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ABSTRACT 

Manganese (Mn) is an essential element that functions as a cofactor in the metabolism of 

carbohydrates and proteins, and it is also incorporated in antioxidants such as superoxide 

dismutase. In general, intake of Mn mainly occurs via food. Additional or excess exposure 

might occur via drinking water, as elevated concentrations of Mn in ground water are 

prevalent worldwide. In recent years, several studies have shown associations between Mn 

concentrations in drinking water and adverse health effects in children. A few studies have 

concerned early-life exposure, but these have mostly been cross sectional in design or with a 

very short follow-up of the children. Prospective studies which follow the children from early 

intrauterine life to childhood and explore associated adverse effects are lacking.  

The overall aim of the present thesis was to assess the potential effects of Mn exposure via 

drinking water during pregnancy and early-life on fetal outcomes (spontaneous abortion and 

perinatal mortality), size at birth, and child development (cognitive function and behavior). 

These prospective cohort studies were nested in a population-based trial involving food and 

micronutrient supplementation (Maternal and Infant Nutrition Interventions in Matlab; 

MINIMat), conducted from November 2001 to October 2003, in 4,436 pregnant women in 

Matlab, Bangladesh. A subsample of the children born within the MINIMat trial was 

selected for longitudinal follow-up of growth and development until 10 years of age. In 

Matlab, 70% of the drinking water wells contained high concentration of arsenic (>10 µg/L, 

mostly in shallow wells), a potent toxicant and carcinogen. To reduce the exposure to 

arsenic the inhabitants were recommended to install deeper wells. Later we revealed that 

over 40% of the wells (mainly deeper well >50 m), contained >400 µg Mn/L (previous 

WHO guideline value). The Mn exposure in the present studies was assessed by the 

concentrations in drinking water used by the mothers during pregnancy and by the children 

at 5 and 10 years of age, and measured by inductively coupled plasma mass spectrometry.  

The median water Mn concentration has increased from about 200 µg/L during pregnancy 

to 339 µg/L when the children were 10 years old, whereas the arsenic concentrations 

decreased (median from 33 to 2.3 µg/L) during the same period. This is probably due to the 

ongoing installation of deeper wells. In early pregnancy (n=1,875), women in the highest 

tertile of water Mn concentrations (median=1,292 µg/L) had an approximately 35% 

reduced risk (Odds Ratio = 0.65, 95% CI 0.43, 0.99) of spontaneous abortion, compared 

with women in the lowest tertile (median=56 µg/L). This is possibly related to the role of 

Mn in the placental antioxidant defense. Elevated water Mn concentrations were not related 

to any increased risk of perinatal mortality. 



The newborns (n=1,177) to mothers in the highest tertile of water Mn (median=1,495 µg/L) 

were on average 0.5 cm shorter (0.20 SD) compared to those in the lowest tertile (median 

56 µg/L). The association was strongest in the girls, but apparent also in the boys of 

mothers with low hemoglobin (Hb) values (<114 g/L), likely due to higher absorption of 

Mn at low iron status. The findings indicate that elevated levels of Mn in drinking water 

during pregnancy may impair fetal growth. The association between erythrocyte Mn 

concentrations and size at birth was less apparent.  

The prenatal Mn exposure, but not the postnatal, was associated with aggravation of the 

difficult behavior at 10 years of age (n=1,295). For each increase of one mg Mn/L, the 

difficult behavior scores increased by 0.5 points (0.13 SD) in boys and 0.7 points (0.18 SD) 

in girls of mothers with anemia (Hb<110 g/L). Associations of water Mn (especially at 5 

years) with boys´ cognitive function were generally inverse (effect size ~0.15 SD per mg/L 

of water Mn). In girls, there was a positive association of maternal water Mn below 3 mg/L 

with cognitive function and pro-social behavior. However, a tendency of inverse 

associations with cognitive function were observed at higher Mn concentrations (>3 mg/L) 

and in girls of mothers with anemia. Early-life appeared to be a particularly susceptible 

period to inverse effects on development by elevated water Mn concentrations, although the 

effect differed by outcome, time-point of exposure and child gender. 

In conclusion, the Mn concentrations in well water varied widely. Elevated concentrations 

during pregnancy appeared to be protective for early fetal loss. On the other hand, the 

exposure during pregnancy decreased fetal growth and impaired the children´s cognitive 

function and worsened their difficult behavior, especially in children of anemic women. 

Thus, Mn concentration in drinking water is an important public health concern world-

wide. However, in arsenic contaminated areas, the benefit of deep wells with less arsenic is 

most likely higher than the modest adverse effects of Mn. In order to reduce the exposure to 

arsenic and Mn through well water, screening for both elements by sediment color tools 

could be done during installation of new wells, as well as digging wells in aquifers that are 

low in both arsenic and Mn (deeper than 100 m). As Mn absorption tends to be higher in 

anemic women, existing routine programs, including assessment of anemia during 

pregnancy and supplementation with iron and folic acid, should be strengthened. Also, 

screening and treating children with anemia can be proposed as an important public health 

intervention.
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1 INTRODUCTION 

This thesis includes studies on maternal and early-life exposure to manganese (Mn) and 

effects on fetal growth and child development. Manganese is essential for a variety of 

physiological processes, including amino acid, lipid, protein, and carbohydrate metabolism 

(Erikson et al. 2007). On the other hand, excess Mn exposure during early life has been 

associated with adverse health effects such as neurotoxicity (Menezes-Filho et al. 2009; Roels 

et al. 2012), but the most critical window of early-life Mn exposure is not known. Thus, it is 

important to study Mn exposure from early intrauterine life throughout childhood with 

respect to susceptibility of potential adverse effects. 

1.1 MANGANESE 

Manganese is an essential trace element with the atomic weight of 54.93. It can exist in 

eleven oxidation states ranging from -3 to +7, and the most common stable oxidation state is 

+2. In this state, Mn is soluble in water, and this is also the form most often found in the diet 

(WHO 2004; Martinez-Finley et al. 2013). Manganese metalloenzymes utilized in the 

metabolism include glutamine synthetase, arginase, phosphoenolpyruvate decarboxylase, and 

the antioxidant manganese superoxide dismutase (MnSOD) (Wood 2009). Manganese is 

needed for normal immune function, regulation of blood sugar and cellular energy, bone 

growth, and aids in the defense mechanisms against free radicals (Aschner et al. 2005). 

Manganese is present in various minerals and can thereby leach to surrounding ground water 

(WHO 2004). The industrial emission (such as ferroalloy production and iron and steel 

foundries) and emission from cars using gasoline with added Mn are the most important 

sources of airborne Mn. Air erosion of dust and soils are atmospheric sources of Mn, 

although airborne Mn concentrations without anthropogenic sources are low (0.01 to 0.07 

µg/m3) (Lucas et al. 2015). 

1.1.1 Human exposure 

In general, food (especially cereals, rice, and vegetables) is the main source of human 

exposure. Elevated concentrations of Mn are also present in groundwater worldwide (Frisbie 

et al. 2012). Inhalation is an important route of Mn exposure in occupational settings (Levy et 

al. 2003). Children‘s exposure and effects of Mn differ from that of adults and depend on the 

stage of development, age, and exposure to other environmental elements and pollutants 

(ATSDR 2012). Although the Mn concentration in breast milk is low (3- 10μg/L) (Ljung et 

al. 2009), infant formulas may contain up to 400 μg/L (Ljung et al. 2011), and even more if 
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dissolved in contaminated drinking water. The recommended adequate intake (AI) for adults, 

including pregnant and lactating women, is 3 mg/day, and for young children it is 0.02–0.5 

mg/day (EFSA 2013). However, AI for infants and children were extrapolated from the AI 

for adults. The adult AI was based on observed Mn intakes (based on dietary reference 

values) with a mixed diet (EFSA 2013). 

1.1.2 Manganese kinetics 

The amount of Mn absorbed across the gastrointestinal tract is variable, but typically 

averages about 3– 5%. Although the intake of Mn is higher from food than from the water, 

absorption from water may be higher as a result of higher bioavailability (ATSDR 2012). 

Absorption of Mn from oral ingestion can also be influenced by other factors, e.g. presence of 

other elements and compounds such as iron, calcium, phytate, ascorbic acid, and other 

constituents in the diets (Davidsson et al. 1991). Iron status may affect intestinal absorption of 

Mn. Previous studies indicated that absorption increased in individuals with iron deficiency 

anemia (Park et al. 2013), and decreased significantly in individual with adequate iron status 

(i.e. higher ferritin concentrations) (Finley 1999; Ljung et al. 2009). Usually, Mn and iron 

share common absorption and transport mechanisms, including protein transporters such as 

the divalent metal transporter-1 (DMT-1) or the transferrin (Tf)/Tf receptor (TfR) system 

(Fitsanakis et al. 2010; Park et al. 2013). Once Mn has been absorbed from the gut it is 

transported via the portal system and removed by the liver (Aschner et al. 2005). Manganese 

mainly concentrates in the tissues with high energy demand (brain) or that are rich in 

mitochondria, such as bone, liver, pancreas, and kidney (Aschner et al. 2005). The Mn 

concentration in the blood about 65% in the erythrocytes of healthy adults ranges from 4 to 

15 μg/L (Milne et al. 1990; Ljung et al. 2009; ATSDR 2012). The main route of excretion for 

Mn is through the bile, with only a small proportion (about 1% of dietary intake) is 

eliminated via urine (EFSA 2013). The elimination time of Mn from the body varies, with a 

half-life between 13 and 37 days (Finley et al. 1994). 

During pregnancy, the maternal blood Mn concentrations increase progressively (Spencer 

1999; Takser et al. 2004), indicating increased intestinal absorption via the divalent metal 

transporter -1 (DMT1), the expression of which is up-regulated in conditions of low iron 

stores and in pregnancy (Kippler et al. 2009; Ljung et al. 2009). Adequate antioxidant defense 

is essential to protect the placenta from excessive oxidative stress, which may adversely 

affect fetal programming, as well as child growth and development (Thompson et al. 2012). 

In addition to the cytoplasmic copper and zinc superoxide dismutase, the mitochondrial 
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MnSOD functions as an antioxidant for detoxification of the superoxide anions in the 

placenta (Mistry et al. 2011). Manganese is actively transported across the placenta (Kippler 

et al. 2010), and at delivery, cord blood Mn concentrations are higher than the concentrations 

in maternal blood (Guan et al. 2013). Experimental studies have shown that the active 

transport is saturated at excessive Mn exposure, but simple diffusion of Mn across the 

placenta may still occur (Yoon et al. 2009), indicating that there may be a risk of excess fetal 

exposure. Several studies have shown that Mn absorption may be gender- and age-dependent 

(Finley et al. 1994; Erikson et al. 2007; Oulhote et al. 2014); neonates and infants absorb and 

retain a higher proportion of Mn than adults, and women absorb more Mn than men (Finley 

et al. 1994). During infancy, the regulation of the intestinal absorption of Mn and the biliary 

excretion are not yet fully functioning, (Davidsson et al. 1989; Aschner et al. 2005), which at 

high exposure may lead to greater risk of Mn toxicity. 

1.1.3 Biomarkers of manganese exposure 

There is yet no reliable biomarker of Mn to measure long-term exposure or body burden 

(Smith et al. 2007; Ljung et al. 2009). A reliable biomarker would facilitate preventive 

control of the Mn exposure for an individual, as well as population level. In epidemiological 

studies, Mn-levels in drinking water and in biological samples (i.e. blood, urine, hair, saliva, 

toenails, and deciduous teeth) have been used as biomarkers of exposure (Gunier et al. 2014; 

Andrade et al. 2015). The Mn concentrations in the blood (i.e., whole blood, erythrocyte, 

plasma, or serum) and in urine are used as biomarkers of exposure in occupational and 

population-based studies (Smith et al. 2007; Zheng et al. 2011). However, concentrations of 

Mn in blood are homeostatically regulated by the hepatic portal system, and Mn has a shorter 

half-life in the plasma (1-2 hours) than in the erythrocytes (in the order of months) (Lucaciu 

et al. 1997; Vitoux et al. 1999). The main limitations for the use of urinary Mn as a direct 

measure of exposure are high inter-individual variability in the urinary fraction, and only a 

small amount is actually excreted via urine (Gunier et al. 2014). Hair Mn has often been used 

to reflect environmental exposures (Eastman et al. 2013). Nevertheless, there are concerns in 

the use of hair Mn as a predictor of Mn body burden due to exogenous contamination, and the 

inter-individual variability in Mn concentrations due to differences in hair characteristics 

(Kempson et al. 2011). Recently, deciduous teeth (Arora et al. 2012; Gunier et al. 2013), 

saliva (Lucas et al. 2015) and toenails (Laohaudomchok et al. 2011) have been used to assess 

Mn exposure. However, limited evidence is available on the relationship between Mn levels 

in these tissues and exposure. 
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1.1.4 Health effects of manganese in adults 

Manganese toxicity in humans via inhalation is well-recognized in occupationally exposed 

individuals (Sinczuk-Walczak et al. 2001; Roels et al. 2012). Manganese-induced 

neurotoxicity (manganism) following oral ingestion is of greatest concern and one of the most 

sensitive toxicological endpoints (Aschner et al. 2005). Manganism is associated with 

elevated brain levels of Mn, primarily in the areas known to contain high amounts of 

dopaminergic cells, such as basal ganglia and cerebral cortex (Guilarte 2013).  

