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Und jedem Anfang wohnt ein Zauber inne,  

Der uns beschützt und der uns hilft, zu leben.  

Herman Hesse (aus Stufen)  

 

A magic dwells in each beginning  

protecting us, telling us how to live.  

 

 

 

 

  



 

 

SUMMARY  

 

Primate lentiviruses belong to the retrovirus family and include the human immunodeficiency 
viruses (HIV-1 and HIV-2) and simian immunodeficiency viruses (SIV). HIV infects cells of 
the immune system, including subsets of T cells and dendritic cells (DC). Upon cell entry, the 
detection of the virus by cellular pattern recognition receptors triggers an intracellular cascade 
of innate antiviral defense mechanisms. In DCs, these mechanisms include the secretion of 
interferon α and the induction of cellular restriction factors, among these members of the 
APOBEC3 family that inhibit viral replication. As demonstrated in Paper III, low doses of 
interferon α protected DCs from HIV-1 infection and limited viral spread from DCs to T cells 
by inducing an increase in APOBEC3G, F and A expression.  

DCs are professional antigen presenting cells that present antigen to cells of the innate and 
adaptive immune system. Invariant natural killer T cells (iNKT) cells are innate T cells that 
recognize endogenous and exogenous lipid antigens presented by CD1d. Activated iNKT 
cells regulate the immune response by producing cytokines that recruit and activate innate 
and adaptive immune cells. Previous studies have shown that the HIV-1 accessory proteins 
Vpu and Nef interfere with CD1d cell surface expression in infected DCs, thus inhibiting the 
effective activation of iNKT cells. The results of Paper II demonstrated that infected DCs 
respond to HIV-1 infection by increasing CD1d surface levels and enhanced presentation of 
the endogenous lipid GlcCer. This enabled iNKT cell activation by HIV-infected DCs. 
However, HIV-1 counteracts iNKT cell activation by reducing CD1d cell surface expression 
using the HIV-1 proteins Nef and Vpu. In Paper I, efforts to elucidate the mechanism of 
CD1d antagonism by Vpu identified a highly conserved C-terminal APW motif in HIV-1 
group M subtype B Vpu proteins that was necessary for CD1d downregulation. Moreover, we 
identified this immune evasion mechanism to be a conserved function of diverse HIV-1 and 
related SIV Vpus. These findings emphasize the role of CD1d-mediated immunity in the 
antiviral defense against HIV-1 and support the need for further studies investigating the 
therapeutic potential of Vpu inhibition in the future.  

Previous studies found that innate cellular immune responses are altered in chronic HIV-1 
infection. Our results in Paper IV from an occupational cohort in Guinea-Bissau suggest that 
this is a general phenomenon of chronic HIV infection as NK and iNKT cells were partly lost 
and the remaining populations displayed elevated activation levels in chronic HIV-1, HIV-2, 
and dual infections.  

HIV is the cause of a chronic, incurable infection in 37 million people worldwide in 
2014. This thesis investigates how the immune system detects HIV and how in 
turn HIV avoids detection by the immune system. The understanding of the viral 
evasion mechanisms that prevent immune detection (“Hide and Seek”) is 
important to successfully develop future vaccines and cure strategies for HIV. 
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INTRODUCTION 

1 PRIMATE LENTIVIRUSES 

Retroviruses are enveloped viruses that use reverse transcription to produce DNA from their 
viral RNA genome. The genus of Lentiviruses (Latin: lenti meaning slow) belongs to the 
family of retroviridae and infects various mammalian species including primates. Nonhuman 
primates (monkeys and apes) and humans are the natural hosts of primate lentiviruses, which 
consist of SIV, HIV-1 and HIV-2 [1].  

1.1 ORIGIN AND EVOLUTION OF SIV, HIV-1 AND HIV-2 

African nonhuman primates are the natural hosts of simian immunodeficiency virus (SIV) of 
which more than 40 species-specific strains are known [2,3]. Among these are the SIV strains 
of the Central Chimpanzee (Pan troglodytes troglodytes; SIVcpzPtt), the Western lowland 
gorilla (Gorilla gorilla; SIVgor) and the sooty mangabey (Cercocebus atys; SIVsmm). It is 
thought that these SIV strains crossed the species barrier from nonhuman primate to humans 
successfully multiple times resulting in 4 HIV-1 groups and 2 endemic HIV-2 groups [2,4]. 
How the original SIV infections of humans occurred is unknown but might have various 
sources such as bites and the handling and consumption of undercooked bush meat [4].  

In natural hosts SIV usually causes a chronic yet nonpathogenic infection [5]. However, there 
are recent examples of AIDS-like symptoms in SIV-infected chimpanzees [6,7]. In non-
natural hosts such as the rhesus macaque, SIV causes a pathogenic disease, comparable to 
AIDS in humans, which therefore serves as an animal model for HIV infection [8-10]. 

1.1.1 HIV-1  

HIV-1 was first described in 1983 as the retrovirus causing the acquired immunodeficiency 
syndrome (AIDS) in humans [11-15]. Since, it has become clear that HIV-1 virus strains are 
diverse and can be categorized into groups and subtypes based on phylogenetic analysis. 
Today, HIV-1 is classified into four groups: M (for main), N (for non-M, non-O), O (for 
outlier), and P [16,17]. HIV-1 group M is the cause of the global HIV pandemic and is further 
subdivided into 9 subtypes A, B, C, D, F, G, H, J, K and numerous circulating recombinant 
forms (CRFs) [16,18]. 

Subtypes A, B and C are the most prevalent subtypes globally. Subtype A is most common in 
Eastern Europe and Central Asia, whereas subtype B is the most prevalent subtype in North 

Viruses are very small infectious agents that require living cells in order to 
replicate and cause diseases. HIV is the virus that causes AIDS in humans. The 
immune system fights HIV, but fails to remove the virus completely. HIV infection 
is a chronic, incurable disease that affects 37 million people worldwide in 2014.  
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America, Brazil and Western Europe. Subtype C infects most individuals worldwide and is 
most prevalent in India, South and East Africa [19] (Figure 1).  

Whereas the pandemic group M has spread worldwide, groups N, O and P are geographically 
restricted mainly to West-Central Africa. Group O caused a local epidemic in Cameroon and 
is responsible for 1-2% of all HIV-1 infections [17,20-23], while groups N and P have been 
detected in a few individuals only [21,24,25]. Based on sequence similarities SIVcpzPtt was 
identified as the immediate source of HIV-1 groups M and N [26,27], and also as the likely 
precursor of SIVgor [22]. Groups O and P in turn are most closely related to SIVgor [17,22].  

1.1.2 HIV-2 

Shortly after the discovery of HIV-1, a closely related retrovirus named HIV-2 was found to 
also cause AIDS [28]. Interestingly, the closest SIV relative of HIV-2 is not SIVcpzPtt but 
the SIV strain infecting sooty mangabeys (SIVsmm) [29] (Figure 1). Unlike HIV-1, HIV-2 is 
geographically confined to West Africa and classified into 8 groups (A-H) of which A and B 
are endemic while the remaining groups have been isolated from a few individuals only [30]. 
Guinea-Bissau is one of the countries with the highest prevalence of HIV-2, 7.4% in 1996. 
However, until 2006 the HIV-2 prevalence declined to 4.4% while the prevalence of HIV-1 
increased from 0% to 4.6%. Dual infection with HIV, defined as HIV-1 and HIV-2 infection 
in the same individual, had a prevalence of 0.5% in 2006. Thus HIV-1 is replacing HIV-2 as 
the major source of HIV infection in young adults [31]. This might be due to HIV-2 being 
less transmissible compared to HIV-1 [32,33]. HIV-1 and HIV-2 are closely related with up 
to 60% sequence identity on the amino acid level [34] and while being able to cause a similar 
AIDS phenotype, only a minority of HIV-2 infected individuals eventually progress to AIDS 
(reviewed in [35]). This striking difference in disease progression may be the consequence of 
differences in immunopathogenesis caused by HIV-1 and HIV-2. Therefore HIV-2 has been 
suggested to be an attenuated model of HIV infection [35]. Furthermore, a study by 
Esbjörnsson et al. [36] concluded that a preceding HIV-2 infection was able to slow down 
HIV-1 disease progression in dually infected patients. Studies of HIV-2 infection may 
provide valuable information for the development of vaccines and treatments aiming to cure 
HIV-1.  
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Figure 1: Overview of primate lentiviruses. The simian immunodeficiency virus (SIV) is found 
in more than 40 African nonhuman primate species. The SIV strains of the Central Chimpanzee 
(SIVcpzPtt), the Western lowland gorilla (SIVgor) and the sooty mangabey (SIVsmm) have 
crossed the species barrier from nonhuman primate to humans resulting in 4 HIV-1 groups (M, N, 
O, P) and 8 HIV-2 groups (A-H). HIV-1 group M is the cause of the global HIV pandemic and 
comprises 9 subtypes A-D, F-H, J and K. Subtypes A, B and C are the most prevalent subtypes 
globally. Subtype A is most common in Eastern Europe and Central Asia and accounts for 12% 
of cases globally, whereas subtype B is the most prevalent subtype in North America, Brazil and 
Western Europe accounting for 11%. Subtype C infects most individuals worldwide, 48%, and is 
most prevalent in India, South and East Africa. Other subtypes and CRFs (circulating 
recombinant forms) account for the remaining infections. Subtype distribution as of 2007. Figure 
is based on information from [19,37]. 
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1.2 HIV INFECTION AND AIDS 

According to the World Health 
Organization’s (WHO) report of 2014 
(Figure 2), approximately 37 million 
people are living with an HIV 
infection worldwide and a global 
infection rate of 2 million people per 
year keeps the epidemic active [38], 
causing not only individual hardship 
but also having a significant 
socioeconomic impact in endemic 
countries [39].                                

Figure 2: The AIDS epidemic as of 2014 (WHO) [38].  

Both HIV-1 and HIV-2 cause AIDS and impressive achievements in understanding the HIV 
life cycle and pathogenesis as well as in developing successful drugs to inhibit viral 
replication (antiretroviral therapy, ART) have been made. However, there is still no cure for 
HIV infection or AIDS [40], despite one successfully cured case after hematopoietic stem cell 
transplantation [41].  

The general course of infection and progression to AIDS is similar for both HIV-1 and    
HIV-2, referred to here as ‘HIV’ (Figure 3). Primary infection with HIV starts by the 
transmission of the virus from one human to the other through direct contact with body fluids. 
HIV infects cells using the cell surface molecule CD4 and the co-receptors CCR5 and 
CXCR4 [42] expressed on subsets of immune cells such as T cells, dendritic cells, 
macrophages and NKT cells, the function of which will be discussed below in chapter 2.  

