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ABSTRACT 
Current treatment options for alcohol use disorders are limited in number and have limited 

efficacy. It is therefore important to find new, more effective medications. In this thesis, the 

work focused on the involvement of the hypothalamic neuropeptide Melanin Concentrating 

Hormone (MCH) and its MCH-1 receptor (MCH1-R) in alcohol related behaviors in rodents. 

In the initial study, the selective MCH1-R antagonist GW803430 was evaluated in animal 

models of motivation to obtain alcohol and relapse to alcohol-seeking in rats using operant 

self-administration. GW803430 potently attenuated alcohol self-administration and cue-

induced reinstatement while reinstatement induced by a foot-shock stressor was unaffected. 

To extend these findings, GW803430 was assessed in states of escalated alcohol 

consumption. In rats consuming high amounts of alcohol during intermittent access 

GW803430 treatment significantly reduced intake of both alcohol and feed while in low 

drinking rats only food intake was decreased. Following protracted abstinence induced by 

intermittent access, alcohol self-administration was significantly attenuated by GW803430. 

In contrast, GW803430 had no effect on escalated alcohol self-administration induced by 

vapor exposure. These studies provide evidence for a combined effect of the MCH1-R 

antagonist on consumption of alcohol through effects both on appetite for calories, and 

rewarding alcohol actions.  

In order to evaluate effects on sugar, which also has addiction-like properties and activate 

pathways in the brain overlapping those for drugs of abuse, we assessed GW803430 on 

sucrose and saccharin self-administration. While sucrose consumption was significantly 

decreased by GW803430, no effect was seen on saccharin intake, suggesting that MCH1-R 

blockade primarily regulates calorie intake. However, GW803430 also reduced cue-induced 

seeking and enhanced motivation to obtain sucrose under a progressive ratio schedule. 

Reward from palatable food and drugs of abuse can activate overlapping neurobiological 

mechanisms, and the findings further indicate that the MCH1-R may have a dual role on 

appetite for calories and reward.   

Based on the findings that the MCH1-R regulates the rewarding properties of both alcohol 

and sucrose, alcohol reward was investigated in mice in the conditioned place preference 

(CPP) model to avoid calorie intake as a confounding variable. Genetic deletion of the 

MCH1-R prevented alcohol induced CPP and this finding was replicated in wildtype 

C57BL/6 mice treated with GW803430. Downstream signaling mechanisms of the MCH1-R 

after acute alcohol administration were further investigated. Immunohistochemistry showed 

 



 

that acute alcohol administration induced phosphorylation of the dopamine and cAMP 

regulated phospho protein 32 (p-DARPP-32) downstream of the MCH1-R.  

In conclusion, our results suggest a role of MCH and its MCH1-R both in calorie intake and 

in regulation of alcohol reward.  
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1 INTRODUCTION TO ALCOHOL ADDICTION 
Alcohol is consumed worldwide, mainly for its pleasurable effects. Although occasional 

consumption does not necessarily have harmful effects, drinking pattern and the amount of 

alcohol consumed is directly related to the individual’s health (Antai et al. 1993). Harmful 

alcohol use has a significant causal role in numerous types of chronic diseases. The top five 

categories listed by the world health organization (WHO) are cancers, cardiovascular 

diseases, diabetes, neuropsychiatric disorders, gastrointestinal diseases, and infectious 

diseases (World Health Organization 2004). Further, frequent intoxication is associated with 

increased risk-taking and impulsivity which, in turn, may result in harmful consequences 

such as motor vehicle accidents causing harm to others as well as the intoxicated individual 

(Cherpitel 1993).   

In addition to causing increased healthcare costs due to physical and psychological health 

problems, alcohol use and abuse also contribute to detrimental societal and economic 

consequences such as decreased productivity and criminality (Rehm et al. 2009, World 

Health Organization 2004). WHO reports that 3.3 million deaths per year are caused by 

alcohol, an equivalent of 5.9% of all deaths globally. Alcoholism also significantly 

contributes to the global disease burden, 5.1%, which is calculated as disability adjusted life 

years, DALYs, lost (World Health Organization 2004).  

Excessive drinking has historically been considered as a character flaw or lack of discipline, a 

view that has only partly changed over time as alcoholism has slowly become accepted as a 

disease. Approximately 2 billion people worldwide consume alcohol, and between 5-10% of 

them will escalate their use and develop addiction (World Health Organization 2004). An 

interplay between biological, psychological, and social processes has been linked to 

progression of alcohol addiction (Altman et al. 1996, Pellmar et al. 2002). Heritability 

contributes approximately 50 - 60% of the risk for developing this condition, leaving the 

remaining variance in risk to influences of shared as well as individual environmental factors 

(Goldman et al. 2005). 

Although heritability increases the risk of developing alcohol addiction, the interaction with 

the environment is important to determine whether addiction will in fact arise. Environmental 

factors such as stress and trauma can increase the vulnerability (Goeders 2003, Volpicelli et 

al. 1999). Cues associated with alcohol, including social settings and people are also 

important factors contributing to progression to addiction (Donovan and Marlatt 1980).   
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1.1 ALCOHOL ADDICTION 

Alcohol addiction, hereafter equated with “alcoholism”, is a chronic, relapsing disorder that 

affects numerous organ systems. The Swedish physician, Magnus Huss (1849), was among 

the first to coin the term “alcoholism”, which has since been replaced with other terms such 

as alcohol abuse and alcohol dependence. In modern times, a classic description of an 

“alcohol dependence syndrome” was introduced by Edwards and Gross (Edwards and Gross 

1976). 

 

1.1.1 Diagnostic criteria for alcoholism 

Alcoholism is a chronic relapsing disorder characterized by multiple symptoms.  For a 

diagnosis, certain criteria have to be met, which in the US are described in a classification 

system, the Diagnostic and Statistical Manual of Mental Disorders (DSM) (American 

Psychiatric  Association 1994). In Europe and other parts of the world, the International 

Statistical Classification of Diseases and Related Health Problems (ICD) (World Health 

Organization 2004) is widely used. Recently, the fifth edition of the DSM (DSM-5) was 

published (American Psychiatric Association 2013), which includes several changes from the 

previous version, DSM-IV(American Psychiatric  Association 1994). In the DSM-5, 

diagnostic criteria for alcohol use disorders are grouped in four blocks (Table 1).  

The first four criteria describe impaired control over substance use, such as having problems 

cutting down on drinking and consuming more alcohol over time than was intended. Craving 

for alcohol or a strong desire to drink has been added as a new criterion.  

Criteria 5-7 focus on social impairments from consuming alcohol and have not been changed 

from the previous version. They involve the negative outcomes of alcohol use affecting social 

and professional life and describe negative impact on work, school or other activities, as well 

as hobbies the individual is willing to give up for drinking alcohol. 

In the third grouping, criteria 8-9 describe the risky use of alcohol. Alcohol use may put the 

individual in situations that could be of physical risk such as driving under intoxication, or 

being violent as a result from excessive drinking. Existing physiological and psychological 

problems may also be exacerbated by alcohol drinking.  

The last two criteria, 10-11, describe symptoms of tolerance and withdrawal. Tolerance is a 

hallmark of addiction where more alcohol is needed over time to produce the wanted effect. 
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Tolerance also includes a lesser sensitivity to the sedative properties of alcohol and 

adaptations in motor coordination. However, individual variability in response to alcohol can 

sometimes make it difficult to determine if tolerance has developed. Withdrawal is the last 

criterion, a syndrome that occurs when alcohol exposure is terminated after excessive use that 

has led to the development of tolerance. The withdrawal symptoms can be both physical and 

psychological. Symptoms include tremor, anxiety, sweating and may in severe cases induce 

delirium. In order to alleviate these symptoms it is likely that the individual will continue to 

consume alcohol to get rid of the aversive feelings (American Psychiatric Association 2013).  

In DSM-IV, a diagnosis of alcohol dependence was based on meeting three out of seven 

criteria within a year. Based on a separate set of criteria, an individual who did not meet 

criteria for alcohol dependence could instead be diagnosed with alcohol abuse (American 

Psychiatric  Association 1994). This has been modified in DSM-5, where a single category of 

“alcohol use disorder (AUD)” has replaced “abuse” and “dependence”, and is now graded as 

“mild”, “moderate” or “severe” based on number of criteria met within a year. The presence 

of  two or three symptoms corresponds to mild AUD, four to five moderate AUD, and six or 

more indicate severe AUD. Withdrawal is not necessary for a diagnosis but is highly 

associated with severe AUD (American Psychiatric Association 2013). Additionally, 

according to the DSM- 5, a diagnosis of alcohol use disorder with or without physical 

dependence is used.  
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Table 1.  Diagnostic criteria for alcohol use disorder according to DSM-5. The recent update was published 

by American Psychiatric Association in November 2013 (American Psychiatric Association 2013).  

 

1.1.2 Alcohol addiction starts with positive reinforcement by alcohol 

In the early stages of the addictive process, drinking to intoxication is primarily driven by 

positive reinforcement by alcohol, i.e. a motivation to obtain alcohol for its pleasurable 

effects (Brown et al. 1980). At this stage, impulsive reward craving for alcohol is driving 

further binge drinking (Figure 1), leading to heavy use, and periods of sobriety (Heilig and 

Koob 2007, Koob 1992, Koob and Volkow 2009). Reward craving is highly associated with 

environmental stimuli, or cues, previously experienced during alcohol use, such as  social 

context, specific individuals or places (Heinz et al. 2003). This conditioned craving is an 

important factor in the process of developing addiction, because of its ability to induce 

relapse to alcohol seeking and intake even after long periods of abstinence during which these 

CRITERIA FOR ALCOHOL USE DISORDER ACCORDING TO DSM-5 

1. More alcohol is consumed than intended and over a longer period of time  

2. Wanting to cut down or stop using alcohol but not managing to  

3. Spending a lot of time getting, using, or recovering from use of alcohol  

4. Cravings and urges to use alcohol  

 

5. Problems keeping up with work, home or school, because of alcohol use  

6. Continuing to use, even when it causes problems in relationships  

7. Giving up important social, occupational or recreational activities because of 

alcohol use  

 

8. Alcohol is used continuously, despite it puts you in danger  

9. Alcohol use is continued, even when physical or psychological problem which 

could have been caused or made worse by alcohol use  

 

10. Needing more alcohol to obtain the desired effect (tolerance)  

11. Development of withdrawal symptoms, which can be relieved by consuming more 

alcohol 
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behaviors have been extinguished, a phenomenon referred to as “reinstatement” (Grüsser et 

al. 2004, Sinha and Li 2007).  