1.1.5 Health effects of manganese in children 

The time between conception and birth is the most vulnerable period in life, during which the 

environment may have immediate and lasting effects on fetal growth and development 

(Selevan et al. 2000). The fetus undergoes rapid growth and organ development (Figure 1), 

which can be influenced by exposure to both essential and toxic elements such as Mn. Early 

childhood is also a critical period for the continued development and maturation of several 

biological systems such as the brain, lung, and immune system, and environmental toxicants 

can impair brain function and neurodevelopment also later in life (Selevan et al. 2000; 

Tarrade et al. 2015). When compared to adults, the developing brain in early-life might be 

more sensitive to excessive Mn exposures, due to the increased susceptibility during periods 

of rapid development (Grandjean et al. 2014). The development of single neurons is 

completed by 12 weeks of gestation, and the major part of the brain develop in the first two 

years following birth (Qiu et al. 2015). 

There are epidemiological studies that have shown inverse associations of prenatal Mn 

exposure with fetal growth (Vigeh et al. 2008; Zota et al. 2009; Yu et al. 2013) and 

neuropsychological development in young children (Takser et al. 2003; Ericson et al. 2007; 

Lin et al. 2013; Yu et al. 2014). In addition, neurotoxicity related to excess Mn exposure has 

been shown experimentally, in neonates given parenteral nutrition, and in environmentally 

exposed children (Erikson et al. 2007). Moreover, recent studies have focused on associations 

of excessive Mn intake from drinking water with impaired child growth and 

neurodevelopment. One study evaluated Mn concentrations in water during pregnancy and 

fetal growth, and found that a combination of high water concentrations of Mn and iron was 

inversely associated with fetal growth (Grazuleviciene et al. 2009). A cross-sectional study in 

Bangladesh found that the odds ratio for infant mortality nearly doubled when drinking water 

Mn concentrations were greater than 400 µg/L (Hafeman et al. 2007). This finding was 

supported by an ecological study from USA, which showed a positive association between 
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water Mn and infant mortality (Spangler et al. 2009). Several studies have shown inverse 

associations of water Mn with cognitive and neurobehavioral performance in children 

(Wasserman et al. 2006; Bouchard et al. 2011; Khan et al. 2011). A recent review highlighted 

Mn neurotoxicity with respect to cognitive processes, timing of exposure, gender differences, 

susceptibility and exposure limits with regards to age (Roels et al. 2012). Although many of 

these studies point to inverse associations of Mn exposure in early-life with child health and 

development, most of them were cross sectional in design, had small sample sizes and did not 

follow up the children for a long period. 

 

 

 

Figure 1. Schematic illustration of the sensitive or critical periods in fetal development. Blue 

bars denote highly sensitive periods, and light blue bars indicate periods at risk for minor 

abnormalities and functional defects. Modified and reprinted with permission of Prof. Beate 

Ritz, School of Public Health, UCLA (Ritz B 2008). 
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2 AIM OF THE THESIS 

 

The most critical window of early-life manganese (Mn) exposure is not known. Thus, it is 

necessary to study potential effects of Mn exposure during the entire period from early 

intrauterine life to childhood. 

The overall aim was to evaluate the potential effects of Mn on fetal and child health and 

development.  

The specific aims were to elucidate  

 the potential effects of exposure to elevated Mn concentrations via drinking water 

during pregnancy on fetal and neonatal survival (Paper I), and on fetal growth (Paper 

II),  

 

 the potential effects of elevated Mn exposure via drinking water from fetal life to 

school-age on children‘s cognitive function and behavior at 10 years of age (Paper III). 
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3 MATERIALS AND METHODS 

This section is a summary of the materials and methods used in this thesis. For details, the 

reader is referred to the individual papers (Paper I-III). 

3.1 STUDY AREA AND POPULATION 

The prospective cohort studies in the present thesis were conducted in Matlab, a rural region 

of Bangladesh. In this area, the International Centre for Diarrhoeal Disease Research, 

Bangladesh (icddr,b) provides health services to about 110,000 inhabitants via a central 

hospital and four connected health centers. In addition, icddr,b has been implementing a 

population-based Health and Demographic Surveillance System (HDSS) since the 1960s 

(ICDDRB 2006), where community health workers visit households on a monthly basis to 

collect information on vital events such as pregnancies, births, deaths, and morbidities.  

In the study area, a population-based food and micronutrient supplementation trial during 

pregnancy (Maternal and Infant Nutrition Interventions in Matlab; MINIMat) was 

implemented from November 2001 through October 2003 (Persson et al. 2012). Women 

reporting that their last menstrual period (LMP) was overdue were offered to take a urine 

pregnancy test. Those with positive tests were then referred to health clinics for confirmation 

of pregnancy by ultrasound (Doi et al. 2011). All confirmed pregnant women were invited to 

participate in the MINIMat trial if the following eligibility criteria were met: viable fetus by 

ultrasound examination, gestational weeks (GW) less than 14, and no severe illness. In total, 

the MINIMat study recruited 4,436 pregnant women in early pregnancy. Enrolled women 

were randomly assigned to either early (around GW9) or usual (GW20) start of food 

supplementation, and the two groups were again randomized into three micronutrient 

supplementation groups, resulting in a total of six groups. The micronutrient supplements 

consisted of either 30 or 60 mg iron and 400 µg folic acid, or a multiple micronutrient capsule 

with 15 micronutrients, including 30 mg iron and 400 µg folic acid (no manganese). 

The present work is part of the ongoing studies on health effects of exposure to 

environmental pollutants, nested in the MINIMat trial (Vahter et al. 2006). In the study area, 

more than 90% of the families used drinking water from wells (ICDDRB 2007). It was 

revealed that 70% of the wells contained water with >10 µg/L of arsenic (WHO guideline 

value) (Rahman et al. 2006). The shallow wells (<50 m) with arsenic concentrations >50 

µg/L (Bangladeshi guideline value) were painted red (dangerous), and those with arsenic 

concentrations <50 µg/L were painted green. Moreover, deep wells (>50 m) were dug more 

frequently, as this turned out to be the most efficient mitigation method to reduce exposure to 
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arsenic (Johnston et al. 2013; Hossain et al. 2014). Later on, it was found that over 40% of 

the wells contained >400 µg Mn/L (previous WHO guideline value) (Ljung et al. 2009). 

All three studies (Paper I-III; Figure 2) in the present thesis were nested into the MINIMat 

trial. In total 3,971 pregnant women were identified between February 2002 to April 2003, 

and had information regarding birth outcomes and early fetal loss. These women constituted 

the cohort used in Paper I, exploring the association of Mn exposure in pregnancy with early 

fetal loss and birth outcomes. In Paper II, the pregnant women who had singleton births with 

measured birth anthropometry (n= 1,695) were included for analyses of associations of Mn 

exposure during pregnancy and size at birth. A subsample of the MINIMat cohort was 

selected for longitudinal follow-up of child growth and development (Hamadani et al. 2011; 

Kippler et al. 2012). In Paper III, we included the mothers and children (born between 

October 2002 and December 2003; n= 1,607) who were followed up for child growth and 

development at 10 years of age.  

 

 

Figure 2. Flowchart depicting the study cohorts in the three different papers. 
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3.2 SAMPLING AND DATA COLLECTION 

The present studies included drinking water and biological samples collected in different 

gestational weeks during pregnancy as well as in early childhood.  

3.2.1 Drinking water samples 

The women‘s drinking water used during pregnancy (Paper I-III) was available from a 

parallel population-based study (AsMat), which evaluated the potential health effects of 

arsenic in well water (Rahman et al. 2006). Information on lifetime drinking water sources 

were collected from all inhabitants of the study area via household interviews in 2002-2003. 

The children‘s drinking water samples (Paper III) were collected as a part of the current 

projects. We visited the families at the time of follow-up of the children at 5 and 10 years of 

age. The health workers interviewed family members about the water sources used by the 

children for more than three months, and collected water samples from all wells. The samples 

were stored at -20°C in Matlab for subsequent transport to Karolinska Institutet, Sweden, for 

analysis of Mn and other elements such as arsenic, iron etc. Aliquots of water samples were 

diluted 1:10 with 1% nitric acid, and analyzed for Mn and other elements using inductively 

coupled plasma mass spectrometry (ICPMS), as described in Paper I-III. No samples were 

below the limit of detection (LOD; three times the standard deviation of the blank) for water 

Mn (0.01 μg/L). Analytical performance was ascertained by analysis of a certified reference 

material (NIST 1643e, Trace Elements in Water, National Institute of Standards and 

Technology, Gaithersburg, MD), which showed good agreement with obtained results. 

3.2.2 Biological samples (blood and urine) 

Maternal venous blood samples were collected at 30 weeks of gestation from all pregnant 

women participating in the MINIMat trial. However, only a sub-sample of the women was 

available for measurement of Mn and other elements in the erythrocyte fraction, mainly due 

to blood being used for other purposes. The erythrocyte fractions were acid digested and 

analyzed using ICP-MS (Paper II). Samples of maternal urine were collected twice during 

pregnancy (GW8 and 30) and child urine at 5 and 10 years. Maternal (Paper I-III) and 

children‘s (Paper III) urinary concentrations of Mn, arsenic, cadmium, and lead were used as 

covariates.  

3.2.3 Rice samples 

Manganese and other elements were measured in samples of rice (Paper I&II) collected 

from 66 of the studied families. The rice samples were acid digested using a microwave 
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assisted high pressure digestion system and analyzed for metal concentrations by ICPMS as 

described in detail previously (Kippler et al. 2010). The fresh rice samples were rinsed with 

deionized water prior to digestion. To obtain dry weight, the rice samples were dried at 80
°
C 

for 12 hours. The mean decrease in weight after drying was 13% (Bergkvist et al. 2010).  

3.3 COVARIATES 

Detailed information on covariates has been described in the individual papers (Paper I-III). 

Information on the women‘s characteristics [age, early pregnancy weight and height, date of 

delivery, education, hemoglobin concentrations (Hb; g/L), early fetal loss and birth outcomes, 

and socioeconomic status (SES)], as well as the children‘s anthropometry at birth, breast 

feeding history, and infant morbidity or mortality were available from either the MINIMat trial 

or the HDSS database. Only two women reported smoking during pregnancy, and none used 

alcohol. During the follow-up of the children, we collected information on the number of 

siblings, years of education, and type of schools. The children‘s weight, height, and head 

circumference at 5 and 10 years of age were also measured. 

3.3.1 Socioeconomic status 

Socioeconomic status (SES) was based on a wealth index constructed from information on 

family ownership of a number of consumer items, housing structure, and dwelling 

characteristics using principle component analysis (Gwatkin et al. 2000; Saha et al. 2008). 

A weight was attached to each item from the first principal component. Categorical 

variables were transformed into separate dichotomous (0-1) indicators. Based on this 

wealth index, households were divided into SES quintiles: quintile 1 (poor), quintile 2 

(lower middle), quintile 3 (middle), quintile 4 (upper middle), and quintile 5 (rich). The 

information was updated during the follow-up of the children at 10 years of age. The wealth 

index (range= -5 to +5) was used either as a continuous or categorical variable (SES 

quintiles) in Paper I-III. The wealth index has been used at country-level health and 

demographic surveys to measure inequalities in household characteristics, in the use of 

health and other services, and in health outcomes. 

3.3.2 Pregnancy weight gain 

In our study, we recorded the women‘s weight in early pregnancy (around GW9) and in late 

pregnancy (around GW30). Then, pregnancy weight gain (Paper II) was calculated by 

subtracting the weight measured at enrollment from the weight measured at GW30. Most 

previous studies have defined total weight gain as the difference between mother‘s weight at 

delivery or near delivery and pre-pregnancy weight [for review, see Lau et al (Lau et al. 
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2014)]. Most of those studies used self-reported pre-pregnancy weight or weight data 

subtracted from medical records. In this cohort, information on pre-pregnancy weight was not 

collected from the women and there were no medical records. The closest we could get to a 

pregnancy weight gain was to use the enrolment weight as a proxy for the pre-pregnancy 

weight. 