The acute phase is characterized by an early and pronounced loss of CD4+ T cell in the 
peripheral blood and the gastro-intestinal tract (GIT) in addition to high viral replication. At 
the peak in viral load the immune system starts to partly control viral replication and viral 
load decreases until it reaches a relatively stable level during the chronic phase. The level of 
this so-called ‘viral set point’ can vary significantly between individuals (reviewed in [43]). 
Despite the absence of disease symptoms during the asymptomatic chronic phase, the 
functionality of the immune system of HIV-infected individuals is undermined by the 
continued loss of CD4+ T cells [44], ultimately resulting in the progression to AIDS.      
AIDS is characterized by the inability to suppress viral replication, to mount successful 
immune responses leading to a raise in HIV viral load, the outbreak of opportunistic bacterial, 
yeast, and viral infections as well as specific types of cancer [45]. The CD4+ T cell count is 
the primary clinical parameter measured when assessing disease progression [46,47]. 
Progression from the chronic phase to AIDS is commonly defined in adults as a peripheral 
blood CD4+ T cell count ≤200 cells/µL (healthy range 500-1000 cells/µL in Ethiopian adults) 
or CD4+ T cell percentage ≤14% (healthy average 40%) [48,49].  
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Figure 3: Progression of untreated HIV-1 infection from acute infection to AIDS.             
The acute phase of HIV-1 infection is characterized by a pronounced loss of CD4+ T cells in the 
blood and the gastro-intestinal tract (GIT) accompanied by increasing viral replication during the 
first weeks of primary infection. As the immune system combats the virus, the viral load 
decreases and reaches a stable level, the so-called viral set point, during the asymptomatic 
chronic phase. Despite the absence of disease symptoms, the functionality of the immune 
system is undermined by the continued loss of CD4+ T cells that ultimately results in the 
progression to AIDS. The onset of AIDS is commonly defined as CD4+ T cell count ≤200 cells/µL 
in the peripheral blood and characterized by the inability to control opportunistic infections and to 
suppress viral replication. This leads to a fast raise in HIV viral load, the outbreak of opportunistic 
bacterial, yeast, and viral infections as well as specific types of cancer. The CD4+ T cell count is 
the primary clinical parameter measured when assessing disease stages and progression. 
Figure from [50] and reproduced with permission.  
 

There are a several interesting differences between HIV-1 and HIV-2 infection, despite the 
similarities in disease progression [51]. Most HIV-1 infected untreated individuals eventually 
progress to AIDS, whereas only 15-20% of the HIV-2 infected individuals mirror HIV-1 
disease progression. The majority of HIV-2 infected untreated individuals maintains very low 
or undetectable viral loads and remains in the asymptomatic chronic phase for life [52]. 
Furthermore, in HIV-2 infection the transmission rate is lower [32,53], the mortality rate is 
lower [54] and the viral set point is almost 30-fold lower [54,55] compared to HIV-1 
infection. However, CD4+ T cell count and plasma viral load are independent predictors of 
disease progression and mortality in both HIV-1 and HIV-2 [56].  

  



 

12 

2 INNATE IMMUNITY AGAINST HIV  

Antiviral immune responses at the sites of virus exposure dictate subsequent protective 
immune responses, virus control, and immunopathology. After HIV enters a cell, HIV-
specific pathogen-associated molecular patterns (PAMPs) activate an intracellular cascade of 
innate antiviral defense mechanisms. These include type 1 interferons that restrict viral 
replication and spread. The infected state of this cell is signaled to its direct environment by 
the secretion of cytokines and chemokines, which in turn recruit and activate cells of the 
innate immune system (reviewed in [57]). Innate immune cells comprise cells such as 
monocytes, dendritic cells (DC), macrophages, neutrophils, granulocytes, natural killer cells 
(NK) and natural killer T cells (NKT). Their task is to recognize pathogens and to respond 
quickly to infections. After sensing a viral infection, DCs function as antigen-presenting cells 
and release proinflammatory cytokines. This in turn activates effector cells such as NK and 
NKT cells. Activated NK and NKT cells regulate the immune response by producing 
cytokines that recruit and activate innate and the adaptive immune cells [58]. 

 

2.1 TYPE 1 INTERFERON 

Type 1 interferons (IFNs), particularly IFNα and IFNβ, are key modulators of the human 
immune response. The detection of viral PAMPs leads to a signaling cascade activating a 
specific set of transcription factors called interferon regulatory factors (IRFs) and the NF-κB 
transcription factor which induces the expression of type 1 IFNs, proinflammatory cytokines 
and chemokines [59]. These affect both the infected cell and adjacent cells. After binding of 
type 1 IFNs to the IFN receptor on the cell surface, a signaling pathway initiates the 
expression of interferon-stimulated genes (ISG). This results in an antiviral state within the 
infected cell and adjacent cells aimed to limit viral production and spread [60,61] (Figure 4).  

The release of type 1 IFN marks the beginning of the immune response to a viral infection 
and signals systemically the presence of the infection leading to the activation and 
recruitment of innate and adaptive immune cells [62] (see Figure 7 in chapter 2.6).  

 

 

The immune system is the defense of the body against infections. Innate 
immunity refers to the arm of the immune system that acts against pathogens 
quickly and in a general manner. It requires no knowledge of the specific 
attributes of the threat. After entry, innate immunity is the first barrier that HIV has 
to overcome in order to establish an infection in the body.  
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Several studies indicate the importance of IFNα in HIV infection [63]. Elevated levels of 
IFNα are found in the peripheral blood of HIV-infected patients [64,65] and HIV-1 
replication is blocked by IFNα in vitro [66]. The presence of HIV-1 elicits IFNα production 
in human DCs in vitro, probably through toll-like receptor (TLR) 7 and/or TLR9 stimulation 
[67]. Recently, a study in SIV-infected Rhesus macaques showed that blocking IFNα with 
antibodies resulted in a reduced expression of cellular restriction factors, described below, 
whereas administration of IFNα prevented systemic infection [68]. 

 

2.2 CELLULAR RESTRICTION FACTORS  

After cell entry the single-stranded RNA genome of HIV is reverse-transcribed to viral 
cDNA, a process that produces viral RNA and DNA intermediates which represent viral 
PAMPs that are recognized by cellular pathogen-recognition receptors (PRR) [69], for 
example TLRs [70]. The detection of PAMPs triggers a signaling cascade ending in the 
activation of the transcription factors NF-κB and IRF3 to induce gene expression of cellular 
restriction factors, type 1 IFNs and proinflammatory cytokines (Figure 4).  

The term restriction factor identifies host proteins that limit viral replication and spread. 
Human restriction factors important for the anti-HIV response are TRIM5α, SAMHD1, the 
apolipoprotein B messenger RNA (mRNA)-editing enzyme catalytic polypeptide-like 3 
(APOBEC3), and tetherin. TRIM5α is a post-entry inhibitor, while SAMHD1 and the 
APOBEC3 family interfere with the reverse transcription process, and tetherin inhibits the 
release of virions from infected cells (reviewed in [71,72], see Figure 4).  

One anti-HIV mechanism elicited by IFNα is the induction of the human APOBEC3 family. 
APOBEC3 interferes with HIV replication by introducing mutations into the viral genome. 
This leads to substitutions and stop codons that result in the production of non-functional 
viral proteins [73]. The APOBEC3 family has 7 members (A-H) of which at least 
APOBEC3A (A3A), A3G and A3F are expressed in DCs to counteract HIV within the cell 
[73-75].  
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Figure 4: Induction of the antiviral state and innate immune activation after virus infection. 
Following HIV-1 entry into the cell, the virus uncoats and viral RNA is reverse-transcribed into 
cDNA producing viral RNA and DNA intermediates that are detected by cytoplasmic pathogen 
recognition receptors (PRR). This leads to a signaling cascade ending in the activation of the 
transcription factors IRF3 and NF-κB, which induce target gene expression including HIV 
restriction factors (APOBEC, TRIM5α, SAMHD1 and tetherin), type 1 interferon (IFN) and 
proinflammatory cytokines and chemokines. IFN signals back into the infected cell and bystander 
cells through binding to the IFN-α/β receptor and induces via IRF9 the expression of interferon-
stimulated genes (ISGs). ISGs create an antiviral state that inhibits different stages of the viral life 
cycle. For example, viral replication is hindered by a general or virus-specific blockage of protein 
synthesis. Figure based on information from [57,61,72,76].  
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2.3 ANTIGEN-PRESENTING CELLS: DENDRITIC CELLS (DC) 

As professional antigen-presenting cells with the unique capacity to activate naive T cells, 
DCs have a key function in the immune system. DCs induce and regulate innate and adaptive 
immune responses by antigen-presentation, expression of co-stimulatory molecules, and 
cytokine release [77,78]. DCs are present at sites of antigen encounter such as the skin, 
mucosal surfaces, lymph nodes and the blood where they capture, process and present 
exogenous antigen to T cells via the major histocompatibility complex (MHC) and CD1 
antigen-presentation systems (reviewed in [58,79]).  

In mammals, DCs can be broadly subgrouped into ‘conventional’ or myeloid DCs (mDCs) 
and plasmacytoid DCs (pDCs) [80]. mDCs are very efficient antigen presenters and are 
characterized by high MHC class II levels and expression of CD1 molecules. In contrast to 
mDCs, pDCs are less efficient in antigen-presentation and express lower levels of MHC class 
II, but upon viral infection pDCs are potent producers of IFNα [80], vitally contributing to the 
antiviral immune response. DCs are essential to initiate innate and adaptive immune 
responses, but also play a central role in disease progression during HIV infection [78,81]. 
Tissue-resident mucosal DCs are among the first cells that encounter HIV after mucosal 
transmission in vivo [82]. Here HIV can bind to and/or infect DCs [83,84] and be 
subsequently transported with the DC to lymph nodes rich in HIV target cells, thus 
facilitating the establishment of the infection in T cells. Infected DCs assist infection of 
CD4+ T cells by passing on membrane-bound viral particles and newly produced virus 
during the formation of an immunological synapse [85-87]. HIV-1 infection leads to impaired 
activity and early loss of DCs in the peripheral blood further hampering the immune system 
[88-90]. 

 

2.4 CD1D-RESTRICTED ANTIGEN PRESENTATION 

After processing by a DC, peptide antigens are loaded on antigen-presenting molecules on the 
cell surface belonging to the highly polymorphic MHC family. MHC class I and II molecules 
present the peptide antigen to CD8+ and CD4+ T cells, respectively [91]. Not only peptides 
but also lipids can serve as T cell activating antigens, presented by MHC-like molecules 
belonging to the CD1 family (reviewed in [92]). Unlike the MHC, the CD1 family displays 
very limited allelic polymorphism [93] and is found in all studied mammals [94] - potentially 
conserved even throughout jawed vertebrates as evidence for CD1 and CD1-mediated 
immunity was recently found in cold-blooded vertebrates [95,96]. CD1 molecules are 
glycosylated transmembrane proteins expressed on the cell surface that share structural and 
domain homology with MHC molecules. The extracellular part is made up of the α1-3 
domains of which α1 and α2 form the antigen-binding groove. All CD1 molecules commonly 
form a heterodimer with β2-microglobulin (β2m) that non-covalently associates with the α3 
domain (reviewed in [97]).  
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In humans the CD1 family comprises of 5 members: CD1a, CD1b, CD1c, CD1d and CD1e. 
CD1a-c expression is mainly restricted to professional antigen-presenting cells while CD1d is 
widely expressed including by HIV-1 target cells such as macrophages, monocytes, DCs and 
activated T cells [98], but also on epithelial cells at sites of HIV entry such as the mucosa of 
the gastro-intestinal and the female genital tract [99,100]. Notably, mice encode only CD1d 
[101,102]. CD1e is only expressed intracellularly and assists lipid antigen processing and 
presentation by the other CD1 molecules [103]. 

