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“When a thing is new, people say:  

‘It is not true.’  

Later, when its truth becomes obvious, they say:  

‘It is not important.’  

Finally, when its importance cannot be denied, they say:  

‘Anyway, it is not new.” 

 

William James 

 

 



 

ABSTRACT 
Lithium is an alkali metal commonly used for treating mood disorders. A more common 
source of lithium exposure worldwide is drinking water, including bottled water, although 
few measurements have been performed. Based on clinical and experimental studies, lithium 
at therapeutic doses may impair fetal growth and development. Also, lithium may impair the 
thyroid and calcium homeostases in lithium-treated patients, but data on people exposed to 
lithium through drinking water are very limited. 

The overall aim of this PhD thesis was to elucidate the potential impact of the exposure to 
lithium via drinking water during pregnancy on maternal and fetal health. Specifically, we 
aimed at elucidating the transfer of lithium through the placenta and mammary gland and the 
potential impact of lithium exposure during pregnancy on fetal size and maternal thyroid and 
calcium homeostases.  

By analyzing lithium in banked samples from a small mother-child cohort (n=11) recruited in 
1996 in San Antonio de los Cobres, an area with elevated lithium in the drinking water in 
northern Argentina, we evidenced a marked transfer of lithium through the placenta. The 
lithium concentration in cord blood was at least as high as in maternal blood and both were 
highly correlated (rs=0.82). In line with this, the lithium concentration in the newborns’ first 
urine in life was highly elevated. The urinary lithium concentration of the infants decreased 
during exclusive breastfeeding, consistent with the observed lower transfer of lithium through 
the mammary gland into breast milk. 

To clarify the potential impact of lithium exposure on fetal and birth size and underlying 
mechanisms, we recruited a larger mother-child cohort from October 2012 to December 2013 
(n=194, participation rate 88%) covering most of the Andean part of the Province of Salta in 
northern Argentina. The lithium concentrations in the drinking water were about 700 μg/L in 
the main village of San Antonio de los Cobres and from 5.0 to 242 μg/L in the surrounding 
nine villages. The selected biomarker of lithium exposure was blood lithium (overall median 
25 μg/L) which showed a wide range of distribution (1.9-145). Lithium concentration in 
blood correlated very well with that in plasma (rs=0.99) and urine (rs=0.84), and, to a lesser 
extent, with that in water (rs=0.40). 

In multivariable-adjusted linear regression models, we observed that maternal blood lithium 
concentrations were inversely associated with fetal size. A 25 μg/L increment in the blood 
lithium concentrations was associated with a statistically significant decrease of 0.5 cm in 
birth length. Newborns to mothers in the highest tertile of lithium exposure (median blood 
lithium 47 μg/L) were on average 0.8 cm shorter than those in the lowest tertile of exposure 
(median blood lithium 11 μg/L). 

Based on multivariable-adjusted quantile regression across pregnancy, blood lithium 
concentrations were positively associated with thyrotropin (TSH) and inversely associated 
with free (fT3) and total triiodothyronine (T3) and with transthyretine (TTR).  

Using multivariable-adjusted linear mixed-effects models across pregnancy, we observed 
blood lithium to be inversely associated with plasma vitamin D3 concentrations and with 
urinary calcium and magnesium, and positively associated with serum magnesium. A 25 μg/L 



 

increment in the blood lithium concentrations was associated with an odds ratio of 3.5 for 
having vitamin D3 concentrations <50 nmol/L, and an odds ratio of 4.6 for having vitamin D3 
concentrations <30 nmol/L, an association independent of season of sampling. 

Taken together, the results of this thesis provide evidence of a marked transfer of lithium 
through the placenta and a consequent lithium exposure to the fetus. This elevated fetal 
exposure seemed to impair the fetal size. Findings of a potential lithium-related impaired 
homeostasis of the thyroid and calcium systems in the mother during pregnancy might be 
underlying mechanisms of action of lithium. Further studies are indeed warranted. 
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1 INTRODUCTION 
The focus of this thesis is the potential impact of maternal and fetal exposure to lithium from 

drinking water on fetal growth and maternal thyroid and calcium homeostases during 

pregnancy. Although lithium’s pharmaceutical use as therapy for bipolar disease has been 

extensively studied (Grandjean and Aubry 2009b), very little is yet known concerning 

environmental exposure to lithium from drinking water and food, and in particular, the 

potential adverse health effects of such exposure on maternal and fetal health. It is 

particularly important to assess the exposure and potential health effects in early life since 

this is considered the most critical window of exposure for many contaminants (Barouki et al. 

2012) and effects at this stage in life may persist or aggravate in adulthood (Barker et al. 

2013; Barker et al. 2002). Besides reviewing the methods used and the results found, the 

present summary also focuses on certain methodological problems encountered as well as in 

more depth description of the potential involved mechanisms of lithium toxicity. 

 

2 BACKGROUND 

2.1 LITHIUM 

2.1.1 Chemistry and use of lithium 

The alkali metal lithium (chemical symbol Li, atomic number 3, atomic weight 6.9) is the 27th 

most abundant element on earth and is naturally found at varying concentrations in rocks, soil 

and water (Oruch et al. 2014). Naturally-occurring lithium is composed of two stable 

isotopes, 6Li and 7Li, the latter being the most abundant (92.5%) (Oruch et al. 2014). Today, 

lithium is primarily mined for use in the manufacturing of ceramics and glass (29%), batteries 

(27%) and, to a lesser extent, medicines (2%) (Figure 1). The largest lithium-producing 

countries are Australia and Chile, followed by China and Argentina (Jaskula 2015). 

 

Figure 1. Uses of lithium. Data obtained from the U.S. Geological Survey (Jaskula 2012). 
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2.1.2 Lithium therapy 

Lithium has been used in the therapy for mood disorders, particularly bipolar disease, for 

more than 50 years. Lithium efficacy is largely dose dependent, although there is a clear 

inter-individual variation in the response (Grandjean and Aubry 2009a). The daily dose of 

lithium, prescribed for mood disorders, ranges between 375 and 1,300 mg. Serum or plasma 

concentrations of lithium need to be regularly monitored in the patients. The therapeutic 

window of lithium concentration in plasma is usually between 0.8 and 1.2 mmol/L (i.e. 

5,550–8,330 μg/L) (Grandjean and Aubry 2009a; Malhi et al. 2011).  
 

Several side effects are reported in patients undergoing lithium therapy, particularly, 

increased risk of kidney failure, hypothyroidism, hyperparathyroidism and weight gain 

(McKnight et al. 2012). During pregnancy, lithium therapy has been associated with 

increased risk for miscarriages and prematurity, as well as malformations, hypothyroidism 

and goiter in the offspring (Cohen et al. 1994; Diav-Citrin et al. 2014; Gentile 2012; 

Grandjean and Aubry 2009c; Oyebode et al. 2012). 

 

2.1.3 Lithium in the environment 
2.1.3.1 Lithium in drinking water 

A source of general environmental exposure to lithium is drinking water, although there are 

very few studies on both the exposure and the potential health consequences. Lithium 

concentrations in drinking water have been reported to vary from <1 to 219 µg/L in Texas 

(Schrauzer and Shrestha 1990), Japan (Ohgami et al. 2009), Italy (Pompili et al. 2015), 

Greece (Giotakos et al. 2015) and England (Kabacs et al. 2011); while in a few regions in 

Austria (Kapusta et al. 2011), northern Chile (Zaldivar 1980), southern Bolivia (Ormachea 

Munoz et al. 2013) and northern Argentina (Concha et al. 2010), the concentrations exceed 

1,000 µg/L (Figure 2). However, the lithium concentration in drinking water sources is still 

unknown in most countries. 

Several ecological studies have investigated the relationship between lithium concentrations 

in public drinking water and suicide rates (Bluml et al. 2013; Giotakos et al. 2013; Giotakos 

et al. 2015; Helbich et al. 2012, 2015; Ishii et al. 2015; Kabacs et al. 2011; Kapusta et al. 

2011; Ohgami et al. 2009; Pompili et al. 2015; Schrauzer and Shrestha 1990; Sugawara et al. 

2013). However, the results are inconsistent and due to the nature of these studies, many 

potential confounding factors are not considered at the individual level. It should be noted 

that the lithium concentrations in these studies are low (<1-219 µg/L, most <20 µg/L), and 

lower than those in the study area of the present thesis. 
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Figure 2. Available data on lithium concentrations in drinking water worldwide. World map modified from: 
www.worldatlas.com. References of the lithium concentrations in the different countries are provided in the text. 

Certain brands of bottled water also contain high concentrations of lithium, e.g. up to 5,000 

µg/L in products from Germany and Yugoslavia, about 5,500 µg/L in a product from France 

and almost 10,000 µg/L in one from Slovakia (Allen et al. 1989; Krachler and Shotyk 2009; 

Reimann 2010). At the same time, lithium is usually not analyzed in the regular control of 

drinking water quality and only Russia and Ukraine have set limits for lithium in drinking 

water (<30 µg/L) (Reimann 2010).  

2.1.3.2 Lithium in food 

Environmental exposure to lithium could also occur via food, although the concentrations are 

usually very low. Grains and vegetables, in particular spinach, appear to contain the highest 

concentrations of lithium (0.5-4.6 µg/g), while dairy products contain about 0.50 µg/g and 

meat about 0.012 µg/g (Ammari et al. 2011; Schrauzer 2002). One brand of low-sodium salt, 

extracted from lithium-rich salt flats, was found to contain 44 µg/g (our unpublished data). 

Thus, consumption of 10 g of such salt a day would result in an intake of 440 µg of lithium. 

The lithium intake in the U.S. has been estimated to 9-44 µg/kg/day (Schrauzer 2002). The 

same author has proposed that lithium is essential for humans but the evidence for this is 

scarce and no mechanisms have been established. 

Other routes of exposure such as inhalation or dermal absorption seem to contribute very 

little to the lithium concentrations in serum (Moore 1995). 
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2.1.4 Toxicokinetics 

After oral ingestion, lithium is rapidly and completely absorbed from the gastrointestinal tract 

by passive diffusion through pores in the small intestinal membrane and, to a much lesser 

extent, actively transported in exchange for sodium (Bauer et al. 2006). Once in the body, 

lithium is widely distributed in the interstitial fluid. Lithium is not subject to metabolic 

transformation and 95% is excreted through the kidneys as a free ion, while 1% can be found 

in the feces and 4% in sweat (Grandjean and Aubry 2009a; Morgan et al. 2003). The 

elimination half-life of lithium in plasma varies between 16 and 30 hours in patients with 

adequate kidney function. However, it increases in lithium-treated patients with time of 

medication to up to 60 hours in patients treated for more than 1 year (Goodnick et al. 1981). 

The kinetics of low-dose lithium from environmental sources is largely unknown. 

Lithium crosses the blood-brain barrier and its concentration in the human brain is 50-80% of 

that found in serum in lithium-treated patients (Soares et al. 2000). Lithium accumulates 

mainly in bone (half-life several months), but also in the kidney, thyroid, brain (~10 days) 

and bile (>24 hours) (Birch and Hullin 1972; Grandjean and Aubry 2009a; Spirtes 1976).  

 

2.1.4.1 Toxicokinetics during pregnancy and lactation 

In patients on lithium therapy, lithium crosses the placenta, as indicated by the high 

concentration of lithium in the amniotic fluid [about 10,000 µg/L; (MacKay et al. 1976)] as 

well as by the similar lithium concentrations in plasma of women and their newborns 

(Newport et al. 2005; Schou and Amdisen 1975; Sykes et al. 1976). There are no similar 

studies concerning women environmentally exposed to lithium. 

It has been suggested that lithium passes freely into breast milk (Moore 1995). However, 

there seems to be a wide inter-individual variation in the transfer of lithium through the 

mammary gland in lithium-treated patients; and the lithium concentration in breast milk has 

been reported to constitute anything from 10 to 80% of that found in maternal serum 

(Grandjean and Aubry 2009c; Schou and Amdisen 1973; Viguera et al. 2007). 
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2.2 HEALTH EFFECTS OF LITHIUM 

2.2.1 Fetal size and lithium  

The embryonic and fetal development are periods that require careful regulation of processes 

involving cell proliferation, formation and functionality of cell lineages and interaction 

between cell types (Harding and Bocking 2001). The whole embryonic and fetal development 

takes about 280 days (40 weeks). The first days involve fertilization and blastocyst formation, 

followed by implantation and gastrulation, i.e. formation of the three germ layers ectoderm, 

mesoderm, and endoderm (Figure 3). Then, the process of organogenesis starts (week 3-8), 

which is the period with the highest risk for malformations (Langman and Sadler 2000). The 

final fetal stage is characterized by cell proliferation and growth (week 9-40). 

 

 
Figure 3. Stages of embryonic and fetal development (the pink color indicates stages with the highest risk for 
malformations and mortality and yellow color indicates lower risk). Modified from (Moore and Persaud 2003). 
 

Lithium is classified as teratogenic (category D) by the U.S Food and Drug Administration 

and it is recommended not to use lithium in early pregnancy (Grandjean and Aubry 2009c). A 

few human studies and several experimental studies (Morgan et al. 2003), particularly with 

mice and rats, have investigated the potential teratogenicity of lithium and its impact on fetal 

growth and development, but their results are inconsistent (Table 1).  
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Table 1. Summary of studies on lithium exposure during pregnancy and fetal or post-natal size. 

 

Study Sample size Li-exposure levels Results of interest in the Li-exposed 
group 

Human studies     
Diav-Citrin et al. 2014 Prospective  

observational  
Bipolar Li therapy n=183 
Bipolar no Li therapy n=72 
Control n=748 

N/A Lower birth weight (40g., borderline 
significant), higher proportion of 
preterm births and miscarriages. 

