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ABSTRACT 

Depression is a complex disorder with an average lifetime prevalence from 11.1% to 

14.6%. It causes serious disability and is a significant public health problem worldwide. 

The etiology of depression is heterogeneous and multifactorial. Traditionally, researchers 

have tried to investigate depression from biochemical, genetic, environmental and 

behavioral perspectives. Since few biomarkers are available, diagnosis and treatment are 

still based on clinical assessment and are far from satisfactory. In recent years, depression 

has been proposed to be a state of “accelerated biological aging”, with an increased risk of 

comorbidity with other ageing-related conditions such as diabetes, cardiovascular disease 

and dementia. There is accumulating evidence to support that depression itself is in fact a 

state that involves telomere dysfunction, a prominent feature in the ageing process. 

Epigenetic regulation, with an emerging role in a number of complex disorders, constitutes 

a fusion between the results of genetic, biochemical and environmental factors. The aim of 

this thesis was to investigate the pathophysiology of depression with a focus on 

mechanisms that are perturbed in telomere biology and epigenetic regulation. Specifically, 

in paper I and III: telomere length and the genetic variation in the hTERT gene were 

examined in relation to lithium treatment, to depression disorder and depressive episodes in 

bipolar disorder in human cohorts. In paper II, we used a genetic rat model of depression 

(FSL) to study hippocampal telomere length and telomerase activity, and investigated the 

mechanism of how lithium affects telomere length. The epigenetic mechanisms potentially 

involved in depression, specifically DNA methylation/hydroxymethylation and miRNAs 

were investigated in the prefrontal cortex region of the FSL rats in paper IV and V, 

respectively. The major finding from the thesis work includes 1) telomere lengths were 

decreased in saliva DNA from patients with adult depression 2) genetic variation in hTERT 

may influence the susceptibility to depression 3) telomeres and telomerase activity are 

dysfunctional in the hippocampus of the depressed FSL rats 4) long-term lithium treatment 

is associated with longer telomeres in bipolar disorder especially when therapeutically 

efficacious 5) lithium treatment may normalize hippocampal telomerase dysfunction 

through activation of β-catenin in the rat 6) sodium butyrate exerts antidepressant-like 

effect and the suggestive epigenetic effects may include DNA methylation changes that are 

mediated by the demethylation-facilitating enzyme TET1 in the rat 7) elevation of cytokine 

Il6 in the prefrontal cortex is associated with depression-like states and may involve 

disturbance in let-7 biogenesis in the rat 8) physical exercise appears to normalize Il6 and 

let-7 levels through regulatory processes upstream of primary miRNA transcription in the 

rat. 

 

Keywords: telomere length, hTERT, telomerase activity, depression, FSL, lithium, TET, 

sodium butyrate, methylation, hydroxymethylation, miRNA, let-7 
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1 INTRODUCTION 

Depression was initially called "melancholia" which first appeared in ancient Mesopotamian 

texts written around 2000 B.C. It was documented as one of four humors in the old medical 

beliefs. From ancient Greeks and Romans, for thousands of years, depression has been 

debated back and forth as to whether it was best thought as a mental or physical disease. 

Nowadays we define depression, or a more clinical term “major depressive disorder”, as a 

mental disorder characterized by pervasive and persistent low mood that is accompanied by 

low self-esteem and a loss of interest or pleasure in normally enjoyable activities [1]. 

However, it became the accepted view for scientists that depression can actually have many 

causes, and different approaches for treatment are considered to be important in helping 

depression patients “out of the blue”. Depression is a commonly occurring and recurrent 

disorder. Specifically, the estimated lifetime prevalence is from 11.1% to 14.6% between 

different countries [2] and approximately 60% of people who had a first lifetime episode 

would develop a second one [3]. It is noteworthy that depression is highly comorbid with 

other medical diseases that associates with accelerated biological aging (e.g. cardiovascular 

disease and type 2 diabetes) [4-6] and recently mounting evidence seem to support the 

accelerated biological-aging conception in depression [7; 8]. The importance of studying 

depression is also reflected by the global projections of disease burden by World Health 

Organization (WHO) which ranked depression as the second leading cause of burden of 

disease in 2030 worldwide [9]. Therefore, from both individual and public health 

perspectives, depression is a problem of major significance and importance. 

In the introduction section of the thesis, some major definitions and background information 

are introduced with the purpose to help everyone, also readers who are not working in the 

psychiatric field, to understand the topics studied in the constituent papers. I hope this thesis 

work can raise the awareness of people who have ignored or underestimated the significance 

of studying mental disorder.    

 

 

 

 

 

        “Success is not final, failure is not fatal: it is the courage to continue that counts.” 

                                                                                                              ― Winston Churchill  
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1.1 DEPRESSION 

In this section, an overview of depression is provided which includes the symptoms and 

diagnoses criteria, the current view of etiology and relevant treatments for depression. A 

brief introduction of bipolar disorder is also included which contains the diagnoses and 

treatment options.  

1.1.1 Symptoms and clinical diagnoses 

Depressive disorders include a spectrum of disorders with the common features being the 

presence of sadness or irritable mood accompanied by somatic and cognitive changes that 

significantly affect the individual’s capacity of functioning (DSM-V). Depression is a highly 

recurrent and dimensional illness with the affected persons moving in and out of diagnostic 

subtypes, such as Major Depression, Dysthymia and Minor Depression [10]. The symptoms 

and diagnostic criteria are determined on the basis of clinical interviews, by using diagnostic 

classification systems, including Diagnostic and Statistical Manual of Mental Disorders 

(DSM) and International Statistical Classification of Diseases and Related Health Problems 

(ICD), with no biochemical or physiological test available. According to DSM-IV (and also 

DSM-V), the main criteria include depressed mood or a loss of interest or pleasure in daily 

activities (anhedonia) consistently for at least a two week period. Other symptoms include 

significant change in weight and appetite, change in sleep (insomnia or hypersomnia), 

change in activity (psychomotor agitation or retardation), fatigue or loss of energy, 

guilt/worthlessness, diminished ability to think or concentrate and suicidal thoughts. General 

practitioners were able to make routine diagnoses of depression only in about 50% of the 

cases [11].  

Depressive episodes are common in bipolar disorder (BD). Bipolar disorder originally called 

manic-depressive illness, is a mental disorder characterized by recurrent episodes of elevated 

mood and depression accompanied by changes in activity levels. Based on DSM-IV, BD 

type 1 is featured as alternating episodes of depression and mania, whereas BD type 2 is 

characterized by depression and hypomania. Other related diagnoses include cyclothymia, 

characterized by hypomania and subthreshold depression, and bipolar disorder not otherwise 

specified. Manic and depressive symptoms can also co-occur, so called “mixed states”[12]. 