3.4 OUTCOMES 

The following section provides an overview and evaluation of different outcomes in the 

present thesis. A detailed description of a particular method can be found in the referenced 

papers (Paper I-III). Adverse pregnancy outcomes (spontaneous abortion and still birth) and 

infant mortality are common in the study area. Despite marked improvement in child survival 

during the last decade, still birth (35/1000 births), early neonatal mortality (34/1000 live 

births), and percentage of low birth weight babies (30%) are still high (Ronsmans et al. 2008; 

Persson et al. 2012). Arsenic has been associated with adverse pregnancy outcomes and 

increased risk of infant morbidity and mortality (Rahman et al. 2007; Rahman et al. 2010). In 

addition, it has been shown that exposure to both arsenic and cadmium (Cd; via food) are 

inversely associated with fetal growth (Rahman et al. 2009; Kippler et al. 2012) and lower 

intelligence scores in children in the present study area (Hamadani et al. 2011; Kippler et al. 

2012). As the exposure to Mn in this population also turned out to be elevated (Ljung et al. 

2009), it was essential to consider potential health effects of early-life Mn exposure. 

3.4.1 Pregnancy outcomes and perinatal mortality (Paper I) 

Spontaneous abortion (miscarriage) was defined as unintended loss of fetus before 28 weeks 

of gestation. We excluded all forms of induced abortion including ―menstrual regulation‖ 

(vacuum aspiration within 10 weeks following a missed menstrual period). Perinatal 

mortality included both stillbirths and early neonatal deaths. Stillbirth was defined as the 

death of a fetus at 28 completed weeks of gestation or later. Early neonatal death was defined 

as the death of an infant within one week (seven completed days) of birth. According to 

current World Health Organization (WHO) recommendation, the perinatal period commences 

at 22 completed weeks of gestation and ends at seven completed days after birth. However, 

WHO recommends the definition of stillbirth or fetal death for international comparison as 

the death of a fetus commencing at 28 completed weeks of gestation and/or 1000g (WHO 

2006). Information on the cause of neonatal death (<28 days) was based on a verbal autopsy 

questionnaire developed by the WHO and adapted for the Matlab HDSS area (Chowdhury et 

al. 2010).  
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3.4.2 Anthropometric measurements at birth (Paper II) 

Among the pregnant women recruited to MINIMat, about 40% of the deliveries took place at 

health clinics, and weight and length of the babies were measured by the attending nurse 

(Persson et al. 2012). For women who delivered at home, a birth notification system was 

established to enable the measurements of birth anthropometry by trained health workers as 

soon as possible after birth. Birth weight and length were adjusted for those who were 

measured later than 24 hours after birth. Adjustment was done using a standard deviation 

(SD) score transformation, assuming that infants tend to remain in the same relative position 

in the anthropometric distribution during the first 24 hours,as described elsewhere (Arifeen et 

al. 2000; Persson et al. 2012).  

3.4.3 Child development at 10 years of age (Paper III) 

The children‘s cognitive function (IQ) was measured using the 4
th

 version of Wechsler 

Intelligence Scale for Children (WISC-IV) (Wechsler 2003), and their behaviour was 

assessed using the Strengths and Difficulties Questionnaire (SDQ) (Goodman 2001), 

administered to the mothers (Paper III). In total, ten subtests (Figure 3) of the WISC-IV 

scores were used to generate four composite scores including i) verbal comprehension index 

(VCI), ii) perceptual reasoning index (PRI), iii) working memory index (WMI), and iv) 

processing speed index (PSI). The full scale IQ (FSIQ) scores were derived from the scaled 

scores (age adjusted scales of raw scores) of the 10 subtests. The SDQ consists of 25 

questions concerning both positive and negative behavior of the children. There were five 

subscales, one for pro-social or social strengths (up to 10 points) and four for difficult or 

negative behavior (up to 40 points in total) (Figure 3). 

 

Figure 3. Assessment tools for children‘s cognitive function and behavior at 10 years of age. 
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3.5 ETHICAL CONSIDERATION 

Written consent was obtained from the pregnant women before enrollment in the MINIMat 

trial. During developmental assessment of the children, written consent was obtained from 

the mother or legal guardian of each child prior to participation in the follow-up studies. 

Enrolled women and their children were informed that they could refrain from the study at 

any time point without affecting their access to routine health services. The studies have been 

approved by the Research and Ethical Review Committees of icddr,b, Bangladesh and 

Karolinska Institutet, Sweden.  

3.6 STATISTICAL ANALYSIS 

Detailed descriptions of statistical analyses have been explained in Paper I-III. The analyses 

were conducted using SPSS (version 20.0/22.0, IBM Corporation, USA) and STATA 

(version 11; STATA Corp, College Station, TX, USA). Bivariate associations between 

continuous variables were assessed using Spearman‘s rank correlation coefficient (rs). Mann 

Whitney U-test, Kruskal–Wallis non parametric test, or χ
2
 test were used to test for difference 

between independent groups, whereas Friendman analysis of variance (ANOVA) was used to 

test for differences between multiple dependent groups. Associations of exposures with 

outcomes were initially examined by scatter plots (with moving fitted average line, Lowess), 

and further by regression analyses. If the Lowess lines indicated nonlinear associations, we 

used the Mn concentrations as a categorical variable in the regression analyses (i.e. tertiles; 

Paper I-II). We applied logistic regression with estimated odds ratios (ORs) and 95% 

confidence intervals (CIs) to explore the impact of Mn exposure on spontaneous abortion and 

perinatal death (Paper I). We applied linear regression analyses [B coefficient and 95% 

confidence intervals (CIs)] to assess the associations between Mn exposure on size at birth 

(Paper II) as well as IQ and behavior scores at 10 years (Paper III). We adjusted the 

regression models for variables that are known or proposed risk factors for all outcomes, or 

that were significantly associated with the exposure and outcome in the bivariate analyses (P 

<0.05). Missing data were handled by complete subject analysis. All tests were two-sided. 

Statistical significance was considered as a 95% CI that did not include zero (or 1 when 

calculating OR) or a P value <0.05. 
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4 RESULTS AND DISCUSSION 

This section summarizes the main results of the present thesis along with a discussion 

regarding mechanisms and methodological considerations. 

4.1 MANGANESE AND OTHER ELEMENTS IN WELL WATER 

In Matlab, the median Mn concentration increased from about 200 µg/L (range=1.3- 6,550 

µg/L) during pregnancy (Papers I & II) to 339 µg/L (range= 0.1 – 8,680 µg/L) when the 

children were 10 years old (Paper III), whereas arsenic concentrations decreased from 33 to 

2.2 µg/L during the same period. This is probably because of the ongoing installation of deep 

wells, which contain higher levels of Mn and lower levels of arsenic (Table 1). Similarly, 

another study in this area evaluated well water Mn and arsenic based on aquifer‘s sediment 

color tools (a method recommended to local drillers for targeting low arsenic aquifers), and 

they found high Mn and low arsenic in red/off-white aquifer‘s present at a depth of 24-88 m  

(Hossain et al. 2014). The study group also observed that both Mn and arsenic concentrations 

were lower in wells deeper than 100 meter (Hossain et al. 2012), which is in agreement with 

our findings (Table 1). Moreover, we have found that both maternal and child water Mn 

concentrations were inversely correlated with the concentrations of arsenic in water (Paper I 

&II; Table 1).  

Table 1.Concentrations of manganese and other elements in drinking water used by the 

mothers‘ during pregnancy and their children at 10 years of age by well depth. 

 

 

Elements
 a
 

Mothers’ water Children’s water 

Well‘s depth in meter Well‘s depth in meter 

<50 

(n= 412) 
50-100 

(n= 379) 
>100 

(n= 41) 
<50 m 

(n= 335) 
50-100 

(n= 694) 
>100 

(n= 115) 

Manganese (µg/L) 112 (27- 1,434) 937 (30- 3,186) 63 (62- 1,705) 98 (19- 2,686) 880 (30- 3,672) 162 (33- 1,885) 

Arsenic (µg/L) 180 (0.83- 541) 2.4 (0.10- 112) 2.6 (0.26- 24) 114 (0.12-460) 1.3 (0.09- 152) 0.34 (0.03- 152) 

Iron (mg/L) 3.6 (0.38- 11) 0.85 (0.07- 9.2) 2.0 (0.98- 11) 2.4 (0.14- 7.4) 1.2 (0.09- 7.8) 1.9 (0.13- 9.6) 

Calcium (mg/L) 42 (12- 100) 41 (10- 93) 51 (14- 111) 37 (11- 85) 42 (14- 86) 44 (14-104) 

Magnesium (mg/L) 20 (5.8- 41) 19 (6.6- 43) 22 (9.3- 51) 21 (6.1- 45) 25 (8.7- 50) 23 (6.4- 65) 

a
 Data shown as median (5th -95th percentile) 

 

In the fourth edition of the guidelines values for drinking water, the WHO discontinued the 

guideline value for Mn (<400µg/L) and concluded that the calculated health-based value was 

well above concentrations of manganese normally found in drinking-water, why it was not 

necessary to derive a formal guideline value (WHO 2011). Furthermore, review articles have 

indicated that the 400 µg/L health-based guideline was too high to adequately protect human 
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health (Ljung et al. 2007; Frisbie et al. 2012). In an attempt to evaluate the relative changes of 

water Mn and arsenic exposure over time, we stratified the cohort (all children) into four 

groups with different combinations of water Mn (below or above 400 µg/L) and arsenic 

concentrations (<10 µg/L or above) at 10 years of age (Figure 4). Only 19% of the children 

at 10 years of age and their families were exposed to both low Mn (<400 µg/L) and low 

arsenic (<10 µg/L). When we changed the cut-off for Mn concentrations to 1 mg/L (adverse 

effects mainly observed above this level in the present studies), we found that 30% of the 

families were exposed to low Mn (<1 mg/L) and arsenic (<10µg/L). In addition, about 40% 

of the children and their families were exposed to higher arsenic (>10 µg/L) or higher Mn 

(>1mg /L) concentrations. 

 

Figure 4. Contour map of manganese (Mn) and arsenic (As) concentrations (µg/L) in studied 

children‘s drinking water at 10 years of age. The four groups are Low Mn As (<400µgMn/L 

and <10 µgAs/L, shown in green), High Mn Low As (>400µgMn/L and <10 µgAs/L, blue), 

High As Low Mn (>10 µgAs/L &<400µgMn/L, yellow), and High Mn High As 

(>400µgMn/L and >10 µgAs/L, red) 

In the studies within the present thesis, we adjusted our analyses for other elements (i.e iron, 

arsenic) in the drinking water which have previously been shown to be influential for 

pregnancy or early childhood outcomes (Rahman et al. 2007; Grazuleviciene et al. 2009; 
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Rahman et al. 2009). The median iron concentration was slightly higher in mothers‘ water 

(2.4 mg/L) compared to children‘s water at 10 years (1.5 mg/L) (Table 1). Possibly, the iron-

rich water improved the iron status of the women, in accordance with reports from northern 

Bangladesh (Merrill et al. 2011). The water iron concentrations would contribute to the 

recommended dietary allowance (RDA) of 27 mg/day for pregnant women (Food and 

Nutrition Board 2001) by about 7 mg, assuming a daily intake of 3 L of water. However, 20% 

of the women in the present study cohort still had low iron stores (serum ferritin <15 µg/L) in 

early pregnancy (Li et al. 2008) and 33% were anemic (Hb<110 g/L) in late pregnancy 

(Persson et al. 2012). In a similar rural Bangladeshi population, the mean dietary calcium 

intake was estimated to be 350 mg/day (Hels et al. 2003), which is considerably lower than 

the RDA of 1,000 mg/day in pregnancy (Food and Nutrition Board 2001). Similarly, RDA of 

magnesium is 300 mg/day for adult women. In our study area, the concentrations of calcium 

and magnesium did not vary by the depth of the wells or time point. The water calcium 

(average 42 mg/L) and magnesium (average 22 mg/L) concentrations were similar to other 

Asian countries (calcium=2-80 mg/L and magnesium <20 mg/L) (WHO 2009). These 

concentrations in water may have made a small contribution to the daily requirements. In 

addition, deficiency in zinc, selenium, vitamin B12, and folic acid, is highly prevalent in this 

area (Lindstrom et al. 2011; Skröder et al. 2014). 

4.2 MANGANESE BIOMARKERS 

The identification and validation of exposure biomarkers is needed when assessing a dose–

response relationship for the demonstration of cause and effect relationships (Smith et al. 

