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ABSTRACT 
Primary sclerosing cholangitis (PSC) is a chronic, inflammatory liver disease that leads to 

destruction of the bile duct system. PSC is strongly associated with inflammatory bowel 

disease, and PSC patients have an increased risk of developing malignancies, especially 

cholangiocarcinoma (CCA). The pathogenesis of PSC is still insufficiently understood, 

although T cells have been suggested to play a major role. Little is known about the 

involvement of other immune cell populations. In addition to this, a better understanding is 

needed about the capacity of liver resident immune cells to prevent tumor development. In 

this thesis we have investigated cellular and humoral components of the immune system, in 

PSC and the PSC-associated malignancy CCA. 

 In the first study, we examined the role of autoreactive antibodies in PSC 

patients. Flow cytometry was used to investigate the presence of IgA and IgG antibodies in 

PSC patient sera, and its reactivity against isolated human biliary epithelial cells. A majority 

of the patients had antibodies that bound to the cells, while only low levels could be detected 

in serum of healthy individuals. Moreover, IgA autoantibodies in PSC patients were 

associated with a reduced survival, and therefore their presence may be of importance in the 

pathogenesis of PSC. 

 In the second and third study, immunohistochemistry and image analysis was 

used, to explore the cell compositions in PSC and CCA livers. Specific phenotypic patterns, 

associated with severity of disease, were revealed in PSC livers. T cells were enriched, 

mainly localizing to fibrotic fields, whereas MAIT cells were not equally increased. 

Furthermore, one group of PSC patients, characterized by a potential loss of smooth muscle 

cell function, was found to have increased numbers of T cells and a more extensive bile duct 

proliferation. The tumor microenvironment in CCA was characterized by a selective loss of 

Kupffer cells and MAIT cells, and contained high numbers of regulatory T cells. Moreover, 

the expression of IL-33 was significantly lower in tumors. This distinct intratumoral 

phenotype was unaffected by tumor location, tumor differentiation, or an underlying PSC. 

 Altogether, our studies provide insights into the pathogenesis of PSC and CCA 

and opens up for further studies of disease mechanisms. 
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1 INTRODUCTION 
 

1.1 IMMUNOLOGY 

The immune system is under constant selection, to provide us protection against pathogenic 

microorganisms in the environment. The ability to distinguish self from non-self is one of the 

most critical challenges for the immune system to overcome, in order to mobilize a proper 

response against invading pathogens. The initial response is generated by cellular 

components of the innate immune system, such as neutrophils, monocytes, macrophages, 

complement, cytokines, and acute phase proteins. This is a highly conserved system between 

species, and crucial for the ability of the individual to survive. Innate immune cells recognize 

and bind to microbial structures, termed pathogen-associated molecular patterns (PAMPS). 

The binding initiates effector functions of the cells, such as phagocytosis, opsonization, and 

complement-mediated lysis, leading to the elimination of the pathogen. In addition to the 

innate immune system, higher animals have evolved an adaptive immune system. This 

system is highly specific, but often require days or weeks before it is fully activated (1). B 

and T cells, which are the main actors of the adaptive system, develop from progenitor cells 

in the bone marrow. At an early stage during development, T cell precursors migrate to the 

thymus for further development, whereas B cells remain in the bone marrow. B and T 

lymphocytes acquire their antigen-specific receptors through complex gene rearrangements, 

which leads to a large pool of lymphocytes, estimated to contain over 108 unique T-cell 

receptors and 1010 antibody specificities.  B and T lymphocytes continuously circulate 

through secondary lymphoid organs, and upon antigen delivery by antigen presenting cells, 

they get activated and start to differentiate. Thereafter, T cells are able to home to the infected 

site, where they exert effector functions, and B cells release antibodies into blood and tissue 

fluids (1). For T cells to combat intracellular pathogens, it is not enough with the ability to 

recognize structures of the microbe. They must also recognize the cells that have been 

infected. For this reason, T cells have developed unique properties of recognition of antigens 
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in combination with self-molecules. They only recognize antigenic peptides bound to major 

histocompatibility complex (MHC) molecules. In humans, this complex is commonly 

referred to as HLA (human leukocyte antigen). MHC class I molecules bind to peptide 

fragments produced by the cell´s own machinery, which occurs when the cells are virus or 

tumor transformed. MHC class II molecules bind to antigenic peptides derived from the 

extracellular environment, taken up by phagocytosis by the cell. MHC class II is particularly 

expressed by professional antigen-presenting cells, whereas all nucleated cells express MHC 

class I. However, some pathogens have developed strategies to escape presentation by MHC 

molecules (2), and genes within the MHC region are under a constant selective pressure. 

Therefore, genes within the MHC locus are highly polymorphic, i.e., there are multiple 

variants of each gene. This can be both favorable and unfavorable for the individual, because 

some gene variants may contribute to susceptibility to autoimmune, infectious, or 

inflammatory diseases (3). 

 

1.1.1 Liver immunology 

The liver has unique immune properties, largely due to its anatomical position in the body. It 

has a dual blood supply, both from the systemic blood and the gastrointestinal tract. From an 

immunological perspective this is important, since it does not only receive oxygen-rich blood 

from the systemic circulation, but also nutrient and antigen-rich blood from the gut. The 

blood enters the liver mainly through the portal vein, and drains through a highly branched 

vascular system, called sinusoidal endothelium, before leaving the organ via the central veins. 

Liver sinusoids are composed of a layer of fenestrated liver sinusoidal endothelial cells 

(LSEC), which makes them permeable. A large amount of lymphocytes from the peripheral 

blood passes the LSECs every minute (4). Due to the small diameter of the vessels, the 

lymphocytes are in close contact with LSECs, and are easily able to extravasate through the 

fenestrated cell layer (5). The liver harbors approximately ten billion lymphocytes (6). These 
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include cells of both the innate and the adaptive immune system. There are also several 

different cell types in the liver with the capability to present antigens to circulating 

lymphocytes. These include LSECs, Kupffer cells, hepatic stellate cells, and dendritic cells 

(DCs).  

 

1.1.1.1 Liver sinusoidal endothelial cells 

Up to half of the non-parenchymal cells in the liver are comprised of LSECs. They differ 

from other vascular endothelial cells in the body, as they express receptors for both antigen 

uptake and antigen presentation, such as scavenger receptors and MHC class I and II (7, 8). 

These properties give them a unique role in liver immunology and tolerance, as will be 

discussed in more detail.  

 

1.1.1.2 Kupffer cells 

Kupffer cells are liver resident macrophages and constitute 1/5 of the non-parenchymal cells 

of the liver (7). They are strategically positioned in the sinusoids and constitute a first line of 

defense against invading microorganisms. One of the effector functions of Kupffer cells upon 

bacterial stimulation is the production of cytokines (8). Secreted cytokines influence and 

shape the further immune response. As an example, they can activate and induce the 

differentiation of natural killer (NK) cells by the release of interleukins (IL), such as IL-12 

and IL-18 (9).  

 

1.1.1.3 Natural killer cells 

NK cells are innate immune cells with cytotoxic activity against virus or tumor-transformed 

cells. They constitute about 30% of the total lymphocyte population in the liver, and are 

regulated by a balance of signals between activating and inhibitory receptors. The ligands for 

the inhibitory receptors on NK cells are MHC class I molecules, and as long as these are 
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expressed on the surface of nearby cells, NK cells are kept in an inactive state (10). Both the 

absence of MHC class I, as well as presence of activating signals, is required for the 

induction of NK cell cytotoxicity. Upon activation they release cytokines, such as interferon 

(IFN)-γ, which leads to the expression of chemokines by LSECs and recruitment of T cells 

(11). 

 

1.1.1.4 T cells 

The majority of lymphocytes in the liver consist of T cells. Cytotoxic T cells are 

characterized by the expression of the glycoprotein CD8 on the cell surface and thus, 

commonly referred to as CD8+ T cells. They are restricted to recognize peptide fragments in 

conjunction with MHC class I molecules, and are therefore key immune cells in the defense 

against virus and intracellular pathogens (12). CD8+ T cells are known to be more abundant 

in the liver than the CD4+ T cells (6), which constitute the second population of conventional 

T cells. They are characterized by the expression of CD4 on the cell surface and recognize 

antigens presented by MHC class II molecules. One of their main role is to help cytotoxic T 

cells to become fully activated (13). 

 

1.1.1.5 Mucosal-associated-invariant T cells 

Other T cell populations, with a more innate-like phenotype, such as mucosal-associated-

invariant T (MAIT) cells, are found at higher frequencies in the liver than in the peripheral 

blood (14). MAIT cells are characterized by the expression of a semi-invariant T cell receptor 

(TCR-Vα7.2) and respond to bacterial antigens, presented by the MHC-like molecule MR1, 

with immediate effector functions (15). 

1.1.1.6 B cells 

B cells are known to be scarce in the liver, and little is known about their immunological 

activities here (6). According to the classical model, activation and maturation of B cells 
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occur in secondary lymphoid organs (16) and at present, it is not known whether B cells can 

be primed in the liver. However, plasma cells (antibody-producing B cells) line the biliary 

epithelium in the liver, and by producing and secreting immunoglobulin (Ig) A antibodies 

into bile, they likely have a role in the protection of bile ducts against invading pathogen (17). 

Antibodies are components of the humoral immune response and offer protection against 

extracellular pathogens. They develop as membrane-bound receptors on B cells in the bone 

marrow, each one unique for its particular antigen. B cells migrate to secondary lymphoid 

organs, where they meet their specific antigen and start to mature with the help of 

costimulatory signals from CD4+ T helper cells. Upon activation, B cells start to differentiate 

and proliferate, and become either antibody-producing effector cells or memory B cells. 

Effector cell-released antibodies have the same antigen specificity as the initially produced 

membrane-bound antibodies (18).   

 

 

Copyright © 2006, Rights Managed by John Wiley and Sons 

Figure 1.1: The distribution of cells in the healthy liver. Percentages refer to estimated 

frequencies of the different cellular subsets in relation to the total number of liver cells. 
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1.2 LIVER STRUCTURE AND FUNCTION 

The liver is the largest gland in the body (19). It has many important roles in glucose, protein 

and lipid metabolism as well as functions in detoxification and removal of waste products 

(20). The microanatomical structure of the liver is divided into functional units, called liver 

lobules. Each liver lobule has a central vein in the middle, from which the functional liver 

cells, the hepatocytes, radiate to the portal tracts, also known as portal triads, in the periphery. 

Each portal triad consists of one hepatic artery, one hepatic portal vein and one common bile 

duct (21). 

Bile, which is produced by the hepatocytes, is transported via a complex network of bile 

conduits, lined by biliary epithelial cells (BECs), and finally converges into the common bile 

duct. From there it empties into the gall bladder before further secretion to the intestine. The 

major function of the BECs is to modify the bile before its secretion. These cells also 

constitute the main target cells in several cholestatic diseases, commonly referred to as 

cholangiopathies.  