Rapid cycling is a severe subtype of BD defined as four or more bipolar episodes per year, 

which is associated with treatment resistance and overall poorer prognosis [13]. BD affects 

~1-2% of the population and this causes tremendous economic burden [14; 15]. In contrast to 

unipolar depression, the heritability of BD is high, up to 70~80%, and overlaps with that of 

schizophrenia in a number of common variants alleles [16].  Lithium is the first-line mood 

stabilizer in treating BD [16] however treatment response varies considerably and there is no 

predictive biomarker available [17]. Some studies suggest that lithium responsive-BD may 

be a distinct subtype of BD with genetic difference, however this hypothesis requires more 

investigation [18; 19]. In the thesis constituent papers, the study has been primarily focused 

on BD type 1 patients which the majority of study materials are collected from.  
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                                                                                                     “I can't eat and I can't sleep.  

                                  I'm not doing well in terms of being a functional human, you know?”                                                                                                                                                                                                 

                                                                                     ― Ned Vizzini, It's Kind of a Funny Story 

                                                                                 Depression by Yu Chen. Beijing, China. 2015. 
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1.1.2 Etiology of depression 

Depression is a complex disorder, meaning that the etiology of depression is the interactive 

effects of multiple genes in combination with lifestyle and environmental factors, which is 

best summarized as a prototypical G×E interaction model [20]. Moreover, epigenetics 

provide a bridge through which environment can affect the genome and play considerable 

roles in the pathophysiology of depression and antidepressant action [21]. In this section, 

neuroanatomy and related theories of depression studied in the constituent papers are 

provided, including the monoamine hypothesis, the neurotrophins and neurogenesis 

hypothesis, the hypothalamic-pituitary-adrenal axis and stress response theory and the 

inflammation theory of depression. Other theories such as glutamate hypothesis of 

depression and circadian abnormality hypothesis of depression also received great attention 

from researchers. One should keep in mind that although these theories of depression have 

been debated for a long time, none of these theories sufficiently explains the 

pathophysiology and treatment of depression. 

1.1.2.1 Neuroanatomy of depression 

Depression is a disorder that involves several critical brain regions and associated circuits 

and neural pathways. Using brain imaging technologies, e.g. structural imaging (CT) and 

functional imaging (fMRI, PET), several brain regions in depressed patients have been 

identified with altered structures and activity. Specifically, reductions in grey-matter volume 

and glial density in the prefrontal cortex (PFC) and the hippocampus (HIP) have been 

implicated in depressed patients [22; 23]. Activity changes in depression is characterized by 

abnormalities in limbic system–cerebrocortical circuits with reduced activity in frontal 

cortical areas and hyperactivity in the amygdala [24; 25]. PFC and HIP are the two main 

brain regions investigated in the current thesis. PFC has been implicated in executive 

function, working memory, personality expression and moderation of social behavior [26-

28]. Patients with PFC lesion showed depressive symptoms, suggesting that PFC is both 

critically and causally involved in depression [29]. HIP plays pivotal roles in cognitive 

function [30], mood regulation and memory formation [31]. In particular, substantial 

literature shows existence of adult neurogenesis in the subgranular zones of dentate gyrus in 

HIP [32] and the role of reduced neurogenesis in the pathophysiology of depression [33; 34]. 

1.1.2.2 The monoamine hypothesis of depression 

The monoamine hypothesis of depression posits that depression is caused by a depletion of 

the monoamine neurotransmitters in the central nervous system, such as serotonin, 

norepinephrine or dopamine which structurally contain one amino group connected to an 

aromatic ring by a two-carbon chain [35]. In accordance with this theory, almost all 

established antidepressants act either by inhibiting neuronal reuptake of monoamines that 

leads to an increased concentration in the synaptic cleft (e.g. SSRIs such as fluoxetine) or by 

hindering the degradation of monoamines (e.g. MAOIs such as tranylcypromine). Although 

SSRIs and MAOIs are potent antidepressants, full and partial resistance to these drugs and 

their delayed onset of action suggest the cause of depression is far from being a simple 
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deficiency of central monoamines. Although it is not particularly studied in the thesis 

constituent papers, the monoamine hypothesis is regarded as the most clinically relevant 

neurobiological theory of depression. 

1.1.2.3 Neurotrophins and neurogenesis hypothesis of depression. 

Reduced volume in hippocampus and other forebrain regions in subsets of depressed patients 

have supported a popular hypothesis for depression, involving a decrease in neurotrophic 

factors −− a family of proteins that are responsible for the growth, maintenance and survival 

of neurons that also regulates plasticity of mature neurons within the adult brain [36]. These 

events may be causally linked via neurogenesis [37]. One of the most studied neurotrophic 

factors, also the one investigated in the thesis, is brain-derived neurotrophic factor (BDNF) 

which has been shown to play a key role in the regulation of neurogenesis in the 

hippocampus and to have antidepressant-like effects [38; 39]. A number of studies, both 

preclinical and clinical evidence, have supported the theory that precipitating factors such as 

chronic stress may decrease the BDNF neurotrophic support, which leads to significant 

atrophy of the hippocampus. This is detrimental to hippocampal function and ultimately 

leads to the development of depressive symptoms [40-43]. However, considerable studies 

have generated inconsistent data which reminds us to reassess this theory [44; 45]. A role of 

BDNF supported by more consistent reports is that in antidepressant treatment, which could 

be beneficial to the development of novel antidepressant drugs [46].   

1.1.2.4 Dysregulation of the hypothalamic-pituitary-adrenal axis and stress response 

Stress is commonly defined as a state of real or perceived threat to homeostasis. In order to 

maintain homeostasis and to increase the probability of survival, animals activate a complex 

set of behavioral and physiological responses involving the nervous, endocrine, and immune 

systems which are collectively known as the stress response [47; 48]. Numerous studies have 

linked stress and depression, as depression may be a cause and/or outcome of chronic stress 

and increased stress levels can significantly affect the duration and degree of symptoms of 

depression [49]. Psychosocial stressors implicated in depression includes e.g. early life 

adversities, divorce or serious marital conflict and death of a relative [50; 51]. The principle 

anatomical structures that mediate the stress response is commonly referred to as the 

hypothalamic-pituitary-adrenal (HPA) axis (Figure 1) [52]. Activation of the HPA axis will 

lead to the release of glucocorticoids, which exert profound effects with their receptors on 

several somatic organ systems and brain regions. A negative feedback loop exists where high 

glucocorticoid levels dampen the HPA-axis activity  inhibits the secretion of ACTH from the 

pituitary and CRH from the hypothalamus [53]. Glucocorticoids are reported to regulate 

neuronal survival, neurogenesis and the sizes of hippocampus [54] and the two main 

receptors that are widely expressed in the brain include the mineralocorticoid receptor (MR) 

and the glucocorticoid receptor (GR). A number of studies have reported that depressed 

patients have HPA axis hyperactivity and increased levels of cortisol in the saliva, plasma 

and urine [55]. The increased activity of the HPA axis is thought to be related, at least in part 

due to an impairment of GR-mediated negative feedback (glucocorticoid resistance) [56]. In 
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agreement with this notion, abnormal GR and GR-associated protein expression (through 

both genetic and epigenetic mechanisms) have been implied in the brain of depressed 

individuals and GR is suggested to be a target for antidepressant action [55; 57-59]. 

