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 “The only source of knowledge is experience”  

Albert Einstein
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Abstract  

During the last few decades, the intensive focus on microscopy observations and genome sequencing 

analyses has proved that the genomic DNA is packaged in the non-random manner in the nucleus of 

interphase cells. Accumulated evidence have thus documented that the chromatin organization in 3D 

plays key roles in central biological processes, such as transcription, replication and DNA repair. In the 

interphase nucleus, each chromosome is expanded and organized in a manner depending on structural 

hallmarks of the nucleus.  Thus, repressed domains localize to the nuclear periphery to form lamina 

associated domains (LADs) or large organized chromatin K9 modifications (LOCKs). In addition, prevalent 

chromatin interactions can be formed from same chromosome (in cis) or different chromosome (in trans). 

It is still not clear how such dynamic interactions between chromatin fibers control the expressivity of the 

genome and to what extent these depend on epigenetic chromatin states.  

The study in this thesis had focused on the dynamics of higher order chromatin structures, particularly on 

the relationship between the dynamics of chromatin structure and chromatin states. Since the resolution 

of current single cell techniques in the chromatin organization research, such as DNA FISH and immuno-

staining, are limited by the resolution of the microscopy, we invented a new in situ single cell technique 

termed ChrISP (paper I). Using this technique we could detect chromatin proximities with a resolution less 

than 17nm even though the analysis was implemented using the low resolution confocal microscope. In 

paper II, the scope of the ChrISP technique was extended to include an analysis of chromatin states within 

a single chromosome in a single cell to document that compacted chromatin at the nuclear periphery 

depends on the H3K9me2 mark that impinges on the nuclear periphery in finger-like structures. Moreover, 

upon the removal of these marks the rest of the chromosome showed signs of compaction, potentially 

related to chromosome condensation. These results are consistent with the interpretation that the 

H3K9me2 mark regulates pleiotropic features of higher order chromatin structure.  

In paper III, we had used the view point of a single locus to explore the dynamics of chromatin 

interactions in developmental window using the circular chromatin conformation capture (4C) technique. 

The resulting inter-chromosomal network connected, surprisingly, both active and repressive chromatin 

domains involving LADs. Moreover, this network depended on the circadian recruitment of active 

chromatin hubs to the repressed chromatin structures at the nuclear periphery mediated by the physical 

proximities between CTCF and PARP1. This circadian pattern was required to attenuate transcription of 

the active chromatin hubs in a rhythmic manner.  

In summary, a new high-resolution technique termed ChrISP was invented in this thesis to enable 

quantitative analyses of dynamic of higher order chromatin structures. This technique could, moreover, 

be used to visualize specific chromatin marks, notably H3K9me2, within a specific chromosome in relation 

to structural hallmarks of the nucleus within a single cell. The compact chromatin structure thus identified 

was discovered to transiently harbor active chromatin hubs, which was recruited to the nuclear periphery 

in oscillating manner. We show that this feature likely underlies the attenuation of genes under circadian 

control. These findings open new perspectives to understand the function of dynamics of higher order 

chromatin structure.  
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Introduction  

1 Non-random linear organization of the genome 

Since DNA was proposed (by Frederick Griffith in 1928) and confirmed (by Oswald Avery in 

1944) as genetic information carrier, there has been intense focus on the DNA sequence 

itself and how the information is coded in the DNA sequence. This focus culminated with the 

sequencing of the human genome in 2001 1,2has dramatically accumulated the information 

in this perspective. In the current post-genomic era, the emphasis has been placed on how 

the genome is differentially interpreted to generate robust cell phenotypes. This focus 

includes a methylation modification of the cytosine when this is followed by a guanosine in 

the genome. The ChIP-chip3, ChIP-seq 4 and variant techniques have, moreover, made it 

possible to map histone modifications or specific DNA-protein complexes at specific regions 

within the genome. The extensive computation studies on omics data from genome 

sequencing, ChIP-chip and ChIP-seq have revealed the non-random linear organization of 

genome sequence. 

1.1 The non-random segmentation of the human genome 

The human genome is segmented into 22 pairs of chromosomes and XY (male) or XX (female) 

chromosomes. The gene coding regions and noncoding regions are heterogeneous 

distributed on each chromosome 5. Genes localized in gene rich regions contain a higher G/C 

contents and tend to be active comparing with gene poor regions, which are enriched in the 

A/T content. Centromere and telomere contain highly repetitive sequences and locate at the 

center or end of each chromosome respectively. Retrotransposons, i.e. SINE and LINE, are 

also distributed in the genome unevenly with SINEs preferentially located in gene-rich 

regions whereas LINEs locate preferentially to gene-poor regions6, although this division is 

not absolute. 

1.2 Large organized chromatin K9 modifications (LOCKs)  

Many different types of histone marks, such as methylation and acetylation, are deposited 

on the chromatin non-randomly. Using naïve ChIP (non-crosslinked chromatin), Feinberg and 

colleagues uncovered that large regions of the genome (up to several Mbs) are enriched in 

the H3K9me2 mark. This study coined the term LOCK for large organized chromatin K9 

modifications, which are cell type-specific and highly conserved in mouse and human7. Such 

LOCKs are histone methyltransferase G9a dependent and observed in somatic cells, but not 
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in embryonic stem (ES) cells 7. Most interestingly, the LOCK regions are anti-related with 

gene expression and lost in cancer cell lines 7,8.   

2 3D organization of the genome 

Genomic sequencing and linear maps of chromatin features have increased our knowledge 

of the genomic code dramatically. However, in order to fully understand the genetic 

information on the genome and its function, we need understand the 3D organization of the 

genome in the nucleus. It is currently perceived that the packaging of the mammalian 

genome must enable for cell type-specific accessibility of general transcription factors, 

although we remain ignorant about the underlying principles. 

2.1 The techniques overview in 3D genome research 

 

Figure 1, (a) Overview of in situ techniques in 3D genome research: immuno-staining (left panel, 

lamina staining = red, protein staining = green, nucleus staining = blue) and 3D DNA FISH (right panel, 

red and green represent two different gene loci). (b) Overview of the resolution limitations of the 

different microscopic techniques. 

In general, there are two types of techniques available in 3D chromatin organization 

research, in situ visualization and in vitro biochemical analysis of formaldehyde-fixed cells 

followed by high throughput sequencing.  Both approaches are powerful and widely used 

although the in situ visualization of single cells and high throughput analysis of cell 

populations offers a range of pros and cons. Thus while traditional single cell analyses 
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generates information of frequencies of chromatin fiber proximities at low resolution, the 

high throughput approach generates an average picture from population cell analyses at a 

generally high resolution.  

The confocal light microscope provides a powerful tool to observe the chromatin location 

and folding. Thus, confocal microscopic analyses of 3D DNA fluorescence in situ hybridization 

(3D-FISH) have provided important information of chromatin proximity (schematically shown 

in Fig. 1a). For the future, real time analysis of the mobility of individual loci in relationship to 

each other will provide invaluable information 9. Due to the light diffraction of fluorophores, 

the resolution of visualization techniques in Z dimension is hampered to 300nm in 

conventional confocal microscopy 10 (Fig. 1b).  More recently, the development of super 

resolution microscopy, such as STED, STORM and PALM 11, has with a resolution of 20-30 nm 

in the X and Y plane the potential for much higher resolution of chromatin structures in 

comparison with the traditional confocal microscope. However, this promise has not yet 

been realized potentially due to the limitations of analysis in the Z dimension with a 

resolution only 100 nm 11 and that the choice of colors in super resolution analyses is 

currently limited to maximally three. To fully understand the organization of the genome it 

will be essential to overcome such limitations.  