Although alcohol does not have a unique target site in the nervous system, such as a receptor 

or transporter, it ultimately impacts numerous neurochemicals and receptor systems 

throughout the brain which impact the homeostasis of the brain [see below;  (Covarrubias et 

al. 2006, Ronis et al. 2007, Spanagel 2009)]. It is therefore challenging to identify which of 

these systems contributes the most to the transition from normal to compulsive drug use. 

Several major neurotransmitter systems have been implicated in the regulation of reward 

from alcohol. These include dopamine (DA), endogenous opioids, γ-aminobutyric acid 

(GABA) and glutamate systems, all of which have been extensively studied in relation to 

alcoholism (Cowen and Lawrence 1999, Holmes et al. 2013, Koob 1992, Xiao and Ye 2008). 

These systems interact, and mediate alcohol reward in part through actions within the ventral 

tegmental area (VTA) and the nucleus accumbens (NAc), a circuit broadly implicated in 

reinforcement and drug addiction (Brodie et al. 1999, Di Chiara and Imperato 1988, Di 

Chiara et al. 2004, Spanagel and Weiss 1999). In addition to its rewarding effects, acute 

alcohol intoxication also results in anxiolytic, sedative and ataxic effects, which are likely 

associated with enhancement of GABA and inhibition of glutamate transmission (Koob 

1992) .  

As positively reinforcing, or “rewarding” brain mechanisms are pathologically engaged by 

alcohol use, the nervous system responds with processes of compensatory, opponent actions, 

or “neuroadaptations” in order to maintain homeostasis (Solomon and Corbit 1974). At this 

early stage in the addictive process, however, opponent neuroadaptations go back to normal 

once the individual has recovered from intoxication. Underlying mechanisms driving reward 

and reinforcement will be further discussed in chapter 1.2. 

 

1.1.3 Progression into alcohol addiction is through negative reinforcement 

Excessive drinking over a time course of 5-10 years is thought to be necessary for developing 

alcohol addiction (Mann et al. 2005, Zilberman et al. 2004, Åmark 1951). At this point, 

opponent processes in the brain triggered by heavy alcohol use become long lasting, or even 

permanent, resulting in the emergence of tolerance for the pleasurable effects of alcohol, and 

a negative emotional state once alcohol intake is discontinued, a process that has been 

referred to as affective allostasis (Koob and Le Moal 2001, McEwen 2000, Valdez and Koob 

2004). Tolerance for pleasurable alcohol effects is caused by dysregulation of multiple 
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neurochemicals in the brain, which involves down regulation of DA and GABA receptors in 

response to prolonged enhanced release (Biggio et al. 2003, Funk et al. 2006, Grobin et al. 

1998). Once alcohol consumption is discontinued, the neuroadaptations that counteracted 

alcohol effects become unopposed, resulting in a loss of homeostasis or, rather “allostasis”, 

i.e. the new pathological equilibrium that has been established in presence of alcohol.  

Withdrawal from alcohol comprises both a physiological and an affective component. Much 

more is known about former than the latter. Physiological withdrawal is associated with   

generally increased excitability due to enhanced glutamate release following impaired 

GABA-inhibition of glutamatergic neurons (Gallegos et al. 1999, Heilig et al. 2010). 

Increased levels of extracellular glutamate and changes in expression of glutamate receptors 

have been observed during abstinence (Holmes et al. 2013). In acute withdrawal (in general 

within 3 days after alcohol is discontinued), physical signs of withdrawal appear, 

characterized by tremor, increased heart rate and sweating, and even include the risk for 

epileptic seizures and delirium tremens (Heilig et al. 2010, Mayo-Smith et al. 2004, Victor 

and Adams 1952). Affective processes associated with withdrawal symptoms are more 

persistent, last into protracted abstinence, and are likely more relevant for maintaining 

addiction. The negative emotional state associated with protracted abstinence is characterized 

by elevated anxiety, low mood and enhanced stress sensitivity. The desire to alleviate these 

highly aversive symptoms sets up a powerful incentive to resume alcohol use, [Figure 1; 

(Heilig and Koob 2007, Heilig et al. 2011, Stewart et al. 2001)]. Thus, craving for alcohol is 

now driven by negative reinforcement (Koob and Le Moal 2005), and consumption becomes 

compulsive, i.e. insensitive to negative consequences. Although several neuroadaptive 

processes have been suggested to account for the switch from positively to negatively 

reinforced alcohol seeking and use, the exact mechanisms behind this transition are still 

largely unknown. Understanding the neurobiology underlying these behavioral changes is 

important in order to develop new, more efficient treatments for alcohol addiction.  
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Figure 1. Transition from alcohol use to alcohol addiction.  A schematic picture of the addiction cycle. At the 

early impulsive stage, alcohol is consumed for its positively reinforcing effects, driven by reward craving. 

However, after prolonged cycles of intoxication interspersed by sobriety, a shift occurs. Alcohol use becomes 

compulsive, and alcohol is now consumed to alleviate the highly aversive the symptoms that are pronounced  in 

the chronic state. The picture is reproduced with permission from Elsevier (Heilig and Koob 2007).    

 

1.1.4 Available treatments for alcohol addiction 

Despite the fact that millions of people are suffering from alcohol use disorders and the 

socioeconomic burden they cause, only a limited number of medications for this group of 

conditions is available. As of today, three medications are approved by the Food and Drug 

Administration (FDA) in the United States, and the situation in Sweden is similar with one 

additional medication approved, nalmefene (Selincro), a novel opioid antagonist. The 

treatments available to prevent craving and relapse all have limited efficacy.  

Disulfiram (Antabuse) was the very first treatment introduced on the market for treatment of 

alcohol addiction. Disulfiram works by inhibiting the enzyme acetaldehyde dehydrogenase, 

thereby blocking the metabolism of alcohol (Kitson 1977). This results in an accumulation of 

acetaldehyde, which causes highly aversive symptoms such as sweating, flushing and nausea 

if alcohol is consumed after taking medication. The resulting acetaldehyde accumulation may 

also have toxic effects on several organ systems, including the liver (Peachey and Naranjo 

1983). It is therefore important that a patient receiving disulfiram is well informed about the 

actions of this medication, and aware of the risks associated with alcohol use while on it. The 
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aim of using disulfiram is to establish an association between alcohol and aversive feelings 

that will help the patient refrain from drinking, but the medication has no effect on 

withdrawal symptoms or the desire to drink. Presumably as a result of this, compliance is 

low, and if disulfiram is provided in an unsupervised fashion, controlled studies indicate that 

it is not superior to placebo to promote abstinence (Jørgensen et al. 2011).   

Naltrexone (Revia, Vivitrol), was the second drug to be approved by FDA for alcohol 

addiction. Naltrexone is an opioid receptor antagonist, which at clinically used doses is 

thought to preferably bind to μ- and κ-opioid receptors. Although its mechanism of action is 

not completely clear, naltrexone most likely modulates alcohol-induced dopamine 

transmission, thereby decreasing reward and pleasure obtained from alcohol. Studies show 

that naltrexone attenuates the positively reinforcing, pleasurable effects of alcohol in social 

drinkers and in alcoholics who “slip”, and sometimes drink alcohol (O'Malley et al. 1996, 

Volpicelli et al. 1995). However, the effect of the treatment is limited and has variable 

outcome. Naltrexone is thought to work better in people carrying a specific variant of the 

gene encoding the μ-opioid receptor, OPRM1 (Chamorro et al. 2012, Garbutt et al. 2014, 

Kroslak et al. 2007). In addition, it has been reported that males respond better to naltrexone 

treatment than women do. 

Acamprosate (Campral) is the latest medication approved for treatment of alcohol addiction 

in the US. (It should be noted that acamprosate was approved before naltrexone as treatment 

of alcoholism in Sweden). Instead of inducing aversive feelings or reducing positive 

reinforcement induced by alcohol as described above, acamprosate  reduces craving in 

alcoholic patients and promotes abstinence (Paille et al. 1995). The chemical structure of 

acamprosate is similar to GABA, but despite initial hypotheses, it does not seem that 

acamprosate directly affects GABAergic neurotransmission. The exact mechanism of action 

through which acamprosate exerts its therapeutic effects in fact remains unclear, but studies 

indicate that the primary action of acamprosate is on excitatory glutamatergic 

neurotransmission (Harris et al. 2002), resulting in reduced glutamate levels in the brain. 

These findings have been translated into humans using magnetic resonance spectroscopy 

(Umhau et al. 2010). Based on preclinical experiments, it was recently suggested that actions 

of acamprosate may in part or even fully be a results of its function to act as a carrier of 

calcium into the nervous system (Spanagel et al. 2013), although this proposition remains 

controversial. 
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1.2 NEUROBIOLOGY OF ALCOHOL ADDICTION 

Alcohol is a “dirty drug” that affects multiple neurocircuits and a multitude of receptor 

systems (Nestler 2005). In addition, different stages of alcohol addiction may also involve 

different regions and signaling systems which make this condition challenging to study 

(Koob and Le Moal 2001, Koob and Le Moal 2005, Self and Nestler 1995). The next chapter 

will focus on the neurobiological and neurochemical mechanisms of the rewarding effects of 

alcohol, the stress systems involved in later stages of addiction, and overlapping pathways 

with systems that regulate natural rewards.  

 

1.2.1 The mesolimbic dopamine system and alcohol addiction 

The mesolimbic dopamine system mediates in part the rewarding properties of drugs of 

abuse. Alcohol can act on VTA interneurons to disinhibit dopaminergic neurons projecting 

from the VTA, located in the midbrain, which release DA into the NAc, and mediate drug-

seeking, reinforcement, and reward learning (Di Chiara et al. 2004, Russo et al. 2010, Stuber 

et al. 2011). Self-administration of alcohol results in DA release in the NAc (Weiss et al. 