 

 

Copyright © 2006, Rights Managed by John Wiley and Sons 

Figure 1.2: Schematic drawing of a portion of a liver lobule. To the left is the central vein, 

from which the hepatocytes radiate towards the periphery (to the right), where the portal 

triads are located. Each portal triad contains one hepartic artery, one portal vein, and one bile 

duct. Within the lumen of the sinusoidal endothelium, resident Kupffer cells patrol the area, 

whereas DCs mainly locate near the portal zones.  Immune cells, such as T cells and NK cells 
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arrive from the peripheral blood and flow within the sinusoids, in close contact with the 

LSECs.  

 

1.3 LIVER TOLERANCE 

The liver is constantly exposed to microbial products from the portal blood. For this reason, 

the liver has evolved unique immunosuppressive mechanisms, which together cooperate to 

keep the environment tolerogenic. LSECs have efficient scavenger functions, that keep the 

vessels clean from antigens and bacterial compounds (22), and they also have the capacity to 

present antigens to CD4+ and CD8+ T cells (23). However, under non-inflammatory 

conditions, these interactions fail to activate an immune response (24). Instead, tolerance is 

induced, as T cells start to secrete suppressive cytokines, such as IL-4 and IL-10 (25).  

Other resident liver cells, such as Kupffer cells, contribute to the tolerance as well. Under 

normal conditions, they do not get triggered by soluble antigens, since they do not express 

MHC class II or co-stimulatory molecules (26). Instead they interact with regulatory T cells 

(Tregs), which leads to more IL-10 production and, thus, an immunosuppressive environment 

(27). During inflammation in the liver, tolerance can be broken and Kupffer cells can get 

activated to induce T cell proliferation (28).  

 

1.3.1 Breaking of tolerance 

Immune tolerance can be broken if the liver is exposed to live bacteria, viruses, or increasing 

levels of PAMPs. This induces a robust inflammatory response, with recruitment of large 

numbers of lymphocytes from the peripheral blood to the liver (29). 

1.3.1.1 Liver inflammation 

Inflammation in the liver begins when a primary injury, caused by viral or bacterial attacks 

for example, initiates cell death of hepatocytes and /or BECs. The leakage of cellular contents 

into the local environment, and increased levels of reactive oxygen species (ROS), attracts 
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and activate Kupffer cells and hepatic stellate cells. These cells start to remove dying cells by 

phagocytosis. By doing so, they also secrete pro-inflammatory mediators, such as tumor 

necrosis factor (TNF), IL-6 and IL-1β, which in turn attract T cells and neutrophils to the site 

of injury. The recruitment of different cellular subsets further amplifies the inflammatory 

response, and secreted cytokines, in particular transforming growth factor beta (TGF-β), 

causes the transdifferentiation of hepatic stellate cells into myofibroblasts. When these cells 

mature and become fully activated, they start to produce extracellular matrix (ECM) proteins, 

which initiate the fibrotic process (30). 

 

1.3.1.2 Liver fibrosis 

Hepatic stellate cells normally reside as lipid and vitamin A-storing, quiescent cells, situated 

in the space of Disse, between the hepatocytes and sinusoidal endothelium. Upon liver injury, 

they change phenotype and start to proliferate, migrate and acquire contractile properties. 

Their full activation leads to the synthesis and secretion of extracellular matrix (ECM) 

proteins, especially type I collagen, as well as secretion of pro-fibrogenic factors, such as 

TGF-β (30). Macrophages are observed to localize in the vicinity of myofibroblasts in 

fibrotic livers and soluble mediators in the environment, such as monocyte chemoattractant 

protein-1 (MCP-1) and macrophage colony-stimulating factor (M-CSF), have been shown to 

prolong the activation state of myofibroblasts, suggesting an active cross-talk between these 

two cell types (31). 

Furthermore, the recruitment of T cells, and the balance between the differentiated subtypes 

of Th cells, Th1 and Th2 cells, has also been shown to be of importance for the fibrotic 

outcome. Th1 cytokines have been shown to be more prone to reduce fibrosis (32), whereas 

Th2 cytokines, such as IL-13 and IL-33, have pro-fibrogenic effects (33). Fibrosis is part of 

the healing process, and type I collagen has been shown to protect hepatocytes against toxic 

compounds (34). However, if tissue injury persists and the fibrotic process continues in a 
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dysregulated manner, clinical complications can arise (Figure 1.3). If the primary injury is 

eliminated, the liver tissue can regain its normal structure, since the fibrosis, in its early 

stages, is reversible. However, once cirrhosis is established, the process is in most cases 

irreversible. In advanced stages, when liver failure occurs, the only curative option is liver 

transplantation (30). 

 

 

Figure 1.3: Stages of chronic liver disease. Inflammation, caused by an initial injury leads to 

fibrosis development with deposition of scar matrix. This process is reversible, if the injury is 

healed. Continued inflammation leads to further increased fibrosis and eventually cirrhosis. 

Once cirrhosis is established, the possibility to reverse the process is decreased (30). 

 

1.4 BILIARY EPITHELIAL CELLS 

 

1.4.1 Physiological functions 

BECs constitute only about 4-5% of the total number of cells in the liver, but have many 

important physiologic and immunologic functions. Modification of bile is one of their major 

functions, and occurs by the secretion of ions, solutes and water into the bile duct lumen (35). 

This is a process tightly regulated by hormones, peptides and neurotransmitters. Another 

function is to secrete IgA into bile (36). This occurs via a mechanism where serum IgA first 

bind to the secretory component on the basolateral side of the biliary epithelium and 

thereafter get endocytosed and further transported via vesicles to the apical membrane. At 

this site, proteolytic cleavage of the secretory component takes place, which results in the 

release of IgA into bile (37). Since the distal part of the biliary system, the common bile duct, 

drains into the duodenum, secreted IgA has a crucial role in protecting the biliary tree against 
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gastrointestinal-derived pathogens. Main effector functions of IgA is to aggregate bacteria 

and prevent them from attaching to the mucous membranes, as well as protecting against 

intracellular pathogens during the transcytosis pathway, through the biliary epithelium (38). 

 

1.4.2 Activation of BECs 

In the healthy liver, BECs do not divide. As a response to biliary injury, however, they can 

start to proliferate and become immunologically active, a phenomenon known as ductular 

reaction. BECs express toll-like receptors (TLRs), which upon binding to pathogen-derived 

ligands start to synthesize IL-6, IL-1β and IL-23 (38). These cytokines mediate recruitment 

and differentiation of T cells. Recently, the differentiation of naive T cells into Th17 cells 

have been proposed to be of importance in the pathogenesis of chronic inflammatory 

diseases. Reactive BECs are also important players in fibrosis, since they produce pro-

inflammatory and profibrogenic cytokines, whose interactions lead to an exaggeration of the 

mesenchymal response, with further deposition of ECM proteins into the liver parenchyma. 

Furthermore, the release of IL-6 stimulates BECs in an autocrine fashion, thereby leading to a 

continued release of inflammatory mediators (38).  

 

1.5 PRIMARY SCLEROSING CHOLANGITIS 

PSC is a chronic, cholestatic liver disease that is characterized by inflammation, fibrosis and 

destruction of the intra- and/or extrahepatic bile ducts. This leads to development of cirrhosis 

and eventually liver failure. PSC is strongly associated with inflammatory bowel disease 

(IBD), especially ulcerative colitis (UC), which is present in up to 80% of the PSC patients in 

northern Europe (39). Based on population studies from Norway, Great Britain and United 

States, the prevalence of PSC is estimated to be 8.5-13.6/100 000, which is 10-100 times 

higher than in the southern parts of Europe and Asia (40). Two thirds of the patients are male 

and the median age at onset is 30-40 years (39). There are no effective medical treatments for 
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PSC, and more than half of the patients need a liver transplant within 10-15 years after the 

first symptoms. Although survival is increased after liver transplantation, one fifth of the 

patients are at risk of developing recurrent disease in the liver graft (40). There is also an 

increased risk for PSC patients to develop malignancies, particularly cholangiocarcinoma 

(CCA), which often has a poor outcome.  

 

1.5.1 Diagnosis 

PSC is often asymptomatic in its initial stage, and is usually detected first when the patient's 

liver enzymes increase. As the disease progresses, symptoms such as jaundice, pruritus and 

abdominal pain arise, accompanied by episodes of bacterial cholangitis, with fever and 

worsening of liver biochemistries. The diagnosis of PSC is based on a typical cholangiogram 

with multiple strictures and dilatations. Serum liver tests usually show increased liver 

enzymes, in particular alkaline phosphatase (ALP). The presence of autoantibodies is also 

common. A majority of the patients have a history of IBD and show signs of cholestasis. The 

use of magnetic resonance cholangiopancreatography (MRCP) or endoscopic retrograde 

cholangiopancreatography (ERCP) is used to visualize the bile ducts (Figure 1.4). ERCP is 

reserved for patients with dominant strictures and who are in a need for biliary intervention 

(41).  

 

 

Copyright © 2010, Rights Managed by Nature Publishing Group 
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Figure 1.4: Left: MRCP (left) and ERCP (right) showing typical, multiple strictures and 

dilatations of the biliary tree (41). 

 

1.5.2 Pathogenesis 

The etiology and pathogenesis of PSC is incompletely understood, but probably involves 

both genetic susceptibility and environmental factors. There are different theories on whether 

the original injury to the bile ducts is caused by immune-related mechanisms or biochemical 

factors associated to bile toxicity (42).  

 

1.5.2.1 Autoantibodies  

The observation that PSC patients have many circulating autoantibodies has led to the 

hypothesis that PSC is caused by immune reactions against self-antigens (43). Further 

support for this is the strong risk factors correlated to certain HLA haplotypes (44), but also 

the fact that 25% of PSC patients are reported to have other, coexisting autoimmune diseases 

(45). However, the specificity of many of the detected autoantibodies is relatively low, and it 

is often argued that they arise due to secondary responses, following the sustained 

inflammation, rather than as a consequence of autoimmunity against a specific target 

autoantigen (43).  

Examples of such non-specific antibodies detected in PSC and in other autoimmune liver 

diseases are anti-nuclear (ANA), anti-cardiolipin, and anti-smooth muscle (SMA) antibodies 

(43), as well as antibodies against neutrophil components (ANCAs) (46). However, the 

identification of β-tubulin isotype 5 (TBB-5) as a candidate autoantigen for ANCAs, suggests 

that PSC patients might have a dysregulated immune response to intestinal microbes, since 

TBB-5 shares high structural homology with the bacterial cell division protein FtsZ (47).  
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1.5.2.2 T cells  

Several experimental studies suggests T cells to be highly involved in the pathogenesis of 

PSC (42). The strong association with IBD indicate that the immune system may be triggered 

by bacterial compounds from the gut (48). Experimental data further support this. Bile from 

PSC patients have been shown to contain increased levels of bacterial species, with the 

capability to induce expansion of Th17 and Th1/Th17 cells in peripheral blood (49). 

