells  have  the  capability  to  signal  and 

discriminate via these receptors (344). 
 
The IMSR NK cells showed a partly impaired ADDC against antibody coated targets. This 

is interesting, for at least two reasons 1) the defect in the IMSR mice affects different parts 

of NK cell function with different degrees of severity and 2) in patients with functional NK 

cell deficiency type I, which carry a mutation in the CD16 locus, the NK cells have normal 

or almost normal ADCC but are deficient in killing of a NK cell sensitive tumor K562 

(K562 is the prototype for human NK cell target cells equivalent to YAC-1 in mouse). In 

the case of the FNKD1 patients the mutation in the CD16 locus alters the co-stimulatory 

effect of CD16. Here we observed a reduction in CD16 dependent function per se but it was 

not as severely affected as the missing self recognition. An additional similarity to an NK 

cell deficiency observed in humans is NK cells with a mutation in the Wiskott-Aldrich 

Syndrome protein coding gene which are defective in natural cytotoxicity and in ADCC. 

However, these NK cell regain their function upon IL-2 activation. (345). 

 
3.1.2  Is NK cell deficiency caused by alteration(s) in activating receptor 

pathways? 
 

The observed deficiency in the IMSR NK cells could be due to a mutation influencing one 

or several of the activation pathways. The most obvious would be a loss of function leading 

to lack of activation. Many such mutations affecting signaling pathways downstream of 

activating receptors have been described. As discussed in paper I, none of them fits the 

IMSR profile completely. However, some other specific deficiencies are quite similar in 

their observed phenotype e g Fyn or loss of total activating receptor(s) signaling. Another 

option is that the deficiency is due to a mutation resulting in a gain of function mutation, 
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resulting in hyper-signaling in an activation pathway. How this could fit our results will be 

discussed below. 

 

Ly49D  and  NKG2D  are  two  activating  receptors  which  mediate  their  signal  through 

DAP12  or  DAP10  respectively.  We  tested  these  two  signaling  pathways  in  different 

settings. IMSR NK cells could eliminate Ly49D sensitive target in vivo as well as produce 

IFNγ and degranulate in vitro after Ly49D antibody stimulation. In contrast, IMSR mice 

were  not  capable  of  eliminating  RMA-Rae-1γ  tumor  cells  (expressing  high  levels  of 

NKG2D ligand) in vivo while both B6 and β2m-deficient mice did (figure 7 and data not 

shown). Interestingly, Cerwenka et al. showed that injection of RMA-Rae-1γ tumor cells 

into the same CD1d1 KO mouse strain as ours resulted in prolonged survival of the mice 

compared to mice injected with the parental RMA tumors (346). This is not in total conflict 

with our data. The deficiency in NKG2D-mediated rejection observed by us may not be 

total but rather a severe defect observed in short term experiments which can be overcome 

during a longer time period. In addition, it has been shown that elimination of RMA Rae-1 

is dependent on both NK cells and CD8
+  

T cells (35, 169). It is possible that the CD8
+  

T 

cells mediated tumor elimination was observed in the long term experiments but not in our 

short in vivo assay. Taken together these results indicate that the IMSR mice have a fully 

functional signaling via Ly49D and DAP12 but not via NKG2D, DAP10 or downstream of 

DAP10. These data are further supported by the fact that DAP12-deficient mice show an 

intact missing self recognition (347, 348). Raulet generated an NKG2D-deficient mouse 

which lacks the capability to eliminate NKG2D ligand expressing tumors both in vitro and 

in vivo (161).These mice showed a normal missing self rejection. Even if the NKG2D 

receptor in the IMSR mice is mutated or the signal is severely impaired, the IMSR mice 

must have an additional or a different defect explaining the impaired missing self reactivity. 

 

As mentioned above, no known genetic NK cell defect in mice or humans is really 

consistent with the phenotype observed in the IMSR mice. However, there is at least one 

study of dysfunctional NK cells sharing many similarities with the IMSR NK cells. This 

“NK cell deficiency” is not genetic, but caused by chronic exposure to ligand for the 

activating receptor NKG2D in vitro (349). B6 NK cells were co-cultured with RMA-H60 

(expressing high levels of NKG2D ligand H60) for 3 days. Interestingly, this chronic 

stimulation did not only abrogate the NKG2D-DAP10 mediated killing, it also impaired 

ADCC (via CD16-FcRγ) and missing self killing of MHC I-deficient tumor cells (RMA-S). 

Ly49H-DAP12-mediated killing remained intact. In addition, the NK cells had a reduced in 

vitro IFNγ response to RMA-S cells or plate bound antibody stimulation via NK1.1, while 

Ly49D stimulation gave a significantly increased IFNγ response. The functional phenotype 

observed after chronic ligand exposure is almost identical to the phenotype observed in the 

IMSR NK cells. As may be noted in figure 6 in paper I, NK cell from the IMSR mice 

without antibody stimulation displayed an increased spontaneous release of IFNγ and the 

same was true for the NK cells which had been chronically activated, indicating some sort 

of increased basal activation state (paper I figure 6, my unpublished data and (349). In 

addition, the NK cells chronically exposed to the NKG2D ligand had an impaired Ca
++
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influx (needed for NK cell activation) after stimulation via NKG2D, CD16, NK1.1 and 

NKp46, while Ly49D and Ly49H Ca
++ 

influx remained almost intact. The induced NK cell 

defect affecting multiple activation pathways was only observed when NK cells were 

exposed to targets expressing NKG2D or Ly49D ligands (using DAP10/12 or DAP12 

respectively) but not to targets triggering CD16 or inhibitory Ly49r. So, continuous 

stimulation through either DAP10 or DAP12 can induce, as termed by the authors, “cross- 

tolerance” while the other receptors/adaptor proteins tested cannot. 

 
Chronic exposure to activating ligands for NKG2D has also been studied in vivo. 

Oppenheim et al. generated several transgenic mouse strains with different range of normal 

cells expressing the NKG2D activating ligand Rae-1 (350). Upon constant exposure to its 

ligand, NKG2D was downregulated both in vitro and in vivo. The NK cells from Rae-1 

transgenic mice could not kill targets in vivo expressing the Rae-1 ligand or eliminate MHC 

I-deficient spleen cells. This impairment could be restored by treating the mice with poly 

(I:C) which activates NK cells via Toll like receptor 3 expressed on myeloid cells, resulting 

in type I interferon production. In contrast to NK cells from Rae-1 transgenic mice, those 

from IMSR mice cannot regain ability to kill MHC I-deficient tumors by cytokine pre- 

activation in vitro or gain ability to respond to plate-bound antibody stimulation in vitro 

after in vivo pre-activation with a the type I interferon inducer tilorone. 

 

One can speculate that the defect in the IMSR mice could be due to increased interaction 

with NKG2D ligands in vivo inducing “cross-tolerance”. But if this was the case, IMSR 

NK cells from mixed bone marrow chimeras in wt mice should not display the defect while 

wt NK cells from mixed bone marrow chimeras in IMSR mice should. In contrast, the 

defect was intrinsic to IMSR NK cells (see section 3.1 above). In addition, NK cells in the 

IMSR mouse express NKG2D with a slightly but not significantly reduced MFI (mean 

fluorescense intensity). The reduction in expression levels for NKG2D is most likely not 

responsible for the reduced function since NK cells from MHC I-deficient mice also 

expressed lower levels of NKG2D (paper III and unpublished data) but were still capable of 

rejection of tumor cells expressing NKG2D ligands. Altogether these observations argue 

against that the IMSR NK cells are chronically exposed to NKG2D or Ly49D ligands 

mediating sustained DAP10/12 signaling. 

 

However, the studies by Coudert and Oppenheim et al. support my idea that the cause 

behind the IMSR phenotype could be overstimulation of NK cells, e g that activating 

signaling is constitutively on, even in the absence of cognate receptor-ligand interactions. 

This could potentially be caused by an overexpressed or altered signaling molecule or by 

the lack of a phosphatase so that the signaling is not abrogated. If this would be the case it 

could give the same functional defect as observed in “cross-tolerance” caused by chronic 

exposure to ligand. 

 

Despite the similarities between the IMSR functional phenotype and the effect of chronic 

NKG2D ligand exposure, NK cells with a total lack of NKG2D also share features with the 

IMSR NK cells. Removal of both NKG2DL and -S expression leads to a reduction of the 
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spleen size due to a reduction in the B, T and NK cell compartments (351). This is partly 

true also for the IMSR mice which show a reduction in spleen size and total lymphocyte 

number, have normal proportion of NK cells and T cells but reduced frequency of follicular 

B cells and almost no marginal zone B cells (351) (Mikael Karlsson’s unpublished data). 

Mice lacking NKG2D expression display a normal NK cell maturation pattern in the spleen 

but a reduction of more mature and KLRG1 expressing NK cells in the bone marrow. 

Interestingly, NK cells from NKG2D-deficient mice display the opposite responsiveness 

pattern to IMSR NK cells i e they have an increased cytokine production in response to 

certain types of stimulation and the mice display an increased survival to cytomegalovirus 

infection. In addition, the NK cells from these mice have a faster cell division rate but are 

also more susceptible to apoptosis in both IL-2 and IL-15 in vitro cultures. In summary, we 

cannot exclude that NKG2D is involved in the IMSR deficiency, further investigation is 

needed. 

 

Another strong activating receptor expressed by a considerable proportion of NK cells in at 

least  some  mouse  strains  is  Ly49H,  recognizing  the  MCMV  encoded  protein  m157. 