1993), and intravenous alcohol administration increases firing of DA neurons in the VTA in a 

manner associated with DA release in the nucleus accumbens shell (NAcSh) (Kohl et al. 

1998).  

The action of alcohol on the mesolimbic dopamine system is to some extent similar to the 

mechanism of opioids (Johnson and North 1992), and it is likely that alcohol interacts with 

endogenous opioids in the VTA based on the fact that unselective opioid receptor antagonists 

decrease alcohol consumption (Herz 1997). Specifically, it is thought that alcohol intake 

results in release of endogenous opioids with µ-opioid activity, most likely β-endorphin, 

within the VTA; this in turn results in inhibition of the GABA-ergic interneurons that 

normally exert tonic inhibition of dopaminergic VTA cells. The net result is therefore 

ultimately a disinhibition of the DA cells, and increased DA release in their terminal areas in 

the NAc (Spanagel and Weiss 1999). It is important to note, however, that alcohol intake also 

results in endogenous opioid release in terminal areas of mesolimbic and mesocortical 

projections (Mitchell et al. 2012), and additional interactions could occur at these sites, as 

indicated in Figure 2. 

Rewarding effects of drugs of abuse are mediated by D1 and D2 like DA receptors (D1R and 

D2R, respectively) (Rahman and McBride 2001). Psychoactive drugs, such as cocaine and 

amphetamine, regulate reward through different mechanisms and have stimulatory effect on 
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DA release or by inhibition of dopamine transporter (DAT) (Di Chiara and Imperato 1988, 

Koob 1992, Pontieri et al. 1995).   

Finally, is should be recognized that DA effects may not be essential for alcohol 

reinforcement; several early studies indicated that near-complete lesions of the mesolimbic 

DA system only marginally or not at all influenced consumption of alcohol (Kiianmaa et al. 

1979, Rassnick et al. 1993).  

 

 

Figure 2. The effects of alcohol on dopamine release in the NAc. Alcohol affects GABAA receptor function 

through a disinhibitory mechanism of GABAergic transmission in the VTA leading to increased release of DA 

in the NAc and activates processes regulating reward. At the same time, alcohol has an inhibitory function on 

release of glutamate from nerve terminals that act on neurons in both the VTA and the NAc. It should also be 

noted that several neuropeptide may interact with these pathways and regulate reward. Cartoon from (Gilpin and 

Koob 2008). 

 

The accumbal neuronal population consists to 90-95% of GABAergic projection neurons, or 

medium spiny neurons (MSN) (Chang and Kitai 1985, Chang et al. 1982). These are output 

neurons, and can further be divided into two classes, defined by expression of D1R and D2R. 

The neurons expressing D1R contain specific neuropeptides, dynorphin and substance P 

(Brownstein et al. 1977). They project either back to the VTA or to the substantia nigra 

through the direct pathway. The D2R expressing neurons contain enkephalin and neurotensin, 

and project to limbic regions such as the ventral pallidum, constituting the indirect pathway 
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(Gerfen and Young III 1988, Gerfen et al. 1990). Of note, D1 receptors are Gs coupled, while 

the D2 subtype is Gi coupled. Because of this, and the additional inhibitory synapse within 

the indirect pathway, activation of D1 receptors of the direct pathway and the D2 receptors of 

the indirect pathway ultimately has the same effect, to increase GABA-ergic feedback onto 

the VTA.  

Activation of the DA-system is associated with activation of dopamine and adenosine 3′,5′-

monophosphate-regulated phosphoprotein, 32 kDa (DARPP-32), an intracellular signaling 

lipoprotein, which is expressed in all dopaminoceptive neurons (Ouimet et al. 1984). It has 

been shown that DARPP-32 is a key molecule in regulation of  the reward pathway and 

mediates the actions of drugs of abuse, including alcohol (Gould and Manji 2005, 

Svenningsson et al. 2005). However, it has become clear that DA release in the NAc is not 

exclusively regulating reward. Interactions with glutamatergic inputs from the medial 

prefrontal cortex (mPFC), amygdala and hippocampus also play a critical role in reward 

regulation (Pierce and Kumaresan 2006). Glutamate is the major excitatory neurotransmitter 

in the brain acting on several receptor subtypes, including N-methyl-D-aspartate (NMDA) 

receptors. Glutamate signaling is implicated in the acute reinforcing effects of alcohol, which 

inhibits glutamatergic activity. Acute alcohol exposure attenuates extracellular glutamate 

levels in the NAc (Carboni et al. 1993). Alcohol also affects glutamate transmission by acting 

on NMDA receptors (Lovinger et al. 1989) and metabotropic glutamate subtype 5 receptors 

(mGluR5) (Blednov and Harris 2008). NMDA receptors are thought to play an important role 

in alcoholism due to the fact that they are involved in neuroplasticity which contributes to 

hyperexcitability and craving during abstinence (Pulvirenti and Diana 2001). 

 

1.2.2 Overlapping brain pathways regulate food and drug reward 

Just like drugs of abuse, natural rewards such as palatable food involve activation of the 

mesolimbic DA system. Consumption of palatable food releases endogenous opioids in the 

brain and activates opioid receptors in the VTA to stimulate dopamine release in the NAc, in 

a manner similar to that of alcohol (Colantuoni et al. 2001, Di Chiara and Imperato 1988, 

Wise and Rompré 1989). This circuit is highly associated with drug abuse, but has also been 

shown to become activated by bingeing of palatable food (Zhang et al. 2003). In addition, 

sugar shares select properties with drugs of abuse, and can induce signs of addiction-like 

behaviors in preclinical models. Specifically, rats on sugar restriction learn to binge drink and 

escalate their intake over time, which are typical features associated with the behavioral 
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pathology of addiction (Avena et al. 2006, Avena et al. 2008). Compensatory down 

regulation of opioid and DA receptors has been demonstrated in rats after intermittent access 

to sugar, and rats also display somatic signs of withdrawal when sugar is removed 

(Colantuoni et al. 2002, Colantuoni et al. 2001).  

In humans, substance abuse is often comorbid with eating disorders, suggesting that 

underlying mechanisms regulating these pathological conditions are mediated by overlapping 

neural pathways (Volkow et al. 2008, Volkow et al. 2012). The NAc is involved in regulation 

of food intake and receives innervation from the hypothalamus (Maldonado-Irizarry et al. 

1995, Mogenson et al. 1983), which harbors a network of anorectic and orexigenic peptides 

that together regulate food homeostasis (Havel 2001, Hillebrand et al. 2002, Schwartz et al. 

2000). Since alcohol and food intake are both consummatory behaviors, and since alcohol is 

also a caloric nutrient, it is not surprising that hypothalamic neuropeptides are being studied 

in the alcohol field as potential new therapeutic targets.   

 

1.2.3  The hypothalamus as a crossroad of food and drugs  

The hypothalamus is a brain region located in the mecencephalon, just underneath the 

thalamus and above the pituitary. It consists of several nuclei which mediate essential 

physiological functions, such as regulation of body temperature, circadian rhythm, body 

weight and hunger (Elmquist et al. 2005, Morton et al. 2006, Saper et al. 2005). The primary 

function of the hypothalamus is to control physiological homeostasis, and to do so, the 

hypothalamus serves as a link between the nervous system and the endocrine system (Luiten 

et al. 1987). Information is being sent from the nervous system and in response production of 

neurohormones occurs which in turn regulates physiological functions centrally as well as in 

the periphery. 

Recently it has been shown that the lateral hypothalamus (LH) sends strong innervation to the 

NAcSh (Brog et al. 1993, Stratford and Kelley 1999), suggesting an important role in 

mediating both food intake (and natural rewards) and reward from drugs of abuse.  

 

1.2.4 Stress-systems  

During the later stages of alcohol addiction, endogenous stress-systems are involved in 

mediating aversive feelings and negative emotional states associated with this phase of the 

addictive process. In addition to its role in regulating reward-related behaviors, the 
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hypothalamus is also highly implicated in stress-regulation through the hypothalamic-

pituitary-adrenal (HPA) axis. The HPA- axis is activated by both physiological and 

psychological stressors (Pacák and Palkovits 2001). The paraventricular nucleus (PVN) of 

the hypothalamus is central in the regulation of the endocrine stress response system (Herman 

et al. 1996) and contains a high concentration of cell bodies that express corticotropin-

releasing hormone (CRH) (Merchenthaler et al. 1982, Vale et al. 1981), a neuropeptide 

known to regulate stress responses. Activation of the anterior pituitary by CRH stimulates 

release of adrenocorticotropic hormone (ACTH), which in turn travels within the blood 

stream to the adrenal cortex and induces release of the effector hormones of the HPA axis, 

glucocorticoids (corticosterone in rodents and cortisol in humans). 

However, CRH containing cell-bodies are also found in extra-hypothalamic circuits 

(Swanson et al. 1983), where CRH mediates behaviors such as anxiety and stress responses 

within the extended amygdala, a circuit that includes the bed nucleus of stria terminalis 

(BNST) and the central amygdala (CeA) (Davis 1998, Davis et al. 2009). Additional stress-

related neuropeptides are likely to be involved in negatively reinforcing properties of alcohol, 

with dynorphin acting at κ-opioid receptors being a prime example [see e.g. (Kissler et al. 

2014)]. 

 

1.3 THE HYPOTHALAMIC MCH-SYSTEM AND ALCOHOL ADDICTION 

The hypothalamus produces multiple neuropeptides involved in regulation of food intake. 

These peptides may also regulate other physiological and motivational functions and have 

therefore been of great interest in the addiction field (Aston-Jones et al. 2009, Boutrel and de 

Lecea 2008, Di Leone et al. 2003, Kiefer and Wiedemann 2004). The LH consists of two 

distinct cell populations that produce orexigenic peptides, namely orexin and melanin 

concentrating hormone (MCH) (Elias et al. 1998). The work in this thesis focuses on the role 

of the MCH-1 receptor (MCH1-R) in alcohol addiction.  

