
	  

	  

From the Department of Medical Epidemiology and Biostatistics 
Karolinska Institutet, Stockholm, Sweden 

RISK PREDICTION MODELS FOR 
CARDIOVASCULAR DISEASE AND 

OVERALL MORTALITY 

Andrea Ganna 

 

Stockholm 2015 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications from Karolinska Institutet

https://core.ac.uk/display/70343401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


	  

	  

 

All previously published papers were reproduced with permission from the publisher. 
Published by Karolinska Institutet. 
Printed by Printed by Eprint AB 2015 
© Andrea Ganna, 2015 
ISBN 978-91-7549-798-3 



	  

	  

RISK PREDICTION MODELS FOR 
CARDIOVASCULAR DISEASE AND OVERALL 
MORTALITY 
THESIS FOR DOCTORAL DEGREE (Ph.D.) 

By 

Andrea Ganna 

Principal Supervisor: 
Professor Erik Ingelsson 
Uppsala University 
Department of Medical Sciences 
Division of Molecular Epidemiology 
 
Co-supervisor(s): 
Professor Marie Reilly 
Karolinska Institutet 
Department of Medical Epidemiology and 
Biostatistics 
 
Doktor Patrik Magnusson 
Karolinska Institutet 
Department of Medical Epidemiology and 
Biostatistics 
 

Opponent: 
Professor Paul Eliot 
Imperial College London 
Department of Epidemiology and Biostatistics 
 
Examination Board: 
Doktor Nicola Orsini 
Karolinska Institutet 
Institute of Environmental Medicine 
 
Professor Johan Hallqvist 
Uppsala University 
Department of Public Health and Caring 
Sciences 
 
Professor Lars Alfredsson  
Karolinska Institutet 
Institute of Environmental Medicine 
 

	  



	  

	  

Abstract 
 
Prediction or prognostication is at the core of modern evidence-based medicine. 

Prediction of overall mortality and cardiovascular disease can be improved by a 

systematic evaluation of measurements from large-scale epidemiological studies or by 

using nested sampling designs to discover new markers from omics technologies. 

In study I, we investigated if prediction measures such as calibration, discrimination 

and reclassification could be calculated within traditional sampling designs and which 

of these designs were the most efficient. We found that is possible to calculate 

prediction measures by using a proper weighting system and that a stratified case-

cohort design is a reasonable choice both in terms of efficiency and simplicity. 

In study II, we investigated the clinical utility of several genetic scores for incident 

coronary heart disease. We found that genetic information could be of clinical value 

in improving the allocation of patients to correct risk strata and that the assessment of 

a genetic risk score among intermediate risk subjects could help to prevent about one 

coronary heart disease event every 318 people screened. 

In study III, we explored the association between circulating metabolites and incident 

coronary heart disease. We found four new metabolites associated with coronary heart 

disease independently of established cardiovascular risk factors and with evidence of 

clinical utility. By using genetic information we determined a potential causal effect 

on coronary heart disease of one of these novel metabolites. 

In study IV, we compared a large number of demographics, health and lifestyle 

measurements for association with all-cause and cause-specific mortality. By ranking 

measurements in terms of their predictive abilities we could provide new insights 

about their relative importance, as well as reveal some unexpected associations. 

Moreover we developed and validated a prediction score for five-year mortality with 

good discrimination ability and calibrated it for the entire UK population. 

In conclusion, we applied a translational approach spanning from the discovery of 

novel biomarkers to their evaluation in terms of clinical utility. We combined this 

effort with methodological improvements aimed to expand prediction measures in 

settings that were not previously explored. We identified promising novel 

metabolomics markers for cardiovascular disease and supported the potential clinical 

utility of a genetic score in primary prevention. Our results might fuel future studies 

aimed to implement these findings in clinical practice. 
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1 Introduction 

1.1 The concept of prediction or prognostication 
The concept of prediction or prognostication is central to modern evidence-based 

medicine. Clinical prediction models are currently used in primary or secondary 

prevention to predict diseases or unfavourable outcomes or to determine the best 

choice of therapy. Evidence-based medicine will undoubtedly see an increase of these 

tools in the future, together with advancements in the different fields required for their 

development.  

Nevertheless, prediction has always been practiced in medicine as much as prediction 

abilities have always been in the skillset of clinicians. However, the quantification 

and rationalization of what has often been called ‘intuition’ was possible only with the 

advent of data-rich clinical studies and appropriate statistical methodologies. 

Statistics is the backbone of prediction models. Statistical models are suitable for 

combining results obtained from different technologies, such as genetics, proteomics 

or metabolomics into a single predictive equation that returns meaningful information 

for clinicians and patients.  

Importantly, having well-defined statistical models allows rational and shared 

decision-making. Further, such quantifiable decisions can be evaluated at public 

policy levels for planning specific intervention strategies. Finally, information derived 

from prediction models is important to make individuals aware of their conditions in 

order to prevent future diseases. 

Following the pioneering work conducted on participants from the Framigham Heart 

study (FHS) [1], cardiovascular disease research has become the preferred field for 

developing prediction models and studying their utility for decision-making purposes.  
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2 Cardiovascular disease 

2.1 Definition of cardiovascular disease 
The term cardiovascular disease includes diseases of the heart, brain and peripheral 

vessels. Pathological processes affecting the heart may be broadly divided into three 

major categories: 

1. Disease of the cardiac muscle commonly defined as cardiomyopathies.  

2. Disease of the conduction system that lead to disturbance of the heart rhythm, 

called arrhythmias.  

3. Disease affecting the coronary arteries, called atherosclerosis.  

This thesis mainly focuses on the third category, atherosclerotic cardiovascular 

disease, which also includes ischemic stroke, and from now on is referred as CVD. 

2.2 Epidemiology of cardiovascular disease 
CVD, including coronary heart disease (CHD) and stroke remains the leading cause 

of mortality worldwide, accounting for approximately 30% of total mortality [2]. 

Moreover, this unfortunate leadership is expected to last at least to the year 2030 [3]. 

Although there has been a decline in CVD mortality in high-income countries over 

the years, the burden of this disease is increasing as a result of adaptation of a 

Westernized lifestyle in poorer countries with increasing obesity, type 2 diabetes and 

smoking rates (see Figure 1) [4] . 

Finally, the non-fatal CVD events contribute significantly to overall disability, 

estimated by the disability-adjusted life years. In 2010, the total burden of CVD was 

295 millions disability-adjusted life years, reaching an increase of 22.6% compared to 

1990 [5]. 
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Figure 1. World map showing the global distribution of CVD mortality rates (age 
standardized, per 100,000) in males (panel A) and females (panel B) [6]. 

 

2.3 Etiology of cardiovascular disease  
CVD is a multifactorial disease, with a number of modifiable physiological risk 

factors such as high blood pressure [7], high total cholesterol [8], high blood glucose 

[9] and high body mass index (BMI) [10].  

Also modifiable behavioural risk factor play a causal role and include increased 

alcohol use [11], tobacco smoking [12], unhealthy diet [12]  and physical inactivity 

[13]. Finally, familial aggregation of CVD suggests evidence of a genetic 

predisposition [14] and twin studies have reported about 40% heritability of CHD 

mortality [15]. 

A. 

B. 
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2.4 Challenges in cardiovascular disease prevention 
Most of the cardiovascular risk factors where already established before 1975 [16]  

and, in the following decades, improvement in primary prevention, cardiac care  and 

major pharmaceutical drugs have contributed to dramatically decrease CVD mortality 

(see Figure 2) [17].  

Nevertheless, this decrease has not been homogenous between all CVD subtypes. For 

example, an improvement in survival has been observed for myocardial infarction, but 

not for stroke or heart failure. Moreover, although efforts to decrease cholesterol 

levels and smoking have been successful in the United States and Europe over the 

past two decades, prevalence of obesity and type 2 diabetes is on the rise and only 

~1% of individuals in the United States reach what the American Heart Association 

has defined “ideal cardiovascular health” [18, 19].  

Is therefore important, on one side, to identify new strategies (pharmacological or 

behavioural) for reducing the CVD burden in the community and, on the other, to 

identify the right targets for such interventions. Prediction models can be used to 

identify and assign individuals to the best intervention strategy and are therefore a key 

component of the challenge of reducing the CVD burden. 

 

Figure 2. Trends in CVD mortality rates (age standardized) in developed countries 
[6]. 
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3 Prediction models 

3.1 Study design for building prediction models 
Risk prediction and prognosis are inherently longitudinal in nature. Therefore, 

prospective cohort studies with participants followed over time are a natural choice 

for evaluating these aspects. Case-control studies are not suitable to evaluate and 

develop prediction models, while case-cohort and nested case control designs can be 

used, but attention to several methodological aspects needs to be paid [20].  

An optimal study should have a high participation rate and should be conducted in a 

sample of the population for which the prediction model is intended. In addition, the 

study should also be able to follow up patients for both mortality and incidence of the 

disease of interest. Moreover, if the aim is to build a new prediction model, the study 

should preferably collect a large number of reproducible measurements, not necessary 

causally related with the disease. 

3.2 Model performances: Discrimination 
Discrimination relates to how well a prediction model can discriminate those with the 

outcome from those without the outcome. A model that places each individual in the 

class to which he or she truly belongs would be said to have a perfect discrimination.	  

One of the most popular measures of discrimination used in the context of 

dichotomous outcomes is derived from the receiver operating characteristic (ROC) 

curve. The ROC curve is the entire set of possible true and false positive fractions (i.e. 

sensitivity and 1- specificity) attainable by dichotomizing the outcome of interest with 

different thresholds [21]. 

The most widely used summary measure is the area under the ROC curve (AUC), also 

known as the C-statistic. A perfect test, which always assigned individuals to the 

correct outcome, has a AUC value of one. Conversely, an uninformative test, has 

AUC=0.5. The AUC can be interpreted as the probability that a randomly selected 

person with the event has a higher predicted risk than a randomly selected person 

without the event. 

Generalized versions of the AUC for survival analysis have also been developed [22, 

23]. The most commonly used measure is the Harrell’s C-index [24], which measures 

the concordance between the predicted survival time and the actual survival time in 
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pairs of individuals where at least one has experienced the event of interest. 

Finally, differences in AUC or C-index between two models that share all risk factors, 

except for a new marker, can be used to evaluate the improvement in discrimination 

due to the new marker. However, in this setting the AUC has been criticized to be 

insensitive to clinically important risk differences [25]. Moreover, a formal test for 

AUC improvement [26] has been shown to be underpowered compared to more 

common tests to compare nested regression models (e.g. Wald or likelihood-ratio test) 

[27]. 

3.3 Model performances: Calibration 
Calibration measures how closely the predicted risk approaches the observed risk. 

More specifically, it is the agreement between the probability of developing the 

outcome of interest within a certain time-period as estimated by the prediction model 

and the observed outcome frequencies.  