Jacobson et al. 1992 Prospective  
observational  

Patients Li therapy n=138 
Control n=148 

N/A Higher birth weight (94 g, p=0.025). 

Newport et al. 2005 Prospective  
observational  

Bipolar Li therapy n=12 
Control n=12 

300-1800 mg/day Lower Apgar score, longer hospital 
stay, higher proportion of low birth 
weight, preterm births and newborns 
with complications. 
 
 

Experimental studies in mice    
Chernoff and Kavlock. 1982 Mice Li-exposed n=25 

Control n=30 
400 mg/kg/day 
orally 

No effect on pup weight. Reduced 
litter size. 

Giles and Bannigan. 1993 Mice Li-exposed n=8-20 
Control n=8-20 

200, 300, 350, 400 
mg/kg injection 

No effect on embryo or fetal weight. 

Laborde and Pauken. 1995 Mice Li-exposed n= N/A 
Control n= N/A 

0.5, 1, 1.5, 2, 2.5 
mg/mL water orally 

Reduced fetal weight and crown-rump  
length. No dose-response was 
reported. 

Matsumoto et a. 1974 Mice Li-exposed n= N/A 
Control n= N/A 

400 mg/kg orally  Reduced fetal weight and ossification 
centers in digits of hindlimbs and tail 
vertebrae. 

Messiha 1986 Mice Li-exposed n=5 
Control n=5 

Drinking water with 
~7mg/L ad libitum 

Lower liver and kidney weight in 
females and lower spleen weight in 
females and males. 

Messiha 1989 Mice Li- and Cs exposed n=3 
Control n=3 

Drinking water with 
~7mg/L ad libitum 

Effects were only seen in the Li-
treated group. Lower brain weight in 
females and males, lower kidney 
weight in females, increased liver and 
spleen weight during weaning. 

Messiha 1993 Mice Li-exposed n=5 
Control n=5 

Drinking water with 
~7mg/L ad libitum 

Lower post-natal total weight as well 
as brain (males and females), kidney 
(females) and testis (males) weight. 

Mroczka et al. 1983 Mice Li-exposed n=252 
Control n=283 

70, 140, 210, 350, 700 
and 1400 mg/day 
orally 

Lower post-natal brain, liver, kidney 
and heart weight, higher post-natal 
mortality, more frequently in the 
females.  No dose-response was 
reported. 

Seidenberg et a. 1986 Mice Li-exposed n=28 
Control n=28 

400 mg/kg/day 
orally 

No effects on post-natal pup weight. 

Li: lithium; Cs: cesium; GD: gestational day; G: group; N/A: not available.  
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Table 1 (cont). Summary of studies on lithium exposure during pregnancy and fetal or post-natal size. 

 

 

 

Study Sample size Li-exposure levels Results of interest in the Li-exposed 
group 

Experimental studies in rats    
Christensen et al. 1982 Rats Li-exposed n=20 

Control n=20 
280 and 420 mg/kg 
orally 

No effects on pup birth weight. 

Fritz. 1988 Rats Li-exposed n=16, 19, 14 
Control n=20 

100 mg/kg/day at  
GD: 6-10, 11-15, 16-
20, orally in food 

Reduced body weight in all Li-treated  
groups. 

Glockner et al. 1989 Rats Li-exposed n=30 
Control n=20 

140 mg/L in water 
orally 

No effects on pup body weight. 

Gralla and McIlhenny. 1972 Rats Li-exposed n=20 
Control n=20 

4.7, 14.2, 28.4 
mg/kg/day orally 

Reduced post-natal pup body weight at 
28.4 mg/kg/day. 

Hsu and Rider. 1978 Rats Li-exposed n=13 
Control n=10 

7mg/kg orally Reduced body weight at weaning. 

Ibrahim and Canolty. 1990 Rats Li-exposed n=13 
Control n=11 

188 mg/kg food , 
orally 

Reduced birth weight in Li-treated 
group. 
Reduced growth at weaning in the Li-
treated post-natally. 

Johansen and Ulrich. 1969 Rats Li-exposed n=22 
Control n=13 

G1: 6.9 mg/kg/day 
G3: 20.8 mg/kg/day 
orally 

Retarded post-natal growth in G3 group. 

Marathe and Thomas. 1986 Rats Li-exposed n=23 
Control n=20 

50 and 100 
mg/kg/day 
orally 

Reduced fetal weight at 100 mg/kg/day. 

Rider and Hsu. 1976 Rats Li-exposed n=13 
Control n=10 

140 mg/kg/day 
orally 

Reduced liver weight and pup weight at 
weaning. 

Rider et al. 1978 Rats Li-exposed n=12 
Control n=11 

105 mg/L in water 
orally 

Reduced birth weight. 
Reduced spleen weight in females. 

Sechzer et al. 1986 Rats Natural Li salts n=15 
Li-6 n=15 
Li-7 n=13 
Control n=16 

13,9 mg/kg/day 
orally 

Lower birth weight in all Li-treated  
groups. 

Sharma and Rawat. 1986 Rats Li-exposed n=77 
Control n=100 

7 mg/kg 
intragastrically 
for 10 days 

Reduced fetal body weight and size 

Texeira et al. 1995 Rats Li-exposed n=44 
Control n=59 

70 mg/kg orally Reduced pup weight at weaning. 

Trautner et al. 1958 Rats Li-exposed n=25 
Control n=30 

140 mg/kg/day  
orally 

Slower post-natal growth. 

Experimental studies in monkeys    
Gralla and McIlhenny. 1972 Monkeys Li-exposed n=6 

Control n=5 
4.7 mg/kg/day orally Reduced fetal and post-natal body 

weight. 

In vitro     
Klug et al. 1992 Rat embryos 

  
0, 50, 100, 150, 200 
mg/L 

Crown-rump length reduced with  
exposures >150 mg/L  

Li: lithium; Cs: cesium; GD: gestational day; G: group; N/A: not available. 
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Two human studies have found a higher proportion of low birth weight babies born to 

mothers undergoing lithium treatment, compared to a control group (Diav-Citrin et al. 2014; 

Newport et al. 2005), while a third study found increased birth weight in the newborns to 

mothers in the treated group (Jacobson et al. 1992). In the latter study, however, no 

association was found between birth weight and the lithium dose (range 50-2400 mg/day). 

At different lithium doses (7-400 mg/kg/day, Table 1), several experimental studies have 

reported a reduced birth weight in mice (Laborde and Pauken 1995; Matsumoto et al. 1974) 

and rats (Ibrahim and Canolty 1990; Marathe and Thomas 1986; Rider et al. 1978; Sechzer et 

al. 1986; Sharma and Rawat 1986), as well as reduced post-natal organ and body weight in 

mice (Messiha 1986, 1993, 1989; Mroczka et al. 1983) and rats (Fritz 1988; Gralla and 

McIlhenny 1972; Hsu and Rider 1978; Ibrahim and Canolty 1990; Johansen and Ulrich 1969; 

Rider and Hsu 1976; Rider et al. 1978; Texeira et al. 1995; Trautner et al. 1958). All these 

studies used doses representing those of lithium therapy. An in vitro study on cells from rat 

embryos found a decreased crown-rump length with lithium doses >150 mg/L (Klug et al. 

1992). 

On the contrary, a few studies on mice and rats, using doses of 140 mg/L in the drinking 

water or >200 mg/kg/day (orally or by injection), have found no effects in birth or post-natal 

weight (Chernoff and Kavlock 1982; Christensen et al. 1982; Giles and Bannigan 1993; 

Glockner et al. 1989; Seidenberg et al. 1986).  

 

2.2.2 Thyroid function and lithium  

A brief overview of the normal thyroid function is provided in Figure 4. The thyroid gland 

releases thyroxine (T4) and triiodothyronine (T3) which are in charge of controlling several 

functions in the body, e.g. heart rate, body weight and body temperature (Guyton and Hall 

2006). During pregnancy, thyroid hormones are essential for normal fetal growth and 

development (Polak 2014). Thyrotropin (TSH) production increases in early pregnancy due 

to the influence of the human chorionic gonadotropin hormone (hCG) released by the 

hypothalamus, which has a TSH-like activity. There is also an increase in the thyroxine-

binding protein (TBG) production, in the transplacental transfer of thyroid hormones and in 

the renal iodine excretion (Kennedy et al. 2010). Due to the increase in the TBG production, 

T4 and T3 decrease, particularly in early pregnancy (Lockitch 1993). 
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Disruption of the thyroid function is a well-known side effect of lithium therapy (Grandjean 

and Aubry 2009c). Disturbances of the thyroid function during pregnancy may lead to 

gestational hypertension, placental abruption, pre-term delivery and fetal loss (Allan et al. 

2000; Casey 2005) as well as lower birth weight, congenital hypothyroidism and impaired 

neurological function (Chen et al. 2014; Haddow et al. 1999; Zimmermann 2012). 

  

Most studies investigating thyroid function in relation to lithium exposure are based on 

patients undergoing lithium therapy. A meta-analysis including case-control studies showed a 

6-fold increased risk (95% CI 2.72; 13.4) of developing clinical hypothyroidism in patients 

on lithium therapy compared with controls (McKnight et al. 2012). A randomized double-

blind placebo-controlled clinical trial showed a higher mean TSH concentration in the 

lithium-treated group (Frye et al. 2009) and a prospective double-blind clinical trial showed a 

reduction in thyroid morbidity when decreasing the lithium dose to a serum lithium 

concentration <0.79 mmol/L (5.5 mg/L) (Coppen et al. 1983).  

A recent study including women exposed to lithium through drinking water, the only one 

with environmental exposure, found a positive association of urinary lithium concentrations 

with TSH, as well as an inverse association with free T4 (fT4) (Broberg et al. 2011). 

Figure 4. Normal thyroid function. TRH: 

thyrotropin-releasing hormone, TSH:  thyrotropin or 

thyroid-stimulating hormone, T4: thyroxine, T3: 

triiodothyronine, Tg: thyroglobulin, TPO: 

thyroperoxidase, TBG: thyroxine-binding protein, 

TTR: prealbumin or transthyretin, 5’D: deiodinases I 

and II, THr: thyroid hormone receptor. Gray arrows 

represent changes in the thyroid function during 

pregnancy. 

Stimulation of the hypothalamus induces the 

production of TRH which in turn stimulates the 

production of TSH. The latter has several functions. 

Particularly, TSH increases the Tg proteolysis, the 

iodine uptake by the thyroid gland, the iodination of 

T4, and the size and production of the thyroid 

follicles. After T4 and T3 are released to the blood 

stream, they bind partially to TBG, albumin and 

TTR. Increment in TSH inhibits the TRH 

production, and increment in T4 and T3 inhibits 

TSH and TRH (Guyton and Hall 2006).  
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2.2.3 Calcium homeostasis and lithium  

The calcium homeostasis is closely related to that of parathyroid hormone (PTH), vitamin D, 

magnesium and phosphorus. A summarized scheme of the calcium-phosphorus-magnesium-

vitamin D homeostatic systems is shown in Figure 5. Although much is known about these 

homeostatic systems and their interrelation, everything is not yet fully understood.  

 

 
 
Figure 5. Schematic overview of the calcium-phosphorus-magnesium-vitamin D homeostatic systems.  
DBP: vitamin D binding protein; Ca: calcium, P: phosphorus, Mg: magnesium, PTH: parathyroid hormone, 
25(OH)-D3: 25-hydroxyvitamin D3, 1,25(OH)2-D: 1,25-dihydroxyvitamin D, 1-α-OHase: 1-alpha-hydroxylase, 
CYP24A1: 24-hydroxylase, 24,25(OH)2D: 24,25 dihydroxyvitamin D, FGF23: fibroblast growth factor 23, 
UVB: ultraviolet B. Dashed lines represent vitamin D catabolic pathways.  
 

A: Vitamin D is mainly produced from the conversion of 7-dehydrocholesterol to previtamin D3 in the skin by 
UVB radiation. Once in the body, vitamin D3 is converted to 25(OH)-D3 and then to 1,25(OH)2-D (the active 
form). CYP24A1 catabolizes both vitamin D forms to be excreted as 24,25(OH)2D or as inactive calcitroic acid 
through the kidneys. 
 

B: A decrease in the circulating Ca concentrations induces the production of PTH in the parathyroid gland, 
which releases Ca and P from the bone to the blood and decreases the renal Ca and P excretion. Decreased Ca 
concentrations will also increase the intestinal absorption of Mg, P and Ca directly in the small intestine or by 
stimulating the production of 1,25(OH)2-D. 
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Approximately 99% of the total amount of calcium in the body is stored in the bones and the 

remaining 1% is located in soft tissue and the extracellular fluid, including blood (Guyton and 

Hall 2006). Due to calcium’s critical role in many physiological processes, the calcium 

concentration in serum is strictly regulated. Similar to calcium, most phosphorus (85%) is 

stored in the bones, while 14-15% is located intracellularly and 1% in the extracellular 

compartment. Both calcium and phosphorus levels are controlled by the parathyroid 

hormone, which is produced in the parathyroid gland. Magnesium is the second most 

abundant essential element within the cells and only 1% of it is found extracellularly, while 

60%, 20% and 19% is found in bone, skeletal muscle and other tissues, respectively (Burtis 

and Ashwood 1999).  

Vitamin D is also an important component of this homeostatic system. Sources of vitamin D 

include UVB radiation, which converts 7-dehydrocholesterol to previtamin D3 in the skin, as 

well as food (Brannon and Picciano 2011). Once in the body, vitamin D goes through a series 

of enzymatic reactions to finally be converted to 1,25-dihydroxyvitamin D, the active form 

(Figure 5). 