 

1.3.1 Melanin Concentrating Hormone (MCH) 

In 1983 MCH was first discovered in chum salmon pituitaries, where it regulates the ability 

to change skin color of the fish in response to stress, a mechanism for protection from 

predators (Kawauchi et al. 1983). Almost a decade later, the cyclic peptide was found in rats 

and humans and is highly conserved amongst species (Presse et al. 1990). However, over the 
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course of evolution, the function of MCH has changed. In higher species, it regulates 

homeostasis and energy expenditure and is no longer associated with skin pigmentation 

(Nahon 2006, Shi 2004). The rat and human peptides are identical and consist of 19 amino 

acids (Vaughan et al. 1989). The gene encoding MCH in humans, PMCH, generates the 

precursor pro-MCH, which generates three mature peptides through differential processing 

that depends on the tissue where it is expressed, see Figure 3. The physiological functions of 

the two additional peptides produced, NGE (neuropeptide glycine-glutamic acid) and NEI 

(neuropeptide glutamic acid-isoleucineamide) (Nahon et al. 1989), remain unclear to date. 

MCH-containing cell bodies are found in the LH and can also be detected in the adjacent 

structure zona inserta (Bittencourt et al. 1992), regions known to control food intake. The 

MCH neurons project widely throughout the brain from the LH, including projections to 

limbic regions (Bittencourt et al. 1992). Two known receptors for MCH exist within the 

primate central nervous system, MCH1-R and Melanin Concentrating Hormone 2 receptor 

(MCH2-R) (Tan et al. 2002). The MCH2-R is not expressed in rodents. 

 

 

Figure 3. The genomic structure of the MCH gene. The MCH gene (in humans) is located on chromosome 12 

(12q23–24) and consist of three exons and two introns. The peptides NGE, NEI, and MCH are all encoded in the 

second and third exons. Reproduced with permission from Endocrine Society (Pissios et al. 2006). 
 

1.3.2 MCH-1 receptors and signaling pathways 

The MCH1-R was an orphan receptor, SLC-1/GPR24, until 1999 when it was discovered to 

bind or become activated by MCH. Several research groups discovered the MCH1-R at the 

same time using reverse pharmacology (Bächner et al. 1999, Chambers et al. 1999, Lembo et 

al. 1999). In rats and humans, expression levels of the MCH1-R are highly enriched in the 

brain and much lower levels have been found in the periphery, in fat, liver, and heart tissue 
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(Kolakowski et al. 1996, Lembo et al. 1999, Saito et al. 1999). The receptor is expressed in 

many areas of the brain, with high density in limbic regions. The highest expression levels 

are found in the NAcSh and caudate putamen in rats and mice (Hervieu et al. 2000, Saito et 

al. 2001).  

The MCH1-R is a G-protein coupled receptor (GPCR) and signals through Gi, Go and Gq 

(Figure 4). The most favored signaling pathway is via Gi, which inhibits cyclic adenosine 

monophosphate (cAMP) and leads to activation of protein kinase A (PKA). Activation of this 

pathway also involves induction of mitogen activated protein kinases (MAPK) signaling 

cascades. When the receptor couples to Go it also induces the MAPK pathway but through a 

different mechanism, which involves protein kinase C (PKC). The Gq pathway increases 

calcium levels and excitability of the cell. Calcium gets mobilized to the endoplasmic 

reticulum where it facilitates packaging of vesicles and exocytosis (Chung et al. 2009a, 

Hawes et al. 2000). 

 

 

Figure 4. Intracellular signaling pathways of the MCH1-R. The MCH1-R couples to Gi, Go and Gq, to either 

inhibit the cAMP dependent pathway, activate MAPK signaling cascades or increase calcium levels in the cell. 

Reproduction with permission from Elsevier, (Chung et al. 2009a). 
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1.3.3 MCH-2 receptors 

Shortly after the discovery of the MCH1-R, a human orphan GPCR, SLT, was identified as 

the MCH2-R  based on the sequence homology to the former receptor (Mori et al. 2001).  

The MCH2-R shares 38% sequence homology with the MCH1-R and activate Gq signaling 

pathways resulting in mobilization of calcium in the cell (Hill et al. 2001, Sailer et al. 2001). 

Unlike the MCH1-R, this subtype  is only expressed in higher species such as ferrets, dogs, 

rhesus macaques and humans (Tan et al. 2002), and little is known about its physiological 

role (Sailer et al. 2001). However, the distribution pattern of MCH2-R is similar to that of 

MCH1-R, and most likely it also mediates energy balance and homeostasis. It should be 

noted that MCH is the only ligand for MCH1-R and MCH2-R. The pro-MCH derived 

peptides NEI and NGE do not activate these receptors (Chambers et al. 1999, Sailer et al. 

2001, Saito et al. 1999). 

 

1.4 FUNCTIONS OF THE MCH/MCH1-R SYSTEM 

Recently it has been discovered that MCH mediates numerous physiological functions in 

addition to regulation of energy homeostasis. For example, MCH has been shown to regulate 

stress responses and anxiety, behaviors which are closely related to substance use disorders. 

The following chapter will further discuss the MCH-system in regulation of food intake, 

emotionality, and drug addiction. 

 

1.4.1 MCH in regulation of food intake 

Energy balance is a complex mechanism regulated by multiple peripheral signals to the brain. 

Hormones such as ghrelin, leptin and insulin are acting on first order neurons in the arcuate 

nucleus of hypothalamus to control food intake and energy expenditure (Obici et al. 2002, 

Porte et al. 1998). The first order neurons contain either the orexigenic mediator neuropeptide 

Y (NPY) or the anorectic peptide proopiomelanocortin (POMC), and synapse onto secondary 

MCH neurons in the LH (Elias et al. 1998). Hunger signals inhibit POMC cells and instead 

activate NPY neurons, which in turn stimulate MCH-containing neurons and increase food 

intake. Satiety has the opposite effect on POMC and NPY neurons, and regulates MCH 

secretion in the opposite direction. 

Studies report that central administration of MCH increases food intake in rodents both 

acutely and after chronic administration, with the latter being accompanied by increased body 
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weight (Della-Zuana et al. 2002, Qu et al. 1996). In line with these findings, studies in 

transgenic mice demonstrate that deletion of the Pmch gene results in a lean phenotype as a 

result of hypophagia (Shimada et al. 1998), while overexpression of MCH generates 

hyperphagic mice with increased body weight (Ludwig et al. 2001). Studies using global, 

constitutive knock-out (KO) mice or central administration of MCH affect the whole brain 

and may not mimic the endogenous role, which could potentially confound the results. 

However, studies investigating the effects of MCH1-R antagonists show that systemic 

administration successfully reduce food intake and body weight in normally fed and diet 

induced obese rats (Tavares et al. 2006), which strengthen previous findings and indicates 

that these compounds may be potential treatments for obesity. Further, studies suggest that 

mechanisms mediating the role of MCH in regulating food intake depend on hypothalamic-

limbic circuits. Injections of MCH into several different nuclei of the hypothalamus have 

been shown to result in orexigenic effects (Abbott et al. 2003). Further, Georgescu et al. 

showed that food intake is mediated by MCH in the NAcSh. Food intake was increased after 

injection of MCH, and oppositely, the effect could be reversed by local administration of an 

MCH1-R antagonist in the NAcSh (Georgescu et al. 2005).  

 

1.4.2  MCH in regulation of stress-responses and anxiety 

In addition to its established role in feeding and energy balance, MCH also plays a role in 

other physiological functions. The MCH1-R is highly expressed in multiple nuclei of the 

hypothalamus, including the PVN, that also receive MCH projections, and some evidence 

suggests that MCH can stimulate the HPA-axis (Bittencourt et al. 1992, Herman et al. 1996). 

Studies show that intracerebroventricular (i.c.v) administration of MCH increased 

corticosterone levels in rats, an effect that was reduced by pretreatment with an anti-CRH 

antibody (Jezová et al. 1992).  Moreover, an acute intra PVN injection of MCH increased 

ACTH and plasma corticosterone levels in rats, which suggests that MCH can directly 

activate the HPA-axis, at least to some extent through activation of CRH (Kennedy et al. 

2003).   

An abnormal function of the HPA-axis is often seen in major depression and stress related 

disorders including alcohol addiction (Costa et al. 1996, Pariante and Lightman 2008, Wand 

and Dobs 1991, Watson et al. 2004). Many limbic regions such as the hippocampus, 

prefrontal cortex, and amygdala, where the MCH1-R is highly expressed, also interact with 

stress systems to regulate anxiety-like behaviors. There are several studies suggesting a role 
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for MCH in anxiety- and depression-like behaviors in rodents, although these results are 

somewhat conflicting. Central injections of MCH have anxiolytic effects as shown in the 

Vogel’s punished drinking test and elevated plus maze in rats (Kela et al. 2003, Monzon and 

De Barioglio 1999). Paradoxically, MCH1-R antagonists decrease anxiety and depression-

like behaviors in rats in the forced swim stress and social interaction tests, models of 

depression- and anxiety-like behavior, respectively (Borowsky et al. 2002). Injections of an 

MCH1-R antagonist in the NAcSh have been shown to exert antidepressant like effect on 

forced swim stress and conversely, MCH increases anxiety in the same task, suggesting 

interactions with the mesolimbic dopamine system (Georgescu et al. 2005). Behavioral 

studies in mice indicate that the MCH-system has anxiogenic effects, but the exact role needs 

to be further investigated (Gehlert et al. 2009, Georgescu et al. 2005, Smith et al. 2005a). 

However, numerous small molecule antagonists have been developed after the discovery of 

the MCH1-R. The outcome on anxiety-like behaviors has been ranging from no effect to 

potently decreased anxiety (Basso et al. 2006, Borowsky et al. 2002, Chaki et al. 2003, Chaki 

et al. 2005, Chung et al. 2011). These inconsistencies may be explained by route of 

administration, doses used, or differences in central receptor occupancy. To date, it still 

remains unclear how MCH1-R antagonists exert their antidepressant-like effects, and which 

brain regions and neurocircuits mediate anxiety-like responses.  

 

1.4.3 MCH and drug addiction 

Based on the functions of the MCH-system reviewed above, the MCH1-R may offer a 

promising target for treatment of eating and addictive disorders. While MCH1-receptor 

antagonism has been extensively studied in animals and evaluated in clinical trials for obesity 

(Mancini and Halpern 2006), only a few studies have investigated a potential role for MCH 

in drug addiction. 

