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ABSTRACT 

To optimize survival and growth, bacteria have evolved adaptive behaviors that respond to 

relevant environmental signals. A switch from the motile to the sessile lifestyle is probably 

the most ancient behavioral transition of microorganisms. Gram-negative bacteria such as 

Salmonella species and Pseudomonas aeruginosa have a set of extracellular appendages 

involved in motility and biofilm formation, but also in interaction with the host. These 

appendages can be regulated by the bacterial second messenger cyclic di-GMP, which 

allows a millisecond fast response. 

The bacterial second messenger c-di-GMP regulates the transition between 

sessility and motility and between acute and chronic infection. In this work, the signaling 

pathway involved in motility in Salmonella enterica serovar Typhimurium has been 

investigated in detail. The phosphodiesterase YhjH specifically downregulates motility by 

interfering with the flagellar functionality. Three diguanylate cyclases inhibit motility in the 

yhjH background and interact specifically with one of two c-di-GMP receptors affecting 

motility (Paper 1). Also non-canonical EAL domain proteins such as STM1697 

unconventionally inhibit motility by post-transcriptionally interfering with the major flagellar 

regulator FlhD4C2 (Paper 2), which downregulates flagellin expression as one final outcome 

(Paper 2 and Paper 3). STM1697 has also an unconventional phenotype compared to EAL 

phosphodiesterases with respect to biofilm formation and invasion of the colon 

adenocarcinoma cell line HT-29 (Paper 2, Paper 4) and affects virulence mediated through 

the FlhD4C2 interaction (Paper 2). In general, c-di-GMP metabolizing proteins regulate 

virulence properties of S. Typhimurium such as invasion and production of the 

pro-inflammatory cytokine interleukin 8 by HT-29, but also secretion of the effector protein 

SipA from the invasion related type three secretion system and colonization of gut and 

organs in the streptomycin treated mouse (Paper 4). Surprisingly, c-di-GMP signaling inhibits 

virulence properties through biofilm components such as the major biofilm regulator CsgD 

and the cellulose synthase BcsA (Paper 4). These studies show that the c-di-GMP signaling 

network is involved in virulence in S. Typhimurium. In the last study, the human surfactant 

protein C an innate immune component of the lung, did not have an effect on bacterial 

growth, but affected biofilm formation and swarming motility of P. aeruginosa PAO1 

(Paper 5). 

In conclusion, this thesis sheds light on how the c-di-GMP signaling network 

and the surfactant protein C regulate the adaptive behavior of S. Typhimurium and 

P.  aeruginosa, respectively. 
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1 INTRODUCTION 
 

Bacteria express appendages on their cell surface for survival and virulence. 

These structures are important for motility, biofilm formation and the early stage of 

infection among other features. During interaction with higher organisms, these 

appendages can be recognized by the host and induce a defense response. 

To escape this attack, bacteria may adjust the expression or modify the structure of 

their surface appendages. 

 

1.1 GRAM-NEGATIVE SURFACE APPENDAGES: STRUCTURE AND 

FUNCTIONS 

Gram-negative or diderm bacteria exhibit different proteinaceous appendages on 

their cell surfaces that can be classified into at least six major classes based on their 

biosynthetic pathway1. Major proteinaceous surface appendages common to several 

bacteria are the flagellum, type three secretion injectisome, amyloid fibers such as 

curli and type IV pili. Non-proteinaceous appendages include lipopolysaccharide 

(LPS) and exopolysaccharide appendages such as cellulose.  

 

 Flagellum  1.1.1

The flagellum is an important surface structure involved in motility, biofilm formation 

and virulence2. The number and localization of the flagellum can vary significantly 

from one organism to another, for example Pseudomonas aeruginosa is 

monotrichous with one polar flagellum, while Salmonella enterica serovar 

Typhimurium is peritrichous with approximately 6 to 10 flagella arranged around the 

cell 3, 4. Assembly of this nanostructure is an ATP-driven process, but the rotation is 

directed by proton motive force5. The structure of this appendage can be divided in 

three parts: a long extracellular filament used as a propeller, a basal body, which 

spans across the membrane and contains the motor and a hook that connects the 

basal body with the filament6 (Fig. 1).  

Assembly of the flagellum in bacteria such as Salmonella species and 

Escherichia coli is hierarchically organized at the transcriptional level with three 

classes of promoters or transcriptional checkpoints7. In S. Typhimurium, the class 

one promoter genes encode the flagellar master regulator FlhD4C2. The class two 

promoter genes are transcribed upon activation by the heterodimer FlhD4C2 and the 
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RNA polymerase loaded with sigma factor 70. This class of genes encodes the 

components of the basal body and sigma factor 28 (FliA). The last transcriptional 

checkpoint is controlled by the anti-sigma factor FlgM that inhibits FliA. Once the 

hook basal body is completed, a substrate-specificity switch will lead to FlgM export 

and relieve inhibition of FliA to subsequently activate the transcription of the class 

three promoter genes6. This class of genes includes hook-associated proteins, motor 

components, filament subunits FliC and FljB and chemotaxis system proteins. 

In Pseudomonads, the sigma factor 54 acts together with the flagellar transcriptional 

activator FleQ to activate class two genes7.  

 

 

 

      

      

 

     

  

          

 Figure 1: Flagellum and injectisome representation. 

The flagellum and injectisome appendages are genetically, structurally and functionally 

similar. They are close in terms of evolution, their structure can be divided into three parts 

and the assembly of both appendages is conducted by the type three secretion system. 

Flagellum and the type three secretion injectisome have membrane-embedded export gates 

and a cytoplasmic complex containing an ATPase8. Both systems possess a molecular ruler 

to control the length of the flagellar hook or the injectisome needle9, 10. In the middle, 

cryo-electronmicroscopy image of membrane complex. OR: outer membrane ring, IR: inner 

membrane ring, OM: outer membrane, PG: peptidoglycan layer, CM: cytoplasmic 

membrane. Adapted from Kawamoto et al., 2013 11. 

 

 

 

Basal Body 

Export Apparatus 

Motor 

Components 



 

3 

 

 Type three secretion injectisome 1.1.2

An intact injectisome was first observed in S. Typhimurium by electron microscopy 

and is studied now extensively by cryo-electronmicroscopy11, 12(Fig. 1). 

This membrane spanning nanostructure is a major virulence factor of the human 

pathogen S. Typhimurium, the plant pathogen P. syringae and other bacteria. 

The  main function of the injectisome is to manipulate the host cell by injection of 

effector proteins whereby the functions depend on bacterial lifestyles and infection 

modes13. This nanostructure can be divided into three parts: a basal body 

comparable to a channel, an export apparatus with a sorting platform, a needle or a 

pilus responsible for the translocation of effector proteins into the host cells14-16.  

In S. Typhimurium, the invasion associated type three secretion system 

(iT3SS) is mainly constituted of two pathogenicity islands; Salmonella pathogenic 

island 1 and 2 (SPI-1 and SPI-2)17, 18. The iT3SS-1 encoded on SPI-1 is necessary 

during the early stage of infection while the iT3SS-2 encoded on SPI-2 is required 

after invasion for bacterial replication and survival in the Salmonella containing 

vacuole in the host cell19, 20.  

The invasion process of S. Typhimurium can be divided into four 

steps:  (i) surface scanning and interaction with the mucosal surfaces, (ii) reversible 

binding mediated by the type 1 fimbriae, (iii) irreversible docking onto the host cell 

via the injectisome and (iv) manipulation of the host cell to allow invasion21. Effector 

proteins cooperatively mediate entry into the cell, for example SipA (Salmonella 

invasion protein A) encoded on SPI-1 directly binds actin and catalyzes its 

polymerization. Other iT3SS proteins such as SopE, SopE2 or SopB stimulate Rho 

family GTPases in the cell22-24. In complement, bacteria adjust their motility for 

surface scanning and use the metabolic products of the gut microbiota upon 

inflammation as energy sources to ensure successful invasion21, 25. As a major route 

of disease, Salmonella crosses the epithelial barrier of the gut by invasion of 

mucosal epithelial cells and induces inflammation after 4-8 hours24, 26. 

 

 Curli 1.1.3

Curli are amyloid fibers, 6-12 nm wide, resistant to protease and detergent attack. 

They are assembled by the type VIII secretion pathway and constitute an important 

component of the extracellular biofilm matrix27. In Salmonella species and E. coli, 

curli fibers are commonly coproduced with cellulose resulting in a biofilm, which 
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displays a distinct morphotype on Congo red agar plates. Biogenesis of curli requires 

two distinct curli subunit gene (csg) operons, csgBAC and csgDEFG28. CsgA is the 

major subunit protein of the fiber, while CsgB constitutes a minor 

subunit29 (Fig. 2 (A)). Export and assembly of CsgA is dependent on CsgG, a pore 

forming outer membrane lipoprotein and two periplasmic proteins CsgE and CsgF30, 

31. CsgD is a transcriptional regulator of the FixJ/LuxR family and is required for 

positive regulation of the curli production32. In P. aeruginosa, the fap operon 

encodes another class of amyloid fibers involved in biofilm formation33.      