During pregnancy, the homeostasis of these systems is critical for ensuring normal fetal 

growth and development. Particularly, disturbances in the homeostasis of vitamin D and in 

the parathyroid system are associated with preeclampsia, infectious diseases as well as 

impaired fetal development (Brannon and Picciano 2011; Karras et al. 2014).  

Impairment of the calcium homeostasis, diagnosed often as hyperparathyroidism, is another 

known side effect of lithium therapy (Grandjean and Aubry 2009c). A systematic review of 

case-control studies with patients undergoing lithium therapy found a significant increase in 

serum calcium and in the concentrations of parathyroid hormone (McKnight et al. 2012). 

Three studies, based on patients on lithium therapy, have investigated the potential impact of 

lithium on vitamin D and reported a decrease in the 25-hydroxyvitamin D3 concentrations in 

the lithium-treated group, compared to controls (Haden et al. 1997; Oliveira et al. 2014; van 

Melick et al. 2014). None of these studies included pregnant women. 
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3 AIMS  

The overriding aim of our ongoing research concerning environmental lithium exposure was 

to clarify the potential impact of exposure to lithium via drinking water during pregnancy on 

maternal and fetal health. 

Specifically, this PhD thesis aimed at elucidating: 

 The transfer of lithium from drinking water through the placenta and the mammary 

gland. 

 The potential impact of exposure to lithium during pregnancy on fetal size.  

 The association between lithium exposure and maternal thyroid function during 

pregnancy. 

 The association between lithium exposure and maternal calcium homeostasis during 

pregnancy. 
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4 MATERIALS AND METHODS WITH DISCUSSION 

This section summarizes the materials and methods used in this thesis. For further details, the 

reader is referred to the individual papers (Papers I-IV). A broader description of the study 

area, recruitment and sample collection, as well as a discussion of the exposure assessment, is 

also provided in this section. 

4.1 STUDY AREA 
The present thesis was performed in the Puna region, on the eastern side of the Andes, in the 

province of Salta in northern Argentina. The study site included the whole Los Andes 

Department and part of La Poma and Rosario de Lerma Departments (Figure 6). The study 

area is located at 3,180-4,070 meters above the sea level, latitude from -23.31 to -24.35, and 

longitude from -65.51 to -67.23. The total area is about 32,000 km2 with a population density 

of only 0.2 inhabitants/km2. By December 31st 2013, the total population of this area was 

8,135 inhabitants, out of whom 5,893 lived in the main village of San Antonio de los Cobres 

(Figure 7), and the rest in the nine surrounding villages: Santa Rosa de los Pastos Grandes, 

Tolar Grande, Salar de Pocitos, Olacapato, Cobres, Las Cuevas, El Toro, El Palomar and 

Esquina de Guardia (Table 2).  

 
Figure 6. Map of the study area. Topographic map of Salta obtained from: NASA/JPL/NIMA; World map 
modified from Dexxter via Wikimedia Commons [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)]. 
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Figure 7. San Antonio de los Cobres, the main village. Photographer: Florencia Harari. 

The main village San Antonio de los Cobres is located 160 km from the city of Salta, the 

capital of the province. The nine other villages are located at 40-216 km from the main 

village (Table 2). During the rain period (from January to March), the dirt roads are usually 

destroyed, limiting the accessibility from San Antonio de los Cobres to the surrounding 

villages, as well as to the city of Salta.  

In order to facilitate the organization of the health care services in the area, the Ministry of 

Health in Salta divided San Antonio de los Cobres geographically into 11 areas and grouped 

all the 20 “administrative areas” (11 in San Antonio de los Cobres and the nine surrounding 

villages) into a so-called “Operative Area XXIX”. The hospital Dr. Nicolás Cayetano Pagano 

is located in the main village and basic health service to the entire area is provided by three 

medical doctors, several nurses and nurse assistants. The Primary Health Care office is 

located next to the hospital and is integrated by 11 primary health care workers and 3 

supervisors. Each surrounding village has a primary health care clinic, where assistance is 

provided by a nurse and a primary health care worker, with the exception of Cobres and Tolar 

Grande where also a medical doctor is available. In total, there are 23 primary health care 

workers who visit the families in all villages on a regular basis, from 1 to 4 times every 3 

months (depending on the specific needs of the families) to update demographic information, 

including migration, health status and pregnancies. The annual birth rate is about 200 in the 

study area and the overall infant mortality rate is about 41 per 1000 born infants (Alduncin et 

al. 2005).  
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The Puna region is an arid mountain highland characterized by dry summers (December-

February) with daytime temperatures around 20° C and cold and windy winters (June-

August, -20° C and wind speed up to 80km/h). Inhabitants are mostly of indigenous origin, 

almost exclusively belonging to the Kolla community. Only a few inhabitants belong to the 

Atacama and Tastil communities. About 2/3 of the families own their houses, often built of 

adobe, with mud or cement floor and roofs made of tin/stones or straw/wood (Figure 8). The 

local economy is based on trading (e.g. handcrafts) and breeding of llamas, goats and sheep, 

as well as working in mines. The diet is largely of animal origin (meat and some dairy 

products but essentially no fish) with vegetables, potatoes and corn.  

 
Figure 8. House built of adobe with roof made of straw located in Casa Colorada (40 km from San Antonio de 
los Cobres). Tanks contain drinking water. Photographer: Florencia Harari. 

The source of drinking water in San Antonio de los Cobres is a natural spring (“Agua de 

Castilla”) located approximately 10 km away. From this spring, water is first pumped to a 

series of sand filters, and since a few years back, to an arsenic treatment plant. Thereafter, the 

water is transferred to a chlorination station before being distributed throughout the village. 

The presence of elevated arsenic concentrations in the drinking water in San Antonio de los 

Cobres is known since long (Vahter et al. 1995). More recently, the presence of elevated 

lithium, boron and cesium concentrations were discovered (Concha et al. 2010). The arsenic 

treatment plant was installed a few months before the start of the present study, decreasing 

the arsenic concentrations in the drinking water of San Antonio de los Cobres from ~200 

μg/L (Concha et al. 2010) down to about 30 μg/L during the study period (Figure 15).  



 

18 

4.2 STUDY DESIGN AND PARTICIPANTS 

The study in Paper I was designed to evaluate the kinetics of lithium and boron at delivery 

and in the post-partum period based on samples available from two studies performed 

previously. The studied women were from San Antonio de los Cobres (n=11), i.e. our main 

study site in northern Argentina (with elevated lithium and boron in the drinking water), and 

from two other study areas: one was Arica (n=24) in northern Chile with low lithium (60 

μg/L) but high boron (8,000 μg/L) concentrations in the drinking water, and the other was 

Santiago (n=11), the capital of Chile, with low concentrations of both lithium (~20 μg/L) and 

boron (~190 μg/L) in the drinking water (Figure 9). The women from San Antonio de los 

Cobres (included in Paper I) were recruited in 1996 as part of another study investigating the 

early-life exposure to arsenic (Concha et al. 1998a). The women from Arica and Santiago 

were recruited in 2010, as part of a study investigating early-life exposure to lead and arsenic 

through breast-feeding. 

For the purpose of the studies in Papers II-IV, we invited all pregnant women living in the 

Operative Area XXIX with estimated delivery date between October 2012 and December 

2013 to participate in a longitudinal mother-child cohort designed to evaluate potential health 

effects of early-life exposure to lithium and other water pollutants. Pregnant women were 

recruited with the assistance of the primary health care personnel, who knew the women and 

their addresses. The study was designed to see the pregnant women at least once during 

pregnancy; but preferably 2-3 times in order to obtain repeated measures of exposures and 

outcomes. The women were followed-up at delivery and 0-3 and 3-6 months later, when also 

the infants were included in the study. In Papers II-IV, only data during pregnancy and 

infant size measures at birth were included.  

Prior to each visit, a formal invitation was sent out to the pregnant women in each village 

with a suggested date and time. In case a woman was not able to attend at the scheduled date, 

she was offered to come any day before or after in order to achieve the highest possible rate 

of participation in the study. Since some women could not be located, we announced and 

welcomed all women to get involved in the study, using the local radio. Altogether, we 

visited the study area on seven occasions for collection of data and samples (October 2012, 

January, April, June-July, September-October and December 2013, and March 2014). In 

between on-site visits, close contact with the hospital and the primary health care workers 

was maintained regularly via e-mail and telephone. 
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In total, 221 women were pregnant during the study period out of whom 194 became enrolled 

(participation rate: 88%). Reasons for not participating included delivery before the 

recruitment (n=11), twin pregnancy (n=1), fetal loss before the recruitment (n=5), refusal or 

not located (n=6), and migration (n=4) (Figure 10 and Table 2). 

 

4.3 SAMPLING AND DATA COLLECTION 

For the study in Paper I (Figure 9), data regarding maternal age, parity, years of residency, 

gestational age at birth, birth weight and length were available. In San Antonio de los Cobres, 

samples of cord blood, maternal blood and urine, and infant urine had been collected at 

delivery as well as maternal blood, urine and breast milk, and infant urine at 2-4 weeks, 2-4 

months and 4-6 months after delivery (Concha et al. 1998a). All samples were kept frozen 

since collection. In Arica and Santiago, samples of maternal blood (RBC and plasma), urine 

and breast milk, and infant urine had been collected 2-4 months after delivery in 2010. Water 

samples had also been collected from each area. 

 

 

 

 

 

 

 

 

 

 

 

 

Paper I: 
Pilot study: 

Maternal and early-life 
exposure to lithium 

Delivery (n=11) 

2-4 weeks (n=10) 

Figure 9. Overview of study in Paper I.  

Mother-child pairs 

2-4 months (n=10) 

4-6 months (n=10) 

San Antonio de los 
Cobres, Argentina 

Arica, 
Chile 

Santiago, 
Chile 

2-4 months (n=24) 2-4 months (n=11) 
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221 became pregnant 
(from October 2012 until December 2013) 

194 recruited and 
interviewed women 

(88% participation rate) 

Reasons for not recruiting: 
5 abortions before recruitment 
11 delivered before recruitment 
4 migration 
6 not located 
1 twin pregnancy 

2 abortions 
12 lacked exposure data 

Paper II: 
Fetal size 

Cross-sectional 
analyses: 

n=171 

Mother-child cohort  
Overview of the study population 

Papers II-IV 

180 

Paper III: 
Maternal thyroid 

function 

Paper IV: 
Maternal calcium 

homeostasis 

6 lacked birth 
measurements 

Analyses on birth size: 
n=174 

Analyses on fetal size: 
n=136 (179 observations) 

2
nd

 trimester: 81 
3

rd
 trimester:  98 

2
nd

 and 3
rd

 trimesters: 43  

44 lacked ultrasound 
measurements 

Exclusions: 
5 positive for anti-TPO 
antibodies  

Longitudinal 
analyses: 

n=171  
(255 observations) 

1
st
 trimester: 27 

2
nd

 trimester: 82 
3

rd
 trimester:  146 
1

st
 and 2

nd
: 21 

1
st
 and 3

rd
: 25 

2
nd

 and 3
rd

: 75 
1

st
, 2

nd
 and 3

rd
: 18  

2 lacked calcium markers 

Cross-sectional 
analyses: 

n=178 (latest pregnancy) 
n=144 (3

rd
 trimester) 

Longitudinal 
analyses: 

n=178  
(269 observations) 

1
st
 trimester: 27 

2
nd

 trimester: 98 
3

rd
 trimester:  144 
1

st
 and 2

nd
: 21 

1
st
 and 3

rd
: 22 

2
nd

 and 3
rd

: 73 
1

st
, 2

nd
 and 3

rd
: 16  Figure 10. Study design of Papers II-IV.  

4 lacked thyroid markers 
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For the studies in Papers II-IV, we interviewed the women during the first visit about age, 

place of birth, time and place of residency, ancestry, education years, occupation, family 

income, living conditions, personal and familial history of diseases, parity and other gyneco-

obstetrical history, dietary habits, tap water sources and type of water consumed (tap/bottled 

water), smoking habits, passive smoking, alcohol consumption, coca chewing, last menstrual 

period (LMP) and pre-pregnancy body weight, and we measured participant’s height. 

Gestational age was calculated based on the reported date of LMP (counting from the first 

day of the LMP), which was compared with fetal ultrasound-based estimation (see below). 

Height and pre-pregnancy body weight were used to calculated the pre-pregnancy body mass 

index (BMI; calculated as the pre-pregnancy body weight in kilograms divided by height in 

meters squared) and lean body mass (LBM) using the equation proposed by Watson and 

collaborators [LBM=(-2.097 + (0.1069*Height) + (0.2466*weight))/0.73; (Watson et al. 

1980)]. At each visit during pregnancy, we asked the women about potentially encountered 

health problems, collected blood and urine samples and measured body weight (HCG-

210QM, GA.MA ® professional, Italy; accurate to 100 g), LBM (Body Fat Monitor, HBF-

302, OMRON®, Tokyo, Japan) and blood pressure (aneroid sphygmomanometer, AB Henry 

Eriksson, Stockholm, Sweden).  

All women were asked to donate blood and spot-urine samples at baseline and at each follow-

up visit. We also repeatedly collected water samples (20 mL polyethylene bottles) during the 

whole study period. All samples were collected at the hospital, at the local primary health 

care clinics or, in a few cases, at home. Whole blood samples were collected in Trace 

Elements Sodium Heparin tubes (Vacuette®; Greiner bio-one, Kremsmünster, Austria) and 

Table 2. Overview of the study sites and of the recruited pregnant women and collected samples in each 
village for Papers II-IV between October 2012 and December 2013. 