A recent study from Chung et al., demonstrated that the MCH1-R plays a role in cocaine 

reward and addiction. Mice with a genetic deletion of the MCH1-R displayed decreased 

conditioned place preference (CPP) for cocaine, and blockade of MCH1-R decreased cocaine 

self-administration and cue-induced reinstatement. Further, the authors suggested that MCH 

can potentiate DA-signaling. Spike firing in the NAcSh was increased by MCH as well as 

levels of phosphorylated DARPP-32, indicating that MCH interacts with the mesolimbic 

dopamine system and regulates cocaine reward (Chung et al. 2009b). Another report failed to 

find effects on MCH1-R KO mice in cocaine or amphetamine induced CPP (Tyhon et al. 
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2008). The discrepancies between these studies may be explained by doses of drug used, 

background of the mouse strain and different CPP protocols.  

Further, the MCH1-R has been evaluated with regard to alcohol related behaviors, once again 

yielding conflicting results. Central injection of MCH was reported to increase alcohol intake 

in rats, but consumption was not attenuated after administration of an MCH1-R antagonist 

(Duncan et al. 2006). Additionally, in MCH1-R KO mice, alcohol intake was increased 

compared to control mice, although at lower, not pharmacologically active alcohol 

concentrations (Duncan et al. 2007).  

 

1.5 ANIMAL MODELS OF ALCOHOL ADDICTION  

The complexity of alcohol addiction makes it challenging to model this condition in animals. 

Although there is no model that captures all features of alcohol addiction, animal models 

nevertheless serve as useful tools to better understand the behavioral and neural mechanisms 

behind key aspects of alcohol addiction, such as increased voluntary consumption 

(escalation), increased motivation to take alcohol, and relapse to alcohol seeking 

(reinstatement). Many studies possible to perform using rodents would not be ethically 

permissible or even possible to conduct in humans. Animal models are, thus, needed in order 

to provide a first screening procedure for new possible treatment targets in order to address 

the extensive unmet needs for pharmacological interventions for alcohol addiction that 

remain to date. 

Animal models are generally divided into 3 groups which follow the progression to alcohol 

addiction. The models cover: binge/intoxication, withdrawal and negative affect, and 

anticipation and preoccupation. Binge /intoxication models include alcohol self-

administration and conditioned place preference, measuring motivation to obtain, and the 

rewarding properties of alcohol. Withdrawal and negative affect includes models of anxiety-

like behaviors and increased motivation to self-administer alcohol in a dependent state. 

Finally, models of anticipation and preoccupation involves cue-and stress-induced relapse 

(Koob and Volkow 2009, Sanchis‐Segura and Spanagel 2006).  
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1.5.1 Ethics and animal experiments 

The work presented in this thesis consists of animal experiments. All studies performed 

followed the respective guidelines for care and use of laboratory animals at National 

Institutes of Health, Karolinska Institutet, and Linköping University. Experiments were 

designed considering “the 3 Rs”, an ethical approach to treat animals in a humane way, that 

was first proposed by Russell and Burch (Russell et al. 1959). The 3 Rs stand for reduce, 

replace, and refine.  

Reduction: decrease the number of animals in the study. A great example in this thesis is the 

use of the Latin square design when the animal receives several treatments and serves as its 

own control, which is also beneficial for the results of experiments.  

Replace: the animal studies can eventually be replaced with other techniques in order to 

reach the same aim of the study. Sometimes techniques such as cell culture experiments or 

computer programs can replace animals. 

Refinement: enhanced animal welfare, and the use of procedures that minimize eventual 

pain and stress for the animal. 
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2 AIM OF THE STUDY 

The primary aim of this thesis was to evaluate the MCH1-R as a new potential treatment 

target for alcohol use disorders using a selective MCH1-R antagonist, GW803430. 

 

Specific aims for paper I-IV: 

• To evaluate effects of the MCH1-R antagonist, GW803430, on motivation to self-   

administer alcohol and relapse like behaviors (Paper I) 

 

 

• To investigate the role of the MCH1-R in regulation of caloric intake and motivation 

to consume alcohol in states of escalated consumption (Paper II) 

 

 
• To assess the effects of GW803430 on motivation to self-administer sweet solutions 

and on sucrose addiction like behaviors (Paper III) 

 

 
• To investigate the involvement of the MCH1-R on alcohol reward in mice and assess 

signaling mechanisms downstream of MCH1-R induced by acute alcohol 

administration (Paper IV) 
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3 MATERIAL AND METHODS 

First, this section describes the animals used in the studies and the MCH1-R antagonist, 

GW803430. Second, preclinical models and molecular techniques used will be covered in 

this chapter. Detailed descriptions of the methods can be found in the papers/manuscripts. 

 

3.1 ANIMALS 

In paper I -III, male Wistar rats were used, and were purchased from Charles River 

Laboratories (Wilmington, MA, USA). For experiments in paper II, performed in Sweden 

(Linkoping University and Karolinska Institutet), male Wistar rats were purchased from 

Harlan (Horst, the Netherlands). Rats were kept on a 12h light/dark cycle and experiments 

were conducted during the dark phase. 

In paper IV, mice with a genetic deletion of the MCH1-R were used. These were kindly 

provided by Dr. Donald R. Gehlert, Lilly Research Laboratories (Indianapolis, IN, USA). 

These mice were bred in our animal facility and generated by heterozygote breeding and 

genotyped as previously described (Chen et al. 2002). Mice were kept on a 12h light/dark 

cycle and experiments were conducted during the light phase. Mice were on a C57BL/6 

background. 

 

3.2 GW803430 

The MCH1-R antagonist, GW803430, was synthesized and provided by Lilly Research 

Laboratories (Indianapolis, IN, USA). GW803430 is a small molecule, non-peptidergic 

compound which is orally available and penetrates the blood brain barrier (Gehlert et al. 

2009). Studies show that GW803430 is selective for, and has high affinity for the MCH1-R 

(Hertzog et al. 2006). The doses used in this thesis were based on previous work (Gehlert et 

al. 2009). When administered to rats (0-30mg/kg, 1ml/kg) GW803430 was suspended in 10% 

Tween 80 and distilled water, and delivered as an acute intraperiteoneal injection (i.p) 45 min 

before testing (paper I-III). In mouse experiments, GW803430 was suspended in 5% 

mannitol and distilled water and delivered by gavage (0-30mg/kg, 10ml/kg) 2 hours before 

testing. 
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3.3   BEHAVIORAL MODELS IN RATS 

3.3.1 Operant self-administration and reinstatement paradigms 

The self-administration paradigm is commonly used to measure drug intake, as well as 

reward and motivated behaviors (Cippitelli et al. 2007, McBride and Li 1998). Rats readily 

administer drugs of abuse, food and sweet solutions. In paper I, we evaluated effects of 

GW803430 on operant self-administration of alcohol. Rats were trained to self-administer 

alcohol using a saccharin fading procedure. Following training, baseline responding for 10% 

alcohol was established. During baseline, responding on the right lever (FR-1) was paired 

with a house light stimulus and a 5sec timeout was in effect. Responding on the left lever had 

no consequences. All sessions were 30 minutes long. 

Next, cue-induced reinstatement was assessed as previously described (Cippitelli et al. 2005) 

Briefly, an olfactory cue (orange scent) predictive of alcohol was introduced during baseline 

sessions. Extinction followed, during which no alcohol cues or alcohol were available. On the 

test day, cues but not alcohol were reintroduced and the responding recorded. Further, stress-

induced reinstatement of alcohol seeking was evaluated (Cippitelli et al. 2008).  As described 

above, rats were trained to self-administer alcohol and went through extinction. On the test 

day, rats were exposed to an intermittent foot shock stressor for 15 min prior to the test 

session when responses were recorded.  

In paper III, GW803430 was evaluated in self-administration of sweet caloric and non-caloric 

solutions using 10% sucrose and 0.06% saccharin. Reinforcers were paired with a house light 

stimulus, and there was a 20sec timeout period following responding. Finally, seeking and 

motivation to self-administer sucrose was assessed. Cue-induced reinstatement was 

performed as described above. Increased motivation to obtain sucrose was assessed under a 

progressive ratio schedule of reinforcement (Cippitelli et al. 2007). The number of lever 

presses required for sucrose delivery increased during the session and the last completed ratio 

was defined as the breakpoint. Self-administration and progressive ratio experiments were 

analyzed using repeated measures one-way analysis of variance (ANOVA) with treatment as 

the within subjects factor. Two separate analyses were conducted in the reinstatement 

experiments. First, responses on the last day of extinction were compared to vehicle treated 

rats following reintroduction of cues or stress exposure. Next, one-way repeated measures 

ANOVA followed with treatment as factor, using a within subjects design in the cue-induced 

reinstatement experiments and between subjects design in the foot-shock experiment.   
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3.3.2 Intermittent access 

Repeated cycles of intermittent access to alcohol induce escalation of consumption in rats. In 

paper II, rats had access to 20% alcohol or water on alternating days, 3 days a week using the 

two bottle free choice paradigm. On all other days only water was accessible. No saccharin 

fading was necessary for this procedure (Simms et al. 2008, Wise 1973). After 3 months of 

intermittent drinking, the effect of GW803430 was assessed on alcohol and food 

consumption in Wistar rats. Alcohol or food consumption after treatment was compared by 

one-way repeated measures ANOVA using a within subjects design.  

  

Intermittent access to sucrose similarly increases its consumption over the time and rats learn 

to binge during the first hour of access (Avena et al. 2006, Avena et al. 2008). In paper III, 

intermittent access to sucrose and food intake was examined after administration of 

GW803430. One group of rats had continuous access to 10% sucrose, food and water. The 

second group had restricted access to 10% sucrose and food for 12 hours per day (water ad 

libitum). Sucrose and food consumption was measured after 1, 12 and 24 hours over 24 days 

before rats were treated with GW803430. Sucrose and food consumption was analyzed by 

three-way repeated measures ANOVA, with group as between subject factor and time and 

treatment as within subject factors. 

