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ABSTRACT 

The pathogenesis of atherosclerosis is greatly influenced by the activities of both innate and 

adaptive immunity. Danger signals such as cholesterol crystals, oxidized LDL, and modified 

phospholipids may trigger sterile inflammation in atherosclerosis. Systemic infection or 

transient release of pathogen associated molecules in the circulation might also activate 

immune system and affect atherosclerosis. Activation of the innate immunity relies on a set of 

pattern recognition receptors (PRRs). Thus, PRRs are fundamental for activating the innate 

immunity in atherosclerosis.  

This thesis focuses on the role of three different PRRs in atherosclerosis, including NOD1, 

NOD2 and TLR9. We hypothesized that these PRRs regulate immune responses in the 

pathogenesis of atherosclerosis.  

We found that NOD2 is expressed in endothelial cells and macrophages in atherosclerotic 

plaques, and lesional NOD2 signal leads to activation of PGE2 pathway via NF-kB and 

MAPK p38. NOD2 activation in vivo promotes the development of vulnerable atherosclerotic 

plaques, characterized by enlarged necrotic core in the atherosclerotic plaques and enhanced 

vascular inflammation. Furthermore, NOD2 induces lipid retention in macrophages may 

contribute to the necrotic core formation. 

Although belonging to the same family, NOD1 signal promotes another lesional phenotype 

characterized by occlusive atherosclerosis with elastin degradation and vascular smooth 

muscle cell (VSMC) activation. In vitro stimulation of SMCs with NOD1 ligand induces 

chemokine and MMP production as well as enhances migration ability. Our data point to a 

possible mechanism via NOD1 in the development of occlusive atherosclerotic lesions. 

Unlike NOD1 and NOD2, TLR9 stimulation decreases atherosclerosis and necrotic core 

albeit activates local and systemic inflammation. Two important anti-inflammatory mediators 

IL-10 and IDO are induced by TLR9 activation and are potential contributors to the 

mechanisms that TLR9 restrains atherosclerosis. 

In summary, we identified three innate immune pathways linked to the distinct features of 

atherosclerosis. NOD2 leads to formation of vulnerable plaques with big necrotic cores. 

NOD1 promotes severe occlusive atherosclerosis. TLR9 signal restrains the development of 

atherosclerosis.  
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1 INTRODUCTION 

1.1 ATHEROSCLEROSIS 

Cardiovascular disease (CVD) 

Cardiovascular diseases (CVD) including ischemia heart disease and stroke are the leading 

cause of death worldwide [1]. In Sweden, CVD caused 42% of total deaths, and in China the 

figure is 38% of total death as reported by World Health Organization (WHO) in 2010. 

Although the mortality has declined in many European countries over the decades, it is 

rapidly increasing in developing countries, where more than 80% of CVD mortality occurs.  

Multiple genetic factors contribute to CVD. The evidence includes that several Mendelian 

dyslipidemia syndromes cause familial prevalence of early-onset CVD.  Besides, premature 

atherosclerotic CVD in one parent confers a 3-fold increased risk in the offspring. 

Furthermore, genomic DNA variants confer risk for CVD as so far over 5,500 SNPs have 

been associated with CVD at p < 10-5 by genome-wide association study (GWAS) [2]. 

GWAS study may provide relevant hints for understanding human disease, however the 

disease-causing SNPs remains to be verified in functional studies.  

Environmental risk factors of CVD include the use of tobacco, inadequate physical activity, 

unhealthy diet, and psychosocial stress. Life style changes require intensive public health and 

individual life-long preventive efforts. It is uncertain whether CVD can be avoided 

completely by preventive efforts [3]. 

Atherosclerosis 

Atherosclerosis develops insidiously throughout life from fatty streaks to advanced lesion and 

some of the plaques, not all, progress to cause thrombotic complications including acute 

coronary syndromes and stroke, two most common CVDs. The term ‘athero-sclerosis’, 

originated from Latin, refers to lipid core and fibrotic cap which are the structure of advanced 

atherosclerotic plaques in the intima of arteries. The transition from asymptomatic 

atherosclerosis to the sudden thrombosis complications is intensively discussed and reviewed 

in [4]. The paradigm shifts over the last decades from 1) the development of atherosclerotic 

plaques causes progressive stenosis of the lumen, and finally the critically stenotic lumen is 

occluded by thrombus, to 2) atherosclerosis is a chronic inflammatory disease developing on 

the basis of sub-endothelial lipid retention [5]. Culprit lesion does not cause stenosis, but 
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rather undergoes rupture driven by inflammation or superficial erosion which account for the 

thrombotic complications [4]. Vulnerable or unstable atherosclerotic plaques are histological 

characterized as large lipid-rich necrotic core, thin fibrous cap, massive inflammatory 

macrophages and few VSMCs in fibrous cap, outward remodeling, intraplaque vasa vasorum, 

intraplaque hemorrhage, and calcification [6]. The characterization of vulnerability in carotid 

plaques predicts the risk of cardiovascular disease outcome [7, 8]. Statin therapy increases 

fibrous cap thickness and stabilizes the vulnerable plaques [9, 10], but is still far from 

eliminating the disease, which brings two challenges to the future research: understanding 

pathogenesis of the disease in the statin era as the disease changes over the time [11], and 

delineating the complexity of the pathogenesis accounting for atherothrombotic 

complications. Interestingly, superficial erosion of plaques, lacking endothelial layer but 

without features of vulnerability nor conclusiveness, is estimated to account for a third of 

cardiovascular events [12]. In the light of this paradigm shift, this thesis work discusses the 

functions of pattern recognition receptors (PRRs) with regard to not only the changes in 

lesion size, but also the composition of the atherosclerotic plaque and the arterial 

inflammatory responses. 