Village 

Distance from 
San Antonio 
de los Cobres 

Inhabitants 
by Dec. 31st, 

2013 

N Pregnant 
women from 
Oct. 2012 to 

Dec. 2013 

Total recruited 
and sampled 

Trimesters 
1st 2nd 3rd 

N  
women 

N 
samples 

N  
women 

N  
women 

N  
women 

San Antonio de los Cobres  -- 5,893 165 138 220 26 77 117 

Cobres 60km 350 12 11 18 3 5 10 
El Palomar 78km 198 4 4 5 0 2 3 
El Toro 80km 198 1 1 1 0 0 1 

Esquina de Guardia >45km 182 6 2 3 1 2 0 
Las Cuevas 40km 183 7 4 5 0 1 4 
Olacapato 60km 462 10 9 17 2 6 9 
Pocitos 110km 165 2 1 1 0 1 0 
Santa Rosa de los P. G. 60km 307 8 7 9 0 4 5 
Tolar Grande 216km 197 6 3 3 0 1 2 

Total 8,135 221 180 282 32 99 151 
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Trace Elements Serum Clot Activator tubes (Vacuette ®; Greiner bio-one, Kremsmünster, 

Austria) using butterfly needles (BD Safety-Lok™, Vacutainer®, Bencton, Dickinson and 

Company, Franklin Lakes, USA). We extracted plasma and serum by centrifugation for 10 

minutes at 3000 rpm, 15 minutes after blood withdrawal. Hemoglobin levels were measured 

in whole blood using HemoCue® 201+ (HemoCue AB, Ängelholm, Sweden).  

Spot-urine samples were collected using disposable plastic cups and transferred to 24 mL 

trace-element free polyethylene bottles. All participating women received instructions on wet 

wipe cleaning and appropriate mid-stream urine sample collection in order to avoid 

contamination. During the fieldwork, we measured the urinary specific gravity using a hand 

refractometer (Atago, Japan) and we checked the content of glucose, proteins, blood, pH, 

ketones and nitrites using Combur®-7 test stripes (Roche Diagnostics, Mannheim, Germany). 

We also measured urinary albumin in all samples using HemoCue® Albumin 201 System 

(HemoCue AB, Ängelholm, Sweden).  

All samples were kept frozen at -20°C until transported to Karolinska Institutet, Sweden, 

where they were stored at -80°C until analysis. Samples were analyzed within 2 months after 

collection. 

 

4.4 EXPOSURE ASSESSMENT 

To assess the exposure to lithium in Paper I we measured the lithium concentrations in 

maternal whole blood and urine samples collected after delivery, as well as in cord blood, 

breast milk, infant urine and water. For Papers II-IV, the concentrations of lithium were 

measured in maternal whole blood and urine during pregnancy and in drinking water. Other 

elements found at elevated concentrations in the drinking water, such as boron, arsenic and 

cesium, were also analyzed in the different media. 

Lithium and all other trace elements were analyzed using inductively coupled plasma mass 

spectrometry (ICP-MS). All sample preparation and trace element analyses were performed 

at the Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet 

in Stockholm, Sweden.  
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4.4.1 Water lithium 

Water samples were collected at each visit during the whole study period. Each village has its 

own water supply, used for drinking water purposes by most pregnant women. In a very few 

cases, when women lived outside the villages and obtained water from different 

sources/springs, water samples were taken from those sources as well.  

Because of the occurrence of highly varying concentrations of lithium but also of arsenic, 

boron and cesium in the drinking water in the study area, all these elements were measured 

by ICP-MS [Agilent 7500ce (for Paper I) and Agilent 7700x (for Papers II-IV), Agilent 

Technologies, Tokyo, Japan], with the collision/reaction cell in no gas mode (lithium, boron 

and cesium) or helium mode (arsenic). Before analysis, water samples were diluted 1:10 with 

1% nitric acid (65% w/w, ppb-trace analysis grade, Scharlau, Scharlab S.L., Sentmenat, 

Spain). 

 

4.4.2 Biomarkers 
4.4.2.1 Blood lithium 

In order to test for potential trace element contamination of the sampling equipment used in 

the studies in Papers II-IV, that would invalidate the measured specimen concentrations, we 

performed trace element tests for each type of blood sampling tube using overnight extraction 

by weak nitric acid (0,03 M HNO3, ppb-trace analysis grade, Scharlau, Scharlab S.L., 

Sentmenat, Spain) at room temperature. The obtained concentrations of the trace elements of 

interest are presented in Table 3. The Trace Elements Serum Clot Activator tubes showed a 

severe contamination of lithium (37 µg/L extracted from the tubes, as compared to an overall 

median lithium concentration of 24 µg/L in blood collected in non-contaminated tubes in 

Papers II-IV), invalidating the use of lithium serum measurements in samples collected in 

such tubes.  

 Table 3. Trace elements concentrations (µg/L) from leaking tests for blood sampling tubes used for 
extraction of serum and plasma. 

 

Element LOD* 
Trace Elements Serum 
Clot Activator tubes 

Trace Elements Sodium 
Heparin tubes 

Trace Elements Sodium Heparin 
tubes + Butterfly needle 

Arsenic 0.0021 <LOD 0.0036 0.0035 
Boron 0.00047 0.26 0.73 0.41 
Calcium 0.29 20  12 11 
Cesium   0.00042 0.007 0.003 0.0038 
Lithium 0.0046 37 <LOD 0.068 
Magnesium   0.033 226 153 158 
Phosphorus   5.4 <LOD <LOD <LOD 
Selenium 0.0077 <LOD <LOD <LOD 
 *Limit of detection (µg/L).   
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The therapeutic window of lithium in patients undergoing lithium therapy is commonly 

assessed by the lithium concentrations in the patients’ plasma or serum (Grandjean and 

Aubry 2009a). Due to the severe lithium contamination in the blood sampling tubes (Trace 

Elements Serum Clot Activator tubes, Vacuette ®; Greiner bio-one, Kremsmünster, Austria), 

we could not make use of serum lithium concentrations as exposure marker in Papers II-IV. 

To evaluate the validity of the lithium concentrations in whole blood as a biomarker of 

exposure, we compared the concentrations with those measured in a subgroup of plasma 

samples (n=20) collected in non-contaminated tubes. We found an excellent correlation 

between lithium concentrations in whole blood and in plasma (Figure 11), indicating that the 

lithium concentration in whole blood is indeed a reliable marker of internal dose. Also, for 

the purpose of the present study, blood lithium is a more relevant measure as it has the 

possibility to cross the placenta and reach the fetus and thus, it better reflects the fetal 

exposure than does the lithium concentration in water or urine.  

 
Figure 11. Scatter plot of lithium concentrations in plasma and blood (n=20). 

 

For the study in Paper I, prior to the analyses of the available whole blood samples by ICP-

MS, approximately 0.5 g of each blood sample was first mixed with 3 mL of deionized water 

and 2 mL of nitric acid (65% suprapur, Merck, Darmstadt, Germany) and digested at 250° C 

for 30 minutes using a Milestone ultraCLAVE II microwave digestion system (EMLS, 

Leutkirch, Germany). This method has been used for other elements as described previously 

(Kippler et al. 2009). After digestion, samples were diluted to a final nitric acid concentration 

of 20%.  
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For the studies in Papers II-IV, an alkali dilution method for lithium and multiple other trace 

elements in blood was developed (Lu et al. 2015). We used aliquots of only 0.2 g of blood 

samples and diluted them 1:25 with an alkali solution and internal standards, as described in 

Papers II-IV and elsewhere (Lu et al. 2015). The mixture was sonicated for 5 minutes and 

centrifuged at 2000 rpm for 5 minutes before analyzing the samples by ICP-MS. This method 

was found to provide a better limit of detection (LOD) and analytical stability for blood 

lithium measurements compared with the conventional acid digestion (Lu et al. 2015).  

 

4.4.2.2 Urinary lithium 

Urine samples were analyzed to compare the trace element concentrations with those in blood 

and water. In Papers I-IV, urine samples were analyzed for lithium, boron and cesium, using 

the same method as for the water samples. Assessment of arsenic exposure was based on the 

sum concentrations of inorganic arsenic and its methylated metabolites [methylarsonic acid 

(MMA) and dimethylarsinic acid] in urine, determined using high-performance liquid 

chromatography coupled with hydride generation and ICP-MS (Fangstrom et al. 2008; Harari 

et al. 2013). The correlation between concentrations of sum of arsenic metabolites and total 

arsenic (measured using direct ICP-MS with the method described for water arsenic) was 

0.97 (p<0.001), supporting reliable analytical data. 

For comparison and quality control of the lithium measurements, all the urine samples from 

Papers II-IV were also analyzed using an alkali method in which the samples were diluted 

1:10 using 0.1% ammonium hydroxide (NH4OH 25% w/w, Suprapur®, Merck, Darmstadt, 

Germany). The acid and alkali methods gave essentially the same results (rs=0.98; n=288; 

Figure 12). Thus, the lithium measurements, analyzed using the acid method, were used for 

exposure assessment.  

 
Figure 12. Scatter plot of lithium urinary concentrations analyzed with the acid vs. alkali method (n=288). 
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In order to investigate the inter-day and intra-day variations in the lithium concentrations in 

urine, we measured lithium in urine samples from a previous study on arsenic in the same 

study area (Concha et al. 2002). Inter-day variation was assessed by collection of daily spot 

urine samples (at the same time of the day) from 15 women during 5 consecutive days. The 

intra-day variation was assessed by collection of all urine (each void in a separate container) 

produced during 72 hours in 7 women.  

The mean intra-day variation in the specific gravity-adjusted lithium concentrations in urine 

was +/-17% (Figure 13A), while the mean inter-day variation was +/-9% (Figure 13B).  The 

average lithium concentrations in urine of day 1, 2 and 3 (from the intra-day samples) were 

highly correlated [rs=0.50 (day 1 vs. 2), rs=0.71 (day 1 vs. 3) and rs=0.86 (day 2 vs. 3)] and 

similar correlations were found in samples from the inter-day comparison (rs ranging from 

0.43 to 0.74). A diurnal variation in the lithium concentrations in urine might be due to 

reported circadian variations in the renal excretion of lithium (Kyroudis et al. 1987; Shetty et 

al. 2012). In our study, the lithium concentrations in urine collected during morning/day time 

(average of day 1, 2 and 3: 1,845 μg/L, range 1,204-2,486) did not differ statistically from 

that in urine collected during evening/night time (1,997 μg/L, range 1452-2,543). Thus, 

lithium measurements in spot-urine samples seem to estimate the actual exposure to lithium. 

Although 24-hour urine samples (or first morning urine) would definitely provide a better 

exposure estimate than spot-urine samples, the collection of 24-hour urine samples has a high 

probability of incomplete sampling (Johansson et al. 1999) and was not feasible in the present 

study. Similarly, first morning urine sampling was not feasible. 

 

  
Figure 13. Individual intra-days (n=7; A) and inter-days (n=15; B) variation of the lithium concentrations in 
urine (adjusted for specific gravity). 
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To compensate for variations in the dilution of urine, we adjusted the measured element 

concentrations to the mean specific gravity (1.019 g/mL), measured by a hand refractometer 

(Atago, Japan) during the fieldwork, as well as to the mean urinary osmolality (694 

mOsm/kg; range 141–1174), measured later at Karolinska Institutet by a digital cryoscopic 

osmometer (OSMOMAT® 030, Gonotec Gesellschaft für Meß- und Regeltechnik mbH, 

Berlin, Germany). The lithium concentrations in urine adjusted for specific gravity were 

highly correlated with those adjusted for osmolality (rs=0.98, p<0.001, n=288, Figure 14). 

Urinary lithium concentrations adjusted for osmolality were chosen as an exposure biomarker 

in urine in Papers II-IV since the specific gravity is influenced by urinary protein and 

glucose (Parikh et al. 2002). Creatinine adjustment, other commonly-used alternative, was not 

chosen as it is known to be markedly affected by muscle mass, age and meat intake (Nermell 

et al. 2008; Suwazono et al. 2005). 

 

 
Figure 14. Scatter plot of the lithium concentrations in urine adjusted for osmolality and specific gravity 
(n=288). 
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4.4.3 Reference materials and limits of detection 

In order to secure the analytical accuracy, we analyzed all the samples together with reference 

materials. To the best of our knowledge, there are no certified reference materials for lithium 

in blood, serum, RBC, urine or breast milk. Instead, we used commercially available 

reference materials with recommended values. For lithium in drinking water, we used the 

certified reference material SRM 1643e Trace Elements in Water [National Institute of 

Standards and Technology (NIST), Gaithersburg, USA].  

In general, the values that we obtained were in satisfactory agreement with the 

reference/recommended values. Results of reference materials used for other elements are 

summarized in each individual paper. 

Limits of detection were calculated as 3 times the standard deviation of the blanks. Results 

for the used reference materials and LOD for lithium are presented in Table 4.  

 

Table 4. Limits of detection and obtained and reference values of the reference materials used for analytical 
quality control for lithium measurements. 
 