 A      B 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic representation of the curli and type IV pili 

(A) For curli biogenesis, the soluble major and minor subunits CsgA and CsgB are secreted 

across the outer membrane through the protein channel CsgG to form amyloid fibers. CsgA 

and CsgB contain a sec signal sequence that mediates their translocation across the inner 

membrane, which is cleaved of before passage through the porin forming protein CsgG. 

(B) The secretion system of the type IV pili is homologous of the type II secretion system. 

IM: inner membrane, OM: outer membrane, IMCP: inner membrane core protein. 

(A) Adapted from Goyal et al., 2014 and (B) Melville & Craig, 201334, 35. 

 

 Type IV pili 1.1.4

Type IV pili are cell surface polymers present in Gram-positive and 

Gram-negative bacteria (Fig. 2 (B)). They are flexible filaments of 1-4 µm length. 

A major function of type IV pili is twitching motility, associated with biofilm formation 

and bacterial virulence36. The pilus is constituted of the major pilin subunit called PilA 

and some minor pilins required for assembly or functionality35, 37. The secretion of 

PilA monomers to the cell surface requires the outer membrane secretin PilQ, while 

http://mmbr.asm.org/content/77/3/323/F3.expansion.html
http://mmbr.asm.org/content/77/3/323/F3.expansion.html
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two ATPases, PilB and PilC, are implicated in extension and retraction by 

assembling and disassembling PilA monomers38.  

 

 Cellulose and lipopolysaccharide 1.1.5

Cellulose is the most abundant biopolymer on earth produced by plants, fungi, 

animals and prokaryotes. In many bacteria including E. coli and S. Typhimurium, 

cellulose is one of the major components of the extracellular matrix of biofilm. 

This exopolysaccharide is composed of straight β-1-4 glucan chains associated by 

hydrogen bonds. In the model organism Gluconacetobacter xylinus, the cellulose 

macromolecules are crystalline fibrils located on the surface of the cell39. Cellulose 

production is associated with multicellular behavior and its expression can be 

monitored on Congo agar plate as a pink, dry and rough colony morphology40-42. 

In Enterobacteriaceae, synthesis of cellulose requires the two divergently transcribed 

bacterial cellulose synthesis (bcs) operons bcsABZC and bcsEFG28, 43. 

The membrane standing complex BcsAB contains the catalytic activity for cellulose 

synthesis44 (Fig. 3 (A)). BcsA is a membrane protein with a large cytoplasmic 

beta-glycosyltransferase 2 domain, which binds UDP-glucose and is responsible for 

the production of the linear glucan chain; and possess at the C-terminal end a PilZ 

c-di-GMP binding domain. The glucan chain is thought to be extruded through the 

outer membrane by the porin BcsC44, 45.  

                  A       B 
 
OM       

 

Periplasm 

IM 

 

 

Figure 3: Bacterial cellulose and LPS. 

(A) BcsA-BcsB is a large inner membrane complex with a large periplasmic and cytosolic 

part. The catalytic activity of this complex is located in BcsA as indicated by the arrow. 

The glucose and UDP are represented in blue and red respectively. (B) Export of LPS to the 

outer surface is made by a transmembrane transport complex constituted of seven proteins. 
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IM: inner membrane. OM: outer membrane. (A) Adapted from Morgan et al., 2013 and 

(B) Dong et al., 201344, 46.   

The lipopolysaccharide (LPS) is an essential component of the outer 

membrane of Gram-negative bacteria and is constituted of lipid A, core and variable 

O antigen (Fig. 3 (B)). In S. Typhimurium and P. aeruginosa, it constitutes an 

important virulence factor47. 

 

 Surface appendages as pathogen associated molecular pattern  1.1.6

Surface appendages are a primary target for the innate and adaptive immune 

response48, 49. Pathogen associated molecular patterns (PAMPs) are conserved 

microbial molecules not present in the eukaryotic host and thus represent an ideal 

target to be recognized by the innate immune response. Surface appendages are 

recognized by pattern recognition receptors (PRRs) in the host. Some of the most 

studied PRRs belong to the toll like receptor (TLR) family. PAMPs, more correctly 

designated as MAMPs (microbial- associated molecular pattern), include, for 

example LPS and curli recognized by TLR-4 and TLR-2, TLR-1 and cluster of 

differentiation 14 (CD-14) respectively50, 51. 

Bacterial flagellin is a well-characterized PAMP recognized by PRR in 

mammalian cells and the plant host. In mammals, flagellin is a ligand for cell bound 

and cytosolic receptors, which include TLR-5 and Nod-like receptors NAIP5 and 

IPAF52-54. Binding of flagellin to these receptors triggers downstream events such as 

pro-inflammatory response and apoptosis54.  

 The flagellin monomer is constituted of four domains: D0, D1, D2 and 

D3. The conserved domain D1 is recognized by TLR-5 and exposed in monomeric 

flagellin55.  The flagellar filament consists of 11 protofilaments that are assembled in 

a helix like manner (Fig. 4 (C)). 
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Figure 4: Schematic representation of flagellin domain structure and binding 

to TLR-5. (A) Four domains D0, D1, D2 and D3 compose the flagellin monomer. (B) Top 

view of the 11 proto-filaments. (C) Longitudinal view of one protofilament with helical 

structure. (D) Flagellin and TLR-5 receptor complex. Adapted from Tanner et al., 2011 and 

Yoon et al., 201256, 57. 

 

TLR-5 binding to flagellin can be investigated in vitro with the human 

colon adenocarcinoma cell line HT-29. HT-29 does not express TLR-4, which 

recognizes LPS. Downstream events of TLR-5 recognition of flagellin such as 

production of the pro-inflammatory cytokine interleukin 8 (IL-8) or NF-kB activation 

can be used as biological readout to evaluate the TLR-5-flagellin interaction58. 

 

 Phase variation and bistable expression of surface appendages 1.1.7

To avoid recognition by the host or for energy saving, bacteria can regulate the 

expression of their surface appendages. Two main mechanisms are phase variation 

and bistable expression. Phase variation is mainly characterized as an ON-OFF 

system. It occurs in a stochastic manner, but with higher frequency than random 

mutations. Phase variation is common in Gram-negative bacteria and associated 

with evasion of the host immunity. Major molecular mechanisms of phase variation 

are site-specific recombination, gene conversion, epigenetic modification, nested 

DNA inversion and slipped strand mispairing. For example, the Salmonella flagellar 

switch from flagellin FliC to FljB can be described as an antigenic switch in a phase 

variation manner (ON-OFF) caused by site-specific inversion of the promoter region 

of the fljBA operon59, 60 (Fig. 5).  

D 
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Figure 5: Simplified schema of flagellar phase variation. 

During the phase H1, FljB and FljA are expressed. FljA is a transcriptional and post-

translational repressor of the phase H2. In the phase 2, the DNA invertase complex Hin/Fis 

inverts the promoter region of fljBA and fljB and fljA are not transcribed. fliC is transcribed as 

fljA transcription is repressed. Adapted from Bonifield and Hughes, 2003 and Hughes 

et al., 19924.   

 

Bistability describes coexistence of two distinct populations with an all or 

nothing expression pattern in the same isogenic cell population61. For example, the 

expression of flagella or the biofilm activator CsgD are bistably expressed in 

Salmonella62. Even during the motile phase, not all the cells express flagella. 

Regulation of this bistability occurs at the post-translational level by interference with 

the class 1 transcriptional regulator FlhD4C2. FlhD4C2 functionality is repressed by 

the non-canonical EAL domain proteins YdiV and STM169763, 64. Bistable expression 

is not only restricted to the flagellum system, the injectisome is also subject to 

bistable expression65. One other biological reason for bistability can be found in 

energy saving for the population. In LB batch culture, it has been observed that 

bacteria expressing the effector proteins from the SPI-1 locus have a growth 

disadvantage (retardation) compared to the part of the population not expressing 

effector proteins66. This observation was also made at the single cell level and, with 

growth retardation correlated with an increase in antibiotic resistance67.  
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1.2 BIOFILMS 

The multicellular lifestyle, commonly called biofilm formation, is one of the most 

widespread and ancient adaptive behaviors of microorganisms68. Biofilms are 

defined “as matrix-enclosed bacterial populations adherent to each other and/or to 

surfaces or interfaces”69. A biofilm consortium can be composed of different 

microorganism such as bacteria, fungi or other unicellular organisms such as algae 

and amoeba. The extracellular matrix is variable depending on the microorganisms’ 

composition, exerted forces, growth condition, surface, temperature, nutrient 

availability and other parameters70. The extracellular matrix consists of 

exopolysaccharides, protein, nucleic acids such as eDNA and lipids. Proteinaceous 

appendages such as flagella, pili and fimbriae contribute to adherence and biofilm 

matrix stabilization71. The biofilm developmental cycle can be dissected in distinct 

steps; initial and reversible attachment, irreversible binding, formation of 

microcolonies, development of a biofilm structure and maturation, detachment and 

dispersion. Surface appendages are essential during almost all steps of biofilm 

formation72.  