1.2 INNATE IMMUNITY IN ATHEROSCLEROSIS 

Inflammation and immune mechanisms are crucial in the pathogenesis of atherosclerosis and 

link many traditional risk factors to altered arterial functions [13]. Innate immune cells such 

as monocytes and macrophages, neutrophils [14, 15], dendritic cells [16, 17], and mast cells 

[18, 19] are critical to atherosclerosis development. Non-professional immune cells in the 

vasculature such as EC and VSMC also take part in the disease not only as physical barrier 

but also by acquiring innate immune functions. In this part we will mainly focus on the recent 

progress on monocytes and macrophages in atherosclerosis, and EC, VSMC and mast cells 

are discussed under Section 1.4. A more comprehensive review on innate immunity in 

atherosclerosis is found in [20-22]. 

Monocytes in atherosclerosis 

Monocytes are currently classified into pro-inflammatory and anti-inflammatory monocytes, 

which are CD14+CD16+ and CD14++CD16- monocytes in human or 

CCR2+CX3CR1loLy6Chi and CCR2-CX3CR1hiLy6Clo monocytes in mice [23, 24]. Ly6Chi 

monocytes are differentiated from hematopoietic stem cells and progenitor cells which 

relocate from bone marrow to extramedullary sites such as spleen [25]. Ly6Chi monocytes 
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adhere to activated endothelium and accumulate and differentiated into macrophages rapidly 

(<24 hours) in atherosclerotic plaques [26]. Ly6Chi monocytes rely on CX3CR1, CCR2 and 

CCR5 to be recruited to atherosclerotic plaques, while Ly6Clo monocytes recruitment is 

partly dependent on CCR5 [27]. 

Ly6Chi monocytes seem to be more important to atherosclerosis because ApoE-/- mice fed a 

high-fat diet increase the number of circulating Ly6Chi monocytes gradually and 

dramatically, and they infiltrate more than Ly6Clo monocytes into atherosclerotic plaques 

[26]. CCR2-/- ApoE-/- mice in absence of Ly6Chi monocytes develop less atherosclerosis than 

ApoE-/- mice [26]. Moreover, myocardial infarction in ApoE-/- mice with chronic Ly6Chi 

monocytosis results in increased debris and necrotic tissue and decreased α-actin and collagen 

compared with ApoE+/+ mice [28]. Ly6Chi monocytes exhibit proteolytic and inflammatory 

function, and Ly6Clo monocytes express higher levels of vascular endothelial growth factor in 

myocardial infarction [28]. Ly6Clo monocytes scavenge microparticles and recruit 

neutrophils to mediate necrosis of endothelial cells in kidney cortex [29]. CX3CR1-CX3CL1 

interactions are an essential survival signal to Ly6Clo monocytes, and CX3CR1 or CX3CL1-

deficience are protective from atherosclerosis [30, 31]. But since CX3CR1 are expressed in 

all blood monocytes with different levels in the two subsets, this is not conclusive for the role 

of Ly6Clo in atherosclerosis. 

Macrophages in atherosclerosis 

Macrophages are heterogeneous and the subsets included at least classical activated 

macrophages (M1), alternatively activated macrophages (M2), Mox, M4, MHem, MHb, 

based on the current understanding [32]. In response to LPS and IFN-γ in vitro, macrophages 

become M1 which produce IL-12 and reactive nitrogen and oxygen intermediate, while in 

response to IL-4, macrophages become M2 which express high levels of scavenger, mannose 

and galactose receptors, and some M2 produce IL-10 [24]. Various other stimuli may take 

part in polarization of macrophages. For example, M-CSF and GM-CSF favor polarization 

toward M2 and M1 respectively [33]. In human atherosclerotic plaques, rupture-prone 

shoulder regions are rich in M1, fibrous caps have equal amount of M1 and M2, foam cells 

incorporate individual M1 and M2 markers, adventitia are rich in M2 [34]. Macrophages up-

regulate the expression of scavenger receptor and secretion of ApoE, now classified as M2 

subsets, in response to M-CSF secreted by endothelial cells (ECs) and smooth muscle cells 

(SMCs) upon inflammatory stimulation such as LPS, IL-1α, and TNF-α [35]. Oxidized 
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phospholipid induces Mox by up-regulation of Nrf2-mediated expression of stress response 

genes [36].  

The association between macrophage subsets and atherosclerosis is an attractive question. In 

aortas from Ldlr-/- mice fed an atherogenic diet for 30 weeks, M1, M2, Mox, comprise about 

40%, 20%, 35% of F4/80+CD11b+ macrophages. Interestingly, 15% of macrophages express 

both Mox and M1 markers, and 5% macrophages express Mox/M2 markers [36]. CD68+ 

macrophages in regressing plague up-regulate genes associated with M2 phenotype (Arginase 

I, CD163, and C-lectin receptor) and contractile apparatus, and down-regulate genes related 

to adhesion [37]. Proof-of-principle experiments on the function of various macrophage 

subsets are needed in the future. 

Evidences on lesional macrophage origin are starting to emerge. Although Ly6Chi monocytes 

can be recruited into atherosclerotic plaques at a higher level than Ly6Clo monocytes [27], 

lesional macrophages have been suggested to originate mainly from local proliferation of 

resident macrophages instead of differentiation from infiltrated monocytes [38].  

1.3 PATTERN RECOGNITION RECEPTORS IN ATHEROSCLEROSIS 

The innate immune system recognizes the structures shared by classes of microbes (pathogen 

associated molecular patterns (PAMPs)) or damaged cells (damage-associated molecular 

patterns (DAMPs)). The receptors recognizing these structures are named pattern recognition 

receptors (PRRs) [39]. PRRs are expressed on phagocytes, dendritic cells, lymphocytes, 

epithelial cells, and endothelial cells, and are located on cell surface, endosome, or in cytosol 

[39].  

