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“What is that feeling when you’re driving away from people and they recede on 

the plain till you see their specks dispersing? – it’s the too-huge world vaulting 

us, and it’s good-by. But we lean forward to the next crazy venture beneath the 

skies.” 

 

Jack Kerouac – On the Road 

  



 

 

 

 



 

ABSTRACT 

Skeletal muscle displays an extensive capacity to adapt to a wide range of 

metabolic and mechanical stressors. As an insulin-sensitive and exercise-

responding tissue, it plays a key role in the context of therapeutic interventions 

targeting metabolic diseases including type 2 diabetes (T2D) and obesity. The aim 

of this thesis was to gain mechanistic insight into the adaptive response of skeletal 

muscle to different genetic and environmental stressors by using in vitro and in 

vivo models. 

This work, with a unique in vitro longitudinal model, has allowed the broadening 

of knowledge about how skeletal muscle adapts to weight-loss surgery. Notably, 

glucose storage as glycogen, but not fatty acid oxidation was improved in 

myotubes derived from skeletal muscle biopsies from patients who underwent 

gastric bypass surgery. Potential new targets mediating the metabolic effects of 

surgery in skeletal muscle include proline-rich Akt substrate of 40kDa (PRAS40). 

By genotyping a cohort of individuals with either normal glucose tolerance 

(NGT), impaired glucose tolerance (IGT) or T2D, the impact of the ACTN3 

R577X polymorphism on metabolic disease was evaluated. A higher proportion 

of T2D patients with the homozygous null allele (577XX) was detected, but no 

further association with clinical parameters could be established. Rather, the 

presence of the 577XX genotype is associated with increased mRNA levels of 

genes involved in structural integrity of skeletal muscle. 

Surgical removal of synergistic skeletal muscle to induce functional overload and 

hypertrophy in the plantaris muscle of genetically modified mice addressed 

whether the γ3 subunit of the energy cell sensor AMPK plays a role in skeletal 

muscle remodeling in the context of hypertrophy. Following a 14-day functional 

overload, skeletal muscle of transgenic (R225Q), knockout and wild-type mouse 

models underwent a similar hypertrophic response, as demonstrated by functional, 

transcriptional and signaling data. Due to increased mass at baseline, the plantaris 

muscle of R225Q mice underwent a smaller change in weight gain. Overall, this 

work demonstrates that the AMPK γ3 isoform is dispensable for skeletal muscle 

hypertrophy. 

Collectively, the results presented in this thesis provide new information about the 

remodeling capacity of skeletal muscle in response to the above-mentioned 

stressors. Environmental and genetic factors affect skeletal muscle by modifying 

local signaling pathways and inducing changes in energy metabolism, 

subsequently impacting whole-body energy homeostasis. 
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1 INTRODUCTION 

1.1 LIFESTYLE-RELATED METABOLIC DISEASES 

1.1.1 Type 2 diabetes and obesity 

Lifestyle-related metabolic disorders such as obesity and type 2 diabetes 

(T2D) currently place an increasing global burden on public health and the 

economy. These afflictions mainly result from the synergistic effect of genetic and 

environmental factors, including reduced physical activity and increased caloric 

intake, and are exacerbated by population aging (Danaei et al., 2011). 

Progressively, over-nutrition and a sedentary lifestyle leads to obesity, as defined 

by an excessive accumulation of body fat that presents a risk for health (WHO, 

2015). Worldwide, 39% of the adult population is overweight and 13% is obese 

(WHO, 2015). Obesity in human adults is diagnosed using body mass index (BMI, 

kg/m2) (WHO, 2015). Waist circumference and waist-to-hip ratio have also 

emerged as complementary clinical tools to diagnose obesity and cardiometabolic 

risk (Ashwell et al., 2012; WHO, 2015). An individual is considered overweight 

with a BMI of 25 kg/m2 to 29.9 kg/m2, obese with a BMI of >30 kg/m2, and 

extremely obese with a BMI >40 kg/m2. As obesity develops, changes in whole-

body glucose and lipid metabolism occur and ultimately lead to insulin resistance. 

Together, obesity and insulin resistance are potent drivers of the metabolic 

syndrome, a constellation of risk factors that synergistically increase the risk for 

cardiovascular disease, T2D and mortality (Moller & Kaufman, 2005). 

More than 170 million individuals are estimated to have T2D and by 2030, 

this number is expected to increase to 366 million (Wild et al., 2004). T2D is a 

chronic, non-communicable disease characterized by abnormally increased blood 

glucose concentration (hyperglycemia) resulting from an incapacity of the body 

to efficiently utilize insulin to reduce blood glucose levels (WHO, 2015). Impaired 

glucose tolerance (IGT) often precedes overt T2D. IGT and T2D are clinically 

diagnosed using an oral glucose tolerance test (OGTT; Table 1) (IDF, 2006).  
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Table 1: 2006 WHO recommendations for the diagnostic criteria for 

impaired glucose tolerance and type 2 diabetes. 

 Fasting blood glucose  2 hr blood glucose  

Impaired glucose tolerance <7.0 ≥7.8 and <11.1 

Type 2 diabetes ≥7.0 ≥11.1 

Units are mmol/l. 

 

1.1.2 Strategies to improve metabolic health  

1.1.2.1 Lifestyle interventions 

The current recommended treatment for obesity and T2D include 

lifestyle intervention through physical activity and diet in order to reduce body 

weight and achieve better glycemic control (Boule et al., 2001; Tuomilehto et al., 

2001; Knowler et al., 2002; Colberg et al., 2010; Goodpaster et al., 2010). In 

insulin resistant people with T2D, the ability to switch between energy substrates 

for energy production, coined “metabolic flexibility” (Brooks & Mercier, 1994), 

is impaired. The relative contribution of energy substrates, including 

carbohydrates and lipids, is modulated by exercise intensity. Exercise training 

results in the ability to switch fuel sources and improves metabolic flexibility (Fig. 

1). Updated exercise prescription guidelines recommend a combination of both 

endurance and resistance-based exercise in order to tackle T2D (Colberg et al., 

2010). Finally, new strategies for exercise prescription in the context of metabolic 

disease include low volume, high intensity interval training (HIIT) (Hawley & 

Gibala, 2012). 
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1.1.2.2 Weight-loss surgery 

In extremely obese individuals (BMI ≥40 kg/m2), lifestyle intervention can 

be insufficient to decrease weight and improve whole-body homeostasis. Weight-

loss surgery, or bariatric surgery, is considered to be the most efficient strategy to 

treat extreme obesity, inducing major and durable weight loss (Carlsson et al., 

2012; Madsbad et al., 2014), as well as decreasing mortality and morbidity 

(Adams et al., 2007; Plecka Ostlund et al., 2011). Yearly, there are more than 

350,000 bariatric surgery interventions worldwide (Buchwald & Oien, 2009). 

Patients eligible for bariatric surgery must have a BMI ≥40 kg/m2 or ≥35 kg/m2 

in combination to a comorbidity, such as T2D.  

Laparoscopic Roux-en-Y gastric bypass surgery (RYGB) is a 

malabsorptive surgical procedure that creates a pouch of 30 mL at the distal end 

of the stomach, causing the nutrients to bypass the rest of the stomach and the 

Figure 1: Exercise training and the concept of skeletal 

muscle metabolic flexibility. While exercise intensity 

increases, so does the relative contribution of 

carbohydrates for energy production. Exercise training 

allows a more efficient use of lipids and the sparing of 

glycogen stores in liver and muscle (adapted from Brooks 

and Mercier, 1994).   
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upper part of the small intestine. RYGB patients experience higher satiety and 

decreased hunger, leading to a progressive average loss of 62% of the excess 

weight and maximum weight loss is generally achieved 1.5-2.0 years after the 

intervention (Buchwald et al., 2004). Early metabolic changes occurring in 

patients after RYGB include improved glycemic control and insulin sensitivity. 

The changes in whole-body glucose homeostasis often occur before surgery-

induced weight loss. Importantly, 70% to 80% of patients having T2D as a 

comorbidity get off from their anti-diabetic medication and undergo remission 

(Buchwald et al., 2004; Sjostrom et al., 2004). 

RYGB is an invasive surgical procedure and is not without complications 

or consequences. Depending on the type of procedure, surgical complications can 

occur and require a second operation (Buchwald et al., 2014). Malabsorption of 

micronutrients (vitamins, iron, zinc) can happen after RYGB (Tack & Deloose, 

2014). Moreover, RYGB does not “protect” from the reward aspect of food or 

reverse hedonic hunger or food cravings (Delin et al., 1997). Patients can also 

experience early or late dumping-like symptoms (sweating, tachycardia, nausea, 

and diarrhea) following meal ingestion (Tack & Deloose, 2014). Finally, re-

gaining weight is still possible, although the prevalence and amount of weight 

depends on the surgical procedure (Sjostrom et al., 2004). 

To summarize, skeletal muscle plasticity allows functional and 

molecular adaptations following various exercise stimuli and/or dramatic weight 

loss interventions. The discovery of new targets, mechanisms or genetic 

variations associated with exercise response and subsequent improvements in 

metabolic status will facilitate the development of potential new avenues to treat 

and manage diseases (Fig. 2). 
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1.2 SKELETAL MUSCLE PHYSIOLOGY AND METABOLIC 

PROPERTIES 

1.2.1 Skeletal muscle and exercise 

Skeletal muscle represents more than 40% of total body mass and accounts 

for 30% of the basal metabolic rate (Zurlo et al., 1990). This tissue is the main site 

of insulin-stimulated glucose uptake and consumes 80% of circulating glucose 

under resting conditions, thus playing a central role in whole-body glucose and 

energy homeostasis (DeFronzo et al., 1981). Exercise plays a key role in the 

prevention and treatment of obesity and T2D. During physical exercise, whole-

body metabolic rate can increase by up to 20-fold and ATP turnover, by 100-fold 

(Gaitanos et al., 1993). Both acute exercise and repeated bouts of exercise (i.e. 

training) have a positive impact on whole-body energy metabolism and insulin 

sensitivity. Following an acute bout of exercise, improvements in whole-body 

insulin sensitivity and glucose tolerance persist for 48 hours (Mikines et al., 1988), 

highlighting the potency of physical activity as a remedy for metabolic disease. 

During exercise, skeletal muscle increases ATP turnover to meet the high-

energy demand placed upon the organism (Gallagher et al., 1998). Muscle 

contraction stimulates glucose uptake through an insulin-independent pathway, 

enhancing glucose disposal despite insulin resistance or T2D (Wallberg-

Henriksson & Holloszy, 1984, 1985). Following metabolic or mechanical stimuli, 

Figure 2: Unraveling mechanisms of skeletal muscle plasticity in response to various 

physiological and genetic stress factors. Green and red arrows indicate a potential 

positive or negative impact, respectively. 
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skeletal muscle exhibits extensive plasticity to maintain energy balance under 

diverse physiological conditions, ranging from starvation to nutrient excess. 

Physical activity, or lack thereof, profoundly impacts skeletal muscle function in 

a “use it or lose it” manner, altering molecular pathways that control fuel 

utilization, muscle growth, as well as oxidative properties. 

1.2.2 Insulin signaling  

1.2.2.1 Insulin-mediated glucose uptake  

Insulin stimulates glucose entry into skeletal muscle for storage or 

utilization as an energy substrate. Insulin binding to the insulin receptor on the cell 

membrane results into auto-phosphorylation of the receptor and activation of its 

tyrosine kinase activity (Hubbard et al., 1994). The activated insulin receptor 

subsequently phosphorylates insulin receptor substrates (IRS) (White et al., 1985). 

