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I came up with a good idea… see-through skin! 

      - Karl Pilkington 



 

ABSTRACT 

Ulcerative colitis (UC) and Crohn‘s disease (CD), collectively referred to as inflammatory 

bowel diseases (IBD), are characterized by aberrant immune responses in the gut, resulting in 

chronic intestinal inflammation. There is no cure for IBD, and the disease is increasing 

world-wide. The pathogenic mechanisms that drive disease onset and chronicity are currently 

unclear but seem to include a complex mixture of heritable pre-disposition and acquired 

factors.  

The inflammation during IBD is characterized by a large influx of immune cells from the 

circulation to the inflamed intestine. This is mediated by the expression of chemokine 

receptors on the surface of the leukocytes, allowing them to migrate towards gradients of 

chemokines produced in the intestinal tissues. However, the mechanisms behind chemokine 

receptor-mediated leukocyte infiltration to the gut are poorly understood. The papers included 

in this thesis investigate the roles of CD4
+
 T helper cells and monocytes, focusing on 

chemokine receptor interactions, in mediating intestinal inflammation during IBD.  

Whereas the inductive mechanisms of chemokine receptors during colitis have mainly been 

studied in murine T cells, we set out to investigate blood monocytes in IBD patients. We 

found that the chemokine receptor CCR9, important for gut-homing in T cells, is expressed 

on a subset of monocytes that is increased during active IBD. Furthermore, we could show 

that a large number of chemokine receptors are up-regulated on IBD monocytes compared to 

healthy controls, as well as being differentially expressed between ulcerative colitis and 

Crohn’s disease. As UC and CD may be clinically similar, they are often difficult to 

distinguish. However, as optimal therapy choices for the respective disorders differ, correctly 

diagnosing IBD is crucial and thus, chemokine receptor profiling on blood monocytes 

constitutes a potential diagnostic approach. 

In T cells, murine data suggests that CCR9 interactions are important for small intestinal 

homing whereas their role during colitis remains unclear. We have investigated CD4
+
 T 

helper cells infiltrating the colonic mucosa during inflammation, and found that CCR9 is 

widely expressed on these cells, indicating importance role during human colitis. 

Furthermore, CCR9 expression levels were higher on T cells derived from un-affected 

compared to inflamed specimens, which might suggest that CCR9-positive cells have a 

regulatory function.  

In conclusion, we have shown that chemokine receptor interactions are important for colonic 

immune responses during IBD. Understanding the complexity of the chemokine receptor 

system is fundamental to successfully targeting leukocyte migration pathways for therapeutic 

purposes.  
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1 INTRODUCTION 

The main function of the human immune system is to protect the host from disease, which 

may be brought upon by external pathogens such as bacteria, viruses or parasites. When 

triggered, the immune system may launch a broad repertoire of immune responses of varying 

complexity and specificity, which aim to eliminate the pathogen while minimizing damage to 

host tissue, and form an immunological memory that allows for a faster response upon 

pathogen re-encounter. The human immune system is generally divided into two arms, innate 

and adaptive immunity, that represent different layers of function as well as evolutionary 

origin. The role of the innate immune system is to quickly initiate a primary response upon 

the encounter of broad molecular structures that are expressed on pathogens (pathogen-

associated molecular patterns; PAMPs) or debris derived from dead cells or dying tissue 

(danger-associated molecular pattern; DAMPs). These structures are recognized by pattern-

recognition receptors (PRRs) expressed on the surface of the immune cell. Conversely, the 

cells of the adaptive immune system react towards peptide antigens in a highly specific 

manner, creating an immunological memory, which forms the basis for vaccinations. The 

adaptive immune system has been fine-tuned through evolution and follows a later time 

course than the innate arm – whereas inflammatory mediators are released by cells of the 

innate immune system within minutes after injury, the adaptive response generally takes days 

to become effective. Although the cellular composition, means of pathogen recognition as 

well as response time differ between the arms, they do act in close collaboration and the 

adaptive arm is highly dependent on the innate system in order to fully respond. The 

functional maturation of adaptive cells relies upon signals from the innate arm that are 

derived through the process of antigen presentation that typically occurs in the lymph nodes 

where cells from the innate and adaptive arms physically interact. The net result of the 

immune response, with regards to variables such as cellular composition and duration, is 

defined by a number of factors; including the surrounding cytokine milieu, the specific 

molecules that take part in the cell-cell interactions during antigen presentation, as well as the 

affinity/avidity of these interactions.  

Many disease factors alter either the onset or the regulation of an immune response, resulting 

in impaired pathogen clearance and/or increased tissue damage. Inflammatory bowel disease 

(IBD), a chronic disorder of the gastrointestinal system, results from a complex combination 

of inherited and acquired traits. This thesis focuses on the role of innate monocytes (papers I 

and II) and adaptive T cells (papers III and IV) in mediating intestinal inflammation during 

IBD. 
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1.1 THE BIOLOGY OF THE T CELL 

The basis of T lymphocyte immune responses lies on the diverse recognition repertoire of the 

T cell receptor pool to specifically eliminate peptide antigens, followed by the formation of 

an immunological memory.  

Naïve T lymphocytes become activated during the antigen presentation process in the lymph 

node, where an antigen presenting cell (such as a macrophage or a dendritic cell) presents its 

bound antigen to the T cell which, upon recognition of the antigen by its T cell receptor 

(TcR) may clonally expand and thus, a population of T effector cells that specifically 

recognizes the initially presented antigen may exit the lymph node and travel the circulation 

in search for its cognate antigen. In the following sections, the fundamentals of CD4
+
 T cell 

responses are outlined. 

1.1.1 T cell development 

1.1.1.1 Thymic maturation 

Thymocytes, which are the progenitors to T lymphocytes, develop in the bone marrow but 

migrate through the blood stream to the thymus while still retaining some ability to 

differentiate to other hematopoietic cell types. In the thymus, the lymphoid progenitor cell 

matures to become a CD4
+
CD8

-
 or CD4

-
CD8

+
 naïve cell through the highly organized, step-

wise thymic selection process, which is here described briefly. In the thymus, the T cell 

receptor is re-arranged on the DNA level through recombination of V(D)J segments, an 

enzymatic process that aims at altering the recognition sequence of the TcR to produce a T 

cell pool that theoretically recognizes any potential protein antigen. 

The human T cell receptor repertoire is extremely diverse and may recognize an astonishing 

10
9
-10

15
 peptide sequences. Thus, it is of greatest importance to eliminate any T cell receptors 

that recognize endogenous antigens to prevent autoimmunity. During thymic maturation, only 

T cell progenitors that are non-reactive to self-antigens are permitted to enter circulation 

whereas self-reactive clones are dismissed through programmed cell death. This process, 

referred to as central tolerance development (as opposed to peripheral tolerance development 

that occurs outside the thymus) is for T lymphocytes composed of two steps, positive and 

negative selection.(Mueller) The purpose of positive selection is to only select T cells that 

recognize antigens presented in the context of MHC expressed on cortical thymic epithelial 

cells (cTECs). Based on the TcR-MHC binding affinity, as well as whether the TcR 

recognizes MHC class I or II, CD4 or CD8 (respectively) will be down-regulated and the T 

cell fate as a CD4
+
CD8

-
 or a CD4

-
CD8

+
 has now been determined. Following migration to 

the thymic medulla, autoimmunity is evaded during the negative selection process, where 

cells that recognize MHC-self peptide complexes are eliminated. Here, the affinity of the 

functional TcR is tested against MHC molecules expressed on medullary thymic epithelial 

cells (mTECs) and the naïve T cells that survive the selection processes may enter the 

circulation as recent thymic emigrants (RTEs).(Starr, Jameson et al. 2003)  
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1.1.1.2 Effector maturation 

Given that the T cell encounters its antigen, the lifespan of a T cell will involve a series of 

functional and phenotypic changes, which are here described briefly. Recent thymic 

emigrants (RTEs) express markers such as CCR7 and CD62L that allow them to enter 

secondary lymphoid organs (SLOs) in search for their cognate antigens. During this time, 

survival signals may induce homeostatic proliferation of the RTE which is then considered a 

mature naïve T cell (TMN), characterized by proliferative experience and reduction of T-cell 

receptor excision circles (TRECs) (Fink) The T cell will become activated in the lymph node 

upon encounter with an antigen presenting cell (APC) carrying its cognate antigen on an 

MHC class I (for CD4
+
 cells) or II (for CD8

+
) molecule. In order to clonally expand, the T 

cell needs at least three distinct signals: 1) the peptide presented in the context of MHC; 2) 

co-stimulation such as binding of CD28 on the T cell to B7 molecules of the APC; and 3) 

stimulation by external cytokines. The third signal plays a fundamental role in shaping the 

differentiation of the activating T cell into functionally distinct lineages (discussed in greater 

detail in section 1.1.2). 

Upon clonal expansion, the daughter cells will give rise to a heterogeneous population 

consisting of highly proliferative central memory cells (TCM) as well as effector-memory cells 

(TEM; Figure 1).(Sallusto, Lenig et al.) TCM express adhesion molecules (such as α4β7) and 

chemokine receptors (such as CCR9) allowing for blood vessel extravasation and entry into 

the tissues while retaining CCR7 and CD62L expression and are thus also capable of 

circulating SLOs; whereas TEM cells are solely tissue bound and thus do not express lymph 

node homing markers. A terminal, tissue-resident differentiation stage referred to as T 

effector-memory RA-expressing (TEMRA), characterized by low homeostatic proliferation and 

re-expression of the naïve T cell marker CD45RA have been described as well, although 

primarily within the CD8 compartment.(Sallusto, Geginat et al. 2004)  

1.1.2 T helper cell lineages 

Originally, T helper cell responses (investigated in papers III and IV of the thesis) were 

modeled as a dichotomy of either Th1 or Th2, described as separate lineages with distinct 

function as well as cytokine secretion profiles. In this model, the Th1 response (important for 

the cellular defense against intracellular bacteria) is characterized by production of IFN-γ 

whereas Th2 cells mainly produce the cytokines IL-4, IL-5 and IL-13 and play a role in the 

humoral response against extracellular parasites.(Mosmann and Coffman) Subsequent 

research has revealed additional phenotypes within the T helper cell lineage, such as T 

regulatory cells (Tregs) for suppressing immune responses, IL-17-producing Th17 cells, 

involved in host response against extracellular bacteria; as well as the comparatively recently 

discovered Th9 subset (characterized by IL-9 production) that has been attributed a role in 

mucosal immune responses.(Geginat, Paroni et al.) As the mechanisms behind T helper cell 

differentiation have unraveled, studies have challenged the initial notion that lineage 

commitment represents end-stage differentiation with no possibility to revert to opposing 

commitment pathways. Indeed, it has become increasingly evident that the majority of human 
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T effector cells are plastic in the sense that they, during optimal cytokine conditions, may co-

produce cytokines of an opposing lineage or even switch commitment pathway.(Geginat, 

Paroni et al.) However, most studies investigating the potential of an effector T cell to switch 

commitment pathway have been carried out in vitro and/or in the murine setting, and the 

relevance of these investigations for T cell responses in the human tissues need to be 

specifically addressed. 