The chromatin conformation capture (3C) technique was initially invented by Dekker and 

colleagues in 2002 and is now widely used to detect chromatin proximity in solution 12. In 

the 3C protocol, the intact chromatin fibers are cross-linked in situ with formaldehyde 

followed by the treatment with 4 or 6 bases restriction endonucleases. The proximal 

intramolecular chromatin fibers are subsequently ligated together and the final DNA 

products detected by PCR12. Since the 3C quantification is based on PCR primers, the 

sequences of chromatin, which used for proximity detect in 3C must be guessed beforehand. 

To avoid this bias, the circular chromatin conformation capture (4C) technique was 

established 13,14. Because of the inversing PCR strategy and the high throughput capacity, the 

4C is widely used to capture unknown intramolecular chromatin interactions genome wide 

from a known chromatin sequence, called bait. Later, 3C- carbon copy (5C 15) was 

established, which is in principle a 3C technique based on the introduction of multiplex PCR 

amplification to cover all possible ligation combinations within a defined stretch of DNA, 

typically around one million bps followed by deep sequencing. Each of these “C” (3C, 4C and 

5C) techniques is widely used in chromatin proximity research with different applications 

(Fig. 2). In order to capture all to all or rather many to many chromatin interaction in a 
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genome wide scale, the Hi-C was invented 16. Briefly, this technique is based on the capture 

of ligated sequences bridging two different DNA regions followed by Hi-seq sequencing (see 

Fig. 2). Although providing valuable information the current coverage of the genome is 

limited 6,17-19. Yet other versions of “C” technique are represented  

 

 

 

Figure 2, Schematic illustration of the different types of chromatin conformation capture techniques.  
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by the ChIP-loop20 and ChIA-PET21 techniques, which are in both instances built on the 3C 

technique integrated with ChIP. These techniques are thus able to score for chromatin fiber 

proximities in the presence of a particular factor. 

There are both advantages and disadvantages in these two types of techniques. Since the 

resolution of 3C based methods is based on the length of the paraformaldehyde, which is 

around 3 angstrom, 3C based methods offer more precise information of intramolecular 

chromatin proximity than DNA FISH. However, DNA FISH offers chromatin interaction 

information at the single cell scale, whereas the “C” techniques can be used only in the 

context of large cell populations, usually more than 10 million cells. Recently, a single cell Hi-

C study 22 shed the light of single cell information from in vitro perspective, but the limited 

sequencing coverage limited the conclusions 6.  While the “C” techniques and 3D DNA FISH 

techniques currently complement each other to reveal the genome organization in the 

nucleus 23-25, there is clearly a need for new techniques to fill the gap between these two 

approaches. 

 

Figure 3, the chromosome territory principle in the interphase nucleus (left panel, each color 

represents one chromosome territory) and the models of chromatin organizations (right panel). 

2.2 Radial chromosome organization and nuclear architecture 

With the development and application of new techniques, numerous new concepts in 

chromatin structure have been introduced with the uncovering of new principles of nuclear 

organization.  
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2.2.1 The chromosome territory concept  

Theodor Boveri introduced the chromosome territory (CT) concept for the organization of 

interphase chromosome in 1909, and the concept suggests that each chromosome occupies 

a particular space in the interphase nucleus 26 (Fig. 3). Only in 1976 using laser-UV-

microirradiation experiments27 did the first evidence for CT emerge. During the 1980s, DNA 

FISH analysis was performed on mouse and human hybrids, which contains only one or few 

human chromosome, to visualize individual CT 26,28. From then on, the CT concept was well 

accepted. With the achievement of sorting individual human chromosome and the 

development of specific labeling system for individual chromosome, the chromosome 

painting protocol was established to observe all CTs within the interphase nucleus 29,30. The 

introduction of multicolor DNA FISH using probes specific for sub-chromosomal regions and 

individual loci dramatically facilitated studies on CT substructures 30. Currently, the principles 

of CT organization in interphase cells is believed to be pivotal for the formation of the 

nuclear architecture in mammalian cells31. 

2.2.2 The nonrandom radial arrangement of CT 

The chromosome painting studies revealed that the 3D arrangements of CTs within the 

interphase nucleus are not random. Thus it was early observed that a gene-rich chromosome 

(Chr19) prefers to locate at the interior of the nucleus, whereas the gene poor chromosome 

(Chr18) is preferentially positioned to the periphery of nucleus 32. This information was 

independently validated by several labs 33,34, confirming a more general correlation between 

gene density and radial arrangement in the nucleus 35 throughout evolution 36-38. 

Importantly, the use of probes covering parts of chromosomes as well as individual loci 

extended this conclusion even within an individual chromosome 39. It is thus generally 

accepted that the radial position of particular genes within the nucleus is cell type-specific 

and linked with central biological processes, such as transcription and replication 40 41,42. 

However, this tendency is not absolute, for instance, the chromatin arrangement is totally 

inversed in the rod photoreceptors of nocturnal animals 43.  This inversion arrangement is 

believed to be an evolutionary adaption to help the optional vision under the dark condition 

43.  

While the radial distribution of chromosomes is generally accepted to be non-random it is 

not clear if the radial proximity between neighbouring chromosomes is stable 26,44-46. 

Systematic studies using DNA FISH and living image system have shown that the relative CTs 
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positions appear stochastic from mother nuclei to daughter nuclei, with the relative 

proximity between CTs reset in G1 phase 9,47. Nonetheless, the observation that 

chromosomal neighbourhoods can be maintained between daughter cells 9,19 suggests that 

such features are at least metastable. 

The report that CT are organized by 1Mb chromatin domains as basic structure units 48 have 

prompted suggestions that these corresponds to topological associated domain (TAD) which 

were highlighted from Hi-C data analysis 17,18,49. Since the concept of 1Mb chromatin is from 

individual cell observation and TADs represent an average of large cell populations, it is not 

yet clear if this assumption will survive further scrutiny.    

2.2.3 The CT organization and nuclear architecture models 

Based on the concept of CTs 26,31, two models for nuclear architecture have been proposed 

(Fig. 3). The chromosome territory-inter chromatin compartment model (CT-IC) model 

suggests there are two basic comportments in the nucleus: chromosome territory (CT) and 

inter chromatin compartment (IC) 26. The IC has been observed under the light and electron 

microscopy (EM) 48,50, and is believed to represent a space largely free from chromatin 

forming contiguous channels 26. In addition, IC is suggested to harbor different types of non-

chromatin nuclear bodies, such as speckles 26,48. In this model, the perichromatin region (RP) 

is defined as a boundary layer between IC and the interior chromatin domain 51. From the 

EM study, PR was showed to be transcription active region in mammalian nucleus 52.  

Since several of other independent studies do not support the CT-IC model 53,54, the inter-

chromatin network (ICN) was proposed 53. The ICN model predicts that the chromatin fibers 

intermingle with each other within the same chromosome as well as between different 

chromosomes 53,54, such that chromatin fibers loop out of chromatin domains to meet with 

the other chromatin partners from the same CT or different CTs to establish crosstalk in cis- 

or trans 25,26,53,54. Several lines of evidences have showed the active genes loop out of CTs to 

meet in transcription factories from C’s experiments 54,55. Moreover, using custom designed 

repeat-free probes, the FISH experiment showed gene coding regions extensively loop out of 

its’ own CT 56. It is more believed the ICN is for gene expression regulation. However, the 

imprinting network prevalent from trans- chromatin interaction was also found in mouse 

cells, and this ICN correlates with replication timing rather with gene expression 24, which 

indicates the ICN is not only for gene expression and also for other biological events. 
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The controversy that resulted from the presentation of two conceptually different models 

on chromosome organization may at the end of the day reflect limitations in resolution of 

microscopy as well as different practices in preparing samples for EM. The laser-based light 

microscopy 57 and the application of super resolution microscopy in chromatin research 

11might in the future help resolve this issue.  