Moreover, mechanistic studies suggest that the biliary injury is caused by cytotoxic CD8+ T 

cells, initially activated in the gut (50). Such observations led to the hypothesis of “aberrant 

homing of lymphocytes”, presented by Adams et al. 2006, which is further explained in the 

next section.  

 

1.5.2.3 Lymphocyte recruitment and homing 

The fact that PSC can occur in IBD patients after colectomy, and IBD arise in PSC patients 

after liver transplantation, has led to the hypothesis of aberrant lymphocyte homing. 

According to this theory, activated T cells in the gut are proposed to persist as memory cells 

and may be recruited to the liver by aberrant expression of mucosal addressin cellular 

adhesion molecule 1 (MADCAM-1) and CC chemokine ligand (CCL) 25 on the liver 

endothelium. The up-regulation of these molecules leads to the recruitment of gut-resident 

CCR9+ α4β7-integrin+ lymphocytes. Epithelial produced chemokines, such as CXCL12, 

CXCL16, and CX3CL1, place them around bile ducts, and upon encountering of antigen(s), 

they become activated and promote inflammation (51, 52).  

 

1.5.2.4 Exposure to endotoxins 

Bile fluids of PSC patients have been shown to be frequently colonized with bacteria (49). 

Alterations in the epithelial barrier, due to overexposure to microbial compounds, might be an 

explanation to the biliary injury. Studies in animal models have shown that the disruption of 
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epithelial tight junctions leads to a leakage of bile into the portal tracts, followed by an 

inflammatory response. This response includes influx of T cells, activation of myofibroblasts 

and development of fibrosis (51). Furthermore, BECs from PSC patients have been observed 

to express higher levels of TLRs, TNF-α, IFN-γ and IL-8, than in patients without PSC, 

suggesting an exaggerated innate immune response (52). 

 

1.5.2.5 Toxic bile 

There is evidence that toxic bile directly or indirectly might be involved in the pathogenesis 

of PSC. Cholestasis in itself can lead to damage of the liver cells, since it naturally leads to an 

accumulation of bile acids. This is a common characteristic of all cholestatic diseases (53). 

However, genetic findings suggest that the toxic effect of bile acids in PSC may be more 

specific and caused by defects in the secretion functions of biliary epithelial cells (54). 

Dysfunction in the multidrug resistance protein (MDR) 3 gene leads to bile-duct injury, as a 

consequence of an abnormal composition of bile acids. MDR3 encodes a transporter protein, 

whose function is to secrete phospholipids, that together with cholesterol encloses the bile 

acids in micelles, which protects the biliary epithelium from toxicity (53). Mice, that are 

devoid of this gene, have been observed to have PSC-like intrahepatic changes with disrupted 

tight junctions, leakage of bile acids into the portal tracts and infiltrating inflammatory cells 

(51). However, no direct association between PSC and defects in MDR3 have been found 

(55).  

Variations found in the gene encoding the bile-salt-sensing receptor TGR5 may be of more 

importance in PSC pathogenesis (54). It is involved in the complex regulation of HCO3- 

secretion and defects in this system has led to the hypothesis of a protective HCO3- umbrella 

(56). According to this theory, damage to the BECs is caused by reduced concentrations of 

secreted chloride and bicarbonate into the bile ducts. This makes BECs more vulnerable to 

bile acids, as the protective glycocalyx layer (termed glycocalyx umbrella) disappears. 
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Irrespective of whether toxic bile acids are the direct cause of inflammation in PSC or not, 

their leakage into the parenchyma likely contributes to the acceleration of disease, with 

worsened fibrosis as a result.  

 

1.6 GENETICS 

First-degree relatives of PSC patients have a 9- to 39-fold increased risk of developing the 

disease (57) and the strongest risk factors are located within the MHC complex, at 

chromosome 6p21 (58). Most of the genes identified as being risk associated in PSC are 

related to inflammation. Classic examples include the HLA class I and II genes (59), whose 

encoded proteins direct the T cell response. Other risk-associated genes that have been found 

include IL2/IL21, REL and CARD9 (60). This further suggests that inflammation plays an 

important role in PSC, since all of these genes encode proteins that are implicated in the 

activation and function of immune cells (61). Several PSC-associated susceptibility genes 

have also been found outside the MHC region, such as CD28 and CD226 (58). These genes 

encode receptors that are involved in co-stimulation of T and NK cells respectively (62), 

suggesting components of both the innate and adaptive immune system to be involved in the 

pathogenesis of PSC. Gene variants have also been identified in MST1, whose protein 

product is implicated in the suppression of macrophages (61). Taken together, even though 

no PSC-specific susceptibility loci have been identified so far, several genetic findings 

suggest that PSC might be caused by immune-mediated mechanisms.  

Despite several proposed hypotheses and the recent identification of new genetic 

susceptibility loci in PSC, the pathogenesis still remains incompletely understood. The main 

reason for this is that when PSC is diagnosed, the disease has often progressed to a late stage. 

By that time it is impossible to know whether the molecular changes observed are the direct 

causing factors, or secondary effects due to inflammation. However, heterogeneity within the 

PSC population suggests that several pathogenic mechanisms may be involved at different 
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stages of the disease. 

 

1.7 CHOLANGIOCARCINOMA 

CCA is the malignant transformation of the biliary epithelium. Although it is a rare form of 

cancer, it is the second most common primary liver cancer after hepatocellular carcinoma 

(HCC), and accounts for approximately 3% of all gastrointestinal tumors (63). The difficulty 

of early diagnosis is a contributing factor to the low survival of the patients. The median 5-

year survival is as low as 10% (64) and due to severity of fibrosis or a poor health, only a 

third of the patients can undergo curative liver resection (65). The anatomical location of the 

tumor along the biliary tree determines the classification of CCA (66). If it originates from 

small intrahepatic ductules or large intrahepatic ducts, close to the right and left hepatic ducts, 

it is classified as intrahepatic CCA. Extrahepatic CCA is the collection name for hilar 

cholangiocarcinomas (also called Klatskin tumors) and distal tumors. These two subtypes are 

anatomically separated from each other by the cystic duct. Perihilar CCA is the most 

common form of CCA and accounts for 50-67% of all cases (67). The surgical options for 

patients diagnosed with perihilar CCA are limited (68). The different subtypes of CCA differ 

in epidemiology, etiology, pathogenesis and treatment possibilities (63). 

The pathogenesis of CCA is insufficiently known, and, there are no early, reliable detection 

markers. Early diagnosis is difficult, especially in PSC where the biliary tree has strictures. 

CA19-9 is the most commonly used serum biomarker for CCA. This marker is unfortunately 

unspecific and can also be increased in bacterial cholangitis, cholestasis and other 

malignancies (69).  

Chronic inflammation is an established risk factor for CCA and PSC patients have 160 times 

higher risk than the general population of developing CCA (70). PSC patients develop CCA 

much earlier than the patients without PSC. The age of onset among individuals with PSC is 

about 40 years (74), while it is over 70 years for the non-CCA patients (75). Furthermore, a 
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PSC patient often receives the diagnosis of CCA within one year from the determination of 

PSC (71). Thus, the duration time of PSC does not seem to be linked to the malignant 

transformation, even though inflammatory factors are assumed to be probable causes for the 

progression to cancer. Evidence for this is the association of CCA with other inflammatory 

diseases in the liver, such as parasitic infections and hepatitis B and C infections (72).  

A commonly observed phenomenon in various cancers is the infiltration of suppressive 

immune cell subsets, such as regulatory T cells (Tregs) (73). This infiltration is often 

beneficial for the tumor cells, since the functions of Tregs commonly lead to a decreased 

capacity of cytotoxic immune cells to kill tumor cells. Studies in CCA have led to different 

observations. Positive associations have been made between infiltrating Tregs and the pro-

inflammatory subset of T cells, known as IL17+ cells (74). This was further correlated with a 

poorer survival for the patients. In another study of CCA, infiltrating Tregs were reported to 

associate with increased numbers of alternatively activated macrophages (M2 cells) (75). 

These cells are known to have anti-inflammatory properties (76). Moreover, no unifying 

results have been obtained from studies of cytotoxic T lymphocytes (CTLs) and their 

functions in CCA. Some studies found CCA tumors to contain lower numbers of CTLs than 

the surrounding tissue (74), whereas another study observed similar CTL levels inside as 

outside the tumor (77). 

In addition to risk factors such as inflammation, the genetic profile of the patients probably 

also has a significant role. Variations in the gene encoding the activating natural killer 

receptor G2D (NKG2D) have been associated with risk for CCA in PSC patients (78). 

NKG2D has an important role in tumor surveillance (79) and variants in the gene encoding 

its ligand, MICA, have also been identified in CCA, as well as in HCC. This suggests that the 

MICA-NKG2D axis might have an overall role in the development of hepatobiliary cancer 

(80). 
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In conclusion, inflammation is strongly linked to CCA and other cancer forms. Some cancers 

are preceded by an inflammatory condition, whereas in others, inflammation develops due to 

the malignant transformations (81). Regardless of what comes first, the tumor cells are often 

favored by the immune suppressive nature of the cancer-related inflammation (73). A better 

understanding of the inflammatory cells involved in the cancer-related inflammation can lead 

to the development of targeted therapies against these cellular factors. 
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2 AIMS  

The general aim of this thesis was to improve the understanding about pathogenic 

mechanisms in PSC and the PSC-associated malignancy CCA, by exploring both humoral 

and cellular aspects of the immune response.  

 

Aim of study I: 

To evaluate the presence of autoreactive IgA antibodies in PSC patients. 

 

Aim of study II: 

To characterize non-parenchymal intrahepatic cells in PSC livers and to investigate 

associations between immune phenotypes and PSC disease severity. 

 

Aim of study III: 

To enumerate innate and adaptive immune cell subsets in CCA in livers from PSC and non-

PSC patients.  
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3 MATERIAL AND METHODS 
 

3.1 ETHICAL CONSIDERATIONS  

Informed written consent was obtained from all patients and the Regional Ethics Committee, 

Stockholm, Sweden, approved the studies. 

Material from deceased liver donors were included in the studies according to the regulations 

of the organ transplantation law of Sweden (1995:831), that is, the donors prior written 

declaration was followed as well as the written informed consent from next of kin. 

 

3.2 PAPER I 

 

3.2.1 Clinical material 

Serum samples from 81 PSC patients were used in this study. The samples had been collected 

while the patients underwent routine controls, at our Unit at Karolinska University Hospital 

in Huddinge, during a total time period of 16 years. The diagnoses of PSC and IBD were 

based on biochemical, clinical, and cholangiographic features, typical history, and 

characteristic endoscopic and histologic findings (41). Serum was collected from 42 healthy 

volunteers, and all samples were cryopreserved until later usage. For isolation of liver cells, 

tissue from donor livers, not used for transplantation because of technical reasons, were 

collected.  