This activates the phosphoinositide 3-kinase (PI3K) signaling cascade (Bellacosa 

et al., 1998), leading to phosphorylation and activation of Akt and downstream 

effectors, including Akt-substrate of 160 kDa (AS160). AS160 activation 

ultimately results in the translocation of glucose transporter GLUT4 from the 

intracellular pool to the plasma membrane and allows glucose to enter the cell 

(Sano et al., 2003). Akt phosphorylation and activation also stimulates glycogen, 

lipid and protein synthesis (Fig. 3). 
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1.2.2.2 Skeletal muscle insulin resistance 

Obese individuals have an increased reliance on carbohydrates vs. lipids 

compared to healthy lean individuals (Tremblay et al., 1989) and an incapacity to 

increase the contribution of lipids as a substrate for energy production during 

physical activity (Battaglia et al., 2012). Insulin resistance is a characteristic 

feature of the metabolic syndrome and precedes T2D. Insulin resistance arises 

from defects in insulin-stimulated glucose transport and insulin signaling, due in 

part from altered lipid metabolism and inflammatory responses (Fig. 3). High 

levels of circulating fatty acids and accumulation of intramuscular lipid 

intermediates are involved in the development of insulin resistance (Krssak et al., 

1999). Notably, the accumulation of diacylglycerol in skeletal muscle impairs 

intracellular signaling by activating members of the protein kinase C (PKC) family 

of signaling intermediates (Itani et al., 2002; Szendroedi et al., 2014), while 

ceramides negatively impact Akt signaling (Stratford et al., 2004; Holland et al., 

Figure 3: Insulin signaling and insulin resistance in skeletal muscle. Increased circulatory 

levels of fatty acids (FA) can lead to increased intracellular levels of ceramides and 

diacylglycerols (DAGs), which together with elevated levels of stress signaling kinases JNK 

and IKK and SOCS3, negatively regulate the insulin signaling cascade. 
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2011). Chronic low-grade inflammation also impairs insulin signaling in skeletal 

muscle. Increased circulating levels of TNFα activates intracellular stress kinases 

IκB kinase (IKK) and c-Jun terminal kinase (JNK), inducing inhibitory serine 

phosphorylation of IRS (Aguirre et al., 2000; Werner et al., 2004). Finally, 

elevated levels of suppressor of cytokine signaling 3 (SOCS3) are reported in 

skeletal muscle from T2D patients (Rieusset et al., 2004; Mashili et al., 2013). 

SOCS3 negatively regulates insulin signaling by inhibiting tyrosine kinase activity 

of the insulin receptor (Emanuelli et al., 2000). 

1.2.2.3 Contraction-mediated glucose uptake 

Through an insulin-independent mechanism (Nesher et al., 1985; Lee et 

al., 1995), skeletal muscle contraction results into the translocation of GLUT4 to 

the plasma membrane and the subsequent entry of glucose into the muscle cell 

(Lund et al., 1995). Muscle contraction stimulates calcium release from the 

sarcoplasmic reticulum leading to an increased AMP:ATP ratio into the cell. This 

increase in the AMP:ATP ratio activates an energy sensor of the cell, namely 

AMP-activated protein kinase (AMPK), which in turn phosphorylates AS160 

(Treebak et al., 2006). Both insulin- and contraction-mediated glucose uptake 

signaling are summarized in Fig. 4. 
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1.2.3 The sarcomere 

Skeletal and cardiac muscle are sometimes referred as “striated muscle” 

because of their striated aspect resulting from the highly ordered longitudinal 

alignment of sarcomeres, the contractile and functional units of muscle. The 

borders of the sarcomere are defined by the Z-line, while the M-line stands in the 

middle. The sarcomere is mainly composed of contractile proteins myosin (thick 

filament) and actin (thin filament) and muscle contraction occurs through actin-

myosin cross-bridge cycling, according to the sliding filament theory (Huxley & 

Niedergerke, 1954; Huxley & Hanson, 1954). Actin filaments are cross-linked 

together by alpha-actinin (α-actinin) at the Z-line (Masaki et al., 1967). Giant 

Figure 4: Insulin and contraction-mediated glucose uptake. Insulin binds to the insulin 

receptor and triggers the insulin signaling cascade, ultimately leading to the translocation of 

the glucose transporter (GLUT4) from the intracellular pool to the plasma membrane and to 

glucose uptake into the cell. AMPK activation also leads to GLUT4 translocation and glucose 

uptake. 
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protein titin spans from the Z-line to the M-line and stabilizes the actin-myosin 

filament (Wang et al., 1979; Labeit & Kolmerer, 1995). Nebulin is another giant 

protein that forms a helix with the actin protein and serves as molecular ruler 

(Labeit et al., 1991). Several other structural sarcomeric proteins including 

capping proteins, calsarcins, myotilin, myopalladin, and PDZ and LIM domain 

proteins are located at the Z-line and interact with, among others, α-actinin. A 

simplified version of the molecular architecture of the sarcomere is presented (Fig. 

5). 

 

 

Figure 5: Schematic representation of the sarcomere and Z-line proteins. 
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1.2.4 Skeletal muscle fiber type 

The capacity of skeletal muscle to adapt to stressors is largely defined by 

the structural and functional characteristics of the muscle fibers. Several different 

muscle fibers exist and their classification is based on sarcomeric myosin heavy 

chain (MyHC) isoform composition, speed of contraction and resistance to fatigue 

properties (Schiaffino & Reggiani, 2011). Different fiber types can also co-exist 

heterogeneously in the same muscle (Schiaffino et al., 1970). Skeletal muscle fiber 

type is divided between type 1, slow-twitch, oxidative fibers, and type 2, fast-

twitch, glycolytic fibers (Needham, 1926; Buller et al., 1960). Type 2 fibers are 

subdivided in three distinct types, fast-twitch oxidative glycolytic type 2A, 2X and 

2B (Larsson et al., 1991; DeNardi et al., 1993). The power generated by muscle 

contraction is directly related to the ATP hydrolysis rate of myosin (Barany, 

1967). Type 1 fibers have a low rate of ATP utilization and a slow contracting 

speed and power, but are fatigue resistant. They are also rich in mitochondria and 

myoglobin (Schiaffino et al., 1970). Type 2 fibers can generate powerful and rapid 

contractions, but are more fatigue-prone and consume a higher rate of ATP. They 

contain less mitochondria than type 1 fibers and have low to intermediate levels 

of myoglobin (Schiaffino et al., 1970). Among type 2 fibers, type 2A is the most 

fatigue resistant and type 2B is the most fatigue prone, but also the “most 

powerful” (2B > 2X > 2A) (Larsson et al., 1991). The Z-line is thicker in type 2 

fibers than in type 1 fibers. Variability in fiber type distribution exists between 

rodents and humans. While mice have a higher proportion of type 2, fast-twitch, 

muscle fibers, humans display a higher proportion of slow-twitch muscle fibers 

(Pellegrino et al., 2003). 

Metabolic properties are tightly linked to the structural architecture and 

composition, which varies according to skeletal muscle fiber type. Type 1 

oxidative fibers contain a higher amount of GLUT4 and have a high rate of glucose 

uptake (Goodyear et al., 1991). All muscle fibers can store and utilize glycogen 

and lipids, with type 2 fibers containing more glycogen than type 1 and type 1 

fibers being glycogen-depleted before type 2 in response to exercise (Vollestad et 

al., 1984; Greenhaff et al., 1993). Transport, storage and utilization of fatty acids 

is larger in type 1 fibers than in type 2 fibers (Chabowski et al., 2006). Given that 
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muscle fiber type influences glucose and lipid metabolism, differences in fiber 

type composition or changes in metabolic properties resulting from lifestyle 

alterations or physical inactivity could be involved to the development of insulin 

resistance and metabolic diseases. 

1.3 REGULATION OF EXERCISE ADAPTATIONS 

Repeated bouts of exercise or muscle contraction triggers alterations in 

mRNA expression, protein abundance and enzyme activity, resulting into chronic 

functional and physiological adaptations of skeletal muscle to support greater 

energy demands (Egan & Zierath, 2013). To regulate exercise adaptations, 

different signaling pathways are at work and the type of exercise performed will 

modulate the molecular changes leading to a particular physiological response. 

1.3.1 Muscle contraction and calcium signaling 

The induction of an action potential by the motoneuron induces calcium 

ion (Ca2+) release from the sarcoplasmic reticulum. Ca2+ subsequently binds to 

troponin, which exposes the actin-binding site for myosin. Myosin attaches to 

actin to form actomyosin cross-bridges and muscle contraction occurs (Podolsky 

& Schoenberg, 1983). In addition to contraction, calcium is also involved in the 

adaptive response of skeletal muscle to exercise. Intermediates of calcium 

signaling include the protein phosphatase calcineurin. Calcineurin regulates the 

transcriptional activity of calcineurin-dependent nuclear factor of activated T-cells 

(NFAT) and modulates the expression of genes involved in the determination of 

the fast/slow phenotype of skeletal muscle fibers (Im & Rao, 2004; McCullagh et 

al., 2004). 

1.3.2 The cellular energy sensor AMPK 

The serine/threonine protein kinase AMPK monitors the energy state of 

the cell by sensing both AMP:ATP and ADP:ATP ratios (Hardie, 2014). High 

energy demand increases the rate of ATP hydrolysis in the cell, causing AMP and 

ADP levels to rise. When an organism is under conditions of metabolic stress that 

decrease ATP levels, such as starvation and endurance exercise, AMPK acts as 
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molecular switch to restore ATP levels and energy homeostasis. Both adenine 

nucleotides bind to the γ regulatory subunit of AMPK, triggering phosphorylation 

of the Thr172 residue of the catalytic α subunit, and increasing kinase activity by 

more than 100-fold (Hawley et al., 1996). Moreover, the allosteric activation of 

AMPK by binding of AMP to the γ regulatory subunit inhibits dephosphorylation 

by protein phosphatases by altering the conformation of the heterotrimer (Davies 

et al., 1995; Xiao et al., 2011). Upon activation, AMPK activates energy-

producing pathways, such as glucose transport and lipid oxidation while 

simultaneously halting energy-consuming processes such as protein and lipid 

synthesis. Because of its role in fuel source switching, AMPK constitutes an 

attractive target in the context of metabolic disease. 

AMPK consists of a catalytic α subunit, a regulatory β subunit and a 

regulatory γ subunit. The combination of the different isoforms (α1/α2, β1/β2, 

γ1/γ2/γ3) of the subunits leads to a possibility of 12 different heterotrimers, 

highlighting the possibility that AMPK isoforms have different functional roles. 

Indeed, tissue-specific heterotrimeric combinations exist and impact metabolism 

and the response to exercise (Klein et al., 2007; Kjobsted et al., 2014). In skeletal 

muscle, the α2β2γ3 is the predominant AMPK complex. The γ3 isoform, encoded 

by the PRKAG3 gene, is the most widely expressed isoform of the γ subunit in 

human skeletal muscle and its expression is highly specific to glycolytic white 

skeletal muscle (Mahlapuu et al., 2004). The discovery of the R200Q non-

conservative substitution in the PRKAG3 gene in Hampshire pigs prompted 

attention for a role of the muscle-specific γ3 isoform in energy metabolism (Milan 

et al., 2000). Skeletal muscle from pigs carrying the mutation has a low ultimate 

pH (measured 24 hours after slaughter), reduced water holding capacity and 

increased glycogen content (Milan et al., 2000). The phenotype resulting from the 

mutation has a negative impact on meat industry economics and pig breeding 

industry. This mutation can also be found in humans (Costford et al., 2007). In 

mice, the R225Q single-nucleotide polymorphism in the Prkag3 gene mimics the 

PRKAG3 R200Q mutation in pigs and also results in an altered glycogen 

phenotype (Barnes et al., 2004). The in vivo effects of the R225Q mutation were 

extensively characterized using Tg-Prkagwt, Tg-Prkag3225Q and Prkag3-/- mice 
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models (Barnes et al., 2004; Barnes et al., 2005a; Barnes et al., 2005b; Garcia-

Roves et al., 2008). 

1.3.3 Skeletal muscle hypertrophy 

Adaptations to resistance-based exercise ultimately lead to an increase in 

protein synthesis, muscle hypertrophy (the enlargement of pre-existing muscle 

fibers) and the development of a greater force production (Egan & Zierath, 2013). 

The IGF1/PI3K/Akt pathway mediates signal transduction leading to cell growth 

and skeletal muscle hypertrophy. Insulin and insulin-like growth factor 1 (IGF1) 

bind to the IGF1 and the insulin receptors, resulting in the phosphorylation of IRS1 

(White et al., 1985; Izumi et al., 1987; Hubbard et al., 1994) and the stimulation 

of the PI3K/Akt pathway. When activated, Akt directly phosphorylates and 

inhibits tuberous sclerosis complex 2 (TSC2), which in turn activates the serine 

threonine protein kinase mammalian target of rapamycin complex 1 (mTORC1) 

(Inoki et al., 2002). mTORC1 subsequently phosphorylates of p70S6k and 

downstream effectors of p70S6k include ribosomal protein S6 (RPS6) and 

eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), whose 

phosphorylation by p70S6k results in activation and inhibition, respectively, 

leading to ribosomal biogenesis and protein translation/elongation (Bodine et al., 

2001). mTORC1 is a complex including the serine threonine protein kinase 

mTOR, regulatory-associated protein of mTOR (Raptor), and proline-rich Akt 

substrate of 40 kDa (PRAS40). This complex integrates various molecular signals 

and consequently regulates protein synthesis and degradation (Zhang et al., 2014). 