Prior and during the initial attachment, surface structures such as the 

flagella or pili are important for sensing the surface and to give a ”landing 

permission”. For example, in P. aeruginosa, type IV pili play a complementary role to 

the Pel polysaccharide biosynthesis locus to slingshot the bacteria on the surface73.  

Irreversible attachment is mediated by formation of extracellular matrix 

components, for example, exopolysaccharide. The period to switch from reversible 

to irreversible attachment is highly variable depending on the microorganism74. 

The transition between microcolonies and mature biofilm is mainly driven by 

metabolic changes and extensive production of extracellular matrix72. Detachment of 

cells from mature biofilm involves specific environmental stimuli, signal transduction 

pathways and effectors75, 76. 

The composition of the biofilm is highly variable depending on 

environmental conditions, the microorganisms and the surface colonized. 

The microorganisms may only constitute 10% of the biofilm, while the extracellular 

matrix contributes 90% of the mass of the biofilm. In the intestine, the microflora 

forms a biofilm-like community that promotes physiological functions such as 

digestion, provides a protection barrier from pathogen invasion of the mucosal 

epithelium and strengthens the host defense77. On the other hand, biofilm formation 

in enteric pathogens can promote colonization and confer protection from host 
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immune defenses such as antimicrobial peptides. S. Typhimurium is one pathogen 

that takes advantage of the disruption of the resident intestinal microbiota after 

antibiotic treatment. This enteric pathogen adheres to the intestinal epithelium with 

its surface appendages like fimbriae and curli and forms a pathogenic biofilm on 

biotic surfaces such as gallstones within 14 days78. Salmonella biofilm formation can 

be analyzed in the laboratory as pellicle formation at the air-liquid interface in 

lysogenic broth (LB), a ring in adherence test medium (ATM) or the rdar (red, dry 

and rough) morphotype on Congo red agar plates43, 79, 80. 

The master regulator of biofilm formation in S. Typhimurium is the 

response regulator CsgD, which constitutes a major hub in the regulation of rdar and 

pellicle biofilm81. The expression of csgD in the stationary phase is dependent on 

RpoS, an alternative sigma factor, and other global regulators82. The RNA 

chaperone Hfq and Hfq dependent sRNAs are involved in csgD regulation at the 

transcriptional and post-transcriptional levels. The carbon storage regulator CsrA, a 

global RNA-binding protein, also plays an important role in modulation of the biofilm 

phenotype in S. Typhimurium83. 

 

1.3 THE CYCLIC DI-GMP SIGNALING NETWORK 

First discovered in Gluconacetobacter xylinus in 1987 as an activator of the cellulose 

synthase, cyclic-di-GMP (C-di-GMP) has been extensively investigated84. In 2004, 

three research groups independently “rediscovered” c-di-GMP and defined its role as 

second messenger of bacteria85-87. In addition, the biofilm motility switch paradigm 

was postulated85 . More recently, c-di-GMP network were dissected in many bacteria 

and eukaryotic c-di-GMP receptors in mammalians were identified85. Since then, the 

interest for this molecule has been growing, which cumulatively resulted in more 

than 650 scientific articles about c-di-GMP to date.  

 

 C-di-GMP signaling network architecture 1.3.1

1.3.1.1 Articulations of the network: Enzymes responsible for c-di-GMP turnover  

Usually, a first messenger signal is exponentially amplified by enzymatic production 

of a second messenger. The intracellular level of the second messenger        

c-di-GMP is regulated by diguanylate cyclase (c-di-GMP synthesis) and 

phosphodiesterase (c-di-GMP degradation) activity. Two molecules of guanosine 

triphosphate (GTP) serve as substrate for c-di-GMP formation with the intermediate 

product pppGpG. The diguanylate cyclase domain contains a GG(D/E)EF 
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(Gly-Gly-Asp/Glu-Glu-Phe) motif involved in the enzymatic activity; the condensation 

of the two GTP. The c-di-GMP synthesis with phosphodiester bond formation 

requires a GGDEF domain homodimer in antiparallel conformation and the presence 

of divalent manganese (Mn2+) or magnesium (Mg2+) ions (Fig. 6). The third amino 

acid of the motif, which can be a D (aspartate) or E (glutamate), is involved in 

catalysis, a mutation of D/E to A (Alanine) abolishes the enzymatic activity88. 

Approximately 60 % of the GG(D/E)EF proteins, like PleD of Caulobacter 

crescentus, contain a product binding site characterized by an RXXD motif 

(X corresponds to any amino acid) or ”I-site” (I for inhibitory) located five amino acids 

upstream of the GGDEF motif. Upon c-di-GMP binding to the “I-site”, allosteric 

repression or product inhibition occurs which restricts the activity of the diguanylate 

cyclases89, 90.  

 

 

 

 

                 GGDEF domain   EAL domain  

2 x GTP          

              HD-GYP   

 

 

 

 

 

Figure 6:  C-di-GMP metabolism and enzymatic components involved. 

Synthesis and degradation of c-di-GMP involves diguanylate cyclases and 

phosphodiesterases. The diguanylate cyclase activity, which performs synthesis of 

c-di-GMP, contains a GGDEF domain and is represented by WspR from P. aeruginosa. 

The phosphodiesterases performing the degradation of c-di-GMP contain an EAL or 

HD-GYP domain. Adapted from De et al., 2008, Kalia et al., 2013 and Wigren et al.,201491-93. 
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Degradation of c-di-GMP is mediated by phosphodiesterases with EAL 

(Glu-Ala-Leu) or HD-GYP (His-Asp-Gly-Tyr-Pro) domain. Hydrolysis of the c-di-GMP 

phosphodiester bond leads to the linear di-nucleotide (5´-pGpG) for the EAL and 

guanosine monophosphate (GMP) for the HD-GYP domain. In the case of the EAL 

domain, degradation of c-di-GMP requires Mn2+ or Mg2+ and is inhibited by Ca2+ ions. 

Although a phosphodiesterase activity has been observed for an EAL domain 

monomer, EAL domains perform optimal catalytic activity as dimers or oligomers94. 

The majority of the EAL domains contain a conserved motif DFG(T/A)GYSS 

comprising loop 6 implied in maintenance of the secondary structure of the EAL 

domain and the substrate binding activity95. Structural analysis of the 

phosphodiesterase RocR from P. aeruginosa revealed seven amino acids required 

for Mg2+ positioning (Fig. 6). The phosphodiester bond breakage is the result of the 

nucleophilic attack of the resulting OH- after proton acceptation from a water 

molecule by the general catalytic base glutamate E in the EGVF motif96.  

The EAL domain proteins can be classified into three classes. The first 

class contains conserved consensus signature motifs and a conserved loop 6. 

Class 1 EAL domains are bona fide phosphodiesterases. Member of class 2 EAL 

domains do not necessarily behave as phosphodiesterases. They have 

semi-conserved consensus sequences and a degenerated loop 6 such as the 

phosphodiesterase STM3611 (YhjH) in S. Typhimurium. The class 3 EAL domains 

also contain a degenerated loop 6 and lack residues required for catalysis and 

c-di-GMP binding activity. Class 3 domain proteins are, for example, STM1697 and 

YdiV, in S. Typhimurium94.  

The other hydrolases that degrade c-di-GMP are the HD-GYP domain 

proteins. The difference in the degradation product between EAL domains and 

HD-GYP domains is due to the high efficiency to break down the intermediary 

product 5´-pGpG by the HD-GYP domain. The first HD-GYP identified was RpfG in 

Xanthomonas campestris97. Lately, the crystal structure of the active HD-GYP 

protein Pm-GH revealed the presence of a trinuclear Fe center and an optimal 

conformation of the catalytic site that allows complete hydrolysis of c-di-GMP into 

two molecules of GMP98.  

GGDEF-EAL as tandem domains in one protein occurs in 1/3 of the GGDEF 

domain and 2/3 of the EAL domain proteins. In the tandem proteins, the individual 

domains can have diguanylate cyclase and phosphodiesterase activity, one of the 
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enzymatic activities or can be both inactive. GGDEF-HD-GYP tandems exist to a 

lesser extent99.  

 

1.3.1.2 Distribution of c-di-GMP metabolizing proteins in the bacterial kingdom 

The c-di-GMP metabolizing proteins are present in all the branches of the bacterial 

kingdom99. Within the same phylum or even the same genus, the number and 

identity of the members of the c-di-GMP signaling network can be different, but is 

roughly linear to the genome size100. Usually, a change to an invasive lifestyle is 

accompanied by a reduction of the c-di-GMP signaling network components. 

For example, Shigella species have a reduced c-di-GMP network compared to 

E. coli (U. Römling-personal communication). The S. Typhimurium signaling network 

contains 20 proteins, 5 GGDEF domain proteins, 8 EAL domain proteins and 

7 GGDEF/EAL domain proteins (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Venn diagram representing the GGGDEF/EAL domain proteins in 

S. Typhimurium. The c-di-GMP signaling network in one bacterial strain usually consists 

of numerous proteins containing a GGDEF and/or EAL domain. In S. Typhimurium as well 

as in other bacteria, the majority of the c-di-GMP turnover proteins are associated with a 

N-terminal signaling or sensory domain such as PAS, HAMP, MHYT and PAS-PAC. 