Depending on their biochemical properties, lipids travel through different intracellular 
compartments [104]. During synthesis, CD1a-d molecules are loaded with endogenous lipids 
and then transported via the secretory pathway to the cell surface. Next, they get internalized 
to patrol various endo-lysosomal compartments where exchange of self-lipids with foreign 
lipid antigen can occur. Upon return to the cell surface the antigen is presented to CD1-
restricted T cells. The recycling of CD1 molecules through intracellular compartments plays 
an important role for the antigen presentation process (reviewed in [105,106]).  

Human and mouse CD1d contain a tyrosine-based sorting signal that mediates recycling into 
the endocytic pathway by binding to adaptor protein 2 (AP2) [107] and passing through early 
and late endosomes [108] (Figure 5). In contrast to mouse CD1d that additionally binds to 
adaptor protein 3 (AP3) and localizes to lysosomes [109], human CD1d lacks interaction with 
AP3 and is only partially localized in lysosomes [110]. Recycling of CD1d into endocytic 
compartments is important for antigen presentation as was shown for both mouse [111] and 
human CD1d [112,113].  

CD1d-mediated immunity started to gain attention when a tumor screen revealed a 
glycosphingolipid, α-galactosylceramide (α-GalCer), that had anti-metastatic activity [114]. 
After the identification of α-GalCer as a model lipid antigen presented by both mouse and 
human CD1d [115,116] it has been a vital tool to study CD1d-restricted immune responses in 
health and disease.  

Despite the fact that no viral lipid antigen has been described so far [117], several viruses 
have developed different strategies to evade CD1d-mediated antigen presentation and 
recognition, emphasizing the role of CD1d-mediated immunity in the antiviral defense. The 
presentation of self-lipids and the cytokine-mediated activation of iNKT cells provide 
potential pathways of indirect recognition of virus infections [118] (see chapter 2.5, iNKT 
activation modes 1+2). 
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Figure 5: Human CD1d synthesis and recycling. CD1d is synthesized in the endoplasmic 
reticulum where it forms a heterodimer with beta2microglobulin (β2m) and is loaded with a self-
lipid. After glycosylation in the Golgi, CD1d gets transported via the secretory pathway through 
the trans-Golgi network (TGN) to the cell surface. CD1d is internalized from the cell surface by 
binding to adaptor protein 2 (AP2) and enters the endocytic pathway. While passing through 
early and late endosomes CD1d encounters new foreign and self-lipid antigens. After antigen 
exchange CD1d recycles back to the cell surface where it presents the antigen to CD1d-
restricted T cells [107,108]. 
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2.5 NATURAL KILLER T (NKT) CELLS  

The main effector cells of CD1d-mediated immunity are a subset of T cells called natural 
killer T (NKT) cells. As suggested by the name, NKT cells have characteristics of both 
natural killer (NK) and T cells, such as CD161 and a T cell receptor (TCR), respectively.  

CD1d-restricted NKT cells are divided in 2 groups based on differences in their α/β TCR: 
type I or invariant NKT (iNKT) cells and type II or diverse NKT cells. Whereas iNKT cells 
are identified by their semi-invariant α/β TCR containing a Vα24Jα18 rearrangement paired 
with Vβ11 in humans (Vα14Jα18 combined with Vβ 2, 7 or 8.2 chains in mice), type II NKT 
cells employ a diverse TCR repertoire. In stark contrast to iNKT cells, type II NKT cells do 
not recognize the model lipid antigen α-GalCer (reviewed in [119,120]). This thesis focuses 
on iNKT cells. In the human peripheral blood iNKT cell levels range from undetectable to 
1% of all lymphocytes with an average level of 0.1-0.2% [121,122]. Some evidence suggests 
that iNKT cell numbers in the blood might be gender dependent [121,123].  

Upon activation iNKT cells are potent and rapid producers of a large variety of both pro- and 
anti-inflammatory cytokines such as IFNγ and TNFα (reviewed in [124]), indicating an 
immunoregulatory role of iNKT cells in human health and disease [125]. This role of iNKT 
cells can be explained by the fact that they function as coordinators between innate and 
adaptive immunity by activating DCs [126,127], B cells [128,129] and natural killer (NK) 
cells [130,131].  

Subpopulations of iNKT cells can be distinguished based on their CD4 and CD8 expression. 
The human iNKT cell compartment consists of CD4+, CD4-CD8- double negative (DN) and 
CD8+ subsets [125,132]. The cytokine profiles of these iNKT cell subsets overlap partly (i.e. 
all iNKT cells produce IFN-γ) but differ in the production of individual cytokines, extent and 
duration of the particular cytokine expression, and in cytolytic activity [132,133]. The iNKT 
subset size might depend on whether the analyzed total iNKT cells were derived from fresh 
blood or from cultures expanded in vitro [132] and thus the reported subset numbers in 
peripheral blood vary, however at least 20% of circulating iNKT cells in healthy donors are 
CD4+ [132,134,135]. iNKT cell populations with a larger CD4+ iNKT cell subset compared 
to peripheral blood were demonstrated for the gut mucosa [136], a potential entry site for 
HIV. It is well established that the CD4+ iNKT cell subset can get infected with HIV-1 
[134,135] and is lost during HIV-1 infection [136-138]. This was also shown in a primate 
model of SIV infection [139]. Despite not expressing the HIV receptor, the functionality of 
the remaining iNKT cell population is impaired and displays an exhausted phenotype 
[138,140]. 

iNKT cells recognize lipid antigen presented by CD1d (Figure 6). These lipid antigens can 
be self-derived (endogenous, activation mode 1) or pathogen-derived (exogenous, 
activation mode 3), recently reviewed in [141] and [142]. Recognition of foreign lipid 
antigen was described for certain bacteria, such as Mycobacterium [143], Streptococcus [144] 
and Borrelia [145].  
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Figure 6: The activation modes of iNKT cells.                                                                         
iNKT cells are most likely activated by activation modes 1 and 2 in the presence of viral 
infections. 

1) Recognition of self-lipid antigen presented by CD1d (in the context of IL-12). 
2) Activation by IL-12 secreted from DCs after stimulation by TLR ligands. 
3) Recognition of foreign lipid antigen presented by CD1d (in the context of IL-12). 

1) The profile of self-lipids presented by CD1d is potentially altered during viral infection and can 
activate iNKT cells in the absence of a viral lipid antigen (possibly with the assistance of IL-12).            
2) Even in the complete absence of a lipid antigen, the constitutive expression of high levels of 
IL-12 receptor enables iNKT cells to respond rapidly to cytokine-mediated stimulation. DCs 
produce IL-12 in response to infectious agents that possess toll-like receptor (TLR) ligands and 
allow iNKT cells to overcome their restricted TCR specificity. 3) The model lipid antigen α-GalCer 
and some bacterial lipids are able to activate iNKT cells directly without the assistance of IL-12. 
Figure based on information from [105,117,143,146]. 

 

The profile of self-lipids presented by CD1d is altered during viral infection and can therefore 
activate iNKT cells in the absence of a viral lipid antigen (activation mode 1). iNKT cells 
were shown to be part of the antiviral defense against dengue virus in mice [147] and 
interestingly changes in the serum lipidome were found in patients with dengue virus 
infection [148]. Zeissig et al (2012, [149]) showed that during hepatitis B virus infection 
more lysophospholipids are produced which have been previously shown to activate human 
iNKT cells [150]. Enveloped viruses, such as HIV, use host membrane lipids to form their 
envelope when budding from an infected cell. The envelope of HIV-1 is enriched in unusual 
sphingolipids [151], a lipid class presented by CD1d [123,152]. Additionally, changes in the 
human lipidome are described in individuals with HIV infection, as a recent study found 
several classes of plasma lipids to be dysregulated in HIV-1 infected individuals [153].  



 

20 

Thus, alterations in the endogenous lipid profile could make HIV-infected cells a target for 
CD1d-mediated immunity. 

The TLR system enables DCs to detect the presence of viruses without requiring a lipid 
antigen. Upon ingesting the debris of infected cells or direct infection, human DCs can detect 
viral double stranded RNA via TLR3, single stranded RNA via TLR7 and TLR8, and single 
stranded DNA via TLR9 [154,155]. Engagement of TLRs leads to the production of 
proinflammatory mediators such as cytokines and type I interferon, leading to DC maturation 
and the initiation of a variety of inflammatory and antiviral responses (reviewed in [154]). 
Notably, iNKT cells are also activated by cytokines released from TLR-stimulated DCs 
(activation mode 2) in the absence of TCR stimulation. Several studies in mice suggest that 
activation of TLR7 and TLR9 induces IL12, IL18 or IFNα production in DCs, which in turn 
is sufficient to induce IFNγ production of iNKT cells [118,156-158]. Zhu et al (2015, [159]) 
reported that in mice iNKT cells are activated by macrophages infected with enterovirus and 
that this activation is dependent on TLR3. Less is known in humans, but TLR9 agonists were 
reported to induce TNF and IFNα secretion from DCs and an activated phenotype in co-
cultured iNKT cells [160]. Furthermore, DCs matured by TLR3, TLR4 and TLR7/8 agonists 
activated human iNKT cells [161].  

The antiviral effects mediated by human iNKT cells are demonstrated in patients with CD1d 
[162] or NKT cell deficiency [163]. In these rare cases, vaccination with varicella zoster virus 
belonging to the herpesvirus family, caused a life-threatening infection. Further evidence is 
added by the observation that individuals with mutations causing X-linked 
lymphoproliferative disease [164,165], lacking iNKT cells among other immune defects, are 
particularly susceptible to Epstein-Barr virus (EBV) infection, another member of the 
herpesvirus family [166] (reviewed in [167-169]).  

 

2.6 NATURAL KILLER (NK) CELLS 

NK cells are innate effector cells that play an important role in the defense against cancer and 
viral infections (reviewed in [170,171], respectively). NK cells are present in human 
peripheral blood (ca. 10-15% of all lymphocytes) and are commonly identified as CD56+ 
CD16+ CD3- cells. Two major subpopulations of NK cells are distinguished based on the 
level of CD56 surface expression: CD56dim, the more abundant subset comprising 90-95% of 
all human NK cells, and CD56bright cells [172].  