In addition to be a member of mTORC1, PRAS40 is a substrate for Akt and could 

play a role in improved insulin signaling and sensitivity in skeletal muscle (Wiza 

et al., 2014). 

Skeletal muscle growth and protein synthesis depend on the fine-tuning 

between the energy sensors AMPK and mTORC1 since they are likely to have 

antagonistic effects on the control of metabolism and on the size of the muscle cell 

(Mounier et al., 2011). Impaired signaling of mTORC1 and its downstream 

effectors (such as p70S6k) results in defective muscle cell growth, which 

correlates with increased AMPK activation (Mounier et al., 2011). AMPK 
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activation inhibits protein synthesis and impairs Akt/mTOR signaling (Bolster et 

al., 2002), notably via TSC2 or Raptor (Inoki et al., 2003; Gwinn et al., 2008). 

While the role of mTORC1 is to promote skeletal muscle hypertrophy, the role of 

AMPK is to limit muscle growth or promote skeletal muscle atrophy (Fig. 6). 

 

Skeletal muscle growth and hypertrophy is also associated with changes 

in other hypertrophic/atrophic markers. For instance, the activation of protein 

synthesis by the IGF1/PI3K/Akt signaling cascade is accompanied by changes in 

atrophic markers E3 ubiquitin ligases, including Mafbx and MuRF1 (Latres et al., 

2005). Myostatin is also a negative regulator of muscle mass (McPherron et al., 

1997) and represses Akt signaling (Sartori et al., 2009). Gene expression of a 

splice variant originating from the alternative promoter of PGC1α, named PGC1-

Figure 6: Crosstalk between mTORC1 and AMPK signaling. IGF1 binds to its membrane 

receptor and triggers the IGF1 signaling cascade, ultimately leading to phosphorylation of 

downstream effectors of mTORC1 resulting into protein synthesis and muscle hypertrophy. 

AMPK represses mTORC1 activity by phosphorylating TSC2 and Raptor. 
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α isoform 4 (PGC1α4) (Ruas et al., 2012) is also up-regulated in resistance 

exercise in humans and prevents skeletal muscle atrophy induced by cancer-

cachexia. However, the precise role of PGC1α4 in the regulation of skeletal 

muscle hypertrophy is still controversial (Perez-Schindler et al., 2013; Lundberg 

et al., 2014). 

AMPK and mTOR regulate autophagy, a self-digestive, tightly-regulated, 

cellular process where cytoplasmic components are degraded to generate nutrients 

and energy for the cell, by exerting opposite effects. Nutrient deprivation, acute 

exercise and subsequently AMPK activation, promotes autophagy by activating 

transcription factor forkhead box O3 (FOXO3) and by repressing mTOR (Kim et 

al., 2011; Sanchez et al., 2012). Autophagy is required for exercise training-

induced adaptations in skeletal muscle (He et al., 2012). Thus, another mechanism 

by which AMPK may possibly control muscle mass is by modifying autophagy. 

1.3.4 Gene variants as determinants of exercise performance 

Both genetic and environmental factors contribute to the development of 

metabolic disease. In the same way that gene variants impact T2D (Bonnefond et 

al., 2010; Dimas et al., 2014), the response to exercise can be inherited (Bouchard 

et al., 1998; De Moor et al., 2007). Heritability can account for approximately 

50% of the variation in aerobic capacity, as evaluated by VO2max in untrained 

individuals or in response to exercise training (Bouchard et al., 1998; Bouchard et 

al., 1999). Several genetic traits are also associated to endurance or sprint- and 

power-based exercise performance. Those include the angiotensin-converting 

enzyme insertion/deletion (ACE I/D), where the I allele is associated with 

endurance performance, while the D allele associates with sprint and power 

performance (Rigat et al., 1990; Danser et al., 1995). A polymorphism in the 

ACSL1 gene (rs6552828), an enzyme involved in cellular lipid handling, accounts 

for 3.5% of VO2max trainability (Bouchard et al., 2011). However, the gene 

variant most consistently associated to athletic performance in humans is the 

ACTN3 R577X polymorphism (Eynon et al., 2013). 
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1.3.5 The ACTN3 R577X polymorphism 

The α-actinin protein was first identified in 1965 (Ebashi & Ebashi, 1965) 

and was reported to be very similar to actin, citing a possible role in skeletal 

muscle contraction. Following early experiments revealing that α-actinin was 

necessary for maximal binding of actin and myosin (Ebashi & Ebashi, 1965), α-

actinin was recognized as an actin crosslinking Z-line protein (Masaki et al., 

1967). Later, its complete amino acid sequence was published (Arimura et al., 

1988). Different skeletal muscle-specific isoforms α-actinin 2 and 3 (encoded by 

genes ACTN2 and ACTN3) were then discovered (Beggs et al., 1992) and in 

1996, the α-actinin 3 protein was reported to be specific to glycolytic skeletal 

muscle (North & Beggs, 1996). Very recently, the crystal structure of human 

skeletal muscle α-actinin was published, providing new insight into the molecular 

architecture of the Z-line (Ribeiro Ede et al., 2014).  

The ACTN3 R577X polymorphism (rs1815739) is a common nonsense 

polymorphism due to the transition of C for a T in the nucleotide sequence, 

substituting an arginine (R) for a stop codon (X) at amino acid 577 (North et al., 

1999). Consequently, carriers of the ACTN3 577XX genotype do not express α-

actinin protein. Although the SNP was identified in the context of work focusing 

on neuromuscular diseases, no disease phenotype is known to arise from the 

absence of α-actinin 3 in skeletal muscle. Following the identification of the SNP 

and because of the fiber type-specificity of ACTN3 expression, genotyping of 

various athlete cohorts established an association between the R577X 

polymorphism and muscle performance. The 577RR genotype is 

underrepresented in athletes specializing in power and strength-focused activities, 

such as sprint and heavy weight-lifting, when compared to endurance athletes or 

to healthy control individuals (Yang et al., 2003; Niemi & Majamaa, 2005; 

Druzhevskaya et al., 2008; Papadimitriou et al., 2008; Roth et al., 2008). At the 

other end of the exercise continuum, elite endurance athletes display a higher 

prevalence of the 577XX genotype compared to healthy controls (Yang et al., 

2003; Niemi & Majamaa, 2005; Eynon et al., 2009; Shang et al., 2010). 
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The prevalence and distribution of the ACTN3 R577X polymorphism 

among the athlete population highlighted a potential role for α-actinin 3 in glucose 

or lipid metabolism in skeletal muscle (Berman & North, 2010). However, a clear 

biological and molecular mechanism linking the presence or absence of α-actinin 

3 to skeletal muscle performance remains to be established. The generation of the 

ACTN3-/- mouse model offers insight into the mechanism by which α-actinin 3 

impacts muscle performance (MacArthur et al., 2007; MacArthur et al., 2008; 

Quinlan et al., 2010; Seto et al., 2011; Seto et al., 2013). ACTN3-/- mice have 

lower body weight and lean mass than wild-type counterparts, which could be 

partly explained by a smaller cross-sectional fiber surface area of glycolytic 2X 

muscle fibers. Muscle fiber type distribution is unaltered between ACTN3-/- and 

wild-type. Furthermore, ACTN3-/- mice have enhanced endurance performance 

(run to exhaustion) and decreased grip strength compared to wild-type littermates. 

Skeletal muscle metabolic properties of ACTN3-/- mice shift towards an oxidative 

phenotype, together with increased glycogen content and glycogen phosphorylase 

activity. Finally, ACTN3-/- mice also show higher susceptibility to muscle damage 

when subjected to extreme eccentric contractile activity. α-Actinin 2 protein 

abundance is increased in skeletal muscle of ACTN3-/- mice, presumably as a 

compensatory response for the lack of α-actinin 3. Recently, ACTN3 was shown 

to reprogram skeletal muscle in response to training by promoting a shift toward 

an oxidative fiber phenotype via calcineurin signaling (Seto et al., 2013). In 

humans, a role for α-actinin 3 has been investigated in the context of McArdle’s 

disease (Lucia et al., 2007), spinal cord injury (Broos et al., 2012), aging (Zempo 

et al., 2011), and muscle immobilization (Garton et al., 2014). However, the 

relationship between the presence or absence of α-actinin 3 and metabolic diseases 

remains unexplored. 
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2 AIMS 

Detailed understanding of the molecular mechanisms regulating skeletal 

muscle response to either metabolic or hypertrophic stimuli is vital for the 

development and improvement of current existing therapeutic interventions and 

for the discovery of potential new targets to treat metabolic disease.  

Therefore, the overarching aim of this thesis is to unravel mechanisms 

associated with the development of insulin resistance in metabolic disease by 

characterizing pathways regulating metabolism and growth in skeletal muscle.  

The specific aims of this thesis include: 

- To evaluate the myogenic and metabolic profile from primary skeletal 

muscle cells derived from severely obese people before and after gastric 

bypass surgery. 

 

- To examine the prevalence of the ACTN3 R577X polymorphism in a 

cohort of people with NGT, IGT, or T2D and to determine the impact of 

this polymorphism on glucose metabolism, mitochondrial complex 

enzymes, and the skeletal muscle contractile network. 

 

- To determine the contribution of the γ3 subunit of AMPK on the 

hypertrophic response of skeletal muscle to functional overload. 
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3 METHODS 

3.1 STUDY PARTICIPANTS 

In Study I, 8 obese non-diabetic subjects (1 male and 7 female), underwent 

laparoscopic RYGB surgery. A subset of the subjects have been included in a 

previous study (Barres et al., 2013). The clinical characteristics of these 

participants are presented in Paper I, Table 1. For Study II, 177 male and female 

volunteers with NGT or T2D were included in the study. The initial analysis also 

included patients with IGT, leading to a total of 211 participants. The entire cohort 

was also studied previously (Fritz et al., 2011; Fritz et al., 2013) and the clinical 

parameters describing the NGT and T2D participants are presented in Paper II, 

Table 1. The clinical characteristics of the IGT subjects are included in Table 4. 

All participants provided written informed consent and all protocols were 

approved by the Ethics Committee of Karolinska Institutet. 

3.1.1 Anthropometric and metabolic measurements 

Upon enrolment, participants to Study II underwent a complete medical 

examination and anthropometric and metabolic characteristics were measured. 

Participants were classified as NGT, IGT or T2D following an OGTT performed 

as described (Fritz et al., 2011; Fritz et al., 2013). Inclusion criteria for all groups 

were an age range of 45–69 years old and a BMI > 25 kg/m2. T2D patients had 

HbA1c levels ranging from 7.4% to 9.8%. Exclusion criteria were physical 

impairments, symptomatic angina pectoris, atrial fibrillation measured by ECG, 

systolic or diastolic blood pressure >160 and >100 mmHg, respectively, or insulin 

treatment. Cardiorespiratory fitness was assessed by measuring oxygen uptake 

using a ramp test on a mechanically braked ergometer as described previously 

(Fritz et al., 2013). 

3.1.2 Skeletal muscle biopsies 

For Studies I and II, skeletal muscle biopsies were obtained from the 

participants. Biopsies (20–100 mg) were obtained from the vastus lateralis portion 

of the quadriceps femoris muscle using a Weil-Blakesley conchotome 
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(Dietrichson et al., 1987) under either general (Paper I) or local anesthesia 

(lidocaine hydrochloride 5 mg/mL; Paper II) after an overnight fast. Biopsies 

were washed and either put in PBS at 4°C (Paper I) or immediately snap-frozen 

in liquid nitrogen (Paper II). 

3.2 ANIMALS AND SURGICAL PROCEDURES 

3.2.1 Genetically modified mouse models 

The Tg-Prkag3225Q and Prkag3-/- mice used for Study III were previously 

generated and extensively characterized (Barnes et al., 2004; Barnes et al., 2005a; 

Barnes et al., 2005b). Mice had free access to standard rodent chow (4% fat, 16.5% 

protein, 58% carbohydrates, 3.0 kcal/g; Lantmännen, Stockholm, Sweden) and 

water. Animals were housed with same-sex littermates and kept on a 12 hr light-

dark cycle at constant temperature and humidity. All procedures were approved 

by the Stockholm North Ethical Committee and conducted in agreement with the 

regulations for protection of laboratory animals. 