To assess the model’s calibration, a plot of the predicted and observed events (or 

probabilities of events) can be used. Perfect prediction should follow the 45° line. A 

deviation from this line indicates overestimation or underestimation of the true 

number of events. In Figure 3, we report an example of calibration plot obtained from 

study IV. 

This aspect can be formally tested by comparing observed and expected number of 

events in each risk categories as defined by risk deciles. Such 𝜒!  test is called 

Hosmer-Lemeshow test [28]. A similar test for survival data has also been proposed 

(Grønnesby and Borgan goodness-of-fit test) [29].  However, these tests do not 

capture all the potential miscalibration patterns. Moreover, a test might suggest good 

calibration simply due to lack of power.  

Good calibration does not mean good discrimination and vice versa. A model, once 

tested in a different population from the one where it has been developed, can still 

have good discrimination, but the calibration might be poor because the disease 

incidence is different. A processed known as re-calibration can be used to re-fit the 

model to the new population [30]. 
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Figure 3. Example of calibration plot of observed vs. predicted risk obtained from 
study IV. The deciles of risk are represented by the triangles and the dotted lines are 
the loess smoothers. Overlap with the 45° line indicates perfect calibration.  

 

3.4 Reclassification 
An important property of a prediction model is the ability to stratify the population 

into clinically relevant risk categories. A perfect model would assign the entire 

population to the very highest or very lowest risk categories and leave no one in the 

middle categories, in which there are still uncertainties about the appropriate course of 

action.  

Reclassification measures are typically used to evaluate this property when a new risk 

marker is added to a risk prediction model that includes an established set of markers. 

The most commonly used measure of reclassification, net reclassification 

improvement (NRI), was introduced by Pencina and colleagues [31]. This approach 

focuses on reclassification tables constructed separately for individuals with and 

without the event of interest and quantifies the correct movement in categories: 

upwards for those that eventually experience an event and downwards for those that 

do not experience an event. In Figure 4, we report an example of reclassification plot 

and table from study II.  
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NRI is meaningful when risk categories are well defined (e.g. by guidelines) and 

when specific behavioural or pharmacological interventions are available for high-risk 

patients. The NRI has been criticized because it is highly dependent on the number of 

risk categories chosen [32], lacks clinical interpretation [33]  and is difficult to 

interpret in some situations [34].  

 

Figure 4. Reclassification graph and table obtained from study II representing the 
individual risk at 10 years for a model with FHS risk factors vs. individual risk at 10 
years for a model with FHS risk factors + multilocus genetic score (MGRS) for CHD. 
Blue marks are correctly reclassified, red marks are incorrectly reclassified between 
categories of clinical interest (<10%, 10% to 20%, >20%). 
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3.5 Measures of clinical utility 
In addition to evaluate the performances of the prediction model using measures such 

as discrimination and calibration, it is also important to determine if the model is 

clinically useful. The NRI partially tackles this problem by introducing clinically 

meaningful risk categories in the measure assessment. However, it does not touch 

upon the concept of benefit and harm, which are at the core of medical decision-

making [35]. 

Vickers and Elkin proposed a decision-curve analysis as a simple approach to 

quantify the clinical usefulness of a prediction model (or an extension to a model) 

[36]. This method is used to calculate the net benefit, which is the weighted difference 

between benefits and harms (defined as true positive and false positive decisions, 

respectively).  

Rapsomaniki and colleagues introduced a different version of the net benefit, which 

quantifies the number of event-free life years saved per 1,000 people screened. 

Differently from the decision-curve analysis approach, external information, 

including the cost of treatment per person per year and the monetary value of event-

free life years, needs to be included [37].  

Finally, prediction models can be evaluated using health-economic approaches, such 

as Markov chain Monte-Carlo methods [38]. These models can be used to perform 

cohort simulations as well as individual-based microsimulations and require 

numerous external information, which is normally obtained from the literature or 

from existing population-based studies.	  

3.6 Overfitting and validation 
Performance measures that are calculated in the same data sample from which the 

prediction model is developed tend to perform overoptimistically. 

This is simply because the model is designed to fit the data, but becomes less accurate 

when tested in new but similar individuals. This concept is called overfitting. The 

overfitting is greater with a smaller sample size and when a large number of 

measurements are included in the model. 

There are several strategies to control the overfitting and they are traditionally divided 

in internal and external validation.  

Internal validation aims to reduce the overfitting by using the same population that 

generated the model. Split-sample and k-fold cross-validation are commonly used 
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strategies to divide the study in specific subsamples, some of which are used to 

develop the model and the others to validate it. In the case of k-fold cross-validation 

this process is repeated iteratively. 

External validation reduces the overfitting by using individuals that differ in some 

aspects from those in which the model is developed. External validation can be 

applied to individuals collected at a different time points (temporal validation), in 

individuals from a different geographical regions (geographical validation) or in a 

completely separate population, collected by independent investigators. 

3.7 Prediction models in cardiovascular disease 
Starting with the Framingham risk score over 30 years ago [39], the cardiovascular 

disease field has been a fruitful source of prediction models.  

There are several reasons behind this favorable attitude: 

1. Cardiovascular disease is the leading cause of death and therefore a common 

outcome in the population. This makes feasible to plan prospective population-

based studies and to observe enough events within a limited follow-up time (often 

10 years). 

2. Risk factors for cardiovascular disease are well known and easily measurable. 

Those can be combined in a prediction model with relatively high prediction 

performances. 

3. Individuals that are likely to develop a cardiovascular event, as detected by 

prediction models, can be assigned to several preventive strategies, both 

pharmacological and behavioural, without major side effects. 

The original Framingham risk score was developed in 5,209 men and women between 

the ages of 30 and 62 recruited in 1948 from the town of Framingham, Massachusetts. 

The primary outcome was prediction of eight-year CVD and included the following 

risk factors: age, systolic blood pressure, total cholesterol, glucose intolerance, 

cigarette smoking and left ventricular hypertrophy by electrocardiogram [39]. In 

Figure 5, we report the original coefficients published in the 1976 paper, including 

the description on how to calculate the score. 
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Figure 5. Original table from Kannel’s 1976 paper describing a first version of the 
Framingham risk score	  [39]. 

 
Different risk factors have been included in following versions of the score [40, 41] 

and extensions to evaluate the risk of ten-year atrial fibrillation [42], ten-year CHD 

[43], 30-year CVD [44], eight-year diabetes [45], four-year hypertension [46] and ten-

year stroke [47] have also been proposed. 

Several cardiovascular prediction models have been developed in Europe because the 

Framingham risk scores were not entirely suitable to the general European population. 

The SCORE equation has been recommended by the Fifth Joint European Task Force 

on cardiovascular prevention [48]. The QRISK2 algorithm was developed using a 

population-based clinical research database in the UK [49]. A simple PROCAM score 

scheme [50] and a neural network model [51] were developed in Germany. An 

ASSIGN risk score involving family history of CVD was developed in Scotland 

based on the Scottish Heart Health Extended Cohort [52] and finally, a CUORE 

equation was developed in Italy for a low coronary incidence population [53].  

Similarly, other CVD risk models have been constructed elsewhere in the world. A 

MUCA ischemic CVD risk model was developed for the Chinese population [54]. A 

multivariate regression model involving C-reactive protein was developed in Japan 

[55]. A recalibrated Framingham model was investigated in Thailand [56] and a 
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multivariate risk prediction model for CHD was developed in Australia based on the 

Busselton Health Study [57].  

3.8 Prediction models for overall mortality  

Similarly to what done for CVD, prediction models have also been developed for 

overall mortality. Although mortality is a very heterogeneous trait, identification of 

high-risk individuals with reduced life expectancy is important from a public health 

perspective. Guidelines are increasingly incorporating life expectancy as a central 

factor in weighing the benefits and the burdens of tests and treatments.  

For example, the US Preventive Services Task Force recommends routine colorectal 

cancer screening for adults aged 50 to 75 years [58]. One reason for using a 75 year 

old cut-off is that the average life expectancy for 75-year-old US adults (11.1 years in 

2000) is similar to the time to benefit for colorectal cancer screening (10.3 years) 

[59]. In this case, the life expectancy is simply obtained on a population level (e.g. 

from life tables). However, it is clear that life expectancy is heterogeneous among 75 

years old individuals, depending on their individual risk profile, and the calculation of 

life expectancy simply based on age is an oversimplification. Therefore, the use of 

prognostic indices in this setting might improve the decision-making about preventive 

strategies [60]. However, it has also been highlighted that the accuracy and 

generalizability of current prediction tools is low [61].  

There are several reasons why building an appropriate prediction model of overall 

mortality might be challenging: 

1. Mortality is not uniformly distributed across ages. Among younger individuals, 

death due to diseases is a relatively rare event and therefore large population 

studies are needed to gather enough events in a short follow-up time. 

2. Risk factors for overall mortality are heterogeneous and, unlikely those for CVD, 

there is not a consensus regarding which factors to include in a prediction model. 

Comorbidities are important predictors of mortality, but prediction models only 

based on previous diseases or conditions might encounter problems due to 

reporting and diagnostic biases. Lifestyle measurements and biomarkers are 

preferred risk factors, but they are often difficult to collect on large-scale. 

3. The strongest predictors of mortality are often geographical and time-dependent. 

This makes the generalizability of the results challenging, especially if the study 

is not contemporary or representative of the general population. 
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Nevertheless several prediction models for mortality have been developed. The 

Charlson index is the one of the most popular comorbidities-based tools to predict 10-

year mortality [62].  

Several prediction models have been developed in older adults. A recent review by 

Yourman and colleagues summarized these models in terms of potential for bias, 

generalizability, and accuracy [61]. Overall, the authors identified 16 validated 

prediction models. Eight were developed in hospital patients, six in community-

dwelling patients and two in nursing home patients. Prediction models were mostly 

developed in participants from US, while only four from Europe. Only two models 

were validated by investigators not involved in the studies’ development, and no 

model was prospectively tested and found to be accurate in a large diverse sample. 

They concluded that no study was completely free from potential sources of bias. 
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4 Omics and prediction 

4.1 Genomics  
Genomics has known a phase of intense development in the past years. The first 

sequence of the human genome in 2001 [63, 64] and the subsequent HapMap Project 

[65] have helped to shed light into the characteristics and the haplotype structure of 

the human genome and led to the explosion of genome-wide association studies 

(GWAS). The assumption behind these studies is the so-called ‘common disease–

common variant’ hypothesis, which posited that common genetic variants could have 

a role in the etiology of common diseases [66]. Thus, by an unbiased scan of common 

variants in the genome one could, in principle, pinpoint key genes and help to outline 

underlying mechanisms.  