NK cells are essential players in the antiviral defense and fulfill multiple functions. They 
recognize and kill virus-infected cells, and can recruit and activate cells of the innate and 
adaptive immune system via the production of proinflammatory cytokines (Figure 7, 
reviewed in [171]). NK cells are regulated by DCs and vice versa, enabling NK cells to 
influence the adaptive immune responses through cytokine secretion and the selective killing 
of infected DCs [173]. In addition, iNKT cells are able to modulate NK responses [130] and 
shape NK cell functionality [131]. 
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Similar to iNKT cell deficiencies, NK cell deficient patients are highly susceptible to 
herpesvirus infections [174,175]. Due to their ability to bridge between innate and adaptive 
immunity, NK cells play an important role in modulating the immune response to HIV 
[62,176] and like iNKT cells, NK cells are dysregulated during HIV infection. For example, 
the interaction between NK cells and DCs as well as NK cell activation, is impaired [177]. 
Additionally, some studies reported decreased numbers of NK cells and subset dysregulation 
in the peripheral blood during chronic HIV-1 infection [178,179]. A decrease in NK cells was 
recently described in a longitudinal study of early HIV-1 infection, with a more rapid NK cell 
loss in progressing patients [180]. In the human gut mucosa, a major site of HIV-associated 
pathogenesis, Sips et al. (2012, [181]) found the distribution of mucosal NK cells was altered 
in HIV-infected individuals, especially in treated patients with poor CD4+ T cell recovery.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The immune response to viral infections. After viral infection, the first step is the 
release of type 1 interferons by DCs and followed by the induction of NK cell proliferation via 
increased levels of IL-15. This contributes to early suppression of viral replication. The 
subsequent release of proinflammatory cytokines, such as IFNγ, drives the adaptive immune 
response to elicit virus-specific CD8+ T cells that eliminate or control the virus. In HIV infection 
CD8+ T cells control viral replication throughout the chronic phase until viral replication escalates 
during AIDS. Figure reproduced with permission from [62].   



 

22 

3 HIV VERSUS INNATE IMMUNITY 

3.1 HIV ACCESSORY GENES  

In addition to the structural genes gag, pol and env commonly found in all retroviruses, 
primate lentiviruses encode so called accessory genes (Figure 8). The accessory genes differ 
between HIV-1 and HIV-2: HIV-1 encodes viral infectivity factor (Vif), viral protein R 
(Vpr), viral protein U (Vpu) and negative factor (Nef), whereas HIV-2 lacks Vpu but encodes 
viral protein X (Vpx) [71]. The accessory proteins received their name due to the fact that 
they are dispensable for viral replication in some cell types in vitro [182]. However the name 
may be misleading, as accessory proteins are necessary for successful viral replication in vivo 
and efficient virus spread in the primate host. Research investigating the function of HIV 
accessory genes revealed their previously unknown human targets, namely the cellular 
restriction factors introduced in chapter 2.2 (reviewed in [183]). An overview of selected 
functions of HIV-1 accessory proteins is given in Figure 9. In addition, accessory proteins 
target host proteins that are important for the immune response, for example MHC class I, 
CD1d and CD4 [184] (Table 1).  

 

 

Figure 8: The genomic organization of HIV. Open reading frames of the structural genes gag, 
pol and env (in grey), the viral regulatory factors tat (t) and rev (r) and the accessory genes vif, 
vpr, vpu or vpx, and nef (in red) [185].  

 

 

In order to prevent a virus from spreading, virus-infected cells attempt to alert the 
immune system. However, HIV has developed several ‘immune evasion’ 
mechanisms to prevent the infected cell from setting off alarms. HIV infection 
leads to a competition of “Hide and Seek” between the immune system and HIV. 
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Figure 9: The effect of HIV accessory proteins on cellular restriction factors. The cellular 
restriction factors TRIM5α, APOBEC, SAMHD1 and tetherin are expressed constitutively or are 
induced by type 1 interferons upon viral infection and subsequent recognition by pattern-
recognition receptors (PRR). After entering the cell, HIV meets TRIM5α that binds to the HIV 
capsid and interferes with the uncoating process. SAMHD1 and APOBEC restrict the HIV 
replication process. SAMHD1 depletes the pool of cellular dNTPs and decreases reverse 
transcription of HIV-1 RNA. SAMHD1 is antagonized by HIV-2 Vpx, but not by HIV-1. APOBEC 
introduces mutations into the viral genome and is counteracted by HIV-1 Vif. Tetherin tethers 
budding virions to the cell surface and inhibits the release of virions. HIV-1 Vpu binds and targets 
tetherin to degradation. Additionally, Vpu inhibits activation of NF-κB and together with Vif and 
Vpr suppresses the transcription factor IRF3 resulting in the reduced expression of interferon and 
interferon-stimulated genes. The figure is based on information from [57,72,183,186]. 

 

3.1.1 Nef  

Nef is expressed early during the viral life cycle and also found in virions [187,188]. Despite 
the name ‘negative factor’, the functional expression of Nef is required for high viral 
replication and the development of immunodeficiency. This was demonstrated a decade ago 
in a primate model [189] and human patients [190] infected with SIV and HIV lacking the nef 
gene, respectively. Meanwhile several functions of Nef have been described which are all 
related to the manipulation of cellular factors leading to immune evasion (recently reviewed 
in [184]. One example is the interference of Nef with MHC class I surface expression. MHC 
class I is a key cell surface receptor that presents peptide antigen to CD8+ T cells and initiates 
immune responses. Nef blocks the transport of newly synthesized MHC class I molecules and 
increases their endocytosis from the cell surface thereby reducing significantly MHC class I 
surface expression [184,191]. In addition, Nef inhibits lipid-specific immunity in a similar 
manner by interfering with CD1d and preventing iNKT cell activation. CD1d and Nef form a 
complex that leads to accelerated CD1d internalization from the cell surface thus reducing 
CD1d cell surface levels [192,193]. 
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3.1.2 Vpu 

Vpu is a small type I transmembrane protein: the prototypic Vpu of the virus NL4-3 (HIV-1 
group M, subtype B) is 81 amino acids long (ca. 16 kDa) [194]. The predicted structure of 
Vpu contains from the N-terminus a short luminal domain, the transmembrane domain 
(TMD, an α-helix), and a cytoplasmic domain (CD) made up of two α-helices (α1 and α2). 
The α-helices of the cytoplasmic domain are linked by a flexible loop structure that contains 
two highly conserved phosphorylation sites (serines 52 and 56 in NL4-3 Vpu [195]) [196] 
(Figure 10).  

Vpu is expressed by HIV-1 and its direct SIV precursors, SIVcpz and SIVgor [197]. HIV-2 
and most SIV strains lack Vpu with the exception of a subset of SIVs infecting guenons 
(Cercopithecus) which encode Vpu: SIV of the greater spot-nosed monkey (SIVgsn), the 
mona monkey (SIVmon), the mustached monkey (SIVmus) and Dent’s mona monkey 
(SIVden) [198-201] and reviewed in [2,202]. The fact that Vpu is missing from most SIV 
genomes and that Vpu resembles a subdomain of the primate TASK-1 channel led to the 
speculation that SIV acquired a precursor Vpu by ‘molecular piracy’ from a guenon early in 
the evolution of SIV [203]. 

 

 

 

 

 

 

 

 

 

Figure 10: The predicted protein structure of HIV-1 Vpu. The protein consists of the 
transmembrane domain (TMD) and a cytoplasmic domain (CD). The two α-helices (α1 and α2) of 
the CD are linked by a flexible region containing two highly conserved phosphorylation sites (P). 
A potentially functional loop structure close to the C-terminus is indicated [204]. The numbers 
refer to the amino acid positions in NL4-3 Vpu.  
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Vpu displays high sequence variability between HIV-1 subtypes and even within subtypes 
[205-208]. The amino acid sequence logo [209,210] in Figure 11 demonstrates variable and 
conserved motifs in subtype B Vpus. 

 

 

Figure 11: Logo of HIV-1 subtype B Vpus. A graphical representation of the alignment of Vpu 
amino acid sequences retrieved from the HIV sequence database (www.hiv.lanl.gov, accessed 
08082015; [211]). A probability of one represents absolute conservation of this amino acid at the 
particular position. The color-coding of the amino acids represents hydrophobicity: blue, 
hydrophilic; green, neutral; black, hydrophobic. The relative positions of the protein domains and 
the conserved phosphorylation sites are indicated (P).  

 

Evidence for an important role of Vpu in HIV pathogenesis comes from several nonhuman 
primate studies showing that infection with simian-human immunodeficiency viruses (SHIV) 
either lacking or containing dysfunctional Vpu causes decreased pathogenicity compared to 
the wild type virus [8,212-215]. 

Vpu was first described to be important for virus release [194], an observation later explained 
by Vpu’s ability to interfere with the restriction factor tetherin [216]. In recent years the 
immune evasion functions of Vpu have grown into an impressive list (a current overview is 
given in Table 1). The fact that Vpu masters several different mechanisms to interfere with 
the innate immune mechanisms is fascinating [217].  

Most of Vpu’s cellular targets are cell surface receptors whose expression on the cell surface 
is an essential part of their function. Examples of these targets are CD4, tetherin, CD1d and 
the NK cell co-activating receptors PVR and NTB-A. Vpu has developed different 
mechanisms to interfere with these cellular targets (Table 1). Currently two major strategies 
of Vpu interference are distinguished. The first strategy is to directly interact with the cellular 
target and to mediate its degradation by the proteasome. The second strategy is to disturb the 
cellular trafficking of the target and to sequester it in intracellular structures.  
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The glycoprotein CD4 plays a central role in the immune system as it binds to MHC class II 
molecules and mediates cell adhesion and CD4+ T cell activation [218,219]. CD4 surface 
levels are severely reduced in Vpu-expressing cells [220]. Vpu binds to newly synthesized 
CD4 molecules in the endoplasmic reticulum (ER) causing their ubiquitination and 
proteosomal degradation (reviewed in [221]). The successful degradation of CD4 involves 
phosphorylation of Vpu, the interaction CD4 and Vpu mediated by their TMDs [222-224] 
and the 2nd α-helix of the Vpu cytoplasmic domain [225].  

The function of tetherin (CD312 or BST2) was discovered when investigating the IFNα 
induced antiviral activity of human cells [216]. In virus-producing cells tetherin is found on 
the cell surface where it binds to the virions, retains them on the cell surface and blocks virus 
release. Tetherin recycling occurs from the cell surface via endosomes to the trans-Golgi 
Network (TGN) and back to the cell surface [226]. The exact mechanisms and their 
importance in different cell types are not fully elucidated but Vpu was described to target 
tetherin protein turnover and vesicular trafficking (recently reviewed in [227,228]). The 
interaction of the TMDs of Vpu and tetherin [229], phosphorylation of Vpu and a motif in the 
2nd α-helix of Vpu are required for tetherin antagonism [230,231].  