3.2.2 Functional overload using the synergistic ablation model 

Tg-Prkag3225Q and Prkag3-/- male mice and wild-type littermates underwent 

functional overload of the plantaris muscle at 13 to 15 weeks of age. Functional 

overload was accomplished by bilateral surgical removal of the soleus and 

gastrocnemius muscles (Baldwin et al., 1981; Bodine & Baar, 2012). Mice were 

first anesthetized with isoflurane. An incision was made on the side of the leg from 

the ankle to the knee. The soleus and gastrocnemius muscles were excised and the 

skin of the leg was sutured back together (Fig. 7). In the control condition, mice 

were sham-operated: the plantaris, soleus, and gastrocnemius muscles were gently 

separated from each other with blunt ends forceps. During and following the 

surgical procedure, mice were given the analgesic buprenorphine (Temgesic; 

0.05-0.1 mg/kg, RB Pharmaceuticals Limited, Slough, UK) by subcutaneous 

injection. After 14 days, fed mice were anesthetized with Avertin (0.02 mL/g; 

2.5% solution of 99% 2,2,2-tribromo ethanol and tertiary amyl alcohol) by intra-

peritoneal injection, plantaris muscles were removed, weighed, snap-frozen in 

liquid nitrogen, and stored at -80°C until further processing. To measure lean and 
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fat mass, mice underwent magnetic resonance imaging (EchoMRI-100; EchoMRI, 

Houston, USA) prior to the functional overload procedure and collection of the 

plantaris muscle.  

 

3.3 CELL CULTURE 

3.3.1 Growth and differentiation of primary human skeletal muscle cells   

For Study I, primary human myoblasts were isolated from biopsies taken 

before and six months after gastric bypass surgery from vastus lateralis muscle of 

8 subjects and propagated in vitro (Al-Khalili et al., 2003). For Study II, 

commercially available primary myoblasts were purchased from Lonza (#CC-

2561, Copenhagen, Denmark). Myoblasts were grown in Dulbecco's Modified 

Eagle Medium (DMEM) Nutrient Mixture F12 (Gibco, Life Technologies, 

Stockholm, Sweden) supplemented with 20% fetal bovine serum (FBS; Gibco), 

1% penicillin/streptomycin (Gibco) and 1% Fungizone® (Gibco). When reaching 

80% confluence, cells were passaged using trypsin digestion (TrypLE™ Express 

Enzyme; Gibco). Cells were plated in 6-well plates for individual experiments. At 

Figure 7: Synergistic ablation model. A) View from the tibialis anterior, soleus and 

gastrocnemius muscles following lateral incision of the mouse hindlimb B) Excision of soleus 

and gastrocnemius muscles C) Plantaris muscle undergoes hypertrophy. 
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90% confluence, myoblasts were differentiated into myotubes by the addition of 

a low-serum media (DMEM + glutamax (1 g/L glucose; Gibco) supplemented 

with 2% (2 first days of differentiation) to 4% FBS (after day 2 post-

differentiation), 1% penicillin/streptomycin and 1% Fungizone®. Metabolic 

assays were performed on day 5 post-differentiation. Cell cultures were 

maintained at 37°C under 7.5% CO2. 

3.3.2 Metabolic assays – Glucose incorporation into glycogen 

Glucose conversion into glycogen was determined by incubating 

myotubes with [14C]-labelled glucose, precipitation of newly synthetized glycogen 

and determination of radioactivity. Fully differentiated myotubes were serum-

starved for 4 hours and subsequently incubated for 30 min in the presence or 

absence of 120 nM of insulin (Actrapid, Novo Nordisk, Copenhagen, Denmark). 

Insulin was diluted in DMEM and bovine serum albumin (Sigma-Aldrich, St. 

Louis, MO, USA). Myotubes were incubated with 50 ng/ml of recombinant IL8 

(Sigma-Aldrich) for 2 hours prior to the insulin treatment as indicated in figure 

legends of Paper I. Radioactive-labelled glucose (D-[U-14C]-glucose with 1 

µCi/ml; Perkin-Elmer) was diluted into DMEM and 1 mL was added to the cells, 

which were incubated for 90 min. After incubation, cells were rapidly washed 3 

times with ice-cold PBS and frozen at -20°C. Cells were thawed and lysed using 

500 μL of 0.03% SDS per well. A volume of 350 μL of the cell lysate was 

transferred to 2 mL tubes to which 0.2 mg of glycogen carrier (Sigma-Aldrich) 

was added. Protein concentration was determined using a bicichoninic acid protein 

assay kit (Pierce, Rockford, IL, USA). Samples were boiled for 60 min and 1.5 

mL of 99% ethanol was added to the tubes which were stored at -20°C overnight 

for glycogen precipitation. Samples were then subjected to centrifugation (10,000 

rpm for 15 min) at room temperature and ethanol was removed. Samples were 

washed twice with 1.2 mL of 70 % ice-cold ethanol. After the last wash, samples 

were left to dry at room temperature and glycogen was dissolved in 400 μL of 

water overnight. A 200 μL aliquot of the sample was added to a scintillation vial 

containing 2.8 mL of scintillation liquid (Ultima Flo™ M, Perkin-Elmer) and 

radioactivity was determined with a beta-counter (Wallac, Turku, Finland). 
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3.3.3 Metabolic assays – Palmitate oxidation 

Utilization of the fatty-acid palmitate was measured in vitro by treating fully 

differentiated myotubes with [3H]-labeled palmitate and measuring the [3H]-

labeled water, an end product of fatty-acid beta-oxidation. Myotubes were serum-

starved for 2 hours and subsequently incubated for 6 hours in 1 mL of DMEM 

with or without 20 μM or 500 μM palmitic acid (Sigma-Aldrich) supplemented 

with 0.5 μCi [3H] radioactivity-labeled [9-10-3H(N)] palmitic acid (Perkin-Elmer). 

Palmitic acid was supplemented with 50 ng/ml of recombinant IL8 (Sigma-

Aldrich) as indicated in figure legends of Paper I. Cell media was then collected 

and cells were quickly washed 3 times in ice-cold PBS. To absorb the non-

metabolized palmitate, 0.2 ml of cell media was added to 0.8 ml of charcoal slurry 

(0.1 g charcoal powder (Sigma-Aldrich) in 1 ml of 0.02 M Tris-HCl buffer, pH of 

7.5) and shaken intermittently for 30 min. Samples were then subjected to 

centrifugation at 13,000 rpm for 15 min. Then 0.2 ml of supernatant with [3H]-

labeled water was pipetted into scintillation vials containing 2.8 ml of scintillation 

liquid and radioactivity was measured with a beta-counter (Wallac). 

3.4 DNA EXTRACTION AND GENOTYPING 

For Paper II, venous blood was collected from the participants after an 

overnight fast and stored in Vacutainer® tubes containing EDTA (BD, Stockholm, 

Sweden) and stored at -80°C for further analysis. Genomic DNA (gDNA) was 

extracted from 200 µL of whole blood using a commercial kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. Using 10 µg of input 

gDNA, genotyping for the ACTN3 R577X SNP was performed by PCR 

amplification (10 min at 95°C followed by 40 cycles of 15 seconds at 95°C for 1 

min at 60°C) followed by allelic discrimination using fluorogenic probes (1 cycle 

of 1 min at 60°C; TaqMan® SNP Genotyping Assays, ID C_590093_1; Applied 

Biosystems, Foster City, CA, USA) using a thermal cycler (ABI 7000, Applied 

Biosystems). The same kit, reagents and protocol were used to genotype the 

human skeletal muscle cells. 
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3.5 RNA EXTRACTION AND GENE EXPRESSION MEASUREMENT 

For Studies II and III, total RNA was extracted from 10 to 30 mg of human 

or mouse skeletal muscle using TRIzol® (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s instructions. For Study I, RLT lysis buffer 

(Qiagen) was added directly to the plate well and cells were harvested into an 

RNase-free tube. RNA was then extracted using the RNeasy kit (Qiagen), 

according to the manufacturer’s instructions. RNA concentration was measured 

using a spectrophotometer (NanoDrop, Thermo Scientific). cDNA was 

synthetized from 1-1.5 µg of RNA using either the High Capacity cDNA Reverse 

Transcription Kit from Applied Biosystems (Studies I and III) or the SuperScript 

First Strand Synthesis System from Invitrogen (Study II). Gene expression was 

measured by quantitative real-time PCR (RT-qPCR, StepOnePlusTM Real-Time 

PCR System; Applied Biosystems) using TaqMan® gene expression assays for 

Studies I and II and SYBR green primers Study III. Lists of primers can be found 

in Table 2 and 3. Reactions were performed in duplicate in a 96-well format and 

relative gene expression was calculated using the comparative CT method and 

normalized to a selected housekeeping gene for internal control (β2-microglobulin 

for Study I, beta-actin for Study II, and TATA box binding protein (Tbp) for 

Study III). 
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Table 2: List of TaqMan® assays used in Studies I and II. 

Gene name Gene ID Cat. Number 

Actin, alpha 1, skeletal muscle ACTA1 Hs00559403_m1 

Actinin, alpha 2 ACTN2 Hs01552477_m1 

Actinin, alpha 3 ACTN3 Hs01100111_g1 

beta-2-microglobulin B2M 4326319E 

Beta-actin ACTB 4326315E 

Capping protein (actin filament) muscle 

Z-line, alpha 1 

CAPZA1 Hs04187789_g1 

Capping protein (actin filament) muscle 

Z-line, alpha 2 

CAPZA2 Hs00255135_m1 

Capping protein (actin filament) muscle 

Z-line, beta 

CAPZB Hs01120796_m1 

LIM domain binding 3 PDLIM6 Hs00951222_m1 

Myotilin MYOT Hs00199016_m1 

Myopalladin MYOP Hs00261515_m1 

Myozenin 1 MYOZ1 Hs00222007_s1 

Myozenin 2 MYOZ2 Hs00213216_m1 

Myozenin 3 MYOZ3 Hs00911018_s1 

Nebulin NEB Hs00189880_m1 

PDZ and LIM domain 3 PDLIM3 Hs01062534_m1 

Titin TTN Hs00399225_m1 

Adiponectin ADIPOQ Hs00605917_m1 

Carnitine palmitoyltransferase 1B 

(muscle) 

CPT1B Hs00189258_m1 

Clock circadian regulator CLOCK Hs00231857_m1 

Desmin DES Hs00157258_m1 

Glycogen synthase 1 (muscle) GYS1 Hs00157863_m1 

Hexokinase 2 HK2 Hs01034050_g1 

Myogenic differentiation 1 MYOD1 Hs00159528_m1 

Myogenin MYOG Hs01072232_m1 

Myostatin MSTN Hs00976237_m1 

Paired-box 3 PAX3  Hs00240950_m1 

Paired-box 7 PAX7 Hs00242962_m1 

Peroxisome proliferator-activated 

receptor gamma, coactivator 1 alpha 

PPARGC1A Hs00173304_m1 

Phosphoglycerate kinase 1 PGK1 Hs00943178_g1 

Protein phosphatase, Mg2+/Mn2+ 

dependent, 1A 

PPM1A Hs01056778_g1 

Pyruvate dehydrogenase kinase, isozyme 

4 

PDK4 Hs01037712_m1 

Solute carrier family 2 (facilitated 

glucose transporter), member 4 

SLC2A4 Hs00168966_m1 
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Table 3: List of SYBR green primers used in Study III. 