The history of recognition of PRRs as immune sensors is inspiring and provides a good 

example of using knowledge from model system. In early and mid-90th, immunologists 

recognized cytokine triggered NF-ĸB as an important pathway in pathogen-induced 

inflammation, but were puzzled by how immune response is triggered at the first place. By 

paralleling the mammal IL-1 induced NF-ĸB activation and Drosophila dorsoventral pathway 

(illustrated in table 1, summarized from [40] ), they proposed that dorsoventral pathway, 

previously recognized to mediate embryonic dorsoventral polarity, was involved in 

Drosophila immune response [41].This hypothesis was supported later by the observation 

that overexpression of Toll, which shared the similar domain with IL-1R (later named TIR),  

up-regulates anti-microbial peptide production in Drosophila blood cells [42]. Jules 

Hoffmann et al provided a key evidence of by using Toll mutant Drosophilla, confirming that 
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Toll is a sensor of fungi for activating host defense in Drosophila [40]. This discovery was 

soon translated back from insects to human. Medzhitov and Janeway et al cloned human 

homologue of the Drosophila Toll (now named TLR4) and verified that TLR4 activates NF- 

ĸB pathway and thereby induce inflammatory cytokines and co-stimulatory molecules [43]. 

Bruce Beutler et al published that the LPS-resistant mouse strains C3H/HeJ and 

C57BL/10ScCr harbor missense or null mutation of TLR4 gene [44]. Jules Hoffmann and 

Bruce Beutler were awarded with 2011 Nobel Prize in Physiology or Medicine ‘for or their 

discoveries concerning the activation of innate immunity’[45].  

Table 1. Discovery of TLRs by paralleling mammal NF-ĸB pathway with Drosophila 

dorsoventral pathway. 

 NF-ĸB Dorsoventral Pathway 

Species Mammal Drosophila 

Family Rel*  Rel* 

Translocation Cytoplasma to nucleus Cytoplasma to nucleus 

Inhibitor I ĸB Cactus2# 

Activator IL-1R, Toll-like receptor? Toll-receptor 

Binding site NF- ĸB NF- ĸB- like site 

Downstream IRAK (protein kinase) Pelle (protein kinase) 

Gene product Host defense Host defense 

*Rel: rapidly inducible transactivators, #Cactus 2 is structrually related with I ĸB. 

PRRs are expanding rapidly since the discovery of TLR4. PRRs include scavenger receptors 

(SRs), TLRs, NLRs, C-type lectin receptors, pyrin, HIN domain-containing family members, 

and RIG-I-like receptors, and a range of newly described cytosolic nucleic acid sensors as 

reviewed in [46]. To date, 10 members have been identified in TLR family, and 22 

intracellular proteins has been identified in NLR family in human.  

A more general review on pattern recognition receptor in atherosclerosis can be found in [47, 

48]. Among PRRs, SRs are involved in phagocytic clearance by macrophages and thus 

extensively studied in foam cell formation [49]. TLR2 and TLR4 are the best characterized 
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signaling receptors in the context of atherosclerosis [48]. Studies on NLR members in 

atherosclerosis, such as NLRP3, are emerging because of their role in sensing cholesterol 

crystal and mediating sterile inflammation [50]. NOD1 and NOD2 are intensively studied in 

inflammatory bowel disease which is another chronic inflammatory disease [51, 52]. The 

following part will focus on the role of TLRs and NLRs in atherosclerosis. 

1.4 TLRS IN ATHEROSCLEROSIS 

1.4.1 Expression of TLRs 

TLRs expression in professional immune cells is summarized from [53, 54] in table 2. In 

general, innate immune cells express a broader number of TLRs than adaptive immune cells 

[53]. TLRs are therefore expressed at high levels in tissues that are rich in immune cells, such 

as peripheral blood leukocytes and spleens, as well as in tissues exposed to the external 

environment, such as lungs [54]. Some TLRs are also highly expressed in pancreas, placenta 

and ovaries [54]. Non-professional immune cells such as endothelial cells also express low 

levels of TLRs [55]. Of note, TLR expression is inducible in pathophysiological conditions. 

For example, patients with hepatitis C have increased TLR7 and TLR9 expression on CD4+ 

T cells compared with healthy controls, and increased TLR2, TLR4 and TLR9 expression on 

all T cells [56]. 

Table 2. The expression of TLRs in immune cells and in tissue. 

TLRs Immune cell Expression Tissue Expression 

TLR1 Mo, Mac, DC, B PBL, Sp, Lu, Pa 

TLR2 Mo, Mac, DC, B PBL, Sp, Lu, Pa, Ov 

TLR3 Mo, Gr, B, T, NK, DC, IE Pl, Te, Lu, Pa 

TLR4 Mo, Mac, DC, MC, IE PBL, Sp, Lu, Pl 

TLR5 Mo, Mac, DC, IE Ov, PBL, Lu, Pr 

TLR6 Mo, Mac, DC, B PBL, Sp, Lu 

TLR7 Mo, Mac, DC, B, T Pl, Lu, PBL, Sp 

TLR8 Mo, Mac, DC, MC PBL, Lu, Sp, Pl 

TLR9 Mo, Mac, DC, B, T Sp, Ov, PBL, Th 

TLR10 Mo, Mac, DC Sp 

Mo, monocytes; Mac, macrophages; DC, dendritic cells; Gr, granulocytes; MC, mast cells; B, 

B cells; T, T cells; IE, intestinal epithelium. Lu, lung; GI, gastrointestinal tract; PBL, 
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peripheral blood leukocytes; Sp, spleen; Pa, Pancreas; Ov, ovary; Te, testis; Pl, placenta; Pr, 

Prostate; Th, Thymas. 