2.3 LADs and higher order chromatin structures 

In mammalian cells, the inner surface of the nuclear envelope contains a complex 

filamentous network named nuclear lamina (NL) 58. The NL mainly includes nuclear lamin A, 

B and C based on their molecular weights 58. Since lamins A and C represent different 

isoforms from different splicing pattern of the same RNA, the lamins are subdivided into 

primarily A- and B- types 59. A-type lamins are absent in embryonic stem cells but emerge 

during differentiation into different lineages whereas the B- type lamin is expressed in 

almost all the cell types and essential for cell viability 60. The nonrandom radial organization 

of the chromosome is exemplified by the positioning of gene poor regions at the nuclear 

periphery. This principle likely implies that that the NL directly interacts with chromatin 
35,59,61,62. This conclusion is further support by the demonstrations that the lamins can bind 

core histones 63 and specific sequence of DNA 64 and that the lamin B binding protein 

receptor can interact with DNA, H3-H4 histone tetramers and heterochromatin protein HP1 
65. In addition, the electron microscopy analyses had showed the direct evidence that there 

is interaction between lamina and chromatin 61,62. 

Although all observations pointed to an important role for the NL in genome organization, 

no specific lamin-associated chromatin sequence could be identified until the introduction of 

the DamID technique 65,66.  DamID is a molecular technique, in which the fusion protein 

cDNAs-created by combining the genes for the bacterial DNA adenine methyltransferase 

(Dam) with that of a targeted protein- are transfected into the cells. Since Dam can 

methylate adenine in the sequence of GATC, the A-methylation mark is left on genomic 

sequences when these are directly proximal to the fusion protein targeting site. By cutting 

the chromatin with methylation sensitive restriction enzymes Dpn I and Dpn II, the protein 

targeting sites could be identified by microarray or high throughput sequencing 65. Using 

DamID fused to emerin, a lamin-interacting protein, van Steensel and colleagues had 

managed to identify large (100kb-10Mb) lamin-associated regions (LADs). These regions 

cover nearly 40% of the genome 67 and map to the nuclear periphery 65. Interestingly, while 

most of the genes located in LADs are silent 67,68 and the constitutive LADs are enriched in 
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evolutionarily conserved A/T isochores 69 70,71, it has been claimed that (GA)n repeats can 

drive human LAD to the NL72 even though there is no such a motif enrichment in LADs from 

DamID 69.  It thus appears that the principles tethering LADs to the nuclear periphery might 

occur not by one but by many mechanisms. In agreement with the dynamic feature of radial 

chromosome organization, DamID analysis from differentiated ES cells showed the some of 

the LAD regions are facultative to emerge in cell type-specific manner 68. The activation of 

genes upon their release from the nuclear periphery during differentiation 68 demonstrates 

the repressed state of LADs. However, this feature does not preclude dynamic mobility 

within the nuclear periphery compartment. Thus real time imaging showed that the LAD 

positioning is stochastically reshuffled during cell cycle 73. The dynamic feature of LAD agrees 

with the dynamic radial chromatin organization during the cell cycle. In the future, it would 

be interesting to test whether LADs from two different regions or chromosome could be 

tethered together in the nucleus. 

Interestingly, as most (82%) of LOCKs and LADs overlap, although there remains a 

controversy with respect to the situation in embryonic stem cells 7,74, to throw some light on 

the still poorly understood mechanism underlying the recruitment of LADs to the NL. This is 

exemplified by the fact that knocking down the two H3k9 methyltransferases, MET-2 and 

SET-25, led to release of peripheral chromatin from the NL in worm cells 75. Moreover, real 

time imaging similarly showed that the H3K9me2 methyltransferase G9a is a regulator of the 

contact between chromatin and NL 73.  However, as this could not be reproduced in mouse 

cells in two independent studies 76,77, the mechanism underlying the recruitment of 

chromatin to the nuclear periphery may be species-specific. 

2.4 Chromatin crosstalk in 3D 

The principle of nonrandom radial organization of the genome represents a major leap in 

our understanding its function. However, in order to be able to more fully understand the 

genome architecture in 3D and its function implications within the nucleus, we have to 

examine such features at the molecular level25. The innovation of  the “C” techniques has 

made it possible to perform molecular level scanning of chromatin neighborhood 12,13,15,24, 

with the emerging consensus that chromatin fibers can interact both within (cis) and 

between (trans) chromosomes 19,25 (Fig. 4). Such patterns, which are termed chromatin 

crosstalk, have been implicated in diverse biological processes, such as transcription 

regulation, DNA repair and replication 18,19,24,25,54,78.  
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Figure 4, Model of different types of chromatin crosstalk: cis (a) and trans (b).  Each color represents one 

interphase chromosome. 

2.4.1 Chromatin crosstalk in cis and in trans 

There is long standing hypothesis that gene transcription requires physical contacts between 

chromatin fibers, in particular the interaction between promoter and regulatory elements 
79,80. This model has only recently been put to the test with the innovation of the 3C 

techniques 81. This can be exemplified by the well characterized Igf2/H19 genes which are 

separated by the H19 imprinting control regions (ICR) in mammals. While Igf2 and H19 share 

a common enhancer this activates preferentially the paternal Igf2 and maternal H19 alleles. 

This switch depends on the parent of origin-specific epigenetic states of the H19 ICR, such 

that the CTCF-binding maternal H19 ICR allele insulates the maternal Igf2 promoters from 

the downstream enhancers by organizing long-range chromatin loops 82,83. Another similarly 

well-documented region is represented by the beta-globin domain. Extensive 3C studies in 

human and murine beta-globin loci had revealed long range cis- chromatin communications 

between the beta globin locus control region (LCR) and the globin promoters to regulate the 

transcription of the beta globin genes 84,85.  

The ICN model of the nuclear architecture posits that chromatin fibers can intermingle with 

each other not only within same chromosome, but also between different chromosomes 53. 

This hypothesis has been borne out as evidenced by numerous reports using the “C” 

techniques 86,87. However, these assays face an inherent problem in distinguishing whether 

such chromatin networks are the results of pure chance or come with a functional 

consequence. In at least a few instances it has become clear that these interactomes do not 

form purely by chance, For example, the H19 ICR region in mice organizes an imprintome, ie 



 

11 
 

a network of loci sharing the common feature of being genomic imprinted, which mediates 

the replication timing 24.  Moreover, it has been observed that stochastic, monoallelic 

transcription of the IFN-β locus depends on chromatin crosstalk with three identified  

distinct gene loci dependent to form the enhancosome 88.  Interestingly, genes encoding 

members of the TNFα signaling pathway form a specialized compartment to coordinate their 

transcription in trans 89. Using genome editing techniques together with in situ assay, by 

analyzing the multi chromatin contact gene complex which is induced by TNF-α pathway, 

Mhlanga and colleagues had found the chromatin crosstalk in trans- controls hierarchical 

gene expression coordination 90,91. Finally, six independent reports uncovered cis- and/or 

trans chromatin networks, focusing on genes encoding pluripotency factors, which are 

strongly implicated in the establishment and/or maintenance of pluripotency 92-98. Taken 

together, these reports robustly make the case for that chromosomes talk to each other and 

that the resulting networks are functionally implicated to contribute to biological processes. 