Bolanos et al. used a transgenic mouse chronically displaying m157 to the NK cells (352). 

This exposure induced reduced function of Ly49H
+ 

NK cells, not only in response to m157 

but also to Ly49H independent stimulation in vitro via NK1.1 and YAC-1. The induction of 

this reduced responsiveness was DAP12 dependent, and was observed in mature NK cells 

but was rapidly reversible if ligand exposure was removed. These results corroborate that 

increased signaling from an activating receptor can lead to impaired general NK cell 

function. 

 

Similar to the NKG2D-deficient mice discussed above (351), mice lacking NKp46 also 

display  a  hyperresponsive  phenotype.  Narni-Mancinelli  et  al.  showed  that  absence  of 

NKp46  function,  either  in  mutant  mice  or  by  antibody  blockade  in  wild  type  mice, 

generated hyperresponsive NK cells with a stronger cytokine response after in vitro 

activation and a prolonged mouse survival after MCMV infection (353). The endogenous 

ligand for NKp46 is unknown, but these observations indicate that it may play a role in 

tuning the NK cell responsiveness. These results may thus be interpreted in the context of 

education but unfortunately the authors did not investigate if there were any differences in 

responsiveness between NK cells expressing inhibitory receptors for self MHC I or not. 

 

However, there are conflicting data regarding if loss of NKp46 induce hyperresponsiveness. 

Sheppard et al. generated NKG2D/NKp46 double knockout (DKO) mice to study the 

influence of activating receptors on NK cell phenotype and function (354). The NK cells 

from the DKO and the NKG2D single KO mouse showed altered phenotypes, increased 

number of mature cells and changed receptor expression. In line with the other NKG2D KO 

mice presented above, these NKG2D KO and DKO mice responded more efficiently by 

IFNγ production to some activating stimuli. However, the NKG2D KO studied did not alter 

resistance to MCMV infection. Further, the NKp46 KO mice showed no alteration in either 

phenotype or functional responses of NK cells which is in contrast to the results presented 
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by Narni-Mancinelli et al.. However, the influence of NKp46 in resistance to MCMV was 

not evaluated. 

 

To summarize, it is hard to draw any conclusion regarding our defect from studies based on 

different KO mice since there are inconsistent data.. In any case, the IMSR mice illustrate 

nicely that something else than the targeted gene can cause functional changes when a KO 

mouse is generated and backcrossed. It cannot be excluded that the critical change affects 

an activating receptor or pathway these mice, this possibility should be further investigated. 

 
3.1.3  Signaling pathways and molecules potentially involved in the IMSR NK 

cell deficiency 
 

Many alterations in signaling pathways downstream of either activating or inhibitory NK 

cell receptors result in similar dysfunction as the defect observed by the IMSR NK cells. In 

this section I will go through some findings in this literature that appear to be of particular 

interest in relation to the IMSR NK cells. 

 

The SLAM receptor 2B4 and its downstream signaling pathway may influence NK cell 

responsiveness. As elaborated on in the introduction (section 1.7.4) the regulation of murine 

2B4 function is dependent on the SAP-family (SAP, EAT-2 and ERT) where all three 

members synergize to mediate activation (142). The ligand of 2B4 (CD48) is expressed on 

all hematopoietic cells, explaining why mice deficient for the SAP family members 

displayed a reduced NK cell killing of hematopoietic cells, such as RMA-S and YAC-1, as 

well as a reduced in vivo rejection of normal MHC class I-deficient spleen cells, while they 

showed an increased killing of non-hematopoietic target cells. Further, in the absence of the 

SAP-family, the 2B4-CD48 interaction inhibits activation through NKG2D and CD16 in a 

SHIP-1 dependent manner (196, 198). These data are in line with the functional phenotype 

of the IMSR NK cells even if reactivity to non-hematopoietic cells has not been tested yet. 

It would be of interest to study the general function of 2B4 in the IMSR mice and to test 

reactivity against a non-hematopoietic target cells. Although western blot analysis indicates 

that the Fyn protein is expressed at normal levels in cells from the IMSR mice, it could still 

be non-functional. It would also be of interest to study the SAP-Fyn pathway and to block 

the EAT-2 pathway in the IMSR mice. 

 

Other important signaling molecules participating in activation of NK cells are 

phospholipase Cγ-1 and -2 (PLC-γ1 and PLC-γ2) and mice mainly express and use PLC-γ2 

(355). Mice lacking PLC-γ2 are perturbed in NK cell maturation, in expression of Ly49 

inhibitory receptors and in NK cell function. Overexpression of PLC-γ1 can restore the 

maturation and Ly49 expression but only partly rescue the function (356). Furthermore, 

PLC-γ2-deficient NK cells lack the ability to respond to almost any activation. They show 

defective killing of targets via NKG2D, Ly49D, missing self recognition, and lack the 

capability to produce cytokines after NK1.1 stimulation, but hyporesponsiveness was not 

due to lack of total function since the NK cells could fully respond to PMA stimulation 

(356, 357). However, an interesting similarity to the IMSR mice is that PLC-γ2 mice lack a 
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large population of follicular B cells and marginal zone B cells in the spleen (358-360) and 

Mikael Karlsson’s unpublished data). In line with the NK cell deficiency, the marginal zone 

B cell deficiency in IMSR mice was also cell intrinsic.; transplantation of bone marrow 

from an unrelated CD1d
-/- 

KO mice with normal marginal zone B cell numbers grow out in 

the IMSR host (Mikael Karlsson unpublished data). Further studies are needed to evaluate 

if both deficiencies in the IMSR mice have the same genetic basis. In addition to the 

mechanism behind the defect(s) per se it would be of interest is to study how the IMSR 

mice and their NK cells can handle a virus or bacterial infection since the PLC-γ2-deficient 

mice cannot control CMV infection although they can handle a Listeria infection (357). 

NKG2D-DAP12 can signal via both Grb2 resulting in the usage of PLC-γ2 but also via 

PI3K (via p85) which is PLC-γ independent. However, as described above, lack of PLC-γ2 

resulted in severely impaired NK cell function in general but also through NKG2D, 

indicating non-complete redundancy in the system. 

 
3.2   HYPORESPONSIVENESS DUE TO RETUNING AND OTHER PROCESSES 

 
3.2.1  Altered responsiveness upon antibody blockade 

 

Interactions between MHC I specific inhibitory receptors and their ligands during education 

regulate  NK  cell  responsiveness  in  encounters  with  target  cells.  As  noted  in  the 

introduction, there were initially two postulated models for how this occurs, via licensing or 

disarming. A third model, the rheostat model, incorporates features from both of the other 

models, and emphasizes that responsiveness is reversible and the NK cell can be retuned 

upon altered MHC I expression or inhibitory receptor input. In addition, a “sequential 

arming/disarming model” stating that NK cells need to interact with MHC I in both cis and 

trans to become fully responsive has recently been proposed (361). This model suggests 

that education is a two-step process; the first step is dependent on Ly49-MHC I cis 

interactions mediating arming and the second step maintains responsiveness via trans 

interactions. It will be further discussed below (section 3.2.2 and 3.4.3). 

 

Studies in adoptive transfer models have yielded results supporting that NK cells can adapt 

their responsiveness after transfer to a host with an altered MHC I expression (362, 363). In 

two separate studies, NK cells were transferred to a host with a different MHC I phenotype 

and the change in NK cell responsiveness was analyzed in vitro. Mature NK cells from a 

MHC I-deficient environment can gain responsiveness, e g aquire the ability to produce 

IFNγ and respond via degranulation, after transfer to a MHC I sufficient host. Conversely, 

mature NK cell from a MHC I sufficient donor can lose their responsiveness upon transfer 

to a MHC I-deficient host. NK cell adaptation was observed to be Ly49 receptor dependent; 

NK cell populations expressing a self-specific inhibitory receptor adjusted their 

responsiveness, while NK cell populations lacking an educating receptor did not adapt the 

responsiveness to altered MHC I expression. 

 

In paper III we investigated the rheostat model and retuning, particularly in relation to NK- 

cell reactivity to tumors. In one part of the study, we used transfer models similar to the 
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ones mentioned above, where we could confirm and extend the observations regarding 

tumor cell reactivity. These results are discussed in section 3.5.2. Here, the discussion will 

focus on the first part of paper III, where we addressed whether it is possible to induce 

retuning by antibody blockade of self-specific inhibitory receptors in vivo. This represents 

another approach to alter the NK cells’ sensing of MHC I expression in vivo which is less 

invasive, avoiding irradiation and high numbers of transferred cells. The studies of possible 

retuning induced by inhibitory receptor blockade were initiated by some unexpected results. 

 

Before this study, we had we demonstrated in paper II that reactivity against syngeneic 

lymphoma cells can be induced in mice by Ab-mediated blockade of self-specific inhibitory 

receptors on NK cells without breaking tolerance to normal cells. In vivo blockade of 

Ly49C/I inhibitory receptors on B6 (H-2
b
) NK cells with F(ab’)2 fragments of the mAb 5E6 

(binding to Ly49C and I) caused increased rejection of syngeneic MHC class I-expressing 

lymphoma cells (RMA) but not of syngeneic spleen cells, BM cells or lymphoblasts (see 

section 3.5). Self-tolerance was thus very robust, and somewhat surprisingly, killing of 

normal  cells  could  not  be  induced  by  releasing  NK  cells  from  inhibitory  blockade. 