The detection of TLR expression in atherosclerotic tissue is of interest because it provides the 

first hints for the relevance of TLRs in atherosclerosis. TLR4 was the first recognized PRR in 

atherosclerotic plaques. It is mainly expressed in macrophages and can be up-regulated by 

ox-LDL [57]. Our group showed previously that the mRNA of TLR1, TLR2, TLR6, TLR7, 

and TLR8 are significant increased, and TLR3, TLR4 and TLR5 have an increased tendency, 

but TLR9 expression has a decreased tendency in carotid atherosclerotic plaques compared 

with internal mammary arteries as controls [55]. TLR2 and TLR4 mRNA expression increase 

with age in atherosclerosis-prone aortic arch of ApoE-/- mice. After 15-week age, the  mRNA 

levels in ApoE-/- mice are higher than wild-type mice [58]. Moreover, monocyte TLR4 

expression is associated with plaque stability because the expression of TLR4 and TLR 

common adaptor protein MyD88 in circulating monocytes is increased from patients with 

acute coronary syndrome (ACS), including myocardial infarction and unstable angina, than 

healthy individuals and patients with stable angina [59]. Furthermore, monocytes from acute 

coronary syndrome patients have higher response to LPS in the forms of secreting pro-

inflammatory cytokine IL-12 and expression of co-stimulating molecue B7-1[59]. As the 

knowledge of monocyte heterogeneity gathered [60], the increased TLR4 expression in 

monocyte subsets in acute myocardial infarction patients was further dissected to be mainly 

on  CD14+CD16+ pro-inflammatory monocytes [61]. Furthermore, the expression of TLR4 

is in ACS thrombi >ACS blood >healthy control blood, indicating a enrichment of monocytes 

bearing TLR4 in thrombi [62]. It remanins unclear whether theseTLR4- rich monocytes have 

a systemic or local effect on plaque rupture. In contrast to these results, a recent study found 

no correlation of TLR4+ monocytes with cardiovascular events or cardiovascular death  in 

patients with chronic kidney disease stage V receiving dialysis, indicating that additional 

pathogenic pathways may cause cardiovascular events in this high risk group of patients [63]. 

1.4.2 TLR downstream signals 

TLRs belong to TLR/IL-1 receptor superfamily because TLRs contain a TIR domain which is 

similar to IL-1 receptor. Ligation of TLR/IL-1 receptor recruits TIR domain-containing 

adaptor protein MyD88, and initiates formation of a complex containing protein kinases 

including IL-1 receptor-associated kinase (IRAK) 1, IRAK4, and transforming growth factor 

beta-associated kinase (TAK) 1. The complex further activates NF- ĸB and mitogen-activated 

protein kinase (MAPK) pathways. Ligated TLR3/4 are also able to interact with another TIR 
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domain containing adaptor protein, TRIF, and activate IRF-3. TLR7/8/9 can activate IRF-7 

via MyD88/TRAF3/TBK1-dependent pathway [48]. Activation of TLRs eventually lead to 

activation of anti-microbial killing mechanisms, production of cytokines and chemokines, 

maturation of antigen presenting cells, and recruitment of the adaptive immune response in 

the context of infection [64]. 

In atherosclerotic plaques, TLR2 and TLR4 induce NF- ĸB activation[55]. In endothelial 

cells, this leads to upregulation of adhesion molecule VCAM-1 which promotes the adhesion 

of moncytes [65]. In macrophages, this provides pro-survival signals in macrophages, 

whereas inhibiting macrophage NF-ĸB results in increased cell death and accelerated 

atherosclerosis [66]. It is rather complex to predict the overall effect on atherosclerosis of the 

different signal pathways elicited by TLRs ligation in various cell types. 

1.4.3 Regulation of TLRs  

TLR activation is under tight control. One example is that TLRs are normally not over-

activated on intestinal epithelial cells which are in direct contact with microbiota [64]. 

Another example is that LPS transiently supress TLR4 mRNA expression in macrophages, 

which may contribute to endotoxin tolerance [44].  

In the context of atherosclerosis, increasing evidences suggest the regulation of TLR 

expression or signaling by hypercholesterolemia. Cholesterol efflux gene ABCA1 and 

ABCG1 supress the expression and the function of TLR2 and TLR4 [67]. ABCA1-/-ABCG1-/- 

macrophages express higher levels of TLR2 and TLR4 and have higher response to LPS 

stimulation compare with wild-type macrophages [67]. The effect is mediated by membrane 

cholesterol since it is enhanced by increasing membrane cholesterol level and abolished or 

decreased by delpleting membrane cholesterol by cyclodextrin [67]. Interestingly, ABC 

transporters deficient macrophages form more caveolae upon acetylated-LDL loading [67]. 

The role of caveolae lies not only in transcellular movement of molecules but also as a 

mediator in cell signaling, notably as a regulator of TLR4 signaling through eNOS and 

IRAK4[68]. However the relevence remains to be confirmed in vivo. 

Another class of lipid-related negative TLR regulators are peroxisome proliferator-activated 

receptors (PPAR) ligands including unsaturated fatty acid. PPAR ligands exert anti-

inflammatory effect on variaties of cell types including macrophages, T cells, dendritic cells, 

endothelial cells and smooth muscle cells, and the molecular mechanisms varies among cell 

types and PPAR members [69]. In macrophages [70] and smooth muscle cells [71], PPAR 



 

 9 

gamma ligand inhibit TLR-stimulated inflammatory gene expression by interfering IRF3 

signaling.  

1.4.4 TLR ligands 

PRR recognize pathogen associated molecular patterns (PAMPs) and danger associated 

molecular patterns (DAMPs). Bacterial PAMPs includes LPS, flagellin, peptidoglycan, cyclic 

dinucleotide. Viral PAMPs includes viral fusion glycoproteins, dsRNA, ssRNA, and viral 

DNA (summarized in Table 3). Several pathogens have been associated with elevated risk of 

atherosclerosis, such as Clamydia pneumonia, Helicobacter pylori, Porphyromonas 

gingivalis, Cytomegalovirus, Epstein-Barrr-virus, Human immunodeficiency virus, Herpes 

simplex virus 1 and 2, Hepatitis A and B, and Influenza A virus [72]. In line with this, 

vaccination against influenza virus decreases the risk of acute coronary syndrome [48]. Gut 

commensal bacteria release peptidoglycan into blood stream during bacteria amplification, 

and atherosclerotic plaques contain detactable peptidoglycan, the ligand for TLR2, NOD1 

and NOD2 [73]. These observations lead to the hypothesis that PAMPs may be involved in 

pathogenesis of atherosclerosis. 