 

Figure 1. T helper cell maturation stages. Adapted and modified from Smids and 

colleagues, 2015. 
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1.1.2.1 T helper cell lineage stability 

Whereas the ability of an antigen-experienced T helper cell to switch differentiation pathways 

during optimal conditions is now an established feature, the extent of lineage plasticity seems 

to vary between pathways as well as stage of differentiation.(Sallusto, Geginat et al.) Grogan 

and colleagues elegantly demonstrated that a naïve T cell co-expresses Th1 and Th2 

cytokines (Ifng and Il4, respectively) and that several replication cycles are needed for the 

expanding cell to become completely selective for either Th1 or Th2. During stable 

commitment observed at later cell divisions, the silenced alleles were physically repositioned 

to the heterochromatin and thus un-accessible for the transcription machinery.(Grogan, 

Mohrs et al.) The lineage stability of regulatory T cells is debated, much owing to difficulties 

in separating thymic Tregs (tTregs), that constitute a separate thymic lineage, from Tregs that 

are induced following antigen presentation in secondary lymphoid tissues of the periphery 

(pTregs). Several studies have demonstrated co-expression of FOXP3 and lineage-specific 

cytokines. Blood Tregs isolated from patients with multiple sclerosis may co-express FOXP3 

and IFN-γ although with reduced suppressive capacity that was restored by antibody 

blockade of IFN-γ in vitro, indicating lineage plasticity of a mixed population of tTregs and 

pTregs.(Dominguez-Villar, Baecher-Allan et al.) Voo and colleagues demonstrated that 

circulating FOXP3
+
 Tregs from healthy donors express the Th17 transcription factor RORγt, 

and readily produce IL-17 upon activation.(Voo, Wang et al. 2009) Although there is not, as 

of yet, any well-established markers that may be used for isolating tTregs, there is evidence 

that FOXP3-expressing cells derived from the naïve T cell population maintain FOXP3 

expression during in vitro culturing to a higher extent than those derived from the effector 

population, these findings may indicate discrepancies in stability between tTregs and 

pTregs.(Hoffmann, Eder et al. 2006) 

1.1.3 T cell epigenetics 

Eukaryotic DNA contains several billions of nucleotide residues. In order to fit all this 

genetic information into a nucleus, DNA molecules are tightly packed onto nucleosomes 

which are composed of ~146 base pairs of DNA wrapped around a core of four pairs of 

histone proteins designated H2A, H2B, H3 and H4.(Kornberg 1977; Richmond and Davey 

2003) Nucleosomes, in turn, are packed in a higher order of dense chromatin fibers. This 

organization makes it impossible for the transcription machinery to access the genome 

without structural changes of the relevant loci whereby the DNA may be unwound and 

transcription initiated. Such remodeling events include nucleosome repositioning, post-

translational modifications of histone tails as well as DNA methylation; which all may 

account for tissue- and/or cell-specific gene expression and heritability and are thus by 

definition referred to as epigenetic events. This thesis discusses the use of DNA methylation 

as markers for T cell lineage (paper III), as well as its role in regulating the chemokine 

receptor CCR9 (paper IV). 

 



 

14 

1.2 THE BIOLOGY OF THE MONOCYTE 

Blood monocytes are innate cells that circulate the blood, bone marrow and spleen. They 

represent about 10% of the total blood leukocyte population and derive from a common 

macrophage- and DC progenitor (MDP) cell in the bone marrow.(Akashi, Traver et al. 2000) 

Besides from being able to readily migrate to the tissues and differentiate to macrophages or 

myeloid dendritic cell, monocytes also perform scavenging as well as inflammatory functions 

in the blood vessels during inflammation and homeostasis.(Auffray, Fogg et al. 2007) 

1.2.1 Monocyte development 

Monocytes develop from hematopoietic stem cell-derived common myeloid precursors 

(CMPs) in the bone marrow that in turn give rise to granulocyte/macrophage precursors 

(GMPs). In turn, GMPs differentiate to macrophage/DC precursors (MDPs) Apart from 

giving rise to monocytes and tissue macrophages, these cells may directly, without monocyte 

intermediates, give rise to conventional as well as plasmacytoid dendritic cell (cDC and pDC) 

subsets. Through CCR2-dependent mechanisms, the mature monocytes may enter the 

circulation to carry out their effector functions.  

1.2.2 Monocyte subsets in mouse and man 

Human blood monocytes are sub-divided into two main subsets based on their expression of 

the pattern recognition/TLR4 co-receptor CD14 and the IgG receptor CD16, namely the 

CD14
+
CD16

-
 and the CD14

lo
CD16

+
 subsets. Much of our understanding regarding monocyte 

function and migration is derived from studies in mice. The main murine circulating 

monocyte subsets, the Ly6C
hi

 and Ly6C
lo
 subsets, overlap phenotypically and functionally 

with their human counterparts (the CD14
+
CD16

-
 and the CD14

lo
CD16

+
 subsets, 

respectively). (Geissmann, Jung et al. 2003; Cros, Cagnard et al. 2010; Ingersoll, Spanbroek 

et al. 2010) In mice,  Ly6C
hi

 monocytes readily migrate to the gut mucosa through CCR2-

CCL2-interactions whereas CCR2
-
CX3CR1

hi
Ly6C

lo
 cells do not migrate to the tissues but 

rather represent a circulation-restricted, terminally differentiated monocyte subset 

(originating from Ly6C
hi

 cells) that may play a role in maintenance of the vasculature.(Yona, 

Kim et al. 2013) In contrast with these results, Ccr2
-/-

 mice have little or no circulating 

Ly6C
hi

 monocytes. The same study shows that Ccr2
-/-

 monocytes readily migrate to sites of 

infection but also that these cells accumulate in the bone marrow after infection with L. 

Monocytogenes, indicating that CCR2 plays an important role in monocyte egress from the 

bone marrow rather than tissue migration during inflammation.(Serbina and Pamer 2006) In 

the human setting, the CD16-expressing population has been shown to be able to roll and 

attach under shear flow using CX3CR1-CX3CL1 interactions as well as migrate towards 

ligands of CX3CL1 and CXCL12, the ligand for CXCR4.(Ancuta, Rao et al. 2003)  
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Figure 2. The leukocyte adhesion cascade. Adapted from Ley and colleagues, 2007 

The human colonic mucosa has been shown to mainly harbor CD14
hi

 macrophages, with a 

phenotype resembling the CD14
+
CD16

- 
subset with regard to the low expression of CD16 

and CX3CR1 as well as ability to migrate towards CCL2.(Thiesen, Janciauskiene et al. 2014)  

The roles of the respective human monocyte subsets during inflammatory bowel disease are 

discussed at greater detail in papers I and II of this thesis. 

1.3 LEUKOCYTE TISSUE MIGRATION 

During inflammation, inflammatory cytokines produced by structural cells in the tissue (such 

as epithelial cells and stromal cells) as well as resident or migratory immune cells activate the 

endothelium, which responds by up-regulating the expression of selectins, integrins and 

chemokines that are presented on the cell surface.(Campbell, Qin et al. 1996) 

In order to mediate their effector functions of pathogen eradication and tissue repair, 

circulating leukocytes are required to extravasate through the endothelium and migrate 

through the tissues to the site of inflammation. This is carried out by the induction of 

signaling molecules on the endothelial surface as a result of tissue injury, enabling 

interactions with circulating cells. 
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1.3.1 Extravasation 

Leukocyte extravasation is mediated through sequential but overlapping steps referred to as 

the leukocyte adhesion cascade, which is mainly carried out by selectins (expressed on 

leukocytes and endothelial cells) and integrins (expressed on leukocytes).(Ley, Laudanna et 

al. 2007) The included steps are slow rolling, adhesion strengthening, intraluminal crawling, 

paracellular or intracellular migration, and finally migration through the basement 

membrane.(Ley, Laudanna et al. 2007) The leukocyte adhesion cascade is outlined below. 

1.3.1.1 Slow rolling 

The retention and rolling of the leukocyte on the endothelial surface is carried out by L-

selectin, P-selectin and E-selectin which all pre-dominantly interact with the P-selectin 

glycoprotein ligand 1 (PSGL1).(Kansas 1996; McEver and Cummings 1997) L-selectin 

(CD62L) is expressed by most leukocytes whereas E-selectin and P-selectin is expressed by 

the endothelium. The binding properties of selectins with ligands (referred to as catch 

bonding) require shear flow to properly adhere; rolling cells actually detach when flow is 

stopped. (Marshall, Long et al. 2003) Apart from selectin interactions, members of the 

integrin family may play a part in leukocyte rolling as well. In gut homing, interactions 

between the α4β7 integrin expressed on leukocytes, and MAdCAM-1 expressed on the 

endothelium are involved in mediating intestinal inflammation.(Berlin, Berg et al. 1993) 

Phase III-studies addressing the use of vedolizumab, a humanized antibody targeting α4β7, 

have shown promising results in ulcerative colitis.(Lobaton, Vermeire et al. 2014) 

1.3.1.2 Adhesion and activation 

Following slow rolling, interactions between leukocyte integrins (such as VLA4 and LFA1, 

members of the β1- and β2-families, respectively) and immunoglobulin superfamily members 

such as ICAM1 and VCAM1 mediate firm arrest on the endothelial surface.(Campbell, Qin et 

al. 1996) In addition, chemokines that bind with high affinity to chemokine receptors 

expressed on leukocytes are produced by endothelial cells in response to cytokines derived 

from the inflamed tissue. Besides from constituting an additional arrest signal, chemokine 

interactions provides cell type selectivity based on the differential expression of chemokine 

receptors among leukocyte subsets.(Middleton, Patterson et al. 2002; Ley, Laudanna et al. 