2007; Andrade et al. 2015). For Mn exposure, studies have utilized a number of different 

biological markers such as whole blood, urine, hair, and teeth to demonstrate potential effects 

from exposures in occupational and environmental settings. In the present thesis (Paper I-

III), we used the concentration of Mn in drinking water as the measure of exposure and Mn 

concentrations in erythrocytes (Paper II). Erythrocyte Mn (or blood Mn) is commonly used 

as a biomarker of exposure to Mn via inhalation or food. However, we found no correlation 

between maternal water Mn and erythrocyte Mn at 30 weeks of gestation (Paper II), not 

even for water Mn concentrations >1mg/L. The lack of correlation between Mn 

concentrations in drinking water and erythrocytes is in line with earlier findings (Wasserman 

et al. 2006; Mora et al. 2014). Most likely, the association may be influenced by the variable 

intake and uptake of Mn via water and food, and the strict homeostatic control of Mn in the 

body (Finley et al. 2003; Ljung et al. 2009). The children‘s drinking water Mn concentrations 

at 10 years was weakly correlated with urinary Mn levels (rs = 0.11; p= 0.001), and indeed 
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only a small fraction is actually excreted via urine. Future research needs to identify reliable 

biomarkers of individual exposure to Mn via food and drinking water. 

4.3 MANGANESE IN WATER AND PREGNANCY OUTCOMES (PAPER I) 

The third of the pregnant women with highest water Mn exposure (median=1,292 µg/L) 

demonstrated approximately 35% lower incidence of spontaneous abortion than the third with 

the lowest exposure (median=56 µg/L) (Figure 5). Probably, this effect was related to the 

mitochondrial MnSOD in the placenta which protects against oxidative stress (Mistry et al. 

2011). Furthermore, under normal conditions the level of plasma MnSOD rises towards the 

end of the first trimester (Jauniaux et al. 2000). Thus, Mn in drinking water might improve 

antioxidant capacity, particularly in undernourished women with high prevalence of zinc and 

copper deficiency, as in the present study population (Li et al. 2008; Kippler et al. 2009). We 

adjusted our analyses for other elements (such as arsenic and iron) in the water, which have 

previously been reported to be influential for pregnancy or early infant outcomes. Most 

importantly, we adjusted for arsenic exposure, which has been positively associated with 

spontaneous abortion and infant mortality in our study area (Rahman et al. 2010). 

Interestingly, the multivariable-adjusted regression model including both water Mn and 

arsenic (or urine arsenic) did not show any association of arsenic with spontaneous abortion 

(and arsenic did not change the estimate for Mn). Thus, in the previous analysis of arsenic 

exposure and spontaneous abortion, there might have been a protective effect of the elevated 

water Mn concentrations in the reference group as compared with that in the higher arsenic 

exposure groups (Mn and arsenic being inversely associated), causing biased OR elevation 

for spontaneous abortion in relation to arsenic exposure.  
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Figure 5. Association between water manganese (Mn) concentrations and spontaneous 

abortion. Model I has been adjusted for gravidity and concentrations of arsenic and iron in 

drinking water, and Model II was additionally adjusted for maternal education, BMI, and 

SES. 

 

We did not find any indication of increasing perinatal mortality with increasing water Mn 

concentrations (Figure 6). Studies have suggested that perinatal deaths (i.e. stillbirth and 

early neonatal death) are largely the result of poor maternal nutrition, inadequate care during 

pregnancy, delivery, and the immediate post-partum period (Kusiako et al. 2000; Haws et al. 

2009). In our study cohort, exposure to arsenic was not associated with still birth (Rahman et 

al. 2010). We could not directly compare our results with the only similar study (Hafeman et 

al. 2007), which reported a positive association between water Mn and infant mortality in 

Bangladesh, because they did not include still birth and did not define the time of infant 

death. 
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Figure 6. Association between water manganese (Mn) concentrations and perinatal mortality. 

Model I was adjusted for gestational age at birth, maternal age, education, SES, season at 

birth and concentrations of arsenic, iron, magnesium, calcium, and zinc in water, and Model 

II was additionally adjusted for maternal BMI and place of delivery. 

 

4.4 MANGANESE (IN WATER AND ERYTHROCYTE) AND FETAL GROWTH 
(PAPER II) 

The newborns of mothers in the highest third of exposure to water Mn (median=1,495 µg/L) 

were on average 0.5 cm shorter (0.20 SD) than those in the least exposed third (median=56 

µg/L; Figure 7). This difference was most pronounced in girls, but it was also apparent in 

boys born to mothers with low Hb values (<114 g/L), probably due to the more extensive 

absorption of Mn when the iron status is low (Kippler et al. 2009; Ljung et al. 2009; Wood 

2009). Interestingly, the multivariable-adjusted regression model including both water Mn and 

either water or urinary arsenic did not show any association of arsenic with birth length, as 

observed in a previous study (Rahman et al. 2009). When we restricted the analyses to women 

with low water arsenic (<20 µg/L), this did not change the estimated effect of water Mn on 

birth length. In a subsample, we evaluated associations of erythrocyte Mn concentrations of 

the women during 30 weeks of gestation with birth weight and length. 

 



 

22 

 

Figure 7. Associations of maternal water manganese concentrations with birth weight and 

length, adjusted for BMI, SES, parity, pregnancy weight gain, gestational age at birth, sex, 

water arsenic, and urinary cadmium. Birth weight is divided by 100 to fit the scale. 

 

There was no correlation between the Mn concentrations in water and erythrocytes, and the 

association between erythrocyte Mn and birth length was less obvious (Figure 8). Possibly, 

women with high levels of Mn in drinking water experienced frequent peaks in plasma Mn 

(Michalke et al. 2007), leading to high fetal exposure and potentially impaired growth 

without any marked change in average erythrocyte Mn levels. The only previous study on 

water Mn and birth weight indicated an increased risk of low birth weight at term in relation 

to elevated water Mn and iron concentrations (Grazuleviciene et al. 2009). We did not 

observed an adverse effect of water Mn concentrations on birth weight; not even in women 

using water with high iron (>2.4 mg/L; median) concentrations. 

 

 

Figure 8. Associations of maternal erythrocyte manganese concentrations with birth weight 

and length, adjusted for BMI, SES, parity, pregnancy weight gain, gestational age at birth, sex, 

water arsenic, and erythrocyte cadmium. Birth weight is divided by 100 to fit the scale. 
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We observed a tendency of an inverted U-shaped association between Mn concentrations in 

erythrocytes and birth weight (Figure 8). In fact, the erythrocyte Mn concentrations below 

about 30 mg Mn/kg were positively associated with birth weight, especially in the women 

with lowest BMI (< median; 19.7kg/m
2
). This positive association may be related to the 

importance of Mn for multiple enzymes during fetal development (Erikson et al. 2007; Wood 

2009; Mistry et al. 2011). However, we cannot exclude that the observed increase in birth 

weight with increasing erythrocyte Mn was, at least partly, due to improved iron status, which 

is known to affect  birth weight (Balarajan et al. 2013). Moreover, we found a moderate 

correlation between erythrocyte Mn and iron up to about 34 µg Mn/kg (rs= 0.29; P<0.001), i.e. 

the same concentration as where we found the change in the slope between erythrocyte Mn 

and birth weight. 

4.5 MANGANESE IN WATER AND CHILD DEVELOPMENT (PAPER III) 

The Mn levels in maternal drinking water were positively associated with their children‘s 

difficult behaviour at 10 years of age. For each increase of one mg Mn/L (median =0. 34 

mg/L), these scores increased by about 0.5 points (0.13 SD) for the boys and 0.8 points (0.21 

SD) for the girls born to anemic mothers (Hb<110 g/L), probably due to their more extensive 

absorption of Mn. The maternal water Mn concentrations (<3mg/L) and children‘s water at 10 

years were positively (<0.15 SD) associated with the pro-social behavior scores in girls but not 

in boys. The positive association with water Mn concentrations at 10 years of age was similar 

to that found with the maternal water Mn. We did not find any similar finding in the literature, 

hence, it may be a mere chance finding and not of much public health importance. The effect-

estimates for the association of water Mn with both behavioral scores did not differ in children 

of the women with low or high water arsenic concentrations. 

Early-life Mn exposure seemed to affect the children‘s IQ, but we did not observe any clear 

evidence of adverse effects of water Mn in the cross-sectional analyses at 10 years of age. The 

associations between water Mn concentrations (especially at 5 years of age) and the boys´ 

cognitive function was generally inverse. For the girls‘ cognitive function, there were mainly 

positive associations with Mn levels in maternal drinking water up to about 3 mg/L, but not at 

higher concentrations (>3 mg/L). However, inverse associations of maternal water Mn 

concentrations with IQ scores were pronounced in boys (Figure 9) and somewhat evident in 

girls born to anemic mothers (Figure 10). Manganese is thought to primarily disturb the 

dopaminergic neuronal system, and experimental studies indicate increased susceptibility to 

excess Mn early in life (Tran et al. 2002; Beaudin et al. 2013). This was confirmed by our 
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findings and was especially pronounced in the children of anemic mothers, who likely absorb 

more Mn (Kippler et al. 2009; Ljung et al. 2009; Meltzer et al. 2010). Our results also indicate 

that the association between water Mn and IQ scores was influenced by the water arsenic 

concentrations, as restricting the analyses to the children of women with water arsenic 

concentrations (<20 µg/L) decreased the effect estimates for Mn by about 30 percent.  

 

 

Figure 9. Associations of maternal water manganese concentrations with IQ scores in the 

boys of the women with (Hb<110g/L; n=103) or without anemia (Hb>110 g/L; n=152), 

adjusted for mother‘s IQ, SES, children‘s (10 years) education, HAZ, Hb concentrations, 

types of school attended, HOME, tester, number of siblings, and mother‘s urine arsenic at 

gestational week 8. 
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Figure 10. Associations of maternal water manganese concentrations (<3 mg/L) with IQ 

scores in the girls of the women with (Hb<110g/L; n=81) or without anemia (Hb>110 g/L; 

n=134). Adjusted for mother‘s IQ, SES, children‘s (10 years) education, HAZ, Hb 

concentrations, types of school attended, HOME, tester, number of siblings, and mother‘s 

urine arsenic at gestational week 8. 

4.6 HEALTH RISK ASSESSMENT 

Usually, the main source of Mn is food, such as rice, the staple food in Bangladesh. A daily 

consumption by a Bangladeshi woman is approximately 300 g rice (dry weight) and 3 liters at 

water (Watanabe et al. 2004; Ohno et al. 2007). We measured Mn concentrations in samples 

of rice collected from 66 of the studied families, and found on average 7 mg Mn/kg (dry 

weight; inter quartile range 4.1- 9.9 mg Mn/kg), which would provide about 2 mg Mn/day 

from rice (Paper I-II). In addition, women in the highest tertile of Mn exposure (median=1.3 

mg/L; n= 620; Paper I and median=1.5 mg/L; n= 360; Paper II) received almost 4 

mgMn/day from water. The adequate daily intake has been estimated to 3 mg during 

pregnancy (EFSA 2013), which means that about 30 % of the women exceeded their AI by 2-

fold. 

Rice would also be an important source of Mn for the young children in this area, as over 

90% of the children living in Matlab were given solid foods, mainly rice products, in addition 

to breast milk at one year of age, after which solid food intake increases continuously (Saha 

et al. 2008). The elevated concentrations of Mn in drinking water will also contribute by 

about 0.3 mg to the daily intake, based on the assumption that the children consume around 
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1L of water per day (Gardner et al. 2011). Therefore, more than half of the children would 

receive the adequate amount of Mn (0.2 – 0.5 mg/day) from drinking water only. However, 

the contribution from water likely varied considerably between individuals and by seasons (at 

season with high temperature, individuals tend to drink more water). Considering the likely 

higher bioavailability of water Mn compared with Mn in the phytate-rich rice-based staple 

food (Davidsson et al. 1995), the Mn-rich water obviously provided much more Mn than 

needed. 

4.7 GENDER DIFFERENCES 

We reported sex differences in Paper II & III. We observed that for fetal growth, girls 

were more susceptible than boys, however, for neurodevelopment, boys were more 

susceptible to elevated water Mn concentrations in early-life. Supporting our observations, 

there are several lines of evidence from both human and experimental studies where the 

response to environmental exposure is different in boys and girls. To note, sex-specific 

changes in the epigenome are generated after fertilization, before adrenal and gonad 

differentiation and production of sex hormones (Gabory et al. 2012), which is a critical 

period for environmental influences (Barker et al. 2013). Indeed, previous studies from this 

cohort showed that maternal exposure to arsenic and cadmium in early pregnancy was 

associated with sex-specific alterations in DNA methylation in the newborns (Kippler et al. 

2013; Broberg et al. 2014). Thus, sex-differences in the epigenome may explain the 

different results between boys and girls that we find in Paper II & III.  

It has been suggested that female babies may be at lower risk of developing metabolic and 

neurodevelopmental disorders than male babies due to the presence of fetal estrogen (Roy et 

al. 2015) (Paper III). The estrogen hormone, which is higher in girls than boys, may play a 

protective role in the regulation of neuronal structure and brain function (Vahter et al. 2007). 