Sensory domains are more frequently present in GGDEF and GGDEF-EAL domain than in 

EAL domain proteins100. Adapted from Simm, 2007101. 
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1.3.1.3 C-di-GMP receptors and effectors as conveying system  

The c-di-GMP receptors and effectors transmit the secondary messenger signal to a 

physiological output (Fig. 7). The identification of novel c-di-GMP receptors is 

essential to understand how c-di-GMP modulates biological functions. C-di-GMP 

receptors have been identified by bioinformatic prediction, biochemical analysis and 

structural biology90, 99, 102, 103. 

Regulation of intracellular levels of c-di-GMP by the turnover proteins 

modulates diverse bacterial behavior and physiology such as biofilm formation, 

motility, virulence and the cell cycle through the c-di-GMP receptors99, 103. Several 

classes of c-di-GMP receptors have been identified, among them the PilZ domain 

proteins, degenerated GGDEF and EAL domain proteins, transcription factors and 

different riboswitches. The c-di-GMP monomer or higher oligomeric structures are 

usually recognized by short signature motif(s) in the receptors104. The c-di-GMP 

molecule is binding to different motifs due to its high conformational flexibility104.   

 A main c-di-GMP receptor family is the PilZ domain protein family. 

Discovered in 2006, this domain was predicted by bioinformatics analysis and 

c-di-GMP binding was confirmed by experimentation105, 106. The N-terminus of most 

PilZ domains contains two highly conserved motifs, a (Q/E)RRXXXR and a DZSXXG 

motif involved in c-di-GMP binding (X corresponds to any amino acid residue and Z 

to any hydrophobic residue)97. Binding of c-di-GMP to PilZ domain proteins can 

occur with different stoichiometry, affinity and conformation and usually leads to a 

significant conformational change103. Frequently, the same organism contains 

numerous PilZ domain proteins. S. Typhimurium contains two PilZ domain proteins, 

the flagellar functionality regulator YcgR and the cellulose synthase BcsA. C-di-GMP 

binds with the same stoichiometry to these two PilZ domain proteins, but with highly 

different affinities, 43 fold higher for YcgR than BcsA107. Another c-di-GMP receptor 

family, is part of the larger cAMP receptor protein family. The first identified protein to 

bind c-di-GMP was the transcriptional regulator Clp in Xanthomonas campestris. 

Mutation in the c-di-NMP (N stand for nucleotide) binding site of this protein 

abolished the ability of Clp to bind c-di-GMP and to target promoters regulating 

virulence factor genes108.  

The degenerated GGDEF domains harboring the “I-site” can still act as 

receptors, and upon c-di-GMP binding, be involved in regulation of cellular 

processes. For example, the membrane protein PelD of P. aeruginosa regulates 

exopolysaccharide synthesis in response to c-di-GMP binding to the RXXD 
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domain109. The response regulator PopA regulates in a similar way cell cycle 

progression in C. crescentus. In S. Typhimurium, the GIL domain protein BcsE is 

required for maximal cellulose production and binds c-di-GMP by the RXGD motif110. 

Also degenerated EAL domain proteins have been identified as potential c-di-GMP 

receptors. The inactive GGDEF-EAL domain protein LapD from Pseudomonas 

fluorescens regulates cell association of the adhesin LapA by scavenging the 

periplasmic protease LapG upon c-di-GMP binding111. In P. aeruginosa, the flagellar 

transcriptional regulator FleQ controls exopolysaccharide production by repressing 

the pel promoter in the absence of c-di-GMP, while relieving repression in the 

presence of c-di-GMP112.  

Last but not least, c-di-GMP has been identified as a small molecule binding 

to the 5´ UTR (untranslated region) of the mRNA to alter gene expression, a 

so-called riboswitch. Thereby, c-di-GMP regulates diverse cellular functions such as 

flagella based motility, virulence gene expression and pilus formation113. So far, two 

different classes of riboswitches have been identified that bind c-di-GMP114, 115. 

 

1.3.1.4 Stimuli and sensory domains  

C-di-GMP metabolizing proteins are usually linked to a signaling, input or sensory 

domain, which is sensing the first messenger. Sensory domains frequently 

associated with c-di-GMP turnover proteins are PAS, GAF-PHY, hemerythrin and 

the REC domain. These domains are mostly located at the N-terminal part of the 

c-di-GMP metabolizing protein99. These domains sense, for example, O2, NO, light, 

quorum sensing or are regulated by phosphotransfer116. 

 

1.3.1.5 Non-canonical EAL domain proteins 

The non-canonical EAL domain proteins belong to the class 3 EAL domain proteins. 

These proteins are highly homologous to EAL domains, but lack the determinative 

consensus amino acids signature and consequently do not have the enzymatic 

activity or even do not bind c-di-GMP94. These proteins are usually involved in 

protein-protein interactions and are often still part of the c-di-GMP signaling network. 

One of the well-studied non-canonical EAL proteins is YdiV (STM1344) of 

S. Typhimurium and E. coli. The main function of YdiV is to bind the major activator 

of the flagellar regulon FlhD4C2 and repress its binding to the promoter DNA. 

YdiV also acts as a putative adaptor to target FlhD4C2 for ClpXP-dependent 

proteolysis117. Another example of a non-canonical EAL domain protein is STM1697, 



 

16 

 

present only in S. Typhimurium, which regulates biofilm formation, motility and 

invasion, also by interference with FlhD4C2 functionality64.  

 

 Regulation of cellular function by c-di-GMP 1.3.2

C-di-GMP controls a wide range of physiological functions spanning from 

photosynthesis to virulence in a wide variety of bacteria from almost every branch of 

the phylogenetic tree. The c-di-GMP signaling pathway (Fig. 8) occurs in 

environmental as well as pathogenic bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: First messengers, second messengers, effectors, outputs. 

Second messengers such as c-di-GMP in bacteria are regulated in response to 

environmental and intracellular stimuli (first messengers) and bind receptors and effectors in 

the cell. These receptors and effectors will induce specific outputs. Adapted from 

Agostini et al., 2014118. 

 

1.3.2.1 Regulation of biofilm formation by c-di-GMP 

C-di-GMP is regulating directly or indirectly each step of the biofilm cycle99. During 

initial attachment, c-di-GMP regulates, among other physiological events, the 
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formation of extracellular appendages. The GGDEF-EAL domain protein LapD from 

P. fluorescens mediates bacterial attachment through the maintenance of the 

adhesin LapA on the cell surface119. Biogenesis of the type IV pili required for 

surface scanning before microcolony formation is stimulated by c-di-GMP in 

P. aeruginosa and other bacteria73. C-di-GMP modulates the production of the 

extracellular matrix that converts the microcolonies to mature biofilm structures120, 

121. For example, c-di-GMP stimulates the production of the matrix component, the 

exopolysaccharide poly-β-1, 6-N-acetylglucosamine. Synthesis of this extracellular 

matrix component occurs through c-di-GMP binding to the two inner membrane 

proteins PgaC and PgaD122. Another important component of biofilm regulated by 

c-di-GMP is the eDNA that promotes construction of an intricate network of 

furrows123, 124. Dispersal of the biofilm is regulated by the concomitant action of 

phosphodiesterases and non-toxic level of exogenous nitric oxide in P. aeruginosa 

and other bacteria125. 

In S. Typhimurium, CsgD is the major hub for positive regulation of biofilm 

formation and production of extracellular matrix components. This transcriptional 

factor of the LuxR family activates curli fimbriae expression and the transcription of 

adrA (AgfD regulated protein A) encoding, a diguanylate cyclase involved in 

cellulose biosynthesis. The expression of CsgD is regulated by at least six 

GGDEF/EAL domain proteins. CsgD is expressed in a bimodal way in the biofilm, 

but high concentration of c-di-GMP abolishes in the cell population the variability62, 

126, 127. In ATM medium, the GGDEF domain protein STM1987 is involved in 

cellulose production128. To activate cellulose biogenesis, c-di-GMP binds to the 

C-terminal PilZ domain of the cellulose synthase BcsA. This binding activates the 

BcsA-BcsB complex by breaking a salt bridge that releases the complex from an 

auto inhibited state and allows access to substrate and substrate coordination at the 

active site (Fig. 3)129.  

 

1.3.2.2 Regulation of motility by c-di-GMP 

Depending on the bacterial species, the c-di-GMP may be involved in regulation of 

the flagellum at the transcriptional, post-transcriptional, post-translational and 

functional level7. In S. Typhimurium, c-di-GMP regulates the flagellum, motor speed 

and rotation at the functional level. C-di-GMP binds to the PilZ domain protein YcgR. 