2007) Chemokines that are presented on the endothelial surface may also play a crucial part 

in controlling leukocyte extravasation by altering the affinity of endothelial integrins.(Shamri, 

Grabovsky et al. 2005) 

1.3.1.3 Transendothelial migration (TEM) 

Transmigration through vessel walls occurs following MAC1-ICAM1-dependent crawling, 

which has primarily been observed in monocytes and neutrophils, is a process where 

leukocytes are guided to the optimal transmigration site.(Schenkel, Mamdouh et al. 2004; 

Phillipson, Heit et al. 2006) Subsequently, endothelial redistribution of junctional molecules 

actively promotes paracellular transendothelial migration.  
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An alternative route where leukocytes migrate 

through the body of endothelial cells has also 

been described but seems to mainly apply within 

the central nervous system.(Muller 2003; 

Nourshargh and Alon 2014) 

1.3.1.4 Interstitial migration 

In order to enter the interstitium, the migrating 

leukocyte need to pass the venular basement 

membrane, a protein network mainly composed 

by collagen type IV and laminins, as well as the 

pericyte sheath, a mural cell wrapping that is 

embedded in the basement membrane of most 

venules.(Nourshargh, Hordijk et al. 2010) 

Subsequent interstitial migration is classically 

mediated by chemokine interactions, resulting in 

biochemical asymmetry and cellular polarization. 

Cytoskeleton rearrangements, in particular actin 

polymerization, at the leading edge of the cell 

protrudes the cell through the interstitium in 

response to chemokine ligands, discussed below 

in greater detail.(Lämmermann and Germain 

2014) 

1.3.2 The chemokine receptor system 

Apart from playing a major role in the activation 

of leukocytes and endothelial cells during the 

extravasation process, as discussed above, and 

the circulation and tissue homing of naïve and 

effector leukocyte populations, the chemokine 

system is fundamental in homeostatic 

organization of immune cells, exemplified by the 

importance of CXCR4-CXCL12 interactions in 

hematopoietic stem cell trafficking in the bone 

marrow; as well as CCR7, CXCR4 and CXCR5 

in navigating the microenvironment of secondary 

lymphoid tissues.(Campbell, Kim et al. 2003) 

Furthermore, chemokines receptor interactions 

are implicated to play a highly important role 

during disease and thus constitute interesting 

potential therapeutic targets for many 

inflammatory disorders. The role of the 

Figure 3. Human chemokine 

receptors and their ligands. The 

four bottom receptors represent 

atypical chemokine receptors that 

primarily carry out scavenging 

functions. Adapted from Griffith and 

colleagues, 2014  
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chemokine receptor system during inflammatory bowel disease will be discussed in the 

following sections in greater detail.  

The chemokine superfamily induces migration of their target cell by binding with varying 

affinity to one or several of their cognate chemokine receptors, which belong to the class A 

G-protein coupled 7-TM (GPCR) superfamily and signal through phosphoinositide 3-kinase-

dependent- or –independent pathways.(Heit, Liu et al. 2008; Germena and Hirsch 2013) 

Classically, chemokine binding will induce asymmetric distribution of intracellular 

cytoskeletal regulators such as the Rho family of GTPases which will coordinate contractile 

and polymerizing effects on actin and myosin filaments, resulting in rapid cell shape changes  

which will drive the cell forward.(Lämmermann and Sixt 2009)  

To date, 19 chemokine receptors that confer chemotactic activity have been identified, 

together with some 50 chemokine ligands. The established nomenclature divide chemokines 

into four subgroups based on the relative location of the N-terminal cysteine residues (CXC-, 

CC-, CX3C- and C-). Four atypical receptors, carrying out non-chemotactic functions such as 

scavenging and recycling of chemokines have been identified as well. Chemokine receptor 

interactions are involved in directed migration of specific leukocyte subsets, both during 

steady-state conditions and in inflammation.(Griffith, Sokol et al. 2014) 

1.3.2.1 Biased agonism 

Within the chemokine receptor system, an in-built element of tissue specificity with regard to 

that certain chemokine receptor axes apply for specific bodily tissues has been assumed. This 

notion has been exploited by the pharmaceutical industry as a rationale to therapeutically 

target single chemokine receptors in tissue-specific disease.(Schall and Proudfoot 2011) 

However, apart from maraviroc (a CCR5 modulator used for blocking HIV-1 host cell entry) 

and plerixafor (a CXCR4 antagonist used for mobilizing stem cells for cancer therapy), most 

chemokine receptor antagonists have failed to show clinical efficacy.(Proudfoot, Bonvin et al. 

2015) The concept of chemokine receptor redundancy has often been cited to explain this 

fact; most CCRs are promiscuous with regard to that a single receptor has multiple 

chemokine ligands whereas a single chemokine may bind several receptors.(Mantovani 1999)  

It was originally believed that this phenomenon reflects an in-built redundancy of the system 

where several chemokine ligands have identical effects on their receptor. The concept of 

chemokine receptor redundancy has been widely cited by the pharmaceutical industry in 

order to understand why chemokine receptor antagonists often fail to show 

efficacy.(Mantovani 1999) However, recent evidence suggests that CCRs may activate 

multiple down-stream signaling pathways with different efficacies depending on the bound 

ligand, thus shaping the immune response by means of mechanisms known as biased 

agonism.(Rajagopal, Bassoni et al. 2013) These findings bring the concept of chemokine 

receptor redundancy into question and rather suggest a fine-tuning role for the broad receptor-

ligand specificities within the system. Therefore, in order to have a deeper apprehension of 

the migration potential of a cell population during health or disease, there is need for studies 
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investigating the full chemokine receptor landscape rather than the expression of isolated 

CCRs. 

1.4 THE INTESTINAL IMMUNE SYSTEM 

Although the human gastro-intestinal (GI) system ranges from the mouth to the anus, the 

compartments above the stomach (generally referred to as the upper GI) are often overlooked 

in studies addressing GI immunology due to the low prevalence of lymphoid tissue here. The 

small intestine constitutes the first part of the lower GI, and is divided into three parts; the 

duodenum starts at the pylorus, followed by the jejunum and the ileum which ends at the 

ileocaecal valve, which is the starting point of the large intestine. The caecum is followed by 

the ascending colon, the transverse colon, the descending colon and finally the rectum which 

ends at the anus.  

Whereas the main function of the human gastrointestinal system (GI) is to metabolize and 

absorb food nutrients and expel waste, it is also highly immunologically active. The extreme 

exposure to commensal bacterial antigens as well as dietary compounds, of which many are 

potentially pathogenic, requires precise immunological control to evade local and systemic 

disease development and to establish oral tolerance.  

The small and large intestines (lower GI) are structurally similar in the sense that they are 

continuously formed by a single layer of columnar epithelium but display large differences 

with regard to length, morphology, physiological role and immunological function. The small 

intestine is packed in a highly coiled pattern and amounts to a length of 6-7 m. It is 

characterized by projections known as villi, which protrude into the lumen and significantly 

increases the surface area of epithelial cells. The luminal sides of these cells, in turn, are 

covered by microvilli, which harbor digestive enzymes important for nutrient digestion and 

absorption. The enzymatic activity of the brush border, as well as the length of the villi, 

gradually decreases throughout the ileum and are completely missing in the large intestine 

which is shorter in length (~1.5m), wider in diameter and lesser coiled in relation to the small 

intestine. Thus, the large intestine has little digestive function and its main physiological roles 

lie in the re-absorption of fluids and waste elimination. It is also the main reservoir for the 

trillions of commensal bacteria that harbor the human intestine.  

The need for immune responses in meeting the constant antigenic challenge throughout the 

GI tract is naturally large, and those are carried out by a vast number of effector cells that are 

located within the epithelium or in the underlying lamina propria. In the small intestine, anti-

microbial responses may be elicited by Paneth cells, which are concentrated in the ileum. 

Activation of these cells in response to toll-like receptor (TLR) activation or IL-22 signaling 

results in the production of anti-microbial peptides such as defensins or lysozyme.(Clevers 

and Bevins) From a disease development perspective, Paneth cells are interesting in the sense 

that they express several genes that have been associated with the onset of Crohn’s disease, 

such as ATG16L1 or NOD2.(Clevers and Bevins) Paneth cells are completely lacking in the 

colon, wherefore a different anti-microbial strategy is employed to protect the epithelium 
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from the high caecal bacterial load. Here, Goblet cells produce a thick mucus layer that is 

impenetrable for bacteria and has shown to be compromised in murine models of ulcerative 

colitis.(Van der Sluis, De Koning et al. 2006; Johansson, Phillipson et al. 2008) 

With regard to intestinal adaptive responses, the lower GI is densely populated by 

intraepithelial lymphocytes (IELs), which are located in the lamina propria or at the base of 

the epithelial cells at a ratio of 10-15 IELs per 100 epithelial cells.(Ferguson) Gut T cells are 

derived from conventional T cells and are thus primed in secondary lymphoid organs, and the 

CD4/CD8 ratio is typically 2:1(Mowat and Agace). Although the majority of IELs 

throughout the intestines are T cells, a higher prevalence of non-T cell IELs have been 

observed in the lower GI.(Selby, Janossy et al. 1981) In the small intestine, adaptive 

responses are generally initiated in specialized gut-associated lymphoid tissue (GALT) which 

mainly consists of macroscopically visible congregations of lymphoid follicles known as 

Peyer’s patches. Here, luminal antigens may be transcytosed to the underlying lamina propria 

by specialized epithelial cells (M cells) that are located within the crypts of the villi and in 

direct association with GALT, resulting in B-cell activation and production of IgA, and/or 

antigen presentation and T cell responses.(Mabbott, Donaldson et al. 2013) Structures that are 

functionally similar to Peyer’s patches exist in the colon as well and are known as colonic 

patches.(Mowat and Agace)  

1.4.1 Inflammatory bowel disease (IBD) 

Ulcerative colitis (UC) and Crohn’s disease (CD), collectively referred to as inflammatory 

bowel diseases, are often described as a breach of tolerance to commensal flora resulting 

from a combination of inherited and acquired immunological traits, leading to chronic 

intestinal inflammation. As of current, there is no cure for IBD; instead, therapeutical 

strategies aim at relieving inflammatory symptoms. IBD is increasing world-wide, especially 

among the pediatric population where disease-associated malnutrition may result in severe 

developmental disturbances such as growth retardation. The peak age of disease onset is 20-

30 years for CD and 30-40 years for UC, but 7-20% of all IBD cases are found in the 

pediatric population.(Cosnes, Gower–Rousseau et al. 2011) In Sweden, the prevalence of 

IBD has been increasing the last decades, now reaching 0,65%.Thus, IBD is rapidly 

becoming a problem for industrialized societies, and there is great need for increased 

understanding regarding the pathogenesis of IBD as well as developing novel treatment 

regimes. 