This hormone may, through activator protein (AP)-1 and mitogen activated protein kinase 

(MAPK) pathways, regulate the MnSOD activity and reduce brain endothelial mitochondrial 

reactive oxygen species (ROS) production (Razmara et al. 2008; Than et al. 2009).  

In addition, there is increasing evidence for sex-specific relationships between various 

environmental influences on the placental function and the risk of disease later in life (Gabory 

et al. 2013; Davis et al. 2014; Tarrade et al. 2015). Thus, many forms of developmental delay 

may originate in placental insufficiency (Walker et al. 2015). Hypoxia (deficient oxygen, O2 

supply) and oxidative stress are two disorders which occur in placental insufficiency (Herrera 

et al. 2014). Adequate antioxidant defense is essential to protect the placenta from excessive 

oxidative stress. It can be speculated that the observed apparent positive effects of the 
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prenatal Mn exposure (<3 mg/L) on IQ scores and pro-social behavior in girls (Paper III) 

might be related to the importance of mitochondrial MnSOD as an antioxidant in the placenta 

(Mistry et al. 2011). However, the specific mechanisms of the observed gender differences 

remain to be elucidated. 

4.8 ADDITIONAL METHODOLOGICAL CONSIDERATION 

The strengths of all three studies include the population-based prospective design, the large 

sample size and information on the women‘s drinking water during pregnancy (Paper I-III) 

and their children‘s water Mn concentrations at multiple time points (Paper III). Moreover, 

there was a wide range of Mn concentrations in the drinking water, as measured by a reliable 

ICP-MS method (Paper I-III).  

In addition, in this thesis we were able to control for several potential confounders. 

Confounders may also be misclassified and several strategies were undertaken to decrease the 

level of misclassification. For instance, the inverse association between water Mn and arsenic 

showed a complex pattern. There may have been residual confounding, even after adjustment 

for arsenic in urine, a biomarker of ongoing arsenic exposure (Paper I-III). Therefore, we 

also tried to adjust for water arsenic instead of urine arsenic (categories or natural log 

transformed) in the models (Paper I-III). Finally, we restricted the models to women or their 

children with very low water arsenic concentrations. In Paper III, to minimize potential 

performance bias, we adjusted for tester in the regression models when exploring associations 

of water Mn and IQ and behavior scores. Although, we cannot exclude that there may have 

been residual confounding even after adjustment for tester.  

In all three studies the major limitation was a lack of water samples or reliable information 

concerning the well water used by the women during pregnancy. To minimize the exposure 

misclassification, we evaluated reliability of water samples based on the agreement between 

the concentrations of arsenic in the water and arsenic metabolites in the urine (Vahter et al. 

2006). In Paper I-III, we adjusted for socio-demographic characteristics and outcome 

differences between subjects for whom we had water samples and those without, limiting 

potential influence on the findings. To further minimize exposure misclassification, all (water 

and blood) analyses were performed with a high analytical accuracy. We performed several 

sensitivity analyses with regard to water Mn in order to test the robustness of the results. 

There is always a risk that the results are dependent on how the exposure categories are 

chosen. In Paper I-II, several attempts were made to explore possible effects of the 

categorization. The exposure (water Mn) was included either in tertiles or as a continuous 

variable (mg/L or natural log transformed).  
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We evaluated interactions between iron and Mn by Hb status of the women during 

pregnancy. However, Hb is not specific for iron deficiency. The serum ferritin and soluble 

transferrin receptor are considered reliable markers for iron status (Akesson et al. 1998). 

Availability of reliable makers of iron status for the studied women and their children would 

have helped our evaluation of interactions between Mn and iron status. In a previous study of 

a sub-sample from this cohort, an inverse association was observed between erythrocyte Mn 

and plasma ferritin concentrations at gestational week 14, supporting an increased Mn 

absorption at low iron status (Ljung et al. 2009). Unfortunately, we did not even have Hb 

concentrations of the children at 5 years. Therefore, we did not evaluate a potential 

interaction with Hb status at 5 years for the associations between children‘s water Mn at 5 

years and IQ at 10 years. However, at 10 years of age, only 18% were anemic, leading to a 

lower uptake of Mn and possibly lower toxicity from excess drinking water Mn.  

 

5 GENERAL DISCUSSION 

The studies were conducted in Matlab, a rural part of Bangladesh, and included pregnant 

women and their children with generally low socioeconomic conditions, high prevalence of 

nutritional deficiency, and a wide use of Mn and arsenic contaminated groundwater for 

drinking purposes. The period from pregnancy to early childhood is considered as the critical 

window of vulnerability to environmental pollutants and toxicants (Walker et al. 2007). 

Exposure to Mn during this period exerts adverse effects on the growth and development, as 

shown by the studies presented in this thesis.  

Growth retardation and nutritional deficiencies, mainly iron and iodine deficiency, are 

important predictors for poor neurodevelopment of children (Walker et al. 2007; Rydbeck et 

al. 2014; Skröder et al. 2014). The iron deficiency during pregnancy and childhood can 

enhance the absorption of Mn, probably because of a shared transport mechanism in the gut 

(Ljung et al. 2009; McArdle et al. 2014). In Paper II & III, we observed that toxic effects of 

Mn were more pronounced in children of anemic mothers. Thus, preventive measures 

concerning nutrition, in particular intake of iron, should be promoted, both for the benefits of 

adequate iron intake in itself, but also to avoid an increased absorption of Mn. 

Arsenic in drinking water is often highly elevated in many rural areas in Bangladesh (Vahter 

et al. 2006; Chakraborti et al. 2010). Currently, the most efficient mitigation method seems to 

be construction of deep wells (Johnston et al. 2013), and the use of these wells has been 

encouraged to prevent the people from being exposed to arsenic (Hossain et al. 2014). 
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Additional mitigation options included installation of pond sand filters, Safi filter, home-

based ―3-pitcher‖ filters, and rainwater harvesters (Jakariya et al. 2007; von Bromssen et al. 

2007). Since elevated Mn concentrations in drinking water are common around the world, the 

results obtained in the present thesis may have major importance for public health. However, 

the benefit of the low concentrations of arsenic in drinking water is most likely higher than 

the observed modest Mn-related effect on fetal growth and cognitive and behavioral 

development. To reduce arsenic and Mn in drinking water several measures could be taken, 

such as i) screening for both arsenic and Mn by using sediment color tools (Hossain et al. 

2014) during installation of new wells ii) installation of deeper wells (>100 meter), which 

may provide dual benefits to vulnerable populations like our study area, by reducing not only 

both arsenic and Mn, but also the risk of childhood diarrheal disease (Winston et al. 2013), 

iii) treatment of water by oxidizing filters coated with Mn oxide to improve the performance 

of sand filters already in use (Jessen et al. 2005; Piispanen et al. 2010). 
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6 CONCLUSIONS 

In summary, we may draw the following conclusions from this thesis. 

 The Mn concentrations in drinking water varied widely, with higher concentrations of 

Mn in deep wells. 

 Elevated concentrations during pregnancy appeared to prevent early fetal loss, an 

effect possibly related to the role of Mn in placental antioxidant defenses in early 

pregnancy.  

  Elevated water Mn was associated with lower birth length, and newborn girls 

appeared to be were more susceptible than boys.  

 The associations between erythrocyte Mn concentrations and size at birth were less 

evident.  

 Exposure to elevated water Mn of the mother throughout pregnancy and children‘s 

early life (at 5 years of age) appeared to affect child neurodevelopment at 10 years of 

age adversely, especially when the mother was anemic during pregnancy. The boys 

were more susceptible than girls, for both cognitive function and difficult behavior.  

As Mn absorption tends to be higher in anemic women, the existing interventions in 

routine program need to be strengthened. This includes routine assessment of anemia 

during pregnancy and supplementation of iron and folic acid during pregnancy and the 

postnatal period. Considering higher absorption of Mn in case of anemia in early life, 

screening children for anemia and treating them would be an important future public 

health intervention. During installation of new wells screening for both Mn and arsenic 

by using sediment color tools and digging into an aquifer that is low in both arsenic and 

Mn (deeper than 100 m) should also be promoted. 
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7 FUTURE RESEARCH 

In my opinion, future research in this area should focus on: 

 Prospective follow-up of the children studied here to explore the potential health 

effects of long-term manganese exposure later in life. 

 Identification of reliable biomarkers of individual exposure to manganese via food 

and drinking water. 

 Mechanisms involved in the early-life toxicity of manganese. 

 Epidemiological studies in other populations designed to confirm the gender 

differences observed here. 

In general, future research should focus on the potential adverse effects of manganese rich 

water on child growth and development to ensure long-term health. 

 





 

 33 

8 ACKNOWLEDGEMENTS 

This thesis was conducted in the unit of Metals and Health, Institute of Environmental 

Medicine (IMM), Karolinska Institutet (A Medical University), Sweden, in collaboration 

with the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b) with 

financial support from the Swedish Research Council for Environment, Agricultural Sciences 

and Spatial Planning (FORMAS), the Swedish Research Council (VR), the Swedish 

International Development Cooperative Agency (Sida), EU project PHIME, the Karolinska 

Institutet, and icddr,b. 

I would especially like to thank: 

Professor Marie Vahter, my main supervisor, I am grateful to her for accepting me as a PhD 

student and making my goals achievable. I have greatly benefitted from her expertise in this 

area, and her insightful suggestions. I also appreciate her contribution to improve my 

scientific writing skills. 

Maria Kippler, my co-supervisor, who is an ideal embodiment of the spirit of the peer-

reviewed learning process. She always had time for me and I found her insightful discussion 

enlightening and resourceful. 

Shams El Arifeen, my co-supervisor, who has been very supportive and generously allowed 

me to use the data from various projects undertaken under his supervision. He is the person 

who initiated my interest for public health research. 

Jena Hamadani, my co-supervisor, I am very grateful for her generosity, guidance, and 

continuous support especially in resolving many personal issues outside my research. I am 

fortunate indeed to enjoy her support, whenever required, without exception. 

Karin Ljung, I had little opportunity to use her expertise as a co-supervisor. However, I will 

never forget her encouragement and helpful personal support. 

Zarina Kabir, for agreeing to be my mentor, and for her willingness to help me and give me 

invaluable ideas and suggestions. 

Prof. Ulla Stenius and Prof. Ralf Morgenstern, I would like to express my sincere gratitude 

for being supportive and accommodating during various difficulties I experienced, ranging 

from academic to personal level. 



 

34 

Many thanks to Prof. Karin Broberg, Prof. Carola Liden, Marika Berglund, Klara Midander, 

Anneli julander, for their encouragement and support. Special thanks to Andrea Bellavia, for 

his help in relation to the statistical analysis. 

Prof. Lars Åke Persson and Eva Charlotte Ekström, for giving me the opportunity to work 

with the MINIMat data and for their unwavering support. 

John D. Clemens, executive director, icddr,b, for granting necessary study leave for pursuing 

PhD program. 

Rubhana Raquib, for continuous encouragement to work towards a PhD. I am indebted to her 

in so many ways that thanking her does not seem to be enough of an appreciation. 

All co-authors for their contributions in different studies, especially to Agneta Åkesson, 

Fahmida Tofail, and Sultan Ahmed for their valuable inputs. 

My colleagues, present and past, at the unit of Metals and Health; with special thanks to 

Charlotte Bergkvist, Rene Gardner, Sultan Ahmed, Annachiara Malin Igra, Kristin, Nadia, 

Tomasz, Emma, Angeliki, Mikael, Filip, Milica, and Sabrina for your academic support, 

creating a pleasant and light hearted environment. Ying Lu, Margaretha Grander, Brita Palm, 

and Helena Nordqvist also deserve special thanks for their excellent support in the laboratory 

analysis. This work would never be possible without their help, patience and expertise. 

Special recognition to Barbro Nermell, her help with the database, statistical software and 

guidance offered over past four years. My special thanks to Annette Engström for all her 

encouragement and support. Florencia Harari also deserves to be singled out for individual 

acknowledgement due to her encouragement, feedback and all manner of support. 

Helena Skröder, is an endless source of co-operation and resourcefulness. My special thanks 

to her, for her comments on various stages of my research. I wish her luck with her own PhD. 

I acknowledge all my colleagues from the Health and Demographic Surveillance Unit and 

Matlab Community Health Research: Dr. Md. Yunus, Dr. Harunor Rashid, Dr. Anisur 

Raman, Dr. Kim Streatfield, Zahirul Haq, Sajal k Saha, Tazul Islam for continuous support in 

providing me with the relevant data and sample collections. Special thanks to Zahirul Haq 

bhai for his enormous support. 

Dr. Tasnim Azim, my first supervisor at icddr,b, Dr. Firdausi Qadri, Dr. Tahmeed Ahmed, 

and Dr. K Zaman, my well-wisher and has given inspiration always.  