The proposed role for PAMPs in atherosclerosis is tested in experimental atherosclerotic 

models. Intraperitoneal injection of Lactobacillus casei cell wall extract is able to induce 

vasculitis and myocarditis after 1-2 weeks. Coronary lesions could be treated by IL-1 receptor 

antagonist if administrated less than 3 days after injection of cell wall extract [74]. 

Furthermore, Lactobacillus casei cell wall extract could accelerate atherosclerosis in ApoE-/- 

or Ldlr-/- mice with high fat diet. Administration of IL-1 receptor antagonist from day 1 to day 

5 inhibits the acceleration of atherosclerosis [75]. However, atherosclerosis in germ-free 

ApoE-/- mice is not different from animals raised in ambient levels of microbial challenges, 

indicating that commensal bacteria is not necessary for the development of atherosclerosis in 

immune sufficient mice [76]. Since the housing conditions of mice differ between animal 

houses, contributions from commensal microbiota to atherosclerosis cannot be completely 

excluded. 

On the other hand, the endogenous ligands of PRRs are hypothesized to contribute to 

atherogenesis. Atherosclerotic plaques contains large amount of cholesterol crystals, modified 

proteins and lipids, and cell debris, and degraded extracellular matrix due to intensive tissue 

remodeling. These DAMPs could act as endogenous ligands to PRRs and elicit inflammation 

in atherosclerosis. It has been shown that oxidized LDL (oxLDL) and modified phospholipids 

activate TLR4, and cholesterol crystals activate NLRP3 inflammasome. Heat shock proteins 
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(Hsp60, Hsp70, Gp96) and high-mobility group box 1 (HMGB1) released by stressed cells or 

necrotic cells can be detected by TLR2 and TLR4 [77-80]. Endosomal TLRs such as TLR3 

can detect mRNA [81], while TLR7/9 can detect RNA/DNA-containing immune complex 

[82]. Extracellular matrix protein fibronectin derived extra domain A activates TLR4 [83]. 

These are the potential endogenous ligands to PRRs that affect atherosclerosis as reviewed in 

[48].  

Modified LDL has caught great attention as endogenous ligands. Biotin-mmLDL (minimally 

modified low-density lipoprotein, endotoxin< 0.1ng/ml or 1EU) binds to macrophages in a 

TLR4/MD-2 and CD14-dependent manner [84]. mmLDL (endotoxin< 2.5 pg/ml or 0.025 

EU) stimulating murine peritoneal cells induces RANTES secretion at a relatively low 

magnitude (100 pg/ml) and with the peak at 2 hours [85]. mmLDL also induces IL-6 (<10 

pg/ml), TNF-α (<100 pg/ml) within one hour [86]. Cholesterol ester hydroperoxide in 

mmLDL is identified as an endogenous ligand for TLR4 [87]. Moreover, mmLDL 

stimulation increases F-actin concentration, a liner polymer microfilament and are essential 

for cell mobility, in a TLR4, CD14- spleen tyrosine kinase (Syk)-dependent pathway [88, 

89]. mmLDL induced cytoskeleton rearrangement is accompanied by macropinocytosis, a 

process that facilitate small molecule or native LDL uptake[87], and leads to decrease 

phagocytosis of apoptotic cells, and increased uptaken of monomeric oxLDL [84]. mmLDL 

can also activate reactive oxygen species (ROS) production via Syk, PLCγ1, protein kinase 

C, and NOS2 pathway in a TLR4-dependant but MyD88-independent manner [85]. 

Furthermore, mmLDL activates TLR4- independent PI3K pathway through unknown PRRs 

[86]. It is possible that complex molecules such as modified LDL embeds several endogenous 

ligands that bind to more than one PRR.  

In contrary to the majority of the results showing mmLDL as endogenous PRR ligands, 

Kannan et al found endotoxin free mmLDL alone is not able to acitivate and even supress 

cytokine production in human monocytes or macrophages cultured for 3 and 6 hours [90]. 

The discrepancy is unlikely because of containmination of TLR4 agonist/antagonists, as both 

studies have performed endotoxin test and found rather low levels of enodtoxin. However, 

this study brings up a key question that needs to be addressed in this emerging field that 

whether or not the proposed endogenous ligands may posesss genuine TLR-activating 

potential or instead reflect the contamination of exogenous ligands such as LPS. 
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Table 3. Exogenous and endogenous ligands of selected number of TLRs, modified from [91] 

and [48]. 

* remains to be determined. 

1.4.5 TLRs in regulation of foam cell formation 

Cellular lipids come from cholesterol-rich lipoprotein particles such as LDL, oxLDL or 

mmLDL, fatty acid catalyzed from tryglycerides-rich lipoprotein particles (VLDL) by 

endothelial lipase, or de novo lipid synthesis. Insufficient HDL removal of extra triglycerides 

or cholesterol esters contributes to the accumulation and formation of lipid droplets in 

macrophags, namely foam cell formation [92]. Several studies have shown that TLR4 

activation promotes cholesterol esters accumulation but the mechanistic explanations are 

controversial. The possible mechanisms are summarized in figure 1. 

TLR cellular 

compartment 

Exogenous Ligand Endogenous Ligand 

TLR1 Plasma membrane Triacyl lipoprotein * 

TLR2 Plasma membrane Lipoprotein HSPs, HMGB1, ApoCIII, 

SDMA 

TLR3 Endo/lysosome dsRNA mRNA 

TLR4 Plasma membrane Lipopolysaccharide mmLDL, oxLDL, modified 

phospholipids, HSPs, HMGB1, 

Fibornectin-derived extra 

domain A 

TLR5 Plasma membrane Flagellin * 

TLR6 Plasma membrane Diacyl lipoprotein * 

TLR7/

TLR8 

Endo/lysosome ssRNA RNA/DNA Immune complex 

TLR9 Endo/lysosome CpG-DNA RNA/DNA Immune complex 

TLR10 Endo/lysosome * * 

TLR11 Plamsa membrane Profilin-like 

molecule 
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FABP4
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CO2
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Figure 1. Possible mechanisms of TLR4 regulating foam cell formation. LPS or mmLDL
activate TLR4 and downstream MyD88-NF-kB or IRF3 pathways. TLR4 activation increases 
CD36, glucose transporter 1 (GLUT1) and suppresses LXR-regulated genes such as ABCA1. 
This leads to increased uptake of oxLDL, fatty acid and glucose, decreased oxidation of 
glucose and fatty acid, decreased hydrolysis of triglycerides and decreased efflux of 
cholesterol.  