Specifically, GWASs take advantage of the principle of linkage disequilibrium at 

population level to identify genetic markers to tag a haplotype, and the number of 

such tagging markers is much smaller than the total number of segregating variants in 

the population. With this strategy the cost-per-sample can be reduced and a large 

number of individuals can be genotyped for these tagging markers, also called single 

nucleotide polymorphisms (SNPs). For example, a selection of approximately 

500,000 common SNPs in the human genome is sufficient to tag common variation. 

Simple statistical models combined with a tight control for the number of false-

positives (often using a P-value < 10-8 to declare significance) and replication in 

external populations can be used to compare cases of a specific disease and control in 

several thousands individuals across hundred thousands to millions SNPs. The large 

number of individuals is needed in order to detect the small effect of SNPs on the 

disease with sufficient statistical confidence.  

In the recent years, hundreds of these studies has been conducted and have identified 

SNPs associated with more than 1,000 traits or diseases. If, on one side, these 

discoveries can be used to understand the biological basis of diseases and to 

potentially develop new pharmacologic therapies, on the other, results from GWASs 

have the potential to be useful for disease prediction. 

However, given the small effect sizes observed for most of these associations and the 

relative small portion of the heritability explained, it has been argued that the clinical 

impact of genetic risk prediction using common SNPs is limited [67-70]. Moreover, 
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several pitfalls in making predictions of common diseases or complex traits from 

genetics data have been identified. These include errors in estimating the effect size of 

the markers, inappropriate statistical methods, lack of validation, overfitting and 

population stratification [71].  

4.2 Metabolomics 
Metabolomic profiling, or metabolomics, can be described as a holistic approach to 

the study of low-weight molecules (<1,500 Daltons) called metabolites. These 

molecules are produced by chemical processes in the body (i.e. metabolism) or from 

exogenous sources (e.g. diet, drugs, xenobiotics or gut-host co-metabolism). 

Metabolites are often measured in blood or urine, but they can also be detected in 

saliva, breath or any of the approximately 500 different histological cell types in the 

human body [72]. 

Improvements in instrumental technologies and advances in bioinformatics tools have 

provided the possibility to perform metabolomics on large prospective 

epidemiological studies with thousands of individuals and hundreds of phenotypes 

[73].  

The two main approaches to perform large-scale metabolomics studies are nuclear 

magnetic resonance (NMR) spectroscopy or mass spectrometry (MS). NMR has high 

reproducibility, requires little sample preparation and the cost per sample is relatively 

low. However, it is less sensitive, meaning that fewer metabolites can be detected. 

Mass spectrometry allows the detection of a larger number of metabolites, but it is 

less reproducible, more platform dependent and the analysis of the generated data is 

more complex. 

NMR and MS can run either in targeted or non-targeted mode. The targeted approach 

relies on the measurement of a specific subset of metabolites, typically focusing on 

pathways of interest. However, with this approach a large number of disease-related 

metabolites are likely to be missed. The non-targeted approach has the advantage to 

simultaneously measure as many metabolites as possible from a biological sample. 

This approach however requires a post-hoc annotation of the results and, often, the 

chemical structure of some metabolites cannot be resolved.  

Disease prediction using metabolomics is a relatively new field and few promising 

studies have been conducted to investigate this aspect in relation to cardiovascular 

disease [74-76]. 
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4.3 Challenges in measuring omics technology on large scale: The role 

of sampling designs 

Recent technological developments have allowed researchers to assess thousands of 

genetic markers, proteins, and metabolites in small amounts of biologic specimens. In 

parallel, several new large initiatives in different countries have started to collect 

baseline information and biological specimens from hundreds of thousands of 

individuals [77, 78]. The combination of huge study samples and high costs for these 

new technologies makes it unfeasible to measure these new markers on an entire 

study population, so there is a clear need for efficient study designs. 

Researchers are often interested in selecting from an on-going prospective cohort 

study all the cases of a disease and an appropriate set of controls. Thus, the markers of 

interest are measured only in this subsample of participants. Commonly used 

sampling designs are: 

1. Case cohort. All cases of a specific disease or of multiple diseases are collected 

and controls are sampled from original cohort (subcohort) independently of the 

definition of the cases. 

2. Nested case-control. All cases for one specific disease are collected and controls 

are sampled from individuals at risk at the times when cases are identified. 

These sampling designs have been used in several studies [79-82] to investigate the 

prediction abilities of new cardiovascular markers above established risk factors. 

Nevertheless, methodological investigations regarding the appropriate way to derive 

measures of prediction performances within a sampling design setting are lacking.  
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5 Aims 
The general aim of this thesis is to evaluate established measurements and novel 

markers derived from omics technologies in terms of their ability to predict 

cardiovascular disease and overall mortality, as well as to investigate methodological 

aspects related to the use of prediction metrics in epidemiological studies.  

The specific aims of this thesis, each corresponding to one of its four component 

papers, are: 

• To investigate the ability to adequately estimate individual risk and risk 

prediction metrics in unstratified and stratified (matched) case-cohort and nested 

case-control designs. 

• To investigate the clinical utility of several genetic scores for CHD.  

• To discover new markers of CHD by analysing circulating metabolites and to 

determine if these metabolites can improve CHD prediction beyond established 

risk factors. 

• To compare a large number of potential predictors of five-year mortality and to 

develop and validate a prediction score for five-year mortality using only self-

reported information. 
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6 Study populations 

6.1 Swedish Twin Registry: Overview 
The Swedish Twin Registry is a nation-wide register including over 194,000 Swedish 

twins born from 1886 to 2008 [83]. Since 2004, all identified nine-year-old have been 

contacted and invited to participate to an ongoing study [84]. Before 2004, the twins 

were contacted at various ages depending on birth-year cohorts. Over the past ten-

years, DNA information was obtained from 45,000 twins, 15,000 of which also 

provided blood samples.  

6.2 Swedish Twin Registry: TwinGene 
TwinGene is a longitudinal study nested within the Swedish Twin Register initiated to 

examine associations between genetic factors and cardiovascular disease in Swedish 

twins. Twins born before 1958 and who has participated in a telephone screening 

between 1998 and 2002 were re-contacted between April 2004 and December 2008. 

Health and medication data were collected from self-reported questionnaires, and a 

blood sampling kit was mailed to the subject who then contacted a local health care 

center for blood sampling and a health check-up. Contacts were allowed on Monday 

to Thursday mornings (not the day before a national holiday), to ensure that the 

sample would reach the KI Biobank in Stockholm the following day by over night 

mail. The participants were instructed to fast from 8 PM (20:00) the previous night. A 

total volume of 50 ml of blood was drawn from each individual by venipuncture.  

First, a tube containing Ethylenediaminetetraacetic acid (EDTA) was filled and 

inverted five times immediately. These plasma samples were used for DNA 

extraction. Second, three gel tubes were filled, inverted five times immediately, let 

stand for 30 minutes for coagulation in room temp, centrifuge for 10-15 minutes at 

3800 rpm. Thus, the serum was tapped from the gel tubes to a collection tube and 

placed in a transport cylinder. These serum samples were used for storage and for the 

following metabolomics analysis. Serum samples for biochemical analysis were 

collected in the same way. 

Tubes were sent to Karolinska University Laboratory by overnight post where they 

were frozen at -80° C in liquid nitrogen until analysis. 
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In total, 12,591 individuals (55% women) participated by donating blood to the study, 

and by answering questionnaires about lifestyle and health. 

In study I, we included 6,558 unrelated individuals (only one twin per pair) with 

cardiovascular risk factors measurements available. 

In study II, we included in the analyses all genotyped twins with cardiovascular risk 

factors measurements available and without previous CHD events, resulting in 7,597 

individuals. 

Metabolomics was performed in a subsample of TwinGene. Specifically, we utilized a 

case-cohort design by selecting all the incident cases of coronary heart disease, type 2 

diabetes, ischemic strokes and dementia up to 31st December 2010 and a sub-cohort 

(controls) of 1,643 individuals (43% women). The subcohort was stratified on median 

age and sex, and for each of the four strata, we randomly selected a number of 

participants proportional to the corresponding number of cases. Thus, in study III we 

included the participants sampled in the sub-cohort and the incident CHD cases for a 

total of 1,670 individuals with cardiovascular risk factors measurements available and 

without previous CHD events at baseline.  

6.3 Swedish Twin Registry: SATSA 

The SATSA sample comprises all pairs of twins who indicated that they had been 

separated before the age of 11 and reared apart, and a sample of twins reared together 

matched on gender, date and county of birth [85]. SATSA twins aged 50 and older 

were invited to participate in in-person testing (IPT) sessions in which questionnaires 

including items concerning health-related behaviours (e.g. alcohol, tobacco, and 

dietary habits), cognitive tests and physical health measures were administrated. 

SATSA twins have been followed longitudinally with up to nine IPT sessions across 

24 years. In study II, samples for DNA extraction, lipid measurements and other 

cardiovascular risk factors from the third IPT (1992-1994) were used. The SATSA 

study was used in study II, in total, 435 individuals with cardiovascular risk factors 

measurements available and without previous CHD events were included in the 

analyses. 

6.4 Swedish Twin Registry: OCTO-Twin 

The OCTO-Twin sample included all twin pairs in Sweden aged 80 years or older in 

1991-1994 (i.e. birth years 1913 or earlier)	  [86]. Up to five waves of IPT sessions at 

two-year intervals were conducted on all living twins who agreed to participate, 
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irrespective of co-twin’s vital status. Blood samples for subsequent extraction of 

DNA were collected between the first and second IPT. Questionnaires were similar to 

the ones used in SATSA. Cardiovascular risk factors were measured at the first IPT 

(1991-1994).  The OCTO-Twin study was used in study II of this thesis, in total, 410 

individuals with cardiovascular risk factors measurements available and without 

previous CHD events were included in the analyses. 

6.5 Swedish Twin Registry: GENDER 

The GENDER sample included all living pairs of unlike-sex twins born between 1906 

and 1925 [87]. Surveys assessing health and other factors were sent to the twin pairs. 

A subset of this population-based sample aged 70-79 years completed IPT similar to 

those in SATSA and OCTO-Twin. Three waves of IPT sessions were carried out at 

four years intervals during 1995-2004. Blood samples for DNA extraction and 

cardiovascular risk factors were collected during the first IPT session (1995-1997). 

The GENDER study was used in study II of this thesis. In total, 421 individuals with 

cardiovascular risk factors measurements available and without previous CHD events 

were included in the analyses. 

6.6 Swedish Twin Registry: HARMONY 

All twins from the Swedish Twin Registry aged 65 and older were screened by 

telephone for cognitive dysfunction [88]. This included any surviving twins from the 

SATSA, OCTO-Twin, and GENDER studies described above. Among those 

screened, 11.5% were positive for suspicion of dementia and were referred for 

complete clinical evaluation and blood sampling by a physician or a nurse (1999-

2001). Once the preliminary IPT suggested dementia, the twin partner was also 

invited for an identical clinical work-up. In study II, 936 participants not recruited in 

SATSA, OCTO or GENDER with genotype information available were considered. 