2.4.2 Chromatin crosstalk from active regions 

The transcription factory concept describes the clustering of several transcription units into 

one single compartment 99, and it is thought to provide coordination of transcription for 

numerous genes 6,19,25,100.  Such transcription factories are believed to offer opportunities for 

the formation of chromatin networks in cis- and in trans. By performing systematic DNA FISH 

analyses, it was observed the gene-rich regions, but not gene-poor regions tend to cluster 

together in mega bps structures within the same chromosome 6,101. These early observations 

have largely been supported by employing the 4C 14,102 and Hi-C 6,16 techniques. In the latter 

instance two different spatial chromatin organization status, termed A (open status) and B 

(closed status) compartments respectively, were identified by mapping human chromosome 

proximity within a 1 Mbps resolution 6,16. However, the cluster of active regions is 

independent on ongoing transcription 103, suggesting that transcriptional units poised for 

transcription can cluster prior to overt transcriptional activation.  

2.4.3 Chromatin crosstalk within and between inactive domains 

Since the chromatin is typically separated into euchromatic and heterochromatic 

compartments in the interphase nucleus, it was believed that also inactive domains could 

cluster. This supposition was supported by employing derivatives of the “C” technique 14,16. 

In comparison with chromatin interactions between active regions, the clustering of inactive 

domains seems to be restricted to the local context 6,104. Such a feature might reflect that 
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condensed chromatin states impair chromatin mobility to establish more long-range 

interactions. Direct evidence in support of this interpretation is provided in a report showing 

that the Hox loci are repressed by PRC1/2 complexes to restrict their position within the host 

chromosome territory in ES cells 105. However, upon transcriptional activation, the active 

allele acquires a much higher mobility to enable its looping out of the host chromosome 

territory 106.  

Although repressive chromatin marks, such as polycomb bodies, H3K9me2, and H3K27me3 

can be seen as clustered foci at the light microscope level, there is no corresponding 

conclusion about clustered heterochromatic regions from Hi-C analysis 6,16. However, such 

regions that align with H3K9me3 and H3K27me3 marks have been identified using the 5C 

technique, which examined local interactions within an X-linked 4.5 Mbps domain 107. The 

discrepancy between these observations may reflect an inherent problem in analyzing 

higher order chromatin states in inactive domains: the difficulty to achieve efficient 

restriction enzyme digestion. As the increased efficiency of enzyme digestion of chromatin 

DNA might also lead to the increased star activity, a notorious problem with the common 

enzyme of choice (Hind III), the clustering of inactive domains is likely underestimated in the 

vast majority of reports using any version of the “C” technique.  

2.4.4 Topological associated domains (TAD) 

With improved resolution of the Hi-C technique, currently in the range of about 100 kb, 

several studies had revealed the existence of small domains within larger A and B 

compartments in human, mouse and Drosophila genomes. These domains, termed 

topological domains or topological associated domain (TAD) 17,108, reflect long-range 

chromatin fiber interactions within but not between TADs 17. Similar conclusions were 

reached with a more limited 5C analysis focusing on a 4.5 Mbps region including Xist 107. 

Based on this concept, it has been proposed that the genome is packed into many small 

domains which are topologically organized within the interphase nucleus 17,18. Moreover, the 

sizes of TADs vary from 100 Kbps to 1 Mbps with structures apparently conserved during 

more than 65 million years of evolution 17. Since the TAD concept is derived from studies on 

very large cell populations, it is currently not known if TADs exist within a single nucleus, 

how stable it is and its function. Indeed, a single cell Hi-C study have shown there are major 

cell to cell variations in chromosome structure 109 to compound our understanding of the 

TAD concept. It seems reasonable to assume that the TAD structure is very dynamic to more 

highlight its adaptation to central processes in the nucleus. This rationale finds support in a 
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report that combined high resolution DNA FISH with polymer computation simulation to 

reveal a fluctuating correlation between chromosome conformations and transcription 110.  

If the TAD concept will survive the current onslaught in the field it will be important to 

understand what defines the boundary of TADs and why this boundary exist at all. Extensive 

mining of ChIP-Seq data and motif computation indicates that transcription starting sites 

(TSS) and CTCF binding sites are enriched at TAD boundaries 107.  The link to CTCF was 

experimentally appeared to be verified as the deletion of a 58-kb region including CTCF 

binding sites located at the border of neighbouring TADs increased their communications 107.  

However, the majority of CTCF binding sites are located inside TAD regions, suggesting that 

CTCF binding sites are not sufficient for maintaining the boundary between TADs 17.  Other 

arguments have included the cohesin complex which was also found enriched at the TAD 

boundaries 111. As the cohesin complex have been associated with numerous long- and 

short- range chromatin interactions 112-114, it was suggested that CTCF might recruit the 

cohesin complex to form the  TAD boundary 17,107. However, depletion of either CTCF or the 

cohesin complex did not affect the TAD boundaries 111 even though TAD organization was 

affected by the absence of the cohesin complex in postmitotic mouse astrocytes 115. Taking 

together, we remain largely ignorant as to how TADs are organized, how the boundaries are 

established and what the function is. 

2.5 CTCF and chromatin organization 

Interactions between chromatin fibers in cis and in trans likely influence the principles 

underlying higher order chromatin organizations within the interphase nucleus. The 

emerging question is: what kinds of protein factors mediate these complicated chromatin 

interactors and how do they do it? From traditional biochemistry to “C” applications and 

high throughput sequencing and computational data mining, CTCF emerges as one of the 

leading candidates to control such features.  

2.5.1 CTCF and its binding regulation  

CTCF was first discovered as a factor binding to the Myc promoter and acting as a negative 

regulator of Myc transcription in chicken cells 116,117, mouse and human cells 118. The full 

length of CTCF contains DNA binding domain, C-terminal and N-terminal. There are eleven 

zinc fingers in the central DNA binding domain, which displays an almost 100% sequence 

similarity from chicken to man 117,119, while the C- and N- terminal ends vary slightly among 

the species 117. Combining sequential deletion of each zinc fingers with band-shift assays 
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generated the observation that the zinc finger utilization was DNA sequence-dependent 117. 

This observation paved the way for the realization that the underlying DNA sequence 

determined which zinc fingers were not engaged in direct binding to DNA and hence 

available in protein-protein interactions. Because of these considerations CTCF was coined 

as a multivalent factor 118.  

The more full extent of the variability of CTCF binding sites was not understood well before 

the emergence of genome wide ChIP-seq studies. Thus we now know that there are 

minimally 55 000- 65 000 CTCF binding site in mammalian genomes 120. Moreover, CTCF 

binding sites map generally in the linker region between positioned nucleosomes 121,122. 

When comparing CTCF binding sites among different cell types, it was established that only 

around 5000 binding sites are highly conserved 120,123. The position of the CTCF binding sites 

in the genome vary considerably. Thus about 50% of the CTCF binding sites are located in 

intergenic regions, while approximately 15% binding sites are found near promoters and 

around 40% are enriched in intragenic regions 123. While CTCF is primarily known as the only 

established chromatin insulator protein 124, it is intriguing that CTCF binds also to enhancer 

regions.  