TLR4 activation can increase lipid uptake which contributes to foam cell formation. Oiknine 

et al showed that LPS increased LDL uptake, and cellular cholesterol synthesis, but doesn’t 

alter HDL-mediated efflux, and lead to accumulation of triglycerides and cholesterol esters in 

macrophages [93]. Miller et al showed that mmLDL activate TLR4/MD-2 and increases 

scanvenger receptor CD36 and thus increases monomeric oxLDL uptake [84]. For fatty acid 

uptake, LPS induces the expression of fatty acid-binding protein (FABP)s FABP4 (also 

named αP2) [94] and FABP5 (also named Mal1) [95] in macrophages, which may lead to 

increased uptake of fatty acid and thus accelerate atherosclerosis. Boord et al showed that 

FABP4-/-FABP5-/-ApoE-/- mice develop less atherosclerosis in early and advanced stage than 

ApoE-/- mice. These mice also have decreased plasma cholesterol and triglycerides, and 

improved insulin sensitivity and glucose tolerance. [96]. 

Insufficient cholesterol efflux is also an essential mechanism in foam cell formation. Castrillo 

et al showed that TLR3 and TLR4 ligation by Poly I:C or LPS inhibite the binding of nuclear 

receptor liver X receptor (LXR) to LXR element on the promoter of the efflux genes such as 

ABCA1, ABCG1, ApoE, SREBP-1c, fatty acid synthase (FAS). This leads to decreased 

HDL-dependant cholesterol efflux and increased foam cell formation. TLR3 and TLR4 

induced repression of LXR seems independent of adaptor MyD88, NF-ĸB activity, or 

cytokines such as TNF-α, IL-1β, or IFNs, but dependent on up-regulation and activation of 

IRF3 expression [97]. TLR3 or TLR4 ligation inhibits LXR but not PPARγ or PPARδ, 

indicating a specific effect of TLR signaling on LXR [97]. In reverse, ABC transporter-
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deficient macrophages increase signaling via TLR, MyD88/TRIF and expression of 

inflammatory genes [67]. 

 Another possible mechanism of TLR4-indcued foam cell formation is that TLR4 stimulation 

can alter cell metabolism process such as glucose metabolism, lipid oxidation, de novo 

synthesis, and lipolysis and thus promote accumulation of triglycerides resulting in foam cell 

formation. Funk et al found that LPS alone can induce triglyceride accumulation even 

without exogenous lipid addition to macrophage culture. LPS can further enhance free fatty 

acid loading induced foam cell formation [98]. Later, the same group addressed several 

different mechanisms by which LPS induced triglycerides accumulation and thus foam cell 

formation. First, LPS through TLR4 and MyD88 up-regulates the expression of glucose 

tranporter 1 (GLUT1), and induces the accumulation of GLUT1 protein on plasma 

membrane, which increased uptake of glucose in macrophages. Second, LPS decreases 

glucose oxidation to CO2, and increases glucose metabolized into lactate, which may also 

metabolized into lipid and accumulate in the cells. Third, LPS up-regulates the expression of 

scavenger receptor CD36, and increases uptake of fatty acid, as mentioned above in [84]. 

Similar as glucose, LPS decreased fatty acid oxidation. LPS down-regulates the expression of 

carnitine palmitoyltransferase 1(CPT1)α and CPT1β which mediate carnitine-dependent 

transport of fatty acid to mitochondria for oxidation. Instead, fatty acids are subjected to 

synthesize into glycerol lipid by upregulated enzymes 1-acylglycerol-3-phosphate O-

acyltransferase 9 (AGPAT9) and diacylglycerol O-acyltransferase 2 (DGAT2) upon TLR4 

activation. TLR2 and TLR3 ligation also induce upregulation of AGPAT9 and DGAT2. 

However, the signaling pathway is less clear since the effect is independent of MyD88 or 

cytokines such as TNF-α or IL-1. Fourth, LPS decreases hydrolysis of accumulated 

triglycerides [99]. TLR4 regulated metabolism may be a general mechanism of 

pathophysiology applicable to other cells than macrophages. However, knockout/knock-

down study is needed to verify the key mechanisms. 

Howell et al showed that LPS enhances oxLDL-induced foam cell formation, and the effect is 

mediated via TLR4 in macrophages. They also observed LPS treated foam cells tends to 

cluster together, indicating that cell-cell interaction may take place [100].   

1.4.6 TLRs and endothelial dysfunction 

Endothelial cells (ECs) are located at the interface in direct contact with the blood flow and 

sense the physical hydrodynamics and chemical mediators of the blood flow. ECs produce 

nitric oxide which induces vasodilation by opposing EC-derived vasoconstrictor angiotensin 
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II and endothelin, reduces platelet and leukocyte adhesion, and inhibits VSMC proliferation 

[101]. Sheer stress, oxidized lipids and inflammatory stimuli induce endothelial dysfunction 

and lead to increased endothelial permeability, platelet aggregation, and leukocyte adhesion 

which exacerbate atherosclerosis [101]. Many risk factors of atherosclerosis cause endothelial 

dysfunction, such as smoking [102], type 2 diabetes and hypertension. Elevated sE-selectin, a 

marker of endothelial dysfunction, predicts type 2 diabetes [103]. Endothelial cells sense 

abnormal HDL via TLR2 and thereby increase superoxide and reduce nitric oxide production, 

which mediate endothelial dysfunction [104]. Thus endothelial dysfunction links many risk 

factors to atherosclerosis at cellular and molecular levels. Recently, the role of vasa vasorum, 

the microvasculature in adventitia and expanding from adventitia to intima in response to 

vascular injury, receives more and more attention in atherosclerosis research. Whether this is 

the result or the cause of atherosclerosis remains to be investigated and the current 

understanding is reviewed in [105]. 