                         

1.1.2.5 The inflammation theory of depression 

Increasing evidence suggests that activation of the immune system may play a critical role in 

the pathophysiology of depression. Increased levels of inflammatory biomarkers, including 

proinflammatory cytokines (such as TNF-α, IL-6 and IL-1β), acute phase proteins and 

chemokines have been reported in depressed patients [60; 61]. In addition to association 

between inflammatory markers and depression, several studies also demonstrate that both 

acute and chronic administration of cytokines (or cytokine inducers such as 

lipopolysaccharide or vaccination) can cause depressive symptoms [62; 63] and anti-

inflammatory therapy may have clinical benefit for depressed patients [64; 65]. Cytokines in 

the periphery have been shown to access the brain by several routes and can interact with a 

number of pathophysiological domains involved in depression, including neurotransmitter 

metabolism (serotonin, norepinephrine, and dopamine), neuroendocrine function (HPA axis), 

and neural plasticity (neurotrophic support, neurogenesis and glutamate transportation) [66]. 

However, it remains unclear whether activation of inflammation pathways during depression 

originates primarily in the periphery or in the central nervous system. The source of immune 

activation in depression can be quite diverse, nevertheless, psychosocial stress has been 

regarded as a major factor particularly in medically healthy depressed individuals, which can 

activate the inflammatory response both peripherally and in the brain [67; 68]. 

1.1.3 Genetics and depression 

Genetic components are considered to be important in the development of depression, as 

indicated by genetic epidemiology data from family and twin studies, and may provide 

important evidence about disease mechanisms. Family studies estimate that there is 
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approximately threefold increase in lifetime risk of developing depression among first-

degree relatives of depressed probands [69]. Twin studies suggest a heritability of depression 

to be 37% and it is significantly higher in women than in men [69; 70]. Familial aggregation 

coupled with the high heritability of depression led to optimistic thoughts that molecular 

genetic techniques would reveal risk gene variants that have substantial influence on 

depression. Unfortunately, from linkage studies, candidate gene studies to genome-wide 

association studies, the process of identifying those gene variants have been slow and the 

results have been difficult to consistently replicate so far [71]. The possible explanation 

could be that depression is a complex and heterogeneous disorder where each susceptibility 

gene variant contributes only a small fraction of the overall genetic risk. In order to 

overcome these problems, increase of sample size and categorization by subtype of 

depression are among the most recommended suggestions [72]. Despite these obstacles, 

some promising and reproducible genetic findings have been generated using G x E model 

which incorporates environmental risks, such as the study of interaction effect of stressful 

life events and the variants in the serotonin system [73]. 

1.1.4 Epigenetics and depression 

The term ‘epigenetics’ was initially coined by Waddington in the 1940s to address the 

question of how numerous distinct cell types were generated from the same genome [74]. 

The definition of epigenetics has changed over time, and now it refers to a stably heritable 

(mitotically and/or meiotically) phenotype resulting from changes in a chromosome without 

alterations in the DNA sequence [75]. By this definition, epigenetic markers mainly include 

DNA methylation and histone modifications. However, previously the definition of 

epigenetic modifications included also the effect of noncoding sequences such as 

microRNAs (miRNAs) [76]. Epigenetics has provided a mechanism by which environmental 

factors can affect chromatin structure that ultimately lead to persistent alteration in gene 

expression. Accumulating evidence suggests critical roles of epigenetic mechanism in 

neuronal plasticity, neurogenesis and neurological and psychiatric disorders [77; 78]. 

Epigenetics may help to explain some of the missing heritability in depression and provide 

new insights to understand the pathophysiology [79]. In the present thesis, two types of 

epigenetic modifications are investigated in relation to depression: DNA 

methylation/hydroxymethylation and miRNAs.  

1.1.4.1 DNA methylation 

DNA methylation was described as early as in 1948 [80], but it was not until 1969 that 

Griffith and Mahler suggested that these modifications may modulate gene expression [81]. 

DNA methylation includes methylation of cytosine (predominant form in mammals), 

adenine and guanine [82] and the primary form of mammalian methylated cytosine is in the 

context of CpG dinucleotides (5-methylcytosine, 5mC); 70 – 80% of CpGs are methylated. 

There is increasing evidence showing that cytosines in non-CpG sequences (i.e. CpH, 

H=A/T/C) are also frequently methylated, especially in the brain [83; 84]. In mammals, 

DNA methylation patterns are initially established by the de novo DNA methyltransferases 3 
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family (DNMT3A/3B) and maintained during cell division by the maintenance 

methyltransferase (DNMT1) which prefers hemi-methylated DNA [85; 86]. Although DNA 

methylation has been regarded as a stable epigenetic mark, growing evidence indicates that 

DNA demethylation can occur through both passive and active mechanisms [87]. Passive 

DNA demethylation refers to the loss of 5mC during DNA replication in the absence of 

functional DNMT1. By contrast, active DNA demethylation requires an enzymatic process 

which removes or modifies 5mC by ultimately breaking the carbon-carbon bond. A number 

of enzyme has been characterized recently which includes the ten-eleven translocation 

protein family (TET1-3), facilitating the oxidation of 5mC to 5-hydroxymethylcytosine 

(5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) [88]. The following 

demethylation process is often coupled with thymine DNA glycosylase (TDG)-mediated 

base excision repair (BER) pathways and deaminases which lead to unmodified cytosine (C). 

A brief summary is shown in Figure 2. Currently, it is generally accepted that cytosine 

methylation regulates gene transcription in a highly cell-type specific manner [89]. In 

general, a heavily methylated promoter region corresponds to inactive transcription. This 

gene silencing mechanism is thought to either be due to direct inhibition of transcription 

factor binding by DNA methylation or mediated by methyl-binding domain proteins that 

recruit various co-repressor complexes to methylated DNA [90]. 5hmC is regarded as an 

intermediate of demethylation, however the relatively high steady-state levels of 

5hmCsuggest that 5hmC might also function as a stable signal that modulates binding of 

protein complexes to chromatin thus influences gene expression [91; 92]. In the present 

thesis, both 5mC and 5hmC were studied with a specific investigation of the Bdnf gene [93]. 

Other established functions of DNA methylation involves multiple cellular processes, such 

as DNA–protein interactions, cellular differentiation, transposable elements suppression, 

embryogenesis, X-chromosome inactivation and genomic imprinting [94; 95].  

 

1.1.4.2 MiRNA 

MiRNAs are small, ~22 nucleotides long, non-coding RNAs that typically function as key 

post-transcriptional repressors of gene expression [96]. The biogenesis and expression of 

miRNAs is under strict temporal and spatial control and is involved in nearly all 
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developmental and pathological processes. Dysregulation of miRNAs have been associated 

with many human diseases including depression [97]. Most miRNAs derive from 

transcription of primary transcripts (pri-miRNAs) by RNA-PolII in the cell nucleus. Primary 

transcripts are processed by DROSHA/DGCR8 heterodimer into 60-80 nucleotides (nt) long 

precursors miRNAs (pre-miRNAs) which are released into cytoplasm. DICER together with 

its dsRNA-binding partner TRBP, further cleave pre-miRNAs into an approximately 22 nt 

double stranded mature miRNAs. Supported by the HSC70–HSP90 chaperone machinery, 

only one strand of the mature miRNA is incorporated into the RNA-induced silencing 

complex (RISC) while the other strand is degraded. The miRNA-RISC complex regulates 

target mRNA expression through mRNA degradation and/or translational repression [98]. A 

few miRNAs are produced by alternative pathways e.g. the ‘mirtron pathway’ that replaces 

standard miRNA biogenesis steps [99]. In the present thesis, the lethal-7 (let-7) miRNA 

family is for the first time investigated in the FSL/FRL rat PFC region, a study which 

focused on LIN28B-mediated biogenesis dysregulation. The let-7 family is highly conserved 

between species and consists of 12 genes encoding 9 distinct miRNAs (let-7a to let-7i and 

miR-98) [100]. There is increasing evidence suggesting the involvement of the let-7 family 

in inflammation and immune response, and the let-7 family has also been implicated in 

neuronal proliferation and differentiation and synaptic plasticity [101-104]. However, its role 

in relation to the pathophysiology of depression is less investigated. 