1.4.1.1 Epidemiology 

Although IBD can occur at any age, UC patients are usually diagnosed during the third or 

fourth decade of life, whereas CD patients are generally 5-10 years younger. No particular 

gender differences are observed among UC patients; however, CD is slightly more common 

in women, especially in high-incidence areas.(Burisch and Munkholm 2015)  

In Sweden, the frequency of pediatric Crohn’s disease has increased sharply over the last 

decades (Malmborg, Grahnquist et al. 2013) 
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The prevalence and incidence of IBD continues to increase world-wide, but the highest 

worldwide incidence of both UC and CD is found in industrialized countries of North 

America and Northern Europe.(Molodecky, Soon et al. 2012) In Europe, IBD incidence 

numbers have increased dramatically since 1962 and currently reach 9.8 and 6.3 per 100000 

person-years for UC and CD, respectively.(Burisch and Munkholm 2015) Illustrating the 

great variations that are often observed between cohorts when studying IBD epidemiology, 

the prevalence of UC currently varies between 2.4 and 294 cases per 100000 persons 

compared to 1.5 to 213 for CD.(Gheorghe, Pascu et al. 2004; Jacobsen, Fallingborg et al. 

2006; Lapidus 2006) The reason for this increase (that is observed particularly in the 

occurrence of Crohn’s disease) is not entirely understood but the fact that IBD is increasing in 

regions that were once considered low-incidence areas (such as Asia and Eastern Europe) 

indicate the importance of acquired factors such as life-style and diet in the pathogenesis of 

IBD. However, increased disease awareness and improved diagnostics are factors that may 

partly explain the measured increase and should thus not be neglected. 

Apart from family history, risk factors for developing Crohn’s disease include cigarette 

smoking and previous appendectomy while the relationship to ulcerative colitis is inverse and 

thus protective.(Andersson, Olaison et al. 2001; Andersson, Olaison et al. 2003; Mahid, 

Minor et al. 2006) In Crohn’s disease, but not ulcerative colitis, the mortality risk is slightly 

increased compared to the general population, due to post-operative complications as well as 

intestinal cancer.(Burisch and Munkholm 2015) The risk of developing colorectal cancer 

(CRC) is, however, increased in both CD and UC and correlates positively with inflammatory 

burden and duration of immunosuppressive treatment.(Beaugerie 2011; Ullman and Itzkowitz 

2011) However, the increased risk of dying from IBD-associated CRC as well as other 

disease factors is expected to decrease due to better treatment alternatives and disease 

monitoring as well as improved patient care. 

1.4.1.2 Genetics 

The causative mechanisms of IBD remain unclear, but it is generally established that disease 

results from a complex mix of environmental factors and heritability. Genome-wide analysis 

studies (GWAS) lay the foundation of IBD genetic research.(van Heel, Fisher et al. 2004) To 

date, some 160 IBD risk loci have been identified, containing an average of five genes 

each.(Jostins, Ripke et al. 2012) Whereas two thirds of these loci display overlap between UC 

and CD, 30 are specific for Crohn’s disease and 23 for ulcerative colitis. These findings 

indicate that the genetic component is stronger for CD than for UC, which is in line with 

results from twin studies that have established a concordance in the range of 20-50% for CD 

and 16-19% for UC.(Halme, Paavola-Sakki et al. 2006)  

So far, the strongest contributor to disease that have been discovered through GWAS is loss-

of-function mutations in the gene encoding the pattern-recognition receptor NOD2, 

associated with Crohn’s disease.(Hugot, Chamaillard et al. 2001) Its discovery led to a 

significant shift in focus of IBD research towards the innate side. Other important 

polymorphisms that have been linked to disease through GWAS are mutations in the IL10RA 
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gene, encoding the IL-10 receptor, that are particularly associated with early-onset IBD; and 

mutations in the autophagy gene ATG16L1, connected to Crohn’s disease.(Hampe, Franke et 

al. 2007; Glocker, Kotlarz et al. 2009) Interesting to note is that only 11% of disease-

associated loci found through GWAS are located in exons, whereas 57% are found in open 

chromatin regions. This represents a dramatic enrichment, as only 1% of the total DNA is 

protein-encoding, but still means that a majority of potentially causable variants are located in 

non-coding regions that may have regulatory or enhancing properties.  

1.4.1.3 Clinical features 

Both Crohn’s disease and ulcerative colitis follows a clinical course that is characterized with 

bouts of active inflammation, with remission periods of greatly varying length in between. 

Most patients debut with moderate-to-severe disease, but the severity seems to decrease over 

time. The sub-diagnoses of IBD are empirically defined through clinical presentations and 

differ with regard to pathophysiology, epidemiology and optimal choice of therapy. Although 

clinical symptoms to a large extent overlap between ulcerative colitis and Crohn’s disease, 

the fundamental clinical differences lie in the location and extent of the inflammation. Unlike 

ulcerative colitis, which by definition is restricted to the colon, Crohn’s disease may affect 

any part of the GI between the mouth and the anus, but inflammation is rarely seen 

proximally of the terminal ileum where inflammatory patches often debut, located in 

conjunction with Payer’s patches. Whereas UC is confined to the superficial mucosal layer, 

the inflammation during Crohn’s disease may affect the full thickness of the mucosal wall.  

Endoscopically, the inflammatory pattern of Crohn’s disease is patch-like, and affected 

sections may be abruptly skipped with healthy tissue in between, a phenomenon referred to as 

skip lesions and that generates the cobble-stone appearance that is often associated with CD. 

Furthermore, in Crohn’s disease there is often presence of macroscopically visible scarring 

known as strictures that arise as a result of the transmurality of the inflammation associated 

with CD. This may lead to intestinal blockade and subsequent abdominal pain, which is often 

seen at the onset of Crohn’s disease. Conversely, ulcerative colitis may debut with bloody 

diarrhea owing to extensive superficial mucosal ulcerations resulting in impaired absorptive 

functionality of the colon.(Xavier and Podolsky 2007) 

Histologically, small abscesses (known as crypt abscesses) formed by neutrophil congregates 

are often observed in ulcerative colitis, as well as diminished goblet cells within the crypts. 

When neighboring crypts are simultaneously affected, the crypt walls will eventually disrupt 

resulting in an ulcer.(Danese and Fiocchi 2011) The histological hallmark of Crohn’s disease 

is instead the presence of non-caseating granulomas, histiocyte congregations located in 

conjunction with the epithelium.(Chambers and Morson 1979) 
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2 AIMS OF THE THESIS 

The overall of aim of this thesis was to investigate the driving mechanisms of inflammatory 

bowel disease from two perspectives; the first one being exploring the contributing role of 

circulating leukocytes infiltrating the intestinal mucosa; the second one being defining 

methylation markers for inflammation.  

The specific aims were:  

Paper I. To investigate a subset of HLA-DR
hi

-expressing circulating monocytes in patients 

with inflammatory bowel disease with regard to their disease-contributing properties. 

Paper II. To characterize the expression pattern of chemokine receptors on four subsets of 

circulating monocytes in inflammatory bowel disease. 

Paper III. To develop a combinatorial assay for the investigation of T helper cell lineage 

commitment by using methylation markers in inflammatory disease.  

Paper IV. To investigate the maturation stage of T cells infiltrating the colonic mucosa 

during inflammatory bowel disease. Furthermore, the role of methylation in regulating the 

expression of CCR9 in these cells was investigated.  
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3 MATERIALS AND METHODS 

This section contains a summary of the patient cohorts and the methodology used in the 

studies included in this thesis. A detailed account of this information is included within the 

materials and methods section of each paper (I-IV). 

3.1 PATIENTS 

3.1.1 Cohorts 

3.1.1.1 Paper I 

In this study, 51 IBD patients were included (UC=31; CD=20). As the cohort consisted of 

adults (mean age=37,9 years) diagnosed prior to inclusion, 21 patients received baseline 

azathioprine treatment. At the study start, patients were divided into three groups receiving 

mechanistically distinct IBD therapies: corticosteroids (n=16), anti-TNF-α (infliximab or 

adalimumab; n=17) or granulocyte-monocyte apheresis (GMA; n=18). Patients were 

monitored for five weeks and clinically assessed for the duration of the study.  

3.1.1.2 Paper II 

16 juvenile patients with inflammatory bowel disease (UC=8; CD=8) as well as 20 healthy 

controls were included. Mean ages were 13,5 for patients and 36 for healthy controls. All 

patients were newly diagnosed, and thus fully treatment-naïve, at the initiation of the study. 

3.1.1.3 Paper III  

Two separate cohorts were investigated in this study; one consisting of 13 patients with 

established arthritis (seropositive RA=9; seronegative RA=3; undifferentiated 

polyarthritis=1); and a second one of 17 patients diagnosed with multiple sclerosis (MS). The 

MS cohort received concomitant therapy with natalizumab (n=10); conventional 

immunomodulatory treatment (glatiramer acetate or IFN-1β; n=5). 2 MS patients were 

untreated.  

3.1.1.4 Paper IV 

10 newly diagnosed juvenile IBD patients were included (UC=5; CD=5; mean age=13,4). All 

patients were treatment-naïve at the time of sampling.  

3.1.2 Healthy controls 

In paper I, 14 patients that had undergone gastroenterological evaluation but were determined 

non-IBD were used as controls. In paper II, 20 healthy controls were randomly recruited 

during blood donation. Leukocyte enrichments (referred to as buffy coats) derived from 

whole blood of healthy blood donors were used in paper I-IV.    
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3.1.3 Clinical assessment 

All patients (papers I-IV) were clinically assessed at the time of study inclusion. In IBD, 

combinatorial disease activity indices that take factors such as stool pattern, general well-

being and subjective pain into account are often used to assess disease severity. The cohort of 

adult IBD patients investigated in paper I were evaluated using the Harvey-Bradshaw (HBI) 

or the ulcerative colitis disease activity index (UC-DAI) indices for CD and UC, 

respectively.(Harvey and Bradshaw 1980; Sutherland and Martin 1987). Juvenile patients in 

papers II and IV were assessed using the pediatric variants PUCAI (UC) and PCDAI.(Hyams, 

Ferry et al. 1991; Turner, Otley et al. 2007)  

3.2 CELL CULTURING  

All in vitro cultures were carried out in RPMI-1640 (Sigma) or AIM-V (Life technologies) 

medium in the presence of 10% fetal calf serum (only included in RPMI-1640 cultures), 2 

mM of L-glutamine, 100 U/mL penicillin and 100µg/mL streptomycin (all from Sigma). T 

cells (papers III and IV) were cultured in the presence of 180 U/mL rhIL-2 (Sigma).  