Our group showed previously that Vpu interferes with CD1d surface expression on HIV-1 
infected DCs [232]. Endocytosis of CD1d is not affected but Vpu and CD1d are found to 
localize to the same vesicular structures identified as early endosomes by EEA-1 expression. 
The rate of CD1d recycling is reduced in cells expressing Vpu, which in turn leads to a 
decreased CD1d cell surface expression. In contrast to the CD4 interference mechanism, Vpu 
does not induce degradation of CD1d. The exact molecular mechanism of Vpu’s interference 
with CD1d is unknown. In addition to Vpu, Nef decreases CD1d cell surface levels by 
increasing CD1d internalization and retention of CD1d in the TGN [192,193]. Vpu and Nef 
employ different mechanisms to interfere with CD1d and it is likely that these mechanisms 
complement each other. Dendritic cells infected with HIV-1 deficient in Nef and Vpu display 
no CD1d cell surface downregulation. The biological relevance of reducing CD1d cell 
surface expression was demonstrated as decreased CD1d levels resulted in impaired iNKT 
cell activation [232].  
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Table 1: Overview of Vpu functions and mechanisms modulating cellular targets involved 
in immune responses. Degradation (Degrad) via the proteasome (P) or the lysosomal (L) 
pwathways; interference with transport pathways: anterograde (A), endocytosis (E), recycling (R), 
cleaving (Clv). Vpu domains involved: transmembrane domain (TMD), cytoplasmic domain (CD), 
phosphorylation (P). Evidence for (+) or against (-) interference with the respective pathway or 
involvement of the particular domain. No experimental evidence in grey. The information depicted 
in this table is based on current reviews [217,227,228] and the following references: general 
receptor array: [233]; CD4: [223-225]; tetherin: [226,227,229,230,234-239]; CD1d: [192,193,232]; 
NTB-A: [240,241]; PVR: [242]; CCR7: [243]; CD62L: [244]; tetraspanins (CD81): [233,245]; IRF3: 
[246-249]; NF-κB: [186,247]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) only Nef of Group O targets tetherin; 2) CD81 as example of tetraspanins; 3) conflicting results;  
4) Nef induces NF-κB. 

 

The fact that several human viruses have evolved the capacity to interfere with CD1d-
mediated immunity emphasizes its importance in the antiviral defense. Kaposi sarcoma-
associated herpesvirus (KSHV) [250], herpes simplex virus (HSV) [251,252], human 
cytomegalovirus (HCMV) [253] and human papillomavirus (HPV) [254] were shown to 
interfere with CD1d surface expression through different mechanisms (summarized in  
Figure 12 and reviewed in [117,169,255]).  
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Figure 12: Viral interference with CD1d-mediated lipid antigen presentation.                      
After synthesis, human CD1d is transported via the secretory pathway to the cell surface. From 
here CD1d is internalized and patrols early and late endosomes. During the journey through the 
endocytic pathway lipid antigen exchange can occur and new self-lipids or foreign lipids may be 
loaded onto CD1d before recycling back to the cell surface. Viruses have developed different 
mechanisms to interfere with CD1d-mediated antigen presentation by reducing cell surface 
expression of CD1d. Viruses are shown in red. Kaposi sarcoma-associated herpesvirus (KSHV) 
increases CD1d endocytosis. HIV-1 Nef accelerates CD1d internalization and sequesters CD1d 
in the trans-Golgi network (TGN). HIV-1 Vpu interferes with CD1d recycling and is found together 
with CD1d in early endosomes, whereas herpes simplex virus (HSV-1) traps CD1d in late 
endosomes. Human cytomegalovirus (HCMV) interacts with CD1d in the ER and, similar to 
human papillomavirus (HPV), supports CD1d degradation by the proteasome. The dotted blue 
line indicates possible changes in the self-lipid antigen repertoire presented by CD1d due to viral 
infections. This figure is based on information from [117,250-254]. 
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AIMS 
 

The aim of this thesis is to explore the role of innate immunity and viral 
evasion strategies in HIV infection.  

 

PAPER I  

To determine the evolutionary conservation as well as mechanistic aspects of CD1d 
downregulation mediated by primate lentiviral Vpu proteins. 

 

PAPER II 
To investigate HIV recognition in dendritic cells and the mechanisms that translate viral 

recognition into CD1d-mediated activation of iNKT cells. 

 

PAPER III 

To study the effect of interferon α on HIV infection in dendritic cells. 

 

PAPER IV  

To analyze iNKT and NK cell populations and phenotype in chronic HIV-1, HIV-2, and dual 
infections in individuals from Guinea-Bissau. 
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SUMMARY AND CONCLUSIONS 
 

PAPER I  

Interference with CD1d is a conserved lentiviral immune evasion strategy. 

Ø Interference with human CD1d is conserved among HIV-1 Vpus and their SIV 
precursors.  

Ø A highly conserved C-terminal motif in subtype B Vpu is necessary for CD1d 
downregulation. 

 

PAPER II 

HIV-1 infection is sensed in dendritic cells and induces CD1d-mediated antigen 
presentation and the activation of iNKT cells.  

Ø HIV-infected dendritic cells upregulate CD1d surface levels and the endogenous lipid 
antigen GlcCer. 

Ø TLR7 stimulation induces CD1d cell surface expression and GlcCer synthesis. 
Ø iNKT cells recognize HIV-1 infected dendritic cells in the absence of exogenous 

antigen. 
Ø HIV-1 Nef and Vpu inhibit the detection of HIV-infected dendritic cells by iNKT cells.  

 

PAPER III 

Low levels of interferon α protect dendritic cells and T cells from HIV-1 infection. 

Ø Interferon α induces APOBEC3 expression in dendritic cells. 
Ø Interferon α restricts HIV-1 replication and transmission from dendritic cells to T cells. 

 

PAPER IV 

Alterations in iNKT and NK cells contribute to/are a consequence of the systemic 
immune activation in chronic HIV.  

Ø Subsets of iNKT and NK cells are reduced in HIV-1 and HIV-2 infections. 
Ø iNKT and NK cell activation are increased in HIV-1 and HIV-2 infections. 
Ø Activation of iNKT and NK cells correlates with markers of disease progression and 

immune activation. 
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METHOD DISCUSSION 
 

HEK293T transfection system 

The transformed human embryonic kidney cell line (HEK293T, [256]) is commonly used for 
in vitro cell biological assays [257] because of its favorable properties such as fast cell 
growth, semi-attached phenotype and high rates of transfection. However, it is not clear 
which cell type or tissue is represented by HEK293T cells [257], thus functional assays need 
to be interpreted with care. Primary DCs and even MDDCs are notoriously hard to transfect, 
and upon transfection they often mature, thus the HEK293T cell line is a practical model 
system allowing the analysis of general aspects of viral interference on a larger scale. 
HEK293T cells co-transfected with plasmids encoding CD1d and Vpu, respectively, mimic 
the CD1d cell surface downregulation observed in human MDDCs [232] and were used to 
assess CD1d downregulation in Paper I. If possible, it is important to confirm mechanistic 
studies in the target cell type, such as DCs, due to cell type specific protein expression 
profiles and the particular endocytosis system present in antigen-presenting cells [258].  

Monocyte-derived DCs (MDDCs)  

Primary DCs are rare in the human blood and therefore more abundant monocytes were used 
to generate MDDCs for in vitro cell biological assays in Papers I-III. After monocyte 
isolation from the peripheral blood and differentiation in IL-4 and GM-CSF, MDDCs share 
similarities with primary DCs [259]. If cultured in the presence of human IgG, MDDCs 
express CD1d and are able to activate CD1d-restricted iNKT cells [260]. Yet, it is important 
to keep in mind that there are morphological and phenotypic differences between primary 
blood DCs and cultured MDDCs and if feasible primary DCs should be used to validate 
results [261].  

HIV infection of MDDCs 

Like primary DCs, MDDCs can get productively infected with HIV [83,90,262]. HIV-
infected MDDCs were identified in Papers I-III by the intracellular detection of the viral 
capsid protein p24 using flow cytometry. p24 expression requires de novo synthesis of viral 
proteins and thus represents productively infected DCs and not just HIV virions attached to 
the cell surface [263]. The infection rate in vitro is usually low (1-3% in primary DCs [264]) 
and differs greatly between donors [265]. Therefore, we assessed the activation of iNKT cells 
by HIV-infected DCs in a mixed culture by microscopy on single cell basis [266]. 

HIV strains 

Due to their high infectivity in vitro, the commonly used T cell line-adapted strains HIV-1 
NL4-3 and BaL [267] were used in the infection assays for Papers I-III. It was shown 
recently that HIV-1 NL4-3 Vpu is less potent in interfering with cellular restriction factors 
compared to Vpus from patient isolates [239]. Thus, it is important to assess the immune 
evasion strategies of HIV not only in prototypic lab strains but also in patient isolates.  
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iNKT culture and activation 

In order to obtain human iNKT cells for functional assays, iNKT cells were isolated from 
peripheral blood and expanded ex vivo in the presence of IL-2 and the lipid antigen α-GalCer. 
Expanded iNKT cells show a skewed subset distribution compared to freshly isolated cells, 
with a preferred expansion of CD4+ iNKT cells [132]. This needs to be kept in mind when 
interpreting iNKT cytokine production and effector functions in response to infected cells. 
Similar to MDDCs, donor-dependent variations are also observed. In order to overcome these 
issues, established iNKT cell clones were used in Papers I and II [268]. The use of the 
strongly activating model lipid α-GalCer in functional assays might induce greater iNKT cells 
responses compared to weakly activating endogenous lipids. Therefore, this assay might 
underestimate the effect HIV-1 Vpu in vivo.  

Population and phenotype analyses of iNKT and NK cells using flow cytometry  

For Paper IV, human iNKT cells were identified using antibodies against CD3 and the 
iNKT-specific TCR chains (Vα24 and Vβ11). NK cells were defined as CD3 negative and 
CD56 positive cells. Due to technical limitations we omitted the NK cell marker CD16 from 
our staining panel. It was previously shown that chronic HIV infection increased the number 
of CD56 negative NK cells [269], a subset excluded from our analysis. The staining panel for 
the identification and phenotyping of iNKT and NK cells was tested and optimized using 
blood samples from Swedish donors. Population-specific and transport-derived sample 
differences may exist. In order to facilitate the logistics, blood samples from the cohort in 
Guinea-Bissau were preserved using CytoChex tubes (Streck) as this allows transport at room 
temperature. The preservation process fixes the cells permitting subsequent phenotypical 
analyses. Cross-sectional cohort studies on patient material are always subjected to 
limitations and biases. Despite the noted confines, Paper IV is an important characterization 
of unique patient samples to further our scientific and clinical understanding of HIV 
infections. 
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RESULTS AND DISCUSSION 

HIV-1 EVASION OF INNATE IMMUNITY (PAPERS I-III) 

Dendritic cells (DCs) are essential in the initiation of innate and adaptive immune responses 
after HIV infection [78,81]. Tissue-resident DCs express CD1d and are among the first cells 
to encounter HIV after mucosal transmission in vivo [82]. As potent producers of interferon α 
(IFNα), DCs create an antiviral state intracellularly and systemically [78]. Upon virus 
detection, DCs activate innate immune cells and initiate the adaptive immune response.   
HIV-1 in turn employs its accessory proteins Vpu and Nef to realize a variety of evasion 
strategies enabling viral replication and avoiding detection by the innate immune system 
[57,183]. Viral evasion of CD1d-mediated invariant natural killer T (iNKT) cell activation is 
described for several viruses infecting humans [117].  