1.1.5 Telomere biology and depression 

Mammalian telomeres are protective DNA-protein structures located at the end of 

chromosomes. They shorten progressively during each cell division due to incomplete 

replication of linear chromosomes by conventional DNA polymerases, which often referred 

to as ‘end-replication problem’ [105]. Then a natural question is that by which mechanism 

telomeric DNA is maintained. This was answered by Blackburn and Greider who showed 

that telomeric DNA is synthesized by telomerase, being capable of compensating for this 

progressive telomere attrition [106]. One may also wonder how cells distinguish their natural 

chromosome ends from double-strand breaks elsewhere in the genome, i.e. how do cells 

solve the ‘end-protection problem’. Shelterin is one of the most important and well-

characterized telomere-associated protein complexes that are involved in protecting the 

chromosome ends from two DNA damage signaling pathways (ATM and ATR mediated cell 

cycle arrest) and two double-strand break repair pathways (NEHJ mediated chromosome 

fusion and HDR mediated chromosome recombination) [107]. In this section, telomere 

length and telomerase in relation to depression research are introduced. 

1.1.5.1 Telomere length shortening in depression 

Telomeres consist of tandem repeat DNA sequences (TTAGGG) and protective proteins.  

The telomeres are responsible for preventing the chromosome ends from activation of DNA 

damage response pathways and improper repair pathways [108]. Telomeres are shortened 

during every cell division, and critically shortened telomeres result in loss of telomere 

protection which lead to cell cycle arrest and apoptosis pathways. The length of telomeres is 
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suggested to indicate biological aging [109]. In recent years, a number of studies have 

reported shorter blood leukocyte telomere length (LTL) to be associated with depression, and 

the shorter LTL the more experienced depressive episodes in bipolar disorder [110-116], 

implying that depressive individuals may bear increased risk of dysfunctional telomeres and 

biological aging-related decline. For example, an average shortening corresponding to 6-10 

years of accelerated biological aging has been estimated in blood leukocytes of depressive 

patients [117; 118]. But only a few studies have investigated telomere length in depressed 

brains [119; 120]. Telomere shortening has also been associated with psychological stress, 

oxidative stress and inflammation [121-123]. Adversity in childhood has been associated 

with shorter LTL in adulthood [124; 125].  

1.1.5.2 Telomerase dysfunction in depression 

Telomerase is a reverse transcriptase that consists of a catalytic reverse transcriptase subunit 

(TERT) and an RNA component (TERC) being template for DNA synthesis. Telomerase 

adds TTAGGG repeats to the chromosome ends and thereby counteracts the telomere 

shortening [126]. High level of telomerase expression is found in pluripotent stem cells, early 

stages of embryonic development and cancer cells, although telomerase activity is also 

present in normal adult stem cell compartments, such as lymphocytes in the bone marrow 

and peripheral blood, a subset of proliferating epithelial cells in the skin, the hair follicle, the 

gastrointestinal tract and endometrium and a subset of cells in the testis [127]. There is also 

detectable telomerase in adult brain regions where neurogenesis exists: the subgranular zone 

of the dentate gyrus in hippocampus and the subventricular zone of lateral ventricle. In 

addition to adding nucleotide repeats, telomerase has been reported to be involved in cellular 

protection and plasticity [128; 129]. In the murine hippocampus, inhibition of TERT 

expression induced neuronal excitotoxicity, apoptosis and a depressive-like behavior [130; 

131], and in humans, telomerase activity in peripheral blood leukocytes associated positively 

with hippocampal volume of postmortem brains from depressed individuals [132]. Further, 

reduced hTERT expression was found in oligodendrocytes of white matter from postmortem 

depressed brains compared to corresponding tissue from control brains [120]. Accordingly, 

TERT overexpression was associated with [133] and promoted [134] adult neurogenesis, and 

the antidepressant fluoxetine upregulated telomerase activity [134]. 

1.1.6 Treatment 

First-line treatment for moderate to severe depressive disorders includes pharmacotherapy 

(i.e. antidepressants such as SSRIs [135]), psychotherapy (e.g. cognitive behavioral therapy 

[136]), or a combination of both. Next-step treatment recommendations are switching drug 

or augmentation (e.g. in combination with lithium, antipsychotics or ECT), depending on 

patients response to the initial treatment. Maintenance therapy continues the approach that 

led to remission [137]. However, these medications are facing a number of difficulties, with 

a substantial proportion of patients showing poor clinical response and suffering from 

residual symptoms and side-effects. It also takes weeks to months before those drugs achieve 

clinical benefits [138]. Thus, there is a clear and urgent need for the development of novel  
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antidepressants with robust efficacy. For example, clinical trials have shown that ketamine 

acts rapidly and effectively for treatment-resistant depression patients and may serve as a 

novel antidepressant [139]. Pre-clinical evidence also suggests drugs targeting epigenetic 

mechanism such as sodium butyrate (NaB) and L-acetylcarnitine, which exhibit promising 

antidepressant-like effect in animal model [93; 140]. In addition, physical exercise, a non-

pharmacological intervention, has been shown to alleviate depressive symptoms in persons 

affected by mild to moderate depression [141]. Molecular mechanism of lithium, NaB and 

physical activity were investigated in the thesis constituent papers in relation to depression 

therapy.  
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2 AIMS 

The overall aim of the thesis is to increase the understanding of the pathophysiology of 

depression with a focus on telomere biology and epigenetic regulation. Such information 

may be critical in providing both preclinical and clinical evidence to develop better 

diagnostic markers and therapeutic approaches. 

The specific aims of each constituent study in the thesis were listed below: 

Study I To test whether lithium treatment in bipolar patients may influence blood 

leukocyte telomere length (LTL) and whether LTL may associate with 

lithium responsiveness, number of depressive episode as well as rapid 

cycling feature of bipolar patients. 

Study II Based on the findings in study I, we used a genetic rat model of depression 

(FSL) to investigate whether telomere length was shorter, telomerase activity 

was changed in the depressed brain with a focus on the hippocampus region, 

and whether lithium treatment could reverse such processes.  

Study III Based on the findings in study I and II, we investigated whether telomere 

length was shorter in adult depression by using less-invasive saliva DNA 

samples and whether genetic variation in the functional subunit of telomerase 

(hTERT) was associated with depression and number of depressive episodes 

in bipolar disorder type I. 