YcgR interacts with the motor component FliG and induces a bias in flagella rotation 

(Fig. 1)130, 131. The other PilZ domain protein, BcsA, is also involved in motility 
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regulation. High concentration of c-di-GMP will promote the cellulose synthase that 

provokes an accumulation of cellulose around the cell and hampers flagella 

rotation132. At the transcriptional level, the RNA binding protein CsrA positively 

regulates FlhD4C2 by increasing its binding activity and preventing the repression of 

the heterodimer by the two non-canonical EAL domain proteins YdiV and 

STM169764, 133.  

In addition to regulating the transition between motility and biofilm formation, 

c-di-GMP regulates the cell polarity and morphology of C. crescentus and couples 

this events with DNA replication and cell division134. 

 

1.3.2.3 C-di-GMP regulation of virulence 

Different virulence phenotypes can be affected by c-di-GMP in human, animal and 

plant pathogens. For example, c-di-GMP signaling regulates adherence to and 

invasion of the host cells, intracellular infection and modulation of the immune 

response99, 135. In S. Typhimurium, high concentrations of c-di-GMP affect secretion 

of monomeric flagellin, bacterial invasion of an epithelial cell line and secretion of 

IL-8136. During infection by V. cholerae, the bile present in the lumen of mice and 

humans causes an increase in c-di-GMP concentration, while after entry into the 

mucosal layer, pH augmentation might decrease the concentration of c-di-GMP137. 

Furthermore, low levels of c-di-GMP through the action of the phosphodiesterase 

VieA subsequently activate cholera toxin production86. In P. aeruginosa, the clinical 

phenotype “small colony variant” (SCV) is associated with a high level of c-di-GMP. 

The YfiBNR operon can regulate the SCV phenotype. Mutant of yfiR encoding a 

negative regulator of the diguanylate cyclase YfiN exhibited a strong resistance to 

phagocytosis by macrophages138.  

Recently, one activator of the type 1 interferon production, STING (STimulator 

of INterferon Gene) has been identified as one of the specific cytosolic receptors of 

c-di-GMP139. Several articles have highlighted the immunostimulatory and 

immunomodulatory properties of c-di-GMP and its possible utilization as an adjuvant 

for the development of mucosal vaccines. The second messenger has been shown 

to have a variety of immunomodulatory effects, among others to stimulate dendritic 

cells and to produce several key cytokines140. In vivo, pretreatment of mice with 

c-di-GMP induces a protective effect against mucosal bacterial challenges140-142. 

The adjuvant properties of c-di-GMP have already been used in the development of 

a live attenuated vaccine for influenza H5N1 virus143. Furthermore, c-di-GMP has 
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been shown to inhibit the proliferation of colonic cancer cells in vitro and to improve 

vaccination against metastatic breast cancer144, 145. 

 

1.4  HOST COMPONENTS REGULATING BACTERIAL BEHAVIOR 

 

 Interactions between host components and biofilm bacteria 1.4.1

Microbial biofilm in the host is a bacterial virulence and defense mechanism leading 

to chronic infection. Formation of biofilm confers protection to bacterial communities 

against the hostile environment by limiting penetration of leukocytes into the biofilms, 

decrease of the macrophage phagocytic capacity and increased tolerance to 

antibiotics146. However, certain components of the innate immune defense such as 

the antimicrobial peptide LL-37 expressed by neutrophils and epithelial cells are 

active against biofilm formation in a wide range of bacteria, for example, LL-37 

inhibits adherence of bacteria, dissolves mature biofilms and downregulates 

cell-to-cell communication in P. aeruginosa, E. coli and Staphylococcus epidermidis 

biofilms147-149. A prototype of a biofilm infection in humans is infection of the lung of 

cystic fibrosis patients by P. aeruginosa150. 

The lung is a zone of gas exchange between the environment and host. This 

organ is composed of respiratory bronchioles, alveolar ducts and alveolar sacs. In 

the lung, protective immune responses spans from cilial movement to alveolar 

macrophages and defensins150. The surfactant proteins (SPs) are present at the 

air/surface interface. Surfactants prevent the lung to collapse at expiration. 

The functions of the surfactant proteins include protection of the host from microbial 

contamination challenge by different mechanism as listed in Table 1. 

 

 

Name Property Family Interaction with bacterial surface 
appendages 

SP-A Hydrophilic Collectin Flagellin151, adhesin152 LPS153 

SP-B Hydrophobic Saposin LPS154 

SP-C Hydrophobic - LPS155 

SP-D Hydrophilic Collectin Flagellin156, adhesin157, LPS158 
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Table 1: Surfactant proteins present in the human lung.  

Collectins are collagenous carbohydrate-binding proteins. This family is directly involved in 

innate immunity by their ability to bind pathogens as diverse as viruses, bacteria and fungi. 

They counteract pathogen invasion in the lung by promoting aggregation of pathogens, 

stimulation of phagocytosis and modulation of the inflammatory response. The saposins 

have well conserved structural elements and SP-B is expected to have a similar structure as 

the antimicrobial peptide NK-lysin. Adhesins, which interacts with the surfactant protein A 

include Eap in Staphylococcus aureus and FimH of uropathogenic E. coli. Adapted from 

Almlén, 2010159. 

 

 Role of surfactant protein C  1.4.2

The surfactant protein C (SP-C) is a hydrophobic membrane standing polypeptide. 

In the lung, the type two alveolar cells express the pro-SP-C gene located on the 

chromosome 8160. A deficiency in SP-C can conduct to an acute respiratory failure 

and interstitial lung disease, but can be treated with artificial surfactant 

replacement161. SP-C can interact with the bacterial components like the LPS, 

nevertheless its role in lung immunity remains unclear162, 163. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 

 

2 AIMS OF THE THESIS 

The overall aim of this thesis was to understand how a secondary signaling molecule 

and a component of the host innate immune system regulate bacterial behavior.  

 

The specific aims of this thesis were: 

 (i) To dissect the c-di-GMP signaling network regulating motility in S. Typhimurium 

 Determination of the c-di-GMP synthesizing proteins contributing to motility 

inhibition (Paper 1). 

 Determination of c-di-GMP receptors corresponding to c-di-GMP synthesizing 

proteins (Paper 1). 

 Determination of the molecular mechanism by which the non-canonical 

protein STM1697 regulates motility, virulence properties and biofilm formation 

(Paper 2). 

 

 (ii) To dissect how c-di-GMP signaling regulates virulence properties of 

S. Typhimurium  

 Characterization of the c-di-GMP signaling network involved in invasion of 

S. Typhimurium into the host cell line HT-29 (Paper 2 and 4). 

 Evaluation of the c-di-GMP signaling network relevant in invasion, which 

regulates secretion of the effector protein SipA (Papers 2 and 4). 

 Identification of the c-di-GMP signaling network, which regulates the secretion 

of  IL-8 (Paper 4). 

 

(iii) To identify surfactant protein C (SP-C) regulated bacterial virulence related 

phenotypes in P. aeruginosa  

 Determination of the minimum inhibitory concentration of SP-C on bacterial 

growth (Paper 5). 

 Analyze the effect of SP-C on biofilm formation and motility (Paper 5). 
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3 MATERIAL AND METHODS 

The general principles of major techniques used in this thesis are described. A more 

broad description of the protocols that were used can be found in the Materials 

& Methods section of the respective papers. 

 

3.1 BACTERIAL STRAINS 

 

 Salmonella enterica serovar Typhimurium 3.1.1

S. Typhimurium is a Gram-negative bacterium belonging to the family of 

Enterobacteriaceae. This bacterium is one of the most important food-borne 

pathogens and follows an oral-fecal route of transmission in humans. From 12 to 

36 hours after consumption of contaminated food, symptoms of Salmonellosis such 

as abdominal cramps, fever, and diarrhea are appearing. In healthy humans, 

recovery from symptoms occurs without medication, but total intestinal recovery can 

take several months164. S. Typhimurium causes a systemic infection in Salmonella 

susceptible mice similar to S. Typhi in humans, which constitutes a genetically 

traceable model to study typhoid fever. Another relevant model is infection of 

streptomycin treated mice, which mimics human gastroenteritis26. S. Typhimurium 

can be conveniently grown and genetically manipulated. Two of the most common 

genetic engineering tools in S. Typhimurium are λ red recombination and phage 

transduction165, 166. The λ red recombination allows gene replacement with an 

antibiotic cassette by efficient homologous recombination requiring only 40 base 

pairs of homology. Phage transduction is based on the ability of the prophage P22 

HT105/1 int-201 to pack and transfer genomic DNA from one bacterial strain to 

another. A selectable marker allows selection of mutated gene alleles. The bacterial 

strain used in these studies as the wild type strain is S. Typhimurium UMR1, 

ATCC14028-1s-Nalr, a single colony nalidixic acid resistant isolate, expressing the 

rdar morphotype at 28°C40. 

 

 Pseudomonas aeruginosa PAO1 3.1.2

P. aeruginosa is an ubiquitous Gram-negative bacterium belonging to the 

Gammaproteobacteria. P. aeruginosa is one of the most frequent nosocomial 

pathogens mainly due to its ability to form biofilms167. P. aeruginosa PAO1 is one 

genetic reference strains isolated from a wound infection in Melbourne, Australia, in 
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1954 and the background strain used in this study. This is a reference strain for 

genetic and phenotypic analysis of P. aeruginosa168.  