Paper Quality control for Method LOD (µg/L) n Reference  material Reference value Obtained value 

I Blood and RBC Acid 0.18 and 0.028 6 SeronormTM 0503109 L-2a 1.9 (1.8-2.0)a 1.5 (1.2-2.0)a 

 Breast milk and plasma Acid 0.028 and 0.14 10 SeronormTM NO0371y L-2b  10.6 (9.8-11)b 9.1 (7.1-13)b 

 Urine Acid 0.032 10 SeronormTM NO2525a  7.9 (7.4-8.5)a 9.0 (4.9-14)a 

    9 SeronormTM OK4636a  15.8 (15-17)a 13 (7.7-19)a 

  Water Acid 0.032 11 NIST 1643ea  17.4 (16-19)a 16 (12-18)a 

II-IV Whole blood Alkali 0.0073 21 SeronormTM 1103128a  0.46  0.63 (0.48-0.89) 

    21 SeronormTM 1103129a 0.44 (0.41-0.47) 0.67 (0.21-0.96) 

 Urine Acid 0.20 36 SeronormTM 1011644 L-1a 7.0 7.9 (6.3-11) 

    37 SeronormTM 1011645 L-2a  7.0 7.6 (5.8-11) 

    14 NIST2670a High levela N/A 14 (12-16) 

  Water Acid 0.008 14 NIST1643ea 17.4 (16-19) 16 (15-18) 
a µg/L; b mg/L; N/A: not available; RBC: red blood cells; LOD: limit of detection; NIST: National Institute of Standards and Technology. 
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4.5 OUTCOMES 

4.5.1 Fetal and birth size measurements 

At 1-3 time-points during pregnancy, fetal growth was assessed by ultrasound measurement 

of the biparietal diameter (BPD), occipitofrontal diameter (OFD), head circumference 

(HC), abdominal circumference (AC), femur length (FL) and estimation of fetal weight 

(FW). The detailed description of the performance of the fetal measurements can be found 

in Paper II. Out of the 180 women included in the study, ultrasound measurements were 

obtained in 136, measured in October 2012, January 2013 and April 2013. The 

examinations were performed by an experienced senior obstetrician, using a portable 

ultrasound machine FFSonic, UF-4100, (Fukuda Denshi, Tokyo, Japan) available at the 

hospital in San Antonio de los Cobres. Each measurement was performed three times, each 

time using a new picture, after which the average was computed.  

 

In addition, weight, length and head circumference were measured at birth by the nurses at 

the hospital in San Antonio de los Cobres in most of the cases. Prior to the study start, we 

informed all health care personnel about the project and trained the medical personnel to 

perform the anthropometric measurements of the newborns at birth and to collect the samples 

of cord blood and placenta. Also, we established collaboration with the main gyneco-obstetric 

hospital in Salta and provided instructions for data and sample collection as well as sample 

collection kits. In this way, independently if women delivered in San Antonio de los Cobres 

or Salta, all data and sample collection at birth was performed in a standardized way. 

Thirty seven percent of the women delivered at the main hospital of the city of Salta, 3.5% 

in the ambulance on the way to Salta, 3.5% in the surrounding villages, 4% at home and the 

rest (52%) at the hospital in San Antonio de los Cobres.  

 

4.5.2 Markers of thyroid function 

To assess the maternal thyroid function, we selected the following markers in serum: TSH, 

T4, fT4, T3, fT3, Tg and TTR. All analyses were performed at the Department of Clinical 

Chemistry at the University Hospitals in Lund and Malmö, Sweden. The detailed description 

of each particular method can be found in Paper III. 
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4.5.3 Markers of calcium homeostasis 

We assessed the calcium homeostasis by the concentrations of intact parathyroid hormone 

(iPTH) in serum, 25-hydroxyvitamin D3 in plasma, and the serum and urinary concentrations 

of total calcium, phosphorus and magnesium. We also analyzed serum albumin to adjust the 

serum calcium concentrations. Analysis of iPTH, 25-hydroxyvitamin D3 and albumin were 

performed at the Department of Clinical Chemistry at the University Hospitals in Lund and 

Malmö, Sweden. Calcium, phosphorus and magnesium were analyzed by ICP-MS using the 

method described above for lithium measurements in blood and urine. The detailed 

description of each particular method can be found in Paper IV. 
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4.6 ETHICAL CONSIDERATIONS 

Studies in Papers I-IV were approved by the regional ethical committee at Karolinska 

Institutet, Stockholm, Sweden, and by the Ministry of Health, Salta, Argentina. The study in 

Paper I was also approved by the Ethical Committee of the Institute of Nutrition and Food 

Technology (INTA), University of Chile.  

Prior to recruitment of the pregnant women, we obtained written informed consent from all 

women after oral and written explanation of study details. For women below 18 years of age, 

informed consent was also obtained from the closest care giver. At the end of every meeting 

with each woman and her baby, the woman received a report of the results of the 

measurements performed during the visit (i.e. blood pressure, urine tests, hemoglobin, body 

weight, BMI, blood glucose, as well as weight, length and head circumference of her baby). 

Without prior announcement, in the last follow-up visit, every woman received a baby 

garment and a tissue bag as acknowledgement for their participation.  

In case any of the measurements showed abnormal results, these were communicated to the 

local medical doctors. Abnormalities found during the ultrasound examinations [i.e. heart 

malformation (n=1), renal cysts (n=1), polyhydramnios (n=1) oligoamnios (n=1)] were 

immediately reported to the local medical doctors who referred the patients to the main 

obstetric clinic in Salta. After completion of the analyses of thyroid function, abnormal values 

of TSH were reported to the hospital in San Antonio de los Cobres for additional follow-ups 

of the patients at the thyroid hospital “Dr. Arturo Oñativia” in Salta.  

On regular basis, we reported to and discussed the measured concentrations of the different 

trace elements in drinking water with the hospital in San Antonio de los Cobres, the primary 

health care clinics in the surrounding villages and the Ministry of Health in Salta. Also, 

results of the published articles have been reported to the Ministry of Health in Spanish. 

During the last visit to San Antonio de los Cobres, we prepared a meeting with the medical 

and health care personnel from all the villages to present preliminary results of the study on 

lithium and other elements during pregnancy. 

We also participated in meetings with the “Arsenic Group” in the city of Salta. This consists 

of representatives of different local governmental agencies and universities aiming at 

discussing and following up results concerning arsenic in drinking water in the province of 

Salta. We have assisted in the search of an alternative water source for San Antonio de los 

Cobres by collecting water samples and measuring the concentrations of multiple elements.  
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4.7 STATISTICAL ANALYSES 

For a detailed description of the different statistical methods used in this thesis, the reader is 

referred to the individual papers (Papers I-IV).  

Depending on the nature of the data, different statistical approaches were applied. All 

statistical analyses were performed using either IBM ® SPSS ® Statistics 18.0 (SPSS, 

Chicago, IL, USA), Stata (StataCorp LP. 2012. Stata Statistical Software: Release 12.1. 

College Station, TX, USA) or R [version 3.2.1, (R Core Team 2015)]. 

Relationships between exposure measures, outcome variables and covariates were assessed 

using Spearman’s rank correlation coefficients or linear mixed-effects regression for 

longitudinal data. We used scatter plots to visually evaluate the different relationships. We 

tested differences between groups (e.g. tertiles of blood lithium) using Kruskal-Wallis H rank 

test or chi square test.  

Associations between lithium exposure and the different outcomes were assessed using linear 

regression (cross-sectional data) or linear mixed-effects regression models (longitudinal data). 

For dichotomous outcome variables (e.g. vitamin D3 concentrations < and >50 nmol/L), we 

used mixed-effects logistic regression with random intercept (longitudinal data) and binomial 

logistic regression (cross-sectional data).  

We also performed quantile regression analyses (for both cross-sectional and longitudinal 

data) to assess the association of blood lithium on the whole distribution of the outcomes. In 

all cases, we based the estimates, confidence intervals (CI), and p-values on 500 bootstrap 

samples and used Wald test to evaluate differences between the estimated regression 

coefficients across the quantiles.  

The regression models were adjusted for covariates known to affect the outcome measures or 

that influenced the estimates more than 10% (Sullivan 2008). Whenever necessary, i.e. to get 

the best fit of the data with normally distributed residuals, the exposure variables were log2-

transformed. 

Different sensitivity analyses were performed to test e.g. the influence of extreme values as 
well as the impact of diseases (infections and preeclampsia) in the different associations. 
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5 RESULTS AND DISCUSSION 

In this section, the main findings of the thesis are presented and discussed, with reference to 

the actual paper. Some unpublished data are also presented. For further details, the reader is 

referred to the individual papers (Papers I-IV).   

 

5.1 MATERNAL AND EARLY-LIFE EXPOSURE TO LITHIUM  

5.1.1 Lithium and other elements in drinking water 

Elevated concentrations of lithium, boron and cesium in drinking water in our study area 

were discovered about five years ago (Concha et al. 2010), while elevated arsenic 

concentrations have been known for several decades (Vahter et al. 1995). The highest lithium 

concentrations in the drinking water were found in San Antonio de los Cobres (mean 718 

μg/L, range 528-837, n=58; Table 5) and in a small natural spring 20 km east of Cobres 

providing water for just one family (range 958-1,660 μg/L, n=3). The concentrations of 

lithium, arsenic and cesium in the other villages were at least 1/5 of those in San Antonio de 

los Cobres, with the lowest found in Tolar Grande. The highest boron concentrations were 

found in San Antonio de los Cobres, Esquina de Guardia and Cobres and the lowest in Tolar 

Grande and Palomar (Table 5). 

Table 5. Average concentrations (range) of lithium, boron, arsenic and cesium (all expressed in μg/L) in the 
drinking water in the 10 study villages from October 2012 until April 2014. 
 

Village n Lithium Boron Arsenic Cesium 

San Antonio de los Cobres 58 718  (528-837) 5,610  (3,421-6,925) 114  (41-244) 323  (101-410) 

Cobres 13 77  (29-162) 3,433  (1,356-6,655) 14  (1.7-89) 0.25  (0.01-1.7) 
El Palomar 9 13  (5.0-71) 541  (314-1,866) 4.0  (1.0-17) 0.047  (0.01-0.22) 

El Toro 17 66  (7.6-203) 1,806  (449-5,995) 13  (2.3-71) 0.084  (0.02-0.20) 
Esquina de Guardia 8 117  (52-123) 5,781  (3,311-6,239) 13  (6.2-13) 4.4  (3.0-6.2) 

Las Cuevas 15 98  (17-159) 1,521  (388-2,256) 27  (0.83-48) 0.37  (0.02-2.6) 
Olacapato 8 23  (17-29) 668  (448-919) 9.3  (4.1-13) 5.5  (3.2-7.0) 

Pocitos 6 99  (22-132) 869  (438-1,081) 44  (17-58) 14  (5.0-22) 
Santa Rosa de los Pastos Grandes 6 112  (18-242) 2,403  (426-4,620) 46  (12-141) 34  (10-65) 

Tolar Grande 1 8.2 377 3.2 0.060 
 

Water samples have been repeatedly collected in San Antonio de los Cobres since 1994, 

when the first studies on arsenic in this area were performed (Vahter et al. 1995). We 

analyzed all the samples available since then (n=104), for arsenic, lithium, boron and cesium 

and investigated changes in the concentrations over time (Figure 15). The lithium and boron 
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concentrations had similar patterns of variation, with the highest concentrations found in 

December 2008 (summer) and the lowest in November 2012 and September 2013 (spring), 

but there were no clear seasonal variations or influence of the rain period (January-March). 

Lithium and boron concentrations in the drinking water were highly correlated (rs=0.91). 

Lithium was also highly correlated with water arsenic (rs=0.88) and cesium (rs=0.79). 

The cesium concentrations in drinking water appeared to be more stable over time than the 

other elements and slightly lower concentrations were found in July, September and 

December 2013. The arsenic concentrations were quite stable until November 2011, as 

previously reported (Concha et al. 2006). However, following the installation of the arsenic 

filter close to the main water source, the arsenic concentrations dropped to about 30 μg/L. 

Conversely, arsenic concentrations seemed to increase again after the completion of this 

study, in April 2014, suggesting that the filter might not be working or in use. 

 

 
Figure 15. Average lithium, boron, cesium and arsenic concentrations in drinking water in San Antonio de los 
Cobres from November 1994 till April 2015 (n=104). Lithium, arsenic and cesium concentrations are expressed 
in μg/L, and, to fit the scale, boron concentrations are expressed in μg/dL. 
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5.1.2 Lithium in maternal blood and urine 

5.1.2.1 Lithium concentrations in blood and urine during pregnancy 

As mentioned above, the main biomarker selected to assess lithium exposure was blood 

lithium. The overall median lithium concentration in maternal blood and urine during 

pregnancy was 25 µg/L and 1,404 µg/L, respectively, both with wide ranges of distribution 

(1.9-145 and 105-5,185, respectively; Papers II-IV and Figure 16A and 16B). Thus, the 

concentrations in urine were 56 times higher, on average, than those in blood. 

 

 
Figure 16. Distribution of the lithium concentrations (average for women with 2-3 measurements) in maternal blood (A) and 
urine (B) during pregnancy (n=180) (Papers II-IV).  

 

The lithium concentrations in blood and urine (average for women with 2-3 measurements) 

were highly correlated (rs=0.84, Paper II, Figure 17B). To a lesser extent, lithium 

concentrations in blood were correlated with those in water (rs=0.40) (Figure 17A). Similar 

correlations were found between urinary lithium and drinking water (rs=0.44). These weaker 

correlations between blood/urinary lithium and water lithium are likely explained by 

differences in the intake of drinking water, potential variations in the lithium concentrations 

in the water, and the intake of lithium-free bottled water. Indeed, the correlation between 

blood and urinary lithium with that in drinking water was higher in women reporting 

exclusive intake of tap water (rs=0.48 for blood and rs=0.50 for urine), compared with those 

reporting additional intake of bottled water (rs=0.31 for blood and rs=0.40 for urine). In 

addition, exposure through other sources such as food might have contributed to the weaker 

correlation with lithium in the tap water. 
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Figure 17. Scatter plot showing the lithium concentrations in blood and drinking water (A), and those in blood 
and urine (B) (n=180) (Papers II-IV). 
 