3.2.1 Leukocyte isolation 

In preparation for flow cytometry analyses in papers I and II, leukocytes were isolated from 

whole blood by lysing red blood cells by means of incubation in hypotonic buffer (160 mM 

NH4Cl, 10 mM Tris-HCl). Erythrocyte removal from buffy coats (papers I, II and III) was 

carried out through density gradient centrifugation (Ficoll-Paque PLUS, Amersham 

Biosciences). 

From intestinal samples (papers I and IV), leukocytes were isolated by mechanical 

homogenization using a glass homogenizer.  

Magnetic cell sorting (MACS) was used to isolated CD14+ monocytes (papers I and II) and 

CD4+ T cell populations (paper III and IV) on a AutoMACS cell separator (Miltenyi).  

3.2.2 T cell differentiation 

Naïve T cells may be differentiated in vitro to either of the described T effector lineages by 

stimulating with polarizing cytokines while blocking reciprocal pathways. In paper III, naïve 

T cells were differentiated into Th1, Th2, Th17 and iTreg by stimulation with cytokine 

cocktails during polyclonal activation with plate-bound anti-CD3 and soluble anti-CD28 

(eBioscience). The protocol is described in more detail in the methods section of paper III.  

3.2.3 5-aza cultures 

The DNMT1 methyltransferase may be covalently linked to the DNA molecule by including 

nucleoside analogues such as 5-aza-2’-deoxycytidine (5-aza) in the medium of cultured cells, 

resulting in random genomic de-methylation and expression of genes that are normally 

silenced by CpG methylation.(Christman 2002) In papers III and IV, T cells were activated 

using anti-CD3/anti-CD28 beads (Dynabeads; Life Technologies) and 5-aza (Sigma) was 
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added to the proliferating cells after 24 hours. Following culturing for 48 hours, 5-aza was 

removed from the culture medium and cells were harvested after an additional 24 hours and 

the expression of IL-17A (paper III) or CCR9 (paper IV) was measured using PCR (paper III) 

and flow cytometry (papers III and IV).  

3.3 FLOW CYTOMETRY (FACS) 

3.3.1 Surface stainings 

Isolated populations of monocytes (papers I and II) or T cells (papers III and IV) were 

blocked for unspecific Fc-receptor interactions using phosphate-buffered saline supplemented 

with 10% human serum (Sigma), followed by surface staining using combinations of 

fluorochrome-labelled antibodies. Isotype- and fluorochrome matched control antibodies 

were used to define marker positivity. For a detailed account of FACS antibody panels, refer 

to the methods section of the corresponding papers I-IV.  

3.3.2 Intracellular staining 

In paper III, intracellular analyses of T helper cell-associated cytokines were carried out 

subsequent to surface staining by permeabilizing cell membranes followed by antibody 

incubations. 

3.3.3 Sorting 

Flow cytometry sorting was carried out to analyze monocyte subpopulations for PCR 

experiments (paper I) and T cells for methylation analyses (papers III and IV). All sorting 

were carried out on a FacsARIA (BD Biosciences). 

3.4 POLYMERASE CHAIN REACTION (PCR) 

3.4.1 RNA isolation and cDNA synthesis 

RNA was isolated using TRIzol reagent (papers I and III; Life Technologies) or using 

RNeasy kits (papers I, II and III; Qiagen). RNA quality was spectrometrically measured 

using a NanoDrop instrument (Thermo Scientific) and only samples that displayed ratios of 

260/280 nm and 260/230 nm of  >1.9 (ratios indicate RNA purity and presence of phenol 

contaminants, respectively) were used for downstream applications.(Glasel 1995) On-column 

DNase digestions were performed on all RNA used for PCR arrays (papers I and II; Qiagen) 

Subsequent cDNA syntheses were carried out using iScript reverse transcriptase (Bio-Rad) or 

RT
2
 First Strand kit (for PCR arrays in papers I and II; Qiagen).  

3.4.2 PCR run and data analysis  

Subsequently, single gene real time PCR was carried out on a CFX96 thermal cycler (Bio-

Rad) using SYBR Select mastermix (Applied Biosystems). Real-time PCR arrays (papers I 

and II) were performed on a 7900HT or on a QuantStudio 7 Flex PCR system (Applied 

Biosystems). Run data was subsequently analyzed using software provided by each PCR 
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system manufacturer, and data was normalized to the mean expression of the housekeeping 

genes described in the methods section of the respective study. 

3.5 EPIGENETICS 

3.5.1 Genomic DNA isolation 

Genomic DNA was isolated from T cell populations isolated from whole blood, in vitro 

cultures or synovial fluid (paper III); or from intestinal biopsies (paper IV). In paper III, 

isolation was carried out using phenol:chloroform:isoamyl alcohol (25:24:1; Sigma) on 

proteinase-K (Qiagen) digested cell lysates. DNA isolation in paper IV was done as an on-

column step on the EZ DNA Direct- Methylation kit (ZYMO research). 

3.5.2 Bisulfite conversion 

Treatment of genomic DNA with bisulfite results in the conversion of un-methylated cytosine 

residues to uracil, which are recognized as thymines in subsequent PCR amplification. 

Cytosines that were originally methylated remain cytosines, thereby enabling distinction 

between methylated and un-methylated residues.(Frommer, McDonald et al. 1992) Following 

DNA isolation, bisulfite conversion was carried out using the EZ DNA Methylation Gold kit 

(paper III) or the EZ DNA Direct-Methylation kit (paper IV; all bisulfite conversion reagents 

purchased from ZYMO research). 

3.5.3 Bisulfite sequencing 

Sequencing of bisulfite converted DNA may be carried out from sorted cell population 

through classical Sanger sequencing of PCR products representing individual cells, following 

cloning of PCR products into a bacterial vector. Alternatively, the cloning step can be 

skipped and sequencing carried out directly on PCR products using pyrosequencing. The 

advantages and dis-advantages of the respective methods are discussed by Reed and 

colleagues.(Reed, Poulin et al. 2010) 

3.5.3.1 TOPO cloning and Sanger sequencing 

In paper III, bisulfite sequencing of the IL-17A locus was carried out by cloning PCR product 

from sorted IL-17A-positive and –negative populations into a TOPO vector (Life 

Technologies) followed by Sanger sequencing carried out on an ABI Prism 310 genetic 

analyzer (Applied Biosystems). All reagents for Sanger sequencing were purchased from 

Applied Biosystems.  

3.5.3.2 Pyrosequencing 

In paper IV, pyrosequencing of the CCR9 locus was carried out by binding of biotinylated 

PCR product onto sepharose beads that were subsequently cleaned using the PyroMark Q96  

vacuum workstation (Qiagen). Following sequencing primer annealing, PCR product was 

sequenced using the PyroMark Q96 ID sequencer (Qiagen). All reagents were purchased 
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from Qiagen. Primers design and data analysis were performed using the PyroMark Assay 

Design v2.0 and PyroMark CpG v1.0 software packages, respectively (Qiagen).  

3.5.4  Epigenetic immune lineage analysis (EILA)  

The EILA method was specifically developed for paper III in order to define T cell lineage 

commitment on a population of isolated cells using methylation markers.  

3.5.4.1 MS-SNuPE  

Each T helper cell locus (IFN-γ, FOXP3, IL-17A and IL-13) was PCR amplified from 

bisulfite converted DNA, and PCR products were treated with exonuclease I and calf 

intestinal phosphatase (CIP; New England Biolabs) in order to remove fragments that may 

disturb the downstream application. Subsequently, PCR products were mixed at equal 

volumes followed by annealing of oligonucleotides of varying length, neighboring each 

reporter CpG. Subsequently, methylation-sensitive single nucleotide primer extension (MS-

SNuPE) reactions with fluorochrome-labelled ddNTPs (SnapShot Multiplex kit; Applied 

Biosystems) complementary to methylated or non-methylated DNA were carried out. 

Subsequent fragment analysis carried out on an ABI Prism 310 genetic analyzer (Applied 

Biosystems) thus enabled distinction between locus (by probe length) and methylation status 

(by fluorescence). Fragment analyses were performed using GeneScan v3.7 software 

(Applied Biosystems).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 29 

4 RESULTS AND DISCUSSION 

4.1 HLA-DRHI AND CCR9 DEFINE A PRO-INFLAMMATORY MONOCYTE 
SUBSET DURING IBD 

Originally, blood monocytes were believed to possess little phenotypic heterogenetity. The 

first study attempting to sub-divide circulating monocyte subsets was published as late as in 

1989, with the introduction of the CD16+ subset.(Passlick, Flieger et al. 1989) Since then, 

studies have arrived at the current consensus that the numerically dominant CD14+CD16- 

subset readily migrates to the tissues and differentiates to effector macrophages and DCs, 

whereas the main function of the CD16-positive subset is to carry out scavenging within the 

circulation, and to maintain vessel integrity.(Cros, Cagnard et al. 2010; Shi and Pamer) In 

patients with inflammatory bowel disease, it has been shown that monocyte migration into 

the intestinal mucosa correlates with inflammatory load, and that polymorphisms in the 

NOD2 gene, which is abundantly expressed in monocytes, constitute the strongest genetic 

correlation with Crohn’s disease.(Hugot, Chamaillard et al. 2001; Ogura, Inohara et al. 2001) 

These findings have led to a considerable interest in studying monocytes from a disease-

causing perspective, as well as therapeutically. In treatment of IBD patients with 

corticosteroids as well as with granulocyte-monocyte apheresis (GMA), a column-therapy 

selectively removing Fcγ-receptor-positive leukocytes from the circulation, CD16+ 

monocytes are selectively removed.(Saniabadi, Hanai et al. 2003; Hanai, Iida et al. 2008) 

Although this would indicate that a proportional decrease of CD16+ monocytes correlates 

with reduced inflammatory activity in IBD, the mechanisms directing monocytes to the 

inflamed mucosa during IBD are unclear.  