 

3.3.3 Intermittent vapor exposure followed by self-administration 

Alcohol dependence can be induced by vapor exposure in rats (paper II). In this experiment, 

one group of rats was exposed to normal air and the second group was exposed to 

intermittent alcohol vapor for 7 weeks (14 hours/day and 5 days a week) (Tapocik et al. 

2012). Blood samples were collected once a week, and analyzed for blood alcohol levels 

(BAL). During the last three weeks of exposure, rats were trained to self-administer 20% 

alcohol to reach a stable baseline. Sessions were run during the withdrawal phase. The effect 

of GW803430 on alcohol self-administration during acute withdrawal (approximately 6-7 

hours after vapor was turned off) was assessed. Alcohol self-administration was analyzed by 

two-way repeated measures ANOVA, with group as between and treatment as within 

subjects factors. 
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3.3.4 Intermittent access to 20% alcohol followed by self-administration 

Alcohol self-administration in protracted abstinence was assessed in paper II. First, rats were 

trained on alcohol self-administration as described in 3.3.1.  Once self-administration was 

stable, rats had intermittent access to 20% alcohol for 3 months as described above. Rats 

were divided into high and low drinkers after alcohol consumption. During the last 5 weeks 

of intermittent access to alcohol, food intake was measured to assess the caloric contribution 

from alcohol. The effects on alcohol and food intake were evaluated in high versus low 

drinking rats and after treatment with GW803430. 

Next, high drinking rats went through 3 weeks of abstinence followed by self-administration 

of 20% alcohol. Rats were treated with the antagonist once baseline was established.  

 

3.3.5 Models for evaluation of behavioral specificity of effects after 
administration of GW803430 

Effects of GW803430 were evaluated in a battery of control experiment including the loss of 

righting reflex (LORR), alcohol metabolism and elimination, locomotor activity and taste 

preference. In the LORR and alcohol elimination tests, rats were injected with a highly 

sedative dose of alcohol, 3.5 g/kg (Khisti et al. 2003). Sleeping time was recorded in the 

LORR test and regaining of the righting reflex was considered to be when the rat could turn 

around on four paws within a minute. In the alcohol elimination test, blood samples were 

collected at 60, 120 and 360 min for examination of BALs. 

Locomotor activity was measured in the open field. On the first day, rats were allowed to 

habituate to the open field for 10 min to eliminate the effects of novelty on locomotor 

activity. On the second day drug effects on locomotor activity was measured. 

In the taste preference test, consumption of a solution containing saccharin and quinine was 

measured (Goodwin and Amit 1998). Water intake and food consumption was also recorded. 

Results from LORR, locomotor activity and taste preference were analyzed by one-way 

ANOVA using a between subjects design with treatment as factor while alcohol elimination 

was analyzed by two-way ANOVA, with time and treatment as factors.  

 

 26 



 

3.4 BEHAVIORAL MODELS IN MICE  

3.4.1 Conditioned place preference (CPP) 

Mice were first screened in a pretest session to establish that they did not have an initial side 

preference for either side of the box. The two compartments had different visual and tactile 

cues. Mice spending more than 60% of the time on one side during the pretest were removed 

from the experiment. Mice were then conditioned for four days with alcohol, 2g/kg or saline 

morning and afternoon in a counterbalanced unbiased design. On test day, the time mice 

spent on the side associated with alcohol was recorded (Sanudo-Pena et al. 1997). In paper 

IV, the CPP paradigm was used in two experiments. First, alcohol induced CPP was 

measured in WT and MCH1-R KO mice, and second, wildtype C57BL/6J mice were treated 

with GW803430 or vehicle. The effect of genetic deletion of the MCH1-R or 

pharmacological blockade by GW803430 was assessed and the results were analyzed by two-

way ANOVA with session as within subject factor and genotype or treatment as between 

subject factors.  

 

3.4.2 Conditioned place aversion (CPA) as a control for associative memory 

The CPA paradigm was employed to measure memory acquisition in WT and MCH1-R KO 

mice. Just as described above for the CPP, the CPA test consists of pretest, conditioning and 

test day. However, in this test mice learn to associate aversion induced by lithium chloride 

with environmental cues. Mice were conditioned with lithium chloride or saline once daily in 

an unbiased design (Risinger and Cunningham 2000). Time spent on lithium chloride side 

was measured on the test day and the experiment was analyzed by two-way ANOVA with 

session as within subject factor and genotype as between subject factor.  

 

3.5 EX VIVO STUDIES 

3.5.1 Autoradiography 

Receptor occupancy was assessed after administration of GW803430 as previously described 

(Gehlert et al. 2009). The doses and administration route used in paper I-III were examined. 

Rats were decapitated after i.p. administration of GW803430. Brains were extracted and 

stored at -70°C until further analysis. Sections of the NAc (core and shell), caudate and 

putamen were collected and mounted on slides. Briefly, the slides were incubated in buffer 

containing a labeled ligand of the MCH1-R, 30pM 125 I-S036057 (PerkinElmer Life and 
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Analytical Sciences, Waltham, MD, USA) for 90 min. To assess non-specific binding, 10µM 

of unlabeled (“cold”) GW803430 was added to the incubation media. Slides were washed in 

buffer and dipped in water and dried.  For 3 days sections were exposed to phosphorimaging 

plates before analysis. Determination of ED50 and ED90 were accomplished using GraphPad 

Prism software (GraphPad Software Inc., San Diego, CA, USA). 

 

3.5.2 Real time PCR 

Differences in gene expression of MCH and MCH1-R in acute withdrawal from alcohol 

vapor exposure and following intermittent access were examined using real time PCR. As 

described in 3.3.3 and 3.3.4, brains from rats in acute withdrawal and following intermittent 

access were collected, snap frozen and stored in -90°C until analysis. The hypothalamus and 

amygdala were punched out according to the Paxinos and Watson atlas (Paxinos and Watson 

2006). Tissue was extracted using the RNAeasy® Micro Kit (cat. no. 74004, Qiagen®) 

following the manufacturer’s protocol. RNA was reverse transcribed into cDNA using the 

High Capacity cDNA Reverse Transcription kit (Life Technologies Europe, Bleiswijk, the 

Netherlands) according to the manufacturer’s instructions. The samples were run using the 

following cycles: 25°C for 10 min, 37°C for 60 min, 85°C for 5 s (Veriti® 96-well Thermal 

Cycler, Life Technologies Europe, Bleiswijk, the Netherlands). The cDNA was then diluted 

1:10 in RNase free water and stored at a -80°C until assayed for gene expression.  

Gene-expression quantification was run on the 7900HT FAST Real-Time PCR system (Life 

Technologies Europe, Bleiswijk, the Netherlands) using TaqMan® Fast universal PCR 

Master Mix (2X) No AmpErase® UNG according to the manufacturer’s instructions. The 

gene expression assays used were: MCH: Rn01503866_m1, MCH1-R: Rn00755896_m1, 

GAPDH: Rn01775763_g1 Ywhaz: Rn00755072_m1). Gene-expression of MCH and MCH1-

R was normalized to the expression of housekeeping genes and calculated using the ΔΔCt 

method. Differences in gene expression levels were compared by a one-way ANOVA.  

 

3.5.3  Immunohistochemistry 

Immunohistochemistry was used to measure p-DARPP-32 and p-ERK as downstream 

signaling targets of the MCH1-R (paper IV). WT and MCH1-R KO mice were administered 

either a dose of alcohol, 2g/kg, or saline 30min before transcardial perfusion (Björk et al. 

2010). Brains were extracted, snap frozen and stored at -80°C until further analysis. Brains 
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were sectioned in 30µm slices and sections of the NAcSh and central nucleus of the 

amygdala (CeA) were collected according to the Paxinos and Watson atlas (Paxinos and 

Watson 2006).    

Free-floating sections were washed with PBS and incubated in H2O2, followed by washes in 

PBS. Non-specific binding sites were blocked using bovine serum albumin (Sigma, MO, 

USA) before application of primary antibodies (anti-pDARPP32, sc-21601-R, Santa Cruz 

Biotechnology, USA and anti-pERK, cat #4370, Cell Signaling Technology, MA, USA). 

Sections were incubated at 4ºC on a rotating shaker for at least 24 hours. Next, sections were 

washed in PBS and the secondary antibody (p-DARPP-32, cat #K4003, DAKO, CA, USA 

and p-ERK cat #PK-6101, Vector Laboratories Inc., Burlingame, CA, USA) was applied. 

Following incubation and washes, diaminobenzidine (DAB) chromagen was added for 

visible brown staining. Finally, sections were mounted on slides, dehydrated and cover-

slipped before light microscopy analysis. Quantitative analysis was performed using Leica 

DM6000CS light microscope (Leica Microsystem) at 40X magnification and pictures were 

captured by an attached digital camera. Levels of p-DARPP-32 and p-ERK were analyzed by 

two-way ANOVA with genotype and treatment as factors in a between subjects design. 
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4 RESULTS AND DISCUSSION 

4.1 SELF-ADMINISTRATION AND REINSTATEMENT OF ALCOHOL SEEKING 
IS SUPPRESSED BY MCH1-R ANTAGONISM IN WISTAR RATS (PAPER I) 

Stress and anxiety-like behaviors, which are closely related to alcohol addiction, have 

previously been shown to be affected by the MCH/MCH1-R system (Borowsky et al. 2002, 

Gehlert et al. 2009, Gehlert et al. 2007, Smith et al. 2005a). However, there is a limited and 

conflicting literature on the role of MCH in alcohol addiction. It has been reported that i.c.v. 

administration of MCH increased alcohol consumption in rats, while blockade of MCH1 

receptors failed to suppress drinking (Duncan et al. 2005, Duncan et al. 2006). Drinking 

studies in mice showed that genetic deletion of the receptor increased alcohol consumption, 

although this may be a consequence of developmental compensation, since MCH1-R KO 

mice are hyperphagic and have a lean phenotype (Duncan et al. 2007, Marsh et al. 2002). The 

purpose of this study was to examine the role of the MCH1-R in motivation to obtain alcohol 

and relapsing behaviors using the MCH1-R antagonist GW803430.  