Study IV To examine histone deacetylase inhibitor NaB’s putative antidepressant-like 

efficacy in relation to DNA methylation changes in the prefrontal cortex 

region of FSL rat model of depression. 

Study V To investigate whether the FSL rat model of depression had elevated levels 

of the proinflammatory cytokine Il6 in the PFC region and whether this 

inflammation state was associated with disturbed miRNA let-7 expression, in 

turn influenced by alterations in miRNA biogenesis. We then explored if 

physical exercise would lower the elevated Il6 levels in the PFC region of the 

FSL rats, through the rescue of let-7 expression.  
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3 MATERIALS AND METHODS 

In this section, an overview of the materials and methods used in the thesis’ constituent 

papers are introduced. If not otherwise stated, all generated data were analyzed using 

appropriate statistical methods. All experiments and materials were approved by relevant 

ethical committees. 

3.1 ANIMAL STUDY 

All animal studies in this thesis were performed by using a genetic rat model of depression-

like behavior: the Flinders Sensitive Line (FSL) and its controls, the Flinders Resistant Line 

(FRL). The animal studies included analyses of behavior tests and treatment effects, gene 

and protein expression, telomere length and telomerase activity, DNA/protein interaction and 

epigenetic modifications. 

3.1.1 The FSL genetic rat model of depression 

The FSL/FRL rats were generated as a genetic model by selective breeding towards 

sensitivity to the anticholinesterase agent diisopropyl fluorophosphate (DFP). Compared to 

FRL, the FSL is genetically more sensitive to DFP and partially resembles human 

depression, thus it is referred to as a depression-like model [142]. The FSL strain exhibits 

good face validity for depression (e.g. psychomotor retardation, reduced appetite/loss of 

weight, sleep disturbances, impaired emotional memory and immune abnormality), satisfies 

the criterion of construct validity (e.g. abnormal neurochemical systems including 

serotonergic, dopaminergic and neuropeptide Y), and has a high predictive validity for a 

number of either known antidepressant drugs (e.g. tricyclic and SSRI ) or novel drugs that 

have antidepressant effect potentially for later on use (e.g. sodium butyrate) [142; 143]. 

3.1.2 Behavior tests and treatments 

One type of behavior experiment and three types of treatment interventions were used. The 

behavior experiment performed was the behavioral despair test (a.k.a. the Porsolt forced 

swimming test; FST), which is commonly used to observe FSL’s exaggerated immobility 

(floating) behavior in a water cylinder that reflects a despair state analogous to human 

depression. FST is also a measure of effectiveness of antidepressants [144]. The expected 

antidepressant-like effect is a decrease of the immobility time after intervention. Three types 

of treatment interventions were introduced: oral administration of lithium, intraperitoneal 

(i.p.) injection of HDACi (sodium butyrate) and physical exercise (running wheel). 

3.1.3 RNA and protein analyses 

The RNA molecules included both coding (mRNA) and non-coding (miRNA and pri-

miRNA) RNA. The expression levels of  targeted RNA (converted into the form of 

complimentary DNA; cDNA) were detected primarily by using quantitative Real-Time PCR 

(qRT-PCR), which is a technique that simultaneously amplifies and quantifies cDNA [145]. 

The protein analyses were performed by immunoblotting (western blotting) using specific 
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antibody to detect and quantify targeted protein levels (e.g. TET1, BDNF, β-catenin, 

DROSHA and LIN28B)[146]. 

3.1.4 RNA and protein interaction analyses 

In order to investigate RNA/protein interaction related to LIN28B and pri-let-7 transcripts in 

vivo, RNA immunoprecipitation (RIP) was performed using PFC region from FSL/FRL rats. 

RIP involved tissue lysis, followed by an immunoprecipitation stage with an antibody that 

targeted LIN28B. After RNA-protein complexes were isolated by magnetic beads, the RNA 

of interest was purified, which then was followed by cDNA conversion and qRT-PCR 

quantification [147]. 

3.1.5 Telomere length and telomerase activity analyses 

Telomere length (TL) was determined as relative values using qRT-PCR technique by 

calculating the ratio of telomere repeat copy number to single copy gene copy number [148]. 

Based on the enzymatic property of telomerase, which is adding telomeric repeats 

(TTAGGG) to the chromosome ends, the real-time telomeric repeat amplification protocol 

(RT-TRAP) [149] was used to detect telomerase activity in the hippocampus region of 

FSL/FRL rats. 

3.1.6 Epigenetic analyses 

The epigenetic analyses included DNA methylation/hydroxymethylation (5mC/5hmC) and 

histone modification experiments. DNA methylation/hydroxymethylation analyses were 

performed both globally (producing an average value representing the whole genome) and 

within specific regions of the target genes. Global DNA methylation/hydroxymethylation 

was assessed using a sandwich-based ELISA method while region-specific DNA 

5mC/5hmC was assessed using a magnetic assay capable of isolating DNA fragments either 

with 5mC or a modified 5hmC. 

3.2 HUMAN STUDY 

The human studies presented in this thesis were performed mainly from PART study and 

bipolar study. It includes genetic and telomere analyses. 

3.2.1 The PART study 

PART (Psykisk hälsa, Arbete, RelaTioner) is a longitudinal population-based study of 

mental health, work and relationships conducted in Stockholm County, Sweden. It started 

1998 and questionnaires were sent out to individuals randomly selected from Stockholm city 

council registers. The questionnaire includes demographic, socioeconomic and somatic 

health data, negative life events, smoking, illicit drug use and screening instruments for 

psychiatric disorders including the Major Depression Inventory (MDI), Sheehan Patient-

Rated (Panic) Anxiety Scale, the Yale-Brown Obsessive-Compulsive Scale, symptoms of 

social phobia and agoraphobia according to Marks and Mathews (1979), eating disorders 

according to Beglin and Fairburn (1992), the World Health Organization Short Disability 
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Assessment Schedule (WHO DAS-S) and hazardous alcohol use according to Alcohol Use 

Disorder Identification Test (AUDIT). Epidemiological data have so far been collected three 

times: wave I (1998-2000), wave II (2001-2003) and wave III (2010-2011). A subgroup of 

individuals were selected for psychiatric interviews using Schedules for Clinical Assessment 

in Neuropsychiatry (SCAN) by experienced psychiatrists and one psychologist. During the 

period 2006-2007, saliva DNA were asked for from 5527 PART II participants including all 

individuals with a depression or anxiety diagnosis and a random number of individuals who 

had no psychiatric diagnosis or psychopathological symptoms in any of the two waves. 

Blood samples were collected in a subgroup of individuals, which yielded in total 88 

samples. The schematic chart with detailed number of participants is shown below. For more 

information about PART study see Hällström et al [150] and www.folkhalsoguiden.se. 

 

3.2.2 The bipolar study 

Patients with a clinical diagnosis of bipolar disorder (BD) were consecutively recruited from 

the Unit of Affective Disorders at Psychiatry Southwest, Huddinge Hospital, Stockholm. 