 

 35 

All my colleagues at the Child Health Unit at icddr,b, Dhaka, Bangladesh: Eliza didi, Bari 

bhai, Nabeel, Shajib, Tanvir, Moinuddin, Fazlul Haq bhai, Shirin apa, Reza, and Ataur 

Rahman for their help and invaluable support. 

I have to acknowledge Prof. Vincent De Brouwere and Prof. Marleen Boelaert, ITM, 

Belgium and the Projahnmo study team for instilling the enthusiasm for research and 

transforming me from pediatrician to a public health researcher. Special thanks to 

Dr.Abdullah H Baqui, Dr.Gary Darmstadt, Dr. Peter Winch, Ishtiaq Mannan, Habib Seraji, 

and Rasheduzzaman Shah for all their encouragement and advice.   

All the staff of IMM, Karolinska Institutet and icddr,b, especially in the admin department, 

for their constant support throughout my study. 

My parents for their never-ending love, support and prayers. They shaped my life and 

encouraged me to fulfill my career ambitions. My parents-in-law, for their well-wishes and 

prayers. My siblings and in laws for their care and persistent support. Many thanks to my 

cousin, Bappie, for his inspiration and support. Special thanks to my dear niece and her 

husband, Nazifa and Ahsan, for designing the cover photo and their help from time to time. 

Finally, but by no means least, to my wife, Emily. Any attempt to articulate how much of a 

blessing she is to my life only serves to belittle her contribution. I would not be the man I am 

today without her understanding and endless sacrifice. She has always put my needs ahead of 

her own. Many thanks too, to my sons, Farsan and Fahman, who have shown wisdom and 

maturity beyond their years. Last few years I have not always been able to give them as much 

time as they deserve.  

My endeavor for a PhD has been an unusually tumultuous one. Apart from the usual stresses, 

I suffered serious physical ailments. I thank almighty Allah for helping me overcome all of 

those difficulties. I am truly blessed to be able to successfully complete my PhD despite such 

grave setbacks. 

There are many other people who helped me in various ways. If I have failed to mention any 

individual it is completely unintentional. I sincerely thank all of them. 

 





 

 37 

9 REFERENCES 

Akesson, A., Bjellerup, P., Berglund, M., Bremme, K. and Vahter, M. (1998). "Serum 

transferrin receptor: a specific marker of iron deficiency in pregnancy." Am J Clin 

Nutr 68(6): 1241-1246. 

Andrade, V. M., Mateus, M. L., Batoreu, M. C., Aschner, M. and Marreilha Dos Santos, A. 

P. (2015). "Lead, Arsenic, and Manganese Metal Mixture Exposures: Focus on 

Biomarkers of Effect." Biol Trace Elem Res. 

Arifeen, S. E., Black, R. E., Caulfield, L. E., Antelman, G., Baqui, A. H., Nahar, Q., Alamgir, 

S. and Mahmud, H. (2000). "Infant growth patterns in the slums of Dhaka in relation 

to birth weight, intrauterine growth retardation, and prematurity." Am J Clin Nutr 

72(4): 1010-1017. 

Arora, M., Bradman, A., Austin, C., Vedar, M., Holland, N., Eskenazi, B. and Smith, D. R. 

(2012). "Determining fetal manganese exposure from mantle dentine of deciduous 

teeth." Environ Sci Technol 46(9): 5118-5125. 

Aschner, J. L. and Aschner, M. (2005). "Nutritional aspects of manganese homeostasis." Mol 

Aspects Med 26(4-5): 353-362. 

Aschner, M., Erikson, K. M. and Dorman, D. C. (2005). "Manganese dosimetry: species 

differences and implications for neurotoxicity." Crit Rev Toxicol 35(1): 1-32. 

Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for 

manganese. Atlanta, GA: U.S. Department of Health and Human Services; 2012. 

Available from:: http://www.atsdr.cdc.gov/toxprofiles/tp151.pdf   

Balarajan, Y., Subramanian, S. V. and Fawzi, W. W. (2013). "Maternal iron and folic acid 

supplementation is associated with lower risk of low birth weight in India." J Nutr 

143(8): 1309-1315. 

Barker, D., Barker, M., Fleming, T. and Lampl, M. (2013). "Developmental biology: Support 

mothers to secure future public health." Nature 504(7479): 209-211. 

Beaudin, S. A., Nisam, S. and Smith, D. R. (2013). "Early life versus lifelong oral manganese 

exposure differently impairs skilled forelimb performance in adult rats." Neurotoxicol 

Teratol 38: 36-45. 

Bergkvist, C, Kippler, M, Hamadani, JD, Grandér, M, Tofail, F, Berglund, M and Vahter, M 

(2010). "Assessment of early-life lead exposure in rural Bangladesh." Environmental 

Research. 

Bouchard, M. F., Sauve, S., Barbeau, B., Legrand, M., Brodeur, M. E., Bouffard, T., 

Limoges, E., Bellinger, D. C., et al. (2011). "Intellectual impairment in school-age 

children exposed to manganese from drinking water." Environ Health Perspect 

119(1): 138-143. 

Broberg, K., Ahmed, S., Engstrom, K., Hossain, M. B., Jurkovic Mlakar, S., Bottai, M., 

Grander, M., Raqib, R., et al. (2014). "Arsenic exposure in early pregnancy alters 

genome-wide DNA methylation in cord blood, particularly in boys." J Dev Orig 

Health Dis 5(4): 288-298. 

Chakraborti, D., Rahman, M. M., Das, B., Murrill, M., Dey, S., Chandra Mukherjee, S., Dhar, 

R. K., Biswas, B. K., et al. (2010). "Status of groundwater arsenic contamination in 

Bangladesh: a 14-year study report." Water Res 44(19): 5789-5802. 

http://www.atsdr.cdc.gov/toxprofiles/tp151.pdf


 

38 

Chowdhury, H. R., Thompson, S., Ali, M., Alam, N., Yunus, M. and Streatfield, P. K. (2010). 

"Causes of neonatal deaths in a rural subdistrict of Bangladesh: implications for 

intervention." J Health Popul Nutr 28(4): 375-382. 

Davidsson, L, Cederblad, A, Lönnerdal, B and Sandström, B (1991). "The effect of 

individual dietary components on manganese absorption in humans." The American 

Journal of Clinical Nutrition 54(6): 1065-1070. 

Davidsson, L., Almgren, A., Juillerat, M. A. and Hurrell, R. F. (1995). "Manganese 

absorption in humans: the effect of phytic acid and ascorbic acid in soy formula." Am 

J Clin Nutr 62(5): 984-987. 

Davidsson, L., Cederblad, A., Lonnerdal, B. and Sandstrom, B. (1989). "Manganese 

absorption from human milk, cow's milk, and infant formulas in humans." Am J Dis 

Child 143(7): 823-827. 

Davis, E. P. and Pfaff, D. (2014). "Sexually dimorphic responses to early adversity: 

implications for affective problems and autism spectrum disorder." 

Psychoneuroendocrinology 49: 11-25. 

Doi, M., Rekha, R. S., Ahmed, S., Okada, M., Roy, A. K., El Arifeen, S., Ekstrom, E. C., 

Raqib, R., et al. (2011). "Association between calcium in cord blood and newborn 

size in Bangladesh." Br J Nutr 106(9): 1398-1407. 

Eastman, R. R., Jursa, T. P., Benedetti, C., Lucchini, R. G. and Smith, D. R. (2013). "Hair as 

a biomarker of environmental manganese exposure." Environ Sci Technol 47(3): 

1629-1637. 

EFSA, EFSA NDA Panel (EFSA Nutrition) (2013). "Scientific Opinion on Scientific 

Opinion on Dietary Reference Values for manganese." EFSA Journal 11 (11): 3419, 

3444. 

Ericson, J. E., Crinella, F. M., Clarke-Stewart, K. A., Allhusen, V. D., Chan, T. and 

Robertson, R. T. (2007). "Prenatal manganese levels linked to childhood behavioral 

disinhibition." Neurotoxicol Teratol 29(2): 181-187. 

Erikson, K. M., Thompson, K., Aschner, J. and Aschner, M. (2007). "Manganese 

neurotoxicity: a focus on the neonate." Pharmacol Ther 113(2): 369-377. 

Finley, J. W. (1999). "Manganese absorption and retention by young women is associated 

with serum ferritin concentration." Am J Clin Nutr 70(1): 37-43. 

Finley, J. W., Johnson, P. E. and Johnson, L. K. (1994). "Sex affects manganese absorption 

and retention by humans from a diet adequate in manganese." Am J Clin Nutr 60(6): 

949-955. 

Finley, J. W., Penland, J. G., Pettit, R. E. and Davis, C. D. (2003). "Dietary manganese intake 

and type of lipid do not affect clinical or neuropsychological measures in healthy 

young women." J Nutr 133(9): 2849-2856. 

Fitsanakis, V. A., Zhang, N., Garcia, S. and Aschner, M. (2010). "Manganese (Mn) and iron 

(Fe): interdependency of transport and regulation." Neurotox Res 18(2): 124-131. 

Food and Nutrition Board, Institute of Medicine (2001). Dietary reference intakes for vitamin 

A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, 

molybdenum, nickel, silicon, vanadium, and zinc. Washington, D.C, National 

Academies Press. 



 

 39 

Frisbie, S. H., Mitchell, E. J., Dustin, H., Maynard, D. M. and Sarkar, B. (2012). "World 

Health Organization discontinues its drinking-water guideline for manganese." 

Environ Health Perspect 120(6): 775-778. 

Gabory, A., Ferry, L., Fajardy, I., Jouneau, L., Gothie, J. D., Vige, A., Fleur, C., Mayeur, S., 

et al. (2012). "Maternal diets trigger sex-specific divergent trajectories of gene 

expression and epigenetic systems in mouse placenta." PLoS One 7(11): e47986. 

Gabory, A., Roseboom, T. J., Moore, T., Moore, L. G. and Junien, C. (2013). "Placental 

contribution to the origins of sexual dimorphism in health and diseases: sex 

chromosomes and epigenetics." Biol Sex Differ 4(1): 5. 

Gardner, R., Hamadani, J., Grander, M., Tofail, F., Nermell, B., Palm, B., Kippler, M. and 

Vahter, M. (2011). "Persistent exposure to arsenic via drinking water in rural 

Bangladesh despite major mitigation efforts." Am J Public Health 101 Suppl 1: S333-

338. 

Goodman, R. (2001). "Psychometric properties of the strengths and difficulties 

questionnaire." J Am Acad Child Adolesc Psychiatry 40(11): 1337-1345. 

Grandjean, P. and Landrigan, P. J. (2014). "Neurobehavioural effects of developmental 

toxicity." Lancet Neurol 13(3): 330-338. 

Grazuleviciene, R., Nadisauskiene, R., Buinauskiene, J. and Grazulevicius, T. (2009). 

"Effects of Elevated Levels of Manganese and Iron in Drinking Water on Birth 

Outcomes." Polish Journal of Environmental Studies 18(5): 819-825. 

Guan, H., Wang, M., Li, X., Piao, F., Li, Q., Xu, L., Kitamura, F. and Yokoyama, K. (2013). 

"Manganese concentrations in maternal and umbilical cord blood: related to birth size 

and environmental factors." Eur J Public Health. 

Guilarte, T. R. (2013). "Manganese neurotoxicity: new perspectives from behavioral, 

neuroimaging, and neuropathological studies in humans and non-human primates." 

Front Aging Neurosci 5, 23: 1-10. 

Gunier, R. B., Bradman, A., Jerrett, M., Smith, D. R., Harley, K. G., Austin, C., Vedar, M., 

Arora, M., et al. (2013). "Determinants of manganese in prenatal dentin of shed teeth 

from CHAMACOS children living in an agricultural community." Environ Sci 

Technol 47(19): 11249-11257. 

Gunier, R. B., Mora, A. M., Smith, D., Arora, M., Austin, C., Eskenazi, B. and Bradman, A. 

(2014). "Biomarkers of manganese exposure in pregnant women and children living 

in an agricultural community in California." Environ Sci Technol 48(24): 14695-

14702. 

Gwatkin, Davidson R, Rustein, Shea, Johnson, Kiersten, Pande, Rohini P and Wagstaff, 

Adame . (2000). Socio-economic Differences in Health, Nutrition, and Population in 

Bangladesh. Washington, DC. 

Hafeman, D., Factor-Litvak, P., Cheng, Z., van Geen, A. and Ahsan, H. (2007). "Association 

between manganese exposure through drinking water and infant mortality in 

Bangladesh." Environ Health Perspect 115(7): 1107-1112. 