Figures in the papers are referred to as “Fig.” and figures in this thesis as “Figure”.  

 

PAPER I:  INVOLVEMENT OF A C-TERMINAL MOTIF IN THE INTERFERENCE 
OF PRIMATE LENTIVIRAL VPU PROTEINS WITH CD1D-MEDIATED 
ANTIGEN PRESENTATION 

Summary of Results & Discussion 

In HIV-1 infection, the accessory protein Vpu is a critical factor mediating evasion of the 
detection by the innate immune system [217,228,270]. Our previous study showed that Vpus 
of two HIV-1 group M subtype B strains (NL4-3 and BaL) downregulate CD1d from the 
surface of productively infected DCs and thereby inhibit their crosstalk with CD1d-restricted 
iNKT cells [232].  

In Paper I we investigated whether CD1d inhibition is a conserved Vpu function of primate 
lentiviruses. In addition we set out to identify the molecular determinants in Vpu involved in 
interference with CD1d cell surface expression. 

We analyzed a set of 63 vpu alleles derived from the four HIV-1 groups M, N, O and P and 
the direct SIV precursors of HIV, namely the SIV strains infecting the central chimpanzee 
(SIVcpzPtt) and the western lowland gorilla (SIVgor). The HIV-1 vpu alleles from group M 
contained all 9 subtypes. In order to gain an even broader evolutionary picture we also 
evaluated alleles from more distant Vpu-encoding SIV strains infecting guenons, such as the 
greater spot-nosed monkey (Cercopithecus nictitans, SIVgsn), the mona monkey 
(Cercopithecus mona, SIVmon), and the mustached monkey (Cercopithecus cephus, 
SIVmus).  

We found that the ability to downregulate human CD1d from the cell surface was conserved 
in Vpu proteins from HIV-1 groups M, O and P (Fig. 1a, b). In line with previous results 
[271], Vpu from rare HIV-1 group N strains showed only weak CD1d downregulation (less 
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than 20%; Fig. 1a, b). Notably, antagonism of human CD1d was even detected in Vpus from 
the HIV-1 precursor strains SIVcpzPtt and SIVgor and also in the more distant SIVgsn and 
SIVmus (Fig. 1b). These results suggest a pre-existing susceptibility of human CD1d to 
SIVcpzPtt and SIVgor Vpu proteins rather than host-specific adaptation of these Vpus to 
restrain human CD1d. This is in contrast to tetherin antagonism, which is thought to represent 
a species barrier due to the fact that Vpu proteins from chimpanzee SIVs are poor antagonists 
of human tetherin [197]. The conservation of primate lentiviral CD1d antagonism might be 
explained by the high degree of sequence conservation between human, chimpanzee and 
gorilla CD1d. In order to assess the biological relevance of the observed CD1d 
downregulation levels we employed an iNKT cell activation assay. Lower CD1d cell surface 
levels induced less iNKT cell activation in response to α-GalCer, demonstrating that iNKT 
cell activation is indeed inversely correlated with CD1d downregulation (Fig. 2). Based on 
our results we conclude that interference with CD1d expression and iNKT cell activation 
is conserved among diverse primate lentiviral Vpu proteins indicating the importance 
of this immune evasion strategy. 

Traditionally, most HIV-1 strains used in research are derived from group M subtype B, such 
as the model strains HXB2, NL4-3 and BaL [272]. Subtype B and subtype C differ in their 
geographic prevalence and while subtype B accounts for most infections in Europe and North 
America, subtype C represents about 50% of all HIV-1 infections globally [19]. Several 
differences in disease progression and drug resistance have been reported for HIV-1 group M 
subtypes [19,273,274]. One study found lower levels of CD4+ T cells and iNKT cells in 
subtype D compared to subtype A [275]. In a European cohort the HIV-1 subtype 
significantly influenced CD4+ T cell decline but had no effect on the viral set point [276]. 
Therefore, it is important to not only focus research efforts on subtype B but to also include 
other subtypes, such as subtype C.  

Therefore, we analyzed in Paper I CD1d downregulation of group M Vpu proteins on a 
subtype level. Notably, in comparison to subtype B, subtype C Vpu proteins were 
significantly less efficient CD1d antagonists (Fig. 1d). It was suggested previously that 
subtype C displays lower replicative fitness compared to subtype B in vitro [277,278]. 
However, subtype C viruses may be more efficient in regard to transmission and infectivity 
[279,280]. It remains to be investigated if a different accessory protein substitutes Vpu’s 
function and if subtype C viruses cause downregulation of CD1d in infected cells.   

The functional difference between subtype B and C Vpus provided a tool to study the 
molecular requirements for CD1d downregulation. Here, we employed different mutants and 
chimeric proteins derived from active subtype B and inactive subtype C Vpus and revealed 
the C-terminal third of Vpu as relevant domain (Fig. 3 and 4). Generally, Vpu sequences are 
highly variable between HIV-1 subtypes and even within subtypes [205,206,208]. However, 
our amino acid sequence analysis identified a highly conserved amino acid APW motif 
present in subtype B and absent from subtype C Vpus (Fig. 4b and [206,207].  
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Mutational analyses demonstrated that the C-terminal APW motif in subtype B was 
necessary for CD1d downregulation. Interestingly, the APW motif was described as part of 
a potentially functional secondary structure, a C-terminal hydrophobic tight loop [204] 
(depicted in chapter 3.1.2, Figure 10). The APW motif is absent from subtype C and did not 
transfer downregulation capacity when introduced into the subtype C sequence (Fig. 5a). The 
downregulation of subtype B Vpu was decreased but not completely lost after removal of the 
APW motif (Fig. 5a and d) indicating the involvement of additional Vpu motifs. In order to 
elucidate whether known Vpu motifs are important for CD1d downregulation, we 
investigated the EXXXLV motif in the 2nd α-helix of Vpu, which was recently shown to be 
important for binding to cellular adaptor protein 1 (AP1) [236] and tetherin antagonism 
[230,231]. However, this motif was not required for CD1d downregulation (Fig. S3). Possible 
additional domains and motifs required for CD1d downregulation in subtype B and the other 
CD1d downregulating HIV-1 subtypes, which do not contain the APW motif, remain to be 
investigated. 

Human CD1d contains a tyrosine-based sorting signal that enables internalization into the 
endocytic pathway mediated by binding to AP2 [107] (see chapter 2.4, Figure 5). In addition 
to AP1, AP2, a central component of clathrin-mediated endocytosis [107], was recently 
shown to interact with Vpu [236]. Future experiments should aim to analyze whether Vpu 
targets AP2 in order to interfere with the cellular recycling machinery.  
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PAPER II: INNATE INKT CELL RECOGNITION OF HIV-INFECTED DENDRITIC 
CELLS VIA INDUCED EXPRESSION OF ENDOGENOUS GLYCOLIPID 
ANTIGEN 

Summary of Results & Discussion 

To date, no viral lipid antigen has been described [117], still interference with CD1d-
restricted lipid antigen presentation is a conserved function of HIV-1 Vpu (Paper I) and a 
immune evasion strategy developed by several viruses, emphasizing the role of CD1d-
mediated immunity in the antiviral defense (chapter 3.1.2, Figure 12). As described in Paper 
I and [232], CD1d cell surface expression in HIV-1 infected DCs is reduced by the accessory 
proteins Nef and Vpu. A recent study investigating the role of iNKT cells in EBV infections 
found that, similar to HIV-1, CD1d expression is lost in EBV-infected cells abrogating iNKT 
activation. However, after synthetic induction of CD1d expression in EBV-infected cells, 
iNKT cells recognized the infected cells despite the absence of an exogenous lipid antigen 
and responded by cytokine secretion and cytotoxicity [166]. This led us to investigate 
whether iNKT cells are able to respond to HIV-infected DCs in the absence of Nef and Vpu. 

In Paper II we examined how HIV-1 infection is sensed in DCs and if this virus recognition 
is translated from endogenous antigen presentation on CD1d to immune responses mediated 
by iNKT cells.  

The female genital mucosa is a major portal for HIV transmission and entry [83]. In contrast 
to other mucosal tissues, the female genital tract lacks organized lymphoid structures and 
contains disseminated immune cells [281,282]. Therefore we determined the presence of 
CD1d+ DCs and iNKT cells in the female genital tract. We found CD1d+ DCs and iNKT 
cells expressing the HIV receptors CD4 and CCR5 present in the mucosa of human 
endometrial and cervical samples (Fig. 4 and 5).  

The effect of HIV infection on CD1d expression was investigated by infecting MDDCs (from 
now referred to as DCs) in vitro. HIV-1 DHIV-3 (derived from NL4-3) infected DCs had 
decreased CD1d cell surface expression, which was mediated by the accessory proteins Nef 
and Vpu, and was lost in DCs infected with a Nef and Vpu deficient virus (ΔnefΔvpu)     
(Fig. 1a and b), as expected (Paper I and [232]. Interestingly, in HIV-1 ΔnefΔvpu-infected 
DCs CD1d cell surface levels were not at the level of uninfected DCs but were significantly 
increased (Fig. 1b). TLRs in general, and sensing of genomic HIV RNA by TLR7 and 8 in 
particular [283], are involved in the innate sensing of HIV [57]. In order to investigate the 
mechanism for CD1d upregulation in HIV-infected DCs, we used a TLR7 agonist, shown 
previously to induce CD1d expression [156], to stimulate uninfected DC and detected 
increased cell surface expression of CD1d (Fig. 1d).  

CD1d presents endogenous and exogenous lipids to activate iNKT cells [284,285]. The first 
reported endogenous lipid capable of activating human iNKT cells was a β-linked glyco-
sphingolipid [286]. Subsequently, lactosylceramide (LacCer, [287]) and glucosylceramide 
([288], GlcCer) have been shown to activate iNKT cells.  
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Enzymes regulating GlcCer and LacCer biosynthesis are glucosylceramide synthase (Ugcg) 
and lactosylceramide synthase (B4galt6) [289,290] (Figure 13). 