ECs express functional pattern recognition receptors (PRRs), which sense pathogen 

associated molecular patterns (PAMPs), and release inflammatory cytokines [106-108]. 

Ablation of proinflammatory NF-ĸB pathway in ECs substantially reduces atherosclerosis 

[65]. Ligation of ECs TLR4 induces IL-6 production and enhances cross talk with monocytes 

[108]. One difference between  macrophages and endothelial cells responses to TLR4 is that 

macrophages activate both MyD88 and TRIF pathways, while endothelial cells lacks protein 

TRAM and therefore incapable of activating TRIF pathway. For example, LPS stimulation in 

endothelial cells doesn’t induce TRIF-dependent gene, for example, CXCL10 [109]. 

TLR2 regulates endothelial functions such as repair after injury and anti-inflammatory 

capacity. TLR2 activation by SDMA in endothelial cells reduces NO production via reduced 

phosphorylation of Akt (Ser473) and subsequently enhanced phosphorylation of eNOS-

inhibiting phosphorylation (Thr495) and reduced eNOS-activating phosphorylation 

(Ser1177), in a TLR1, TLR6, NF-kB independent pathway [104], indicating TLR2 activation 

leads to endothelial dysfunction by impairing NO production. Furthermore, endothelial TLR2 

activation induces NAPDH oxidase to promote reactive oxygen species (ROS) production. 

Both exogenous TLR2 ligand Pam3CSK4 and symmetric dimethylarginine (SDMA), an 

endogenous TLR2 ligand in abnormal HDL from chronic kidney disease patients, induce 

ROS production in endothelial cells [104].  

In contrast, TLRs seem to play a protective role in endothelial progenitor cells (EPC). 

Circulating EPCs are considered to contribute to re-endothelialization and may be benificial 
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to cardiovascular disease. Endothelial progenitor cells express TLR4, CD14, and MyD88, 

and LPS treatment promote EPC proliferation [110]. P. gingivalis, a periodontal pathogen, 

stimulates the mobilization of  EPC from bone marrow to periferal and thus improve 

endothelial function and re-endothelization in a TLR2-dependent pathway [111]. 

1.4.7 TLRs in VSMC phenotype alteration 

Similar as ECs, VSMCs also express functional PRRs. Therefore VSMC respond to 

inflammatory stimuli as innate immune cells in atherosclerosis. In response of IL-1, TNF-α, 

and LPS, VSMCs produce substantial M-CSF which promotes macrophage proliferation, 

differentiation and survival [35]. PRRs such as NOD2 are involved in VSMC homeostasis as 

NOD2-/- mice have increased neointimal hyperplasia formation after artery injury, and NOD2 

is essential for VSMC proliferation and migration in response to PDGF-BB [112]. Direct 

contact between VSMCs and macrophages via CX3CL1/CX3CR1 has a synergistic effect in 

production of pro-inflammatory cytokines, chemokines, and MMP9 in both cell types [113].  

VSMC apoptosis is induced by mast cell activation and subsequent release of chymase in the 

cap region of atherosclerotic lesions, and thus is important in plaque vulnerability. It has been 

shown that although TLR4 signal does not alter mast cell numbers but it is required for mast 

cell activation and IL-6 and chymase secretion. IL-6 acts in a autocrine and paracrine way 

and further promotes chymase production eventually leading to more apoptosis of smooth 

muscles cells [114]. 

In normal artery, VSMCs are present only in the media, however, in atherosclerotic lesions, 

they are also present in the intima. VSMCs incubated with free cholesterol decrease the 

expression of smooth muscle α actin, increase CD68 and MCP-1 expression, and accumulate 

intracellular lipids. The effect of cholesterol-induced up-regulation of CD68 and MCP-1 was 

partially mediated by TLR4 [115]. Besides, upon oxLDL stimulation, the expression of 

VSMC contract proteins such as smooth muscle α actin, calponin, myocardin, and SM22a is 

also shown to be down-regulated, and G-CSF and GM-CSF production are increased, 

mediated by TLR4 and CD36 [116]. These data indicates that TLR4 signaling is linked to the 

alteration of VSMC from contractile to proinflammatory phenotye in response to atherogenic 

stimuli. However, little is known about the relevance of the proinflammatory phenotype of 

VSMCs for atherosclerosis. 
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1.4.8 TLRs in necrotic core development 

Endoplasmic reticulum (ER) stress is a proapoptotic stimuli of macrophage in advanced 

atheroma [117]. Exogenous TLR4 ligand LPS stimulates ER stress as evidenced by up-

regulation of activating transcription factor 6 protein [118, 119] . It is partly medicated by 

insufficient chaperone GRP94 and GRP78 availability upon long-term (24-48 hours) LPS 

stimulation [118]. Endogenous PRR ligands such as oxidized phospholipids, oxLDL, 

saturated fatty acids, and lipoprotein(a) trigger CD36 and TLR2 and generate ROS, which 

results in apoptosis in ER-stressed macrophages. CD36-/-TLR2-/- macrophages are more 

resistant to apoptosis induced by saturated fatty acids-rich diet. Furthermore, TLR2-/-TLR4-/- 

bone marrow transplanted Ldlr-/- mice fed on high fat diet develop less macrophage apoptosis 

and plaque necrotic core than wild-type bone marrow transplanted mice [120]. 

Insufficient clearance of apoptotic cells could lead to secondary necrosis. As mentioned 

above, mmLDL induced TLR4 activation leads to macrophage cytoskeleton rearrangement 

and inhibites phagocytosis of apoptotic cells [84].This could lead to necrotic cell death in 

advanced atherosclerotic lesions. 