 

3.2.2 Establishing cultures of BECs  

To avoid the risk that a possible autoantigen had been destroyed by earlier immune attack 

following inflammation, we chose to isolate human BECs from livers of deceased individuals 

with no known liver diseases. The tissue was disintegrated into small pieces, thereafter 

enzymatically digested with 0.05% Collagenase V and 0.002% DNAse to release the cells. 
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The liver digest was filtered and washed, thereafter the mixed cell population was 

resuspended in epithelial cell medium (ECM) and grown until confluence in gelatin-coated 

tissue culture flasks. Selection for epithelial cells was performed using immunomagnetic 

isolation with EpCAM-conjugated (clone HEA-125) microbeads. Enriched cells were further 

cultured and used freshly before reaching passage 6, or cryopreserved in liquid nitrogen for 

later usage. The EpCAM-selected cells were observed for the characteristic cuboidal 

morphology of epithelial cells with a phase contrast microscope. 

 

3.2.3 Phenotypic characterization of isolated cells by flow cytometry 

EpCAM-enriched cells were characterized by flow cytometry for epithelial markers such as 

EpCAM, Cytokeratin 19 (CK19) and Cytokeratin 7 (CK7), and for non-epithelial markers 

such as CD90, CD31, CD45, α-SMA, Calponin and Caldesmon. Antibody staining was 

performed with monoclonal antibodies, either on primary liver cells or isolated, passaged 

cells. Levels of background staining were assessed with corresponding isotype control. 

Samples were acquired using a FACS Calibur flow cytometer and analyzed using FlowJo 

version 9.3. 

 

3.2.4 Detection of autoreactive IgA and IgG antibodies in patient sera 

EpCAM-enriched cells were stimulated overnight with 20 ng/ml TNF-α and 200 ng/ml IFN-

γ, according to a previously described method (82). Before staining, the single-cell 

suspension was incubated with patient or control sera, diluted 1:4 in PBS, at room 

temperature for one hour. Unbound antibodies were washed away and thereafter the cells 

were incubated with secondary fluorescein isothiocyanate (FITC)- conjugated goat anti- 

human IgA antibody or cyanine (CY) 3- conjugated rabbit-anti IgG. Samples were acquired 

using a FACS Calibur flow cytometer and analyzed using FlowJo version 9.3. 
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3.2.5 Data Analysis 

Statistical analyses were carried out using Graphad Prism software version 5.0. The 

parametric two-tailed Student´s t-test was used, since the groups were large enough 

(containing more than 15 observations) and normally distributed. Linear regressions were 

performed to investigate the degree of correlation between two variables. Deviations between 

the variables were visualized using r 2 values. Kaplan Meier survival analyses were 

performed, with comparison of survival curves using the Gehan–Breslow–Wilcoxon test. 

Hazard ratios were calculated using the Mantel–Haenszel method, for assessment of the rate 

of deaths in the two groups (a hazard ratio of 2.0 means that the rate of deaths is twice the 

rate in the other group) (www.graphpad.com). Follow-up time was calculated from PSC 

diagnosis to the date of liver transplantation or death. 

 

3.3 PAPER II 

 

3.3.1 Patients and liver tissue  

Liver tissue from 17 patients with PSC and 17 non-PSC controls were used in this study. 

Sixteen of the PSC patient samples were received at the time of liver transplantation, and one 

was obtained from a patient undergoing liver resection due to suspicion of CCA. As control 

samples, tissues from four donor livers (not used for liver transplantation because of technical 

reasons) and 13 patients undergoing liver resection due to suspicion of cancer, were included. 

All the obtained samples were from non-tumor-affected areas of the resected livers, as far 

away from the resection margin as possible. Patients with cholestatic disease or primary liver 

cancer were excluded from the non-PSC cohort. Upon collection, all liver specimens were 

embedded in Tissue-Tek OCT, snap-frozen, and stored at −80°C until sectioning. 
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3.3.2 Gene expression analysis  

For the measurement of gene expression, total messenger (mRNA) was extracted from liver 

tissues with Trizol, based on the protocol by the manufacturer. Complementary (c)DNA was 

produced by the use of Applied Biosystem´s High capacity cDNA reverse transcription kit. 

The DNA was amplified and quantified using TaqMan real time polymerase chain reaction 

(PCR), employing the Applied Biosystems 7500 Fast Real-Time PCR System. Expression 

levels of CK19, Caldesmon, NKp46, and HLA-A and HLA-B were calculated from the cycle 

threshold (Ct) values against the endogenous housekeeping gene Cyclophilin A, using the 

comparative delta-Ct method.   

 

The remaining methods; histological grading, immunohistochemistry, automated image 

analyses and statistical analyses, are the same as for paper III and therefore described 

further below. 

 

3.4 PAPER III 

 

3.4.1 Patients and liver tissue  

Twenty CCA-patients and five non-CCA controls were enrolled in this study. Liver tissue 

specimens were obtained from patients admitted for liver resection at Karolinska University 

Hospital, for reason of a primary malignancy in the liver. Inclusion criteria were a diagnosis 

of CCA, which was confirmed by routine pathology. Control samples were obtained from 

five patients undergoing liver resection due to suspicion of gall bladder cancer, but where no 

cancer was found in the surgical specimen and the liver histology was evaluated to be normal. 
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3.5 PAPER II & III 

 

3.5.1 Histological grading  

Liver tissues were sectioned into a thickness of 5 µm and placed onto SuperFrost Ultra Plus 

slides. To visualize the histology, the samples were stained with hematoxylin and eosin. 

Thereafter a liver pathologist, who had no information about the included patients, evaluated 

the samples with regard to inflammation (grade) and fibrosis (stage), based on a non-

continous, 0–4 graded scale. Levels of bile duct proliferation were assessed using a scoring 

method with; 0 = 1–2 bile ducts per portal zone, 1 = 3–4 ducts per portal zone, evaluated as 

minimal proliferation, 2 = 5–7 ducts per portal zone, corresponding to a moderate 

proliferation, 3 = 8 or more bile ducts per portal zone, corresponding to intensive 

proliferation (83).  

 

3.5.2 Immunohistochemistry  

Immunostainings were performed using the ImmPRESS system (Figure 3). Briefly, sections 

were air-dried for 10 minutes and thereafter fixed in 4% paraformaldehyde for 20 minutes on 

ice. For intracellular staining, fixation and permeabilization was performed with 

Foxp3/Transcription Factor Staining Buffer Set (study III). Sections were incubated with 

Bloxall (10 minutes), followed by Innovex background Buster (20 minutes) to reduce 

unspecific background stainings. Samples were incubated with primary antibodies over night 

at +4˚C. Secondary ImmPRESS antibodies were added to the sections for 30 minutes at room 

temperature, and specific staining was detected by incubation with ImmPACT DAB. Finally, 

tissue sections were counterstained with Hematoxylin and mounted with Kaisers´s glycerol 

gelatine.   
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Figure 3. Brief description of the general concept behind immunohistochemistry, and the 

ImmPRESS method used. In a first step, primary antibody, targeted against the specific 

protein of interest, is added. In step two, the bound primary antibodies are captured with a 

peroxidase-conjugated secondary antibody. In the last step, the enzyme substrate for 

peroxidase, 3,3´-diaminobenzidine (DAB), is added. This will lead to the development of a 

brown reaction product, which makes the detection of the protein possible and further 

measurable for image analysis. 

 

3.5.3 Automated image analysis 

IHC-stained specimens were analyzed by acquired computerized image analysis (ACIA) in a 

blinded fashion, that is, without knowledge of which samples that were controls and which 

ones that were patients. Fifteen to twenty consecutive photomicrographs were taken from 

each tissue section, which covered the majority of the sample area. ACIA-values were 

calculated as the percentage of area stained positively by a phenotypic marker, multiplied by 

the mean intensity of the positive staining. 
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3.5.4 Data Analysis 

Statistical analyzes were performed using Prism version 6.0 (84). Kolmogorov-Smirnov or A 

D´Agostino-Pearson omnibus test were performed to probe if values were normally 

distributed. The Students t test was used when the investigated population assumed a normal 

distribution. If not, the nonparametric statistical test, Mann Whitney U test, was used. For 

comparison of paired samples, a paired t test was used, when the values had a Gaussian 

distribution. Otherwise, the Wilcoxon matched pairs test was performed. One-way ANOVA 

(parametric) or Kruskal Wallis (nonparametric) tests were applied for multiple groups. To 

analyze the pairwise differences between any of two groups, a Bonferroni or a Dunn´s post-

analysis was performed, after a parametric and nonparametric test, respectively. For 

correlation analyzes, linear regressions were performed. Principal component analysis (PCA) 

was performed using Qlucore OmicsExplorer v2.2, to identify the largest variances between 

included variables
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4 RESULTS 
 

4.1 PAPER I 

 

4.1.1 Patients 

The clinical characteristics of the patients and controls included in this study are presented in 

Table 1. The median age of the PSC patients was 58 years (range 25-94). The distribution 

between males and females was 63% and 37% respectively. The median age of the controls 

was 48 years (range 28-71), with 24 males (57%) and 18 females (43%). Eighty percent of 

the PSC patients suffered from IBD, and 53% of the total numbers of patients reached clinical 

endpoint during the follow-up period. 

 

Table 1. 

Clinical characteristics of patients and controls in paper I. 

 Controls (n=42) PSC patients (n=81) 

Age, median (range) 48 years (28-71) 58 years (25-94) 

Male 24 (57%) 51 (63%) 

CCA NA 10 (12%)1 

IBD NA 65 (80%) 

Colectomy NA 15 (19%)2 

Duration of PSC disease  NA 89 months (4 – 408) 

Ltx or death NA 43 (53%) 

Follow-up time  NA 65 months (1 – 164) 

Abbreviations: CCA = cholangiocarcinoma; IBD = inflammatory bowel disease; UC =  ulcerative 

colitis; CD = Crohn’s disease; Ltx = liver transplantation. 

1Information not available in four patients; 2Information not available in five patients. 
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4.1.2 Establishment of biliary epithelial cell-selected cultures 

After mechanic and enzymatic digestion of healthy human liver tissues, a population of cells 

that expressed the biliary epithelial-specific markers epithelial cell adhesion molecule 

(EpCAM), cytokeratin (CK) 7 and CK19 was identified with flow cytometry (Figure 4.1).  

 

 

Figure 4.1: Characterization of primary and in vitro expanded biliary epithelial cells. 

Representative stainings for EpCAM and CD31 on freshly isolated liver cells and for CK19 

and CK7 after gating for EpCAM-positive (solid black line), CD31-positive (dashed black 

line), and EpCAM-negative CD31-negative (solid gray histogram) cells. 

 

After four to six passages, the cells started to express molecules often associated with fibrotic 

processes, such as α-SMA, calponin, caldesmon, and CD90 and had lost their expression of 

EpCAM and BerEp (another antibody clone for epithelial adhesion molecule). However, as a 

control for purity of the cultures, cells also stained negative for the endothelial marker CD31 

(Figure 4.2).  