Hamadani, J. D., Tofail, F., Nermell, B., Gardner, R., Shiraji, S., Bottai, M., Arifeen, S. E., 

Huda, S. N., et al. (2011). "Critical windows of exposure for arsenic-associated 

impairment of cognitive function in pre-school girls and boys: a population-based 

cohort study." Int J Epidemiol 40(6): 1593-1604. 



 

40 

Haws, R. A., Yakoob, M. Y., Soomro, T., Menezes, E. V., Darmstadt, G. L. and Bhutta, Z. A. 

(2009). "Reducing stillbirths: screening and monitoring during pregnancy and 

labour." BMC Pregnancy Childbirth 9 Suppl 1: S5. 

Hels, O., Kidmose, U., Larsen, T., Hassan, N., Tetens, I. and Thilsted, S. H. (2003). 

"Estimated nutrient intakes and adequacies in Bangladesh change when newer values 

for vitamin A, iron and calcium in commonly consumed foods are applied." Int J 

Food Sci Nutr 54(6): 457-465. 

Herrera, E. A., Krause, B., Ebensperger, G., Reyes, R. V., Casanello, P., Parra-Cordero, M. 

and Llanos, A. J. (2014). "The placental pursuit for an adequate oxidant balance 

between the mother and the fetus." Front Pharmacol 5: 149. 

Hossain, M., Haque, A., Alam, S., Rahman, M., Uddin, M.R., Sarwar, S.G, et al. (2012) 

Potentiality of intermediate depth aquifer as a source of arsenic and manganese safe 

tubewells in Bangladesh. In: J.C. Ng, B.N. Noller, R. Naidu, J. Bundschuh & P. 

Bhattacharya (eds.) ―Understanding the Geological and Medical Interface of Arsenic, 

As 2012‖. Interdisciplinary Book Series: ―Arsenic in the Environment—

Proceedings‖. Series Editors: J. Bundschuh and P. Bhattacharya, CRC Press/Taylor 

and Francis (ISBN-13: 978-0-415-63763-3), pp. 71-73. 

Hossain, M., Bhattacharya, P., Frape, S. K., Jacks, G., Islam, M. M., Rahman, M. M., von 

Bromssen, M., Hasan, M. A., et al. (2014). "Sediment color tool for targeting arsenic-

safe aquifers for the installation of shallow drinking water tubewells." Sci Total 

Environ 493: 615-625. 

ICDDRB (2006). Health and Demographic Surveillance System- Matlab. Registration of 

health and demographic events 2004. Dhaka. Available from: 

http://www.icddrb.org/what-we-do/publications/cat_view/52-publications/10043-

icddrb-documents/10049-hdss-annual-reports/10191-hdss-annual-report-12004-

sr10093. 

ICDDRB (2007). Health and demographic surveillance system–Matlab. V.38. Socio-

economic census 2005. Dhaka: [SR96]. Available from: 

http://www.icddrb.org/publications/cat_view/52-publications/10049-hdss-annual-

reports. 

Jakariya, Md., von Brömssen, M., Jacks, G., Chowdhury, A.M.R., Ahmed, K.M. and 

Bhattacharya, P. (2007). "Searching for sustainable arsenic mitigation strategy in 

Bangladesh: experience from two upazilas." Int. J. Environ. Pollution 31(3/4): 415-

430. 

Jauniaux, E., Watson, A. L., Hempstock, J., Bao, Y. P., Skepper, J. N. and Burton, G. J. 

(2000). "Onset of maternal arterial blood flow and placental oxidative stress. A 

possible factor in human early pregnancy failure." Am J Pathol 157(6): 2111-2122. 

Jessen, S., Larsen, F., Koch, C. B. and Arvin, E. (2005). "Sorption and desorption of arsenic 

to ferrihydrite in a sand filter." Environ Sci Technol 39(20): 8045-8051. 

Johnston, R., Hug, S. J., Inauen, J., Khan, N. I., Mosler, H. J. and Yang, H. (2013). 

"Enhancing arsenic mitigation in Bangladesh: Findings from institutional, 

psychological, and technical investigations." Sci Total Environ. 

Kempson, I. M. and Lombi, E. (2011). "Hair analysis as a biomonitor for toxicology, disease 

and health status." Chem Soc Rev 40(7): 3915-3940. 

http://www.icddrb.org/what-we-do/publications/cat_view/52-publications/10043-icddrb-documents/10049-hdss-annual-reports/10191-hdss-annual-report-12004-sr10093
http://www.icddrb.org/what-we-do/publications/cat_view/52-publications/10043-icddrb-documents/10049-hdss-annual-reports/10191-hdss-annual-report-12004-sr10093
http://www.icddrb.org/what-we-do/publications/cat_view/52-publications/10043-icddrb-documents/10049-hdss-annual-reports/10191-hdss-annual-report-12004-sr10093
http://www.icddrb.org/publications/cat_view/52-publications/10049-hdss-annual-reports
http://www.icddrb.org/publications/cat_view/52-publications/10049-hdss-annual-reports


 

 41 

Khan, K., Factor-Litvak, P., Wasserman, G. A., Liu, X., Ahmed, E., Parvez, F., Slavkovich, 

V., Levy, D., et al. (2011). "Manganese exposure from drinking water and children's 

classroom behavior in Bangladesh." Environ Health Perspect 119(10): 1501-1506. 

Kippler, M., Engstrom, K., Mlakar, S. J., Bottai, M., Ahmed, S., Hossain, M. B., Raqib, R., 

Vahter, M., et al. (2013). "Sex-specific effects of early life cadmium exposure on 

DNA methylation and implications for birth weight." Epigenetics 8(5): 494-503. 

Kippler, M., Goessler, W., Nermell, B., Ekstrom, E. C., Lonnerdal, B., El Arifeen, S. and 

Vahter, M. (2009). "Factors influencing intestinal cadmium uptake in pregnant 

Bangladeshi women--a prospective cohort study." Environ Res 109(7): 914-921. 

Kippler, M., Hoque, A. M. W., Raqib, R., Ohrvik, H., Ekstrom, E. C. and Vahter, M. (2010). 

"Accumulation of cadmium in human placenta interacts with the transport of 

micronutrients to the fetus." Toxicology Letters 192(2): 162-168. 

Kippler, M., Tofail, F., Gardner, R., Rahman, A., Hamadani, J. D., Bottai, M. and Vahter, M. 

(2012). "Maternal cadmium exposure during pregnancy and size at birth: a 

prospective cohort study." Environ Health Perspect 120(2): 284-289. 

Kippler, M., Tofail, F., Hamadani, J. D., Gardner, R. M., Grantham-McGregor, S. M., Bottai, 

M. and Vahter, M. (2012). "Early-life cadmium exposure and child development in 5-

year-old girls and boys: a cohort study in rural Bangladesh." Environ Health Perspect 

120(10): 1462-1468. 

Kippler, Maria, Nermell, Barbro, Hamadani, Jena, Tofail, Fahmida, Moore, Sophie and 

Vahter, Marie (2010). "Burden of cadmium in early childhood: Longitudinal 

assessment of urinary cadmium in rural Bangladesh." Toxicology Letters 198(1): 20-

25. 

Kusiako, T., Ronsmans, C. and Van der Paal, L. (2000). "Perinatal mortality attributable to 

complications of childbirth in Matlab, Bangladesh." Bull World Health Organ 78(5): 

621-627. 

Laohaudomchok, W., Lin, X., Herrick, R. F., Fang, S. C., Cavallari, J. M., Christiani, D. C. 

and Weisskopf, M. G. (2011). "Toenail, blood, and urine as biomarkers of manganese 

exposure." J Occup Environ Med 53(5): 506-510. 

Lau, E. Y., Liu, J., Archer, E. and McDonald, S. M. (2014). "Maternal weight gain in 

pregnancy and risk of obesity among offspring: a systematic review." J Obes 2014: 

524939. 

Levy, B. S. and Nassetta, W. J. (2003). "Neurologic effects of manganese in humans: a 

review." Int J Occup Environ Health 9(2): 153-163. 

Li, L., Ekstrom, E. C., Goessler, W., Lonnerdal, B., Nermell, B., Yunus, M., Rahman, A., El 

Arifeen, S., et al. (2008). "Nutritional status has marginal influence on the metabolism 

of inorganic arsenic in pregnant Bangladeshi women." Environ Health Perspect 

116(3): 315-321. 

Lin, C. C., Chen, Y. C., Su, F. C., Lin, C. M., Liao, H. F., Hwang, Y. H., Hsieh, W. S., Jeng, 

S. F., et al. (2013). "In utero exposure to environmental lead and manganese and 

neurodevelopment at 2 years of age." Environ Res 123: 52-57. 

Lindstrom, E., Hossain, M. B., Lonnerdal, B., Raqib, R., El Arifeen, S. and Ekstrom, E. C. 

(2011). "Prevalence of anemia and micronutrient deficiencies in early pregnancy in 

rural Bangladesh, the MINIMat trial." Acta Obstet Gynecol Scand 90(1): 47-56. 



 

42 

Ljung, K. S., Kippler, M. J., Goessler, W., Grander, G. M., Nermell, B. M. and Vahter, M. E. 

(2009). "Maternal and early life exposure to manganese in rural Bangladesh." Environ 

Sci Technol 43(7): 2595-2601. 

Ljung, K. and Vahter, M. (2007). "Time to re-evaluate the guideline value for manganese in 

drinking water?" Environ Health Perspect 115(11): 1533-1538. 

Ljung, Karin, Palm, Brita, Grandér, Margaretha and Vahter, Marie (2011). "High 

concentrations of essential and toxic elements in infant formula and infant foods – A 

matter of concern." Food Chemistry 127(3): 943-951. 

Lucaciu, C. M., Dragu, C., Copaescu, L. and Morariu, V. V. (1997). "Manganese transport 

through human erythrocyte membranes. An EPR study." Biochim Biophys Acta 

1328(2): 90-98. 

Lucas, E. L., Bertrand, P., Guazzetti, S., Donna, F., Peli, M., Jursa, T. P., Lucchini, R. and 

Smith, D. R. (2015). "Impact of ferromanganese alloy plants on household dust 

manganese levels: Implications for childhood exposure." Environ Res 138: 279-290. 

Martinez-Finley, E. J., Gavin, C. E., Aschner, M. and Gunter, T. E. (2013). "Manganese 

neurotoxicity and the role of reactive oxygen species." Free Radic Biol Med 62: 65-

75. 

McArdle, H. J., Gambling, L. and Kennedy, C. (2014). "Iron deficiency during pregnancy: 

the consequences for placental function and fetal outcome." Proc Nutr Soc 73(1): 9-

15. 

Meltzer, H. M., Brantsaeter, A. L., Borch-Iohnsen, B., Ellingsen, D. G., Alexander, J., 

Thomassen, Y., Stigum, H. and Ydersbond, T. A. (2010). "Low iron stores are related 

to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, 

Norwegian women in the HUNT 2 study." Environ Res 110(5): 497-504. 

Menezes-Filho, J. A., Bouchard, M., Sarcinelli Pde, N. and Moreira, J. C. (2009). 

"Manganese exposure and the neuropsychological effect on children and adolescents: 

a review." Rev Panam Salud Publica 26(6): 541-548. 

Merrill, R. D., Shamim, A. A., Ali, H., Jahan, N., Labrique, A. B., Schulze, K., Christian, P. 

and West, K. P., Jr. (2011). "Iron status of women is associated with the iron 

concentration of potable groundwater in rural Bangladesh." J Nutr 141(5): 944-949. 

Michalke, B., Halbach, S. and Nischwitz, V. (2007). "Speciation and toxicological relevance 

of manganese in humans." J Environ Monit 9(7): 650-656. 

Milne, D. B., Sims, R. L. and Ralston, N. V. (1990). "Manganese content of the cellular 

components of blood." Clin Chem 36(3): 450-452. 

Mistry, H. D. and Williams, P. J. (2011). "The importance of antioxidant micronutrients in 

pregnancy." Oxid Med Cell Longev 2011: 841749. 

Mora, A. M., van Wendel de Joode, B., Mergler, D., Cordoba, L., Cano, C., Quesada, R., 

Smith, D. R., Menezes-Filho, J. A., et al. (2014). "Blood and hair manganese 

concentrations in pregnant women from the infants' environmental health study (ISA) 

in Costa Rica." Environ Sci Technol 48(6): 3467-3476. 

Ohno, K., Yanase, T., Matsuo, Y., Kimura, T., Rahman, M. H., Magara, Y. and Matsui, Y. 

(2007). "Arsenic intake via water and food by a population living in an arsenic-

affected area of Bangladesh." Sci Total Environ 381(1-3): 68-76. 



 

 43 

Oulhote, Y., Mergler, D. and Bouchard, M. F. (2014). "Sex- and age-differences in blood 

manganese levels in the U.S. general population: national health and nutrition 

examination survey 2011-2012." Environ Health 13: 87. 