The HARMONY study was used in study II. In total, 767 individuals with 

cardiovascular risk factors measurements available and without previous CHD events 

were included in the analyses. 

6.7 ULSAM 

Men born between 1920 and 1924 in Uppsala, Sweden were invited to participate at 

age 50 (N=2,841) in this longitudinal cohort study, which was started in 1970 [89]; 

81.7% (N=2,322) participated. Individuals were re-investigated at the ages of 60, 70, 
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77, 82 and 88 years. Information collected includes a medical questionnaire, blood 

pressure and anthropometric measurements, glucose tolerance test and 24-hour 

ambulatory blood pressure.  

At age 70, EDTA plasma, citrate plasma, serum and whole blood for DNA extraction 

were collected from fasting participants and stored at -70° C in liquid nitrogen until 

analysis. Additional EDTA plasma was collected during oral glucose tolerance test. 

EDTA plasma samples were used for the metabolomics profiling. 

In study II, we included in the analyses, all individuals genotyped at age 70 with 

cardiovascular risk factors measurements available and without previous CHD events, 

resulting in 981 individuals. 

In study III, 1,028 individuals with cardiovascular risk factors and metabolomics 

measurements available and without previous CHD events were included in the 

analyses. 

6.8 PIVUS 

PIVUS is a community-based study where all men and women at age 70 living in 

Uppsala, Sweden were invited to participate in 2001 [90]. The 1,016 participants 

(50% women) have been extensively phenotyped including measurements of 

endothelial function and arterial compliance, cardiac function and structure by 

ultrasound and magnetic resonance imaging, evaluation of atherosclerosis by 

ultrasound and magnetic resonance imaging, seven day food intake recordings, 

detailed electrocardiogram (ECG) analysis, cardiovascular autonomic function and 

body composition by dual-energy X-ray absorptiometry. 

Blood samples were drawn between 8 and 10 AM after an overnight fast. Plasma 

taken in EDTA-tubes was centrifuged, aliquoted and frozen within one hour. Serum 

was aliquoted and frozen within two hours. These samples were stored at -70° C in 

liquid nitrogen. Metabolomic profiling was performed on serum samples. The PIVUS 

study was used in study III. In total, 767 individuals were included in the analyses. 

6.9 UK Biobank 
	  
UK Biobank recruitment took place between March 2007 and July 2010 via the UK 

National Health Service at 21 centres across England, Wales and Scotland [77]. All 

individuals aged 40-69 living within a reasonable travelling distance of an assessment 
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centre were asked to participate via postal invitation with a telephone follow-up. The 

overall response rate was 5.47 %.  

Participants completed a “whole-body” assessment of 90-min duration that included a 

computerized questionnaire on lifestyle and medical history as well as blood and 

urine collection, a verbal interview with a trained nurse and physical measures 

including blood pressure, arterial stiffness, eye measures, hand grip strengths, 

anthropometry, bone densitometry of heel, spirometry and ECG from exercise test. 

The UK Biobank study was used in study IV. In total, 498,103 participants were 

included in the analyses. 
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7  Results and discussion 

7.1 Prediction measures and sampling design 
	  
The high cost of laboratory assays makes the ascertainment of new omics 

technologies in all participants of large epidemiological studies unfeasible. It is 

therefore important to use sampling designs to determine which samples to select. 

Study I investigates a particular aspect of this problem, that is, if prediction measures 

such as calibration, discrimination and reclassification can be calculated within 

traditional sampling designs and which sampling design is more appropriate to 

calculate such measures. 

Specifically, we considered two sampling designs, case cohort and nested-case 

control (described in section 4.3), and two sampling schemes for each design: 

1. Unstratified designs. For the case-cohort design, the sub-cohort is a random 

sample from the original cohort; for the nested case-control design, x controls are 

selected at random from individuals at risk at each case’s failure time. 

2. Stratified designs. For the case-cohort design, four strata (male or female and age 

higher or lower than the median) are considered and a number of participants 

proportional to the number of cases in each of these strata is randomly sampled 

from the original cohort. For each case in the nested case-control design, x 

controls at risk with the same sex and age (fine matching) are selected. 

 

Results 

We first compared the four combinations of sampling designs and sampling schemes 

for association with CHD in TwinGene. The gold standard was the association 

observed in the entire cohort. We found that both case-cohort and nested case-control 

designs gave more accurate results when stratified/matched sampling was used. 

Stratified case-cohort and matched nested case-control designs were comparable in 

terms of accuracy and efficiency of estimates; the unmatched nested case-control 

design was more efficient than the unstratified case-cohort design. 

Secondly, we evaluated which sampling design more accurately calculated the risk of 

a CHD event within three years. To account for the sampling process, the individual 

risk was calculated by reweighting the baseline hazard with appropriate weights. 

Overall, the estimated individual risk from the sampling designs was comparable to 
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that observed in the entire cohort, except for the matched nested case-control design, 

which resulted in biased estimates. 

Third, we compared sampling designs and whole cohort in terms of measures of 

discrimination (C-index), calibration (Grønnesby and Borgan goodness-of-fit test 

statistic) and reclassification (NRI). Overall, in the case-cohort designs and the 

unmatched nested case-control design, the estimates of the different prediction 

measures were similar to what was observed for the whole cohort, but the variability 

was higher. The C-index for the matched nested case-control design was lowest, 

underestimating the true value.  

 

Discussion 

Prediction measures can be calculated in a sampling design setting by using 

appropriate weights. Although this is straightforward for case-cohort designs where 

the subcohort is a random or stratified sample of the whole cohort, the appropriate 

weights for nested case-control designs are more complex as they are based on the 

inverse of the probability that a participant is ever selected as a control.  

The finely matched nested-case control design obtained biased estimates of the 

individual risk and, consequently, the prediction measures were unsatisfactory. That 

is, failing to take into account the appropriate weights results in an underestimation of 

the C-index and consequently an overestimation of the discriminative power 

introduced by the additional marker. 

More recently, it has been shown that is possible to obtain correct estimates of the 

individual risk from finely matched nested case control designs by using stratum-

specific baseline hazards (Dr. Agus Salim, personal communication). 

In conclusion, this study suggests that it is possible to calculate prediction measures 

from sampling designs and that the stratified case-cohort design is a reasonable choice 

both in terms of efficiency and simplicity in the calculation of prediction measures. 

	  

7.2 Genetics and prediction of cardiovascular disease 
	  
The utility of common genetic variants in primary prevention of cardiovascular 

disease has been subjected to several investigations [91, 92]. Overall, it has been 

suggested that there is not enough evidence for including genetics in current 

prediction models for cardiovascular disease [93]. Other studies have however 
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pointed out that useful levels of prediction may be approached with larger study 

samples [94].  

In study II, we investigate the association between several MGRSs and CHD and 

evaluate their potential clinical utility. Two main MGRS were considered: 

1. An overall MGRS obtained from 395 SNPs associated with CHD or CHD-related 

traits. 

2. A CHD-specific MGRS obtained from 46 SNPs that have been found associated 

with CHD by the CARDIoGRAMplusC4D consortium, which is the largest 

genome-wide association studies meta-analysis on CHD to date [95]. 

 

Results 

We first investigated the association between the MGRS and CHD after adjustment of 

established risk factors in 10,612 participants from six prospective studies 

experiencing 781 CHD events. Both the overall MGRS and the CHD-specific MGRS 

were highly significantly associated with CHD. Specifically, participants who were in 

the upper quartile of the distribution of the overall MGRS had 1.54 times [95% 

confidence interval (95% CI): 1.25-1.92] higher risk of CHD compared with 

individuals in the lowest quartile. 

Second, we studied discrimination and reclassification. The overall MGRS 

significantly improved risk classification beyond established FHS risk factors (NRI= 

4.2%), but the discrimination improvement was modest.  

Third, we evaluated the number of events prevented and the number of event-free life 

years saved if the CHD-specific MGRS was measured in addition to the established 

risk factors. That is, assuming a risk reduction of 20% for individuals treated with 

statins [96], the targeted assessment of the genetic risk score among intermediate risk 

subjects could help to prevent about four additional CHD events during a ten-year 

period, which corresponds to one avoided event for every 318 people screened. If the 

CHD-specific genetic score was measured in the entire study population, 3.15 event-

free life years per 1000 people screened would have been saved. 

 

Discussion 

The use of genetic profiling in primary prevention of CHD might improve allocation 

of patients to correct risk strata. A topical editorial [97] mentioning ours and other 

recent studies [98, 99] has highlighted how the prediction performances of genetic 
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risk scores are superior to those from other recently suggested biomarkers for 

prediction of cardiovascular disease (e.g. C-reactive protein, fibrinogen) [100] and 

wished for the translation of these findings in clinically meaningful action. 

Genetic profiling has some advantages compared with other biomarkers. For 

example, genetic markers need to be measured only once and are likely to be 

predictive throughout life enabling earlier primary prevention in high-risk individuals. 

Moreover, the genotyping cost has rapidity dropped in the past years making genetic 

markers potentially cost-effective. However, formal studies investigating this aspect 

are needed. Finally, only carefully designed randomized trials will be able to provide 

a convincing confirmation about the expected benefits of genetics scores for primary 

prevention. 

In conclusion, genetic information could be of some clinical value for prediction of 

CHD, although further studies are needed to address aspects such as feasibility, ethics, 

and cost efficiency of genetic profiling in the primary prevention setting. 

7.3 Metabolomics and cardiovascular disease 
	  
The exploration of the metabolome holds a great potential to fuel the discovery of 

novel biomarkers of CHD. Such exploration has only become feasible in the past few 

years since technological advancements have allowed the measurements of hundreds 

of metabolites in thousands of samples. However, very few studies have performed a 

truly non-targeted metabolomics approach due to bioinformatics challenges and 

difficulties with the annotation of the metabolites.  

In study III, we aimed to investigate the association between metabolic features and 

CHD, and to integrate genetic and metabolomics analysis to delineate the underlying 

biological mechanisms and evaluate potential causal effects of the novel biomarkers. 

 

Results 

We first studied the association between circulating metabolites and incident CHD 

events. We identified four metabolites that were associated with CHD after 

adjustment for established cardiovascular risk factors in 1,028 ULSAM participants 

(No. of events=131) and replicated in 1,670 TwinGene participants (No. of 

events=282). All four metabolites were lipid-related species: Two 

lysophosphatidylcholines, one sphingomyelin and one monoglyceride. 
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Second, we studied the joint discrimination and reclassification properties of the four 

metabolites in TwinGene. We observed a significantly improved risk classification 

beyond established FHS risk factors (NRI= 9.2%), but the discrimination 

improvement was modest. 