However, an unexpected and interesting finding in the course of these studies was that mice 

treated with the 5E6 antibody showed decreased rejection of splenocytes lacking MHC I. 

This seemed puzzling, but this “disturbing” observation was very reproducible. 

 

It occurred to us that the results could make sense when considered from the perspective of 

the rheostat model. A possible explanation for reduced elimination of MHC I-deficient 

spleen cells could thus be that antibody blockade was not only affecting missing self 

reactivity during the effector-target interaction, it was also influencing the NK cell 

responsiveness prior to this event by blocking inhibitory input important for the constant 

tuning of NK cells, thus inducing hyporesponsiveness in the targeted NK cell population. 

We reasoned that this effect had not been visible in the studies of MHC class I expressing 

tumor cells and in paper II, because the effect on retuning would be masked by the opposite 

effect of the inhibitory receptor blockade in the effector-target interaction phase. The 

hyporesponsiveness  would  only  emerge  when  using  MHC  I-deficient  spleen  cells  as 

targets. To test the hypothesis that inhibitory receptor blockade would retune the NK cells, 

we used the in vitro hyporesponsiveness assay, measuring CD107a expression and IFNγ 

production by the NK cell subsets targeted by the blockade.  The Ly49I single as well as 

the Ly49C and I double positive NK cell subset (expressing no other inhibitory receptors) 

demonstrated a significant decrease in total IFNγ production and CD107a expression after 

stimulation with anti NKp46 antibodies. A phenotypic characterization of NK cells after in 

vivo  Ly49C/I  blockade  showed  no  major  alterations  in  the  expression  of  activating 

receptors, maturation markers and inhibitory receptor repertoire. Interestingly, expression 

of KLRG1 was significantly reduced on Ly49I single and Ly49C/I double positive NK cells 

after Ly49C/I blockade. 

 

According to the rheostat model, responsiveness in NK cells is not a fixed state, it changes 

over  time  according  to  the  input  from  inhibitory  receptors  to  adapt  or  retune  to  the 
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environment. Our results are compatible with this model and may indicate that blockade of 

self-specific inhibitory receptors over time retunes mature NK cells to adjust to the lower 

inhibitory  input.  Furthermore,  our  observations  may  even  imply  that  the 

hyporesponsiveness can explain the robust tolerance to normal MHC class I expressing 

cells in spite of inhibitory receptor blockade in paper II: retuning in response to reduced 

inhibitory input would act to preserve tolerance. Regarding the antibody blockade of self- 

specific inhibitory receptors, it has never to my knowledge been shown that antibody 

treatment can induce retuning of NK cell responsiveness. 
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Figure 4. Four examples of NK target interactions studied in this thesis. NK cells are educated via 

MHC I Ly49r interactions to be able to respond against MHC I-deficient targets. NK cells sense the 

balance between activating and inhibitory signals and the sum of the input will determine the decision, 

elimination of the target cell or not. Expression of MHC I will inhibit the NK cell elimination of the 

target (Wt left) while lack of inhibitory input will activate the NK cell to perform missing self 

rejection of the target (Wt right). By altering the NK cells inhibitory input e g via antibody blockade 

NK cell responsiveness can be retuned to a reduced capability to perform missing self rejection (3
rd 

from the left). Finally, the IMSR NK cells express inhibitory receptors and are at least partly educated, 

but are impaired in their missing self recognition and will therefore respond poorly towards MHC I- 

deficient targets. 
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3.2.2  Hyporesponsiveness induced in Ly49I single positive cells but not in 
Ly49C single positive NK cells 

 

Ly49C/I blocking antibody induced hyporesponsiveness inLy49I single positive and in 

Ly49C/I double positive (negative for Ly49A, -G2 and NKG2A) NK cells. This was 

observed by reduced total responsiveness (CD107a expression and IFNγ production) after 

NKp46 antibody stimulation. Stimulation with PMA and ionomycin resulted in full 

degranulation and cytokine production, arguing against exhaustion of the NK cells. This is 

the first data generated in wt mice showing that Ly49I by itself can act as an educating 

receptor and that targeting this specific population affects responses in the mouse. Previous 

studies have only shown evidence for education and retuning of either the total NK cell 

population expressing self-specific inhibitory receptors, (Ly49C/I/NKG2A), have compared 

Ly49C  positive  versus  negative  populations  or  have  studied  Ly49I  introduced  as  a 

transgene. 

 

But why was retuning observed only in the Ly49I single positive population and not in the 

Ly49C single positive NK cell population? It might be that the binding of 5E6 F(ab’)2 

fragment to the two different receptors, Ly49C and -I, have a different influence on their 

function or that the fragment binds stronger to Ly49I and therefore can alter the 

responsiveness of this population. 

 

Another  possibility  is  that  Ly49I  is  more  accessible  and  therefore  influenced  by  the 

blocking to a higher extent. The majority of Ly49C receptors are bound by K
b 

in cis, 

reducing the number of free receptors available for interaction with other cells or blocking 

with 5E6 F(ab’)2 fragments (90, 248) . In contrast, an artificial system based on transgenic 

expression of Ly49I on tumor cells was needed to detect Ly49I bound in cis (90). It is still 

possible that Ly49I may be interacting with MHC I in cis at the normal state but with a 

frequency  below  the  detection  limit.  Ly49I  is  more  selective  in  its  MHC  I/peptide 

interaction than Ly49C, so if the correct peptides are limited, the cis interactions per Ly49I 

expressing cell will be reduced (88-90). This could affect the accessibility of 5E6 F(ab’)2 as 

well as the effect of blockade on inhibitory input and retuning differently for Ly49C and I. 

 

Importantly, Ly49I was also the main receptor mediating the anti-tumor effect of 5E6 

treatment. This was shown by Gustaf Vahlne and Katja Lindholm in unpublished 

experiments done during the study for paper II. B6 mice (expressing Ly49C and –I) and 

Balb/B  mice,  (expressing  Ly49C  but  lacking  Ly49I)  were  treated  with  5E6  F(ab’)2 

fragments and then challenged with MHC I expressing tumors. The 5E6 F(ab’)2 treatment 

failed to induce an increased elimination of tumor cells in the Balb/B mice while a 

significant increase was observed in the B6 mice. Regardless of mechanism resulting in 

induced hyporesponsiveness in the Ly49I sp and Ly49C/I dp NK cell population the results 

are of importance for the understanding of NK cell education in two ways; 1) as mentioned 

above, this is the first time it has been showed in wt mice that Ly49I by itself is educating 

and can influence the outcome of the total NK cell responsiveness and 2) at least in the case 
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of Ly49I the education is mostly, if not completely, dependent on MHC I interactions in 

trans. 

 

Our data can be interpreted in the context of the rheostat model i e reduced inhibitory input 

will alter the balance between activating and inhibitory signals leading to recalibration of 

the  responsiveness.  As  stated  in  paper  III,  other  explanations  are  not  excluded.  For 

example, our data could also be explained by the sequential arming/disarming model (361). 

The model is based on observations regarding that Ly49-MHC I cis interactions are needed 

to gain both functional competence and skewing of the inhibitory receptor repertoire, hence 

giving the licensing/arming signal. However, MHC I interaction is needed in trans for 

educated  NK  cells  to  remain  responsive  and  to  supply  the  disarming  signal.  This  is 

discussed more thoroughly described below. 

 
3.2.3  Hyporesponsiveness in relation to education 

 

One possible explanation for the deficiency in missing self reactivity of the IMSR mouse 

could be an impaired MHC class I dependent education of NK cells expressing inhibitory 

receptor(s)   for   self.   We  tested   this   using   NKp46   stimulation   in   the  single   cell 

responsiveness  assay  and  found  that  the  IMSR  NK  cells  responded  in  a  pattern 

characteristic for education in an H2b expressing mouse, i e higher response by NK cells 

expressing Ly49C/I/NKG2A compared to Ly49C/I/NKG2A negative cells. However, the 

total response of both populations was significantly reduced compared to the response by 

wild type NK cells (paper I). This general hyporesponsivness was also observed when the 

whole NK cell population was analyzed with NK1.1 antibody stimulation. However, when 

IMSR NK cells were triggered via LY49D, a response comparable to wild type was 

observed. 

 

In addition, when responsiveness from wild type and IMSR NK cells were compared in 

mixed bone marrow chimera, the IMSR NK cells preserved their deficiency and remained 

poor responders independently of the host environment, wild type or IMSR. These data 

show that the deficiency in the IMSR NK cells is not simply due to a lack of educating 

signals  from  the  environment  and  that  the  defect  is  NK  cell  intrinsic.  However,  we 

observed that NK cells from MHC I-deficient hosts, which are defined as hyporesponsive 

due to lack of inhibitory signaling (education), responded stronger to unspecific stimulation 

with PMA/ionomycin. This was also observed for the IMSR NK cells. The pattern was very 

consistent (my unpublished data and paper I). One can only speculate why this occurs. It 

may be that the NK cells from MHC I-deficient and IMSR mice do not get triggered to 

respond as frequently to other cells in vivo, and therefore have more stored granules to 

respond with when they stimulated in the in vitro assay. 

 

A similar unexpected finding was that the NK cells from IMSR mice displayed a higher 

background release of CD107 in single cell responsiveness assays i e they responded even 

without added antibodies as the experimental stimulus (paper I fig 6 and unpublished data). 