Life-time manic and depressive symptoms were assessed by a psychiatrist specialized in BD 

or by a trained psychiatric nurse using the modules for mania and depression in the SCAN. 

On the basis of these assessment patients were considered as fulfilling the diagnostic criteria 

for BD type 1, 2, or not otherwise specified (NOS). The symptoms as well as the number of 

manias and depressive episodes, rapid cycling and mixed episodes were assessed, including 

the age of onset of mania and depression. Lithium response was measured according to the 

Alda-Scale. In previous studies, lithium responders (LiRs) were those who scored ≥ 7 and 

non-LiRs were those who scored ≤ 6 (range 0–10 points) [151]. 

http://www.folkhalsoguiden.se/
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3.2.3 Genetic and telomere analyses 

Genetic analyses were performed for single nucleotide polymorphism (SNP) in human TERT 

gene (rs2736100 A/C). SNP genotyping utilized TaqMan assay, which was a PCR-based 

reaction that amplified the region included the SNP site. Allele discrimination is achieved 

using probes linked to fluorophore at 5’ end and a quencher molecule at 3’ end [152]. During 

the PCR amplification, if the allele-specific probe is perfectly complementary to the SNP 

allele, the fluorophore would separate from the quencher due to degradation by 5’-nuclease 

activity of the Taq polymerase, generating a detectable signal that could be read in qRT-PCR 

machine. Based on the conservation of telomere sequence between mammals (TTAGGG 

tandem repeat) [153], the method used for human telomere analyses was the same as rats, 

which was described in section 3.1.5 with minor modification.  
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4 RESULTS AND DISCUSSION 

In this section, the major findings are integrated from the thesis constituent papers. More 

details and comprehensive descriptions are given in the full papers which could be found in 

the back of the printed thesis. 

4.1 TELOMERE DYSFUNCTION IN HUMAN DEPRESSION 

4.1.1 Shorter saliva telomere length in self-reported adult depression 

To date, most of the reports on telomere length (TL) in depression have been performed on 

peripheral blood leukocytes. In paper III, we used whole saliva DNA, a less invasive DNA 

source, and showed that adults with a history of depression had shorter TL compared to age-

matched controls, by using samples (n = 662) from the PART cohort. In this analyses, a 

number of parameters previously reported to be associated with LTL were adjusted for 

including age, sex, alcohol use, number of somatic diseases and number of childhood 

adversities. In agreement with, and supported by previous studies, the majority of DNA 

extracted from whole saliva actually originates from blood leukocytes, which is different 

from buccal cell collection techniques [154; 155]. 

4.1.2 Telomere length associated negatively with increasing number of 
depressive episodes in bipolar disorder 

In paper I, a significant effect of number of depressive episodes on blood leukocytes 

telomere length (LTL) was found in bipolar disorder (BD) patients. Specifically, the LTL 

marginal mean was reduced 0.075 units per depressive event after adjusting for age and sex 

in the linear model. This effect was stronger in males than in females. This is in line with the 

only previous study of TL in BD, which found that BD type 2 and number of depressive 

episodes were associated with shorter LTL however in a smaller sample size [116]. 

4.1.3 Rs2736100 polymorphism is associated with depression and the 
number of depressive episodes in bipolar disorder type I 

SNP rs2736100, located in the intron 2 of the hTERT gene, was previously associated with 

shorter LTL through the risk allele A in a genome-wide meta-analysis [156]. In paper III, we 

tested the hypothesis that rs2736100 associates with depression in PART cohort. There was 

no association between rs2736100 genotype and depression in the whole material (n = 2026), 

adjusted for age, sex, and experience of childhood adversity. However when stratified for 

childhood adversity, an established risk factor for depression in adulthood [157; 158], 

homozygosity for the ‘short LTL’-risk allele A was significantly associated with higher risk 

of depression compared to the AC/CC genotypes in the group without experience of 

childhood adversity (rs2736100: P = 0.010, OR = 1.51, 95% CI = 1.10-2.05; sex: P < 0.001; 

age: P = 0.007). That this relationship was detected only in those without experience of 

childhood adversity might be explained by the fact that early adversity has previously been 

associated with depression and shorter LTL in adulthood [124; 125; 159; 160]. Hence, early 

adversity might conceal an rs2736100-depression relationship. 
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We and others previously showed that LTL was associated with the number of depressive 

episodes and lithium response in BD [115; 116]. We tested whether SNP rs2736100 

associated with the number of depressive episodes within BD1, considering the patients’ 

response to lithium treatment. In patients responding well to lithium treatment (LiR), the risk 

allele A showed dominance, that is the AA/AC genotype significantly associated with higher 

number of depressive episodes compared to the CC genotype (AA/AC vs CC: F = 10.9, P = 

0.001; sex: F < 0.001, P = 1.00; years since onset of first depressive episode: F = 16.8, P < 

0.001; age: F = 0.36, P = 0.55; ANCOVA). We also observed a similar effect in A/C allelic 

model, with the A allele conferring a risk for increased number of depressive episodes. That 

the finding in BD patients was confined to the LiR group may reflect a possibly higher 

lithium functionality in the LiR group, and the fact that lithium upregulates hTERT [161], 

which in turn may upregulate the functionality of rs2736100. 

4.2 TELOMERE DYSFUNCTION IN THE FSL RAT MODEL OF DEPRESSION 

4.2.1 Shorter hippocampal telomere length in the depressed FSL rat model 

Shorter telomeres in leukocytes were reported to be associated with major depression. 

However, it is not clear whether the same holds true for the respective brains. A study from 

Szebeni et al showed that oligodendrocytes but not astrocytes from depressed individuals 

displayed shorter TL and decreased TERT expression compared to corresponding 

postmortem white matter (frontal and temporal lobes) from control brains [162]. Since 

hippocampus is pivotal in cognitive function [30], mood regulation and memory formation 

[31] and it is a region that expresses telomerase activity also in adulthood, in paper II we 

tested whether there is telomere dysfunction in the hippocampus of the depressed FSL rat. 

We found that the FSL had shorter hippocampal TL compared to the control line FRL.  

4.2.2 Decreased Tert and telomerase activity in the FSL hippocampus 

Shorter telomeres may result from a decreased telomerase activity. The expression of the 

catalytic subunit (TERT) of telomerase is stringently regulated, and of the several splicing 

forms the full length mRNA correlates positively with telomerase activity [163; 164]. The 

Tert transcript is highly conserved between human and rodents [164], thus enabling 

translational studies in rodent models. In paper II, we explored if the shorter TL in the FSL 

hippocampus could reflect a reduced telomerase activity. The Tert levels were reduced in the 

FSL compared to the FRL rats. Consistent with the downregulated Tert expression, 

telomerase activity was lower in the depressed FSL hippocampi. Telomerase overexpression 

has been suggested to promote adult neurogenesis in the hippocampus [133; 134]. 

Substantial literature shows existence of adult neurogenesis, particularly in the dentate gyrus 

[32] and the role of reduced neurogenesis in the pathophysiology of depression [33; 34]. 