 

 

Figure 4.2: Representative stainings for EpCAM, BerEP, and CD31 (all solid black lines) on 
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biliary epithelial-enriched cells after six passages. Solid gray histograms represent isotype 

controls. 

 

4.1.3 PSC patients have autoreactive IgA and IgG antibodies 

Serum from a total of 81 PSC patients and 42 healthy controls was investigated for the 

presence of serum IgA and IgG with reactivity against the EpCAM-selected cells. Using MFI 

measurements, with a MFI cut-off set to the highest MFI value of the healthy control group, 

65% of the investigated PSC patients were shown to have IgA that reacted against the cells 

and 68% had reactive IgG antibodies (Figure 4.3). Only low or no binding could be detected 

when applying serum from healthy controls (Figure 4.4).  

 

  

 

Figure 4.3: Geometric MFI for IgA (left) and IgG (right) binding to epithelial-enriched liver 

cells summarized for the patients and controls.  

 

 

Figure 4.4: Representative flow cytometry staining for IgA (black solid line) and isotype 
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control (gray solid histogram) on epithelial-enriched liver cells using serum from one healthy 

control and three PSC patients. The figure shows that PSC patients have antibodies that react 

against biliary epithelial-enriched cells. 

 

4.1.4 Levels of autoreactive IgA is associated with higher total levels of 

circulating IgA antibodies 

Since a majority of the patients were found to have reactive antibodies against the selected 

cells, we next investigated possible underlying factors that could explain their appearance in 

the sera. For this purpose, levels of autoreactive IgA and IgG were correlated with total serum 

concentrations of IgA and IgG in the patients. We found that patients who were autoreactive 

IgA-positive had higher levels of total serum IgA than the patients that were autoreactive 

IgA-negative. No such correlation was found between serum IgG and autoreactive IgG levels.  

Another possible explanation for the presence of autoreactive antibodies in PSC patient sera 

could be secondary effects, following long disease duration with chronic inflammatory and 

fibrotic processes in the liver. However, when levels of autoreactive IgA and IgG antibodies 

in PSC patient sera were correlated with the median duration of PSC disease, no such 

association was found.   

 

4.1.5 Autoreactive IgA is associated with more rapid PSC disease 

progression 

Next, we wanted to investigate if the presence of autoreactive antibodies in PSC patient sera 

could be connected to disease characteristics. When investigating this, we found that the 

levels of autoreactive IgA or IgG in the patients were neither correlated with age, gender or 

later development of CCA. No correlation was either found between the presence of 

autoantibodies and a coexisting IBD in the patients.  

Finally, we wanted to investigate if disease progression was affected by the presence of 
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circulating autoantibodies in PSC patient sera. Survival analysis studies were performed to 

evaluate this, using death or liver transplantation as the clinical endpoints. Autoreactive IgA-

positive PSC patients were found to progress more rapidly to a clinical endpoint than 

autoreactive IgA-negative patients, with a hazard ratio of 1.78 (p = 0.03) (Figure 4.5). A 

similar association could not be found for autoreactive IgG-positive patients.  

 

 

Figure 4.5: Autoreactive IgA is associated with more rapid PSC disease progression. Kaplan 

Meier survival analysis comparing the effects of having IgA autoantibodies on progression of 

disease defined as liver-transplantation-free survival. PSC patients were subdivided into 

autoantibody-positive and -negative patients. As a cut-off for IgA in the patients, the highest 

measured geometric MFI of the healthy controls was used.  

 

4.2 PAPER II 

 

4.2.1 Patients  

The clinical characteristics of patients and their evaluated liver histology are presented in 

Table 2. Ten of the patients (59%) were male and 7 (41%) were female. Four patients were 

histologically assessed as having a mild disease and 13 patients as having a severe disease. 
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Table 2.  

Clinical characteristics of patients and controls in paper II. 

 Controls (n = 17) PSC patients (n = 17) 

Age, median (range) 58 (16-86) 36 (19-68) 

Male 9 (53%) 10 (59%) 

IBD 01 14 (82%) 

Ltx 0 16 (94%) 

MELD score, mean ± SD NA 13 ± 8 

Serum IgG (g/L), mean ± SD NA 15.5 ± 4.6 

ALP (µkat/L), mean ± SD 1.8 ± 1.0 5.4 ± 4.4 

Bilirubin (µmol/L), mean ± SD 7.9 ± 4.9 89.2 ± 166.1 

ALT (µkat/L), mean ± SD  0.6 ± 0.2 1.3 ± 0.7 

CRP (mg/L), mean ± SD  5.3 ± 6.6 24.4 ± 32.9 

UDCA dose (g/day), mean ± SD NA 0.8 ± 0.6 

Fibrosis stage 

0/1/2/3/4 

12/5/0/0/0 0/4/0/0/13 

Inflammation grade, 0/1/2/3/4 14/3/0/0/0 4/4/9/0/0 

Bile duct proliferation stage, 

0/1/2/3 

3/14/0/0 3/2/7/5 

Abbreviations: IBD = inflammatory bowel disease; UC = ulcerative colitis; CD = Crohn´s disease; NA = not 

applicable, Ltx = liver transplantation, MELD = Model for End-Stage Liver Disease, SD = standard deviation, 

ALP = alkaline phosphatase, ALT = alanine aminotransferase, CRP = C-reactive protein, UDCA = 

ursodeoxycholic acid 

1Information not available for four controls 

 

4.2.2 IHC characterization of non-parenchymal non-immune cells in PSC-

patient livers 

After IHC staining for several different cellular subsets of non-immune origin, we could 

conclude that our results support previous findings regarding increased numbers of BECs in 
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PSC patients. All the BEC-specific markers (CK7, CK19 and EpCAM), were significantly 

increased (visualized for CK19 in Figure 4.6), whereas numbers of endothelial cells were at 

the same levels in patients and controls.  

 

Figure 4.6: Representative immunostaining and quantification analysis of CK19 expression 

in controls and PSC patients. Samples were counterstained with hematoxylin and DAB 

chromogen provided the brown reaction product, identifying the biliary epithelial cells. 

Quantification of protein expression was performed by calculating both the intensity of the 

IHC staining (ACIA) and the frequency of cells that expressed the protein (percentage of 

stained area of the total area).  

 

4.2.3 Gene expression analysis 

When investigating the gene expression of CK19, only a trend toward elevated levels of 

CK19 mRNA was detected in the patients compared to the controls. No significant difference 

could either be observed for NKp46, HLA-A and HLA-B mRNA, although the total protein 

expression of HLA class I was significantly reduced in patients compared to controls, as 

revealed by the IHC stainings.  

 

4.2.4 T cells infiltrate PSC-patient livers and localize to fibrotic fields 

Next, we wanted to locate and enumerate different immune cell populations in patients and 

control livers. IHC staining and image analysis was performed to quantify the expression of 

CD3, TCR-Vα7.2, NKp46 and CD163. Protein levels of MHC class I were examined (HLA-

A, B, C) as well. Our data reveal that the total numbers of CD3+ T cells in PSC patients were 
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significantly higher than in controls, and that these cells specifically localized to fibrotic areas 

(Figure 4.7). MAIT cells exhibited a similar pattern, but were not more numerous in the 

patients than in the controls (Fig 4.7). CD163 was more strongly stained in the patients, 

whereas no difference was seen for NKp46 expression. Both Kupffer cells and NK cells were 

evenly distributed throughout the parenchyma with no specific accumulation in fibrotic areas. 

 

 

Figure 4.7: Representative immunostaining and quantitative determination of intensity of 

staining (ACIA) of CD3 and TCR-Vα7.2 in fibrotic and non-fibrotic areas in PSC patient 

livers.  

 

4.2.5 Low expression of Caldesmon in PSC-patients correlates with higher 

numbers of T cells and more extensive bile duct proliferation 

Immunohistochemistry and enumeration for Caldesmon expression was performed, since 

smooth muscle cells might participate in processes leading to development of fibrosis. No 

significant differences in protein expression could be detected between patients and controls, 

however, some patients were distinguished by being almost completely negative for 

Caldesmon expression (Caldesmonneg), while the other patients had a similar expression level 

as the controls (Caldesmonpos) (Figure 4.8). The two groups were compared regarding 

expression of phenotypic markers and histological parameters. Caldesmonneg patients had 

significantly higher expression of CD3 and a more extensive bile duct proliferation than 
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Caldesmonpos patients (Figure 4.9).  

 

 

Figure 4.8: IHC and quantitative image analysis of Caldesmon, showing one control (left), 

one PSC patient with a negative expression (right) (Caldesmonneg), and one PSC patient with 

similar level of expression as the control (middle) (Caldesmonpos).  

 

 

Figure 4.9: Quantification with image analysis of CD3 expression in controls and PSC 

patients with positive (pos) or negative (neg) expression of Caldesmon (left). Linear 

regression analysis of Caldesmon expression versus bile duct proliferation in the PSC-

patients (right). 

 

4.2.6 Principal component analysis of non-parenchymal liver cells in PSC 

Having analyzed a total of 23 unique parameters, including both phenotypic markers and 

histological scores, we next wanted to identify factors that distinguished patients from 

controls, and further, within the PSC group, identify patterns associated with disease severity. 

PCA was first performed to compare the expression pattern in patients and controls. 

Histological scores (fibrosis, inflammation, and bile duct proliferation) were in this first set of 
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analysis excluded (Figure 4.10). Thereafter, a second analysis was performed, with inclusion 

of histological scores, to identify phenotypic markers that differentiated patients with respect 

to severity of fibrosis or bile duct proliferation (Figure 4.10). The results revealed that 

numbers of bile duct cells, T cells, Kupffer cells, and MHC class I expression, were all 

phenotypic factors that significantly distinguished PSC-patients from controls. In the next 

analysis,  

EpCAM and NKp46 were identified as phenotypic factors that distinguished patients with 

mild from severe fibrosis, whereas Caldesmon and CK19 separated patients according to 

stage of bile duct proliferation (Figure 4.10). 
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Figure 4.10: PCA plot showing phenotypic factors that separate PSC patients from controls 

(upper). In the next PCA, PSC patients were compared according to severity of disease, with 

inclusion of scores of fibrosis (middle) and bile duct proliferation (lower).   

 

4.3 PAPER III 

 

4.3.1 Patients 

The clinical characteristics and histological scores of the patients included in this study are 

presented in Table 3. In total, 20 CCA patients (11 males and 9 females) and 5 non-tumor 

controls (2 males and 3 females) were included in the study. The median age was 63 years 

(range 30-81) for the CCA-patients and 67 years (range 53-70) for the controls. 
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Table 3. 
Clinical characteristics of patients and controls in paper III. 