This is interesting in relation to the hypothesis that the NK cells from the IMSR mice may 
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be   continuously   stimulated   via   NKG2D.   Perhaps   these   hyporesponsive   NK   cells 

accumulate lytic granules and interferons which “leak out”. Another possible explanation 

for the increased spontaneous release could be that the IMSR NK cells have a dysregulated, 

increased  production  of  functional  artillery.  Coudert  et  al  observed  that  continuous 

activation via NKG2D-L in NK cells induces a higher spontaneous production and release 

(364). If the IMSR NK cells suffer from chronic overstimulation, it could potentially lead to 

signals for production and accumulation of lytic granules, especially if they were rarely 

activated enough to trigger the effector machinery. It would therefore be of interest to study 

if wild type, MHC I-deficient and IMSR NK cells produce and store equal amount of lytic 

granules, containing perforin and granzymes, and cytokines in their cytosol. 
 

Further, as mentioned in the introduction, Bessoles et al. used D
d+ 

mice either deficient in 

cis or trans interaction or lacking D
d 

on NK cells or T cells respectively (251). In vitro 

responsiveness showed that Ly49A
+
CIN

- 
NK cells from both mouse strains were 

hyporesponsive upon RMA stimulation (reduced IFNγ and CD107a production). However, 

stimulation via NK1.1 induced increased IFNγ production by Ly49A
+
CIN

-  
NK cells only 

educated in cis (trans deficient) while the same NK cell population educated via trans (cis 

deficient) responded poorly. 

 
In conclusion, the NK cell from the IMSR NK cells are hyporesponsive, although the data 

indicates that it is not due to total lack of MHC I dependent education of NK cells with self 

receptors. It might be caused by another mechanism influencing the general responsiveness 

of all NK subsets. The IMSR NK cells do not appear to suffer from generally reduced 

supplies of granules or the machinery used to release them. 

 
3.3 NK CELL MATURATION AND CELL SURFACE MOLECULES INVOLVED 

IN MATURATION AND EDUCATION PROCESSES 
 
3.3.1  NK cell maturation; influence of inhibitory and activating receptors 

 

The NK cell maturation influences the responsiveness to a large extent, since mainly the 

NK cells with high Mac-1 expression are responsive in a normal state (62)(128, 131, 365). 

NK cells from MHC I-deficient mice are hyporesponsive, and they also show an altered 

maturation pattern, detected via altered CD27 and Mac-1 expression (365). We investigated 

the possibility that the hyporesponsiveness observed by the NK cells in IMSR mice and by 

the Ly49I sp and Ly49C/I dp NK cell population after 5E6 F(ab’)2 blockade could be due to 

an  altered  maturation  pattern.  In  both  situations,  the  relevant  NK  cell  subpopulations 

showed no major changes in the maturation pattern. However, the IMSR NK cell pattern 

displayed similar trend, with an increase of the CD27
hi

Mac-1
hi 

subpobulation, as both MHC 

I-deficient and NKG2D ligand transgenic mice (365). This is rather interesting since this 

population, CD27
hi

Mac-1
hi

, has been shown to be the most migratory and the most 

responsive population, both regarding cytotoxicity and cytokine production (66). 

 
So, could this increase of the most “potent” NK cell population be due to a compensation 

trying to achieve stronger responsiveness? If this is correct, it might be that the IMSR NK 
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cells have reached a sufficient level of function so that the full compensatory mechanism 

has not been elicited. In addition, it could be of interest to compare maturation and 

developmental stages in the bone marrow in the IMSR mice. Zafirova et al. showed that 

mice deficient in NKG2D have an altered maturation in the bone marrow with fewer fully 

mature NK cells, although the pattern in the spleen was not changed (351). However, 

Sheppard et al. using a different NKG2D-deficient mouse observed an enlarged mature NK 

cell population in the spleen (354). In conclusion, both gain of activating receptor ligand 

and lack of either inhibitory receptor ligand and activating receptor may potentially 

influence NK cell maturation status while antibody blockade does not, at least not the in the 

time frame used in paper III. Future studies may reveal if such a compensatory mechanism 

exists and what role it may play. 

 
3.3.2  KLRG1 expression in relation to education and retuning of NK cells 

 

Approximately 50% of the mature NK cells express the inhibitory receptor KLRG1(131). 

KLRG1 is the only marker that has shown some association with education; it is up- 

regulated on mature educated NK cells expressing inhibitory receptors for self (128, 204, 

365). The IMSR NK cells have the same KLRG1 expression levels and frequency as NK 

cells from wild type mice. This is a further sign supporting that the IMSR NK cells have 

gone through the education process, since NK cells from MHC I-deficient mice have a 

significantly reduced KLRG1 expression (128). The normal KLRG1 expression observed 

on IMSR NK cells also suggest that the inhibitory signaling pathway is functional in these 

NK cells since NK cells from SHP-1-deficient mice displays a reduced KLRG1 expression, 

although not as reduced as in MHC I-deficient NK cells(128, 343). 

 

Early studies showed that KLRG1 expression could be induced on homeostatically 

proliferating cells and also in response to strong stimulations such as a virus infection or in 

vitro cytokine stimulation (130, 131). In addition, Fogel et al. showed that KLRG1 is up- 

regulated during an early MCMV infection, although during the infection the high KLRG1 

expression is maintained on Ly49H
+ 

virus specific NK cells for a longer time period (in a 

Ly49H interaction dependent manner) than on the Ly49H- NK cell population. (132). 

 

However, KLRG1 is rarely discussed as a direct functional determinant for “education” i e 

acquired responsiveness, it has rather been perceived as a downstream consequence of the 

educated state. It was therefore of interest to investigate how this marker would behave 

upon altered responsiveness, i e when “the license” is suspended, could the KLRG1 

expression be reversed? Interestingly, we found in paper III that retuning via antibody 

blockade as well as transfer of wild type NK cells to a MHC I-deficient host, could reverse 

a high established KLRG1 expression on previously educated NK cells. Similar results 

have been reported by Joncker et al. using the transfer model, however it has never been 

studied after inhibitory antibody blockade (363). This strong correlation with “educational” 

and status suggests that KLRG1 may be more closely associated with education then 

preciously described, and may be a potential marker for induced responsiveness. 
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The actual function of KLRG1 in NK cell function is not so well understood. This molecule 

may be upregulated  on  mature  and  activated  NK cells  to  increase their  possibility to 

migrate out in the peripheral tissue and/or to improve biding to target cells. However, the 

increased expression of KLRG1 on educated, highly responsive NK cells expression may 

reflect a regulatory function in protection against elimination of healthy cells in the 

surrounding (66). One can speculate that when an NK cell has a high Ly49r expression, 

optimal maturation (CD27hiMac-1hi) and gain maximal responsiveness a counter balance 

is needed, hence there is an up-regulation of an additional inhibitory receptor (KLRG1). 

 

Ebihara et al. studying the role trans vs cis interactions for MHC I dependent education 

using mice and NK cells with inducible MHC I expression, saw no alterations of KLRG1 

after induced education. However, this could be due to that they studied the total NK cell 

population and not only the NK cells who acquired responsiveness e g NK cell expressing 

inhibitory receptors for self (250). 

 
3.4 SKEWING OF THE NK CELL REPERTOIRE AND THE INFLUENCE OF 

MHC I 
 
3.4.1  Skewing of the NK cell repertoire and the influence of MHC I in the 

bone marrow 
 

When I started my Ph.D. studies it was known from earlier studies (221, 224) and ongoing 

studies from our lab (204, 226) that splenic NK cells display a clear MHC dependent 

skewing of the inhibitory Ly49 receptor repertoire. This was observed as an increase of NK 

cell subsets expressing one or two different receptors (and in particular, only one self- 

specific inhibitory receptor) and a reduction of NK cell subsets expressing three to five 

receptors in a MHC I sufficient compared to a MHC I-deficient host. Little was known 

about where or when during NK cell development the skewing was induced. We decided to 

investigate this further (paper IV). By monitoring five inhibitory Ly49r individually, 32 NK 

cell subsets from the bone marrow were analyzed in D
d 

single, K
b 

single, D8 and MHC I- 

deficient mice (see table 1 for additional information). We found that NK cells expressing 

one or two inhibitory receptors for MHC I were overrepresented while NK cells expressing 

three to five inhibitory receptors for MHC I were underrepresented in all three MHC I 

expressing mouse strains compared to MHC I-deficient mice already in bone marrow NK 

cells.  In  addition, we found that the NK cells expressing only one self-specific Ly49 

receptor showed the most prominent increase in frequency. By studying NK cell 

development from the developmental stage when Ly49r are first expressed we observed 

that in D
d 

single mice the skewing of the NK cell population expressing single Ly49A or - 

G2 occurred already in stage III. This is the first stage where NK cells express Ly49r, but 

the skewing became more pronounced in stage IV, in which considerable NK cell 

proliferation/expansion occurs (62). In the case of Ly49A single positive NK cells the 

skewing was correlated to increased proliferation, as measured in vivo by BrdU 

incorporation. The same trend was observed for Ly49G2 single positive NK cells but the 

difference  was  not  statistically  significant.  Regarding  the  reduction  in  the  population 
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expressing several receptors it seemed to be a combination of both proliferation and 

increased apoptosis where the latter was already observed in stage III. 

 

This is interesting in relation to observations on skewing of the Ly49r repertoire in the 

spleen by Brodin et al. (204). They used D
d 

hemizygous or homozygous mice and observed 

not only an increase of Ly49A single positive NK cells in D
d+/+ 

vs D
d+/- 

mice but also that 

the Ly49A single NK cells ex vivo had an increased IL-15 induced proliferation and a 

tendency to reduced apoptosis,  measured by Annexin V and the pro-apoptotic marker Bim. 