A marked inter- and intra-individual variation in the lithium concentrations in urine of 

lithium-treated patients has been reported (Kyroudis et al. 1987) as well as a much weaker 

correlation between plasma and urinary lithium [rs=0.23, p=0.10; (Shetty et al. 2012)] 

compared with that in our study, suggesting that the correlation between plasma/blood and 

urinary lithium might be dependent on the dose, the dosage regimen or genetic differences in 

the excretion of lithium. In the case of continuous lithium exposure, such as from water and 

food, the concentration in blood is likely to reach a steady state and to estimate a more long-

term exposure. 

 Lithium concentrations in plasma or serum are commonly used for monitoring the 

therapeutic range in patients on lithium therapy (Grandjean and Aubry 2009a). In our study, 

the lithium concentrations in plasma appeared to be about 1.5 times that measured in whole 

blood in the same individuals (Figure 11), with very low inter-individual variation (95% CI 

1.4-1.6, n=20). Transforming our highest observed blood lithium concentration (i.e. 161 

µg/L) into corresponding plasma concentration (242 µg/L), it would still be only 7% of the 

lower range of serum lithium levels during lithium therapy (~5,500-8,300 µg/L, i.e. 0.8-1.2 

mmol/L) (Grandjean and Aubry 2009a; Malhi et al. 2011). However, it was at least 30 times 

higher than what was described in the Chilean study (range 4.1-8.0 µg/L; Paper I). In 

unexposed people, the lithium concentration in plasma is generally about 1 μg/L (Alimonti et 

al. 2005). 

 

5.1.2.2 Lithium concentrations in blood and urine during pregnancy and post-partum 

Based on linear-mixed effects models with random intercept (longitudinal analyses), the 

maternal blood lithium concentrations in our study seemed to increase progressively during 

0

25

50

75

100

125

150
Bl

oo
d 

lit
hi

um
 (u

g/
L)

0 100 200 300 400 500 600 700 800 900 1000
Water lithium (ug/L)

A

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

U
rin

ar
y 

lit
hi

um
 (u

g/
L)

0 25 50 75 100 125 150
Blood lithium (ug/L)

B



 

 37 

pregnancy and to 3 months post-partum (0.83 µg/L per week, 95% CI 0.67-0.99; Figure 18), 

along with an increase in the urinary lithium concentrations (19 µg/L per week, 95% CI 6.9-

30). After this period, at 3-6 months after delivery, the lithium concentrations in urine seemed 

to decrease again (Figure 19). Please note that the results from samples collected during 

pregnancy are described in Papers II-IV, while those from the post-partum period are 

presented only in the Figures 18 and 19. 

Our findings are in disagreement with the reported decrease in the lithium concentrations in 

plasma in lithium-treated pregnant women during late pregnancy (Grandjean and Aubry 

2009a), which is suggested to happen due to the physiological increased glomerular filtration 

rate and plasma expansion occurring during gestation. This is the reason why lithium doses 

are recommended to be increased in late gestation (Grandjean and Aubry 2009a).  

 
Figure 18. Scatter plot of maternal blood lithium concentrations (µg/L) during pregnancy and post-partum 
(n=360 measurements, 1-4 measurements per woman, n=180 women). LMP: last menstrual period. Blood 
samples were collected only up to 3 months after delivery. Dashed line represents a lowess line between blood 
lithium concentrations and the number of days from the LMP. Dotted line represents the average gestational age 
at delivery. 
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1972), it is likely that an increased bone resorption during late pregnancy and after delivery 

(Åkesson et al. 2004) releases the accumulated lithium from the bones, explaining the 

increase in both blood and urinary concentration of lithium observed up to 3 months after 

delivery. The decrease in urinary lithium concentrations at 3-6 months post-partum is in 

agreement with the resolution of the physiological kidney changes that occur during 

pregnancy (Cheung and Lafayette 2013).  

 
Figure 19. Scatter plot of maternal urinary lithium concentrations (µg/L) during pregnancy and puerperium 
(n=360 measurements, 1-4 measurements per woman, n=180 women). LMP: last menstrual period. Urine 
samples were collected up to 6 months after delivery. Dashed line represents a lowess line between urinary 
lithium concentrations and the number of days from the LMP. Dotted line represents the average gestational age 
at delivery. 
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and maternal lithium was lower (rs=0.48, n=76), likely due to the marked variation in 

maternal blood lithium with increasing gestational week also within the third trimester. 

In support of a pronounced transfer of lithium to the fetus (Paper I), we found that the 

geometric mean lithium concentration in the first infant urine in life was 600 μg/L (range 

140-1,680, n=7), almost half of that in maternal urine at delivery (geometric mean 1,400 

μg/L, range 810-2,300, n=11). 

 
Figure 20. Scatter plot of lithium concentrations in maternal and cord blood (Paper I).  

 

A case-study of a patient on lithium therapy showed similar lithium concentrations (about 

2,000 μg/L) in maternal and newborn serum at birth (Sykes et al. 1976), supporting our 

findings of a marked transfer of lithium through the placenta at both low and high exposure 

levels. Indeed, a more recent clinical study showed good agreement between concentrations 

in cord and maternal blood within a range of lithium doses of 300-1800 mg/day (Newport et 

al. 2005). 

The transfer of lithium through the placenta occurs most probably during the whole gestation, 

including the sensitive embryonic period when the organogenesis takes place. This is 

supported by the fact that lithium therapy has been associated with the occurrence of a series 

of developmental abnormalities, particularly in experimental studies [Table 1 and (Morgan et 

al. 2003)] and therefore, lithium is classified as teratogenic (category D) by the U.S. Food and 

Drug Administration. Suggested mechanisms of lithium transfer through the placenta are: 

bidirectional passive diffusion, as well as fetal-maternal unidirectional active transfer 

involving sodium/potassium ATPase (Palavinskas et al. 1982). 
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5.1.4 Lithium transfer through the mammary gland 

The lithium concentrations in the infant urine decreased from 600 μg/L in the very first urine 

produced, to 120 μg/L (84-600) already at 2-4 weeks after birth (Paper I). Thereafter, the 

lithium concentrations in infant urine increased again to 380 μg/L at 4-6 months of age. The 

lithium concentrations in breast milk were on average 23 μg/L (range 8.8-53) at 2-4 weeks 

after delivery, 31 μg/L (17-53) at 2-4 months and 36 μg/L (24-54) at 4-6 months.   

The observed rapid decreased in the newborns’ urinary lithium concentrations, to 120 µg/L 2-

4 weeks after birth, reflects a fast neonatal renal excretion of lithium and a much lower 

exposure through breast-milk than prenatally. Thus, breast-feeding appeared to provide 

certain protection against infant lithium exposure. Previous studies indicated a similar 

protection level against arsenic in the drinking water (Concha et al. 1998b). Evidently, 

formula prepared from the drinking water containing elevated lithium concentrations had 

provided much higher exposure levels.   

The lithium concentrations in breast milk in our study were about half of that in maternal 

blood and both increased slightly but constantly after delivery (Paper I) and were highly 

correlated (rs=0.80, Figure 21). In line with the high maternal blood lithium concentrations in 

women on lithium therapy, also the concentrations in breast milk are much higher in treated 

mothers [700-3,500 μg/L; (Viguera et al. 2007)]. 

 
Figure 21. Scatter plot of lithium concentrations in maternal blood and breast milk (Paper I).  

 

5.2 LITHIUM EXPOSURE AND FETAL SIZE 

The study in Paper II is the first ever to investigate the potential impact of maternal exposure 

to lithium from drinking water on human fetal development. The study was based on fetal 

ultrasound measurements performed during pregnancy as well as measurements at birth.  
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5.2.1 Lithium exposure and fetal measurements  

Out of the 180 women with available exposure data, 134 had at least one ultrasound 

measurement of the fetal size [head (BPD, OFD, HC), abdomen (AC), length (FL) and 

estimated weight (FW)] in the 2nd and/or 3rd trimester. Measurements in the 1st trimester were 

not included, as mainly crown-rump length was measured in the first weeks of pregnancy. 

Blood lithium was used as exposure biomarker, supported by the lithium concentrations in 

urine. 

 The correlation between the different fetal measurements was strong within the 2nd (rs>0.98) 

and the 3rd (rs>0.83) trimesters, but those were not correlated with blood or urinary lithium, 

urinary arsenic, serum boron, blood cesium, maternal age, parity, educational level, height, 

residence time or parental monthly income. In individuals with two fetal measurements 

(n=43), the different measurements were also strongly correlated between the 2nd and the 3rd 

trimesters (rs=0.72-0.83). 

In the multivariable-adjusted linear regression models (n=136 women, n=179 measurements), 

both blood and urinary lithium were inversely associated with all measures of fetal size in the 

2nd trimester, although these associations did not generally reach significance (Figure 22). 

The effect sizes were in the order of 1/8 SD for all fetal measures. In the 3rd trimester, there 

was no association between blood lithium and fetal size measurements, although the 

associations with urinary lithium were generally inverse but not statistically significant. 

Neither urinary arsenic, nor serum boron or blood cesium were significant in the statistical 

models.   

 
 

Figure 22. Multivariable-adjusted estimates (Beta coefficients and 95% CI) for the associations between blood 
lithium and fetal measurements. BPD: biparietal diameter (cm), OFD: occipitofrontal diameter (cm), HC: head 
circumference (cm), AC: abdominal circumference (cm), FL: femur length (cm), FW: fetal weight (in grams 
divided by 100 to fit the scale). Estimates expressed as changes per every 25 μg/L increment in blood lithium. 
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Because early embryonic and fetal stages are the most sensitive periods in life (Figure 3), 

one could speculate that, despite the fact that none of the associations were clearly 

statistically significant, lithium impairs the fetal development already in early gestation. This 

early embryonic and fetal stages are also the most sensitive periods for the exposure to other 

chemicals (Barouki et al. 2012). Maybe the lack of associations in the 3rd trimester could also 

be due to the known increased variation in the ultrasound measurements with increasing 

gestational age (Geirsson 1991), along with the above mentioned variation in the blood and 

urinary concentrations of lithium during pregnancy and the limited sample size for these 

analyses to overcome such variations. 

5.2.2 Lithium exposure and measurements at birth 

The average birth weight in the study population was similar in both boys and girls and was 

on average 3,022 g (range 1,250-4,500), which is lower than the average birth weight in 

European countries [~3,500 g, (Pedersen et al. 2013)] and that reported in Buenos Aires, the 

capital of Argentina [~3400 g, (Grandi 2003)]. Eight percent of the newborns had low birth 

weight (<2,500 g) and 18% were born preterm [average gestational age at birth 38.5 weeks 

(range 29-42)]. The average birth length and head circumference were 48 and 34 cm, 

respectively. 

After adjusting for gestational age at birth, parity, parental monthly income, maternal height, 

infant sex, arsenic in urine, boron in serum and cesium in whole blood, the linear regression 

models showed an inverse association between maternal blood lithium and birth length (about 

0.5 cm per every 25 μg/L increment in the average blood lithium concentrations across 

pregnancy) (Figure 23). Similarly, newborns to mothers in the highest tertile of lithium 

exposure (median blood lithium 42 μg/L) were on average 0.8 cm shorter than those in the 

lowest tertile of exposure (median blood lithium 11 μg/L).  

Neither urinary arsenic, nor serum boron or blood cesium were statistically significantly 

associated with fetal size measurements in the multivariable-adjusted models. However, the 

estimates for the association between blood lithium and birth length were attenuated after 

adjusting the model for serum boron. Experimental studies have suggested that boron may 

impair the fetal size (WHO 2011). Thus, we cannot fully rule out that the associations 

observed in the present study are actually due to a combination of lithium and boron 

exposure. On the other hand, due to the high correlation between these two elements in 

drinking water (rs=0.91) and blood (blood lithium vs. serum boron, rs=0.77), the observed 

attenuation could be due to collinearity. In contrast, urinary arsenic and blood cesium did not 
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influence the estimates. The arsenic concentrations in the drinking water were lower during 

the study period due to the installation of an arsenic filter in the main study village, 

decreasing the exposure to arsenic. Also, women in the study area are known to metabolize 

arsenic more efficiently than other populations such as that in Bangladesh (Engstrom et al. 

2011). This, together with a lower arsenic exposure, might, at least partially, explain why 

arsenic was not statistically significant in the multivariable-adjusted models; i.e. women with 

a more efficient arsenic metabolism will excrete the most toxic arsenic metabolite (i.e. MMA) 

more rapidly, exposing the fetus to lower levels of such metabolite.  

The findings of associations between maternal lithium exposure and birth size are supported 

by those found with fetal measurements performed with ultrasound. That lithium may affect 

fetal growth has some support in the literature. Particularly, two studies in humans with 

lithium-treated patients reported lower birth weight in babies born to women undergoing the 

therapy, compared to controls (Table 1). Also, a series of experimental studies in mice, rats 

and monkeys, using doses from 7 to 400 mg/kg/day, as well as an in vitro study, have 

reported a decreased birth size in the exposed group (Table 1).  