An important feature of CTCF is that it is often sensitive to the CpG methylation status of its 

binding sites. This information was initially observed at the H19 ICR 125 and has been 

extended to numerous other sites, such as CDKN2A 126, BCL6 and BDNF 127,128 129. One study 

combined CTCF ChIP-Seq with bisulphite sequencing in 19 human cell types, and found that 

around half of cell type-specific CTCF binding sites regulate their interaction with CTCF 

depending on the DNA methylation status 130,131. Interestingly, one study claims that CTCF 

together with partner proteins PARP1 and DNMT1 is responsible for maintaining the 

methylation free status of its binding sites 132. Moreover, different post-translational 

modifications, such as sumolyation and PARlation, affect the CTCF function as well 133,134. It 

has thus been clearly shown that the PARlation on CTCF is essential for CTCF insulator 

function on mouse H19 Igf2 domain 134. Recently, one report showed the insulator CTCF 

mediated the three dimensional genome organization through PARlation in Drosophila 135. In 

addition, RNAs were also found to cooperate together with other protein partners to 

regulate CTCF binding and function in several independent reports 136,137. 
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2.5.2 Multi-functions for CTCF in chromatin organization 

The CTCF- chromatin insulator connection was first reported for the chicken HS4 element at 

the 5 end of the β-globin gene 138. Subsequently, CTCF was found binding on H19 insulator 

region in mammalian cells as well 125,139,140 and many more sites identified by using a 

microarray based insulator assay 129.  However, most of the insulator assays were performed 

using plasmid transfection systems 141 with the H19 ICR as the only bona fide in vivo 

chromatin insulator 141 142 link between CTCF and the chromatin barrier function, which 

prevents the spreading of heterochromatin into neighboring regions is not clear.  For 

example, genome wide studies have failed to robustly identify correlations between CTCF 

binding sites and repressive chromatin states, such as H3K27me3 121. It has also been 

reported that only 9% of the LAD borders contain a CTCF binding site. On the other hand, 

CTCF binding sites were found to be 8-fold enriched at the flanks of euchromatic islands (EI), 

which are inside the LOCKs with very low signal density of H3K9me2 signal 143. Moreover, the 

idea that CTCF binding sites have a barrier function is partially supported by a recent ChIA-

PET study targeting CTCF 144  and some locus-specific analyses 145. The current controversy 

between chromatin insulator/barrier functions might at the end of the day reflect that CTCF 

conformations might be dictated by the underlying DNA sequence via variable zinc finger 

utilizations. 

Increasing evidences had shown CTCF was involved in the chromatin organization by 

mediating the dominant cis- and trans- chromatin interactions. The most well studies cis- 

chromatin loop which mediated by CTCT insulator function is from mouse H19 ICR region. 

Because of the binding of CTCF, the promoter and enhancer loops are different between 

paternal and maternal alleles which directly affect the expression of genes 83.  The 

regulations of long range of chromatin interactions from CTCF were also found in MHC-II loci 

and β-globin loci 84,146. It was found CTCF could also mediate the trans- chromatin interaction 

between Igf2/H19 and Wsb1/Nf1 147. With 4C experiment, it was found out the H19 ICR in 

mice with mutated CTCF binding sites changed the chromatin interaction dramatically 24, 

which indicates the CTCF plays quite important role in mediating the long range chromatin 

interaction. Moreover, by targeting the interactions between transcriptional starting sites 

(TSS) and distal elements in 1% percent of genome, it was found out 79% of long-range 

chromatin interaction between promoter and regulatory element are presenting with CTCF 

binding in 5C study 131,148. This study clearly suggests the CTCF could tether chromatin 

proximities in genome wide. Some other CTCF partners are also involved in chromatin 
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organization together with CTCF. For instance, one study had revealed CTCF together with 

mediator or cohesion complex could mediate different ranges of enhancer-promoter 

interaction during lineage commitment 95. It was shown CTCF and cohesion complex could 

mediate long range enhancer-promoter interactions, while short range enhancer-promoter 

interactions are bridged by mediator and cohesion complex 95. Interestingly, several 

independent genome wide studies had shown the strong cohesion binding sites usually 

overlap with the CTCF binding sites149-152.   

3 Circadian regulation and genome organization 

A wide variety of biological processes oscillates dependent on cycles of light and feeding 153. 

In animal cells, such circadian processes encompass 24 hours periods dominated by the 

feeding behavior as feeding-fasting patterns have the ability to be reset and control 

circadian rhythms of several tissues, such as the heart and the liver 154.  It is not surprising 

therefore that the link between metabolism and circadian regulation of transcription is very 

strong 154,155 involving 10- 20 % of the genes 156. The central clock machinery involves 

complicated feed-back controls between the central players, such as CLOCK, BMAL-1, PER 

and CRY 157,158 with CLOCK and BMAL1 as transcriptional activators (positive limb) and PER 

and CRY as transcriptional repressors (negative limb) 159.    

Accumulated evidences point to a pivotal role of epigenetic modifications in manifesting the 

circadian rhythms 159. Thus, CLOCK-BMAL1 and PER-CRY interact with chromatin modifiers 

such as EZH1, M1L1, P300, JARID1a and SIRT1 in vitro. Moreover, genome wide ChIP-Seq 

screenings have documented that chromatin marks, such as H3K9ac/H3K14ac and H3K4me3, 

can be rhythmically established and erased at circadian gene promoters in mouse liver 160.  

Moreover, CLOCK acquired PARylation in an oscillating manner probably reflecting that 

CLOCK and PARP1 can physically interact with each other. This link was functionally 

reinforced by the observation that the entrainment of the central clock machinery was lost 

in mice lacking the PARP1 function 161. Only recently have this system been integrated into 

the higher order chromatin context. Thus, Sassone-Corsi and colleagues used the 4C 

technique to explore chromatin networks impinging on the CLOCK regulated gene Dbp in 

mouse embryonic fibroblast cells (MEFs) to make the conclusion that the chromatin 

neighborhoods of the Dbp locus were related to circadian gene expression 159. This 

conclusion was reinforced by the observation that the circadian dependent chromatin 

network could not be documented in BAML1 deficient MEFs 159. To fully understand the 

circadian regulation, further work is needed. 
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Aims 

The overall aim of this thesis was to uncover dynamic features of higher order chromatin 

structure in relationship to biological processes. To this end, two different types of studies 

were implemented with the following more specific aims:  

Study 1: The dynamics of higher order chromatin structure change relevant to epigenetic 

mark H3K9me2 with single chromosome. 

 To establish a new technique chromatin in situ proximity (ChrISP) to explore the 

high order chromatin architecture with a high resolution at the single cell level. 

 To investigate the dynamics of higher order chromatin structure relevant to 

epigenetic mark H3K9me2 using the innovated ChrISP technique. 

 

Study 2: The dynamics of higher order chromatin structures in a developmental window 

using a single locus as the bait in cell populations. 

 To identify dynamic chromatin networks during a developmental window and 

uncover the mechanism. 
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Materials and Methods Summary 

Materials 

Human colon cancer cells (HCT116), Human female embryonic stem cells (HS181) (HESCs) 

and in vitro differentiated human embryoid bodies (HEBs) from HS181 cells were used as 

materials in this thesis.   

Cell treatments  

The G9a function was knocked down using two different strategies. In the first, G9a siRNA 

was transfected in HCT116 and maintained for 72 hrs as outlined in paper II. In the second, 

HCT116 cells were treated with 0.5 µM G9a enzymatic inhibitor BIX 01294 trihydrochloride 

hydrate (B9311, Sigma-Aldrich) for 72 hrs as described in paper III. Similarly, the PARP1 

function was knocked down by transfecting a specific PARP1 siRNA, while the enzymatic 

function of PARP 1 was antagonized by Olaparib (0.3 µM final concentration) treatment in 

HCT116 cells, as per paper III. CTCF expression was knocked down by siRNA as described in 

paper III.  The inhibition of the activity of CDK8/9 to manipulate the phosphorylation status 

at the serine 2 position with the large subunit of RNA polymerase II (Flavopiridol treatement) 

is outlined in paper III. The PARG treatments were performed in both fixed HESCs and HEBs 

prior to 4C analyses, which were described in paper III. For the serum shock treatment in 

paper III, HCT116 cells were cultured with serum-rich medium (McCoy5A +penicillin-

streptomycin-glutamine (PSG), supplemented with 50% horse serum (26050088, GIBCO)) for 

2 hrs. The medium was subsequently replaced with serum-free McCoy5A + PSG and cultured 

for periods indicated in paper III. 