Interestingly, chronic mild stress in mice resulted in decreased TERT levels and telomerase 

activity as well as reduced neurogenesis in hippocampus and a depression-like behavior. In 

contrast, fluoxetine and intrahippocampal infusion of 3-azido-deoxythymidine (AZT) 
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reversed these effects leading the authors to suggest that hippocampal telomerase plays a role 

in depression-like behaviors, possibly by regulating neurogenesis [134]. 

4.3 INFLUENCE OF LITHIUM TREATMENT ON TELOMERE LENGTH AND 
TELOMERASE ACTIVITY 

4.3.1 Longer telomere length in bipolar patients and good Li-responders 

In paper I, we found that LTL correlated positively with length of lithium treatment (duration 

≥30 month) in BP patients. We also found significantly longer LTL in BP patients (n = 202) 

when compared to healthy controls (n = 135). This significance could also be seen in lithium 

monotherapy (n = 39) in comparison with healthy controls. Furthermore, LTL seemed to 

reflect lithium response indicated by that those with good response (LiR, n = 31) had 10% 

longer LTL compared with those with no or partial response (non-LiR). 

4.3.2 Lithium increases Tert and telomerase activity in the FSL 
hippocampus 

In paper II, we tried to explore the mechanism how lithium protects against TL shortening. 

We conducted a 6-week treatment with either Li2SO4 or vehicle admixed to the FSL rat 

chow. Both Tert expression and telomerase activity were increased in the hippocampi from 

the lithium treated FSL (FSL-Li) compared to the FSL-vehicle group. But hippocampal TL 

was not statistically increased in FSL-Li group. A similar lack of TL change despite 

telomerase upregulation was also reported by Wolkowitz et al [114]. Explanations could be 

that TL changes much slower than telomerase activity [165; 166]; our previous study found 

that long-term lithium treatment (≥30 months) in patients diagnosed with bipolar disorder 

correlated positively with LTL [115].  

4.3.3 Potential mechanism of lithium’s effect on telomere biology  

Lithium was previously shown to inhibit GSK-3β [167], which results in retention of β-

catenin [168]. Lithium-induced upregulation of β-catenin was shown to upregulate hTERT 

transcription in cancer cell lines [169] however no such studies have been done in the brain 

region. Lithium has also been reported to promote expression of BDNF which, in turn, 

enhances Tert expression [170]. In addition, BDNF was reported to modulate telomerase 

activity in embryonic hippocampal neurons [170], In paper II, we investigated levels of 

putative mediators, β-catenin and BDNF, of lithium’s effect on telomerase activity, both in 

naïve FSL/FRL and FSL-vehicle/FSL-Li groups. We found decreased BDNF levels in naïve 

FSL compared to FRL, which may in part underlie the reduced telomerase activity in FSL 

brain. But we didn’t see any level difference in β-catenin between naïve rats. Interestingly, 

when we measured the β-catenin levels in FSL-Veh and FSL-Li hippocampi, β-catenin 

levels were significantly higher in the FSL-Li group, but lithium didn’t seem to influence 

BDNF levels. The duration of lithium treatment has been implied to influence BDNF 

changes, e.g. an increase in BDNF was found after 14 days, but not 28 days, while the 

treatment duration in our study was 42 days [171].  



Novel Mechanisms in Depression: Focus on Telomere Biology and Epigenetic Regulation 

 21 

4.4 EPIGENETIC FINDINGS IN THE FSL RAT MODEL 

4.4.1 Sodium butyrate affects DNA methylation in the FSL prefrontal cortex 
(PFC) 

The epigenetic drug sodium butyrate (NaB) showed antidepressant-like effects in preclinical 

studies [172; 173]. Research has focused on its role as a histone deacetylase inhibitor, but 

there is also evidence that NaB affects DNA methylation [174-176]. In paper IV, chronic 

intraperitoneal administration of NaB had antidepressant-like effects in the FSL and was 

accompanied by increased levels of TET1 in the PFC region. Hydroxylation of 5-

methylcytosine (5mC) by TET proteins were previously shown to lead to the formation of 5-

hydroxymethylcytosine (5hmC), which can then mediate active DNA demethylation [177-

179]. This mechanism has important implications for studies of postmitotic tissues where 

cell division and DNA replication have ceased, such as the brain region we studied here. In 

addition, 5hmC has been found to be most abundant in the brain where it is particularly 

enriched in active genes, indicating a crucial role for this DNA modification in neuronal gene 

expression and memory formation [92; 180]. In paper IV, the TET1 upregulation was 

associated with an increase of 5hmC and a decrease of 5mC in Bdnf gene. These epigenetic 

changes were associated with a corresponding BDNF overexpression. These findings are in 

line with two recent studies showing that TET1 overexpression in the mouse hippocampus 

also leads to increased Bdnf expression [177; 180]. 

4.4.2 Inflammation and disturbed let-7 biogenesis in the FSL prefrontal 
cortex 

Elevation of the proinflammatory cytokine IL-6 has been implicated in depression, however 

the mechanism remains elusive [181-183]. Previous study showed that let-7 family directly 

inhibited IL-6 expression, which may act as an immunorepressor [184]. In paper V, we 

found elevation of Il6 in PFC region of FSL, which was associated with overexpression of 

LIN28B and downregulation of let-7 miRNAs (including let-7b, let-7c, let-7f, let-7i and 

miR-98). LIN28B is an RNA-binding protein that selectively represses let-7 synthesis. Also 

DROSHA, key enzyme in miRNA biogenesis, was downregulated in the FSL PFC. The let-7 

family plays an important role in early neurodevelopment. However, other roles of let-7 

family in the adult brain have been less investigated despite the fact that let-7 is known to be 

upregulated in later developmental stages and is one of the most abundant miRNA families 

in the adult brain [185; 186]. Thus, the results indicate upregulated Il6 levels in FSL PFC by 

let-7 downregulation through LIN28B and DROSHA dysregulation. Let-7 can also inhibit 

LIN28B translation by binding to the 3′ UTR target sites, creating a double negative 

feedback loop [187]. Noteworthy, let-7 could also be regulated in a LIN28B-independent 

way, e.g. through epigenetic mechanisms such as DNA and histone methylation [188]. It is 

possible that let-7 dysregulation can lead to disturbances also in other pathophysiological 

processes because a miRNA often has multiple target genes. The fact that we observed that 

FSL PFC had decreased DROSHA levels, suggests a disturbed miRNA biogenesis probably 

not only in let-7 but also in a variety of other miRNAs. In line with this hypothesis, a recent 
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study has demonstrated a general reduction of miRNA expression in the PFC from depressed 

suicidal subjects [189]. Previous studies have shown that physical activity in the form of 

wheel-running exerts antidepressant-like effect in the FSL rat model [190; 191]. We found 

that physical activity reduced Il6 levels and selectively increased let-7i and miR-98 

expression in the FSL PFC, which were independent of Lin28b and Drosha changes. 

However, upstream primary miRNA transcription was increased in the FSL-runners, 

implying that other mechanisms (e.g. epigenetic) are involved in regulating let-7 expression 

in response to physical activity. 
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5 SUMMARY AND CONCLUDING REMARKS 

In this section a summary of conclusions from each constituent paper, as well as general 

concluding remarks, are provided. 