 

 
Figure 23. Multivariable-adjusted estimates (Beta coefficients and 95% CI) for the associations between blood 
lithium and measurements at birth [weight (grams), length (cm) and head circumference (cm)]. Estimates for 
birth weight were divided by 100 to fit the scale. Estimates are expressed as changes per every 25 μg/L 
increment in blood lithium. 
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5.3 POTENTIAL MECHANISMS 

5.3.1 Disruption of the maternal thyroid function  

Impairment of the thyroid function is a common side effect of lithium medication (McKnight 

et al. 2012). Therefore, we wanted to elucidate whether lithium exposure through drinking 

water could influence the maternal thyroid function during pregnancy (Paper III). If so, this 

could be a potential underlying mechanism for the associations between maternal lithium 

exposure and fetal size. We measured a number of different thyroid markers in maternal 

serum and investigated their association with lithium exposure during pregnancy. The 

selected thyroid markers included: TSH, fT4, T4, fT3, T3, Tg and TTR. Nineteen, twelve and 

thirteen percent of the women showed TSH concentrations above the reference value in the 

1st (0.1-2.5 mIU/L), 2nd (0.2-3.0) and 3rd (0.3-3.5) trimesters, respectively. Eighty-three 

percent of those with abnormal values belonged to the highest tertiles of blood lithium 

(median blood lithium 42 μg/L, range 34-145). Also, 6% of the women had low fT3 values 

(reference value 3.7-7.7 pmol/L) in the 3rd trimester, and 78% of those belonged to the 

highest tertiles of lithium exposure. Only half of the women appeared to be iodine sufficient 

(i.e. urinary iodine >150 μg/L).  

The multivariable-adjusted quantile regression models showed that the blood lithium 

concentrations were positively associated with TSH, particularly in the lowest tail of TSH 

concentrations. Also, blood lithium was inversely associated with fT3, total T3 and TTR, 

particularly in the highest percentiles of the outcomes. No associations were found between 

blood lithium and fT4, T4 or Tg.  

Unexpectedly, blood cesium was also inversely associated with fT3 and T3 in the highest 

percentiles of the outcomes. Neither urinary arsenic, nor serum boron were significant in the 

models and they did not influence the associations with lithium and cesium. 

Impairment of the thyroid function during pregnancy might be detrimental for the fetal 

growth and development (Forhead and Fowden 2014). To the best of our knowledge, there is 

only one previous study investigating the thyroid function in relation to lithium exposure 

from drinking water (Broberg et al. 2011). This study was performed in the same study area, 

i.e. with the same level of exposure, in adult non-pregnant women (median age 34, range 12-

80), where urinary lithium was positively associated with TSH and negatively associated with 

fT4. No other thyroid markers were measured in that study. The lack of associations between 
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blood lithium and fT4 or T4 in this thesis might be explained by an elevated variation of the 

fT4 and T4 concentrations during pregnancy (Lockitch 1993). 

In medication and experimental studies, using much higher doses than those in the present 

thesis, lithium is suggested to impair the thyroid function in different ways. For example, by 

inhibiting the iodine uptake, the iodotyrosine coupling, the thyroxine secretion and the 

conversion of T4 to T3, or by altering the Tg structure (Berens et al. 1970; Burrow et al. 

1971; Terao et al. 1995). Lithium effects on the TSH levels could occur by inhibiting its 

stimulation by TRH, as lithium is known to cross the blood–brain barrier and accumulate in 

the hypothalamus (Mukherjee et al. 1976). This would in turn, inhibit TSH secretion and alter 

the whole chain of thyroid hormone production, which will conversely stimulate the TSH 

secretion (Figure 4) to abnormal levels.  

Another probable hypothesis is an inhibition of the production and release of thyroid 

hormones in the thyroid gland, as lithium is also known to accumulate there (Berens et al. 

1970). The latter would also explain both the increase in TSH and decrease in fT3 and T3 

levels. Also, the inhibition of the 5’deiodinase I, in charge of forming T3 from T4 (Bauer et 

al. 2006), would explain the decrease in the T3 levels. Inhibition of iodine uptake might occur 

by the competition of lithium with iodine in, for example, the sodium-iodine symporter, 

which is the way iodine is taken up in the thyroid gland (Eskandari et al. 1997).  

The associations with TTR have, however, not been reported previously. Therefore, if 

confirmed in other studies, the indicated decrease in the TTR levels due to lithium might be a 

novel mechanism of action. Importantly, TTR is one of the proteins responsible for 

transporting T4 in the body and the most abundant T4 transporter in the cerebrospinal fluid 

(Schreiber et al. 1995). Also, TTR is produced in placental trophoblastic cells and is in charge 

of transporting thyroid hormones to the fetus (McKinnon et al. 2005). The decrease in TTR 

concentrations can, thus, result in lower fetal thyroid hormone levels (Darnerud et al. 1996). 

  

5.3.2 Impairment of the maternal calcium homeostasis 

Another common side-effect of lithium medication is the impairment of the calcium 

homeostasis (McKnight et al. 2012). Therefore, we tested whether also environmental 

exposure to lithium might have similar effects in pregnant women (Paper IV). It could, like 

the disruption of thyroid function, be a potential underlying mechanism of the inverse 

association of lithium with fetal size. To elucidate a potential impact of lithium exposure 

through drinking water on the calcium homeostasis, we measured different markers in 
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maternal serum and investigated their association with blood lithium concentrations during 

pregnancy. The selected markers of calcium homeostasis included: serum calcium (total and 

albumin-adjusted), urinary calcium, serum PTH, plasma 25-hydroxivitamin D3 (vitamin D3), 

as well as total phosphorus and magnesium in serum and urine. The correlation between the 

different markers in late pregnancy varied, with the highest between urinary magnesium and 

calcium (rs=0.51), serum magnesium with total serum calcium (rs=0.37), serum phosphorus 

and albumin-adjusted serum calcium (rs=0.22) and PTH and vitamin D3 (rs=0.22). Six women 

had elevated albumin-adjusted serum calcium concentrations, while 58% of the women had 

vitamin D3 concentrations <50 nmol/L and 19%, <30 nmol/L.  

Vitamin D3 concentrations were strongly influenced by the season of sampling, showing the 

lowest concentrations in the winter (June-August) and the highest in the summer (December-

February). One of the main sources of vitamin D3 is UVB radiation which converts 7-

dehydrocholesterol to previtamin D3 in the skin. The study area is located at a latitude 

between -23.31 and -24.35, and although sunlight is present at least 10 hours/day during the 

winter season, the characteristic weather of the Puna region, with cold and very windy 

winters, impose people to use more clothes and to stay indoors longer time, reducing the 

exposure time to sunlight. 

In multivariable-adjusted linear mixed-effects models (longitudinal analyses across 

pregnancy), blood lithium was inversely associated with plasma vitamin D3 concentrations, 

as well as with urinary calcium and magnesium, and positively associated with serum 

magnesium. A 25 μg/L increment in the blood lithium concentrations was associated with an 

odds ratio of 3.5 for having vitamin D3 concentrations <50 nmol/L, and with an odds ratio of 

4.6 for having vitamin D3 concentrations <30 nmol/L. The influence of season of sampling on 

the Vitamin D3 concentrations was independent of that of lithium.  

Low vitamin D concentrations during pregnancy could be unfavorable for the maternal and 

fetal health, as they are associated with an increased risk for preeclampsia and infectious 

diseases during pregnancy in the mother, as well as with impaired fetal programming, low 

birth size, increased risk for inflammatory and immune disorders during infancy and a poorer 

infant bone health (i.e. lower bone mineral density) later in life (Brannon and Picciano 2011; 

Karras et al. 2014).  

There are different mechanisms that could be involved in the inverse associations observed 

between blood lithium and vitamin D3. Due to the lack of associations between lithium and 

PTH, it seems likely that the present associations might be explained by mechanisms 
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occurring outside the parathyroid gland. One possible mechanism is the stimulation of 

fibroblast growth factor 23 (FGF23) by lithium, leading to an enhanced activity of 24-

hydroxylase (CYP24A1) and a consequent increased catabolism of both 25-hydroxyvitamin 

D3 and 1,25-hydroxyvitamin D3 (Fakhri et al. 2014). This would in turn lead to a decrease in 

the urinary excretion of calcium and phosphorus (Brannon and Picciano 2011; Fakhri et al. 

2014). Since we found no clear associations with the levels of phosphorus in our study, this 

hypothesis is not completely compatible with our findings. Nevertheless, findings concerning 

phosphorus have to be interpreted with caution as we measured total phosphorus in serum 

and not only inorganic phosphate.  

Another hypothesis is that the lithium-related decrease of the vitamin D3, urinary calcium and 

urinary magnesium concentrations occurs directly at the kidney level. Impairment of the 

kidney function is a known adverse effect of lithium therapy (McKnight et al. 2012). In fact, 

we found positive associations between blood lithium and urinary albumin. An impaired 

kidney function is associated with lower serum 25-hydroxyvitamin D3 concentrations 

(Damasiewicz et al. 2013; de Boer et al. 2011), although a severe kidney impairment might 

be needed to cause a decrease in the vitamin D3 concentrations. The inverse associations 

between blood lithium and urinary magnesium and calcium could also be explained by such a 

mechanism, considering that their homeostasis is mainly regulated in the kidneys (Blaine et 

al. 2015).  

 

5.3.3 Other potential mechanisms 

It is possible that additional mechanisms are involved in the association of lithium exposure 

with fetal size, but these were not investigated in this thesis. For example, it could be 

speculated that the accumulation of lithium in other endocrine organs could play a role. A 

lithium-related increase in the maternal circulating levels of cortisol, as shown in lithium-

treated patients (Bschor et al. 2002; Platman and Fieve 1968) and in rats (Sugawara et al. 

1988), could lead to a decreased weight, length and head circumference at birth (Duthie and 

Reynolds 2013).  

It is also likely that both mechanisms of lithium toxicity explored in this thesis and other 

suggested mechanisms are complementary, rather than mutually exclusive. More efforts are, 

however, necessary to fully understand the biological processes underlying the potential 

impairment of fetal development due to lithium exposure through drinking water in the 

general population. 
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5.4 METHODOLOGICAL CONSIDERATIONS 

The study in Paper I was based on a few mother-child pairs from San Antonio de los Cobres 

(n=11), in Argentina, and Arica (n=24) and Santiago (n=11), in Chile. We took advantage of 

two previous studies and could clarify that environmental lithium exposure during pregnancy 

results in high fetal exposure, as indicated by the high concentrations in both cord blood and 

the first infant urine in life. In this study, blood, urine and breast milk samples in San Antonio 

de los Cobres were sampled repeatedly, allowing us to see changes over time during the first 

6 months after delivery/birth. A drawback of this study, in addition to the small sample size, 

was the lack of data concerning factors that could affect the transfer of lithium through the 

placenta and mammary gland (e.g. nutrition). 

For Papers II-IV, we recruited a larger mother-child cohort (n=194) covering most of the 

Andean region of the Province of Salta, and sampled different exposure and outcome markers 

repeatedly during and after pregnancy. Indeed, the population-based longitudinal design is a 

strength in addition to the fact that the women in the cohort had wide ranges of exposures. 

Also, all women were nonsmokers and reported very low alcohol consumption, reducing 

such sources of confounding in this cohort. Moreover, in each study, we considered several 

measures of the outcomes, along with the exposure measurements and evaluated potential 

mechanisms and susceptibility factors. In addition, we evaluated other exposures, such as 

cesium, boron and arsenic, also present in the drinking water, and adjusted models 

accordingly. The lower arsenic exposure during the study period (due to the installation of an 

arsenic filter) decreased the possibilities of a combined effect of arsenic with other metals. On 

the contrary, in Paper II, we could not elucidate if the associations found between lithium 

and birth length were a result of lithium exposure exclusively or a consequence of the 

combined exposure to both lithium and boron. Moreover, in Paper III, cesium was also 

inversely associated with fT3 and T3, but not with TSH nor even with TTR, and the 

adjustment of the latter models for cesium did not affect the estimates. 

Studies in Papers II-IV present some limitations. As in all observational studies, our findings 

are just associations and do not infer causality, and we cannot rule out the possibility of 

residual or unmeasured confounding. Therefore, we put much emphasis on the mechanistic 

studies. A drawback of the studies is the lack of measurements of both exposure and outcome 

markers in the first trimester for all women. The main reason for this was the limited 

accessibility to reach the far away villages, especially during the rain period (January-March), 

when the sandy roads often were destroyed, which made it impossible to reach some of the 

study areas. Also, women in the study area might not report, suspect or confirm their 
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pregnancies until the 2nd trimester starts, and thus, the chances of recruiting women in the 

very early gestation were low. Moreover, the wide-spread study area and the study logistics 

did not allow us to collect samples at the same time of the day, and thus variation in the 

biomarkers could not be avoided. 

Due to the discovered contamination of the blood sampling tubes with lithium, serum lithium 

measurements could not be used. This could have made the lithium concentrations 

comparable with those in clinical studies. However, we found a remarkably high correlation 

between the lithium concentrations in plasma (from non-contaminates tubes) and those in 

whole blood, validating the use of the lithium concentrations in whole blood as exposure 

marker. 

Although much effort was put into considering potential confounding factors in the design 

and analyses of each study, remaining or unmeasured confounding could still exist. For 

example, besides the use of psychiatric medication during pregnancy, the maternal mental 

health itself is known to influence the fetal growth (Boden et al. 2012; Grigoriadis et al. 2013; 

Huybrechts et al. 2014). Although none of the women reported any psychiatric diagnoses or 

psychiatric medication in response to our questions about mental health, we cannot 

completely rule out the possibility of underreporting or recall bias.  

The study area is located at high altitude with low atmospheric oxygen concentrations. This 

causes stress on pregnancy and decreases the fertility rate, and it may have certain effect on 

the thyroid function (Kametas et al. 2004; Sarne 2000; Soria et al. 2013; Vitzthum 2013). 