Quantification of cell treatments efficiency 

Both Western blotting and immunofluorescence staining analyses were employed to detect 

the efficiencies of the various treatments as listed in the papers.  

DNA probes labeling  

Different types of labeling methods were used in this thesis, and the brief information is list 

as follows.  Human Cot-1 DNA (15279-011, Invitrogen) was labeled with Biotin-16-dUTP 

(11093070910, Roche) or Digoxigenin-11-dUTP (11573152910, Roche) using the Bioprime 

Array CGH kit (18095-011, Invitrogen). The BAC probes were first sonicated to 500-2000 bps 

range followed by labeling with fluorescent nucleotides using the Bioprime Array CGH kit. In 
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papers I and II, the chromosome 11-specific templates were labeled with DOP-PCR as has 

been described 30. 

DNA FISH and RNA FISH 

3D DNA FISH analyses enabled to precise position of a chromosome territory (paper I and II), 

or proximities between chromatin hubs in HESCs, HEBs and HCT116 cells (paper III). RNA 

FISH was performed to check transcriptional activity in situ (paper III).  

In situ proximity ligation assay (ISPLA) 

ISPLA 162 was used to detect proximities between repeat regions in DNA (paper I) or 

proximities between different proteins (paper III).  

The innovation and application of ChrISP 

In paper I, a new technique termed Chromatin in situ proximity (ChrISP) was innovated to 

enable the efficient detection of chromatin fiber compaction in single cells. Paper II and III 

describe its application in some more detail comparing the density of chromatin marks 

within chromatin fibers.  The ChrISP principle is based in the ISPLA technique but combines 

DNA FISH with immunostaining of chromatin marks/fibers without the use of a rolling 

amplification circle step. Its principle is based on the inclusion of a fluorescent “splinter” that 

is able to bridge two different epitopes, such as digoxigenin and biotin, with a very high 

specificity following ligation to the DNA backbone.  

The limits of resolution of the ChrISP technique 

In order to detect the resolution limits of ChrISP, DNA fiber FISH and STED microscopy were 

employed (paper I). In brief, the human genome DNA was stretched out and combed on 

silane coated slides. The DNA fiber FISH analysis was performed combining biotin and 

digoxigenin labeled human Cot-1 probes as described 163.  The DNA fiber FISH signals were 

scanned with STED microscopy, and the total lengths of the DNA fibers analyzed were in 

each instance encompassing about 14 million bps. The distance between the labeled Cot-1 

probes was then determined by a nearest neighbor algorithm where each centers 

coordinate points was matched to other centers coordinate points 164. The closest distances 

were then plotted as histograms and used to create cumulative curve distributions in two 

independent experiments. The ChrISP analyses between human Cot-1 biotin probes and 

digoxigenin probes were performed on the stretched DNA fibers, and STED images of the 

rolling circle amplification (RCA) signals were used to determine frequency of RCA in relation 
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to the amount of labeled Cot-1 probes. The equation for frequency calculation is as follows: 

F= (Number of RCA signals) / (Number of Cot-1 probe/2). The frequency was then compared 

to the cumulative curve distribution in order to determine the resolution of ChrISP, which 

turned out to be less than 17 nm.  

Circular Chromatin Conformation Capture Sequencing (4C-Seq) 

Using the human H19 ICR region as targeting bait, circular chromatin conformation capture 

sequencing (4C-seq) was performed in both control and PARG treated HESCs and HEBs as 

previously described 165 (see paper III). Amplified DNA was subjected to Solexa paired-end 

sequencing and reads aligned to the GRch37/HG19 genome using Bowtie3 and BWA 

software to generate an interactome of chromatin fibres impinging on the bait. 
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Results and discussions 

Paper I: Chromatin in situ proximity (ChrISP): single-cell analysis of 

chromatin proximities at a high resolution 

Our understanding of the chromatin organization in the nucleus is critical for any further 

uncovering of principles guiding chromatin condensation or expansion and how these 

features relate to transcriptional regulation. Till this report, there such endeavor could be 

addressed by mainly two types of techniques, 3C-based techniques and 3D DNA FISH 19. 3C-

based techniques, such as 3C, 4C, 5C and Hi-C, are ligation-based techniques, which are 

widely used to check chromatin fiber proximity in vitro 12.  The advantage of 3C-based 

techniques is high resolution, which is determined by the length of fixation reagent. 

However, these 3C based techniques can only offer the average information of chromatin 

proximity from couples of million cells in at best a semi-quantitative manner 25. While 3D 

DNA FISH provides a powerful tool to visualize chromatin organization in single cells, its 

resolution is limited by the resolution of the microscopy. For instance, the resolution of 

confocal microscopy is at best 300 nm in the Z dimension. The general approach to assess 

chromatin fiber proximities thus is to use 3C-based techniques to uncover chromatin 

proximities at a high resolution from population cells, and 3D DNA FISH to quantitatively 

calculate the chromatin proximity frequencies at a low resolution. However, this strategy 

generates a gap in resolution between these two techniques to compromise interpretations. 

In order to fill the resolution gap between these two techniques, we had developed a high 

resolution in situ technique termed Chromatin in situ Proximity (ChrISP). The resolution of 

ChrISP to detect chromatin proximity is < 17 nm in all three dimensions independent on the 

diffusion of fluorophores that compromised the resolution of the conventional confocal 

microscopy.  

The initial strategy of ChrISP was to combine traditional 3D DNA FISH with in situ proximity 

ligation assay (ISPLA). This technique was invented to detect the proximity of two proteins in 

the cells based on a padlock probe and splinter hybridization followed by rolling cycle 

amplification (RCA) 162. In the ISPLA the proximity between two proteins can be assessed by 

the ligation of a padlock probe and splinter following by rolling circle amplification (RCA) and 

addition of fluorescence labeled oligos, provided that the two epitopes were sufficient close 

to each other. This strategy enables the detection of two different protein epitopes based on 

their distance to each other rather than the resolution of the microscope. Although the 

principle of ISPLA was incorporated initially when developing the ChrISP technique, 
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comparing the distance between two different chromatin regions based on their 

visualization by biotin or digoxigenin probes, respectively, it was found that the RCA step 

was blocked by dextran sulfate, which is an essential component of the DNA FISH 

hybridization protocol to increase efficiency. In order to overcome this problem, we replace 

dextran sulfate with dextran in the hybridization buffer. Using this modification, the proof of 

principle of ChrISP was established using human Cot1 DNA to visualize the clustering of 

repeat elements.  

As it was considered to be essential to know the resolution limits of the ChrISP technique, 

we used STED microscopic analysis of DNA fiber FISH samples using the strategy outlined 

above in the methods section. We found it striking that the resolution of ChrISP is < 17 nm 

was essentially identical to another estimation using regular ISPLA 166. Such a resolution 

compares very favorably to super-resolution fluorescence confocal microscopic techniques, 

such as PALM, STORM or STED. This improvement was named technique RCA-ChrISP. 