It may be that in both the bone marrow and in the spleen, the MHCI dependent skewing of 

the NK cell repertoire is due to two processes taking place at the same time; increased 

proliferation  of  certain  subsets  and  apoptosis  of  others,  which  may  contribute  to  this 

pattern. These processes may act to create the most responsive, yet self-tolerant population. 
 
In paper III we studied if the NK cell receptor repertoire can be adjusted in the short term in 

response to an altered MHC I environment. Transfer of splenic NK cells from a MHC I 

deficient to a MHC sufficient host or vice versa did not alter the expression pattern of 

activating or inhibitory receptors. This has also been observed by Hayakawa et al.; who 

transferred splenic NK cells from either a MHC I sufficient or deficient donor into RAG- 

2cg
-/- 

mice (MHC I sufficient (365). Independently of which mechanism that is responsible 

for the skewing, proliferation or apoptosis, it may be so that the “settings” for the repertoire 

are determined at an early stage of development after which it cannot be altered. However 

the studies so far do not address if NK cells can alter their receptor repertoire expression if 

the MHC I expression is altered during development from an earlier NK cell precursor in 

the bone marrow. These questions are of high interest and needs further investigation. 

 

Regarding NK cell function during development, it has previously been shown that only the 

mature Mac-1
hi 

bone marrow NK cells are the potent IFNγ producers and that in the spleen 

the cytotoxicity is mediated by the CD27
hi

Mac-1
hi 

NK cell population(62, 65, 66). In 

addition, Rosmaraki et al. showed that the NK1.1
+
Dx5

+  
NK cells in the bone marrow are 

the most efficient killers of YAC-1 cells, although the NK1.1
+
Dx5

- 
also showed a low 

cytotoxicity (54). It would be of interest to study if the bone marrow NK cell needs to be 

educated via an Ly49 inhibitory receptor for self in order to aquire responsiveness, or if 

early expressed receptors such as NKG2A and NKG2D can play a major role in the early 

ontogeny NK of cell function. This could be investigated by analyzing the responsiveness 

of the 10% of the NKP cells that express NKG2D (61). 
 

 

3.4.2  Skewing of the NK cell repertoire in missing self deficient mice and 
after altered MHC I recognition 

 

The skewing of the NK cell repertoire can be used as a marker for that MHC I dependent 

education has occurred. This was used in both paper I and III where we studied either a 

mouse strain with impaired missing self recognition, IMSR, discussed in sections above, or 

retuning of NK cell responsiveness to altered MHC I expression. When analyzing the 

expression pattern of Ly49r after inhibitory receptor blockade, there was no difference in 
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repertoire formation. However, the inhibitory receptor repertoire of   IMSR NK cells, for 

Ly49C, -I, -A, -G2 and NKG2A, we found that total frequency of NK cells expressing any 

given inhibitory receptor (independently of expression of other receptors), self-specific or 

not, was significantly reduced in the IMSR mice compared to B6 wild type mice. On the 

other hand, when analyzing single Ly49r positive NK cell populations (expressing no other 

inhibitory receptor) from the IMSR mice, we observed a significant increase in the 

populations expressing self-specific, Ly49C, -I and NKG2A, compared to B6 NK cells. The 

skewing of the repertoire was thus even more pronounced in the IMSR mice than in the B6 

mice. This is an additional indication that the IMSR NK cells can sense MHC I via the 

inhibitory receptors. Further, SHP-1-deficient NK cells lack the skewed receptor repertoire 

pattern, NK cell population, and are more similar to MHC I-deficient NK cells(342, 343). 

This indicates that also the initial steps in the inhibitory receptor chain is functional in the 

IMSR NK cells and that at least SHP-1 is, a shared factor necessary for both NK cell 

inhibition and for the skewing of the NK cell repertoire (342, 343). 

 

Even  though  the  mechanism(s)  behind  skewing  and  NK  cell  education  still  remain 

unknown, these data, in combination with the results showing a relative increase in 

responsiveness of CIN
+  

NK cells in IMSR mice, are indicating that the NK cells from the 

IMSR mice go through at least on part of MHC I dependent the education process. In 

addition, reduced MHC I inhibitory input on mature splenic NK cell was not enough to 

alter the inhibitory receptor repertoire in the short term (within 4-7 days). 

 
3.4.3  Why does skewing of the NK cell repertoire occur in the presence of 

MHC I? 
 

We do not know the answer to this question. There are many speculations. It could be a 

mechanism to enrich for the NK cell populations with the most favorable offsetting of 

activation  thresholds  in  interactions  involving  self  MHC  I.  If  the  largest  NK  cell 

populations in an MHC I sufficient environment would express several inhibitory receptors 

for self, all of these NK cells might receive too much inhibition in the effector target 

interaction (221). Another more qualitative aspect is that NK cells expressing only one 

inhibitory receptor for self may be more sensitive to alterations in the environment. If a 

virus causes down regulation of one MHC I molecule the NK cells expressing only the 

inhibitory receptor for that specific molecule will react but if all NK cells express several 

inhibitory receptors there is still the possibility to be inhibited via another receptor (366). In 

this way skewing of the NK cell receptor repertoire may tune the system and make it more 

sensitive to changes in the MHC I expression. So, why is there an even more skewed NK 

cell inhibitor receptor repertoire observed in the IMSR mice compared to B6 mice? 

 

Our functional data indicate that the IMSR NK cells are incapable of performing missing 

self responses, regulated via inhibitory receptor signaling which could be explained by lack 

or dysfunction of any signaling molecule in the inhibitory signaling pathway. However, the 

phenotypic data indicate that the inhibitory pathway of the IMSR NK cells is at least partly 

functional and capable of mediating the signals needed for the skewing of the repertoire. 
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So, one speculative idea of why an increased skewing is observed is that the inhibitory 

pathway signals constantly. This would result in an increased activation threshold, and to be 

able to respond at all, subsets expressing one self-specific inhibitory receptor are enriched 

for to a higher extent than in the wild type B6 strain. This can thus be seen as a “selection” 

for the NK cell with lowest possible amount of inhibition to still achieve responsiveness. 

This  could  also  explain  why  there  is  a  reduced  or  impaired  function  through  other 

activating receptors. If there is always a strong inhibitory signal the activation signal, e g by 

NKG2D, may not be sufficient to achieve a response. 

 

In line with this hypothesis and any other explanatory model for the IMSR defect, it has 

previously been shown that human IL-2 activated NK cells are easier to trigger/stimulate 

activate compared to resting NK cells which have a more restricted regulation. To be able 

to respond with cytotoxicity or cytokine secretion, resting NK cells require co-signaling 

through pairs of activating receptors, each receptor contributing. Only CD16 was able to 

induce a NK cell response by itself, this was not observed by any other natural cytotoxicity 

receptor (182, 184). The term co-activation receptors were suggested to describe these 

receptors that can only function in synergistic pairs. This reasoning could be used to explain 

why some receptors are less affected and some not (e g CD16) in the IMSR mice. 

 

If the “hyperinhibition” hypothesis is correct, the data could be interpreted in the following 

way: the activating Ly49D receptor and NKG2D could represent opposite poles. Ly49D as 

a strong activating receptor induces enough stimuli to overcome the inhibition while 

NKG2D could be mediating a too week signal to overcome the higher inhibition. It may be 

argued that NKG2D signaling in mice is strong enough to overcome inhibitory receptor 

signaling since RMA-Rae1γ (NKG2D ligand transfected) cells are rejected while the RMA 

mock transfected cells are not (paper I and (346). However, on RMA there are probably 

additional unknown activating ligands mediating co-stimulation, tilting the balance towards 

activation by NK cells in wild type mice. The theory regarding different stimuli needed to 

activate resting or pre-activated NK cells might also explain the increased in vitro killing of 

β2m
-/- 

Con A blasts observed by the IL-2 activated IMSR NK cells. In this case the cytokine 

pre-activation alters the triggering signals needed to shift the balance by reducing the 

required co-stimulation. 

 

Another way by which MHC I influences the NK cell and its receptors is by regulating the 

expression level of the cognate inhibitory receptors. When a MHC I ligand is present there 

is a reduction in the expression levels of the corresponding self-specific inhibitory receptor 

on the NK cells. This can be due to at least two different mechanisms 1) internalization of 

the receptor-ligand complex when they are interacting in trans or 2) via cis interaction on 

the same cell blocking the antibody staining. There is no difference in expression level of 

educating receptors on NK cells from the IMSR mouse compared to B6 NK cells. This 

indicates that it is not a defect causing problem to perform a cis interaction by the Ly49C 

NK cell subpopulation. 
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Bessoles et al. disrupted the Ly49r-MHCI interactions, either the ones in cis or the ones in 

trans, in two different ways, and showed in both systems that cis interactions are needed to 

induce skewing of the repertoire while trans interactions seemed less important (251). 