 Controls 

(n=5) 

CCA patients 

(n=20) 

Age, median (range) 67 (53-70) 63 (30-81) 

Male 2/5 11/20 

PSC NA 5/20 

Intrahepatic tumor NA 14/20 

Tumor differentiation (low/moderate) NA 13/61 

ALP (µkat/L), mean ± SD 1.3 ± 0.5 4.4 ± 2.6 

Bilirubin (µmol/L), mean ± SD 12.4 ± 15.6 16.2 ± 36 

CRP2 (mg/L), mean ± SD 12.4 ± 22.2 38.5 ± 44.2 

Fibrosis score3 

0/1/2/3/4 

2/3/0/0/0 6/12/2/0/0 

Inflammation grade3 

0/1/2/3/4 

4/1/0/0/0 10/9/0/1/0 

Bile duct proliferation stage3  

0/1/2/3 

1/3/1/0 2/8/7/3 

 

Abbreviations: ALP = alkaline phosphatase; CRP = C-reactive protein;  

PSC = primary sclerosing cholangitis; SD = standard deviation.  

1Information not available from one patient; 2CRP was measured the day before surgery;  

3Non-tumorous tissue 

 

4.3.2 IHC characterization and quantitative image analysis of non-

parenchymal non-immune cells of CCA-patient livers 

We characterized non-parenchymal intrahepatic cells of immune as well as of non-immune 

cell origin in CCA-patients and controls. Expression of CK19, CD31 and Caldesmon were 

assessed with IHC and quantitative determination. As expected, CK19 was more dramatically 

increased in the tumorous areas of the CCA patients than in the non-tumorous areas, and also 
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in comparison to the non-CCA controls, whereas no change in presence of endothelial cells 

or smooth muscle cells were detected in the tumor areas. 

 

4.3.3 MAIT cells and Kupffer cells are selectively lost in the CCA 

microenvironment 

The establishment and growth of tumors are tightly linked to the numbers and composition 

different immune cell subsets in the tumor microenvironment (85).  

Immunostainings were performed to enumerate CD3+ T cells, CD8+ cytotoxic T 

lymphocytes, TCR-Vα7.2+ MAIT cells and CD163+ Kupffer cells in controls and in non-

tumorous and tumorous areas of CCA-patients. Few, if any, differences were present when 

comparing the non-tumorous areas of CCA-patients with the control tissues. Furthermore, the 

tumor areas contained similar levels of CD3+ and CD8+ cells as in the surrounding non-

affected areas. Instead, a selective two-fold loss of TCR-Vα7.2 and CD163 expression was 

noted in the tumorous areas (Fig. 4.11). In summary, these results indicate that the 

intratumoral compartment in CCA has preserved numbers of T cells and CTLs but a selective 

loss of innate MAIT cells and Kupffer cells. 

 

 

Figure 4.11: Representative immunostainings (left) of TCR-Vα7.2 (upper) and CD163 

(lower) expression in controls, non-affected and affected areas of CCA patient livers. 

Samples were counterstained with hematoxylin and dark brown indicate immunoreaction 
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product. Quantitative analysis (right) of the mean intensity of TCR Vα7.2 and CD163 IHC 

stainings (ACIA) in controls, and non-affected and affected areas in CCA patient livers. 

 

4.3.4 Retained Th1 but diminished Th2 responses in the tumor 

microenvironment 

Having observed that the tumor areas of CCA-patients contained less innate immune cells 

than the surrounding non-tumorous areas, we next wanted to investigate the shape of the 

adaptive immune response within the tumor. Expression levels of perforin, IL-33, and Foxp3 

were measured, reflecting Th1, Th2, and regulatory immune responses respectively. In 

summary, CCA tumors were characterized as having conserved Th1, but clearly reduced Th2 

responses, and high numbers of regulatory T cells. This was evident by the sustained 

expression of perforin, significantly lower protein levels of IL-33 and higher levels of Foxp3 

(Figure 4.12). 

 

 

Figure 4.12: Quantification of the mean intensity of staining (ACIA) of Foxp3, IL-33, 

Perforin and Caspase-3, in non-affected and affected areas of CCA patients and in non-

affected and affected areas of CCA-PSC patients.  
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4.3.5 Underlying PSC, tumor location, and degree of tumor differentiation 

are not associated with the revealed immune cell composition  

PSC is known to be one of the strongest risk factors for CCA, but there is limited knowledge 

about immunological differences between CCA livers with and without PSC. Thus, we 

evaluated the immune cell composition in the five PSC-CCA patient livers included in the 

study and compared it to the non-PSC CCA-patient livers. We also investigated if tumor 

location or the degree of tumor differentiation had an impact on the presence and numbers of 

cells. All the eleven included IHC-parameters previously studied were compared between the 

groups. We found that neither PSC nor tumor location nor tumor differentiation seemed to 

affect the immune cell pattern in CCA. 
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5 GENERAL DISCUSSION 
 

The general goal of this thesis was to improve the knowledge about pathogenic mechanisms 

in PSC. So far, no unifying explanation exists for how the chronic injury of the bile ducts is 

initiated in PSC. However, genetics as well as the observations of inflammatory infiltrates 

around portal tracts, other coexisting autoimmune diseases and many different autoantibodies 

in patient sera, suggests that specific immune reactions are of importance. With this 

knowledge as a basis, we aimed for investigating the presence and effect of autoantibodies in 

PSC patient sera, specifically targeted against biliary epithelial cells. Other aims were to 

study the intrahepatic localization and composition of various immune cell subsets in PSC 

patient livers, and in a subgroup of patients, diagnosed with cholangiocarcinoma.   

 

In paper I, we investigated the presence and effect of specifically targeted autoantibodies 

against BECs in PSC. We examined serum samples from 81 PSC patients and 42 controls, for 

IgG and IgA antibodies. The reactivity against isolated and cultured human BECs was 

explored and we found that most PSC patients had IgA antibodies that were reactive against 

the isolated cells, while few of the control samples showed any reactivity at all.  

 

The identification of autoantibodies, targeting a specific antigen in PSC, would be valuable 

from both diagnostic and prognostic purposes. However, studies to date suggest that 

autoantibodies in PSC arise as a result of secondary effects due to inflammation, rather than 

by a specific immune response towards the biliary epithelium. An early study (86) reported 

that sera from PSC and UC patients have autoantibodies that react with human tropomyosin 

isoform 5 (hTM5), a protein expressed in both intestinal and biliary epithelial cells. However, 

the specificity of this autoantibody is insufficient, since this protein is also found in the eyes, 

skin and cartilage, and furthermore, the presence of anti-hTM5 autoantibodies have been 

reported in sera from UC patients without PSC.  
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Why would autoreactive IgA antibodies form in PSC patients? We observed that PSC 

patients who were seropositive for autoreactive IgA generally had higher levels of total serum 

IgA. This observation led us to two different theories. One was that the inflammation itself 

causes an increased production of IgA antibodies, and that some of these antibodies react 

with endogenous proteins, exposed as a result of cell death. Another possibility is that the 

autoantibodies themselves contribute to the inflammatory process, and thereby accelerate the 

disease, with an increased total IgA production as a consequence. To investigate this, we 

correlated the presence of autoantibodies with disease duration. Since no association was 

found, we speculate that the appearance of autoantibodies might be related to factors other 

than prolonged inflammation.  

 

We found that PSC patients that were positive for autoreactive IgA antibodies at follow-up, 

reached clinical endpoint (death or liver transplantation) faster than patients that were 

negative for autoreactive IgA. The reason for this is unclear. The knowledge about the 

function of IgA antibodies in liver diseases is scarce although several studies suggest that 

elevated serum IgA levels are associated with reduced liver function and fibrosis (87). We did 

not have access to assessments of liver histology for the included patients, but since 

approximately half of them reached clinical endpoint within the follow-up period, it seems 

reasonable to believe that many of them were cirrhotic.  

 

The possibility that autoreactive IgA antibodies are produced in response to intestinal 

inflammation could not be excluded. However, no correlation could be found between the 

presence of IBD and autoreactive IgA antibodies in our patient cohort, suggesting that IBD, 

as a single parameter, has no effect on the formation of autoantibodies against the biliary 

epithelium. The specificity of these antibodies for PSC can also be questioned. Other 



 

 44 

autoimmune or inflammatory liver diseases such as primary biliary cirrhosis (PBC) and 

autoimmune hepatitis (AIH) may also produce autoreactive IgA antibodies. Unfortunately, 

this question must be left open for further investigation, since we did not have access to such 

patient samples in this study.  

 

Sera from PSC patients and controls were reacted against EpCAM-selected, in vitro cultured 

liver cells in this study. After a few passages, the cells lost their expression of epithelial 

markers and started to express myofibroblast-like surface proteins, possibly indicating an 

epithelial to mesenchymal transition (EMT). Interestingly, previous studies have shown that 

the development of fibrosis in PSC patient livers is accompanied by an upregulation of EMT-

associated markers on the biliary epithelium (88), which possibly suggests that the cultured 

cells might have reflected a PSC-like in vivo situation. Although the precise cellular 

phenotype could not be identified, a majority of the patients had IgA antibodies targeted 

against the selected cells, which was further associated with a lower survival rate for the 

patients. The exact phenotype of the selected cells and the antigen(s) to which the antibodies 

bind, need further investigations.    

 

In summary, we found that the presence of IgA antibodies, targeted against biliary enriched 

cells, were associated with a lower survival for the PSC patients. Regardless of whether these 

autoantibodies are contributing factors to the inflammation in PSC, or if they arise as 

secondary effects due to it, their presence is evidence of an dysregulated immune response.   

 

A characterization and quantification of non-parenchymal cells in PSC livers has previously 

not been systematically and comprehensively performed. Such knowledge is of importance 

for better understanding of the inflammatory process in the liver and why it occurs. The 

biliary epithelium appear to be the main target for the immune attack in PSC, but less is 
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known about other non-parenchymal cells and how they are affected during the course of 

PSC disease (89). Many experimental studies have focused on investigating the role of T 

cells in PSC pathogenesis (42), and the proposed theory that PSC is driven by long-lived 

memory T lymphocytes, initially activated in the gut, represents an attractive link between 

PSC and IBD (90). The enterohepatic circulation of lymphocytes constitutes a possible 

explanation of how inflammation of the liver can occur long after an IBD patient has 

undergone colectomy. The purpose of the study in paper II was to characterize and quantify 

non-parenchymal cells in PSC livers and explore if specific phenotypic patterns were 

associated with severity of disease. In addition to the immunohistochemical characterization, 

followed by computer-based quantifications, a PCA was performed, to identify the 

phenotypic factors that most strongly separated PSC patients from healthy controls.  