However, it was subsequently observed that the RCA step is constrained by the nuclear 

architecture for the RCA-ChrISP Cot-1 signal to emerge primarily at the nuclear periphery. To 

overcome such problems, the RCA step was omitted and the splinter labeled with green 

fluorescence to detect the DNA fragment proximities. Critical washing steps were optimized 

and achieved to keep the circular green fluorescence DNA in place only if the two epitopes 

were sufficiently close to each other. This final version of ChrISP, was used to determine 

proximities between Cot-1 repeat elements. In contrast to the RCA-ChrISP the proximity 

signals could now be observed throughout the nucleus. Using the splinter-ChrISP we had 

documented chromatin proximities within chromatin 11, visualized by biotin- and 

digoxigenin-labeled probes. Interestingly, the majority of the splinter-ChrISP signals were 

located at the boundary of chromosome 11 facing the nuclear periphery. Based on several 

types of controls, we could show that such signals were highly specific and dependent on the 

clustering of unique sequences without much contribution from repeat elements. In contrast, 

such features could not be visualized at all using conventional confocal microscopy.  

Taken together, a new single cell technique (ChrISP) was invented to facilitate chromatin 

organization in unprecedented detail filling the resolution gap between 3C-based and 3D 

DNA FISH techniques. The versatility of this ChrISP technique that provides yet another 

benefit in comparison with the 3D DNA FISH technique, it can be used to assess any 

proximity between any region in the genome and other epitopes, visualized by antibodies to 

nuclear lamins, transcription as well as any chromatin mark. As ChrISP is a single cell 
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technique it can also be used to quantitatively assess stochastic events underlying a 

particular transcription pattern, or the acquisition/erasure of chromatin marks in a cell 

population. We thus predict that this technique will be very useful in chromatin architecture 

research that wants to visualize higher order chromatin features in relationship to dynamic 

process, such as the cell cycle.  
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Paper II: The visualization of large organized chromatin domains 

enriched in the H3K9me2 mark within a single chromosome in a 

single cell 

To demonstrate the power of the ChrISP technique, we examined in more detail the features 

underlying the compact chromosome 11-specific chromatin structures at the nuclear 

periphery presented in the previous report. The size of the ChrISP signals indicating the 

involvement of millions of bps of sequences suggested that these structures represented the 

first visualization of the so-called LOCK structures for Large Organized Chromatin K9 

modifications 7. Initially we performed a new type of ChrISP analysis by combining the 

presence of H3K9me1/2/3 marks visualized by specific antibodies with a probe specific for 

the entire chromosome 11. This strategy showed that chromatin hubs could again be 

visualized using a H3K9me2-specific antibody while the distribution of the H3K9me1/3 marks 

were chromosome-wide. Moreover, the H3K9me2 enriched chromatin hubs frequently 

projected towards to the nuclear periphery as finger-like structure from the bulk of 

chromosome 11 territory – a feature that could not be visualized with normal DNA FISH or 

immuno-fluorescence staining.  Importantly, it was observed that chromatin hubs carrying 

the H3K9me2 mark revealed by ChrISP differed from the H3K9me2 staining pattern within 

the nucleus, indicating that the ChrISP patterns emerged only when the chromatin fibers 

carrying this mark are clustered together at the nuclear periphery.  

To independently validate this observation, we reasoned that removal of the function 

establishing the H3K9me2 mark from its H3K9me1 precursor, the G9/Glp methyltransferase 
7, would absolve the compact structures at the nuclear periphery. To test this possibility, 

HCT116 cells were transfected with a siRNA specific against G9a/Glp followed by ChrISP 

analysis using chromosome 11-specific digoxigenin/biotin probes. The results showed 

conclusively that the compacted structures at the nuclear periphery were indeed absent in 

the relative absence of the G9a/Glp function to document that the H3K9me2 mark is 

responsible for the clustering of chromatin fibers involving unique sequences at the nuclear 

periphery. Such an observation is in agreement with an independent report documenting 

that compact, transcriptionally non-permissive structure of the inactive X chromosome is 

dependent on the presence of H3K9me2/3 marks and HP1 167. 

Most surprisingly, however, knocking down the G9a/Glp function also significantly increased 

chromosome-wide chromatin compaction beyond the nuclear periphery. Such an 

observation could reflect that the clustered chromatin structures at the nuclear periphery 
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provide physical constraints for the compaction of the rest of the chromosome. Alternative 

explanations include the activation/repression of chromatin factors induced by the loss of 

the G9a/Glp functions, or that the newly compacted structures represent premature 

condensation events. Further work is essential to determine which of these scenarios can be 

ruled in or out.  

Taken together, we have in paper II used the high-resolution ChrISP technique to uncover 

dynamic changes of higher order chromatin conformation determined by the H3K9me2 

mark. Thus chromosome 11-specific chromatin hubs, which are enriched with H3K9me2 

marks and located at the nucleus periphery in single cells, could be visualized for the first 

time.  Moreover, reducing the levels of the H3K9me2 marks abolished the appearance of 

clustered chromatin structures at the nuclear periphery while dramatically increasing the 

prevalence of compact chromatin structures in the interior portions of chromosome 11. 

Such dynamic changes of higher order chromatin structure and their regulation have not 

been recognized before. 
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Paper III:  Poly(ADP-ribose) polymerase I and CTCF regulated 

interactions between active and repressive chromatin domains 

contribute to circadian plasticity of gene expression 

To uncover the dynamic feature of chromatin conformations, an epigenetically regulated 

region H19 ICR region 24was used as bait in human embryonic stem cells (HESCs) and human 

derived embryoid bodies (HEBs) 4C analyses. In agreement with previous research in the 

mouse 24, numerous inter- and intra- chromatin chromatin fibers could be found to interact 

with the H19 ICR region in developmentally regulated patterns. Surprisingly, cohesins were 

not found enriched on the chromatin interactors and excluded as the molecular tie 

organizing the H19 ICR interactome. Since the Poly(ADP-ribosyl)ation (PARlation) mark on 

CTCF from the H19 ICR has earlier been suspected by us to play a central role in cis 

chromatin interactions, we examined if this mark underlied the H19 ICR interactome.  To test 

this possibility, formaldehyde crosslinked chromatin samples were treated with PARG, which 

degrades the PAR chains, prior to the ligation step in the 4C-seq protocol. The results 

showed that removing the PARlation mark led to the disassembly of the majority of 

interactors from the H19 ICR in both HESCs and HEBs to suggest that this mark is present at 

the time the H19 ICR-specific interactome was crosslinked. A unique feature of the 4C-seq 

method used, to capture more than two simultaneously interacting chromatin fibers, was 

used to establish a topological network. This network could be validated by 3D DNA FISH 

analyses showing that well-connected central nodes were on average closer to the H19 ICR 

than regions that were outliers. Moreover, the distances between central nodes are also 

closer than to regions further apart in the network topology. A striking feature of this 

network is that it is organized in modular clusters that mix active chromatin and inactive 

chromatin within each other. This is surprising as it is generally believed that active 

chromatin and silence chromatin fibers are physically separated 6.  