 

3.2 BACTERIAL VIABILITY ASSAY 

In clinical routine, determination of minimum inhibitory concentration (MIC) and 

minimum bactericidal concentration (MBC) of an antimicrobial drug is regulated by 

established protocols. Clinical breakpoints are published by the European 

Committee on Antimicrobial Susceptibility Testing169. To evaluate the bactericidal or 

bacteriostatic activity of a compound such as the surfactant protein C, bacteria were 

inocculated in liquid medium containing different concentrations of the antimicrobial 

agent. The test conditions used were similar to conditions used for evaluation of 

cationic antimicrobial peptides and followed EUCAST recommendations170.  

 

3.3 PHENOTYPIC ANALYSIS 

Major bacterial behavior relevant to virulence, motility and biofilm formation was 

investigated in this work. Assays were used in the context of gene deletion and 

complementation in S. Typhimurium and to assess the effect of SP-C on physiology 

of P. aeruginosa. 

A                         B  C 

 

 

 

 

Figure 9: Example of phenotypic assays used in this thesis.  

(A) Different biofilm models used. Colony morphology on Congo red agar plates, biofilm 

formed on polypropylene or polystyrene support171. Flagella based (B) swimming and (C) 

swarming motility. 

 

 Biofilm assays 3.3.1

3.3.1.1 Rdar morphotype biofilm 

Bacterial spotting on Congo red plate is a convenient tool to characterize 

genotype-biofilm phenotype relation42. Observation of colony morphology and color 

of the spot after 48 h of incubation at 28°C can give information at the level of biofilm 
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formation and composition of the extracellular matrix. The reference strain 

S. Typhimurium UMR1 displays a wild type red, dry and rough colony phenotype53. 

The color development is dependent on the composition of the extracellular biofilm 

matrix where cellulose is producing a pink colony and curli are producing a brown 

colony34 (Fig. 9). This analysis can be complemented by western blot analysis 

assessing expression of the major biofilm regulator CsgD. The level of expression of 

CsgD is directly correlated with rdar morphotype development42, 171. 

 

3.3.1.2 Biofilm formation on abiotic surfaces 

Adherence and biofilm formation to an abiotic surface under steady state conditions 

allows monitoring of biofilm development over time. This frequently used assay is 

performed in 96 well microtiter dishes for genetic screening or to assess the effect of 

various growth media on biofilm formation. Staining of bacterial cells with crystal 

violet allows visualization of microbial adherence and the pattern distribution of 

biofilm formation at different locations in the well. Dissolution of the dye allows 

quantification of adherence by measuring the optical density at 590 nm172. 

 

 Motility assays 3.3.2

Two distinct flagella-mediated motility behaviors can be observed in S. Typhimurium 

and P. aeruginosa PAO1, swimming and swarming motility. 

 

3.3.2.1 Swimming assay 

Macroscopic observation of swimming motility occurs in an agar of low concentration 

(0.2-0.3%). Any medium can be used to assess swimming motility with a low 

concentration agar.  

 

3.3.2.2 Swarming assay 

Macroscopic observation of swarming motility requires a specific medium and higher 

agar concentration (0.4-0.8%). For S. Typhimurium, cells are inoculated in the agar 

plate. The concentration of the agar > 0.4% will promote surface motility. For 

P. aeruginosa PAO1, bacteria are inoculated as a spot in the middle of the plate and 

radially spread from the inoculum site173.  

These two analyses can be complemented with evaluation of flagellin 

expression. 
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 Virulence associated phenotypes  3.3.3

Bacterial crossing of the epithelial lining is a key virulence event in the 

gastrointestinal disease caused by S. Typhimurium. Invasion of epithelial cells 

requires different effector proteins belonging to the iT3SS-1. To characterize how 

gene products associated with biofilm phenotypes affect virulence and to identify of 

the c-di-GMP signaling network components, which contribute to virulence 

regulation, we used several in vitro assays. 

We utilized the human colon adenocarcinoma HT-29 cell line to evaluate the 

ability of different S. Typhimurium mutants to invade eukaryotic cells. Prior to 

invasion, the bacteria were grown in hyperosmotic medium and standing culture 

(microaerophilic conditions) to mimic the gastro-intestinal tract conditions. The 

infection was performed by co-incubation of cells with bacteria for 1 h. Bacteria were 

adjusted to 107 colony forming units.ml-1 (CFU) and 90 % confluent epithelial cells 

were used. The length of infection has been chosen in order to observe the early 

stage of invasion. 

 

3.3.3.1 Invasion assay 

One hour post-infection, the cells are treated with gentamycin to kill non-invading 

bacteria, gently washed and resuspended with trypsin to allow determination of 

intracellular bacteria by CFU counts. The purpose of this experiment was to analyze 

the relation between specific c-di-GMP genotypes and invasion phenotypes. 

 

3.3.3.2 Interleukin 8 quantification  

The pro-inflammatory response induced by TLR-5 activation in the HT-29 cell line is 

evaluated one hour post-infection by measuring the secretion of IL-8 into the 

supernatant. Measurement of IL-8 was performed by enzyme linked immune sorbent 

assay (ELISA).  

 

3.3.3.3 SipA expression 

The expression of the effector protein SipA was evaluated by western blot analysis.  

As SipA is one of the first proteins secreted by iT3SS-1, we choose it as a 

representative protein. The supernatant of the bacterial culture was analyzed after 

repeated centrifugation of the bacterial culture and precipitation of the secreted 

proteins with trichloroacetic acid (TCA). Western blot analysis was performed to 
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quantify the expression of β-lactamase of a chromosomally encoded 

SipA-β-lactamase fusion174.  

 

3.4 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY  

C-di-GMP detection and quantification was performed by HPLC. The assay allows 

quantitative evaluation of c-di-GMP metabolizing proteins under invasion conditions. 

For the sample preparation, mid-logarithmic bacterial culture was inactivated by 

formaldehyde and lysed by heating to 95°C175, 176. The nucleotides were extracted 

with ethanol. The bacterial extract was dissolved in HPLC grade water and passed 

through a Supelcosil LC-18-T column.  
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4 RESULTS  
 

4.1 PAPER 1: DISSECTING THE C-DI-GMP SIGNALING NETWORK 
REGULATING MOTILITY IN SALMONELLA ENTERICA SEROVAR 
TYPHIMURIUM. 

 

Aim: to identify and correlate the components of the c-di-GMP signaling network 

involved in bacterial motility regulation. 

Besides biofilm formation, motility is the major target of regulation by 

c-di-GMP signaling7. In S. Typhimurium and other bacteria, high concentration of 

c-di-GMP inhibits motility, while low concentration promotes movement99, 126. 

In S. Typhimurium and E. coli, various studies have demonstrated that the 

phosphodiesterase YhjH positively affects swimming and swarming motility85, 126, 177.  

Deletion of this phosphodiesterase elevates the concentration of c-di-GMP and, in 

coordination with the PilZ domain protein YcgR, downregulates motility130, 131, 178. 

Also cellulose production inhibits motility by mechanically inhibiting flagella 

rotation132. The transcriptional regulator CsgD plays a central role in adhesion and 

biofilm regulation, but its role in motility has not been addressed in 

S. Typhimurium179.  

In this work, we confirmed that promotion of motility by YhjH is due to 

regulation by c-di-GMP, while yhjH does not affect the expression level of flagellin 

proteins FliC and FljB. By observation of the motility behavior on swimming and 

swarming agar plates at 28°C and 37°C, we identified STM2672, STM4551 and 

STM1987 as key diguanylate cyclases working in concert with YhjH in motility 

regulation (Fig. 10). Subsequent deletion of all these diguanylate cyclases in the 

yhjH mutant restored motility to the wild type level. In addition, deletion of STM2123 

restored motility in the triple mutant background ΔyhjHΔ1987Δ4551. These results 

indicate that the genetic background can be a determinative factor to define the role 

of diguanylate cyclases. Subsequently, we investigated the partnership between 

each of the key diguanylate cyclases and motility associated PilZ domain proteins 

YcgR or BcsA. We could clearly identify an association between STM2672 and 

YcgR, STM1987 and BcsA, whereas STM4551 is associated with both receptors.  

As previously shown for swimming motility, deletion of the two PilZ 

domain proteins in the ΔyhjH background gradually restored swarming to the wild 

type level. Elevated concentration of c-di-GMP in the triple mutant 

ΔyhjHΔycgRΔbcsA decreased swarming suggesting that a third receptor could be 

involved. Unexpectedly, CsgD does not affect flagella-mediated motility. Neither the 
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csgD mutant nor CsgD overexpression had an effect on motility compared to the wild 

type. This finding is surprising, since in E. coli, CsgD expression inhibits motility180. 