 

Major findings were, as observed by the immunostainings, that CD3+ T cells were 

significantly more abundant in PSC patient livers than in controls and almost exclusively 

localized to areas of fibrosis. TCR Vα7.2+ MAIT cells, a recently discovered T cell 

population with an innate-like phenotype and the capacity to respond to bacterial stimulation 

(91), were not increased in numbers to the same extent. However, as the rest of the CD3+ T 

cell population, MAIT cells were preferentially localized to fields of fibrosis. Previous studies 

have shown that PSC patients have higher amounts of bacterial and fungal species in bile 

than controls and PBC patients have. Moreover, isolated bacterial compounds from PSC bile 

fluid were shown to initiate an increased number of Th17 and Th1/Th17 cells in peripheral 

blood (49). Since MAIT cells are competent producers of IL-17 (92), a cytokine that is 

described to be involved in fibrosis and pro-inflammatory interactions in the liver, it is 

tempting to speculate on the possibility that the expanding Th17 cells in the peripheral blood 

actually were MAIT cells. Although we did not see higher amounts of MAIT cells in PSC 
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patient livers than in controls, future investigations of the functions of MAIT cells in PSC 

will be of importance to determine a possible involvement in PSC disease.  

 

Experimental and genetic studies have shown that macrophages may be involved in the 

pathogenesis of PSC. Significantly higher numbers of Kupffer cells have been observed in 

PSC patients than in patients with primary biliary cirrhosis (PBC) and normal controls (93). 

The group behind this study proposed that Kupffer cells might be involved in early stages of 

PSC disease, since they were found in similar numbers both in cirrhotic and non-cirrhotic 

livers. In our study we saw that Kupffer cells were more intensely stained in the patients than 

in controls, while the frequencies of them were similar. In contrast to T cells, Kupffer cells 

localized in a scattered manner throughout the parenchyma and not only to fibrotic fields.  

 

Monocytes that migrate to sites of injury differentiate into macrophages with different 

phenotypes, as a response to local cytokines in the environment. Immunosuppressive 

interleukins (ILs), such as IL-10, IL-4 and IL-13 are known to induce the alternative 

activation of macrophages into the M2 phenotype, while pro-inflammatory mediators, such as 

IFN-γ, lead to the classical activation into M1 macrophages (76). M2 macrophages are 

associated with suppression of adaptive immune responses, and therefore, they have been the 

focus of several cancer studies (94). We used CD163 as a phenotypic marker for Kupffer 

cells. It should be mentioned that CD163 positive cells might represent the population of M2 

macrophages, reported to be involved in wound healing and anti-inflammatory activities (95). 

Future investigations should include CD68 as a phenotypic marker for characterization and 

localization of the pro-inflammatory M1 subset of macrophages in PSC.  

 

NK cells were observed to localize throughout the parenchyma, but were at similar levels in 

patients and controls. Except for a study conducted in the 1990ies (96), little is known about 
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NK cells and a possible involvement in PSC. Experimental studies using murine models, 

have suggested them to participate in anti-fibrotic activities (97) and therefore it is not 

unlikely to suspect them to be involved in the pathogenesis of PSC. Interestingly, although 

the quantification showed similar levels of NK cells in patients and controls, the PCA 

analysis revealed NKp46 as a phenotypic factor that distinguished PSC patients with mild 

from severe fibrosis. 

 

PCA is a mathematical method, with which multivariate datasets can be visualized as 

completely as possible, with as few graphable dimensions as possible. More specifically, a 

PCA analysis detects new variables (principal components), which account for the vast 

variability in the data set. By doing so, hidden structures in a complex data set can be 

revealed, while noise is filtered out (98). In a first PCA analysis, we aimed to identify 

phenotypic markers that most strongly separated all PSC patients from controls. Therefore, 

histological scores were excluded. Not unexpectedly, the biliary epithelial markers CK7, 

CK19 and EpCAM were all identified as phenotypic markers that separated PSC patients 

from controls.  

 

In a second analysis, the purpose was to find phenotypic factors that separated PSC patients 

according to inflammation, fibrosis and bile duct proliferation. Therefore, the histological 

assessments were included in this analysis. In addition to the identification of NKp46 as a 

factor that distinguished patients according to mild and severe fibrosis, Caldesmon was 

revealed as a marker that separated patients according to mild or severe bile duct 

proliferation. 

 

Caldesmon is a protein involved in contractile functions of smooth muscle cells in the liver 

and in other organs, but it is also reported to participate in cellular processes, such as division, 
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migration, apoptosis etc. (99). Interestingly, some of the PSC patients were observed to have 

a lost expression of Caldesmon, and this was further associated with an increased bile duct 

proliferation and higher numbers of T cells. It is currently unclear why some PSC patients 

lose Caldesmon expression and the eventual effects of it in terms of liver physiology. The 

reduced expression might be a response to inflammation, wound healing or cellular reactions 

that leads to bile duct proliferation. However, the increased T cell infiltration observed in 

patients with lost Caldesmon expression, indicate that their liver disease is more active than 

in patients with normal levels of Caldesmon expression.  

 

Genetic susceptibility within the HLA-region has been reported many times in PSC, but few 

studies have investigated expression at the protein level. In the present study we stained and 

measured the surface expression of MHC class I in PSC patients and controls and found that 

the patients had significantly lower expression. This was further supported by the PCA 

analysis, which revealed MHC class I as a factor that separated the patients from controls. 

Conflicting results have been reported regarding the usefulness of ursodeoxycholic acid 

(UDCA) in the treatment of PSC. Interestingly, in a study where PBC-patients were treated 

with UDCA, the MHC class I expression was observed to be reduced in hepatocytes (100). 

More detailed investigations showed that IFN-γ, which under normal circumstances up-

regulate MHC class I expression, was decreased upon treatment with UDCA (101). In the 

present study, all the PSC patients received UDCA treatment, and consistent with the 

reported finding in PBC, the PSC patients in our study showed a lower MHC class I 

expression than controls.  

 

A limitation of paper II is that the majority of the samples were from patients who underwent 

liver transplantation, that is, patients that had reached end-stage liver disease. Therefore, our 

results probably represent such cellular events that occur during the late stages of the disease, 
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rather than those that occur early. Correlations with clinical parameters should be considered 

with caution, as the number of patients with mild disease was small. Yet another limitation is 

the lack of control samples from individuals with other chronic liver diseases, such as PBC or 

autoimmune hepatitis (AIH). The objective of this study, however, was primarily to 

characterize and localize immune and non-immune cells in PSC livers. The design of it was 

mainly descriptive, and our findings can be viewed as hypothesis generating. Future studies 

of pathogenic mechanisms behind the lost expression of Caldesmon and MHC class I in PSC 

patients, as well as the biology behind specific T cell recruitment to fibrotic fields, will be of 

importance.  

 

PSC patients have an increased risk of developing CCA. The intratumoral composition of 

immune cells has been shown to be important for the ability of cancer cells to establish and 

progress (85). Therefore it is of interest to characterize and quantify cells of immune and non-

immune origin in CCA patient livers. High numbers of Tregs and myeloid-derived suppressor 

cells are associated with a poor prognosis for patients with different cancers (85), whereas 

infiltration of cytotoxic T cells into the tumor area is considered to be more advantageous 

(102).  

 

In paper III we investigated the intrahepatic cellular composition of patients with CCA. We 

studied samples from both within the tumor as well as outside the tumor using 

immunohistochemistry and quantitative image analysis. Histopathological parameters, such 

as tumor location, degree of tumor differentiation or a coexisting PSC disease were examined 

for an eventual impact on the expression of immune cell markers.   

 

The mixture of immune cells within tumors in our study was characterized by a selective loss 

of Kupffer cells and MAIT cells, high numbers of Tregs and a retained cytolytic capability of 
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the CTLs.  Moreover, the expression of IL-33, a cytokine associated with a Th2 cellular 

response, was significantly lower within tumors. This distinct intratumoral phenotype was 

unaffected by tumor location, degree of differentiation, or an underlying PSC. 

 

The liver is an organ that harbors many immune cells, whose activity is controlled by the 

action of immunosuppressive cytokines, such as TGF-β and IL-10 (6). We know little about 

the ability of these immune cells to recognize and combat tumor cells. Little is also known 

about Tregs and their involvement in CCA. The immunosuppressive functions of Tregs has 

been reported in several forms of cancer, and the outcome of their activities depends a lot on 

which cells they are targeted against. In some instances Tregs may suppress the tumor cells, 

which can be beneficial for the host (73). We observed that the Treg specific marker Foxp3 

was significantly increased within tumor areas of CCA patients, which is in line with 

previous reports (74). Moreover, the levels of Tregs were strongly associated with the 

expression of Caldesmon, the phenotypic marker for smooth muscle cells which expression is 

lost in some PSC livers, on which we reported in paper II (103). Caldesmon is involved in 

many cellular processes (104) and at the moment there is no explanation for its association 

with infiltration of Tregs. TGF-beta, which is a cytokine produced by Tregs have previously 

been shown to downregulate the expression of Caldesmon (105). This is contrary to our 

results, which instead showed an increased expression of Caldesmon with increased levels of 

Tregs.  

 

We observed significantly fewer MAIT cells in the tumor areas than in the surrounding, non- 

tumorous tissue. As already mentioned in the discussion of paper II, MAIT cells are T cells 

with an innate phenotype, whose frequencies are reported to be high at mucosal sites in the 

body, including the liver. They have been shown to respond to IL-7, released by hepatocytes 

during inflammation (14), but to date there is no knowledge about an eventual involvement of 
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MAIT cells in cancer. One can speculate on the reason for the observed reduction in tumor 

areas in CCA. One possibility may be that the MR1 molecule, that is required for 

presentation the antigen to MAIT cells, is lost on the tumor cells. Another possibility is that 

MAIT cells are kept outside the tumor area because of the action of immunosuppressive 

cytokines. Since MAIT cells have the ability to immediately exert effector functions against 

bacteria, and given that the liver is constantly exposed to gut-derived microbial compounds, it 

is plausible that MAIT cells may have a role in the pathogenesis of CCA. Further studies will 

be of importance to investigate this.  

 

In addition to the scarce knowledge about MAIT cells in CCA, there are conflicting results on 

the role of cytotoxic T cells in CCA. Earlier studies have reported them to be unchanged or 

reduced in numbers in CCA tumors (74). In the present study, we could not detect any 

significant difference between the total number of CD8+ CTLs outside and inside the tumor 

area. Additionally, their cytolytic functions appeared to be preserved, since the expression of 

perforin was at the same level inside as outside the tumor area.  

 

IL-33 is a cytokine that, in experimental models, has been reported to promote fibrosis (33) as 

well as to drive the malignant transformation of BECs (106). Further support of this is the 

report of increased IL-33 levels in sera and tumors of HCC patients (107). Our results are in 

contradiction to this, as we observed significantly less expression of IL-33 within the CCA 

tumors than in the surrounding, non-tumorous tissue. The majority of the included samples in 

our study were assessed as having mild fibrosis, and it is reasonable to believe that levels of 

IL-33 may increase by severity of fibrosis.  

 

From our earlier report in paper II on an increased number of T cells localizing to fibrotic 

areas in PSC patients (103), we would have expected to see higher numbers of infiltrating 
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immune cells in CCA patients with a coexisting PSC than in CCA patients without PSC. 