Third, we explored the associations of the four novel metabolites with main 

cardiovascular risk factors, as well as with markers of oxidative stress, inflammation 

and subclinical CVD in additional 970 PIVUS participants. Lysophosphatidylcholines 

were negatively associated with BMI and with less evidence of subclinical CVD; a 

reverse pattern was observed for the monoglyceride. 

Fourth, we studied the association with established CHD-SNPs and performed a 

Mendelian randomization approach. Only the monoglyceride showed an enrichment 

of significant associations with CHD-associated SNPs and a weak, but positive causal 

effect, as suggested by Mendelian randomization analysis. 

 

Discussion 

Four metabolites were identified as promising biomarkers of CHD: Two 

lysophosphatidylcholines, one sphingomyelin and one monoglyceride. While not 

much is known about the involvement of sphingomyelins in the pathogenesis of CHD, 

lysophosphatidylcholines has been previously indicated by functional studies to have 

a pro-inflammatory and pro-atherogenic effect [101]. This is in contrast with what 

observed in this study. However, recent population-based studies have suggested a 

protective effect of lysophosphatidylcholines on cardiovascular risk [75, 102], 

diabetes [103] and Alzheimer's disease [104]. We are currently performing zebrafish 

experiments to further delineate the role of these metabolites in lipid deposition and 

atherosclerotic plaques formation. 

In conclusion, four lipid-related metabolites with evidence for clinical utility, as well 

as a causal role in CHD development were identified using a metabolomics approach. 

The use of animal models should help to further clarify the causal role of these 

metabolites. 

7.4 Prediction of five-year overall mortality 
	  
It is an important public health priority and a central issue in clinical decision making 

to identify potential predictors of mortality, especially in the working age population. 
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Such predictors can be combined in a prediction score, which allows identification 

and risk stratification of individuals with reduced life expectancy.  

Large, contemporary prospective studies collecting a wide range of measurements are 

needed to reach these goals. In study IV of this thesis, we compared more than 600 

measurements of demographics, health and lifestyle with all-cause mortality and five 

cause-specific mortality categories. Moreover, we developed and validated a 

prediction score for five-year mortality using only self-reported information. 

 

Results 

We first studied the sex-specific association between 655 measurements and all-cause 

and cause-specific mortality in 498,103 UK Biobank participants experiencing 8,532 

deaths during a median follow-up of five years. We found that measures that can 

simply be obtained by verbal interview without physical examination were the 

strongest predictors of all-cause mortality. Self-reported health and walking pace were 

among the strongest predictors in both genders and across different causes of deaths.  

Second, we considered previously healthy individuals, by excluding those with a 

Charlson index greater than one. In this subgroup of individuals, smoking habits were 

the strongest category of mortality predictors.  

Third, we built, validated and calibrated a prediction score. We selected 13 and 11 

self-reported predictors for men and women, respectively, using a backward stepwise 

variable selection approach. Thus, we created a prediction model and validated it in 

the participants from the two Scottish centers, which were not used to develop the 

prediction score. The discrimination abilities were good (C-index 0.80 [95% CI 0.77-

0.83] for men and 0.79 [95% CI 0.76-0.83] for women). Finally, we calibrated our 

prediction score using UK life tables and census information so that it was 

representative of the entire UK population aged 40 to 70. 

 

Discussion 

The study provides an extensive analysis of predictors of mortality in a large, 

contemporary prospective cohort study. By ranking measurements in terms of their 

predictive abilities we could provide new insights about the relative importance, as 

well as reveal some unexpected associations.  
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The most predictive self-reported measurements were combined in a prediction score 

that could be used by laypersons to improve self-awareness of the health status, by 

clinicians to identify high patients to target with specific interventions and by 

governmental and health organizations to decrease the burden of certain risk factors. 

To calibrate the prediction model, an innovative strategy that used life tables and 

census information was used. This allowed to overcome some of the issues related to 

the generalizability of the study.  

Finally, all results were made available on an interactive website (www.ubble.co.uk) 

where it is possible to explore the observed associations in detail to generate new 

research hypotheses, and to calculate the biological age through an online 

questionnaire. 
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8 Future directions 

8.1 Sampling designs and big data 
	  
With the advent of the ‘big-data’ era, one would expect to observe a growing interest 

in sampling designs. Instead, while much effort has been spent in developing 

strategies to optimize and parallelize computations, the research in sampling designs 

has remained limited to specialists in the field and failed to reach out to a larger 

audience.  

Abundance of exceedingly technical literature, lack of comprehensive reviews on the 

topic and failure to implement analytical methods in statistical software are all factors 

contributing to the general lack of translation. For example, in R, the only function 

available to obtain estimators for case-cohort designs is the cch function from the 

survival package. This function has several limitations, including the inability to 

handle time-dependent covariates. More recently, the survey package from Thomas 

Lumely has implemented more complex sampling designs, but the functions are not 

optimized for big datasets [105]. 	  

Furthermore, most of the current research focuses on the correct estimation of 

standard errors, while much less attention has been dedicated to measures of 

predictive performances of the model, which are central in the ‘big data’ paradigm. 

Indeed, it seems underappreciated the fact that a well-planned sampling design can 

deliver virtually identical information compared to the analysis conducted on the 

entire population, with the advantage of greatly reducing the computational burden. 

For example, sampling designs are routinely used in large population-based registries 

as an effective way to investigate epidemiological questions without the need to 

process the entire population [106-108].  

Software implementation, translational research and better communication with 

researchers outside the narrow research field are ways to move forward research and 

applications of sampling designs.  

8.2 Prediction models: Thinking outside the box 
	  
Newly discovered markers are often evaluated in addition to established risk factors 

for their ability to improve current prediction models. Although this is certainly a 

valid approach, it comes with the assumption that current risk factors are optimal 
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predictors. One can argue that this is not the case given that current prediction models 

have been developed in sample sizes that were smaller than those currently available 

and included a limited number of potential predictors.  

With the advent of several new large initiatives in different countries, collecting 

baseline information from hundreds of thousands of individuals [77, 78], there is now 

room to rethink current prediction models. Novel untargeted screening of large risk 

factors collections can be used to identify new predictors. Such screening should 

include also those risk factors that are not causatively related with the outcome of 

interest and should identify uncorrelated risk factors with the aim to improve 

prediction. 

Variable selection approaches using penalized likelihood can be use to achieve these 

goals and they have been shown to be more appropriate than traditional stepwise 

selection approaches [109, 110].	  	  

Moreover, with the widespread use of informatics technologies among patients and in 

the clinic, it is possible to start to think about non-traditional modelling strategies 

accounting for complex interactions and non-linear effects that can be directly 

integrated in online calculators and without the need to relay on printed score charts. 

For example, ensemble algorithms derived from the machine-learning field, has been 

shown to perform better than traditional linear models alone in epidemiological 

studies [111]. 

Finally, prediction models for the same outcome are often developed on different 

populations, hampering the comparison of their predictive performances. Open risk 

prediction competitions, such as the DREAM Challenges [112], can be used to obtain 

an objective comparison of different prediction models in the same population, to 

increase the generalizability and the transparency of the results and to motivate the 

researchers to think ‘outside the box’ in terms of statistical modelling. 

Evidence-based medicine will see an increase use of prediction models as a way to 

deliver personalized and cost-effective care. There is a need to rethink current 

prediction models in the light of available methodologies and new large-scale efforts. 

Prediction competitions and faster implementation of novel prediction models in 

clinical guidelines are ways to motivate researchers to take on the challenge of 

delivering high-quality and innovative research in this field.  
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8.3 Clinical utility assessment: Understanding the context 
	  
The original NRI paper [31], published in 2008, has been cited more than 2,200 times 

and has generated a plethora of comments and critics [33, 113-115]. Researchers have 

been using this measure to claim the clinical utility of new markers for cardiovascular 

disease [116], breast cancer [117] and diabetes [118]. However, several misuses of 

this measure have been reported [119], especially in investigations of diseases where 

no clinically relevant risk categories are available. These critics have sorted the 

paradoxical effect of having authors explicitly mentioning the lack of NRI use in their 

paper [120, 121].  

Flaws in claims of clinical utility are not new. In a lucid paper [122], Tzoulaki and 

colleagues have examined 79 studies evaluating improvement in predictive 

performance when predictors where added to the Framingham risk score.  They found 

that although the majority of examined studies claimed additional predictive value 

beyond what the Framingham risk score could achieve, most had flaws in their 

design, analyses, and reporting. Several issues where related to the incorrect use of 

the AUC measure. 

Taken together, these observations highlight the need for a better definition of which 

measures should be considered before claiming clinical utility. Leading experts in the 

field have published guidelines on how to evaluate predictive performance of new 

markers [123, 124], but it seems that most of these advises are not translated in 

practice. But most importantly, even in well-conducted studies, it is not clear what 

should be the natural step after reporting evidence of improved predictive 

performances. 

It is therefore reasonable to argue that current measures of calibration, discrimination 

and reclassification are not directly translatable into clinical actions. Instead, these 

measures should mostly serve as screening tools to determine which markers should 

be taken forward to formal health economic evaluations and, when possible, to 

clinical trials.   

Thus, it is important to conceptualize these measures within a broader directional 

framework that goes from marker discovery to introduction in clinical practice. They 

occupy a central position, following marker discovery but before appropriate 

investigations of clinical utility. Lacking of understanding this concept might result in 

wrong claims. 
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8.4 Integration of omics technologies using a vertical approach 
 

Genome-wide association studies have paved the way in terms of statistical rigour, 

reproducibility, agnostic believes and data-sharing. Similar approaches have been 

used to interrogate other biological layers, such as methylation and metabolic profiles, 

and have been proved to be successful in discovering novel associations [103, 125]. 

These horizontal approaches are relatively easy to implement and have the advantages 

to provide new discoveries with a high grade of reproducibility.  

However, the translation of such findings into mechanistic insights, clinically relevant 

results and drug discovery is more likely to be achieved by integrating different omics 

layers including in vivo and in vitro follow-up.  

Such vertical approach, as opposed to the horizontal approach of single omics 

screening, should be able to prioritize pathways of interest by both data-driven 

discovery and integration of external information.  

While horizontal screenings are hypothesis-free and relies only on information 

derived from the data, an integrative vertical approach needs to take into account 

external information regarding the biological nature of the interaction between omics 

layers.  

This information can be partially obtained by integrating data provided by large 

consortia, such as GTEx [126], ENCODE [127] and the Human Protein Atlas [128]. 

Moreover, information from previous horizontal screenings (e.g. summary statistics 

from GWAS meta-analyses) should also be included in order to prioritize specific 

pathways of interest and reduce the search space. 

The complexity of the vertical approaches is far higher than that of horizontal 

approaches and several improvements need to be made. 

First, statistical methods able to integrate different layers of omics data and to handle 

constrains of biological nature are needed. A recently proposed method goes in this 

direction by getting inspiration from the field of geostatistics [129]. However, no 

external information can be yet integrated in this model.  