Based on this and functional data showing that lack of cis induced NK cell 

hyporesponsiveness, the same group proposed a new model for NK cell education; the 

sequential arming and disarming model for NK cell education (361). The authors state that 

Ly49r-MHC I interactions are needed to occur in both cis and trans to achieve a long term 

functional NK cell population. The principle is that NK cells become armed via Ly49r cis 

interactions, achieve responsiveness, and as a consequence skewing of the receptor 

repertoire is induced. However, to avoid chronic or overstimulation (inducing 

hyperresponsivness) NK cells interact with surrounding cells in trans to gain 

inhibition/disarming. However, if only trans interactions occurs, there will be no skewing of 

the repertoire and no gain of responsiveness. This model can be used to interpret the IMSR 

defect in the following way: IMSR mice have a functional interaction to MHC I in cis, 

inducing responsiveness and skewing of the repertoire, however the interaction in trans is 

defective i e the NK IMSR NK cells are render hyporesponsive due chronic overstimulation 

as implied in section 3.1.2. 

 

In  conclusion,  there  are  at  least  two  theories  which  can  explain  the  reduced  Ly49r 

expression and increased skewing of the NK repertoire in IMSR mice; too much or too low 

signaling via an inhibitory or an activating receptor respectively. In the case of too much 

signaling,  it  could  be either constant  signaling  or excess  of a signaling molecule, for 

example SHIP-1. One could speculate that over expression of SHIP-1 would generate too 

much inhibitory signaling via inhibitory Ly49r and therefore alter both activating threshold, 

skewing and increased termination of Vav-1 signaling (observed as reduced NKG2D 

function).  In  addition,  it  could  possibly  out-compete  SAP  and  EAT-2,  making  2B4 

signaling only inhibitory and tilting the balance through other activating receptors, which 

could explain the function of IMSR NK cells. However, if the phenotype is altered due to 

reduced activating signaling, as for Fyn, this would also affect the function via several 

receptors, although not NKG2D or Ly49D which are Fyn independent, which is partly seen 

in IMSR. It would however be of interest to eliminate the function of either SHIP-1 or Fyn 

in the IMSR and see if this alters the receptor repertoire or the NK cell function. 

 
3.5 MANIPULATION OF MISSING SELF RECOGNITION IN CANCER 

TREATMENT 
 
3.5.1  Increased tumor elimination by mimicking missing self recognition via 

Ly49C and I receptor blockade 
 

Can our knowledge regarding NK cells and missing self recognition be applied in 

immunotherapy against cancer, i e to induce missing self recognition by NK cells against 

tumor cells expressing MHC I molecules? Koh et al. were the first to study this in an in 

vivo  model  for  inhibitory  receptor  blockade.  After  blocking  self-specific  inhibitory 

receptors by treatment of mice with Ly49C and I with antibody F(ab’)2  fragments against 
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Ly49C and I, they demonstrated increased in vitro cytotoxicity towards MHC I
+ 

malignant 

cells, and reduced vivo outgrowth of transplanted tumor cells (322-324). However these 

studies did not address whether the inhibitory receptor blockade affected reactivity towards 

healthy normal cells, how it affected the NK cell population over time and whether it 

actually directly increased NK cell mediated elimination of tumor cells. 

 

The study resulting in paper II was collaboration with the companies Novo Nordisk 

(Copenhagen) and Innate Pharma (Marseille) where we investigated the biological function 

and safety of blocking self-specific inhibitory receptors as a preclinical evaluation for 

development towards a clinical trial and future treatment of patients. We could demonstrate 

that blocking of the inhibitory receptors Ly49C and I in both short and long term treatment 

(3 days to 9w) induced increased in vivo rejection of fluorescence labeled syngeneic 

lymphoma cells, while there was no effect on in vivo killing of healthy syngeneic spleen, 

bone marrow cells or lymphoblasts. Nor was there was any tissue damage, changes in 

hematological parameters or other detrimental effects after long term treatment. This 

indicated that the administration of antibody fragments inducing increased NK cell 

reactivity, which potentially might induce autoreactivity, was actually safe. Part of these 

results,  and  other  additional  data  were  used  in  the  preclinical  data  file  submitted  for 

approval of the first phase I clinical trial based on NK cell inhibitory receptor blockade 

(with KIR antibody). 

 

As already discussed, we now realize that the robust NK cell tolerance against normal cells 

despite inhibitory receptor blockade may be due to the induced hyporesponsiveness 

observed in paper II. NK cells were however, still capable of efficient rejection of MHC I- 

deficient tumor cells. In addition, the effect on lymphoma cell killing effect was even more 

efficient when the treatment was administrated in combination with IL-2. This combined 

therapy also significantly reduced outgrowth of syngeneic melanoma transplants. 

 

In parallel with and following the studies in paper II, our contact at Novo Nordisk, Nicolai 

Wagtmann was responsible for the first studies conducted on human cells using the same 

principle, blocking MHC class I specific inhibitory KIR.(367, 368).The anti KIR antibody 1 

7F9 (later called IPH2101 or lirilumab as a  pharmaceutical generic name) recognizes and 

binds  to  the  common  inhibitory  KIR2DL-1,  -2  and  -3  receptors,  thereby  blocking 

interaction to all HLA-C haplotypes and preventing inhibition (hereafter, the term anti-KIR 

antibody blockade I refers to such blockade of inhibitory KIRs) (368). 

 

The anti-KIR antibody increased cytotoxicity of IL-2 activated human NK cells from a 

HLA-C matched donor against patient derived acute myeloid leukemia blasts. In vivo, pre- 

treatment with 1-7F9 in KIR2DL3 transgenic mice increased rejection of injected CFSE 

labeled human PBMC (peripheral blood mononuclear cell) or spleen cells from a HLA-C 

transgenic mouse expressing the inhibitory ligand. NOD-SCID mice inoculated with human 

NK cells and acute myeloid leukemia blasts showed a high mortality rate within 4 weeks 

due to leukemia, but if they were also treated with 1-7F9 they survived 3 months (367). In 

conclusion, the first study blocking with an anti-KIR antibody increased cytotoxicity in 
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vitro as well as rejection of HLA expressing tumor cells in vivo. The next step was a phase 

I trial performed on 23 elderly patients with acute myeloid leukemia in remission. This trial 

showed that the dose of antibody required to give full saturation of KIR on NK cells was 

safe, and could be administered to induce inhibitory KIR blockade for a longer period with 

minimal side effects (369). NK cells from patients treated with higher doses of anti-KIR 

antibody expressed markers for activation such as increased expression of CD69 and 

elevated levels of TNF-α and MIP-1β, but there were no signs of changes in the NK cell 

population defined by number in peripheral blood, expression of activating and inhibitory 

receptors and no change in the capability to degranulate. 

 

Treatment with anti-KIR antibody has also been tested against other types of cancer 

expressing HLA molecules (thereby possibly escaping NK cell mediated lysis) and in 

combination with other substances to enhance the efficacy. Benson et al. conducted studies 

on multiple myeloma using both the human setting with anti-KIR antibody and the 

equivalent murine system blocking the inhibitory receptors Ly49C and I with 5E6 F(ab’)2 

fragments. In the murine setup, treatment with 5E6 fab2 fragment in combination with a 

NK cell stimulatory substance lenalidomide increased in vivo rejection of syngenic tumor 

cells (RMA) in the liver, but there was no significant effect when each treatment was given 

by itself. (370). These data are somewhat conflicting to our data since we observed a 

significantly increased rejection of RMA cells in vivo after 5E6 F(ab’)2  treatment alone. 

These are most likely to the big differences in t doses of  5E6 F(ab’)2 (we used at least a 20 

fold increased dose) or/and different assays for NK cell mediated rejection used. When the 

equivalent anti-KIR was used, blocking in combination with lenalidomide in vitro enhanced 

NK cell function, immune complex formation, cytotoxicity and IFNγ production against 

autologous myeloma cells but there was no effect on NK cell activity against healthy cells. 

The positive effect of lenalidomide was due to up-regulation of activating molecules on the 

myeloma cell line. In a phase I trial conducted on 32 patients with refractory multiple 

myeloma, administration of the IPH2101 anti-KIR antibody in doses resulting in total 

occupancy, was tolerated without any toxicity (371). Comparing PBMC (peripheral blood 

mononuclear cell) samples before and after administration of anti-KIR showed that the 

patients NK cells cytotoxicity against myeloma cells had increased in vitro. The treatment 

led to NK cell activation e g a higher expression of CD69, but no significant changes on 

IFNγ response or other cytokine vivo as opposed to their first in vitro study. 

 

In the most recent paper on the subject of increasing NK cell anti-cancer activity by 

combined treatment, anti-CD20 antibody (rituximab) was used in combination with 

inhibitory receptor blockade (372) in a murine model. Rituximab is used as a standard 

treatment for B cell lymphoma; it is considered to act directly on lymphoma cells by 

inducing apoptosis, and via ADCC by NK cells. However, some patients respond poorly. 

The authors used a murine lymphoma cell line transfected with the human CD20 to co- 

analyze the response of mice both to anti-CD20 antibody and anti-Ly49C and I fab2 

fragments. They found that the combinatorial treatment, compared to anti-CD20 alone, 

increased  CD107a  expression,  IFNγ  production  and  ADCC  upon  co  culture  with  the 
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lymphoma cells. In addition, the combined treatment increased anti-lymphoma activity and 

prolonged survival in mice with already established tumors compared to the treatments with 

each of the agents separately. Anti-KIR antibody therapy using a recombinant variant of 1- 

7F9 with a stabilized hinge, lirilumab, was tested in combination with anti-CD20 using the 

KIR transgenic mice. Mice injected with HLA-C expressing tumor cells and treated with 

the combination had a 2-2.5 fold increased NK cell dependent survival compared to mice 

given the substances separately. In conclusion, both removing the inhibitory signal from the 

most potent killers in combination with inducing a strong activation pathway via CD16 

increases NK cell activity and leads to prolonged survival of treated mice. 