Park, S., Sim, C. S., Lee, H. and Kim, Y. (2013). "Blood manganese concentration is elevated 

in infants with iron deficiency." Biol Trace Elem Res 155(2): 184-189. 

Persson, L. A., Arifeen, S., Ekstrom, E. C., Rasmussen, K. M., Frongillo, E. A. and Yunus, 

M. (2012). "Effects of prenatal micronutrient and early food supplementation on 

maternal hemoglobin, birth weight, and infant mortality among children in 

Bangladesh: the MINIMat randomized trial." JAMA 307(19): 2050-2059. 

Piispanen, J. K. and Sallanko, J. T. (2010). "Mn(II) removal from groundwater with 

manganese oxide-coated filter media." J Environ Sci Health A Tox Hazard Subst 

Environ Eng 45(13): 1732-1740. 

Qiu, A., Mori, S. and Miller, M. I. (2015). "Diffusion tensor imaging for understanding brain 

development in early life." Annu Rev Psychol 66: 853-876. 

Rahman, A., Persson, L. A., Nermell, B., El Arifeen, S., Ekstrom, E. C., Smith, A. H. and 

Vahter, M. (2010). "Arsenic exposure and risk of spontaneous abortion, stillbirth, and 

infant mortality." Epidemiology 21(6): 797-804. 

Rahman, A., Vahter, M., Ekstrom, E. C., Rahman, M., Golam Mustafa, A. H., Wahed, M. A., 

Yunus, M. and Persson, L. A. (2007). "Association of arsenic exposure during 

pregnancy with fetal loss and infant death: a cohort study in Bangladesh." Am J 

Epidemiol 165(12): 1389-1396. 

Rahman, A., Vahter, M., Smith, A. H., Nermell, B., Yunus, M., El Arifeen, S., Persson, L. A. 

and Ekstrom, E. C. (2009). "Arsenic exposure during pregnancy and size at birth: a 

prospective cohort study in Bangladesh." Am J Epidemiol 169(3): 304-312. 

Rahman, M., Vahter, M., Wahed, M. A., Sohel, N., Yunus, M., Streatfield, P. K., El Arifeen, 

S., Bhuiya, A., et al. (2006). "Prevalence of arsenic exposure and skin lesions. A 

population based survey in Matlab, Bangladesh." J Epidemiol Community Health 

60(3): 242-248. 

Razmara, A., Sunday, L., Stirone, C., Wang, X. B., Krause, D. N., Duckles, S. P. and 

Procaccio, V. (2008). "Mitochondrial effects of estrogen are mediated by estrogen 

receptor alpha in brain endothelial cells." J Pharmacol Exp Ther 325(3): 782-790. 

Ritz B, Wilhelm M (2008). Air pollution impacts on infants and children. Southern California 

Environmental Report Card, University of California-Los Angeles, Institute of the 

Environment and Sustainability, USA. 

Roels, H. A., Bowler, R. M., Kim, Y., Henn, B. C., Mergler, D., Hoet, P., Gocheva, V. V., 

Bellinger, D. C., et al. (2012). "Manganese exposure and cognitive deficits: a growing 

concern for manganese neurotoxicity." Neurotoxicology 33(4): 872-880. 

Ronsmans, C., Chowdhury, M. E., Alam, N., Koblinsky, M. and El Arifeen, S. (2008). 

"Trends in stillbirths, early and late neonatal mortality in rural Bangladesh: the role of 

public health interventions." Paediatr Perinat Epidemiol 22(3): 269-279. 

Roy, S., Dhobale, M., Dangat, K., Mehendale, S., Lalwani, S. and Joshi, S. (2015). 

"Differential oxidative stress levels in mothers with preeclampsia delivering male and 

female babies." J Matern Fetal Neonatal Med: 1-8. 



 

44 

Rydbeck, F., Rahman, A., Grander, M., Ekstrom, E. C., Vahter, M. and Kippler, M. (2014). 

"Maternal urinary iodine concentration up to 1.0 mg/L is positively associated with 

birth weight, length, and head circumference of male offspring." J Nutr 144(9): 1438-

1444. 

Saha, K. K., Frongillo, E. A., Alam, D. S., Arifeen, S. E., Persson, L. A. and Rasmussen, K. 

M. (2008). "Appropriate infant feeding practices result in better growth of infants and 

young children in rural Bangladesh." Am J Clin Nutr 87(6): 1852-1859. 

Selevan, S. G., Kimmel, C. A. and Mendola, P. (2000). "Identifying critical windows of 

exposure for children's health." Environ Health Perspect 108 Suppl 3: 451-455. 

Sinczuk-Walczak, H., Jakubowski, M. and Matczak, W. (2001). "Neurological and 

neurophysiological examinations of workers occupationally exposed to manganese." 

Int J Occup Med Environ Health 14(4): 329-337. 

Skröder, Helena M., Hamadani, Jena D., Tofail, Fahmida, Persson, Lars Åke, Vahter, Marie 

E. and Kippler, Maria J. (2014). "Selenium status in pregnancy influences children's 

cognitive function at 1.5 years of age." Clinical Nutrition(0). 

Smith, D., Gwiazda, R., Bowler, R., Roels, H., Park, R., Taicher, C. and Lucchini, R. (2007). 

"Biomarkers of Mn exposure in humans." Am J Ind Med 50(11): 801-811. 

Spangler, A. H. and Spangler, J. G. (2009). "Groundwater manganese and infant mortality 

rate by county in North Carolina: an ecological analysis." EcoHealth 6(4): 596-600. 

Spencer, A. (1999). "Whole blood manganese levels in pregnancy and the neonate." Nutrition 

15(10): 731-734. 

Takser, L., Mergler, D., Hellier, G., Sahuquillo, J. and Huel, G. (2003). "Manganese, 

monoamine metabolite levels at birth, and child psychomotor development." 

Neurotoxicology 24(4-5): 667-674. 

Takser, Larissa, Lafond, Julie, Bouchard, Maryse, St-Amour, Genevieve and Mergler, Donna 

(2004). "Manganese levels during pregnancy and at birth: relation to environmental 

factors and smoking in a Southwest Quebec population." Environmental Research 

95(2): 119-125. 

Tarrade, A., Panchenko, P., Junien, C. and Gabory, A. (2015). "Placental contribution to 

nutritional programming of health and diseases: epigenetics and sexual dimorphism." 

J Exp Biol 218(Pt 1): 50-58. 

Than, N. G., Romero, R., Tarca, A. L., Draghici, S., Erez, O., Chaiworapongsa, T., Kim, Y. 

M., Kim, S. K., et al. (2009). "Mitochondrial manganese superoxide dismutase 

mRNA expression in human chorioamniotic membranes and its association with 

labor, inflammation, and infection." J Matern Fetal Neonatal Med 22(11): 1000-1013. 

Thompson, L. P. and Al-Hasan, Y. (2012). "Impact of oxidative stress in fetal programming." 

J Pregnancy 2012: 582748. 

Tran, T. T., Chowanadisai, W., Crinella, F. M., Chicz-DeMet, A. and Lonnerdal, B. (2002). 

"Effect of high dietary manganese intake of neonatal rats on tissue mineral 

accumulation, striatal dopamine levels, and neurodevelopmental status." 

Neurotoxicology 23(4-5): 635-643. 

Vahter, M., Akesson, A., Liden, C., Ceccatelli, S. and Berglund, M. (2007). "Gender 

differences in the disposition and toxicity of metals." Environ Res 104(1): 85-95. 



 

 45 

Vahter, M., Li, L., Nermell, B., Rahman, A., Arifeen, S.E, Rahman, M., Persson, L. A. and 

Ekström, E.C. (2006). "Arsenic exposure in pregnancy - a population based study in 

Matlab, Bangladesh." J Health Popul Nutr 24(2): 236-245. 

Vigeh, Mohsen, Yokoyama, Kazuhito, Ramezanzadeh, Fateme, Dahaghin, Mojgan, 

Fakhriazad, Elham, Seyedaghamiri, Zahrabigom and Araki, Shunichi (2008). "Blood 

manganese concentrations and intrauterine growth restriction." Reproductive 

Toxicology 25(2): 219-223. 

Vitoux, D., Arnaud, J. and Chappuis, P. (1999). "Are copper, zinc and selenium in 

erythrocytes valuable biological indexes of nutrition and pathology?" J Trace Elem 

Med Biol 13(3): 113-128. 

von Bromssen, M., Jakariya, M., Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Sracek, O., 

Jonsson, L., Lundell, L., et al. (2007). "Targeting low-arsenic aquifers in Matlab 

Upazila, Southeastern Bangladesh." Sci Total Environ 379(2-3): 121-132. 

Walker, C. K., Krakowiak, P., Baker, A., Hansen, R. L., Ozonoff, S. and Hertz-Picciotto, I. 

(2015). "Preeclampsia, placental insufficiency, and autism spectrum disorder or 

developmental delay." JAMA Pediatr 169(2): 154-162. 

Walker, S. P., Wachs, T. D., Gardner, J. M., Lozoff, B., Wasserman, G. A., Pollitt, E. and 

Carter, J. A. (2007). "Child development: risk factors for adverse outcomes in 

developing countries." Lancet 369(9556): 145-157. 

Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Levy, D., Factor-Litvak, P., Kline, J., van 

Geen, A., et al. (2006). "Water manganese exposure and children's intellectual 

function in Araihazar, Bangladesh." Environ Health Perspect 114(1): 124-129. 

Watanabe, Chiho, Kawata, Ako, Sudo, Noriko, Sekiyama, Makiko, Inaoka, Tsukasa, Bae, 

Munjoo and Ohtsuka, Ryutaro (2004). "Water intake in an Asian population living in 

arsenic-contaminated area." Toxicology and Applied Pharmacology 198(3): 272-282. 

Wechsler, David (2003). "Wechsler intelligence scale for children–Fourth Edition (WISC-

IV)." San Antonio, TX: The Psychological Corporation. 

WHO (2004). Manganese and Its Compounds: Environmental Aspects.Concise International 

Chemical Assessment Document 63. Geneva: World Health Organization. Available 

from http://www.who.int/ipcs/publications/cicad/cicad63_rev_1.pdf  

WHO. (2006). "Neonatal and perinatal mortality : country, regional and global estimates." 

from http://apps.who.int/iris/bitstream/10665/43444/1/9241563206_eng.pdf. 

WHO (2009). Calcium and Magnesium in Drinking-water Public health significance. 

Geneva: World Health Organization. Available from 

http://whqlibdoc.who.int/publications/2009/9789241563550_eng.pdf 

WHO (2011). Manganese in Drinking Water-Background Document for Development of 

WHO guidelines for Drinking-Water Quality. 2011 WHO/SDE/WSH/03.04/104 

/Rev/1. Geneva: World Health Organization. Available from 

http://www.who.int/water_sanitation_health/dwq/chemicals/manganese.pdf 

Winston, J. J., Escamilla, V., Perez-Heydrich, C., Carrel, M., Yunus, M., Streatfield, P. K. 

and Emch, M. (2013). "Protective benefits of deep tube wells against childhood 

diarrhea in Matlab, Bangladesh." Am J Public Health 103(7): 1287-1291. 

Wood, R. J. (2009). "Manganese and birth outcome." Nutr Rev 67(7): 416-420. 

http://www.who.int/ipcs/publications/cicad/cicad63_rev_1.pdf
http://apps.who.int/iris/bitstream/10665/43444/1/9241563206_eng.pdf
http://whqlibdoc.who.int/publications/2009/9789241563550_eng.pdf
http://www.who.int/water_sanitation_health/dwq/chemicals/manganese.pdf


 

46 

Yoon, M., Nong, A., Clewell, H. J., 3rd, Taylor, M. D., Dorman, D. C. and Andersen, M. E. 

(2009). "Evaluating placental transfer and tissue concentrations of manganese in the 

pregnant rat and fetuses after inhalation exposures with a PBPK model." Toxicol Sci 

112(1): 44-58. 

Yu, X. and Cao, L. (2013). "Elevated cord serum manganese level is associated with a 

neonatal high ponderal index." Environ Res 121: 79-83. 

Yu, X. D., Zhang, J., Yan, C. H. and Shen, X. M. (2014). "Prenatal exposure to manganese at 

environment relevant level and neonatal neurobehavioral development." Environ Res 

133: 232-238. 

Zheng, W., Fu, S. X., Dydak, U. and Cowan, D. M. (2011). "Biomarkers of manganese 

intoxication." Neurotoxicology 32(1): 1-8. 

Zota, A. R., Ettinger, A. S., Bouchard, M., Amarasiriwardena, C. J., Schwartz, J., Hu, H. and 

Wright, R. O. (2009). "Maternal blood manganese levels and infant birth weight." 

Epidemiology 20(3): 367-373. 

 

 