Also CsgD, directly or indirectly transcriptionally regulates components of the 

flagellar regulon of S. Typhimurium181. Surprisingly, complementation of the ΔyhjH 

mutant with a plasmid containing yhjH provoked a phase variation from FliC to FljB 

expression suggesting the EAL domain protein to be involved in this phenomenon. 

A                  B 

 

 

 

 
Figure 10: Identification of key diguanylate cyclases working in concert with 

ΔyhjH. (A) Swimming motility after 4 hours of incubation at 37°C. 0: negative control, 1: wild 

type, 2:ΔyhjH, 3: ΔyhjHΔ2672, 4: ΔyhjHΔ4551, 5: ΔyhjHΔ1987, 6: ΔyhjHΔ1283. 

(B) Complementation of double mutants with the diguanylate cyclase STM4551 and 

STM4551 containing a mutation in the catalytic site. 

 

4.2 PAPER 2: THE EAL-LIKE PROTEIN STM1697 REGULATES VIRULENCE 

PHENOTYPES, MOTILITY AND BIOFILM FORMATION IN SALMONELLA 

TYPHIMURIUM. 

 

Aim: to establish the molecular mechanism of the non-canonical EAL domain protein 

STM1697 to affect bacterial phenotypes. 

 A previous study (Paper 4) has identified roles for GGDEF/EAL domain proteins in 

virulence-associated phenotypes, invasion and IL-8 production. Screening for 

regulation of the invasion phenotype revealed that the non-canonical EAL domain 

protein STM1697 behaved oppositely to established phosphodiesterases. STM1697 

belongs to the third class of EAL domain proteins that do not possess conserved 

signature motifs and is characterized as non-canonical EAL domain protein182.  

To analyse the molecular mechanism behind this unconventional phenotype, 

we first assessed bacterial phenotypes affected by the c-di-GMP signaling network 

such as rdar biofilm morphotype, expression of the biofilm regulator CsgD, secretion 

of SipA and motility. Usually, EAL domain proteins established as 

phosphodiesterases downregulate the rdar morphotype and CsgD expression171. 
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In bacterial-host interaction, phosphodiesterases upregulate the invasion phenotype 

and secretion of SipA (Paper 4). However, STM1697 regulates all those different 

phenotypes in the opposite way.  

Binding study and enzymatic analysis of purified STM1697 showed that this 

non-canonical EAL domain has lost its ability to bind and degrade c-di-GMP, which 

was in accordance with bioinformatic analysis. The differential scanning calorimetric 

profil of the positive control Ykul displayed an increase in unfolding temperature in 

the presence of c-di-GMP. We did not observe a change in unfolding temperature for 

STM1697 revealing that STM1697 does not bind c-di-GMP.  

STM1697 affected biofilm, motility and virulence phenotypes in a similar way 

as the non-canonical EAL domain protein YdiV183. Consequently, we investigated 

the role of STM1697 in interference with the flagella regulon. STM1697 affected 

transcription of the class 2 gene fliA and class three genes fliC and yhjH. 

Transcription of the class 1 flhD was not affected by STM1697, suggesting that 

STM1697 interacts post-transcriptionally with FlhD4C2. Indeed, size exclusion 

chromatography with purified components showed that FlhD2 interacts with 

STM1697 and a subsequent electrophoretic mobility shift assay showed that this 

interaction inhibits the ability of FlhD4C2 to bind to a target promoter. Preliminary 

mutant analysis indicated that STM1697 has a distinct interface to bind to FlhD2 

compared to STM1344. Of note, STM1697 additively works with STM1344 in motility 

and virulence regulation. 

We also hypothesized, that STM1697 inhibits invasion of the gastrointestinal 

cell line HT-29 through inhibition of motility. In line with this hypothesis, deletion of 

motility components, the flagellin proteins FliC and FljB, the motor component MotA 

and chemotaxis components CheY, CheZ and CheA affected invasion. A decrease 

in invasion in those mutants suggested that not only flagellin components but also 

motor components and chemotaxis components affect invasion. STM1697 has an 

indirect impact on rdar morphotype biofilm formation through inhibition of FlhD4C2 via 

inhibition of the class 3 promoter gene yhjH. Interestingly, STM1697 is not functional 

in the laboratory strain S. Typhimurium LT2. 
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4.3 PAPER 3: RAPID PREPARATION OF BACTERIAL FLAGELLA FROM 

SALMONELLA ENTERICA SEROVAR TYPHIMURIUM. 

Aim: to simplify pre-existent method for bacterial flagellin analysis of secreted 

flagellin and make it accessible through the openbiology website. 

A semi-quantitative analysis of the flagellin secretion polymerized form complements 

the phenotypic motility assay. Based on a pre-existing protocol, we developed a 

protocol upon request of the website bioprotocol.org. We used this approach to 

quantify the amount of polymerized flagellin and also observed a flagellin switch 

between the phase 2 to phase 1, potentially mediated by the EAL domain protein 

(Paper 1 and Paper 2). During the elaboration of this protocol we paid a special 

focus on the following features: sensitivity: detection of clearly different signals for 

FliC and FljB, feasibility: reproducibility, reduction of the time procedure and 

chemicals used and last criterium specifity: the flagellin are the major proteins 

secreted in the supernatant184. In our case, we could clearly identify a signal at 

51.6 kDa for FliC and 52.5 kDa for FljB (Fig. 11). Semi quantitative analysis can be 

performed to determine if the amount of flagellin is different from the wild type control 

with software like Image J (Paper 1). This procedure can also be adapted to isolate 

flagellin from other bacterial species. 

 

Figure 11: Observation of monomeric flagellin on SDS-PAGE protein gel. 

Observation of flagellin expression after Coomassie blue staining. FljB: 52.5 kDa, FliC: 

51.6 kDa. 1: wild type, 2: ΔyhjH, 3: complementation of ΔyhjH with pBAD30 containing yhjH, 

4: negative control, ΔfliC ΔfljB 5: ΔfljB, 6: ΔfliC. 
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4.4 PAPER 4: COMPLEX C-DI-GMP SIGNALING NETWORKS MEDIATE 

TRANSITION BETWEEN VIRULENCE PROPERTIES AND BIOFILM 

FORMATION IN SALMONELLA ENTERICA SEROVAR TYPHIMURIUM 

 

Aim: to examine how c-di-GMP signaling modulates virulence phenotypes in 

S. Typhimurium. 

Previous experiments showed that c-di-GMP affects at least two virulence properties 

in S. Typhimurium, invasion of HT-29 cells and IL-8 induction in HT-29 cells upon 

incubation with bacteria136. In Lamprokostopoulou et al., 2010, we used 

overexpression of a diguanylate cyclase which produced five hundred times higher 

intracellular level of c-di-GMP compared to the wild type concentration136. Here, we 

analysed the effect of individual GGDEF, GGDEF-EAL and EAL domain proteins on 

virulence phenotypes invasion, secretion of SipA, IL-8 production as well as in vivo 

colonization and systemic spread of the infection in the streptomycin treated mouse 

model.  

For each phenotype investigated, we could observe an opposite effect 

upon deletion of a distinct panel of GGDEF and EAL domain proteins of variable 

severity depending on the mutant. For invasion and IL-8, deletion of the GGDEF 

domain proteins lead to an increase in the invasion phenotypes and IL-8 production, 

in contrast, deletion of EAL domain proteins decreased the level of invasion as the 

key virulence phenotype. Complementation of GGDEF and EAL domain mutants 

with the GGDEF domain protein STM4551 or the EAL domain protein YhjH, restored 

the phenotype in invasion or IL-8 production to the wild type level respectively. 

Complementation with a catalytically inactive mutant exhibited a similar phenotype 

as the deletion mutant. These results confirm a role of c-di-GMP signaling in 

virulence phenotypes at a physiological relevant concentration.  

To preliminary analyse the pathways leading to virulence suppression 

by c-di-GMP, we determined that the cellulose synthase BcsA and the biofilm 

regulator CsgD are required for inhibition of invasion and IL-8 production upon high 

c-di-GMP level. An exception was the mutant yhjH, whereby deletion of csgD did not 

recover the wild type invasion level. Another interesting point worth to mention is, 

that some c-di-GMP signaling network proteins presented an unconventional 

invasion phenotype like the non-canonical EAL domain protein STM1697 and the 

GGDEF domain protein STM1283, for instance. Secretion of SipA was also 

regulated by GGDEF and EAL proteins in agreement with the phenotype observed 



 

32 

 

in invasion (Fig. 12), but the complementation experiments suggested that the 

catalytic activity is not required for secretion of effector proteins.  

To assess the virulence modulation by c-di-GMP in vivo, we did caecum 

colonization and systemic organ colonization experiments in the 

streptomycin-treated mouse model. Several c-di-GMP metabolizing proteins exhibit 

a pronounced phenotype in invasion and gut colonization, but no correlation 

between in vivo and in vitro experiments can be drawn. 

A   B 

 

Figure 12: Screening of c-di-GMP metabolizing proteins for a phenotype in 

invasion and secretion of the SipA effector protein. (A) Screening of the c-di-GMP 

metabolizing proteins for invasion of the HT-29 epithelial cell line. The GGDEF domain 

proteins STM4551 and STM1987, and the EAL domain proteins YhjH and STM4264 present 

the most pronounced phenotype observed in that assay. (B) The invasion results could be 

correlated with the amount of secretion of the effector protein SipA. 