 In bipolar patients, long-term lithium treatment was suggested to protect against 

telomere shortening especially when therapeutically efficacious (i.e. in patients who 

responded well to lithium). The shorter telomere length associated with a history of 

higher number of depressive episodes (Paper I).    

 Shorter telomere length and dysfunctional telomerase activity in hippocampus was 

associated with a depression-like state in the FSL rat. Lithium treatment  normalized 

the hippocampal telomerase dysfunction, possibly through the activation of β-catenin 

(Paper II). 

 Saliva telomere length was decreased in adult individuals with a history of depression 

and genetic variation in hTERT may influence the susceptibility to depression (Paper 

III). 

 Sodium butyrate exerted antidepressant-like effect in the FSL and the suggestive 

epigenetic effects of sodium butyrate may include DNA methylation changes that are 

mediated by demethylation-facilitating enzymes like TET1 (Paper IV). 

 Elevation of proinflammatory cytokine Il6 in prefrontal cortex region of the FSL was 

associated with disturbance of let-7 family biogenesis. Physical activity could reduce 

the cortical Il6 levels possibly through regulating miRNA expression (Paper V).  

 

Depression is a complex disorder with multiple genetic, epigenetic, behavioral and 

environmental risks that contribute to the heterogeneity of the illness. The understanding of 

the pathophysiology of depression has evolved substantially over years and researchers have 

realized the importance of utilizing multidisciplinary approaches to unravel the 

neurobiological bases for depression. Focusing beyond the traditional pathophysiological 

theories of depression, telomere biology may provide new insights to the development of 

predictive markers for depression and to the understanding of the neuroprotective effects of 

lithium. Expanding the knowledge about epigenetic dysregulations in depression may 

provide novel mechanism and therapeutic possibilities. In addition to some psychotropic 

drugs with epigenetic effects e.g. valproic acid, there are many epigenetic drugs that have 

lately received much attention, however still more preclinical and clinical support is needed 

before targets in psychiatric disorders are identified.   

In summary, the studies in this thesis work contribute to increase the understanding of 

molecular mechanisms in depression and mood disorder treatment.   
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6 FUTURE PERSPECTIVES 

A number of questions, related to the results in the studies of this thesis, remains to be 

answered. Here, the major perspectives for future work are listed. 

 The telomere length and telomerase activity were measured in a homogenate of 

hippocampus tissue which may include neurons, glia, vascular and immune cells. 

Since cell types exhibit different telomere vulnerability towards cellular stress, it is 

important to investigate telomere dysregulation at a cell-type specific level.  

 The causal relationship of the association between dysfunctional telomeres and 

depression symptoms is elusive. Support from additional human studies that genetic 

variation in hTERT associates with depression and the number of depressive episode 

in bipolar disorder would suggest that telomerase activity influences the risk for 

depression and the number of depressive episodes in bipolar disorder.  

 Leukocyte telomerase activity was reported to correlate positively with SSRI 

responsiveness in depressed cases with low baseline telomerase activity [114], 

suggesting that telomerase activation might be beneficial in antidepressant treatment. 

The molecular mechanisms underlying leukocyte telomerase changes in response to 

SSRI is not clear. However, it was recently shown that leukocyte telomerase activity 

correlated with hippocampal volume, suggesting that this activity indexes a 

neuroprotection or neurogenesis in the hippocampus of depressed individuals, 

possibly in part through a correlated telomerase activity in the hippocampus [192]. 

Telomerase is suggested to promote neurogenesis, however the detailed mechanism 

is still elusive. Telomerase may influence neurogenesis through extra-telomeric 

functions, and telomerase may thereby be implicated in depression through extra-

telomeric functions. Our previous finding showed that bipolar patients who 

responded well to lithium treatment had longer leukocyte telomere length. Whether 

this could reflect leukocyte telomerase activation are planned to be studied in newly 

diagnosed bipolar patients. We showed that lithium upregulated telomerase activity 

in the hippocampus of depressed rats.         

 Telomeres consist of DNA and protective protein complexes. A key protective 

complex is called shelterin and it includes TRF1, TRF2, TPP1, TIN1, POT1 and 

RAP1. Dysfunctional shelterin leads to insufficiant telomerase docking and increased 

DNA damage response which may result in cell cycle arrest [107]. Memebers of 

shelterin e.g. RAP1 was shown also to have extra-telomeric functions such as 

regulating gene expression [193]. The role of RAP1 is planned to be investigated in 

the FSL rat model. 

 The understanding of epigenetic regulation is increasing rapidly. Recently a number 

of studies showed that non-CpG methylation, primarily produced by DNMT3A, are 

abundunt and more dynamic than CpG methylation in adult brain [83]. DNMT3A is 

suggested to play a role in neurogenesis by modifying methylation in neuronal genes 

[194]. It would be interesting to investigate the function of DNMT3A in the 

depressed brain and the biological role of non-CpG methylation in depression. 
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                          “There are two ways to live: you can live as if nothing is a miracle;  

                                                                   you can live as if everything is a miracle.” 

                 “Logic will get you from A to B. Imagination will take you everywhere.” 

                                                                                                            ― Albert Einstein                                                                                                           

                                                                                    

                                             Brilliant imagination by Yu Chen. Beijing, China. 2015. 
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 We showed that the HDACi NaB can affect DNA methylation, however it is not 

clear how mechanistically epigenetic markers interact with each other, e.g. the order 

by which histone acetylation and/or DNA methylation predominantly influence one 

another. This emphasizes the importance of elucidating in detail how epigenetic 

drugs like NaB, and the structurally similar valproic acid, exert their mood stabilizing 

effects. 

 We found disturbed biogenesis in the Il6-targeting let-7 miRNA family in frontal 

cortex region of the FSL rats. In addition to LIN28B dysfunction, we also noticed a 

decreased DROSHA expression which implied a general reduction of miRNA 

biogenesis in frontal cortex region in depression states. In agreement, one study 

showed that most of the miRNAs were found to be decreased in the postmortem 

brain from drug-free depressive subjects [189]. In addition, a recent finding reported 

that enoxacin, an antibiotic drug that has miRNA production enhancement property, 

exhibited antidepressant-like effect in preclinical research (Smalheiser et al. 2014). 

MiRNAs show high stability in human paraffin-embedded tissues and plasma 

samples; a number of studies from cancer research have suggested the possibility that 

miRNA expression may be a useful tool to identify disease states and subtypes. It 

would be interesting to examine this idea also in depression. Thus, a comprehensive 

miRNA profiling is planned to be performed in the FSL frontal cortex. Furthermore, 

we found that physical activity reduced Il6 levels and selectively increased let-7i and 

miR-98 expression in the FSL frontal cortex, which was independent of Lin28b and 

Drosha changes but associated with upstream primary miRNA transcription changes, 

implying that other mechanisms (e.g. epigenetic) are involved in regulating let-7 

expression in response to physical activity. The reason to altered primary miRNA 

transcription is planned to be investigated in FSL frontal cortex. 

 

 

 

 

 

 

 

“By three methods we may learn wisdom:  

First, by reflection, which is noblest;  

Second, by imitation, which is easiest;  

and third by experience, which is the bitterest.” 

― Confucius   
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