 

Neuroblastoma (NB) is the most common extracranial solid tumor among children with a 

poor long term survival prognosis despite treatment such as surgery, radiation or 

chemotherapy. A reduced recurrence risk and a longer overall survival has been seen for 

high  risk  neuroblastoma  patients  treated  with  a  monoclonal  antibody  recognizing  the 

surface antigen disialoganglioside GD2. The antibody acts by activating complement to 

directly kill neuroblastoma cells but also by inducing NK cell mediated ADCC (3-5). An 

interesting finding made by Tarek et al. is that the unlicensed NK cell population (NK cells 

expressing inhibitory KIRs for which cognate HLA class I ligand is absent) is the most 

effective population mediating the antitumor ADCC effect (373). Patients missing at least 

one HLA ligand for their inhibitory KIRs were considered unlicensed while patients 

expressing HLA ligands for all their inhibitory KIRs were termed licensed. Functional in 

vitro tests showed that anti-GD2 treatment induced increased ADCC by both licensed and 

unlicensed NK cells, but the unlicensed cells responded more efficiently while the licensed 

ones were inhibited by the KIR-HLA interaction. As described more thoroughly above, NK 

cells that has been educated (KIR-HLA interaction) gain increased responsiveness. Both the 

human study by Tarek et al. and the murine study by Orr et al. showing that unlicensed NK 

cells drive the response against cytomegalovirus (258), demonstrates that the gained 

responsiveness through education cannot override the inhibition mediated by the HLA-KIR 

interaction. So, NK cell education is enough to ensure tolerance at steady state during 

normal  conditions  but  can  be  overcome  during  certain  conditions,  such  as  a  strong 

activation via either mAb treatment or viral infections. 

 

The most efficient way harness NK cells for immunotherapy against cancer will most 

probably be based on combining several treatment strategies to increase the elimination 

efficacy by the NK cell, as mentioned in the beginning of this section. Benson et al. showed 

one way to do that using an anti-programmed death receptor-1 (PD-1) antibody in 

combination with lenalidomide against multiple myeloma (374). They showed that resting 

NK cells from healthy individuals express very low levels of the inhibitory PD-1 molecule 

but the expression was significantly elevated on both NK cells from healthy donors who 

had been incubated in IL-2 for 48h and on NK cells from a multiple melanoma patient. 

Treating NK cells with anti-PD-1 antibody enhanced both elimination capacity, by blocking 

the inhibitory signal and increasing granzyme B and IFNγ production via an unknown 

mechanism,  and  the   migration  towards  multiple  melanoma  cells.   In   addition  the 
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lenalidomide contributed by decreasing the expression of PD-1 ligand on the target cells 

and boost the NK cell response by inducing IL-2 production by the T cells (375). 

 
3.5.2  A complicating factor: retuning of NK cell responsiveness via altered 

MHC I perception 
 

As discussed above, inhibitory receptor blockade shows promising therapeutic potential. 

How can those results be reconciled with our results in paper III, where we found that 

blocking of inhibitory Ly49C/I receptors in a B6 mouse or transfer of B6 spleen cells or 

mature NK cells to a MHC I-deficient host resulted in retuning i e reduced rejection of 

MHC I-deficient spleen cells in vivo? Importantly, we found that in both systems the NK 

cells were still capable of efficient rejection of MHC I-deficient tumor cells 

 

In summary, we speculate that the induced tolerance towards MHC I-deficient normal cells 

after removal of the inhibitory signals (in paper III), via antibody blockade or transfer to an 

MHC I-deficient host, is induced by an increased activation threshold towards normal cells 

in the environment. It is a consequence of retuning, resulting in tolerance towards normal 

cells but preserving function towards diseased targets expressing more activating ligands; 

the latter can still overcome the increased activation threshold and will be eliminated. This 

hypothesis could further be investigated if the activating ligands on normal spleen cells and 

the activating ligands triggering elimination of RMA-S were known. A relevant 

phenomenon can actually be observed if a strong activating ligand is ectopically expressed 

in RMA, the NKG2D ligand Rae1γ. Both B6 and β2m-deficient mice eliminate RMA- 

Rae1γ tumor cells in vivo with a similar efficiency (data not shown). This proves that the 

increased activating threshold inducing hyporesponsiveness in the β2m-deficient NK cells 

can be overcome when the activation is strong enough, as in the case of elimination of 

tumor cells but not of healthy cells after retuning. In addition, when such a strong activating 

ligand is present in the system, one would not expect any additional effect of inhibitory 

receptor blockade since the “window” to observe an altered effect is too narrow. 

 

Using the transfer approach we also observed that NK cells can retune to gain function e g 

when an NK cell from a MHC I-deficient mouse is transplanted into a MHC I sufficient 

host: The NK cell responsiveness was altered to gain the capacity to eliminate MHC I- 

deficient tumor cells but still remained tolerant towards MHC I-deficient spleen cell in 

vivo. Why and how the NK cell remains tolerant towards MHC I-deficient spleen cells is 

uncertain. It could be due to education on neighboring transferred NK cells, although they 

are quite few in respect to the total cell count, or it might be some sort of imprinted baseline 

setting that cannot be altered to always ensure tolerance towards self. Independent of the 

mechanism, these data indicate that the interaction needed to become educated and gain 

responsiveness is presented, perhaps not only but at least also, in trans. However, there is 

also the possibility that the NK cell acquire MHC I from surrounding cells via trogocytosis 

and become educated via a cis interaction (245). The reduce responsiveness achieved after 

transfer of cells from B6 to β2m
-/-  

mice cannot be explained entirely by cis interactions 

since if that would be the only way needed for ligand presentation, the B6 NK cells would 



74  

remain efficient killers of MHC I-deficient spleen cells. However, these data could be 

explained by the sequential arming/disarming model. After transplantation, the B6 NK cell 

still engage in cis while they lack the trans interaction on surrounding cells (except the 

graft) leading to chronic “anergy”, hence they become tolerant towards the new 

environment. However this model does not explain how MHC I-deficient NK cells remain 

tolerant towards MHCI- deficient spleen cells while gain function against tumors both 

lacking MHC I expression. 

 

These data show that the NK cell responsiveness can be tuned in both directions in vivo, 

either to preserve tolerance towards the normal tissue (B6 to β2m
-/- 

transfer) or to achieve 

wild type responsiveness towards tumor targets (β2m
-/- 

to β2m
-/- 

transfer), which has never 

been shown before. Evidence that NK cells can retune their responsiveness as adaptation to 

changed MHC I expression has been shown previously. However, those studies were on 

rejection of MHC I-deficient spleen cells and did not include tumor cells; furthermore, in 

the case of for gain of responsiveness they addressed this only with in vitro assays for in 

NK cell responsiveness. The retuning impact on tumor elimination or that retuning can be 

induced by mimicking missing self via antibody blockade has never been shown before 

(362, 363) In addition, we observed that independently of transplantation direction, B6 to 

β2m
-/- 

or β2m
-/- 

to B6, two functions are always present 1) the strict self-tolerance is ensured 

and 2) the ability to eliminate MHC I-deficient tumors is either induced or preserved 

dependent on the direction. 

 

Our results may be of importance for understanding and optimizing usage of NK cells as 

immunotherapy in a haploidentical setting and for activation via inhibitory receptor 

blockade. Transfer of NK cells from a non-HLA matched donor could theoretically contain 

both responsive and hyporesponsive NK cells. The responsive donor NK cells can 

potentially mediate graft vs host reactivity. Our data indicate that the NK cells educated on 

one type of MHC I allele in the donor would retune and become self-tolerant toward 

healthy recipient cells expressing another MHC class I allele, while preserving effective 

elimination of leukemia cells due to missing self recognition of the recipients MHC I- 

deficient  tumor cells.  However, the hyporesponsive  NK cells  (lacking  a ligand  in  the 

donor), would display the opposite pattern. These NK cells would remain self-tolerant but 

at the same time gain a strong anti-leukemia effect mainly against MHC I negative tumors 

due to  induced  education  by the  “right  MHC  I allele”  expressed by the recipient.  In 

addition, the newly educated NK cell subset could also possibly have an effect, at least in 

the early phase, against MHC I expressing tumor cells with additional activating ligands 

even if the recipients educated NK cells are inactive, since the recipient NK could be non- 

functional due to influences from factors in the tumor microenvironment. It would be of 

great interest to study elimination of haploidentical tumors that are not completely lacking 

MHC I, which could be observed by analyzing elimination of RMA tumor cells after 

transfer of D8 NK cells to a B6 host. This was partly done by Kijima et al. 
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Kijima et al. transduced bone marrow cells with an oncogene and transplanted them to 

irradiated mice with different haplotypes to study the influence of NK cell functions against 

primary chronic myeloid leukemia (CML) (376). NK cell response against CML was 

dependent on missing self recognition and not due to upregulation of activating ligands 

(NKG2D) or alloreactive activating receptors (Ly49D). MHC I matched recipients 

developed disease after transplantation of chimeric grafts (cancer bone marrow cells and 

MHC  I  matched  bone  marrow)  while  transplantation  to  full  mismatched  recipients 

remained disease free. In a haploidentical situation (loss of one MHC I allele), missing self 

recognition delayed the onset of the disease but was not enough to mediate full anti-cancer 

protection in all recipients. Further, the NK cell influenced the disease by elimination of 

leukemia initiating stem cells. These results demonstrate that a functional missing self 

recognition is enough to render cancer cells sensitive to NK cell mediated killing, in line 

with the early results on hybrid resistance and MHC I transgene induced NK cell rejection 

of tumors discussed in the beginning of this thesis. 