Gene name Gene ID Forward sequence Reverse sequence 

F-box protein 32  Fbxo32 

(Mafbx) 

CACATCCCTGAGT

GGCATC 

CACATCCCTGAGTGG

CATC 

Insulin-like 

growth factor 1 

Igf1 TGGATGCTCTTCA

GTTCGTG 

GCAACACTCATCCAC

AATGC 

Myostatin Mstn ACGCTACCACGGA

AACAATC 

AAAAGCAACATTTGG

GCTTG 

PGC1α, isoform 4  TCACACCAAACCC

ACAGAAA 

CTGGAAGATATGGCA

CAT 

TATA box 

binding protein 

Tbp CCTTGTACCCTTCA

CCAATGAC 

TCCTTCACCTGGTGGC

TATT 

Tripartite motif-

containing 63  

Trim63 

(Murf1) 

GCAAAGCATCTTC

CAAGGAC 

TCCTTCACCTGGTGGC

TATT 

3.6 PROTEIN ABUNDANCE ANALYSIS 

Human and mouse skeletal muscle samples were homogenized in ice-cold 

homogenization buffer (20 mM Tris, pH 7.8, 137 mM NaCl, 2.7 mM KCl, 1 mM 

MgCl2, 0.5 mM Na3VO4, 1% Triton X-100, 10% glycerol, 10 mM NaF, 0.2 mM 

phenylmethylsulfonyl fluoride, 1 mM EDTA, 5 mM Na4P2O7, 1% (v/v) Protease 

Inhibitor Cocktail (Calbiochem, Darmstadt, Germany)) homogenized using either 

a motor-driven pestle (Polytron, Kinematica, Kriens, Switzerland) or the Tissue 

Lyzer II (Qiagen). Muscle lysates were subsequently rotated for 1 hour at 4°C and 

subjected to centrifugation at 12,000 g for 10 min at 4°C. The supernatant was 

collected and protein concentration was determined using a bicinchoninic acid 

protein assay kit (Pierce). Protein lysates were subsequently diluted into Laemmli 

buffer and heated for 20 min at 56°C. Equal amounts of protein were separated on 

precast Criterion SDS-PAGE gradient gels (Bio-Rad, Hercules, USA) and 

transferred to polyvinylidene difluoride membranes (Immobilion, Merck 

Millipore, Billerica, MA, USA). Membranes were blocked in 7.5% milk in Tris 

buffered saline-Tween (TBST, 0.05-0.1%) for 1 hour and incubated overnight 

with a primary antibody at 4°C. Membranes were washed and incubated with the 

appropriate horseradish peroxidase-conjugated secondary antibody (Bio-Rad) in 

5% milk for 1 hour at room temperature. Proteins were visualized using enhanced 

chemiluminescence Western blotting detection reagents from GE Healthcare 

(Waukesha, WI, USA). Optical density of the bands was quantified using either 
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ImageJ image processing program (Study I) or Quantity One imaging system 

(Bio-Rad, Study II and III). All primary antibody dilutions were 1:1000, except 

for α-actinin 2 (1:250,000). Antibodies are listed in Table 4. 

Table 4: List of antibodies used in Study I, II and III. 

Antibody Phosphory-

lation site 

Catalogue 

number 

Manufacturer Study 

4E-BP1  9644 Cell Signaling III 

α-actinin 2   Gift from K. North II 

α-actinin 3   Gift from K. North II 

ACC  3662 Cell Signaling III 

Akt  9272 Cell Signaling III 

AMPKα  2532 Cell Signaling III 

AMPKα1   Gift from G. Hardie III 

AMPKα2  07-363 Merck Millipore III 

Beta-actin  A5441 Sigma-Aldrich I 

GAPDH  sc-25778 Santa Cruz I, II 

IκΒα  9242 Cell Signaling I 

LC3I-II  L8918 Sigma-Aldrich III 

OXPHOS  ab110411 Abcam II 

mTOR  2983 Cell Signaling III 

MyHC-1  BA-D5  DSHB II 

MyHC-2A  SC-71 DSHB II 

MyHC-2B  BF-F3 DSHB II 

p62  P0067 Sigma-Aldrich III 

phospho-4E-BP1  Thr37/46 9459 Cell Signaling III 

phospho-ACC  Ser79 3661 Cell Signaling III 

phospho-Akt  Ser473 9271 Cell Signaling I, III 

phospho-Akt Thr308  Cell Signaling I 

Phospho-AMPK Thr172 2531 Cell Signaling III 

phospho-IRS1  Tyr612 44-816  Invitrogen I 

phospho-IRS1  Ser312 07-247 Merck Millipore I 

Phospho-mTOR Ser2448 5536 Cell Signaling III 

phospho-PRAS40  Thr246 44-1100  Invitrogen I 

phospho-S6 

ribosomal protein  

Ser235/6 2217 Cell Signaling III 

phospho-TSC2 Thr1387 5584 Cell Signaling III 

phospho-TSC2  Thr1462 3617 Cell Signaling III 

S6 ribosomal protein  2217 Cell Signaling III 

SOCS3  2923 Cell Signaling I 
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3.7 MEASUREMENT OF CYTOKINES AND METABOLITES 

3.7.1 Cytokines 

In Study I, serum levels of cytokines IL6 and IL8 were determined using 

the Milliplex Map assay from Merck Millipore (HSCYTO-60SK). In fully 

differentiated myotubes, release of IL6 and IL8 in cell media was measured using 

ELISA kits (Invitrogen). Myotubes were serum-starved overnight and medium 

was collected and frozen at -80°C. Samples were then thawed on ice and subjected 

to centrifugation for 15 min at 4°C. IL6 and IL8 concentration was determined 

according to the manufacturer’s instructions using 100 μL of media. 

3.7.2 Lactate release 

For Study I, the lactate concentration in the cell media of fully 

differentiated myotubes was measured using a lactate colorimetric assay kit 

(Biomedical Research Service Center, State University of New York at Buffalo, 

NY, USA). Myotubes were serum-starved overnight and medium was collected 

and frozen at -80°C. Frozen aliquots of culture medium were thawed on ice. 

Twenty μL of sample were incubated for 60 min with lactate assay solution to 

initiate the enzymatic reduction of the tetrazolium salt INT, which produces a red 

formazan dye whose intensity is proportional to the lactate concentration. The 

reaction was then stopped by the addition of 3% acetic acid and the optical density 

is read at a wavelength of 492 nm. 

3.7.3 Skeletal muscle glycogen content 

In Study III, glycogen content in plantaris muscle was determined using a 

colorimetric commercially available kit (Abcam), according to the manufacturer’s 

instructions. Briefly, 10 mg of muscle was homogenized into 200 µL of deionized 

water. Samples were subsequently boiled for 5 min to inactivate enzymes and 

subsequently subjected to centrifugation at 13,000 rpm for 5 min. Five μL of the 

supernatant was then pipetted into the plate and glucoamylase enzyme was added 

to hydrolyse glycogen into glucose. Produced glucose was subsequently oxidized 

for 30 min in the presence of OxiRed, a hydrogen peroxide probe. Finally, the 

optical density was read at a wavelength of 570 nm. 
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3.8 STATISTICAL ANALYSIS 

All statistical analysis were performed using Graphpad or SPSS. 

Significance was set at P < 0.05. Data are presented as mean ± SEM. 

3.8.1 Study I 

Differences in anthropometric measurements and clinical parameters 

between before and after surgery were determined using a two-tail paired 

Student’s t-test. The differences between cell cultures established before and after 

gastric bypass surgery were analyzed using either a two-tail paired Students t-test 

or a Wilcoxon matched pairs test. Cell culture metabolic measurements were 

analyzed with a Student t-test or ANOVA when appropriate. 

3.8.2 Study II 

Differences in anthropometric measurements and clinical parameters 

between NGT and T2D (Paper II, Table 1) were assessed using two-tail Student’s 

t-test or a Mann-Whitney U-test when the data were not normally distributed. For 

genotype distribution, Hardy-Weinberg equilibrium was tested using the Chi-

squared test (Paper II, Table 2). Anthropometric measurements and clinical 

parameters in relation to genotype (Paper II, Table 3) were analyzed with a 

Kruskal-Wallis test to evaluate differences between groups. Gene expression and 

Western blot quantification analysis (Paper II, Fig. 1 to 3) were performed using 

two-way ANOVA to examine both effects of genotype and glucose tolerance 

status. Pairwise post hoc comparisons were determined using Bonferroni 

correction to control for type 1 errors. 

3.8.3 Study III 

All data was analyzed using two-way ANOVA to examine both effects of 

genotype and intervention. Pairwise post hoc comparisons were determined using 

Bonferroni correction to control for type 1 errors. 



 

31 

 

4 RESULTS AND DISCUSSION 

4.1 STUDY I 

Surgical procedures such as RYGB rapidly improve whole-body glucose 

homeostasis and leads to a progressive, sustainable loss of fat mass. Skeletal 

muscle contributes to the improved whole-body insulin sensitivity following 

RYGB. Using a longitudinal in vitro model, the effects RYGB on glucose and 

lipid metabolism, insulin signaling and inflammation markers in primary human 

myotubes was determined. This in vitro model allows for a direct comparison 

between metabolic and signaling responses in cultures obtained before and after 

RYGB. 

4.1.1 Changes in clinical parameters six months after RYGB 

Since the subjects had an average BMI of 41.8 kg/m2, they were eligible 

for RYGB. Anthropometric and metabolic characteristics were measured before 

and 6 months after the intervention. RYGB decreased initial body weight by 25%, 

which is typical in the case of this specific bariatric surgery procedure (Madsbad 

et al., 2014). Although patients were not diabetic, RYGB improved fasting blood 

glucose and insulin levels (Paper I, Table 1). 

4.1.2 Effects of RYGB on mRNA of myogenic markers 

In order to orchestrate myogenesis and myotube formation, several genetic 

factors vary temporally during the proliferation and the differentiation process 

(Bentzinger et al., 2012). To determine if RYGB alters the capability of myoblasts 

to differentiate, mRNA expression of myogenic markers, including proliferative 

markers paired-box 3 and 7 (PAX3-7), MyoD, myogenin and desmin, was 

determined in myoblasts and differentiated myotubes isolated from muscle 

biopsies taken from the study volunteers before and after RYGB (Paper I, Fig. 

1A). As expected, expression level of the proliferative marker PAX7 decreased, 

while those of myogenin and desmin increased during differentiation. Expression 

levels of MyoD, a transcription factor that drives cell commitment to differentiate 

by activating transcription of muscle-specific genes (Rudnicki et al., 1993), and 
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PAX3 were unchanged with differentiation. Together these data indicate that all 

the cell cultures underwent differentiation. Myoblasts isolated post-RYGB had 

increased gene expression of PAX3, PAX7, myogenin and desmin compared to 

those isolated pre-RYGB, suggesting an enhanced cell commitment potential of 

the myoblasts. The expression of myogenic markers was unaltered between 

myotubes derived from pre- and post-RYGB muscle biopsies (Paper I, Fig. 1B). 

Furthermore, a genetic component may be at work as differentiation-induced 

changes in gene expression were more similar in individuals within pre- and post-

RYGB, as compared across different donors (Fig. 8). 

 

4.1.3 Glucose, but not lipid metabolism, is improved following RYGB    

Improvements in peripheral glucose and lipid metabolism could contribute 

to restored whole-body metabolic homeostasis following RYGB. Rates of insulin-

stimulated glucose transport in isolated skeletal muscle strips obtained from 

patients who underwent RYGB are improved compared to extremely obese or 

weight-matched individuals (Friedman et al., 1992; Bikman et al., 2008). To 

investigate the fate of glucose as energy substrate in human muscle cells derived 

from biopsies taken before and after RYGB, basal and insulin-stimulated glucose 

incorporation into glycogen was assessed. Basal, but not insulin-stimulated, 

glucose incorporation into glycogen was improved in the post-surgery myotubes 

Figure 8: Fold-change in gene expression is preserved in pre and post-gastric bypass 

surgery cell cultures. Changes in PAX7 gene expression following differentiation in 

individual subjects before gastric bypass surgery (Pre) and 6 months after gastric bypass 

surgery (Post). 
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when compared to their matched pre-RYGB cultures (Paper I, Fig. 2A). The 

mRNA expression of selected genes involved in glucose metabolism, including 

genes encoding for glucose transporter GLUT4, were not altered by surgery 

(Paper I, Fig. 2D), consistent with results in isolated skeletal muscle strips 

(Friedman et al., 1992). These results suggest that improvements in glucose 

handling after surgery do not result from transcriptional changes in these targets. 

As human skeletal muscle cells express low levels of GLUT4 (Sarabia et al., 

1992), alterations in insulin signaling may be a better metric of insulin-induced 

alterations. 

The activity of IRS1 is reciprocally regulated by tyrosine and serine 

phosphorylation. While tyrosine phosphorylation allows IRS1 to bind to PI3K and 

activate the downstream insulin signaling cascade, serine phosphorylation is 

regarded as inhibitory (Gual et al., 2005). In myotubes obtained post-RYGB, basal 

phosphorylation of IRS1 was potentiated at Tyr612 while Ser312 phosphorylation 

was not changed (Paper I, Fig. 4C). A decrease in basal IRS1 Ser312 

phosphorylation has been reported in muscle strips taken from patients 12 months 

after RYGB, compared to weight-matched controls and extremely obese 

individuals (Bikman et al., 2008). Downstream of IRS1, insulin signaling was 

potentiated in cell cultures obtained post-RYGB versus pre-RYGB. Insulin-

stimulated phosphorylation of Akt at Thr308 and PRAS40 at Thr246 was increased 

following surgery (Paper I, Fig. 4A-B). In human skeletal muscle cells and mouse 

skeletal muscle, overexpression of PRAS40 enhances insulin sensitivity, likely by 

increasing protein abundance of IRS1 and potentiating Akt phosphorylation at 

Thr308 (Wiza et al., 2014). This mechanism could be reproduced in the post-RYGB 

cell cultures and may contribute to the restoration of glucose homeostasis in 

skeletal muscle following RYGB. Collectively, these data provide evidence that 

RYGB improves glucose disposal and glycogen storage into skeletal muscle cells 

by potentiating phosphorylation of key insulin signaling intermediates. 