Second, deeply phenotyped studies need to be collected. Repeated measurements 

should also be assessed in order to estimate the inherent variability due to 

environment influence and physiological states. Moreover, new ways to collect 

tissues other than blood and urine should be explored. 
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Finally, high-throughput in vivo and in vitro experiments need to be conducted in a 

fast and cost-effective manner to validate findings and allow for direct therapeutic 

translation.  

In conclusion, horizontal and vertical approaches should be combined to discover new 

clinically and therapeutically relevant targets. The latter approach poses several 

challenges that need to be addressed by future research. 

 

8.5 Data sharing and privacy: Opportunities and challenges 
	  
Data sharing is of enormous importance in modern science. First, it allows the access 

by a larger scientific audience to resources that would have otherwise been available 

to few researchers. Second, it increases the pace of scientific discoveries by allowing 

data to be used for purposes other than what they have been collected. Third, it allows 

the scientific community to scrutinize the results from a study, thus increasing the 

validity of its findings. 

For example, using publically available microarray experiments researchers have 

recently identified a promising therapeutic target for diabetes [130]. Data sharing 

have also stimulated a wealth of statistical methods specifically designed to handle 

aggregate data, such as summary statistics from GWAS [131].  

There are numerous sources of publically available data. Omics data repositories have 

been created in parallel with the increased demand for data sharing from scientific 

journals, as a way to improve reproducibility and transparency. Data from clinical 

trials, independently if they have been successful or not, are increasingly being made 

publically available allowing the possibility to use this data for new and unexpected 

research questions [132]. Large initiatives such as the Global Alliance for Genomics 

and Health have been created to make possible the large-scale collection of data on 

genome sequencing and clinical outcomes within a common framework and using 

standardized methodology. Finally, for profit organizations such as 23andMe have 

recognized the importance of sharing their data with the scientific community as a 

way to stimulate innovative ideas and identify new commercially viable targets. 

On the other side, with the increased availability of medical data on the web, privacy 

concerns have been raised. For example, anonymized genomics information can be 

combined with publically available genealogy databases to obtain personal 

information (e.g. patient’s surname) without patient’s consent [133]. Similarly, it has 
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been shown that DNA of individuals can be identified from complex mixtures of 

information, for example from GWAS summary statistics [134].  

It is therefore important to engage the scientific community and the general public in 

a rational discussion about the risks and benefits of having medical and genetics 

information publically available. As a way to achieve this goal, scientists should start 

by strengthening their ability to communicate scientific findings to laypersons, for 

example by employing tools that make results interpretable by a broader community 

(e.g. interactive websites, mobile applications).  

In conclusion, data sharing is beneficial to the scientific community. Improved 

communication and a clear, balanced informed consent are key elements to uphold 

this benefit together with a long-lasting credibility in the general public. 



	  

	   46	  

10. Acknowledgments 
	  
This thesis and most of what I accomplished in these years has been possible thanks 

to the impressionistic contribution of many people, each in a distinctive fashion. 

 

First, a special mention goes to my PhD advisor Erik Ingelsson. You have been a role 

model for me and stand for all the qualities a supervisor should have. Every comment 

from you is constructive and enriching, which is a rare quality. Thank you for keeping 

me sharp and my vision open.  

 

Also, my co-advisors, Patrik Magnusson and Marie Reilly, it has been an honour to 

work with you. Patrik, your broad knowledge and critical spirit are unique. Marie, 

your positive attitude, kindness and sampling-design knowledge have have made my 

work worth the effort in the past four years. 

 

Moreover, I want to thank Yudi Pawitan. I have learned so much by working with you 

that I’m not afraid calling myself a statistician. And I thank Rino Bellocco for giving 

me the opportunity to write my master thesis at MEB and firstly introducing me to 

Erik. 

 

Marcel Den Hoed, Tove Fall, Samira Salihovic, Sara Hägg, Ci Song, Stefan 

Gustaffson, Jitender Kumar, Åsa Hedman and all the new and old members of the 

Ingelsson’s group. Thank you for all your help and constructive discussions; this has 

been a terrific and fun collaboration!  

 

Thanks to my collaborators in Rotterdam, Cecile Janssens and Henning Tiemeier. It 

has been a productive and inspiring period. 

 

I want to thank all the peers in the biostat group. This is a fantastic and unique group. 

We have the privilege of discussing theories, where most people just apply them.  

  

MEB has been a balanced and excellent place to work, this is also thanks to: Hatef 

Darabi, Edoardo Colzani, Paul Dickman, Andrea Foebel, Keith Humphreys, Caroline 



	  

	   47	  

Weibull, Therese Andersson, Flaminia Chiesa, Mark Clements, Daniela Mariosa, 

Alessandra Grotta, Anne Örtqvist, Rikard Öberg, Zack Yusof, Fei Yang, Robert 

Szulkin, Robert Karlsson, Sven Sandin, Mattias Rantalainen, Alexander Ploner, Arvid 

Sjölander, Tracy Peters, Nancy Pedersen, Jingmei Li, Donghwan Lee, Andreas 

Karlsson, Anna Johansson, Vilhelmina Ullemar, Alexandra Jauhiainen, Marie 

Jansson, Miriam Elfström and Elin Ross. 

 

Thanks to Alessandro Furlan, Vilma Rraklli, Mustafa and Haythem Ismail 

Muhammad, Cecile Zaouter, Giulia Gaudenzi, Tina Heyder, Fausto Molinari, Karina 

Hentrich and all those who made the dark nights brighter and the Swedish winters 

warmer.  

 

Special thanks to my family, who have been always supportive. Even if you couldn´t 

see me very often, you always helped me keeping my focus. Grazie! 

 

Lastly, Steffi, I would like to thank you for your support in my career and in my life. 

For making this possible certain choices had to be made and I´m grateful and proud 

on your positive attitude and open mind.  

 

 

   

 



	  

	   48	  

11. References 
	  
 
 
[1] Dawber TR, Meadors GF, Moore FE, Jr. Epidemiological approaches to heart 

disease: the Framingham Study. American journal of public health and the 
nation's health. 1951;41(3):279-81. 

[2] Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 
235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis 
for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095-
128. 

[3] Mathers CD, Loncar D. Projections of global mortality and burden of disease 
from 2002 to 2030. PLoS medicine. 2006;3(11):e442. 

[4] Ingelsson E. The grand challenge of cardiovascular epidemiology: Turning the 
tide. Frontiers in Cardiovascular Medicine. 2014;1. 

[5] Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 
291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for 
the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197-223. 

[6] Mendis S, Puska P, Norrving B, et al. Global atlas on cardiovascular disease 
prevention and control. Geneva: World Health Organization in collaboration 
with the World Heart Federation and the World Stroke Organization; 2011. 

[7] Kannel WB, Dawber TR, McGee DL. Perspectives on systolic hypertension. 
The Framingham study. Circulation. 1980;61(6):1179-82. 

[8] Thomas HE, Jr., Kannel WB, Dawber TR, et al. Cholesterol-phospholipid 
ratio in the prediction of coronary heart disease. The Framingham study. The 
New England journal of medicine. 1966;274(13):701-5. 

[9] Kannel WB, McGee DL. Diabetes and cardiovascular disease. The 
Framingham study. Jama. 1979;241(19):2035-8. 

[10] Kannel WB, LeBauer EJ, Dawber TR, et al. Relation of body weight to 
development of coronary heart disease. The Framingham study. Circulation. 
1967;35(4):734-44. 

[11] Friedman LA, Kimball AW. Coronary heart disease mortality and alcohol 
consumption in Framingham. American journal of epidemiology. 
1986;124(3):481-9. 

[12] Doyle JT, Dawber TR, Kannel WB, et al. Cigarette smoking and coronary 
heart disease. Combined experience of the Albany and Framingham studies. 
The New England journal of medicine. 1962;266:796-801. 

[13] Kannel WB. Habitual level of physical activity and risk of coronary heart 
disease: the Framingham study. Canadian Medical Association journal. 
1967;96(12):811-2. 

[14] Lloyd-Jones DM, Nam BH, D'Agostino RB, Sr., et al. Parental cardiovascular 
disease as a risk factor for cardiovascular disease in middle-aged adults: a 
prospective study of parents and offspring. Jama. 2004;291(18):2204-11. 

[15] Zdravkovic S, Wienke A, Pedersen NL, et al. Heritability of death from 
coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. Journal 
of internal medicine. 2002;252(3):247-54. 

[16] Kannel WB. Some lessons in cardiovascular epidemiology from Framingham. 
The American journal of cardiology. 1976;37(2):269-82. 



	  

	   49	  

[17] Levi F, Lucchini F, Negri E, et al. Trends in mortality from cardiovascular and 
cerebrovascular diseases in Europe and other areas of the world. Heart. 
2002;88(2):119-24. 

[18] Ford ES, Greenlund KJ, Hong Y. Ideal cardiovascular health and mortality 
from all causes and diseases of the circulatory system among adults in the 
United States. Circulation. 2012;125(8):987-95. 

[19] Yang Q, Cogswell ME, Flanders WD, et al. Trends in cardiovascular health 
metrics and associations with all-cause and CVD mortality among US adults. 
Jama. 2012;307(12):1273-83. 

[20] Biesheuvel CJ, Vergouwe Y, Oudega R, et al. Advantages of the nested case-
control design in diagnostic research. BMC medical research methodology. 
2008;8:48. 

[21] Pepe MS. The statistical evaluation of medical tests for classification and 
prediction. Oxford ; New York: Oxford University Press; 2003. 

[22] Chambless LE, Diao G. Estimation of time-dependent area under the ROC 
curve for long-term risk prediction. Statistics in medicine. 2006;25(20):3474-
86. 

[23] Uno H, Cai T, Pencina MJ, et al. On the C-statistics for evaluating overall 
adequacy of risk prediction procedures with censored survival data. Statistics 
in medicine. 2011;30(10):1105-17. 

[24] Harrell FE, Jr., Califf RM, Pryor DB, et al. Evaluating the yield of medical 
tests. Jama. 1982;247(18):2543-6. 

[25] Cook NR. Use and misuse of the receiver operating characteristic curve in risk 
prediction. Circulation. 2007;115(7):928-35. 

[26] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a 
nonparametric approach. Biometrics. 1988;44(3):837-45. 

[27] Vickers AJ, Cronin AM, Begg CB. One statistical test is sufficient for 
assessing new predictive markers. BMC medical research methodology. 
2011;11:13. 

[28] Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New York: 
Wiley; 2000. 

[29] May S, Hosmer DW. A simplified method of calculating an overall goodness-
of-fit test for the Cox proportional hazards model. Lifetime data analysis. 
1998;4(2):109-20. 

[30] Steyerberg EW. Clinical prediction models : a practical approach to 
development, validation, and updating. New York, NY: Springer; 2009. 