However, only small differences were detected. A possible explanation to this is that the 

included PSC patients in paper III were all histologically assessed as having a mild disease, 

except for their cancer, whereas the patients described in paper II mainly consisted of 

individuals with end-stage liver disease. We therefore speculate that the intrahepatic immune 

composition would have looked different if the PSC patients would have had a more severe 

disease.  

 

Furthermore, it was not possible to relate our findings with clinical outcome in paper III, 

since the groups of CCA patients, both with and without PSC were relatively small. Future 

studies should aim to include more samples and use additional techniques, such as flow 

cytometry, for a more detailed phenotypic characterization of the intratumoral compartment 

of CCA. Our data in this study is mainly descriptive, and forthcoming studies should focus in 

revealing mechanisms behind the reduced levels of MAIT cells in CCA tumors, as well as the 

decreased expression of IL-33. This, and more detailed characterization studies, might 

contribute to a better understanding of the pathogenesis of CCA, as well as leading to the 

finding of CCA-specific biomarkers. 
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6 GENERAL CONCLUSIONS 

 

Patients with primary sclerosing cholangitis have circulating IgA and IgG antibodies reactive 

against biliary epithelial cells (paper I).  

 

Autoreactive IgA antibodies in patients with primary sclerosing cholangitis are associated 

with reduced survival (paper I). 

 

The intrahepatic cell composition in patients with primary sclerosing cholangitis is 

heterogeneous but generally characterized by a numerous infiltration of T cells, mainly 

concentrated to the fibrotic areas. Loss of intrahepatic smooth muscle cell markers is 

associated with increased numbers of T cells and a more extensive bile duct proliferation 

(paper II). 

 

Primary sclerosing cholangitis livers have lower expression of MHC class I than controls, 

whereas the levels of NKp46+ NK cells are similar. Instead, NK cells are fewer in numbers in 

severely fibrotic livers as compared to livers with mild fibrosis (paper II).  

 

The tumor microenvironment in livers with cholangiocarcinoma is characterized by high 

numbers of Foxp3+ regulatory T cells and a conserved presence of cytotoxic lymphocytes 

(paper III). 

 

Innate immune cells, such as mucosal-associated invariant T cells and Kupffer cells are 

selectively reduced within cholangiocarcinoma tumors as compared to surrounding tissue 

(paper III).  

 



 

 54 

The tumor microenvironment has low expression of the Th2-associated cytokine IL-33. 

These phenotypic characteristics of cholangiocarcinoma tumors are not influenced by tumor 

location, degree of differentiation, or a coexisting primary sclerosing cholangitis (paper III).    
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7 POPULÄRVETENSKAPLIG SAMMANFATTNING 

 

Primär skleroserande kolangit, PSC, är en ovanlig kronisk leversjukdom som karakteriseras 

av inflammation och ärrbildning (fibros) i gallgångarna. En hög andel av patienterna 

utvecklar med tiden skrumplever. Det finns ett starkt samband mellan PSC och 

inflammatorisk tarmsjukdom, IBD, och i Sverige har drygt 80 procent av alla patienter med 

PSC en samtidig IBD. I Skandinavien förekommer PSC hos drygt 8 av 100 000 individer och 

två tredjedelar av dem som drabbas är män. Det är vanligast att sjukdomen debuterar i yngre 

medelåldern.  

Patienter med PSC har ofta diffusa symptom till en början, som trötthet, klåda, feber och 

högersidig buksmärta. Allt eftersom inflammationen och ärrbildningen fortskrider, förvärras 

de kliniska symptomen till följd av kolestas, som hindrar gallflödet från levern ut till tarmen. 

Den enda botande behandling som finns för patienter med PSC är levertransplantation. Tiden 

från sjukdomsdiagnos fram till att behov för levertransplantation uppstår varierar mellan 12 

och 18 år.  

Förutom risken att utveckla skrumplever och leversvikt, löper patienter med PSC en hög risk 

att utveckla cancer i levern. Särskilt kolangiokarcinom (gallgångscancer) är vanligt 

förekommande och drabbar 10-15 procent av patienterna. En tredjedel av patienterna får sin 

cancerdiagnos inom ett år från det att PSC sjukdomen blivit fastställd. Överlevnaden efter 

diagnos av gallgångscancer är kort, i medeltal mindre än 6 månader. Varför just patienter 

med PSC har så hög risk att utveckla kolangiokarcinom är inte känt, men inflammationen i 

levern är troligtvis en starkt bidragande orsak. 

Etiologin bakom PSC är okänd och det behövs bättre kunskap om de immunologiska 

mekanismer som leder till att sjukdomen utvecklas. PSC uppvisar vissa klassiska egenskaper 

som förknippas med autoimmunitet, så som genetiska variationer inom MHC, eller HLA, 

som det också ofta benämns. MHC regionen är ur immunologiskt perspektiv ett viktigt 



 

 56 

område i vårt DNA, och innehåller gener som styr vårt immunförsvar. Andra autoimmuna 

egenskaper i PSC är att patienterna ofta har cirkulerande antikroppar i sitt serum, vilka 

reagerar mot kroppsegna proteiner som om de vore främmande ämnen.  

PSC har dock inte alla de egenskaper som räknas som klassiska för en autoimun sjukdom. 

Bland annat så drabbas fler män än kvinnor av PSC, och immunsuppresiv behandling har 

ingen effekt.  

Den kunskap som finns om genetisk känslighet för PSC och som är kopplad både till 

områden inom och utanför HLA regionen, samt observationer om hög invandring av T 

lymfocyter i levern hos PSC patienter, gör att man oftast talar om PSC som en 

immunmedierad sjukdom.  

De leverceller som angrips och förstörs vid den immunmedierade attacken i PSC är 

gallgångscellerna. Biliära epitelceller eller kolangiocyter är andra benämningar för dessa 

celler. Det finns två huvudsakliga hypoteser om varför immunförsvaret aktiveras vid PSC. 

Den ena är att immuncellerna går till attack mot ett antigen av ännu okänt ursprung (t ex 

härstammande från virus, bakterie eller parasit), eller ett autoantigen (kroppseget ämne som 

immunförsvaret uppfattar som främmande). Den andra teorin är att inflammationen 

uppkommer till följd av en känslighet hos de biliära epitelcellerna för gallans toxiska 

sammansättning.  

En av anledningarna till att det är svårt att studera PSC är att patienterna vanligen får sina 

första symptom när sjukdomen pågått under en längre tid. Det är då omöjligt att utröna om de 

immunologiska förändringar som syns i levern vid denna tidpunkt kan sammankopplas med 

den ursprungliga skadan, eller om de är orsakade av sekundära effekter, till följd av den 

kroniska inflammationen. Att för forskningsändamål få tillgång till levervävnad från patienter 

med tidig sjukdom är svårt, och begränsas ytterligare av att PSC är en ovanlig sjukdom. Det 

finns risker med att ta en leverbiopsi och därför görs detta bara i undantagsfall, till exempel 
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för att bättre kunna prognostisera patienten, eller vid misstanke om annan, samtidig 

leversjukdom som går att behandla.  

Att upptäcka tidiga förändringar hos patienter med PSC skulle kunna bidra till identifiering 

av sjukdomsspecifika proteiner, vilket vore värdefullt både ur diagnostiskt och prognostiskt 

hänseende. All forskning som bidrar till att öka förståelsen för de inflammatoriska 

processerna i PSC och varför tumöruppkomst ofta sker, är dock av största vikt för att kunna 

utveckla behandlingsmetoder. 

Det övergripande målet med denna avhandling var att förbättra kunskapen om 

sjukdomsframkallande mekanismer i PSC och den PSC-relaterade cancerformen 

kolangiokarcinom. I de tre studierna har levervävnad från friska kontroller använts för att 

kunna jämföra med prover från PSC patienter. Detta kliniska jämförelsematerial har erhållits 

från patienter som opererat bort en bit av levern på grund av cancer, och där vi då kunnat få 

en bit av den friska vävnaden. I vissa fall har även frisk vävnad erhållits från donerade levrar, 

som på grund av tekniska orsaker inte kunnat användas för transplantation.  

I den första studien har vi undersökt förekomsten av antikroppar i serum från PSC patienter, 

och antikropparnas reaktivitet mot gallgångsceller som vi isolerat från friska, humana levrar. 

Serum som samlats från totalt 81 PSC patienter undersöktes och patienterna kunde följas 

under en sammanlagd tidsperiod av 16 år, från provtagning och fram till att datum för 

dödsfall eller transplantation inföll. Vi fann att en majoritet av patienterna hade antikroppar 

av både IgA och IgG klass, med kapacitet att binda till de isolerade och odlade cellerna. 

Vidare såg vi att patienter med autoreaktiva IgA antikroppar generellt hade högre 

serumnivåer av IgA. Förekomsten av autoreaktiva IgA antikroppar visade sig vara associerat 

med en sämre överlevnad för patienterna. 

 

I studie II har vi med immunhistokemi och kvantitativ bildanalys karakteriserat levervävnad 

från 17 PSC patienter och 17 kontroller. Vi har jämfört levervävnaden med avseende på 
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förekomst och frekvens av olika cellpopulationer, av immunologiskt och icke-immunologiskt 

ursprung. Levervävnaden från PSC patienter erhölls i samband med att patienterna 

genomgick levertransplantation. Vi fann att det fanns stora olikheter inom PSC 

patientgruppen och att vissa fenotypiska mönster var relaterat till svårighetsgrad av sjukdom. 

Sammantaget kännetecknades levrarna från PSC patienter av hög infiltration av T lymfocyter, 

företrädesvis lokaliserad till områden med fibros. Därutöver observerades att levrar med svår 

grad av fibros hade färre NK celler än levrar med mild fibros. Andra fenotypiska skillnader 

som observerades, och som kan tänkas ha betydelse för immunsvaret, var att PSC patienter 

hade lägre uttryckta proteinnivåer av MHC klass I på cellytan.  

I studie III har vi använt samma experimentella och analysbaserade metoder som i studie II, 

men undersökt sammansättningen av immunceller i levervävnad från patienter med 

kolangiokarcinom. Vi har jämfört patienter med kolangiokarcinom, med och utan PSC, men 

vi har även jämfört sammansättningen av celler i tumörområden med hur det såg ut i den 

friska, kringliggande levervävnaden.  

Sammanfattningsvis har studierna visat att autoreaktiva antikroppar finns vid PSC med 

förmåga att binda till biliära epitelceller. Leverinflammationen vid PSC varierar mellan 

individer och kännetecknas framför allt av en massiv T cellsinfiltration, koncentrerad till 

fibros. Tumörområdet i kolangiokarcinom kännetecknas av infiltration av immunsuppressiva 

T celler och ett minskat antal Kupffer och MAIT celler. Dessa fynd utgör en viktig 

kunskapsbas för fortsatta studier av mekanismer som driver den inflammatoriska processen. 
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