Skeletal muscle metabolic inflexibility in lipid handling as displayed by 

obese individuals is maintained in vitro. Lipid utilization in response to lipid 

exposure was not increased in myotubes derived from skeletal muscle of obese 
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individuals compared to myotubes derived from muscle of healthy individuals 

(Boyle et al., 2012). In individuals who underwent RYGB, the contribution of 

lipids to energy expenditure at rest and during exercise is lower than in age-

matched females who have never been obese, even two years after the surgical 

intervention (Guesbeck et al., 2001). To test the effect of RYGB on the ability to 

increase reliance on lipid as energy substrate at the myotube level, fatty acid 

oxidation, using low (20 µM) and high (500 µM) doses of palmitate, was 

measured. Fatty acid oxidation remained unchanged under low and high doses of 

lipid supply between the pre- and post-RYGB conditions (Paper I, Fig. 2B-C). 

Similarly, mRNA expression of specific genes involved in lipid handling were 

unaltered (Paper I, Fig. 2D). Thus, in vitro and in vivo data from both cross-

sectional and longitudinal studies suggest that obesity-related defects in the use of 

lipids as energy substrate is inherent to the skeletal muscle cell and insensitive to 

RYGB. Moreover, this metabolic inflexibility of the muscle cell and inability to 

increase the use of lipids as energy substrate might facilitate or pre-dispose to 

regain weight. 

4.1.4 Effects of RYGB on inflammatory markers 

Chronic low-grade inflammation is a characteristic of excess body weight 

and metabolic inflexibility. There is accumulating evidence for crosstalk between 

the immune cells and skeletal muscle (Pillon et al., 2013). Since weight-loss 

strategies improve the inflammatory profile (Imayama et al., 2012), we measured 

IL6 and IL8 release into cell media in pre- and post-RYGB cell cultures. We also 

compared the in vitro levels of these cytokines to the plasma levels detected in the 

patients. Six months after RYGB, IL6 and IL8 levels remained unchanged (Paper 

I, Table I). However, IL8 secretion was increased in vitro, following RYGB 

(Paper I, Fig. 3A). To verify that IL8 did not mediate the changes in glycogen 

synthesis, post-RYGB myotubes were treated with IL8 and glucose incorporation 

into glycogen was measured. IL8 did not affect glycogen synthesis (Paper I, Fig. 

3C). IL8 was also without effects on palmitate oxidation (Paper I, Fig. 3D). 

Consistent with unchanged IL6 levels between the pre- and the post-RYGB 

cultured cells, SOCS3 protein abundance was also unchanged. SOCS3 contributes 
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to the development of peripheral insulin resistance (Emanuelli et al., 2000). 

Moreover, SOCS3 protein abundance is increased in skeletal muscle from T2D 

patients compared to weight-matched or lean individuals (Rieusset et al., 2004; 

Mashili et al., 2013), SOCS3 levels remained unchanged in skeletal muscle from 

obese individuals compared to lean controls (Rieusset et al., 2004), which supports 

the present results. SOCS3 levels in the context of extreme obesity (BMI≥40 

kg/m2) and bariatric surgery had not been investigated and the results generated in 

this thesis provide further evidence that changes in SOCS3 levels are independent 

of obesity and likely to be related to insulin resistance. Finally, molecular signals 

regulating inflammation markers in the context of RYGB could also be a dynamic 

process that varies according to the time-point investigated, especially until a 

stable weight loss has been achieved. 

4.1.5 Summary 

Weight-loss surgery induces changes in whole-body metabolism and 

improvements in the metabolic regulation of local tissues such as skeletal muscle 

are likely to contribute to those changes. Improvements in peripheral insulin 

sensitivity and glucose disposal following RYGB have been postulated to be a 

consequence of caloric restriction and weight loss (Ferrannini & Mingrone, 2009; 

Dirksen et al., 2012), but little work has actually been done to assess the local 

changes in skeletal muscle following RYGB. The in vitro results presented in this 

thesis provide further evidence for improved local glucose metabolism and insulin 

signaling in skeletal muscle and that the impaired glucose disposal in skeletal 

muscle of extremely obese patients is a reversible defect. To further strengthen the 

results from this study, studies of cell cultures from a lean cohort in parallel could 

provide additional valuable insight into the pathogenesis of insulin resistance in 

obesity. By investigating other time points following RYGB, such as 12 or 18 

months, insight into the mechanism for improved peripheral insulin sensitivity 

may be revealed at a stage when the weight loss has progressed further.   
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4.2 STUDY II 

The mechanism by which the ACTN3 R577X polymorphism impacts 

skeletal muscle performance is incompletely resolved and the influence of this 

gene variant on metabolic disease remains unexplored. This study has investigated 

the prevalence of the ACTN3 R577X SNP in a cohort of NGT, IGT and T2D 

subjects, as well as a possible association with metabolic traits, MyHC isoforms, 

mitochondrial enzymes of the electron transport chain and sarcomeric proteins. 

4.2.1 Higher prevalence of the ACTN3 577XX genotype in T2D patients 

The ACTN3 R577X polymorphism consistently associates to elite athletic 

performance, but its effect on metabolic disease is unknown. To address this 

question, a cohort of 211 male and female participants classified as NGT, IGT or 

T2D was genotyped for this common polymorphism. Body weight, waist 

circumference, BMI, fasting blood glucose, 2 hours blood glucose, HbA1c levels, 

and homeostasis model assessment – estimated insulin resistance (HOMA-IR) 

levels were assessed in NGT, IGT and T2D participants (Table 5; Paper II, Table 

1). 

Departure from the Hardy–Weinberg equilibrium (HWE) was assessed 

using Pearson’s chi-square test (Lewis & Knight, 2012). The genotype distribution 

of the complete cohort met the HWE, with the R and X allele reaching frequencies 

of 0.6 and 0.4, respectively (Paper II, Table 2). A higher frequency of the 577XX 

genotype was detected in individuals with T2D versus NGT (P=0.039; Paper II, 

Table 2). The distribution of the genotype among the NGT, IGT and T2D groups 

is shown (Table 6). The anthropometric and metabolic parameters of the 

participants were unrelated to the ACTN3 genotype across glucose tolerance 

status (Table 7; Paper II, Table 3), suggesting that the ACTN3 genotype does not 

impact metabolic phenotype. In contrast with another clinical study in women 

across the adult lifespan (Walsh et al., 2008), genotype and BMI were not related 

in this study, although both men and women were included in our analysis. 
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Table 5: Anthropometric and metabolic traits of the study participants. 

 NGT IGT T2D P value 

n 128 34 49  

Sex (M/F) 47/81 15/19 31/18  

Age (y) 59±1 61±1 61±1 n.s. 

Height (cm) 170±1 171±1 172±1 n.s. 

Weight (kg) 84.7±1.0 89.4±2.1 92.8±2.1# <0.01 

Waist circumference 

(cm) 

98.2±0.9 102.4±1.6 104.6±1.5# <0.01 

BMI (kg/m2) 29.5±0.3 30.9±0.7 31.4±0.6# <0.05 

Fasting glucose (mmol/l) 5.5±0.0 5.8±0.1 7.9±0.2#§ <0.001 

2-h glucose (mmol/l) 7.2±0.1 10.1±0.2* 15.4±0.6# <0.001 

Insulin (pmol/l) 57.5±3.0 69.3±10.0 69.5±6.2 n.s. 

HbA1c (%) 4.7±0.0 4.9±0.1 6.1±0.1#§ <0.001 

HOMA-IR 2.0±0.1 2.6±0.4 3.5±0.3#§ <0.001 

Workload (W) 157±4 155±7 158±5.5 n.s. 

Oxygen uptake  24.0±0.6 22.3±1.0 22.9±1.0 n.s. 

Data are mean±SEM. HOMA-IR, homeostasis model assessment – estimated insulin resistance; 

W, watts. Oxygen uptake presented as ml x min-1 x kg-1. Statistical comparison between groups 

was determined using a Kruskal–Wallis test. Pairwise comparison post-hoc analysis with 

Bonferroni correction was used to detect differences between groups. Significant differences (P < 

0.05) are indicated as * NGT vs. IGT; # NGT vs. T2D; § IGT vs. T2D. 

 

Table 6: ACTN3 genotype distribution among NGT, IGT and T2D. 

  n n % 

  All 577RR 577RX 577XX 577RR 577RX 577XX 

NGT  128 51 61 16 41 47 12 

IGT  34 14 13 7 39 39 21 

T2D  49 11 26 12* 22 53 24 

Total  211 76 100 35 33 47 17 

577RR: homozygous wild-type, 577RX: heterozygous, 577XX: homozygous null. *P < 0.05 for 

T2D vs. NGT and IGT. 

Deviations from the HWE can also occur if assumptions are not fulfilled. For 

example, it was assumed that the cohort was of unrelated ancestry, although it is 

unknown if the individuals were unrelated to each other for several generations. 

Genotyping studies generally use large cohorts since a small cohort could be non-

representative of the population, possibly leading to genetic drift and derivation 
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from the HWE equilibrium. When this is the case, validating the genotyping 

results using Fisher’s Exact Test is a useful alternative and may even prove to be 

more accurate. Fisher’s Exact Test confirmed our findings (P= 0.01) strengthening 

the data despite the absence of correlations or associations between genotype and 

measured anthropometric and metabolic parameters. For further molecular 

readouts analyses, IGT individuals were removed from the analysis because of 

limitations in starting material. 
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Table 7: Association between ACTN3 R577X genotype with anthropometric and metabolic traits. 

 NGT IGT T2D 

Genotype RR RX XX RR RX XX RR RX XX 

n 51 61 16 14 13 7 11 26 12 

Sex (M/F) 21/30 20/41 6/10 7/7 5/8 3/4 37/39 16/10 6/6 

Age (y) 60±1 60±1 56±2 61±2 61±2 62±2 58±2 63±1 60±1 

Weight (kg) 85.9±1.9 84.0±1.3 83.9±3.2 94.2±3.0 88.9±3.2 80.8±4.2 94.4±4.0 93.7±3.1 89.2±3.8 

Waist (cm) 99.0±1.5 98.3±1.1 95.1±2.7 104.5±2.0 103.2±2.7 96.7±3.7 103.8±2.2 105.1±2.4 104.1±2.8 

BMI (kg/m2) 29.5±0.4 29.5±0.4 29.2±1.0 31.8±1.1 31.2±1.1 28.7±1.1 30.5±1.0 31.7±0.9 31.8±1.4 

f-glucose 

(mmol/l) 

5.4±0.1 5.5±0.1 5.6±0.1 5.7±0.2 5.9±0.2 5.6±0.2 8.1±0.7 7.8±0.2 8.0±0.5 

2-h glucose 

(mmol/l) 

7.2±0.1 7.2±0.1 7.1±0.2 10.1±0.2 10.2±0.3 10.1±0.4 15.3±1.4 14.6±0.7 16.9±1.1 

f-insulin 

(pmol/l) 

62.4±5.2 56.8±4.5 43.8±4.4 70.8±33.8 54.3±12.5 82.3.1±12.7 80.8±16.8 62.9±7.6 72.9±9.1 

HbA1c (%) 4.7±0.1 4.7±0.1 4.6±0.1 4.9±0.1 4.9±0.1 4.8±0.1 6.2±0.4 6.0±0.2 6.2±0.2 

HOMA-IR 2.2±0.2 2.0±0.2 1.6±0.2 3.0±0.5 2.1±0.5 2.5±1.2 4.0±0.8 3.1±0.4 3.8±0.5 

Workload (W) 163±6 150±5 166±11 165±9 150±11 149±21 171±12 155±8 155±8 

Oxygen Uptake  24.3±0.9 23.3±0.9 25.9±1.7 20.0±1.5 22.3±1.7 23.5±1.6 24.5±1.8 21.6±1.5 24.4±1.6 

Data are mean±SEM. HOMA-IR, homeostatic model assessment - insulin resistance; W, watts. Oxygen Uptake values are presented as  

mL x min-1 x kg-1. Statistical comparison of genotype within groups was performed using the Kruskal–Wallis test. 
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4.2.2 Influence of ACTN3 R577X genotype on metabolism 

A lack of α-actinin 3 protein could modulate substrate utilization and 

storage in skeletal muscle of the ACTN3-/- mice (MacArthur et al., 2007; Quinlan 

et al., 2010). However, these results in ACTN3-/- mice could not be reproduced in 

humans (Vincent et al., 2012; Norman et al., 2014). To explore a direct 

relationship between the ACTN3 R577X polymorphism and energy substrate in 

the muscle cell, glucose incorporation into glycogen and beta-oxidation of 

palmitic acid was assessed in differentiated human skeletal muscle cells derived 

from skeletal muscle of α-actinin 3-expressing (577RR, 577RX) or null (577XX) 

individuals. ACTN2 and ACTN3 expression during differentiation process was 

also assessed (Fig. 9). 