 

 

 

Figure 13: Biosynthesis of Glucosylceramide (GlcCer) based on [291,292]. 

In order to determine if the elevated CD1d cell surface expression in HIV-infected or TLR7 
agonist stimulated DCs is accompanied by changes in the cellular lipid metabolism, we 
analyzed the expression of the enzymes glucosylceramide synthase and lactosylceramide 
synthase. Whereas TLR7 stimulation of DCs led to increased expression of glucosylceramide 
synthase and reduced expression of lactosylceramide synthase (Fig. 2a and b), infecting DCs 
with HIV-1 wt or HIV-1 ΔnefΔvpu only decreased lactosylceramide synthase expression 
(Fig. 2c and d). In any case, these changes favored an increase in GlcCer levels. Importantly, 
glycolipid extraction and mass spectrometry of sorted DCs confirmed the accumulation of 
GlcCer in HIV-infected DCs (Fig. 3). 

In wild type HIV, Vpu and Nef inhibit iNKT cell activation by downregulating CD1d from 
the cell surface. Interestingly, HIV-1 ΔnefΔvpu-infected DCs activated iNKT cells 
significantly more than uninfected DCs of the same culture (Fig. 4b), indicating that iNKT 
cells respond to HIV-infected DCs in the absence of exogenous lipid antigens. This activation 
was CD1d-dependent and reduced by blocking the endogenous GlcCer synthesis (Fig. 4c). 
Thus, these findings indicate that in the absence of an exogenous lipid antigen, HIV-
infected DCs can connect viral recognition via the observed changes in enzyme 
expression, GlcCer levels and CD1d cell surface expression to iNKT cell activation.   
This mechanism is counteracted by the HIV-1 accessory proteins Vpu and Nef.  
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PAPER III: IFN-Α INDUCES APOBEC3G, F, AND A IN IMMATURE DENDRITIC 
CELLS AND LIMITS HIV-1 SPREAD TO CD4+ T CELLS  

Summary of Results & Discussion 

HIV-1 infection triggers the production of proinflammatory cytokines such as TNF and IFNα, 
which in turn create an antiviral state in the infected cell and in adjacent cells (chapter 2.2, 
Figure 4). The induction of cellular restriction factors is important for the creation of the 
antiviral state and the limitation of viral spread. The restriction factor family APOBEC3 
restricts viral replication and is induced by IFNα [61]. 

In Paper III we investigated the effect of exogenously added IFNα and TNF on HIV-1 
infection in MDDCs (from now referred to as DCs). 

DCs were exposed to HIV-1 BaL (a model HIV-1 lab strain, group M, subtype B) and treated 
with different amounts of recombinant IFNα and TNF. The cell surface expression of DC 
activation markers, CD80 and CD86, was increased by TNF in a dose-dependent manner and 
by the highest dose of IFNα (Fig. 1). Interestingly, when analyzing the percentage of 
productively HIV-1 infected DCs the result was the opposite: there was a dose-dependent 
inhibition of viral replication for IFNα but only the highest dose of TNF successfully blocked 
virus replication (Fig 2). This demonstrates that low doses of IFNα block viral replication 
without inducing maturation (as defined by increased activation marker expression and 
migration) in DCs.  

Infected DCs have been shown previously to assist infection of CD4+ T cells either by 
passing membrane-bound viral particles or newly produced virus to T cells during the close 
contact when forming an immunological synapse [85-87]. We therefore investigated if 
transfer of HIV-1 from infected DCs to autologous T cells was altered by the presence of 
IFNα. In contrast to TNF that had no effect on virus transfer, even low doses of IFNα reduced 
T cell infection (Fig. 3).  

In order to determine the mechanism of viral replication blockage in DCs, we turned to 
APOEBEC3, a restriction factor family known to be expressed and restrict viral replication in 
DCs [74]. Additionally, one member of the family, APOBEC3G was previously found to be 
induced by IFNα in T cells [293]. Virus-exposed DCs showed an increased expression of 
APOBEC3A, 3G and 3F in a dose-dependent manner after treatment with IFNα, but not after 
treatment with TNF (Fig. 4). 

Taken together this study showed that the lowest dose of IFNα (100 U/mL) induced 
expression of APOBEC3 and restricted HIV-1 replication in DCs while maintaining an 
immature DC phenotype. As a consequence, viral transfer from infected DCs to T cells 
was reduced in the presence of IFNα.  
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Future Perspectives: Antiviral responses and viral evasion mechanisms thereof in HIV-1 
infection (Papers I-III) 

As demonstrated and discussed in papers I-III, local sites of HIV exposure and entry are 
populated by DCs, which play a central role in initiating and modulating the immune 
responses. Alarmed DCs release IFNα and other proinflammatory cytokines to activate 
adaptive or innate immune cells, among the latter iNKT and NK cells, which act immediately 
by either eliminating HIV-infected cells or recruiting additional immune cells [86]. Indirect 
evidence for the importance of IFNα in restricting HIV infection comes from the observation 
that HIV employs Vif, Vpr and potentially Vpu to interfere with its induction in infected cells 
[294] (recently reviewed in [57]). 

Despite the importance of IFNα for the antiviral response, IFNα has also been linked to the 
chronic immune activation and disease progression in HIV infection. IFNα was found to 
modulate a hyperproliferative state in CD4+ T cells and potentially assist CD4+ T cell 
depletion in chronic HIV [295]. In addition, a recent longitudinal study investigating DC 
dynamics in chronic HIV infections found that DCs relocate from the peripheral blood to the 
gastrointestinal mucosa, which correlated to increased IFNα expression and activation of 
CD8+ T cells [296]. This is in line with the finding that systemic IFNα treatment led to 
increased levels of CD8+ T cells in HIV-infected persons [297]. However, as suggested in 
Paper III, low doses of INFα could have beneficial effects while avoiding the detrimental 
effects of chronic immune activation. Further evidence for the therapeutic potential of IFNα 
comes from a recent study showing a more rapid and prolonged production of IFNα in DCs 
from so-called HIV elite controllers compared to chronically infected patients [298]. HIV 
elite controllers are individuals who are able to maintain undetectable viral loads despite the 
absence of antiretroviral therapy. Apart from the amount, timing might be another important 
aspect determining whether IFNα has a beneficial or detrimental influence in HIV infection. 
SIV infection in natural hosts, monkeys who are chronically infected by SIV but do not 
progress to AIDS and remain in an asymptomatic phase, differs from HIV infection in regard 
to the timing of the IFNα response [299]. In contrast to the chronic immune activation in 
HIV, in non-pathogenic SIV infection the initial IFNα response resolves after 1-2 months 
despite sustained viral replication [300]. Future studies are needed to investigate the potential 
beneficial effect of treatment with low doses of IFNα on innate immune cell responses in 
early HIV infection. 

One promising example of successfully boosting innate immune responses in a viral infection 
is given by Lim et al. (2014, [301]). The authors show that a combination of type I 
interferons, TNF and receptor-ligand interactions with DCs could rescue cytotoxic NK cell 
responses that were otherwise blocked by the dengue virus immune evasion mechanisms. A 
similar therapeutic strategy of combining IFNα with increased CD1d antigen presentation or 
indirect activation via cytokines could be hypothesized for iNKT cells during HIV infection. 
CD1d+ DCs and iNKT cells are found in the mucosa of the female genital tract (Paper II) 
where iNKT cells could play a role as effectors and immune regulators [124].  
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Thus enhancing iNKT cell responses could assist the success of mucosal vaccines or new 
therapeutics [302,303].  

Several viruses including HIV-1 have developed strategies to escape from CD1d-mediated 
lipid immunity and iNKT cell activation (Figure 12 and reviewed in [117]). A study in mice 
showed that treatment with IFNα triggered TLR expression in iNKT cells and subsequent 
stimulation with TLR ligands resulted in increased and prolonged production of IFNγ [304]. 
Interestingly, Bego et al. (2015, [305]) revealed that HIV-1 uses a Vpu-mediated mechanism 
to downregulate surface tetherin in infected T cells to allow viral spread, while using the 
remaining tetherin to provide a negative signal to DCs resulting in decreased IFNα 
production. Adding to the HIV Vpu-mediated immune evasion catalogue, we show in Paper 
II that HIV-1 infection in DCs leads to increased CD1d surface expression and the 
presentation of a specific endogenous lipid enabling recognition by iNKT cells. As 
demonstrated in Paper I, higher CD1d levels lead to a greater percentage of activated iNKT 
cells. However, HIV-1 employs Vpu to interfere with CD1d-mediated immunity by 
decreasing CD1d cell surface levels, thus hindering activation of iNKT cells [232]. As this 
immune evasion strategy is conserved among HIV-1 groups M, O and P Vpus (Paper I), it 
provides therapeutic potential for Vpu inhibition. If Vpu is neutralized, the antiviral state of 
infected DCs would lead to decreased viral release, increased IFNα secretion, elevated and 
altered CD1d-mediated antigen presentation and finally detection of infected DCs by iNKTs. 
This could allow the activated iNKT cells to either eliminate infected cells or to accelerate the 
immune response by cytokine production. In favor of this approach is the recent finding that 
immune evasion strategies of the HIV-1 accessory proteins Vif, Nef and Vpu are conserved 
in acute and chronic HIV-1 infection [306].  

Synthetic inhibitors of Vpu are available and have been analyzed for their antiviral potential. 
A novel small molecule inhibitor of Vpu named BIT225 (Biotron Limited) reduced viral 
release from HIV-1 infected macrophages [307], which was independent of tetherin 
antagonism [308]. In addition to Vpu, Nef has been shown to reduce CD1d cell surface levels 
[192,193] and several small molecule inhibitors of Nef have been described [309,310]. It 
remains to be investigated if BIT225 or Nef inhibitors can rescue CD1d cell surface 
expression in infected cells. A current noteworthy approach to find new HIV-1 inhibitors 
screened the pan-African Natural Product Library, “the largest collection of medicinal plant-
derived pure compounds on the African continent”, and detected several molecules with 
potential to interact with Vpu [311]. More specific analyses need to show if these compounds 
prove to be useful therapeutic candidates.  
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PAPER IV: ELEVATED LEVELS OF INKT AND NK CELL ACTIVATION 
CORRELATE WITH DISEASE PROGRESSION IN HIV-1 AND HIV-2 INFECTIONS 

Summary of Results & Discussion 

HIV-1 and HIV-2 are related viruses that can cause AIDS. While HIV-1 has given rise to a 
pandemic, HIV-2 is mainly restricted to West Africa [30]. The rate of CD4+ T cell decline 
and progression to AIDS is slower in HIV-2 compared to HIV-1 infection. In addition to 
disease progression, several differences in the course of HIV-1 and HIV-2 infection are 
known [51]. The reason for this is not fully understood, but in HIV-2 infection a great 
proportion of infected individuals maintains low or undetectable plasma viral load and with a 
viral set point at least one log lower than in HIV-1 infection [55,312]. Similar to HIV-1, T 
cell activation in HIV-2 infection appears to be related to CD4 levels as well as viral load 
[313-315]. However, HIV-2-infected individuals display lower levels of chronic immune 
activation assessed by detection of activated T cell populations compared to HIV-1 [316]. 
The innate and adaptive immune response to HIV-1 has been studied extensively, while 
much less is known about immune responses in HIV-2 and HIV-1/2 dual (HIV-D) infections 
[51]. 