In this study, we have identified a sub-population of monocytes expressing high levels of 

HLA-DR while being positive for the chemokine receptor CCR9, previously reported to be 

involved in gut-homing of T cells in the murine setting.(Koenecke and Förster) The 

proportion of these cells, that are CD14-positive and express intermediate levels of CD16, are 

significantly increased in patients with active IBD (p=0.0006). However, no differences 

between Crohn’s disease and ulcerative colitis were shown. Furthermore, these cells are 

differentially affected by IBD therapy with distinct working mechanisms. Whereas both 

cortisone and GMA therapy results in a therapy-induced decrease of these cells, the reduction 

associated with GMA is immediate and highly significant only after one week of therapy 

(consisting of one single treatment session; p<0.001), which was expected due to the 

immediate physical removal of these cells, probably by means of CD16/FcγRIII-binding to 

the matrix of the GMA column.<Saniabadi, Hanai et al. 2003> Whereas a large number of 

studies have reported changes in the relative proportions of blood monocyte subsets during 

IBD, the exact working mechanisms of monocyte-mediated inflammatory responses during 

IBD remain unclear. Interestingly, the HLA-DR
hi

 subset expresses low but detectable levels 

of the gut-homing receptor CCR9, posing a potential level of selectivity for the intestinal 

compartment for these cells. Studies addressing the mechanistic properties of CCR9 

interactions in monocytes are needed to fully understand the extent of chemokine receptor 
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interactions in human myeloid cells; and whether these interactions merely constitute markers 

of activation, or functionally relevant gut-homing interactions remain to be elucidated.  

We conclude from this study that HLA-DR
hi

 monocytes, further defined by their CCR9 

expression, are differentially affected, kinetically as well as proportionally, by conventional 

and biological IBD therapy. Furthermore, we demonstrate that these cells readily produce 

inflammatory cytokines and chemokine upon stimulation with bacterial products. The 

selective expression of CCR9 on this subset underlines the relevance in investigating 

chemokine receptors in monocyte sub-populations, in addition to established sub-population 

markers. Our finding that circulating pro-inflammatory TNF- producing CCR9
+
 monocytes 

are increased in IBD patients has led to us to develop a CCL25-containing apheresis column. 

In addition, a double-blind placebo-controlled clinical study on patients with UC with 

promising results has been carried out (submitted 

manuscript). 

 

Figure 4. Frequencies of blood monocyte subset in 

healthy controls. Graph shows flow cytometry data from 

20 healthy controls (mean age = 36, range 23-66; bars 

represent +SD). Data is presented as proportions of the 

parent CD14
+
 population. 

 

 

 

4.2 CHEMOKINE RECEPTOR EXPRESSION PROFILING OF HUMAN BLOOD 
MONOCYTES IN JUVENILE PATIENTS WITH INFLAMMATORY BOWEL 
DISEASEI 

In line with the classical notion that blood monocytes follow a rigid and predictable 

phenotypic and migratory pathway, studies addressing monocyte chemokine receptor 

expression beyond their use as population markers are scarce. In humans, CD14
+
CD16

-
 

(classical subset) and the CD14
+
CD16

+
 (non-classical subset) monocytes are characterized by 

their expression of CCR2 and CX3CR1, respectively.(Geissmann, Jung et al. 2003; Linton, 

Karlsson et al. 2012) A majority of the understanding regarding the physiological roles of 

these CCRs in monocyte migration are derived from the murine setting where the equivalents 

to the human monocyte populations, the Ly6C
hi

 and Ly6C
lo
 subsets, largely overlap with their 

human counterparts with regard to migratory behavior, chemokine receptor expression and 

transcriptional profiles.(Geissmann, Jung et al. 2003; Cros, Cagnard et al. 2010; Ingersoll, 

Spanbroek et al. 2010) Even though the inflammatory importance of CCR2 and CX3CR1 

interactions in monocyte migration is now well established, it is not clear whether the actions 
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of additional chemokine receptor interactions, induced by an ongoing inflammatory process, 

might provide additional support in the recruitment process during inflammation. 

In paper II, we continue to investigate the importance of migratory blood monocytes in the 

disease process during IBD. By comparing the protein expression of 19 chemokine receptors 

on four monocyte subsets (CD14
+
CD16

-
, CD14

lo
CD16

+
, CD14

+
HLA-DR

hi
 and CD14

+
HLA-

DR
lo
) between IBD patients and healthy controls, we set out to gain an understanding as to 

whether the CCR profile of these cell populations would reflect the disease phenotype of the 

patient. By exclusively including treatment-naïve juvenile patients, we come to terms with 

the potential problem of anti-inflammatory treatment affecting chemokine receptor 

expression. As expected, the pan-monocyte population displayed large differences in CCR 

expression between IBD patients and healthy controls (14 out of 19 CCRs were significantly 

differentially expressed. Although our control population represented adults (n=20; mean 

age=36) whereas the patients were all juvenile (n=16; mean age=13.5), the age difference did 

not seem to affect our read-out as no correlations were observed between age and CCR 

expression. Among the chemokine receptors that displayed the highest relevant differences 

between patients and controls were CCR3, CCR4 and CCR9; wherefore these were further 

investigated in subset analyses. When comparing ulcerative colitis with Crohn’s disease, the 

median expression levels of both CCR3 and CCR4 were consistently higher in UC whereas 

CCR9 was higher in CD. It should be noted, however, that the differences between UC and 

CD were generally non-significant (with the exception of the expression of CCR3 on the 

CD14
lo
CD16

+
 subset; p=0.0007), possibly reflecting the relatively small patient cohort 

(nUC=8; nCD=8). Nevertheless, this pattern was observed in all four monocyte subsets, 

indicating that monocyte sub-populations, in response to systemic inflammatory signals, up-

regulate CCRs similarly, which is in line with the notion that monocyte subset represents a 

continuum of differentiation rather than absolutely functionally distinct subsets. In order to 

understand the mechanisms behind the differential CCR profiles observed between IBD 

patients and healthy controls, we carried out in vitro stimulations of blood monocytes, 

isolated from buffy coats of healthy blood donors, using inflammatory cytokines that had 

previously been shown to be differentially produced between UC and CD.(Dionne, Hiscott et 

al. 1997; Martínez-Borra, López-Larrea et al. 2002; Melgar, YEUNG et al. 2003) 

Interestingly, we could find that, whereas CCR9 was primarily induced by TNF-α and IL-1β, 

both CCR3 and CCR4 was up-regulated by IL-10. This suggests that these CCRs are 

controlled by separate induction pathways that might extrapolate to the respective 

inflammatory milieus of UC and CD.  

In conclusion, the results of this study suggest that local intestinal inflammation is reflected 

upon circulating monocytes during IBD.  

4.3 PROFILING OF CD4+ T CELLS WITH EPIGENETIC IMMUNE LINEAGE 
ANALYSIS 

The intestinal epithelium and the lamina propria constitute the largest reservoir of T cells in 

the human body.(Mowat and Agace 2014) Thus, T cell responses are fundamental in oral 
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Figure 5. Schematic overview 

of the EILA method. 

tolerance development as well as mounting immune responses against invading pathogens. T 

cell immunity during IBD were originally described as a dichotomy of either Th1 or Th2, 

where CD4+ IELs in Crohn’s disease were skewed towards Th1 and IFN-γ production; 

whereas ulcerative colitis represented Th2 and IL-5.(Fuss, Neurath et al. 1996) However, the 

fact that IL-4, the signature cytokine of Th2 commitment, is not increased during ulcerative 

colitis, disturbs the Th1/Th2 paradigm of IBD.(Fuss, Neurath et al. 1996) In addition, reports 

on increased plasticity with regard to cytokine profile changes among CD4+ T cells makes 

lineage commitment difficult to study by means of transcription profiling or protein 

markers.(Geginat, Paroni et al. 2014) Instead, the use of epigenetic markers has been 

proposed as a solution to that issue, taking advantage of the transcriptional stability of the 

epigenome. Members of our group have previously identified a CpG site in an enhancer 

region in the 5’ CNS of the IFNG gene to constitute a reporter for stable Th1 commitment; 

and the IL-13 gene promoter has previously been shown to display de-methylation selectively 

in Th2 cells.(Santangelo, Cousins et al. 2002; Janson, Marits et al. 2008) Furthermore, we 

and others have shown that suppressive Treg phenotype correlates with de-methylation of 

CpG sites in the promoter region or in conserved nucleotide sequences of the FOXP3 

gene.(Baron, Floess et al. 2007; Janson, Winerdal et al. 2008) In this study, we set out to 

develop a method to assess T cell lineage commitment based on methylation marks. ‘ 

First, we wanted to determine whether stable Th17 phenotype could be associated with de-

methylation of the IL-17A gene. We identified six well-conserved CpG sites within a 100 bp 

stretch of the promoter region by performing m-Vista alignments comparing the murine and 

human gene sequences. Upon bisulfite sequencing of IL-17A-producing CD4
+
CD45RO

+
 

memory cells in comparison with CD4
+
CD45RO

+
IL17

-
 

cells, a differentially methylated reporter site located 

122 bp down-stream of the IL-17A TSS was identified. 

It is interesting to note that our Th17 skewings of 

naïveCD4+ T cells in vitro did not result in de-

methylation of the promoter in spite of inducing IL-17A 

transcription, pointing the physiological disparities that 

might result from the many protocols that exist for 

Th17 induction.(De Jong, Suddason et al. 2010) 

Next, we developed a PCR-based assay (referred to as 

EILA; Figure 5) based on the annealing of 

differentially lengthed oligos adjacent to the respective 

reporter CpGs of Th1, Th2, Th17 and Treg. By 

subsequent methylation-specific single nucleotide 

primer extension (MS-SNuPE) of fluorochrome-

labelled ddNTPs spanning the differentially methylated 

CpGs, the methylation status of each locus could be 
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measured through fragment analysis (GeneScan, Applied Biosystems).  

The EILA method was subsequently validated on ex vivo-isolated or in vitro-differentiated 

cell populations by correlating methylation status to mRNA data for each gene product. The 

accuracy of the method was evaluated by titrating in vitro-methylated bacterial artificial 

chromosomes (BACs) in 2% increments, followed by EILA analysis. To verify that the 

method is clinically applicable, we analysed memory (CD45RO
+
) CD4

+
 T cells, isolated ex 

vivo from peripheral blood and synovial fluid of patients with rheumatoid arthritis (RA), as 

well as from the circulation of multiple sclerosis (MS) patients. In extensively used murine 

models of RA and MS, the importance of Th17 for disease development is highlighted by the 

fact that deficiency of IL-23, a cytokine important for Th17 commitment, protects from 

disease development.(Cua, Sherlock et al. 2003; Murphy, Langrish et al. 2003) In contrast, 

our methylation data from the human setting rather suggests that Th1, and not Th17, is the 

pre-dominant T cell lineage in the inflamed joints of RA patients. Also, we confirm these 

results on the protein level using intracellular flow cytometry, where significant IFN-γ 

production is observed in synovial fluid-infiltrating CD4
+
 cells. However, in line with the 

murine data, circulating CD4
+
 T cells from patients with multiple sclerosis display 

commitment towards Th17.  