[31] Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., et al. Evaluating the 
added predictive ability of a new marker: from area under the ROC curve to 
reclassification and beyond. Statistics in medicine. 2008;27(2):157-72; 
discussion 207-12. 

[32] Mihaescu R, van Zitteren M, van Hoek M, et al. Improvement of risk 
prediction by genomic profiling: reclassification measures versus the area 
under the receiver operating characteristic curve. American journal of 
epidemiology. 2010;172(3):353-61. 

[33] Greenland S. The need for reorientation toward cost-effective prediction: 
comments on 'Evaluating the added predictive ability of a new marker: From 
area under the ROC curve to reclassification and beyond' by M. J. Pencina et 
al., Statistics in Medicine (DOI: 10.1002/sim.2929). Statistics in medicine. 
2008;27(2):199-206. 



	  

	   50	  

[34] Pepe MS, Janes H. Commentary: Reporting standards are needed for 
evaluations of risk reclassification. International journal of epidemiology. 
2011;40(4):1106-8. 

[35] Pauker SG, Kassirer JP. The threshold approach to clinical decision making. 
The New England journal of medicine. 1980;302(20):1109-17. 

[36] Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating 
prediction models. Medical decision making : an international journal of the 
Society for Medical Decision Making. 2006;26(6):565-74. 

[37] Rapsomaniki E, White IR, Wood AM, et al. A framework for quantifying net 
benefits of alternative prognostic models. Statistics in medicine. 
2012;31(2):114-30. 

[38] Kattan MW, Cowen ME. Encyclopedia of medical decision making. Thousand 
Oaks, Calif.: SAGE Publications; 2009. 

[39] Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the 
Framingham Study. The American journal of cardiology. 1976;38(1):46-51. 

[40] Anderson KM, Odell PM, Wilson PW, et al. Cardiovascular disease risk 
profiles. American heart journal. 1991;121(1 Pt 2):293-8. 

[41] D'Agostino RB, Sr., Vasan RS, Pencina MJ, et al. General cardiovascular risk 
profile for use in primary care: the Framingham Heart Study. Circulation. 
2008;117(6):743-53. 

[42] Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for 
atrial fibrillation (Framingham Heart Study): a community-based cohort study. 
Lancet. 2009;373(9665):739-45. 

[43] Expert Panel on Detection, Evaluation, and Treatment of High Blood 
Cholesterol in Adults. Executive Summary of The Third Report of The 
National Cholesterol Education Program (NCEP) Expert Panel on Detection, 
Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult 
Treatment Panel III). Jama. 2001;285(19):2486-97. 

[44] Pencina MJ, D'Agostino RB, Sr., Larson MG, et al. Predicting the 30-year risk 
of cardiovascular disease: the framingham heart study. Circulation. 
2009;119(24):3078-84. 

[45] Wilson PW, Meigs JB, Sullivan L, et al. Prediction of incident diabetes 
mellitus in middle-aged adults: the Framingham Offspring Study. Archives of 
internal medicine. 2007;167(10):1068-74. 

[46] Parikh NI, Pencina MJ, Wang TJ, et al. A risk score for predicting near-term 
incidence of hypertension: the Framingham Heart Study. Annals of internal 
medicine. 2008;148(2):102-10. 

[47] D'Agostino RB, Wolf PA, Belanger AJ, et al. Stroke risk profile: adjustment 
for antihypertensive medication. The Framingham Study. Stroke; a journal of 
cerebral circulation. 1994;25(1):40-3. 

[48] Perk J, De Backer G, Gohlke H, et al. European Guidelines on cardiovascular 
disease prevention in clinical practice (version 2012). The Fifth Joint Task 
Force of the European Society of Cardiology and Other Societies on 
Cardiovascular Disease Prevention in Clinical Practice (constituted by 
representatives of nine societies and by invited experts). European heart 
journal. 2012;33(13):1635-701. 

[49] Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular 
risk in England and Wales: prospective derivation and validation of QRISK2. 
Bmj. 2008;336(7659):1475-82. 



	  

	   51	  

[50] Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the 
risk of acute coronary events based on the 10-year follow-up of the 
prospective cardiovascular Munster (PROCAM) study. Circulation. 
2002;105(3):310-5. 

[51] Voss R, Cullen P, Schulte H, et al. Prediction of risk of coronary events in 
middle-aged men in the Prospective Cardiovascular Munster Study 
(PROCAM) using neural networks. International journal of epidemiology. 
2002;31(6):1253-62; discussion 62-64. 

[52] Woodward M, Brindle P, Tunstall-Pedoe H, et al. Adding social deprivation 
and family history to cardiovascular risk assessment: the ASSIGN score from 
the Scottish Heart Health Extended Cohort (SHHEC). Heart. 2007;93(2):172-
6. 

[53] Ferrario M, Chiodini P, Chambless LE, et al. Prediction of coronary events in 
a low incidence population. Assessing accuracy of the CUORE Cohort Study 
prediction equation. International journal of epidemiology. 2005;34(2):413-
21. 

[54] Wu Y, Liu X, Li X, et al. Estimation of 10-year risk of fatal and nonfatal 
ischemic cardiovascular diseases in Chinese adults. Circulation. 
2006;114(21):2217-25. 

[55] Saito I, Sato S, Nakamura M, et al. A low level of C-reactive protein in 
Japanese adults and its association with cardiovascular risk factors: the Japan 
NCVC-Collaborative Inflammation Cohort (JNIC) study. Atherosclerosis. 
2007;194(1):238-44. 

[56] Sritara P, Cheepudomwit S, Chapman N, et al. Twelve-year changes in 
vascular risk factors and their associations with mortality in a cohort of 3499 
Thais: the Electricity Generating Authority of Thailand Study. International 
journal of epidemiology. 2003;32(3):461-8. 

[57] Knuiman MW, Vu HT, Bartholomew HC. Multivariate risk estimation for 
coronary heart disease: the Busselton Health Study. Australian and New 
Zealand journal of public health. 1998;22(7):747-53. 

[58] U.S. Preventive Services Task Force. Screening for colorectal cancer: U.S. 
Preventive Services Task Force recommendation statement. Annals of internal 
medicine. 2008;149(9):627-37. 

[59] Lee SJ, Boscardin WJ, Stijacic-Cenzer I, et al. Time lag to benefit after 
screening for breast and colorectal cancer: meta-analysis of survival data from 
the United States, Sweden, United Kingdom, and Denmark. Bmj. 
2013;346:e8441. 

[60] Lee SJ, Leipzig RM, Walter LC. Incorporating lag time to benefit into 
prevention decisions for older adults. Jama. 2013;310(24):2609-10. 

[61] Yourman LC, Lee SJ, Schonberg MA, et al. Prognostic indices for older 
adults: a systematic review. Jama. 2012;307(2):182-92. 

[62] Charlson ME, Pompei P, Ales KL, et al. A new method of classifying 
prognostic comorbidity in longitudinal studies: development and validation. 
Journal of chronic diseases. 1987;40(5):373-83. 

[63] Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the 
human genome. Nature. 2001;409(6822):860-921. 

[64] Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. 
Science. 2001;291(5507):1304-51. 

[65] International HapMap Consortium. A haplotype map of the human genome. 
Nature. 2005;437(7063):1299-320. 



	  

	   52	  

[66] Reich DE, Lander ES. On the allelic spectrum of human disease. Trends in 
genetics : TIG. 2001;17(9):502-10. 

[67] Lander ES. Initial impact of the sequencing of the human genome. Nature. 
2011;470(7333):187-97. 

[68] Park JH, Wacholder S, Gail MH, et al. Estimation of effect size distribution 
from genome-wide association studies and implications for future discoveries. 
Nature genetics. 2010;42(7):570-5. 

[69] Evans DM, Visscher PM, Wray NR. Harnessing the information contained 
within genome-wide association studies to improve individual prediction of 
complex disease risk. Human molecular genetics. 2009;18(18):3525-31. 

[70] Janssens AC, Aulchenko YS, Elefante S, et al. Predictive testing for complex 
diseases using multiple genes: fact or fiction? Genetics in medicine : official 
journal of the American College of Medical Genetics. 2006;8(7):395-400. 

[71] Wray NR, Yang J, Hayes BJ, et al. Pitfalls of predicting complex traits from 
SNPs. Nature reviews Genetics. 2013;14(7):507-15. 

[72] Nicholson JK, Holmes E, Kinross JM, et al. Metabolic phenotyping in clinical 
and surgical environments. Nature. 2012;491(7424):384-92. 

[73] Tzoulaki I, Ebbels TM, Valdes A, et al. Design and analysis of metabolomics 
studies in epidemiologic research: a primer on -omic technologies. American 
journal of epidemiology. 2014;180(2):129-39. 

[74] Shah SH, Sun JL, Stevens RD, et al. Baseline metabolomic profiles predict 
cardiovascular events in patients at risk for coronary artery disease. American 
heart journal. 2012;163(5):844-50 e1. 

[75] Stegemann C, Pechlaner R, Willeit P, et al. Lipidomics profiling and risk of 
cardiovascular disease in the prospective population-based Bruneck study. 
Circulation. 2014;129(18):1821-31. 

[76] Vaarhorst AA, Verhoeven A, Weller CM, et al. A metabolomic profile is 
associated with the risk of incident coronary heart disease. American heart 
journal. 2014;168(1):45-52 e7. 

[77] Palmer LJ. UK Biobank: bank on it. Lancet. 2007;369(9578):1980-2. 
[78] Stolk RP, Rosmalen JG, Postma DS, et al. Universal risk factors for 

multifactorial diseases: LifeLines: a three-generation population-based study. 
European journal of epidemiology. 2008;23(1):67-74. 

[79] Chao C, Song Y, Cook N, et al. The lack of utility of circulating biomarkers of 
inflammation and endothelial dysfunction for type 2 diabetes risk prediction 
among postmenopausal women: the Women's Health Initiative Observational 
Study. Archives of internal medicine. 2010;170(17):1557-65. 

[80] Kim HC, Greenland P, Rossouw JE, et al. Multimarker prediction of coronary 
heart disease risk: the Women's Health Initiative. Journal of the American 
College of Cardiology. 2010;55(19):2080-91. 

[81] Sattar N, Welsh P, Sarwar N, et al. NT-proBNP is associated with coronary 
heart disease risk in healthy older women but fails to enhance prediction 
beyond established risk factors: results from the British Women's Heart and 
Health Study. Atherosclerosis. 2010;209(1):295-9. 

[82] Kulathinal S, Karvanen J, Saarela O, et al. Case-cohort design in practice - 
experiences from the MORGAM Project. Epidemiologic perspectives & 
innovations : EP+I. 2007;4:15. 

[83] Magnusson PK, Almqvist C, Rahman I, et al. The Swedish Twin Registry: 
establishment of a biobank and other recent developments. Twin Res Hum 
Genet. 2013;16(1):317-29. 