 

4.1.1 GW803430 potently decreases alcohol self-administration and 
eliminates cue-induced reinstatement 

Blockade of MCH1-Rs potently and dose-dependently decreased alcohol self-administration 

(Figure 5A). These results are in contrast to previous findings by Duncan et al. who did not 

find any effect of an MCH1 receptor antagonist on home cage alcohol consumption (Duncan 

et al. 2006). Negative results are difficult to interpret in general; in this case, we note that the 

negative study used a peptidergic MCH1-R antagonist (“Compound B”) with unknown in 

vivo properties. Furthermore, our results were obtained in an operant self-administration 

model, which is generally thought to better reflect motivation to obtain alcohol compared to 

home cage drinking.  
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Figure 5. Administration of GW803430 attenuates alcohol self-administration and cue-induced 

reinstatement in rats. Graphs show total responding on the active lever under a fixed ratio 1 (FR1) schedule of 

reinforcement during 30 min sessions. Administration of GW803034 dose dependently decreased self-

administration of 10% alcohol. Total responding was significantly reduced up to 80% at the highest dose, 

30mg/kg (A). Presentation of cues previously paired with alcohol, induced relapse compared to the last day of 

extinction (EXT) while blockade of MCH1-Rs potently attenuated cue-induced reinstatement (B). *P<0.05 and 

**P<0.01 compared to vehicle treated rats. # P<0.05, total responding on active lever compared to last day of 

extinction.  

 

Reinstatement of previously extinguished alcohol seeking behavior elicited by alcohol 

associated cues (Figure 5B), but not a stressor, was also significantly reduced by MCH1-R 

antagonism. Our findings are in agreement with a recent study suggesting that the MCH1-R 

regulates cocaine reward and seeking. Blockade of MCH1-Rs decreased cocaine self-

administration and cue-induced reinstatement without affecting stress-induced relapse 

(Chung et al. 2009b). Moreover, yohimbine-induced relapse to high fat food was also 

unaffected by MCH1-R antagonism (Nair et al. 2009). Although cue- and stress-induced 

reinstatement to drug-seeking are subserved by brain pathways that ultimately converge, cue-

induced reinstatement may primarily be associated with the mesolimbic DA-system while 

stress-induced reinstatement relies on CRH and noradrenaline signaling pathways (Kalivas 

and McFarland 2003, Shaham et al. 2003).  

The lack of effect by MCH1-R blockade on stress-induced reinstatement serves as an 

excellent control for behavioral specificity. This result may be unexpected given prior reports 

on involvement of the MCH system in stress responses. It remains unclear, however, how 

MCH regulates stress sensitivity. Some evidence indicates that MCH mediates stress 

responses by stimulating the HPA-axis (Jezová et al. 1992, Kennedy et al. 2003). Central 

administration of  MCH increases plasma levels of ACTH and corticosterone in mice, and 

this effect was prevented by pretreatment with GW803430 (Gehlert et al. 2009). In contrast, 
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other studies have shown an opposite effect of MCH on the HPA-axis (Bluet‐Pajot et al. 

1995, Ludwig et al. 1998). However, central administration of exogenous MCH will impact 

the whole brain, and concentrations used may not mimic physiological conditions. The model 

we used in this study, stress-induced reinstatement to alcohol-seeking, has been shown to 

depend on central, extrahypothalamic CRH systems, while experiments using 

adrenalectomized animals receiving constant corticosterone replacement have shown that 

corticosterone levels are not involved in regulating relapse (Le et al. 2000).  

A battery of control experiments was conducted to evaluate the specificity of the effects 

observed after GW803430 administration on alcohol self-administration and cue-induced 

reinstatement. Neither LORR, alcohol elimination, locomotor activity, nor taste preference 

was affected by GW803430.  
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4.2 MELANIN-CONCENTRATING HORMONE AND ITS MCH1 RECEPTOR: 
RELATIONSHIP BETWEEN EFFECTS ON ALCOHOL AND CALORIC 
INTAKE (PAPER II) 

As previously mentioned, while the role of the MCH/MCH1-R system in energy homeostasis 

is well established (Gehlert et al. 2009, Kela et al. 2003, Pissios et al. 2006), little is known 

about the involvement in alcohol reward and escalation of consumption (Duncan et al. 2006, 

Duncan et al. 2007, Morganstern et al. 2010). Alcohol is both a pharmacodynamically active 

substance with an ability to activate brain reward systems, and a caloric nutrient. Here, we 

therefore extended the findings in paper I by assessing the MCH1-R in regulation of caloric 

intake and motivation to consume alcohol in states of escalated consumption.  

 

4.2.1 Intermittent access to 20% alcohol decreases food intake, and MCH1-R 
blockade preferentially reduces alcohol consumption in high drinking 
rats 

Food and alcohol intake was measured in rats during intermittent access to 20% alcohol. Rats 

consuming high amounts of alcohol (>4g/kg/day) showed a reduction in food intake on days 

when alcohol was provided compared to days when only water was available. In contrast, 

low drinking rats (<2g/kg/day) did not differ in food intake across days. Although the high 

drinking group displayed a decrease in food intake, the contribution of calories obtained from 

alcohol resulted in a total calorie intake which was comparable to the low drinking group. 

Further, regression analysis showed a significant negative correlation between alcohol intake 

and food consumption, as shown in Figure 6. As shown previously, MCH1-R antagonism 

significantly decreased food intake (Borowsky et al. 2002, Gehlert et al. 2009, Kowalski and 

McBriar 2004, Kowalski et al. 2006) in both groups while only alcohol consumption was 

affected by treatment in rats with escalated alcohol intake. The findings indicate that MCH 

primarily regulates homeostatic caloric balance but also may regulate alcohol reward in states 

of escalated consumption. Some caution is, however, needed in making this conclusion. 

Besides from being rewarding alcohol also contains calories, which makes it difficult to fully 

separate the effects on caloric intake vs. reward. The fact that the low drinking group does not 

obtain enough calories from alcohol may be due to a floor effect. 
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Figure 6. Correlation between food intake 

and alcohol consumption.  A significant 

negative relationship between alcohol and food 

intake was observed during intermittent access 

to 20% alcohol. The graph shows food and 

alcohol consumption in both high and low 

drinking rats.  Pearson r = - 0.6019; R2=0.3623; 

p<0.001.  

 

 

4.2.2 MCH1-R antagonism in states of escalated alcohol consumption 

The role of the MCH1-R was further assessed in animal models of escalated alcohol 

consumption.  The effect of GW803430 on motivation to obtain alcohol was evaluated using 

operant self-administration in protracted abstinence following intermittent access, and during 

acute withdrawal from alcohol vapor. In protracted abstinence, GW803430 dose dependently 

decreased self-administration compared to controls (Figure 7). In contrast, no differences in 

self-administration in acute withdrawal were noticed between vapor and air exposed rats. 

Intermittent access to alcohol has previously been shown to generate high consuming animals 

(Simms et al. 2008, Steensland et al. 2007, Wise 1973), but the underlying mechanisms are 

not fully understood.   

We demonstrated a potential role of the MCH/MCH1-R system in reward regulation through 

gene expression analysis following intermittent access. Specifically, MCH was down-

regulated in the LH which harbors MCH positive cell-bodies, while an up-regulation of the 

MCH1-R was observed in the NAc which receives MCH projections from the LH. We 

hypothesize that these adaptations persist in protracted abstinence, which could explain the 

sensitivity to GW803430 on escalated self-administration during protracted abstinence. 

However, this needs to be further investigated. In addition, central injections or 

administration of MCH in the NAc or the PVN have been reported to increase alcohol 

consumption (Morganstern et al. 2010). That raises the possibility that alteration of circuits 

driving food and reward regulation underlie the escalation of alcohol intake. 
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Figure 7. Regulation of escalated alcohol intake in protracted abstinence by the MCH-system. Escalation 

of alcohol self-administration was induced by intermittent access. Administration of GW803430 dose 

dependently attenuated alcohol self-administration in protracted abstinence.  ### P<0.001 compared to baseline, 

***P<0.001 compared to vehicle and control rats. * P<0.05, total responding on active lever compared to last 

day of extinction. 

 

In contrast, we did not find evidence for a role of the MCH system in dependence-induced 

escalation during acute withdrawal. Escalation of alcohol consumption has previously been 

demonstrated after dependence induced through cycles of vapor exposure (O'Dell et al. 2004, 

Rimondini et al. 2002, Roberts et al. 2000). In acute withdrawal, animals show physical signs 

of withdrawal (Goldstein and Pal 1971, Roberts et al. 1996), promoting alcohol consumption 

driven by relief of these symptoms (Heilig and Koob 2007). It appears that the MCH-system 

is not involved in this state, supported by the lack of effect of the MCH1-R antagonist on 

alcohol self-administration during this stage, and in agreement with the notion that escalation 

of self-administration in acute withdrawal may involve stress-mediating pathways rather than 

reward regulation. Also in agreement with these observations, no changes in gene expression 

were observed of MCH or the MCH1-R in the hypothalamic - limbic circuit during acute 

withdrawal.  
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4.3 MCH1-R ANTAGONISM REDUCES APPETITE FOR CALORIES AND 
SUPPRESSES ADDICTIVE-LIKE BEHAVIORS (PAPER III) 

Intake of palatable food as well as drugs of abuse activate overlapping neurobiological 

mechanisms (Avena et al. 2008, Volkow et al. 2008). Numerous studies have focused on the 

role of MCH in functions that regulate energy homeostasis (Borowsky et al. 2002, Gehlert et 

al. 2009, Kela et al. 2003, Pissios et al. 2006) and in regulation of intake of various types of 

rewarding feed (Barson et al. 2011). However, fewer studies have assessed the involvement 

of the MCH-system in motivation to obtain palatable food and sweet preference, or “sugar 

addiction”. Our previous studies (Paper I and II) suggested a combined effect of MCH1-R 

blockade on energy balance and alcohol reward, while the specificity of GW803430 on 

motivation to obtain calories from hedonic consumption had not yet been investigated.  