 

Basal and insulin-stimulated glucose incorporation into glycogen were unaltered 

between genotypes (Fig. 10). Similarly, beta-oxidation of palmitic acid was also 

unchanged between genotypes (Fig. 10). In the ACTN3-/- mouse, changes in 

enzyme activity cannot be detected before week 4 of age (Quinlan et al., 2010). 

Thus, skeletal muscle cells may not fully resemble functional and contracting adult 

skeletal muscle to adequately display a phenotype similar to the one of genetically 

engineered ACTN3-/- mouse. The differences in studying the role of ACTN3 in 

Figure 9: mRNA expression of muscle-specific α-actinin isoforms in vastus lateralis 

muscle from NGT and T2D subjects. A) ACTN2 and B) ACTN3 in primary human 

myotubes carrying the 577RR, 577RX, and 577XX ACTN3 genotype. Results are normalized 

to B2M mRNA and presented as mean±SEM. 



 

42 

 

cultured cells versus fully differentiated adult muscle could account for unchanged 

energy substrate handling in the myotubes, despite the presence or absence of the 

R577X polymorphism. 

 

4.2.3 Influence of ACTN3 R577X genotype on α-actinin levels in people 

with NGT or T2D 

ACTN3-/- mice displays higher levels of α-actinin 2 in skeletal muscle 

(MacArthur et al., 2007; Seto et al., 2013). To evaluate whether T2D status 

interacts with ACTN3 R577X genotype to impact levels of α-actinin, gene 

expression and protein abundance of muscle-specific α-actinin isoforms from 

vastus lateralis muscle biopsies of NGT or T2D individuals carrying the different 

ACTN3 R577X genotypes were measured (Paper II, Fig. 1). ACTN3 mRNA 

followed the expected allele-dependent expression pattern in both NGT and T2D. 

Although α-actinin 2 protein abundance is increased in ACTN3-/- mice, the present 

thesis work and a previous study (Norman et al., 2009) provide evidence for 

unaltered α-actinin 2 mRNA and protein, irrespective of genotype and glucose 

tolerance status. As there is greater sequence homology (>80%) between α-actinin 

2 and α-actinin 3 in humans than in mice (Mills et al., 2001), functional 

redundancy could mask a phenotype possibly arising from an ACTN3 deficiency 

in humans (Beggs et al., 1992). Conversely, the high prevalence of the 577XX 

Figure 10: Glucose incorporation into glycogen and lipid oxidation in human 

myotubes. A) Basal and insulin-stimulated glucose incorporation into glycogen. B) 

Palmitate beta-oxidation. RR: 577RR wild-type homozygous; RX 577RX 

heterozygous; XX: 577XX wild-type null. n = 3 experiments. Results are 

mean±SEM. * P ≤ 0.01 indicates insulin effect. 
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genotype in the general Caucasian population (16-18%) argues against a 

pathogenic role for this polymorphism (North et al., 1999). While α-actinin 2 is 

expressed in all skeletal muscle fiber types, the expression of α-actinin 3 is specific 

to glycolytic type II muscle fibers (North & Beggs, 1996). Humans have 40-50% 

of type 2 glycolytic fibers, but in mice, this percentage rises to 80% (Agbulut et 

al., 2003; Schiaffino & Reggiani, 2011). Inter-species differences in isoform 

homology and fiber type composition could perhaps explain why other ACTN3 

isoform failed to compensate for the ACTN3 deficiency in human vastus lateralis 

muscle biopsies. 

4.2.4 Protein abundance of myosin heavy chain isoforms and 

components of the mitochondrial electron transport chain 

α-actinin 3 gene expression is restricted to type II glycolytic muscle fibers. 

Thus, the impact of the ACTN3 R577X polymorphism could impact muscle fiber 

type composition (Vincent et al., 2007; MacArthur et al., 2008; Norman et al., 

2009). Only one study reports an increase in the percentage of type IIB fibers in 

individuals carrying the 577RR genotype (Vincent et al., 2007). In the cohort 

studied in this thesis, the ACTN3 R577X polymorphism did not influence protein 

abundance of the different myosin heavy chain isoforms as evaluated by Western 

blot (Paper II, Fig. 2), consistent with other clinical reports (Norman et al., 2009; 

Norman et al., 2014). Furthermore, skeletal muscle fiber type distribution is 

unaltered between untrained ACTN3-/- and wild-type mice, despite the presence 

of a shift towards oxidative properties (MacArthur et al., 2008; Seto et al., 2013), 

thereby uncoupling the ACTN3-induced metabolic improvements from fiber type 

changes. Interestingly, an interaction between glucose tolerance status and both 

MyHC-1 and MyHC-2a was detected in the present material, with T2D patients 

displaying increased protein abundance of these markers compared to NGT 

individuals. This finding was unexpected, since the proportion of glycolytic 

skeletal muscle fibers is increased in T2D patients compared to NGT subjects, 

while MyHC-1 abundance is reduced (Oberbach et al., 2006; Larsen et al., 2011). 

Despite the increase in MyHC-2A protein abundance, α-actinin 3 level was 

unaltered in T2D patients. Protein abundance of mitochondrial transport chain 

enzymes specific for complex I, III and IV was reduced in skeletal muscle from 
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T2D patients compared to NGT, consistent with previous work (Oberbach et al., 

2006; Larsen et al., 2011). An interaction between genotype and glucose tolerance 

status for protein abundance of NDUFB8 (complex I) and COX2 (complex IV) 

could be detected: the abundance of these oxidative enzymes was increased with 

the number of X alleles in NGT individuals, whereas an inverse relationship was 

noted in T2D patients. Collectively, the data in this thesis provides evidence to 

suggest that the 577XX genotype is insufficient to protect against the decreased 

abundance of oxidative enzymes characteristic of T2D. 

4.2.5 Influence of ACTN3 577XX genotype on mRNA expression of 

sarcomeric proteins  

α-Actinin proteins function to stabilize and preserve the integrity of the 

sarcomere through interactions with other sarcomeric proteins localized at the Z-

line. In ACTN3-/- mice, mRNA and protein level of a subset of sarcomeric proteins 

is upregulated, providing evidence that the absence of α-actinin 3 can alter the z-

line composition of the sarcomere (Seto et al., 2011). To determine if the absence 

of α-actinin 3 is also associated to an altered expression profile of sarcomeric 

proteins in human skeletal muscle, mRNA abundance of a selected subset of 

sarcomeric α-actinin 3-interacting proteins in skeletal muscle from healthy NGT 

individuals was quantified. Consistent with previous work in ACTN3-/- mice, 

myotillin and PDZ and LIM domain 3 (PDLIM3) mRNA expression was up-

regulated in human skeletal muscle from 577XX NGT individuals compared to 

muscle from 577RR individuals. Extending the mRNA screening to other Z-line-

specific proteins known to interact with α-actinin, revealed similar changes in 

actin, capping proteins, calsarcins (or myozenins), as well as giant molecular 

rulers nebulin and titin (Paper II, Fig. 4). Increased α-actinin 2 expression in 

skeletal muscle from ACTN3-/- mice competes with the calcium- and calmodulin-

dependant protein phosphatase calcineurin to bind calsarcin, resulting in increased 

calcineurin signaling (Seto et al., 2013). This endogenous over-activation of the 

calcineurin pathway could alter the downstream regulation of transcription factors, 

such as NFAT, leading to a shift towards a more oxidative phenotype in skeletal 

muscle fibers. Even though ACTN2 is not upregulated in α-actinin 3-deficient 

human skeletal muscle, calsarcins remain an attractive candidate to solve the 
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molecular mechanism by which the deficiency of α-actinin 3 influences skeletal 

muscle performance. Since other genes encoding for proteins interacting with 

calsarcins, such as myotilin are up-regulated, the reduced inhibition activity of 

calsarcin-2 may also be potentiated by other sarcomeric proteins. 

4.2.6 Summary 

The ACTN3 R577X common polymorphism is the gene variant most 

consistently associated with skeletal muscle performance (Eynon et al., 2013). 

Nevertheless, the role the ACTN3 R577X polymorphism has never been 

addressed in the context of metabolic diseases until now. The results presented in 

Study II provide evidence to suggest that this polymorphism does not pose a 

strong genetic risk toward the development of metabolic disease, despite a higher 

prevalence of the 577XX genotype in people with T2D vs. NGT. Rather than 

altering metabolic regulation, the absence of α-actinin 3 due to the ACTN3 577XX 

genotype could influence muscle performance by up-regulating several 

sarcomeric genes as a compensation mechanism to the lack of α-actinin 3, 

independent of alterations in α-actinin 2 expression. 

 

4.3 STUDY III 

There is evidence for a crosstalk between AMPK and mTOR in the context 

of the regulation of cell size. The isoforms of the different AMPK subunits, 

including the γ3 isoform, could modulate the hypertrophic response to functional 

overload. This study addresses this question by looking into functional, 

transcriptional and signaling responses in skeletal muscle of γ3 genetically 

modified mouse models after a 14-day functional overload.  

4.3.1 Role of the AMPK γ3 isoform on the hypertrophy response in 

skeletal muscle 

Skeletal muscle hypertrophy in Tg-Prkag3225Q and Prkag3-/- mice was 

induced by functional overload using the synergistic muscle ablation model. To 

confirm that this model induced hypertrophy, plantaris muscle weight from both 
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overloaded and control sham-operated mice were compared. Tg-Prkag3225Q, 

Prkag3-/- and wild-type littermates displayed a robust increase in absolute and 

relative plantaris weight in response to overload compared to sham-operated mice 

and thus underwent hypertrophy (Paper III, Fig. 1). In Tg-Prkag3225Q mice, the 

plantaris of sham-operated mice were heavier compared to wild-type mice. 

However, this difference was not preserved following functional overload, 

indicating that wet weight gain in the plantaris muscle of Tg-Prkag3225Q mice was 

reduced compared to wild-type counterparts (Paper III, Fig. 1G).  

4.3.2 Transcriptional response to overload in Tg-Prkag3225Q and Prkag3-

/- mice 

To test whether the expression of markers characteristic of skeletal muscle 

hypertrophy and atrophy followed the same response as the wet muscle mass, 

mRNA expression of pro-atrophic genes encoding for myostatin and E3 ubiquitin 

ligases Murf1 and Mafbx, as well as hypertrophic genes Igf1 and Pgc1α isoform 

4 (PGC1α4), a splice variant originating from the alternative promoter of Pgc1α 

(Ruas et al., 2012) was determined. Following functional overload, transcript 

abundance of Igf1 was increased, whereas mRNA of pro-atrophic markers were 

decreased, independently of genotype (Paper III, Fig. 2). However, in plantaris 

of Tg-Prkag3225Q control sham-operated animals, Igf1 mRNA was reduced 

compared to wild-type. (Paper III, Fig. 2A). As expected, all the pro-atrophic 

genes were down-regulated with functional overload in all genotypes. 

Furthermore, no genotype effect could be detected in the sham-operated animals.  

Pgc1α4 transcript expression was decreased in wild-type mice in response 

to overload, but unchanged in Tg-Prkag3225Q and Prkag3-/- mice (Fig. 11). This 

finding is consistent with earlier work showing that expression of PGC1α4 

remains unchanged following functional overload (Perez-Schindler et al., 2013). 