Since the data suggested that PARylation might mediate the formation of the inter-

chromatin interactome, we reproduced the claim that CTCF is able to bind to PARP1 and 

influence its enzymatic activity without DNA damage 168.  We also showed that Olaparib, a 

PARP1 inhibitor, abolished not only CTCF-PARP1 interactions in co-immunoprecipitation 

assays, but also the H19 ICR interactome. Moreover, ChIP experiments showed that PARP1 

interacted with the H19 ICR and CTCF with the central chromatin hubs in an Olaparib-

sensitive manner. As PARP1 was interacting prominently with the central hubs, such results 

suggested that CTCF binding on the central hubs represented indirect binding mediated via 
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PARP1. Surprisingly, the same treatment almost completely evicted PARP1 from all the 

central hubs indicating that also PARP1-DNA interactions are Olaparib-sensitive, potentially 

due to conformational changes induced by the drug. Taken together, the results indicate 

that initial CTCF-PARP1 interactions underlie the assembly of the network and that the 

PARylation emerging as a result of this interaction contributes to the complexity of the trans- 

interaction network. 

To enable an interaction with all autosomes, the bait probably has to emerge from the 

constraints of its chromosome territory.  Indeed, 3D DNA FISH analyses showed that both 

the H19 ICR and VATL1, which together with the bait constituted the central chromatin in 

node the network showed such features controlled by PARP1 activity. Moreover, the 

proximities between the H19 ICR, VAT1L and PARD3, another central node, were reduced 

following Olaparib treatment and reduction of PARP1 expression mediated by siRNA 

transfection. As down-regulation of CTCF by siRNA transfection dramatically reduced the 

PARylation levels in living cells, we propose that the mobility of the central node for the 

inter-chromosome network requires both CTCF and PARP1.  

Given that the network mixed active and inactive regions we could not state that it was 

involved in the segregation of transcriptionally active or repressed parts of the genome. 

Reasoning that it might rather function by transcriptional attenuation we caught interest in 

the observation that the network is enriched in genes under circadian control. The possibility 

that circadian genes interacted with the constitutively repressed regions, represented by 

LADs 67, for a functional purpose was boosted by two lines of evidence: First, the enrichment 

of circadian genes was at its highest statistical significance at a distance of 10 kbps indicating 

a regulatory role of the interacting region. Second, it was recently reported that PARP1, 

which is also a key regulator of the H19 ICR-specific network, regulates the entrainment of 

circadian expression 161. Indeed, 3D DNA FISH proximity analyses demonstrated that the bait 

and other central nodes from the network located to the nucleus periphery in an Olaparib-

sensitive manner.  

To examine this link further, we employed a method to induce synchronization, entrainment, 

of circadian expression, by serum shock followed by serum starvation. Since this feature 

could not be achieved in HESCs 169, we used HCT116, which can be induced to efficiently 

display circadian rhythms 170, to test the hypothesis.  Strikingly, we could observe that the 

proximities between CTCF and PAPR1 are preferentially confined to the nuclear periphery 
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and show circadian rhythms in serum-shocked HCT116 cells, with peaks at 8 and 24 hours 

with a period of approximately 24 hours. Similarly, the proximity between H19 

ICR/PARD3/TARDBP loci and the nuclear periphery showed a similar oscillating pattern with 

a period of approximately 24 hours, although the H19 ICR peaked at the nuclear periphery 

about 8 hours earlier than the PARD3/TARDBP loci. We show in the manuscript that these 

features are linked with transcriptional activity, such that inhibition of PARD3 transcription 

accelerated its recruitment to the nuclear periphery. Importantly, nuclear PARD3 

transcription showed a circadian pattern, which peaked at the time its association with the 

nuclear periphery was most prominent. We reasoned therefore that the attenuation of 

transcription might follow from the nuclear peripheral association. This assumption was 

borne out by the demonstration that the attenuation of transcription in PARD3 was strongly 

linked to the acquisition of repressive chromatin marks H3K9me2 during its transient 

association with the nuclear periphery. Moreover, after inhibiting G9a/Glp activity, circadian 

migration of PARD3 to the periphery disappeared and circadian transcription stopped.  

Finally we show that the recruitment of H19/PARD3 to the nuclear periphery is also sensitive 

to CTCF and PARP1 levels.  

Taken together, we have in paper III uncovered a dynamic and developmentally controlled 

chromatin network involving direct contacts between active loci and repressed regions. The 

network arises, at least in part, by the recruitment of central chromatin hubs to the nuclear 

periphery potentially reflecting oscillating CTCF-PARP1 interactions. Finally, Moreover, the 

recruitment of the chromatin hubs is essential for the establishment of circadian 

transcription of the PARD3 gene by the oscillating acquisition of the repressive H3K9me2 

mark. These observations connect circadian regulation and its dynamic shuttle to the 

nucleus periphery and provide new perspectives for our understanding of the mechanism of 

circadian regulation of transcriptional plasticity. 
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Summary and Outlook 

The work in thesis has been trying to uncover the nonrandom and dynamic features of the 

genome in 3D.  

In paper I, a new technique, named chromatin in situ proximity (ChrISP), was invented. The 

successful application of ChrISP has already filled the gap between 3D DNA FISH and 3C-

based techniques. The remarkable features of ChrISP include high resolution of chromatin 

structures at the single cell level. We propose this technique will be widely used in 

chromatin organization research dedicated to understanding principles of stochastic and 

dynamic gene expression features and how these relate to chromatin structures within the 

very same chromosome. In the future, combing the ChrISP technique with super resolution 

microscopy will likely offer even more information of higher order chromatin structure, 

especially when combined with splinters of different lengths.  

In paper II, the ChrISP technique was applied to examine the function of a chromatin mark, 

ie H3K9me2, in regulating higher order chromatin structure with a single chromosome in a 

single cell. We observed that the H3K9me2 mark is enriched in finger-like structures at the 

nuclear periphery and that removing the epigenetic mark H3K9me2 reduced the appearance 

of chromatin hubs at the nuclear periphery while increased the compacting chromatin 

structures in the portions of chromosome 11 in the interior of the nucleus. We proposed 

that H3K9me2/3 marks regulate the pleiotropic feature of higher order chromatin structure. 

In the future, it would be very interesting to examine the mechanism of these dynamic 

changes of higher order chromatin structure relevant to H3K9me2 and any gene expression 

changes relevant to dynamic changes of chromatin structure devoid of the H3K9me2 mark. 

It also deserves to test the lamina association in the chromosome 11 and the detail 

information of chromatin conformation rearrangement from particular loci after removing 

H3K9me2. Finally, it can be predicted that the effect of knocking down the G9a/Glp function 

might lead to premature chromosome condensation, as this is a feature that might 

compromise the integrity of the genome.  

In Paper III, we identified a chromatin network impinging on the epigenetically regulated 

H19 ICR that depended on the combined function of CTCF and PARP1. The striking 

observation this interaction could be induced to oscillate in a synchronized manner might 

underlie the fact that the central chromatin hubs were recruited to the nuclear periphery in 

circadian patterns. The largely repressive character of the nuclear periphery influenced the 
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establishment of circadian transcription linked with the oscillating presence of H3K9me2. 

These observations have compounded our understanding of the mechanism of circadian 

regulation of transcriptional plasticity. In the future, it would be important to establish in 

more detail the principles underlying the recruitment of the central chromatin hubs to the 

nuclear periphery and their subsequent release.  

The nuclear periphery and its link to the H3K9me2 mark to form LOCK structures constitute 

one common denominator of this thesis. This is not surprising given that the nuclear 

periphery is likely to affect chromosome structures pleiotropically in interphase nuclei. The 

discovery that the chromatin hubs, identified here as circadian genes, are actually linked to 

the nuclear periphery provides yet another perspective on this topic. However, the 

downside of this arrangement is that epi-mutations involving the H3K9me2 mark, for 

example, can be induced by an irregular life to predispose to complex diseases, such as 

cancer. It might thus be rewarding to apply the ChrISP technique or any further derivative to 

examine chromatin structures in biopsies of patients. 
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