Although not included in this publication, preliminary data from methylation analysis of TEM 

cells (the current model of T helper cell maturation stages are outlined in section 1.1.2) 

infiltrating the colonic mucosa during juvenile IBD reveal that these cells are predominantly 

de-methylated towards Th1/IFN-γ, whereas the IL-17A and FOXP3 loci were epigenetically 

closed (Figure 6). Interestingly, we observed significantly lower IFN-γ de-methylation levels 

in inflamed samples compared to non-inflamed, reflecting the effector role of Th1 cells 

during ongoing inflammation (n=5; p=0.042). A corresponding shift in methylation levels 

(although not significant) was observed in the IL-13 locus, indicating Th2 commitment, but 
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Figure 6. Lineage commitment of TEM cells infiltrating the colonic mucosa during 

juvenile IBD, as defined by EILA. Each bar represents at least five individual samples. * 

indicates p=0.042 (Mann-Whitney U test); error bars represent +/- SD. 

 

no Th1/Th2 predominance could be observed when analyzing UC and CD samples separately 

(data not shown). However, this is an ongoing study and a larger cohort will potentially 

reveal any disease-specific methylation characteristics. 

From this study, we conclude that IL-17A is regulated by promoter methylation, and that in 

vitro-induced IL-17A production is not necessarily associated with de-methylation of the 

promoter. Furthermore, the EILA method may be used to accurately assess lineage 

commitment of CD4
+
 T cells in clinical samples, taking advantage of the transcriptional 

stability of methylation markers.  

4.4 PROMOTER DEMETHYLATION IS ASSOCIATED WITH CCR9 
EXPRESSION ON COLON-INFILTRATING CD4+ T CELLS DURING 
JUVENILE INFLAMMATORY BOWEL DISEASE 

Lymphocytes are classical mediators of chronic intestinal inflammation, and are found at high 

numbers throughout the lower gastro-intestinal tract, where they infiltrate the epithelium and 

the underlying lamina propria. Although separated by only a thin basement membrane, the 

epithelium and the lamina propria represent separate immunological compartments. For 

example, whereas CD4
+
 T cells represent only a minor fraction of the intraepithelial 

lymphocyte (IEL) pool, they exist at profoundly higher ratios in the lamina propria (at a 

CD4
+
/CD8

+
 ratio of approximately 2:1).(Mowat and Agace 2014) These CD4

+
 T cells are 

derived from conventional, naïve T cells that were primed in secondary lymphoid organs 

followed by seeding into the lamina propria. Thus, these cells are mainly of the TEM
 

phenotype, having down-regulated lymph node homing markers in exchange for markers for 

tissue migration and retention.(Smids, Horje et al. 2014)  

However, recent reports suggest that intestinal non-lymphoid tissues may also be populated 

by naïve cells. Based on the expression of the naïve CD45RA marker, several studies have 

demonstrated naïve T cells infiltrating the intestinal mucosa during active IBD.(ten Hove, 

Berkhout et al. 2004; Linton, Karlsson et al. 2012) As discussed in section 1.1.2, defining T 

cell naivety solely based on CD45RA expression may result in the inclusion of the TEMRA 

subset, a terminal, homeostatic T cell lineage that was originally discovered in the CD8
+
 

population.(Sallusto, Lenig et al.) 

In order to elucidate the composition of the CD4
+
 T cell pool of the colonic mucosa during 

IBD, we included 10 juvenile IBD patients (UC=5; CD=5) with the purpose of studying the 

lymph node homing markers CD62L and CCR7 in addition to the memory versus naïve T 

cell markers CD45RA and CD45RO, as well as the tissue marker CCR9.  

Whereas no naïve T cells were detected, the TEM:TEMRA was approximately 3:1 We observed 

no changes in the relative proportions between the TEMRA and TEM subsets depending on 

whether the T cells were isolated from a colonic section with macroscopically high 
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inflammatory burden This indicates that inflammation has no impact on the rate of T cell 

maturation in this context, or that TEMRA and TEM are recruited to the colon at similar 

proportions regardless of inflammation. CCR9 was abundantly expressed in both subsets,  

levels are similar between the subsets supports the latter idea.  

Interestingly, our data shows that the proportion of colon-infiltrating CD4+ T cells expressing 

CCR9 was significantly higher in non-affected mucosa. When studying the TEMRA and TEM 

separately, we found that this difference mainly reflects the TEM subset, as no significant 

difference was observed within the TEMRA population. These findings were surprising 

considering that murine studies have shown that infiltration of Ccr9-expressing T cells to the 

ileal mucosa correlates with inflammatory burden, thereby attributing a pro-inflammatory 

role to CCR9-CCL25 interactions.(Rivera–Nieves, Ho et al. 2006) Conversely, Ccr9
-/-

 mice 

display more severe inflammation and slower recovery from DSS colitis compared to wild-

type, and it has been shown that CCR9 is required for oral tolerance induction in 

mice.(Cassani, Villablanca et al. 2011; Wurbel, McIntire et al. 2011) In light of the findings 

in mice in relation to our data, it is interesting to speculate that CCR9 has a role in the healing 

process from colitis, or that the function or kinetics of the CCR9-CCL25 axis during colitis 

differs from that of small intestinal inflammation (Figure 2). These issues could help to 

explain the difficulties in pharmaceutically targeting CCR9-CCL25 interactions during IBD 

and should therefore be specifically addressed in the human setting.(Saruta and Papadakis 

2014) 

We have shown that the colonic CD4+ T cell pool of treatment-naïve juvenile patients with 

inflammatory bowel disease mainly consists of the TEM and TEMRA maturation stages, and that 

these cells express high levels of the gut-homing receptor CCR9. Furthermore, we show that 

CCR9 is significantly decreased on TEM during active inflammation. In conclusion, these data 

increase the understanding on local T cell maturation during colonic inflammation, and 

provide evidence of the involvement of the CCR9-CCL25 axis during juvenile colitis. 
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5 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

Even though chemokine receptors have been widely studied on all leukocyte subsets with 

regard to homeostatic organization, the in-built plasticity and diversity of the system has only 

begun to unravel. The concept of biased agonism, which proposes differential signaling 

outcomes (rather than redundancy) for every chemokine ligand that has affinity for a 

receptor, brings a whole other level of complexity into perspective when it comes to fine-

tuning inflammatory responses.(Rajagopal, Bassoni et al. 2013) Thus, a complete 

understanding of the targeted pathway as well as its specific role in the investigated disease 

setting will be necessary in order to successfully target chemokine receptor interactions for 

therapeutic purposes.  

In comparison with T cells, which have been widely addressed in studies investigating 

homeostatic as well as inflammatory chemokine receptor interactions, monocytes have a 

shorter life span (1-3 days compared to 90 days for T cells) accompanied by less complex 

migration routes.(Whitelaw 1972; Hellerstein, Hanley et al. 1999) These facts may partly 

explain why monocytes are often overlooked in studies investigating plasticity and induction 

mechanisms of chemokine receptors. Another reason might be due to the notion that blood 

monocytes do not extensively traffic secondary lymphoid organs, which are important sites 

for induction of inflammatory (such as CCR9 for gut-homing) as well as homeostatic 

chemokine receptors in T cells.(Mora, Bono et al. 2003; Smids, Horje et al. 2014) However, 

it was recently shown that classical monocytes do traffic lymph nodes in the murine setting 

during steady-state by means of CD62L-mediated interactions, and thus it is interesting to 

speculate whether these findings also apply for the human CD14
+
CD16

-
 subset, which has 

been shown to express high levels of CD62L.(Geissmann, Jung et al. 2003; Jakubzick, 

Gautier et al. 2013)  

The chemokine receptor CCR9 has been shown to play an important role in directing 

activated T cells to the small-intestinal compartments in mice, but reports on its functional 

role in inflammation are inconclusive. Rivera-Nives and colleagues showed that antibody 

blockade of CCR9-CCL25 interactions resulted in less severe ileitis, whereas another study 

has shown that CCR9 is mainly responsible for Treg recruitment to the small 

intestine.(Rivera–Nieves, Ho et al. 2006; Wermers, McNamee et al. 2011) As for its role in 

murine colitis, CCR9-CCL25 seems to mainly confer protection.(Wurbel, McIntire et al. 

2011; Wurbel, Le Bras et al. 2014) In human IBD, CCL25 has been shown to be primarily 

expressed in the small intestine, although increased colonic mRNA levels have been observed 

during active colitis.(Papadakis, Prehn et al. 2001; Linton, Karlsson et al. 2012; Zhu, Bing et 

al. 2014) Adopting the notion derived from murine studies of CCR9-CCL25 interactions 

mainly representing small intestinal pro-inflammatory elements, therapeutical blockade of 
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CCR9 is currently being investigated in a phase III-trial on patients with Crohn’s disease. 

However, the trial was halted in August 2013 due to the primary endpoint (clinical remission 

at week 12) not being met, but was continued in 2014 after dosage adjustments.(Arseneau 

and Cominelli 2014; ChemoCentryx 2014)  

Thus, questions remain unanswered as to whether the CCR9-CCL25 axis is preferentially 

used by suppressive cells, or whether its functional impact on inflammation may be context-

dependent. Our data from paper IV, demonstrating decreased levels of colonic CCR9-positive 

CD4
+
CD45RO

+
 effector memory cells only in un-affected mucosa compared to inflamed 

specimens, rather support the suppression model. Characterization of the proteome as well as 

the transcriptome of these cells would reveal whether the roles of colon-infiltrating CCR9-

expressing CD4
+
 T cells are primarily in suppressing or promoting inflammation.  

There are few studies investigating CCR9 on the transcriptional level. In 2000, Yu and 

colleagues demonstrated that two CCR9 splice variants exist, differing in their sensitivity to 

CCL25. The larger CCR9A isoform is expressed in human lymphocytes at 10-fold higher 

ratios compared to the CCR9B variant, as well as being more responsive to CCL25.(Yu, 

Peden et al. 2000) The clinical relevance of these isoforms has not been investigated, and thus 

it remains to be seen whether shifting of isoform balance is involved in fine-tuning CCR9-

mediated immune responses within the gut.  