Moreover, skeletal muscle overload hypertrophy is unaffected by the absence of 

Pgc1-α (Perez-Schindler et al., 2013). Since skeletal muscle from both Tg-

Prkag3225Q and Prkag3-/- mice undergo normal overload hypertrophy, despite 

unchanged or reduced Pgc1-α4 transcript abundance, this evidence further 

suggests that the splice variant Pgc1-α4 is not involved in the hypertrophic 
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response following 14-day functional overload. Together, these transcriptional 

data are consistent with the present finding that the AMPK γ3 isoform is 

dispensable for the hypertrophic response in skeletal muscle.  

 

4.3.3 Impact of the γ3 isoform of AMPK on mTOR signalling cascade 

To gain further insight into the role of the γ3 isoform of AMPK in the 

hypertrophic response, phosphorylation and total abundance of signaling 

intermediates of the mTOR pathway were measured in plantaris muscle from 

Prkag3225Q and Prkag3-/- mice. This pathway conveys signal transduction leading 

to increased protein synthesis and muscle hypertrophy (Egerman & Glass, 2014). 

mTOR signaling is altered in AMPKα1-/- mice undergoing 7 or 21 days of 

functional overload (Mounier et al., 2009). In all genotypes, phosphorylation and 

total abundance of Akt and mTOR, as well as downstream effectors of p70S6 

kinase RPS6 and 4E-BP1 were increased in plantaris muscle by overload (Paper 

III, Fig. 3-4). This result indicates that the hypertrophy signaling pathway, 

ultimately leading to protein synthesis and cell growth, is similarly activated 

Figure 11: mRNA expression of splice variant PGC1α4 A) Tg-Prkag3225Q vs. wild-type B) 

Prkag3-/- vs. wild-type. Results are normalized to Tbp mRNA and presented as mean±SEM. 

n=6-9/genotype/treatment. *P<0.05 for Tg-Prkag3225Q or Prkag3-/- vs. wild-type. #P< 0.05 for 

control (CTL) vs. overload (OVL). 
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following functional overload and provides further evidence that the AMPK γ3 

isoform is dispensable for skeletal muscle hypertrophy. 

4.3.4 AMPK signaling following overload-induced hypertrophy in Tg-

Prkag3225Q and Prkag3-/- mice 

Since the gain-of-function R225Q mutation in the γ3 isoform confers 

increased basal constitutive activation of AMPK in EDL muscle of Tg-Prkag3225Q 

mice (Barnes et al., 2004), the effects of functional overload on AMPK signaling 

were assessed in plantaris muscle from Tg-Prkag3225Q and Prkag3-/- mice. 

Phosphorylation on Thr172 site of the α catalytic subunit of AMPK was robustly 

decreased following overload in Tg-Prkag3225Q and wild-type mice, irrespective 

of genotype (Paper III, Fig. 5A). This was accompanied by increases in total 

protein abundance of AMPKα, AMPKα1 and AMPKα2 with overload in Tg-

Prkag3225Q and wild-type mice (Paper III, Fig. 5B-C-D). Phosphorylation of 

AMPKα on Thr172 was unchanged in Prkag3-/- mice and increased in wild-type 

mice. AMPK phosphorylation in Tg-Prkag3225Q, Prkag3-/- and wild-type 

littermates is similar under basal, AICAR stimulation or muscle contraction 

conditions (Barnes et al., 2004). Moreover, Tg-Prkag3225Q mice are resistant to 

further increases in AMPK activity induced by increasing levels of AMP. Previous 

studies using other genetic mouse models provide evidence that increased AMPK 

and ACC phosphorylation following overload can be attributed to increased 

AMPKα1 activity (McGee et al., 2008; Perez-Schindler et al., 2013). However, in 

this thesis work AMPK phosphorylation was decreased (in Tg-Prkag3225Q) or 

unchanged (in Prkag3-/-) following 14-day overload, despite an increase in 

AMPKα1 abundance in all genotypes. While this finding contrast earlier studies 

(McGee et al., 2008; Perez-Schindler et al., 2013), it is not entirely unexpected, 

since Akt and mTOR signaling is inversely correlated with AMPK signaling. 

Differences in AMPK phosphorylation between Tg-Prkag3225Q and 

Prkag3-/- mice could also be attributed to a different dynamic response to the 

synergistic ablation model. The differences in AMPK and ACC phosphorylation 

could be related to the time-point investigated (7, 14 or 21-day overload). Thus, 

genetic alteration of different AMPK isoforms is likely to be without an impact on 
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final muscle weight, but could affect the rate at which muscle growth occurs 

during the hypertrophy. 

Increasing evidence suggests that AMPK plays a role in autophagy in the 

context of exercise (He et al., 2012; Sanchez et al., 2012). To gain further insight 

into the metabolic effects of functional overload on mechanism controlling 

autophagy, protein abundance of the autophagic markers p62 and LC3 were 

determined. While p62 was increased with overload, the LC3-I: LC3-II ratio was 

unchanged. Abundance of the autophagic markers was similar between genotypes, 

suggesting that the γ3 isoform of AMPK is dispensable for autophagosome 

formation. 

4.3.5 Glycogen content 

After acute exercise, skeletal muscle glycogen content readily increases 

when adequate carbohydrates are consumed in the recovery period (Bergstrom & 

Hultman, 1966). One of the most striking features of the Prkag3 R225Q 

polymorphism is the profound increase in glycogen content in glycolytic skeletal 

muscle at baseline and after exercise in pigs and mice harboring the mutation 

(Milan et al., 2000; Barnes et al., 2004; Barnes et al., 2005a). Glycogen can 

account for 0.7% of skeletal muscle weight. Given that 3 to 4 grams of water are 

bound to each gram of glycogen (Olsson & Saltin, 1970), the increased glycogen 

content in skeletal muscle from the Tg-Prkag3225Q mice may contribute to the 

increased plantaris mass in sham-operated Tg-Prkag3225Q mice. Glycogen content 

was increased by 40% in control Tg-Prkag3225Q mice compared to wild-type 

littermates, reflecting the effect of the mutation (Paper III, Fig. 8). Glycogen 

content was also increased in between Tg-Prkag3225Q and wild-type mice 

following 14-day overload (Paper III, Fig. 8). Thus, the increase in water content 

may partly explain the 10% difference in plantaris wet mass between sham-

operated Tg-Prkag3225Q and wild-type animals. 

4.3.6 Summary 

Collectively, the results presented in this thesis provide evidence that the 

γ3 isoform of AMPK is dispensable for skeletal muscle hypertrophy. The 
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increased wet muscle mass of the plantaris muscle in Tg-Prkag3225Q sham-

operated mice compared to wild-type suggests that the rate at which skeletal 

muscle undergoes hypertrophy differs in Tg-Prkag3225Q mice compared to wild-

type littermates. To solidify this finding, a time-course experiment with 7-day and 

21-day endpoints could have proven valuable, especially considering the 

potentiated hypertrophic response of AMPKα1-/- mice in response to functional 

overload. Direct measurement of AMPK activity under sham-operated and 

overload conditions would also clarify the understanding of AMPK signaling in 

the context of muscle hypertrophy. 

Genetic alterations in the γ3 isoform do not result in isoform compensation 

in skeletal muscle from Tg-Prkag3225Q and Prkag3-/- mice (Barnes et al., 2004). 

However, functional overload could induce a compensation of the other isoforms 

of the γ subunit. This is may be particularly relevant in the case of the γ1 isoform, 

which has been found to be expressed in skeletal muscle as a heterotrimeric 

complex with the α2 and β2 isoforms (Mahlapuu et al., 2004). 
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5 CONCLUSIONS AND PERSPECTIVES 

The aim of this thesis work was to characterize the response of skeletal muscle 

to various genetic and environmental stressors using different in vitro and in vivo 

models. As summarized in Fig. 10, this work provides insight into the mechanisms 

by which skeletal muscle remodels in response to a variety of stressors. 

 

 

In Study I, an in vitro model was established to study local changes in 

substrate metabolism, insulin action and secreted factors in response to RYGB-

induced weight loss, which may secondarily influence whole-body insulin 

sensitivity. Using human skeletal muscle cell cultures in a unique longitudinal 

study design provided further insight into mechanisms by which skeletal muscle 

Figure 12: Summary of outcomes of Study I, II, and III. 
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is affected by weight-loss surgery. The results generated in this thesis suggest that 

improvements in glucose disposal in skeletal muscle of extremely obese patients 

is a reversible defect. A role of the signaling intermediate PRAS40 as a candidate 

that could regulate the improvements in the metabolism of skeletal muscle 

following RYGB is also suggested. PRAS40 may very well play a role in 

improved glucose metabolism following gastric bypass surgery and experiments 

using small interfering RNA, for example, could allow further insight in this 

eventual mechanism. Moreover, since PRAS40 is a member of mTORC1, a 

critical regulator of cell size and growth, an evaluation of whether PRAS40 can 

potentiate skeletal muscle growth in response to a hypertrophic or atrophic stimuli, 

in both states of health and disease is warranted. From an ethical point of view, 

the use of an in vitro longitudinal model has additional benefits, since it diminishes 

the use of animal and human tissues for research purposes. This model also 

provides an easy, accessible, but still unique approach to dissect intrinsic from 

systemic factors that influence insulin sensitivity and energy homeostasis.  

The resolution of the metabolic disease epidemic largely depends on 

preventive measures. The use of genetic profiling in the diagnostic and treatment 

of diseases is an area of molecular medicine in constant evolution. Gaining insight 

into gene variants modulating disease pathophysiology, as well as metabolic and 

structural responses to exercise training may direct the development of new, 

personalized therapeutic tools and interventions, both pharmacological and non-

pharmacological. Study II addressed the role of the ACTN3 R577X 

polymorphism in metabolic disease and skeletal muscle hypertrophy, respectively. 

Since physical exercise is a cornerstone in the prevention and treatment of insulin 

resistance and T2D, the metabolic oxidative phenotype displayed by ACTN3-/- 

mice raises a legitimate question towards the beneficial impact of the 577XX 

genotype in T2D individuals. Although the polymorphism did not seem to be 

related to clinical parameters measured in this cohort, the genotype distribution 

was altered between the T2D and both IGT and NGT groups. The vast majority 

of clinical studies investigating the ACTN3 R577X polymorphism, including 

Study II, have been performed using small size cohorts, which could contribute 

to type I and II errors. The results generated in this thesis should be replicated 
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using in larger cohorts. As mentioned previously, given the fact that ACTN3 

expression is specific to glycolytic type 2 fibers, the finding that the phenotype 

observed in ACTN3-/- mice is not entirely copied in humans with the 577XX 

genotype may be partly attributed to an inter-species difference in skeletal muscle 

fiber type distribution. To reveal the functional consequences of ACTN3 R577X 

polymorphism, extreme interventions (run-to-exhaustion, extreme eccentric 

contraction, high-level athletic performance, immobilization) are often required, 

suggesting a gene-environment interaction. Future functional studies may 

highlight whether there is a role between the ACTN3 R577X gene variant and the 

adaptive response to extreme interventions. Additional studies to elucidate the role 

of the ACTN3 R577X polymorphism in the adaptive response of skeletal muscle 

to exercise training would be beneficial to improve personalized exercise 

intervention in the context of metabolic diseases. 

In Study III, the role of the AMPK 3 isoform in skeletal muscle hypertrophy 

and activation of protein synthesis machinery was evaluated. The results generated 

in this thesis suggest that the role of AMPK is to favor atrophy rather than to act 

as a “break” on muscle hypertrophy. This hypothesis could be validated by using 

other genetically modified mouse models and experimental perturbations such as 

denervation and tail/hindlimb suspension. Instead of impacting growth as initially 

hypothesized, the AMPK γ3 isoform may predominantly regulate in glucose and 

lipid metabolism in skeletal muscle. This suggests that other AMPK isoforms 

could play a role in the response to hypertrophic or atrophic stimuli. As mentioned 

earlier, the use of different time-course studies could refine the understanding of 

the role of AMPK on skeletal muscle growth. Other pathways implicated in 

skeletal muscle hypertrophy should also be considered, such as phosphatidic acid 

(You et al., 2014) and focal adhesion kinase (FAK) (Crossland et al., 2013). 

Collectively, the results presented in this thesis provide information on the 

remodeling capacity of skeletal muscle in response to various stressors, including 

severe weight-loss intervention, gene variants and hypertrophic stimulus. These 

stressors differently affect skeletal muscle, which adapts via changes in metabolic 

and growth-related signaling pathways, release of secreted factors such as 
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cytokines/myokines, as well undergoing changes in structure and substrate 

utilization. Information provided by this thesis work may one day contribute to 

improving and optimizing already existing treatments to counter lifestyle-related 

metabolic diseases.  
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