In Paper IV we studied the innate cellular immune response, in particular iNKT and NK 
populations and phenotype, in chronic HIV-1 and HIV-2 and dual infection in a cross-
sectional occupational cohort from Guinea-Bissau. 

Consistent with previous findings, detecting a selective loss of CD4+ iNKT in HIV-1 infected 
individuals [134,317], we found a significant reduction of CD4+ iNKT cells in HIV-1 and 
HIV-D infected individuals (Fig. 1b). There was no loss of CD4+ iNKT cells detected when 
analysing all HIV-2 infected individuals. However, after subgrouping into aviremic and 
viremic HIV-2 infection, the latter group had a strong decrease in CD4+ iNKT cells, similar 
to that seen in HIV-1 infection (Fig. 1c). While the CD4+ iNKT subset can be infected with 
HIV-1 [318], this has not been investigated for HIV-2 thus far. The NK cell population also 
changed in chronic HIV infection, with a reduced CD56bright NK cell subset in HIV-1 and 
HIV-2 infections (Fig. 1b). 

We then analyzed phenotypic changes in the innate cellular immune response such as the 
expression levels of activation markers. In chronic HIV-1 infection, the phenotype of 
activated iNKT cells is characterized by the elevated expression of the PD-1 exhaustion 
marker and impaired cytokine production [140]. Here, we detected elevated activation levels 
of the iNKT and NK cell subsets in chronic HIV-1 and HIV-2 single as well as          
HIV-1/HIV-2 dual infections, with the highest levels in HIV-1 infection (Fig. 2a). 
Interestingly, viremic HIV-2 infected participants showed increased iNKT and NK cell 
activation levels, compared to aviremic HIV-2 infection and healthy controls (Fig. 2b). The 
observed elevated iNKT and NK cell activation levels correlated with CD4 T cell percentages 
and viral load, both clinical markers of disease progression. Additionally, iNKT, NK and 
CD4+ T cell activation levels correlated with each other.  



 

42 

These results suggest that alterations in iNKT and NK cells contribute to/are a 
consequence of the systemic immune activation in chronic HIV infections.  

Future Perspectives: Innate cellular immunity in HIV-1 and HIV-2 infections 

The relationships between different immune cells contributing to chronic immune activation 
in HIV infections are complex and far from elucidated (reviewed in [319]). One way to 
systematically analyse immune changes during the course of HIV infection is to conduct 
longitudinal studies preferably from the time of the primary infection. However, recruiting 
cohorts to study primary infection is challenging, especially in the setting of HIV-2 infection. 
Additionally, the number of HIV-2 infections is declining and is replaced by HIV-1 as the 
major source of HIV infection [31]. A recent longitudinal study by Jiao et al (2014, [180]) 
reported that individuals with a lower CD4+ T cell count during the first year of HIV-1 
infection also had a more pronounced loss of CD56dim NK cells in the first months of 
infection. We found a reduction of CD56bright NK cells during both chronic HIV-1 and HIV-2 
infections, however, the early dynamics of innate cells in HIV-2 remain to be investigated.  

Another way to study differences in the dynamics of the immune response is to compare 
HIV-1 to less pathogenic infection settings, such as SIV infection in natural hosts and HIV-2 
infection in the large proportion of individuals with slow disease progression [312,320]. An 
interesting example of this approach is an in vitro study from Cordeil et al (2013, [321]) that 
compared the effects of IFNα on viral replication of HIV-1, HIV-2, and SIVmac from the 
rhesus monkey. Their results indicated that HIV-1 is more resistant to the IFNα-induced 
antiviral response than HIV-2 and SIVmac.  

Several clinical trials evaluating antiretroviral treatment in HIV-2 are ongoing [322], which 
could provide a possibility to further analyze human innate and adaptive responses in HIV-2, 
and compare them to the present knowledge of HIV-1 [323].  
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So let’s stop a while for a break – life is serving rum & cake.”                               © The Band 
Martha you are not only a fun friend and a swimming & climbing companion, but also an 
invaluable resource of antibodies and Western Blot advice. Keep your head up high!        
Thanks to Nikolai I can make a decent café latte. I won’t forget all the science/non-science 
discussions & fun parties, early mornings in Stockholm, festival, BBQs & band nights!      
Erna best drummer of all the bands I ever managed! Thanks for fun evenings, parties, late 
nights, awesome pancakes and serious shopping! “What’s that? That’s a cat drilling behind 
the sofa!” David - thanks for making me laugh so many times, bird watch, for introducing 
me to the Oxford comma, and cake! I am grateful to Dom for good times in Portugal, Brazil 
& DC, introduction to “Tabernacle”, ultimate frisbee and great band practices.  

Thanks to the best table neighbor Emma. You are a reliable source of science & Western 
Blot band discussions and it is always fun to re-design the “office view” with you.            
“The office”: Julia (“Ohrschläpperli”), Ginny, Pär, Martin, Puran, Egle and Renata – so 
much laughter and happy moments! Thanks Sebastian, Vicki and Emma for random chats, 
gym sessions and the awesome climbing book (Vicki)! Tack Kim for welcoming me to CIM, 
for many discussions about science & beyond and for always being a happy camper. 
Heinrich, Jakob, Jacob, Nicole, Sanna, Martin I, Monika, Lisa, Marianne, Tim and 
Moni B for good times in the lab, invaluable scientific advice, FACS and antibody help. 
Thanks to the Yellow Lab crowd, in particular Sam for refilling basically everything all the 
time! Thank you Jelve for happy talks and lab time! Thanks Steph for lots of microscopy 
advice, practical tips and antibodies! Thanks to Lena, Elisabeth, Anette for a lot of practical 
help. Hernan, thank you for updating me on German literature and literature in general! 
Margit, you are a true gift to CIM! Please keep up the great work and your happy spirit J 

Thanks to Marcus Buggert for throwing my ball “You should look at iNKT cells” right back 
at me and making the collaboration for Paper IV possible. Thanks to Marianne Jansson for 
the many meetings & emails to develop this project. 

I send a big thanks to the “other side” aka pathology: Anja for skiing, meetups and other 
adventures; Agatha, Christina, Ghazal for fun fika breaks, parties and for access to ice. 

Faezzah, Saskia, Marc, Kerrie, Martina, Paola: Thanks for welcoming me to the lab at 
MTC and helping me on my regular visits! 

Thanks to Micha Gralla & Samer Yammine for organizing one of the best courses at KI! 

I am very grateful to Malene Jensen and Anders Mälarstig for giving me a chance and for 
being a source of inspiration & advice!  
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Thanks for invaluable thesis help: Emilie, Filip and Ginny for reading this thesis VERY 
thoroughly. Filip, you and AI are a great combo: Thanks for pimping my figures.  

A “cool” thank you to Steve Carr and Janice Williamson who made sure that there was a 
place for me in the Broad to sit and write while being in hot Cambridge.  

A special thanks goes to ‘Headhunterz Podcast’ for keeping the noise in and the world out 
during the long hours in the lab and by the computer. 

Thanks for great times now and then to the BioMed gang: Mustafa, Haythem, Khayrun, 
Dhifaf, Ghazal, Amani, Eli, Niklas, Espen, Iryna, Clarissa, Dasha, Xinming, Joana, 
Giulia, Iskra. First Stockholm – now Cambridge: Thanks to Mario & Carolina for fun 
dinners, practical help and cat talks. 

… I see rabbits … and flamingos! Thank you to the CHaSE2014 team (Cécile, Tiago, Fra, 
Michael, Emelie, Lizan, Moritz, Thibaud, Florian, Christian, Dan)! This was a true 
challenge and I am so grateful that I was part of it. One year later the team chat is still on and 
I hope it stays that way! A special thank you to: Michael for climbing sessions and for 
introducing me to ‘experience design’; Lizan for being lovely, fun and for great talks! Grazie 
Fra for being a never-ending source of ‘bioentrepreneurship’ information, motivation, 
inspiration and laughter! 

Thanks to Davide & Aishe for good times in and outside the lab, parties, amazing food and 
your cheerful company. Hodan, Thanks for being a wonderful friend, for being so motivating 
and for never giving up! You made me try climbing for the first time J !!! 

A huge thank you to my kind and reliable neighbors: Lotta & Staffan and family and Daniel 
& Anna and family for nice dinners and relaxed evenings, for dealing with my detailed 
instructions and elaborate calendar planning while making sure my rabbits were happy & fed 
when I was away!! 

Emilie & Nico and Anna-Maria & Adil – East coast, baby J That we all ended up on the 
same side of the US at the same time is simply wonderful! You are awesome. ‘Nuff said! 
Tack Frida for countless dinners/parties and yummy “hembakad”! Najla, habibti, you are 
amazing – Thanks for all the years of friendship, trust, hard work, discussions & advice. 
Thanks for introducing me to Somaya, this brave organization! Danke Cribbo, it is always 
really fun hanging with you – especially in Penzberg! Stefanie H. Thanks for great fikas, 
chats and relax sessions. Thanks Adam & Terés and their cute family for great times and 
smakliga wine & cheese afternoons. 

Danke an die Grunbach Gang: Steffi S, Anni, Steffi K, Miki, Philipp, Alex, Rike, Allie, 
Ines, es ist schön ins Ländle zu kommen und mit euch zu lachen, zu quatschen und zu feiern! 

Danke Line & Edith. Lange ist das MolMed Studium her und noch immer lachen & 
quatschen wir über alles Mögliche – und Wissenschaft J!  
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Corinna & Nina, ihr seid einfach ganz grosse Klasse Mädels. Auf euch ist Verlass – egal, 
wohin es uns zieht, ihr seid im Herzen mittendrin und immer mit dabei!  

 

Danke Mama & Papa! Danke für euer Vertrauen in mich und eure immerwährende 
Unterstützung. Fe, du mein Lieblingsbruder! Ich bin endlos dankbar deine Schwester zu sein. 
Ich hab euch lieb! Danke Marlene für super Urlaube und gute Zeiten. Stor tack till min 
svenska familj Nola och Lasse – ni är underbara! 

Filip, meine bessere Hälfte: you are my best friend and anchor. And husband, yeay! Jag 
älskar dig! You inspire me and make sure that I reflect & revise myself on a regular basis. I 
cannot wait to start our US adventure and the adventures after that. Let’s rock this life!!!  

Wuschel, du kleiner Lauser & the crazy rabbit gang: Zelda, Freya and Moses – I miss you!  
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