 

4.5 PAPER 5: ROLE OF THE SURFACTANT PROTEIN C ROLE IN GROWTH 

INHIBITION, BIOFILM FORMATION AND MOTILITY OF PSEUDOMONAS 

AERUGINOSA PAO1 

 

Aim: to identify a possible effect of the surfactant protein C on P. aeruginosa PAO1 

adaptive behavior and possible interaction with surface appendages  in order to 

improve synthetic surfactant engineering. 

The main function of the surfactant protein C is to maintain stability in the lung and 

take part of the innate immunity of this organ, but little is known about its function. 

First, we determined the antimicrobial activity of different surfactant protein C 

variants (synthetic, truncated-SP-C1 and mature version of the surfactant). Then, we 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3229569_pone.0028351.g001.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3229569_pone.0028351.g003.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3229569_pone.0028351.g001.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3229569_pone.0028351.g003.jpg
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analyzed their role in different bacterial adaptive behaviors such as biofilm formation 

and motility.  

We did not detect any microbial activity for the different versions of the 

surfactant protein C tested, but we could observe a 30% decrease in biofilm 

formation in the presence of SP-C1 compared to the control. Motility experiments 

indicated that swimming activity of P. aeruginosa PAO1 is not affected by 

pre-incubation with SP-C1, while swarming activity of the bacteria is decreased by 

25% compared to the control. Swarming activity in P. aeruginosa requires the 

flagellum and type IV pili185. Preliminary analysis by microscopy suggested that 

surfactant protein C induces bacterial clumping in liquid culture. The biofilm assay on 

polystyrene support confirms the bacterial clumping with a preponderant staining at 

the bottom of the well.  
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5 DISCUSSION 

 

In this thesis, the regulation of motility by c-di-GMP signaling in S. Typhimurium was 

analyzed in detail. In general, besides biofilm formation, motility is a major target of 

c-di-GMP signaling in bacteria7, 186. In S. Typhimurium, motility is mainly regulated at 

the post-translational level, while in other bacteria, motility can also be regulated at 

the transcriptional level by c-di-GMP130, 131, 178. For example, in P. aeruginosa, the 

flagellar regulon activator FleQ is a c-di-GMP responsive transcription factor7. 

Of note, in S. Typhimurium, the non-canonical EAL proteins regulate the flagellar 

regulon on the level of the major transcriptional regulator FlhD4C2. STM1697 and 

YdiV can interact with FlhD4C2 and prevent its binding to the target promoter187 . 

The interaction with the FlhD4C2 interface is different for YdiV and STM1697, which 

can explain their additive effect on motility and virulence phenotypes (Paper 2). 

The post-translational regulation of FlhD4C2 is complex, as DnaK and the flagellar 

regulon component FliT regulate FlhD4C2 functionality117, 188. 

 The phosphodiesterase YhjH is specifically involved in 

motility in S. Typhimurium and E. coli85, 178. Additional EAL domain proteins 

involved in motility in S. Typhimurium are the EAL domain protein STM0343 and 

the non-canonical STM0551189, 190. The effect of yhjH is probably local as deletion 

of yhjH only marginally increased the level of c-di-GMP in the cell. In any case, 

deletion of yhjH causes YcgR to interact with FliG and via FliM to induce a bias in 

the rotation of the flagellar filament131, 183. Our study showed three different 

diguanylate cyclases STM2672, STM4551, STM1987 to be involved in motility 

regulation in S. Typhimurium177, 178. This set of diguanylate cyclases is overlapping 

but distinct from the diguanylate cyclases down-regulating motility in E. coli178. 

At the receptor level, deletion of the two PilZ domain proteins YcgR and BcsA 

gradually restored the motility in S. Typhimurium107, 132. In the triple mutant 

ΔyhjHΔycgRΔbcsA, overexpression of the diguanylate cyclase AdrA decreased 

swarming motility. This decrease indicates the potential presence of a third 

c-di-GMP receptor. Complementary to the motility phenotype, we investigated 

polymerized flagellin present in the different c-di-GMP mutants. In line with the 

literature, yhjH does not alter expression of polymerized flagellin (Paper 1). 

The switch in flagellin expression with upregulation of FliC, while FljB is 

downregulated upon the deletion of STM0343 indicates that STM0343 expresses 

phosphodiesterase activity in vivo as the phenotype of the switch between FliC and 
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FljB is consistent with our results that the EAL domain protein causes an 

expression switch between FliC and FljB. In addition, a STM0343 mutant displays 

reduced motility. In P. fluorescens, GacS and SadB, c-di-GMP associated proteins 

regulate secretion of FliC by affecting FleQ and consequently transcription of fliC191. 

In summary, our results indicate that regulation of flagellin expression by c-di-GMP 

turnover proteins occurs on more levels than previously anticipated. 

In this work (Paper 2 and 4), we could identify a role of c-di-GMP 

signaling in virulence of S. Typhimurium. Previous work by the Lasa group, using a 

S. enteritidis strain with deletion of all GGDEF domain proteins indicated that 

c-di-GMP signaling is not required for virulence regulation192. In this study, we have 

been using systematic screening of deletion mutants in the c-di-GMP turnover 

proteins to observe a particular phenotype for c-di-GMP signaling in invasion of 

epithelial cells, induction of the IL-8 response, gut colonization and systemic infection 

(Paper 4). Our findings are in line with studies by others, who also found a role of 

c-di-GMP signaling in systemic infection and invasion of Caco-2 cells193, 194. 

Screening of c-di-GMP turnover proteins has also been conducted in other bacteria 

such as P. aeruginosa and X. campestris 97, 195. Our work, seen in the context of the 

literature, also indicates that invasion of epithelial cells and systemic infection are 

generally affected by c-di-GMP signaling in bacteria99, 115, 196. Also, the invasion 

related type three secretion system is a general target for c-di-GMP signaling as in 

the pathogen P. syringae and D. dadantii, phosphodiesterases are modulating the 

expression of the injectisome pilus197, 198.  

C-di-GMP regulates bacterial adaptive behavior from motility to 

virulence factor expression. Furthermore, host components are modulating bacterial 

behavior. As previously shown, the LL-37 inhibits biofilm formation by preventing the 

polymerization of the major curli subunit CsgA in E. coli149. In P. aeruginosa and 

S. epidermidis, LL-37 also inhibits biofilm formation. Recently the small peptide 

1018, an inhibitor of the second messenger (p)ppGpp, has been shown to efficiently 

inhibit biofilm formation in Gram-positive and Gram-negative bacteria199.   

As we have shown that the surfactant component SP-C interferes with 

biofilm formation and swarming motility, we hypothesize that the type IV pili are a 

target of interaction with SP-C since they are involved in both processes. The 

interaction between the SP-C and the bacteria leads to clumping, which can serve 

as a defense mechanism by the host to avoid epithelial damage and increased 

expectoration of the bacteria. This aggregation of bacteria by an innate immune 
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component would work in similar way as nanonets formed by the human α-defensin 

6, which are build up after S. Typhimurium invasion in the gut200. 
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6 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

 

The major conclusions of this thesis are:  

 The c-di-GMP signaling network of S. Typhimurium regulates motility through 

one phosphodiesterase and three diguanylate cyclases.  

 C-di-GMP metabolizing proteins tightly regulate bacterial motility through 

specific interactions with two c-di-GMP receptors.  

 STM1697 affects biofilm formation, motility and invasion of the HT-29 cell line 

through its interaction with FlhD4C2.  

 The panels of c-di-GMP metabolizing proteins, which modulate bacterial 

virulence and host response were defined.  

 The major biofilm components, the transcriptional regulator CsgD and the 

cellulose synthase BcsA are involved in repression of virulence in vitro.  

 Surfactant protein C inhibits biofilm formation and swarming motility of 

P. aeruginosa and might promote aggregation of the bacterial cells in vivo.  

The most immediate work to follow up this thesis would be: 

C-di-GMP regulation of bacterial adaptive behavior 

 Determination of the mechanisms of the specificity of di-guanylate cyclases 

towards cognate receptors involved in motility inhibition. 

 Identification of new c-di-GMP receptors and associated cellular functions.  

 To elucidate the molecular mechanism by which the c-di-GMP signaling 

affects the invasion phenotype. 

 To elucidate the molecular mechanism by which the c- di-GMP signaling 

affects the IL-8 secretion phenotype. 

 Determination of the mechanism how GGDEF and EAL domain proteins 

regulate secretion of the type three secretion effector protein SipA 

independently of c-di-GMP. 

 To characterize the role of other surface appendages involved in bacterial 

behavior such as virulence. 
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Bacterial biofilm and host components  

 Define the molecular mechanism behind the switch of biofilm modes by the 

surfactant protein C.  

 Investigate whether surfactant protein C has a role in adherence and invasion 

of host cells by P. aeruginosa.  
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