 

4.3.1 MCH1-R antagonism decreases sucrose seeking and motivation 

Motivation to obtain caloric and non-caloric sweet solutions was evaluated in rats after 

treatment with GW803430. Blockade of MCH1-Rs resulted in attenuated motivation to 

obtain sucrose, but not saccharin, in the self-administration paradigm. These observations 

strengthen previous findings in rats showing that the MCH-system mainly regulates caloric 

intake and is independent of the macronutrient source of the calories, and without having an 

effect on intake of the non-caloric sweetener saccharin (Barson et al. 2011, Duncan et al. 

2005, Sakamaki et al. 2005). In contrast, genetic deletion of the MCH1-R in mice failed to 

affect consumption of sweet condensed milk (Gehlert et al. 2009). However, this may be 

explained by developmental compensation in constitutive MCH1-R KO mice since they 

exhibit a hyperphagic phenotype as well as increased metabolism (Marsh et al. 2002). 
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Figure 8. Motivation to obtain sucrose and sucrose-seeking.  Rats were evaluated for enhanced motivation to 

obtain 10% sucrose under a progressive ratio schedule of reinforcement. The y-axis shows the breakpoint for 

sucrose, which was significantly decreased by 30mg/kg (A). Sucrose seeking was measured with the cue-

induced reinstatement model. At the highest dose of 30mg/kg, a significant reduction in sucrose seeking was 

observed. **P<0.001 compared to vehicle and control rats. ## P<0.01 compared to EXT, * P<0.01 compared to 

vehicle. Mean values are represented (±S.E.M). 

 

Models of addiction-like behavior were employed to evaluate MCH1-R antagonism on 

seeking and motivation to obtain sucrose. Administration of GW803430 decreased 

progressive ratio responding and cue-induced reinstatement (Figure 8A and B) suggesting 

that MCH1-R blockade primarily attenuates caloric intake but may also play a role in 

“sucrose addiction”. It also supports previous findings showing that mechanisms driving 

palatable food intake and drugs of abuse overlap, possibly by interactions with the dopamine 

system (Di Leone et al. 2003, Georgescu et al. 2005, Volkow et al. 2008).  
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4.4 THE MCH1-R MODULATES ALCOHOL-INDUCED REWARD AND DARPP-
32 ACTIVATION (PAPER IV) 

Previous findings indicate that MCH is involved in drug reward, and may interact with DA-

signaling in the NAcSh (Chung et al. 2009b, Di Leone et al. 2003, Georgescu et al. 2005, 

Pissios et al. 2008). However, downstream mechanisms of the MCH1-R which mediate 

alcohol reward have not been investigated to date. Due to the fact that alcohol contains a 

significant amount of calories, it is hard to parse out whether MCH1-R blockade decreases 

the need for calories or attenuates the rewarding properties of alcohol, or both. Use of the 

CPP paradigm allowed us to assess the role of the MCH system in alcohol reward without 

intake of calories as a possible confounding factor.  

 

4.4.1 The MCH1-R regulates alcohol reward 

Alcohol induced CPP was first measured in WT and MCH1-R KO mice (Figure 9).  In a 

subsequent experiment C57BL/6 mice were evaluated after treatment with either vehicle or 

GW803430. Genetic deletion as well as pharmacological blockade of the receptor resulted in 

decreased alcohol CPP. These findings support a recent study by Chung at al. showing that 

MCH1-R KO mice fail to express cocaine induced CPP (Chung et al. 2009b). In contrast, 

another group did not find differences in cocaine or amphetamine induced CPP between KO 

and control mice (Tyhon et al. 2008). Once again, negative results are difficult to interpret. 

The latter study used mice on a different genetic background and used lower doses of cocaine 

which may explain the discrepancy.   
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Figure 9. Alcohol induced CPP is attenuated in MCH1-R KO mice. Alcohol, 2g/kg, induced robust CPP in 

WT compared to pretest preference, while KO mice failed to display CPP. The CPP-score was calculated as time 

spent on alcohol-paired side minus time spent on the saline side. *P<0.01 compared to KO mice. # P<0.001, 

pretest compared to test day 
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Several studies in MCH1-R KO mice suggest that developmental compensations occur as a 

consequence of the constitutive gene deletion in these animals (Marsh et al. 2002, Smith et al. 

2005b). For instance, they show hyperlocomotion, increased metabolism and decreased body 

weight. It has also been demonstrated that these KO mice drink more alcohol compared to 

control mice (Duncan et al. 2007), a finding likely related to their hyperphagic phenotype and 

the caloric content of alcohol. To further evaluate the behavioral specificity of the reward-

related effects we found in these mice, a battery of control experiments was carried out. To 

control for differences in the ability to acquire associative memories, CPA was performed. 

Both genotypes displayed equal aversion induced by LiCl. Further, mice were tested in the 

LORR, alcohol elimination and locomotor activity without showing any significant 

differences in behavior.  

 

4.4.2 Interactions between the MCH1-R and dopamine signaling 

Activation of the MCH1-R induces several intracellular signaling cascades (Hawes et al. 

2000). Two downstream targets, DARPP-32 (activated through Gi signaling) and ERK 

(activated through Gi/o signaling), have previously been associated with alcohol reward and 

linked to the NAcSh (Nestler 2002, Svenningsson et al. 2005, Thorsell et al. 2013). In this 

study, levels of alcohol induced DARPP-32 and ERK phosphorylation were evaluated in the 

NAcSh and CeA using immunohistochemistry. To match the CPP experiments, mice were 

administered an acute dose of alcohol, 2g/kg, or saline. Alcohol induced significantly higher 

levels of p-DARPP-32 in WT mice compared to KO mice and their respective saline controls. 

Levels of p-DARPP-32 did not differ between genotypes in the CeA. In contrast, p-ERK 

levels in the NAcSh, were significantly higher in both WT and KO mice after an acute 

administration of alcohol compared to saline treated mice.  
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Figure 10. Acute alcohol administration increased levels of p-DARPP-32 in the NAcSh in WT but not KO 

mice. Levels of p-DARPP-32 were measured by immunohistochemistry in WT and KO mice after an acute dose 

of saline or alcohol, 2g/kg. Immunoreactive cells were counted under a 40X magnification. *P<0.01 different 

from all other groups.  

 

Our findings provide further support for the notion that MCH interacts with the dopamine 

system to regulate drug reward through actions in the NAcSh (Chung et al. 2009b, Hopf et al. 

2013). MCH1-Rs are densely expressed in the NAcSh, on cells expressing both D1R and 

D2R (Georgescu et al. 2005). It presently remains unclear which of these populations is 

involved in reward-related effects of the MCH system.   
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5 SUMMARY 
Recently, hypothalamic neuropeptide systems have been suggested to play a role in alcohol 

addiction. MCH is one of these peptides, and exerts its effects through the MCH1-R in 

rodents. It is well established that MCH is involved in regulation of energy homeostasis and 

additionally regulates anxiety-related behaviors and stress responses. However, the 

involvement of this system in alcohol-related behaviors and alcohol addiction has not been 

well understood.  

Our findings demonstrated that MCH1-R blockade by the novel, peripherally available 

antagonist GW803430, dose-dependently decreased alcohol self-administration in rats and 

efficiently attenuated cue-induced reinstatement of alcohol seeking, a model of relapse. No 

effect on stress-induced reinstatement was observed, in agreement with previously published 

results using cocaine or food. The antagonist used is highly selective for the MCH1-R; a 

specificity of its effects on alcohol self-administration is supported by the observations that it 

did not affect stress-induced reinstatement, locomotor activity or taste preference.   

The involvement of the MCH1-R had previously not been evaluated in states of escalated 

alcohol consumption. Rats consuming high amounts of alcohol during intermittent access 

showed a decrease in food intake when alcohol was provided, and both feed and alcohol 

consumption was decreased after treatment with GW803430. A potent decrease in alcohol 

self-administration following MCH1-R antagonist treatment was seen in protracted 

abstinence after intermittent access. In contrast, no effect was observed on escalated alcohol 

self-administration during acute withdrawal from vapor-induced physical dependence, which 

is thought to be primarily driven by stress-related mechanisms. 

Treatment with GW803430 reduced sucrose, but not saccharin self-administration. In 

addition, GW803430 was also effective in attenuating motivation to obtain sucrose, which 

indicates a combined role in “homeostastatic” as well as “hedonic” consumption of sucrose. 

To study the rewarding properties of alcohol without the possible confounding effects of 

calories, the CPP paradigm was used. In mice lacking MCH1-receptors, alcohol failed to 

induce CPP, a finding that was replicated in wildtype C57BL mice treated with the MCH1-R 

antagonist. The underlying mechanisms for the MCH1-R in regulating alcohol reward have 

not been investigated to date. Here, we identified p-DARPP-32 as a biomarker downstream 

of the MCH1-R associated with acute alcohol reward.  

In summary, we present a consistent line of data suggesting that, in addition to regulating 

energy homeostasis, the MCH system in part mediates alcohol reward. It should be noted that 
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GW803430 has been discontinued from clinical development due to cardiac toxicity, but still 

remains a useful research tool because it is potent, selective, orally available and brain 

penetrant. As such, it has helped provide evidence that MCH1-R may offer a novel treatment 

target for alcohol addiction, in particular during its early stages when alcohol consumption is 

primarily driven by positively reinforcing, or “rewarding” properties of alcohol. Those 

findings could pave the way for other compounds, with better clinical safety and tolerability.  
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6 CONCLUDING REMARKS 

Despite the fact that alcoholism has a high prevalence globally and significantly contributes 

to health care and financial burden, only a limited number of effective pharmacological 

treatments are available. This highlights the importance of finding new treatments with better 

efficacy than the medications that are currently available. Increased knowledge of the 

processes that are driving the underlying biological mechanisms of alcohol addiction is 

necessary in the search for novel medications. Hypothalamic neuropeptide systems involved 

in regulation of food intake have been extensively studied in the alcohol addiction field and 

may offer new possible treatment targets for alcoholism. Preclinical models cannot model all 

clinically relevant symptoms of alcohol use disorder in humans, but remain helpful as tools 

for target identification and validation. Molecular techniques such as expression studies and 

protein analysis can provide indications of brain mechanisms and neural circuits that are 

involved in regulating alcohol seeking and consumption. These tools will help us on the way, 

and hopefully one day we will reach the aim to find better treatments. 
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