 

In addition, in the setup using F(ab’)2 fragments, the elimination of MHC I expressing 

tumors, RMA, was not as robust and strong as we had expected. This could be explained by 

that two individual mechanisms opposing each other were affecting the outcome. The 

“early” effect of the Ly49C/I blockade was observed by an increased elimination of the 

tumor cell induced by blocking the effector-target interaction mimicking missing self 

recognition. However, this effect might be much stronger if it would not have been 

counteracted by induced hyporesponsiveness caused by retuning, the second effect of the 

inhibitory receptor blockade. Evidence that the tumor killing is actually also negatively 

influenced to a certain extent is provided by the tumor outgrowth experiments with RMA 

and RMA-S (paper III, Table I). When the system was challenged to the limit with a very 

large tumor transplant, inhibitory receptor blockade reduced the rejection of MHC-deficient 

tumor cells (RMA-S). To improve this system to gain the maximum effect and a stronger 

elimination of MHC I sufficient tumor cells one could consider to 1) reduce antibody 

saturation and perhaps avoid retuning and induced hyporesponsiveness or 2) reduce the 

stability of the F(ab’)2  fragments and therefore block the inhibitory receptors for a shorter 

time period and therefore avoid retuning but treat repeatedly to gain the anti-leukemia 

effect. 

 

NK cell education and responsiveness are influenced by other parameters then MHC I. In 

the model that we use to interpret our results, retuning alters the activation threshold 

ensuring tolerance towards healthy cells while they still maintain or gain function towards 

tumor cells. However, not only retuning by altered inhibitory input can change the NK cell 

responsiveness, virus infections and “cytokine storms” also influence the responsiveness. 

The NK cell pool consists of both fully responsive and hyporesponsive NK cells. The MHC 

I-deficient NK cells are at steady state tolerant  towards self. However, Salcedo  et  al. 

showed  that  NK  cells  from  both  β2m
-/-   

and  TAP1
-/-   

mice  could  be  induced  to  break 

tolerance and kill autologous lymphoblasts but remained tolerant towards MHC I sufficient 

targets in vitro after 4 days of IL-2 activation (344). In addition, mixed B6/β2m
-/-  

bone 
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marrow chimeras are also tolerant towards MHC I-deficient cells although this tolerance is 

broken upon infection with cytomegalovirus. These results indicate that the missing self 

system and tolerance can be calibrated and induced when the NK cell develop in an 

environment containing MHC I-deficient cells although strong stimuli, for example 

cytokines, can break the achieved tolerance (377). 

 

Regarding NK cell education, retuning and responsiveness, it has been shown in mice that 

paradoxically the uneducated hyporesponsive NK cells are the most important in protection 

against Cytomegalovirus infections (258). This is probably due to lack of inhibitory signals 

in the interaction with infected cells and illustrates that the hyporesponsive state does not 

represent complete anergy, but rather a changed activation threshold so that NK cells 

cannot respond to the activation signals presented by normal cells, even if they lack 

inhibitory receptors for their MHC I molecules. This does not exclude that they can respond 

in other contexts where a qualitatively or quantitatively altered set of activation signals are 

presented. Further, Fernandez et al. showed that both the educated and uneducated NK cell 

pool responded equally well with IFNγ to a Listeria infection, indicating that the 

unresponsive NK cell pool has the capability to respond when it is stimulated enough (203). 

 

In  addition,  Ardolino  et  al.  showed  recently  that  MHC  I-deficient  tumors  induce  an 

“anergic state” in the tumor infiltrating NK cell population leading to a reduced 

responsiveness and survival while MHC I sufficient tumors did not (378). However, 

cytokine treatment could reverse the induced anergy. This strengthen our and other´s 

conclusion that a combinatory treatment of inhibitory receptor blockade and cytokine 

treatment may be the best strategy to to activate NK cells against MHC I sufficient tumors. 

Only blockade induces retuning or “anergy” but according to our study (paper II) and 

Ardolino’s data this effect may be reversed or kept in balance by cytokine administration. 

 

NK cell responsiveness and tolerance is tightly controlled by Ly49r-MHC I interactions and 

the balancing effect of activating receptors. During special circumstances the well- 

controlled system can be bypassed. This may reflect different levels of function by the NK 

cell population. Maybe the educated NK cell pool is there to patrol the tissues for stressed, 

infected or transformed cells. They are tightly controlled to not become autoreactive but 

they have the ability to respond strongly when it is justified. To complement this regulated 

responsive NK cell pool, there are NK cell subsets expressing no inhibitory receptor for self 

which are a less controlled NK cell population (if activated), but they are in a 

hyporresponisve state during healthy conditions to ensure tolerance. This less controlled 

population is able to rapidly expand and give an even stronger response (seen by for 

example IFNγ production and CD107a expression, after PMA/Ionomycin, as discussed in 

section 3.2.3) by MHC I-deficient NK cells) when the activation is strong enough, since 

they are less inhibited. These NK cells might only be used when the danger is acute and 

rapid as in the case of infection. 

 

In conclusion, the rheostat model takes all the interactions (both inhibitory and activating) 

and the strength of the interaction into account and the net sum will regulate the decision 
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and responsiveness. Brodin et al. showed that NK cells with more inhibitory signals has 

increased    responsiveness  and  also  respond  in  a  more  diversified  way  (e  g  several 

cytokines) (233). This should theoretically mean that if the NK cell receives a lot of 

inhibitory signals, it becomes educated and responsive, but it also needs an increased 

amount of activation to get triggered if inhibitory ligands are present. However, too much 

activation as in the case of chronic stimulation via an activating receptor leads to an overall 

hyporesponsiveness. To my knowledge, it has not been specifically studied how the 

educated NK cells respond under conditions of chronic stimulation, which would be of 

great interest. In addition, removal of activating receptors such as NKp46 and NKG2D 

results in hyperactivated NK cells clearly shows an influence of activating receptors in 

control of NK cell response. Further, as described above (see section 1.9.2-3), there are 

both MHC I dependent and MHC I independent molecules participating in the education, 

regulating total responsiveness observed by the NK cells. When more of the ligands (for 

example the endogenous ligands) are identified we will have a better understanding for how 

the system works and how it can be used for immunotherapy. 

 

4  CONCLUDING REMARKS 
 

I see a common thread throughout my thesis: investigation of NK education and missing self 

recognition, even though these themes have been approached with different questions and 

methods. 

 

During my doctoral studies my colleagues and I have used IMSR NK cells as a tool to 

investigate how missing self recognition is related to other NK cell functions (paper I). The 

dogma of the field is that MHC I-deficient NK cells are hyporesponsive due to lack of 

inhibitory signals needed to achieve licensing/disarming. The IMSR NK cells are exposed to 

inhibitory ligands and can be inhibited by them upon interaction. Further, they are 

phenotypically mature and show signs that they have gone through education, implying 

inhibitory receptor mediated licensing/disarming. However, they are still missing self 

deficient and overall hyporesponsive in most settings. We know that the defect is not due to 

the targeted CD1d1 gene in these KO mice. The next step should be to identify the gene(s) 

responsible for the defect. 

 

Further, we used missing self recognition to demonstrate that Ab-mediated blockade of self- 

specific inhibitory receptors on NK cells can induce reactivity against syngeneic lymphoma 

cells without breaking tolerance to normal cells. In vivo blockade with 5E6 F(ab’)2 fragments 

binding to Ly49C/I inhibitory receptors on NK cells caused increased rejection of syngeneic 

MHC class I-expressing tumor cells (RMA) but not of syngeneic spleen cells, bone marrow 

cells or lymphoblasts, thus the self-tolerance was thus very robust. The anti-tumor effect was 

sustained over long time and could be enhanced by co-treatment with IL-2. These results are 

interesting for development of therapy in the in clinical setting. However, an unexpected but 

very reproducible an interesting finding during this study was that mice treated with the 5E6 

5E6 F(ab’)2 fragments showed decreased rejection of splenocytes lacking MHC I. This was 
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the starting point for the studies of inhibitory receptor blockade in paper III, were we 

addressed if it is possible to use this procedure to quench the inhibitory input for NK cells and 

as a consequence induce retuning, as predicted by the rheostat model for NK cell education. 

This approach to alter the NK cell sensing of MHC I expression in vivo is minimally 

invasive, and was therefore an important complement to the second model used in paper III 

based on irradiated recipients receiving high numbers of transferred cells. We could 

demonstrate retuning of NK cell responsiveness in both models. In this study we aimed for an 

almost complete (100%) receptor blockade. However, our results show that for use in 

treatment of cancer, the blockade needs to be optimized, by titration of dose and dosage 

intervals, with the goal to increase effector function in the interaction with target cells without 

inducing hyporesponsivness via the interactions with educating cells. 

 

In the last manuscript of my thesis we studied one effect of MHC I education, skewing of the 

inhibitory receptor repertoire. We established that skewing of the NK cell repertoire occurs in 

the bone marrow at the developmental stage where Ly49 receptors start to be expressed. In 

addition, we observed a possible influence of proliferation and apoptosis as possible 

mechanisms    regulating    the    frequency    of    different    NK    cell    subpopulations. 
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