Although these effects seem to be less common among indigenous people living at this high 

altitude for generations than among those with Caucasian influence (Kametas et al. 2004; 

Soria et al. 2013; Vitzthum 2013) and most women in our study reported to belong to 

indigenous communities, mainly Kolla, we did not have specific markers to control for 

ethnicity. Therefore, we cannot rule out the involvement of ethnicity in the findings of 

lithium with maternal and fetal health. 

We did not measure TBG, which increases in early pregnancy and thereby, alters the T3 

levels (Lockitch 1993). Nonetheless, this should have further increased the variation in the T3 

measurements, decreasing the possibilities of finding associations with lithium or cesium. 

Also, DBP and various genetic polymorphisms were not measured, that could have affected 

the vitamin D3 and PTH concentrations, and thereby masked potential associations. 
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Although the sample size in Papers II-IV is much larger than that in Paper I, the cohort is still 

relatively small and we lacked statistical power to perform certain analyses such as 

stratifications by urinary iodine and infant sex, which might have revealed additional 

potential mechanisms, or by categories of exposure (high boron vs. low lithium, etc). Thus, a 

larger sample size in this study could have facilitated the interpretation of the results. 

However, only about 200 women get pregnant every year in the study area and we did recruit 

88% of all pregnant women during October 2012 and December 2013. Also, there is limited 

access and transportation to the surrounding villages, a problem that is still worse in the rain 

period and that challenged the field work of the study. Indeed, the findings of this thesis need 

to be followed-up and hopefully this breakthrough pilot study will stimulate the performance 

of similar studies in larger cohorts and in other populations exposed to lithium through 

drinking water.   
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6 CONCLUSIONS 

Taken together, the results of this thesis provide evidence that elevated exposure to lithium 

through drinking water during pregnancy may adversely affect prenatal development, 

possibly through endocrine disruption. In particular, we found that: 

 

 Lithium was easily transferred through the placenta, giving rise to considerable 

exposure to lithium during fetal life, a potential susceptible window of toxic exposure. 

The transport through the mammary gland was much lower and breast-feeding 

seemed to provide some protection of the infants against lithium exposure.  

 

 Lithium exposure through drinking water during pregnancy was associated with 

shorter birth length. 

 

 Lithium exposure was associated with impaired thyroid function. Maternal blood 

lithium concentrations during pregnancy were positively associated with thyrotropin 

and inversely associated with the active thyroid hormones (fT3 and T3) as well as 

with transthyretin, a transporter of thyroid hormones over e.g. the placenta. 

 

 Lithium exposure was also associated with altered calcium homeostasis. Blood 

lithium concentrations were inversely associated with plasma 25(OH)vitamin D3 and 

with almost 5 times higher odds of having vitamin D3 concentrations <30 nmol/L 

during pregnancy. 

 

If confirmed in other and larger studies, the findings have implications for the public health 

and reinforce the need for thorough screening of lithium concentrations in drinking and 

bottled water and further evaluation of the health effects. 
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7 FUTURE RESEARCH 

Future efforts should focus on the following: 

 

ᴑ Determination of lithium concentrations in drinking water, including bottled water, 

worldwide in order to identify highly exposed individuals and populations. 

ᴑ Follow-up of the children of the presently studied women, to elucidate potential 

effects of the prenatal lithium exposure on infant growth and other potential adverse 

effects, including e.g. impairment of the thyroid and calcium homeostases, as well as 

epigenetic alterations. 

ᴑ Investigation of health effects in the infants due to the continued elevated exposure to 

lithium after weaning. 

ᴑ Investigation of fetal growth and development in relation to lithium exposure in 

several and larger mother-child cohorts, to confirm the findings of the present thesis 

and to facilitate the elaboration of risk assessments for lithium and the decision upon 

health-based guideline values for drinking and bottled water. 

ᴑ Elucidation of other mechanisms underlying the early-life toxicity of lithium. 

ᴑ Identification of susceptibility factors (e.g. polymorphisms in genes related to lithium 

or to vitamin D kinetics, nutritional status, epigenetic mechanisms) that could enhance 

the risk for lithium toxicity. 

ᴑ Consideration of additional outcome markers such as vitamin D-binding protein, 1-

apha-hydroxilase and CYP24A1 activity, and thyroid-binding protein. 
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8 POPULÄRVETENSKAPLIG SAMMANFATTNING 

Litium är en metall som förekommer naturligt i miljön, inklusive dricksvatten i varierande 

halter. Trots att det finns rapporterat att mineralvatten på flaska kan innehålla höga halter 

litium, så analyseras det ytterst sällan i dricksvatten. De få studier som finns visar att 

dricksvatten i visa områden i Österrike, Chile och Argentina kan innehålla upp till ett par 

tusen mikrogram/liter, medan i andra länder, så som Italien, Grekland, Japan och England 

verkar koncentrationerna vara betydligt lägre. Bara Ryssland och Ukraina har nationellt 

gränsvärde för litium i dricksvatten.  

Litium används bland annat för att tillverka batterier och glas men också i medicinering mot 

bipolär (manodepressiv) sjukdom. Litiumbehandlingen har setts kunna ge bieffekter i form av 

påverkad funktion av sköldkörteln och njurarna, samt störa kalciumomsättningen i kroppen. 

Under graviditet är litiumbehandling problematisk och riktlinjen är att så långt som möjligt 

undvika medicinering i början av graviditeten. Man vet från kliniska och experimentella 

studier att litiumbehandling kan påverka fostertillväxten samt orsaka missbildningar. Vi vet 

dock ytterst lite om litiumexponeringen från dricksvatten och om den kan påverka hälsan; det 

finns bara en enda studie som indikerar påverkan på sköldkörtelfunktionen.  

Huvudsyftet med denna avhandling var att undersöka potentiella hälsoeffekter av 

litiumexponering under graviditeten hos kvinnor och deras barn. Vi studerade framför allt 

överföringen av litium till fostret genom moderkakan (placentan) och till det ammade barnet 

genom bröstmjölken, samt påverkan på fostertillväxt. För att utreda eventuella orsaker till en 

antydd fosterpåverkan, så undersökte vi även om litiumexponering under graviditet kan störa 

sköldkörteln och kalciumomsättningen hos mödrarna.   

För fem år sedan rapporterade vår forskargrupp att dricksvattnet i San Antonio de los Cobres, 

ett område i Anderna i norra Argentina, innehöll höga halter litium, förutom höga halter 

arsenik, vilket var känt sedan tidigare. Av denna anledning analyserade vi litium i prover som 

insamlats i detta område under 1996 från en liten mor-barn kohort (11 kvinnor och deras 

barn). Litiumhalterna i navelsträngsblod befanns vara minst lika höga som de i mammas 

blod, vilket indikerar att litium passerar över moderkakan till fostret. Litiumhalterna i 

bröstmjölken var däremot betydligt lägre, vilket tyder på att amningen delvis skyddar barnen 

mot de höga litiumnivåerna i dricksvattnet. 

För att försöka klargöra eventuella effekter av denna exponering på kvinnorna och deras barn, 

rekryterade vi en större mor-barn kohort i samma by samt i ett antal närliggande byar. Vi bjöd 
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in samtliga kvinnor som blev gravida från oktober 2012 till december 2013 att delta. Totalt 

rekryterades 180 kvinnor (88% svarsfrekvens). Vi intervjuade kvinnorna under 1 till 3 

tillfällen under graviditeten och tog blod-, urin- och dricksvattenprover för analys av litium. I 

blod mättes också olika markörer för sköldkörtelfunktion och kalciumomsättning. 

Fosterstorlek mättes med hjälp av ultraljud under graviditeten, samt vikt, längd och 

huvudomfång vid födseln. 

De statistiska analyserna visade att det fanns ett samband mellan en högre litiumexponering 

via dricksvatten och lägre fostertillväxt. På motsvarande sätt fann vi samband mellan 

litiumexponering och förändrade halter av olika sköldkörtelhormoner hos mamman, vilket 

antyder att litium kan störa sköldkörtelfunktionen under graviditet. Vidare fann vi samband 

mellan litiumexponeringen och vitamin D-nivåerna hos mamman som kan betyda att litium 

sänker vitamin D-nivån.  

Sammanfattningsvis så bidrar denna avhandling med ny kunskap om hälsoeffekter av 

litiumexponeringen via dricksvatten. Resultaten visar att en exponering motsvararande 

mindre än 1 procent av den vid litiumbehandling kan påverka fostrets tillväxt negativt. Då 

både sköldkörtelhormoner och hormonet vitamin D är nödvändiga för normal fostertillväxt 

och utveckling, kan det indikerade sambandet mellan litium och dessa hormoner vara en 

möjlig förklaring till påverkan på fostertillväxten. Fynden bör beläggas i större studier i andra 

populationer, men de kan visa sig vara viktiga ur folkhälsosynpunkten och belyser behovet av 

analyser av litium i både dricksvatten och mineralvatten på flaska. 
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9 RESUMEN CIENTÍFICO POPULAR 

Litio es un metal que está presente naturalmente en el ambiente, incluso en el agua potable en 

concentraciones variables. A pesar de que hay reportes que indican que agua embotellada 

puede contener altas concentraciones de litio, este metal es rara vez analizado en el agua 

potable. Los pocos estudios disponibles muestran que el agua potable en ciertas regiones en 

Austria, Chile y Argentina contiene hasta 2 miligramos/litro, mientras que el agua potable en 

países como Italia, Grecia, Japón e Inglaterra parece tener concentraciones mucho más bajas. 

Sólo Rusia y Ucrania tienen valores límite para litio en el agua potable a nivel nacional. 

Litio se utiliza, entre otras cosas, para fabricar baterías y vidrio pero también para tratar la 

enfermedad bipolar. Se ha visto que el tratamiento con litio puede ocasionar efectos adversos 

a la salud tales como afección de la función tiroidea y renal, así como trastornos en el 

metabolismo del calcio. Durante el embarazo, el tratamiento con litio es problemático y guías 

clínicas recomiendan que se evite, tanto como sea posible, la medicación con litio en las 

primeras semanas de embarazo. Se sabe, por estudios clínicos y experimentales, que la 

exposición a litio puede afectar el crecimiento fetal y causar malformaciones congénitas. Sin 

embargo, se sabe muy poco sobre la exposición a litio en el agua potable y sus efectos a la 

salud; existe sólo un estudio y éste indica efectos adversos en la función tiroidea. 

El objetivo principal de esta tesis fue investigar potenciales efectos sobre la salud en mujeres 

y sus hijos debido a la exposición a litio durante el embarazo. Particularmente, estudiamos el 

traspaso de litio al feto a través de la placenta y a los niños a través de la leche materna, así 

como sus efectos en el crecimiento fetal. Para explorar causas potenciales de la afección del 

crecimiento fetal, investigamos también si la exposición a litio puede ocasionar alteraciones 

de la función tiroidea y del metabolismo del calcio en las mujeres embarazadas. 

Hace 5 años, nuestro grupo de investigación reportó que el agua de San Antonio de los 

Cobres, un área en los Andes en el norte Argentino, contiene altas concentraciones de litio, 

además del arsénico que ha sido estudiado previamente. Por esta razón, analizamos litio en 

muestras recolectadas en esta área en 1996, de una cohorte pequeña de madres y niños (11 

mujeres y sus hijos). Las concentraciones de litio en sangre del cordón umbilical fueron 

iguales o más altas que aquellas en sangre materna, lo cual indica que el litio traspasa la 

placenta hacia el feto. Por el contrario, las concentraciones de litio en la leche materna fueron 

mucho más bajas, lo cual sugiere que el amamantamiento exclusivo protege, al menos 

parcialmente, a los niños de la exposición a concentraciones altas de litio en el agua potable. 
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Para tratar de elucidar potenciales efectos sobre la salud debido a esta exposición en las 

mujeres embarazadas y sus hijos, reclutamos una cohorte de madres y niños más grande en la 

misma área y en áreas aledañas. Nosotros invitamos a participar en el estudio a todas las 

mujeres que estuvieron embarazadas desde octubre del 2012 hasta diciembre del 2013. En 

total reclutamos 180 mujeres (tasa de participación del 88%). Entrevistamos a las mujeres de 

1 a 3 veces durante el embarazo y recolectamos muestras de sangre, orina y agua potable en 

las cuales se analizó litio. En sangre se analizó también marcadores de función tiroidea y del 

metabolismo del calcio. El tamaño fetal se midió a través de ultrasonido (ecografía) durante 

el embarazo, y también se midió peso, talla y perímetro cefálico al nacer. 

Los análisis estadísticos mostraron asociaciones entre la exposición a litio a través del agua 

potable y un tamaño fetal más pequeño. De la misma manera, encontramos asociaciones entre 

la exposición a litio y alteración de las concentraciones de las hormonas tiroideas maternas 

durante el embarazo, lo cual indica que el litio puede afectar la función tiroidea durante el 

embarazo. Además, encontramos asociaciones entre la exposición a litio y las 

concentraciones de la vitamina D en las mujeres, lo cual sugiere que el litio parece disminuir 

las concentraciones de la vitamina D.  

En resumen, esta tesis contribuye con conocimiento sobre efectos a la salud de la exposición 

a litio a través del agua potable. Los resultados muestran que la exposición, correspondiente a 

menos del 1% de aquella usada para medicar, podría afectar negativamente el crecimiento 

fetal. La función tiroidea así como la vitamina D son esenciales para el desarrollo y 

crecimiento fetal normal, por lo cual, las asociaciones de litio con estas hormonas podrían ser 

una explicación potencial de la afección del crecimiento fetal. Los hallazgos necesitan ser 

repetidos en cohortes más grandes y en diferentes poblaciones, pero de cualquier manera, los 

resultados son importantes desde el punto de vista de la salud pública y recalcan la necesidad 

de realizar mediciones de litio en agua potable y embotellada.  
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