	  

	   53	  

[84] Anckarsater H, Lundstrom S, Kollberg L, et al. The Child and Adolescent 
Twin Study in Sweden (CATSS). Twin research and human genetics : the 
official journal of the International Society for Twin Studies. 2011;14(6):495-
508. 

[85] Pedersen NL, Friberg L, Floderus-Myrhed B, et al. Swedish early separated 
twins: identification and characterization. Acta geneticae medicae et 
gemellologiae. 1984;33(2):243-50. 

[86] Finkel D, Reynolds CA, McArdle JJ, et al. Genetic variance in processing 
speed drives variation in aging of spatial and memory abilities. Developmental 
psychology. 2009;45(3):820-34. 

[87] McClearn GE, Johansson B, Berg S, et al. Substantial genetic influence on 
cognitive abilities in twins 80 or more years old. Science. 
1997;276(5318):1560-3. 

[88] Gold CH, Malmberg B, McClearn GE, et al. Gender and health: a study of 
older unlike-sex twins. The journals of gerontology Series B, Psychological 
sciences and social sciences. 2002;57(3):S168-76. 

[89] Byberg L, Siegbahn A, Berglund L, et al. Plasminogen activator inhibitor-1 
activity is independently related to both insulin sensitivity and serum 
triglycerides in 70-year-old men. Arteriosclerosis, thrombosis, and vascular 
biology. 1998;18(2):258-64. 

[90] Lind L, Fors N, Hall J, et al. A comparison of three different methods to 
evaluate endothelium-dependent vasodilation in the elderly: the Prospective 
Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. 
Arteriosclerosis, thrombosis, and vascular biology. 2005;25(11):2368-75. 

[91] Ripatti S, Tikkanen E, Orho-Melander M, et al. A multilocus genetic risk 
score for coronary heart disease: case-control and prospective cohort analyses. 
Lancet. 2010;376(9750):1393-400. 

[92] Paynter NP, Chasman DI, Pare G, et al. Association between a literature-based 
genetic risk score and cardiovascular events in women. Jama. 
2010;303(7):631-7. 

[93] Redberg RF, Benjamin EJ, Bittner V, et al. ACCF/AHA 2009 performance 
measures for primary prevention of cardiovascular disease in adults: a report 
of the American College of Cardiology Foundation/American Heart 
Association Task Force on Performance Measures (Writing Committee to 
Develop Performance Measures for Primary Prevention of Cardiovascular 
Disease) developed in collaboration with the American Academy of Family 
Physicians; American Association of Cardiovascular and Pulmonary 
Rehabilitation; and Preventive Cardiovascular Nurses Association: endorsed 
by the American College of Preventive Medicine, American College of Sports 
Medicine, and Society for Women's Health Research. Journal of the American 
College of Cardiology. 2009;54(14):1364-405. 

[94] Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS 
genetics. 2013;9(3):e1003348. 

[95] CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, et al. Large-
scale association analysis identifies new risk loci for coronary artery disease. 
Nature genetics. 2013;45(1):25-33. 

[96] Cholesterol Treatment Trialists Collaborators, Mihaylova B, Emberson J, et al. 
The effects of lowering LDL cholesterol with statin therapy in people at low 
risk of vascular disease: meta-analysis of individual data from 27 randomised 
trials. Lancet. 2012;380(9841):581-90. 



	  

	   54	  

[97] Thanassoulis G, Peloso GM, O'Donnell CJ. Genomic medicine for improved 
prediction and primordial prevention of cardiovascular disease. 
Arteriosclerosis, thrombosis, and vascular biology. 2013;33(9):2049-50. 

[98] Isaacs A, Willems SM, Bos D, et al. Risk scores of common genetic variants 
for lipid levels influence atherosclerosis and incident coronary heart disease. 
Arteriosclerosis, thrombosis, and vascular biology. 2013;33(9):2233-9. 

[99] Tikkanen E, Havulinna AS, Palotie A, et al. Genetic risk prediction and a 2-
stage risk screening strategy for coronary heart disease. Arteriosclerosis, 
thrombosis, and vascular biology. 2013;33(9):2261-6. 

[100] Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, et al. C-
reactive protein, fibrinogen, and cardiovascular disease prediction. The New 
England journal of medicine. 2012;367(14):1310-20. 

[101] Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association 
of lysophosphatidylcholine. Atherosclerosis. 2010;208(1):10-8. 

[102] Fernandez C, Sandin M, Sampaio JL, et al. Plasma lipid composition and risk 
of developing cardiovascular disease. PloS one. 2013;8(8):e71846. 

[103] Wang-Sattler R, Yu Z, Herder C, et al. Novel biomarkers for pre-diabetes 
identified by metabolomics. Molecular systems biology. 2012;8:615. 

[104] Karayalcin B, Aras G, Erbay G, et al. Parasternal lymphoscintigraphy using 
99Tcm-dextran. Nuclear medicine communications. 1988;9(9):657-62. 

[105] Lumley T. Complex surveys : a guide to analysis using R. Hoboken, N.J.: 
John Wiley; 2010. 

[106] Holmes MD, Olsson H, Pawitan Y, et al. Aspirin intake and breast cancer 
survival - a nation-wide study using prospectively recorded data in Sweden. 
BMC cancer. 2014;14:391. 

[107] Lagiou P, Hsieh CC, Trichopoulos D, et al. Neonatal growth and breast cancer 
risk in adulthood. British journal of cancer. 2008;99(9):1544-8. 

[108] Fang F, Ye W, Fall K, et al. Loss of a child and the risk of amyotrophic lateral 
sclerosis. American journal of epidemiology. 2008;167(2):203-10. 

[109] Harrell FE. Regression modeling strategies : with applications to linear 
models, logistic regression, and survival analysis. New York: Springer; 2001. 

[110] Tibshirani R. Regression shrinkage and selection via the Lasso. J Roy Stat Soc 
B Met. 1996;58(1):267-88. 

[111] Rose S. Mortality risk score prediction in an elderly population using machine 
learning. American journal of epidemiology. 2013;177(5):443-52. 

[112] Marbach D, Costello JC, Kuffner R, et al. Wisdom of crowds for robust gene 
network inference. Nature methods. 2012;9(8):796-804. 

[113] Cook NR. Comments on 'Evaluating the added predictive ability of a new 
marker: From area under the ROC curve to reclassification and beyond' by M. 
J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). Statistics in 
medicine. 2008;27(2):191-5. 

[114] Van Calster B, Van Huffel S. Integrated discrimination improvement and 
probability-sensitive AUC variants. Statistics in medicine. 2010;29(2):318-9. 

[115] Ware JH, Cai T. Comments on 'Evaluating the added predictive ability of a 
new marker: From area under the ROC curve to reclassification and beyond' 
by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). 
Statistics in medicine. 2008;27(2):185-7. 

[116] Ingelsson E, Schaefer EJ, Contois JH, et al. Clinical utility of different lipid 
measures for prediction of coronary heart disease in men and women. Jama. 
2007;298(7):776-85. 



	  

	   55	  

[117] Rodenhuis S, Mandjes IA, Wesseling J, et al. A simple system for grading the 
response of breast cancer to neoadjuvant chemotherapy. Annals of oncology : 
official journal of the European Society for Medical Oncology / ESMO. 
2010;21(3):481-7. 

[118] Salomaa V, Havulinna A, Saarela O, et al. Thirty-one novel biomarkers as 
predictors for clinically incident diabetes. PloS one. 2010;5(4):e10100. 

[119] Kerr KF, Wang Z, Janes H, et al. Net reclassification indices for evaluating 
risk prediction instruments: a critical review. Epidemiology. 2014;25(1):114-
21. 

[120] Goldstein BA, Knowles JW, Salfati E, et al. Simple, standardized 
incorporation of genetic risk into non-genetic risk prediction tools for complex 
traits: coronary heart disease as an example. Frontiers in genetics. 2014;5:254. 

[121] Nielsen JB, Graff C, Rasmussen PV, et al. Risk prediction of cardiovascular 
death based on the QTc interval: evaluating age and gender differences in a 
large primary care population. European heart journal. 2014;35(20):1335-44. 

[122] Tzoulaki I, Liberopoulos G, Ioannidis JP. Assessment of claims of improved 
prediction beyond the Framingham risk score. Jama. 2009;302(21):2345-52. 

[123] Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. 
Development, internal validation, and assessing the incremental value of a 
new (bio)marker. Heart. 2012;98(9):683-90. 

[124] Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of 
prediction models: a framework for traditional and novel measures. 
Epidemiology. 2010;21(1):128-38. 

[125] Dick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-mass 
index: a genome-wide analysis. Lancet. 2014;383(9933):1990-8. 

[126] GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nature 
genetics. 2013;45(6):580-5. 

[127] ENCODE Project Consortium. An integrated encyclopedia of DNA elements 
in the human genome. Nature. 2012;489(7414):57-74. 

[128] Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based Human 
Protein Atlas. Nature biotechnology. 2010;28(12):1248-50. 

[129] Wheeler HE, Aquino-Michaels K, Gamazon ER, et al. Poly-omic prediction of 
complex traits: OmicKriging. Genetic epidemiology. 2014;38(5):402-15. 

[130] Kodama K, Toda K, Morinaga S, et al. Anti-CD44 Antibody Treatment 
Lowers Hyperglycemia and Improves Insulin Resistance, Adipose 
Inflammation, and Hepatic Steatosis in Diet-Induced Obese Mice. Diabetes. 
2014. 

[131] Yang J, Lee SH, Goddard ME, et al. GCTA: a tool for genome-wide complex 
trait analysis. American journal of human genetics. 2011;88(1):76-82. 

[132] Eichler HG, Abadie E, Breckenridge A, et al. Open clinical trial data for all? 
A view from regulators. PLoS medicine. 2012;9(4):e1001202. 

[133] Gymrek M, McGuire AL, Golan D, et al. Identifying personal genomes by 
surname inference. Science. 2013;339(6117):321-4. 

[134] Homer N, Szelinger S, Redman M, et al. Resolving individuals contributing 
trace amounts of DNA to highly complex mixtures using high-density SNP 
genotyping microarrays. PLoS genetics. 2008;4(8):e1000167. 

 
 


	Kappa_04NOV2014
	Ganna-Risk Prediction Measures for Case-Cohort and Nested Case-Control Designs_ An Application to Cardiovascular Disease
	Ganna-Risk Prediction Measures for Case-Cohort and Nested Case-Control Designs_ An Application to Cardiovascular Disease_SUPPL
	ganna-Multilocus Genetic Risk Scores for Coronary Heart Disease Prediction2
	ganna-Multilocus Genetic Risk Scores for Coronary Heart Disease Prediction_SUPPL
	Ganna-Large-scale Metabolomic Profiling Identifies Novel Biomarkers for Incident Coronary Heart Disease
	Ganna_study4_manuscript