In paper IV, we demonstrate that colon-infiltrating CD4
+
 T cells are all CCR9-positive, that 

CCR9-expressing CD4
+
 T cells of the colon are HLA-DR-positive (indicating long-term 

activation) and that CCR9 expression levels are similar between the TEM and the terminally 

differentiated TEMRA subsets.(Chadburn, Inghirami et al. 1991; Hislop, Annels et al. 2002) 

Based on these findings, we speculate that CCR9, besides from being involved in colonic 

migration, is also needed for colonic retention of the infiltrating T cells. Thus, there is a 

requirement for transcriptional stability of CCR9 expression, possibly conferred through 

epigenetic changes of regulatory regions within the CCR9 gene. However, preliminary data 

from our lab shows that CCR9 may be transiently up-regulated on CD4
+
 T cells following 

TCR-dependent and –independent stimulation. Thus, although our bisulfite sequencing of 

CCR9-expressing compared to non-expressing cells revealed profound de-methylation in the 

CCR9
+
 cells (thus indicating stable phenotype), gut-infiltrating CCR9 cells should be 

monitored ex vivo over time to establish whether de-methylation of CCR9 is involved in long-

term transcriptional stability. Furthermore, the role of retinoic acid in the imprinting of 

intestinal phenotype is well established in the murine setting. In mice, both CCR9 and α4β7 

have been shown to be dependent on retinoic acid produced in secondary lymphoid tissues of 

the gut for their induction.(Mora, Bono et al. 2003; Iwata, Hirakiyama et al. 2004)  

The papers included in this thesis have discussed the role of T helper cells and monocytes in 

conferring intestinal inflammation in the setting of IBD. With regard to taking advantage of 

the chemokine receptor system in designing novel treatment strategies for IBD, much work 

remains in order to fully understand the complex mechanisms orchestrating intestinal 

immune responses. Also, the immunological heterogeneity of IBD patients constitutes a 
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therapeutical challenge that may be overcome by individualizing diagnostic and therapeutic 

approaches.  

6 POPULÄRVETENSKAPLIG SAMMANFATTNING 

Immunförsvarets främsta uppgift är att skydda kroppen från bakterier, virus och parasiter. 

Detta möjliggörs genom olika fysiska barriärer i kroppen, men också med hjälp av 

immunceller i blodet. Immunförsvaret brukar delas upp i två delar som representerar olika 

celltyper med skiljda angreppsstrategier mot sjukdomsalstrande ämnen (så kallade 

patogener): det medfödda (innata) och det specifika (adaptiva) immunförsvaret. De 

immunceller som ingår i den innata delen (såsom monocyter och granulocyter) är 

konstruerade för att snabbt och brett regera mot ämnen som ofta återfinns på ytan av 

bakterier, virus och parasiter – detta sker oftast inom någon eller några minuter efter 

exponeringen. Däremot kan det dröja dagar innan det specifika immunförsvaret når sin fulla 

potential, vilket dels beror på att det specifika immunförsvaret är beroende av det medfödda 

för att aktiveras, men också på att cellerna som ingår i den specifika delen (såsom T- och B-

lymfocyter) styrs av omfattande kontrollmekanismer för att förhindra överaktivering. Detta är 

speciellt viktigt på grund av att cellerna i det specifika immunsvaret kan ge upphov till 

immunologiskt minne (vilket är anledningen till att vaccinering kan ge ett livslångt 

sjukdomsskydd) – en felaktig aktivering av en T- eller B-lymfocyt kan leda till att 

immunförsvaret angriper kroppens egna celler, vilket i värsta fall kan ge upphov till livslång 

sjukdom (autoimmunitet). 

Denna avhandling behandlar inflammatorisk tarmsjukdom (eng. inflammatory bowel disease; 

IBD), en sjukdom som inte alltid räknas som autoimmun men likväl orsakas av en 

överaktivering av tarmens immunförsvar i kombination med svårigheter att tolerera de 

godartade bakterier som ständigt återfinns i höga antal i tarmsystemet. IBD är egentligen ett 

samlingsbegrepp för ett flertal sjukdomar med likartade manifestationer (såsom magsmärtor 

och blodiga diarréer), varav de två vanligast förekommande är ulcerös kolit (eng. ulcerative 

colitis; UC) och Crohn’s sjukdom (eng. Crohn’s disease; CD). Det finns inga botemedel mot 

IBD utan behandlingen syftar endast till att lindra patientens smärtor och dämpa 

inflammationen i tarmen. IBD är vanligast förekommande i den industrialiserade västvärlden 

(främst i Nordamerika och i norra Europa). De immunologiska mekanismer som orsakar IBD 

är inte klarlagda, och sjukdomen ökar ständigt över hela världen. Således är IBD viktig att 

studera ur ett immunologiskt perspektiv.  

Det första arbetet handlar om en specifik typ av monocyter, som kännetecknas av höga 

ytnivåer av proteinerna HLA-DR och CCR9. HLA-DR spelar en viktig roll i 

sammankopplandet av det medfödda med det specifika immunförsvaret, och är en 

väletablerad markör för funktionellt aktiva immunceller. CCR9, en så kallad 

kemokinreceptor, har tidigare visats ha betydelse för inflödet av T-lymfocyter till 

tarmslemhinnan men har aldrig studerats på monocyter. I arbetet visar vi att förekomsten av 

dessa blodmonocyter (som vi benämner HLA-DR
hi

-monocyter) är ökad hos patienter med 
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inflammatorisk tarmsjukdom i jämförelse med friska kontroller, samt att nivåerna återställs 

vid behandling med kortikosteroider eller granulocyt-monocyt-aferes (GMA), en 

kolonnbehandling som fysiskt filtrerar blodet från bland annat monocyter. Vidare visar vi att 

nivåerna av HLA-DR
hi

-monocyter korrelerar med patienternas sjukdomsaktivitet, varför vi 

föreslår att denna celltyp kan användas som en blodmarkör för inflammation vid IBD. Vi 

föreslår även att CCR9 kan spela en roll i att styra blodmonocyter till tarmslemhinnan, något 

som dock behöver utredas i en mer specifikt riktad frågeställning.  

I det andra arbetet utredde vi hur förekomsten av 19 kemokinreceptorer (inklusive CCR9 som 

nämndes i arbete I) varierar mellan tre grupper: barnpatienter med ulcerös kolit, Crohn’s 

sjukdom samt vuxna friska kontroller. Studien syftar primärt till att öka förståelsen kring hur 

kemokinreceptorer, som kan liknas vid adresslappar som cellerna använder för att ta sig till 

olika platser i kroppen, används av olika monocytpopulationer samt hur de återspeglar 

inflammation i tarmen. Ett sekundärt syfte är att utveckla en icke-invasiv kombinatorisk 

markör med förmågan att åtskilja mellan UC och CD, vilket skulle vara av stor betydelse 

eftersom det ofta är svårt att skilja mellan de båda diagnoserna kliniskt. Resultaten från 

studien visar att skillnader i nivåer mellan IBD-patienter och friska kontroller förekommer 

hos 14 av 19 studerade kemokinreceptorer. Vid jämförelse mellan ulcerös kolit och Crohn’s 

sjukdom fann vi däremot endast en receptor, CCR3, som åtskiljde de båda diagnoserna. 

Sammantaget tyder dessa fynd på att förekomsten av kemokinreceptorer på monocyter 

återspeglar inflammationsprocessen vid IBD. Eftersom endast åtta patienter studerades i varje 

grupp (samt 20 friska kontroller) bör en större upprepning av denna studie utföras för att 

fastställa huruvida dessa resultat kan ligga till grund för utvecklandet av ett diagnostiskt test 

för IBD.  

Vår arvsmassa (DNA), som återfinns i exakta kopior i nästan varje cell i kroppen, är uppdelad 

i gener som i sin tur ger upphov till proteiner. Eftersom alla gener inte ska översättas till 

proteiner samtidigt, och vissa proteiner bara ska finnas i vissa delar av kroppen, krävs olika 

former av reglering. En sådan mekanism kallas för DNA-metylering, och innebär att små 

molekyler (metylgrupper) kopplas fast på generna. Detta medför oftast att genen stängs av 

och inte kan översättas till protein. Det tredje arbetet syftade till att utveckla en metod för att 

mäta graden av DNA-metylering hos fyra gener som är viktiga för aktiveringen av T-

lymfocyter. Metoden, som vi kallar för EILA (eng. Epigenetic Immune Lineage Analysis) är 

nyskapande så till vida att den möjliggör metyleringsanalys av dessa fyra gener i en enstaka 

läsning, vilket är tidsbesparande samt gör resultaten mer jämförbara och tillförlitliga. Efter att 

ha validerat metoden tillämpade vi den på T-lymfocyter från patienter med reumatoid artrit 

och multipel skleros varefter vi kunde konstatera att dessa lymfocyter hade utvecklats mot en 

speciell variant av T-lymfocyter (Th1 respektive Th17). Denna immunologiska förståelse är 

viktig för att kunna utveckla effektiva behandlingar mot sjukdomarna.  

I det sista arbetet studerade vi T-lymfocyter som vi isolerat ur tarmslemhinnan hos 

barnpatienter med IBD. Det primära syftet var att utreda huruvida kemokinreceptorn CCR9 

förekom på dessa lymfocyters cellyta, något som fastställts i musstudier men inte kunnat 



 

40 

påvisas i människa. Resultaten visade att CCR9 förekom i höga nivåer hos aktiverade T-

lymfocyter, vilket tyder på att CCR9 är ett viktigt protein för transporten av T-lymfocyter till 

tarmen även hos människa. Vi kunde även visa att metylering av CCR9-genen kan påverka 

genens funktion. Detta arbete ökar således förståelsen kring CCR9 och dess roll vid 

inflammation vid tarmen. 

Sammanfattningsvis har denna avhandling behandlat inflammatorisk tarmsjukdom med fokus 

på kemokinreceptorernas roll, och då främst CCR9, i att föra monocyter och T-lymfocyter till 

den inflammerade tarmslemhinnan vid IBD. Flertalet större läkemedelsbolag har på sin 

agenda att blockera kemokinreceptorer för att förhindra inflödet av immunceller till vävnaden 

vid olika sjukdomstillstånd men få preparat finns ännu på marknaden. Ökad förståelse kring 

hur de komplexa kemokinreceptorerna uttrycks och regleras på olika celltyper är således 

viktigt för behandlingsutveckling och för att bromsa den globala framfarten för 

inflammatorisk tarmsjukdom. 
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