Recently, TLR2, TLR3, TLR4, TLR5 and TLR9 was described to trigger a type of 

programmed cell death named necroptosis in the absense of caspase-8. The signaling 

pathway for TLR3 and TLR4 was explored in fibroblasts. TLR3 and TLR4 activate TRIF, 

which interacts with receptor interacting protine (RIP)3  kinase through a RIP homotypic 

interaction, and activates RIP3 downstream protein mixed linage kinase domain-like protein 

(MLKL), and results in necroptosis [121]. However, the relevence of necroptosis in 

atherosclerosis remains to be investigated.  

1.4.9 TLR functions in atherosclerosis 

TLR4 is the first innate immune receptor studied in atherosclerosis in vivo. TLR4-/-ApoE-/- 

mice fed a western diet develope less atherosclerosis than ApoE-/- mice, albit no change in 

serum cholesterol. TLR4 deficiency is associated with reduced macrophage infiltration and 

activation in the lesion, and decreased CCL2 and IL-12 in the circulation [122]. Deficiency of 

MyD88, downstream adaptor of most TLRs, IL-1R and IL-18R, also decreases 

atherosclerosis accompanied by decreased chemokines and macrophages in the lesion in 

ApoE-/- mice fed a western diet [122, 123]. However, knocking-out of CD14, a co-receptor of 

TLR4, does not alter atherosclerosis [123]. In rat femoral cuff model, LPS-containing gel 
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increases atherosclerotic plaque size and external elastin lamina (EEL) area, indicating a local 

direct deleterious effect of TLR4 stimulation in atherosclerosis and vesular remodeling [124]. 

The role of TLR4 differs in various two-disease models. In atherosclerotic mice fed with a 

diabetogenic diet, atherosclerosis and LDL and VLDL levels in TLR4-/-Ldlr-/- mice was 

decreased than Ldlr-/- mice, but glucose intolerance and obesity was not improved, indicating 

a deleterious role of TLR4 in atherosclerosis but not in diabetes and obese [125]. Since 

periodontitis is associated with atherosclerosis, Hayashi et al explored atherosclerosis in 

TLR4-/- ApoE-/- mice fed a chow diet infected with  Porphyromonas gingivalis, a deleterious 

bacterial species in chronic periodental disease. The infection significantly exacerbates 

atherosclerosis in both ApoE-/-mice and TLR4-/-ApoE-/- mice fed a chow diet. Suprisingly, 

they found a larger increase in atherosclerosis in infected TLR4-/-ApoE-/- mice compared with 

infected ApoE-/- mice [126]. These results indicate that TLR4 overall plays a protective role 

in atherosclerosis in the subjects with chronic infection, probably because of the protective 

effect of TLR4 in host defense.  

The role of TLR2 in atherosclerosis is elucidated in a rigorous study by Mullick et al using 

four different models. In the first experiment, without any exogenous ligand stimulation, 

TLR2-/- Ldlr-/- knockout mice fed a high fat diet for 10 or 14 weeks develop less 

atheroslcerosis than Ldlr-/- mice. Secondly, to elucidate the role of different cellular TLR2 

signal, they performed bone marrow transplantation from TLR2-/- or TLR2+/+ mice to TLR2-/-

Ldlr-/- or Ldlr-/- mice. They found regardless of bone marrow cell genotype, TLR2-deficiency 

on non-bone marrow derived cells protects from atherosclerosis. In the third experiment, they 

stimulated Ldlr-/- mice with TLR2 exogenous ligand Pam3CSK4, and found that the mice 

developed pronounced increased atherosclerosis than unstimulated Ldlr-/- mice, while there is 

no difference in response to Pam3CSK4 stimulation in TLR2-/- Ldlr-/- mice as expected. In the 

fourth experiment, to explore whether the response to exogenous ligand comes from bone 

marrow cell TLR2 signal, they performed bone marrow transplatation from TLR2-/- or 

TLR2+/+ bone marrow cells to Ldlr-/- mice, and stimulate the chimeras with Pam3CSK4. They 

found that TLR2+/+ chimeras respond to TLR2 stimulation similarly as Ldlr-/- mice in the 

third experiment, but  TLR2-/- chimeras (TLR2-/-
Ldlr-/-) lost the effect, indicating the bone 

marrow cell TLR2 signaling is important for exogenous ligand stimulated augmentation of 

atherosclerosis [127]. The deleterious role of TLR2 in atherosclerosi is verified in another 

atherosclerotic mouse model ApoE-/- mice [128]. Similar to TLR4, TLR2 stimulation with 

Pam3CSK4 increased neointima formation in C57/B6 mice and atherosclerosis in ApoE-/- 

mice in femoral cuff model [129]. However, a recent study shows that maybe TLR2 is not 
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important in advanced atherosclerosis. TLR2-/-ApoE-/- mice develop less atherosclerosis in 

early age (18-week old) than ApoE-/- mice on chow diet or western diet, however, there 

difference disapears in a later age (36-week old) [115].  

As discussed in previous chapters, TLR2 and TLR4 both can be activated by atherosclerosis-

related endogenous ligand and signal through MyD88, and thus it is possible that they interact 

with each other. Overexpressing human TLR2 and TLR4 increased atherosclerosis in rabbit 

fed high cholesterol diet, but the effect of overexperssing either TLR2 or TLR4 is not 

detectable, indicating a synergistic effect of TLR2 and TLR4[130].  

Unlike TLR2 and TLR4, TLR3 and TLR7 exert a atheroprotective role. TLR3-/-ApoE-/- mice 

developed more atherosclerosis than ApoE-/- mice when fed a chow diet till age 15-week, but 

no change till age 30-week. In collar injury induced atherosclerosis model, TLR3-/- mice did 

not change intima/media ratio, although there is a increase in breaks in elastin lamina than 

C57/B7 [131]. The reason behind the protective effect of TLR3 in early atherosclerosis is not 

yet known. Similarly, TLR7-/-ApoE-/- mice develop more atherosclerosis than ApoE-/- mice 

when fed a chow diet both till aged 18-week and age 26-week, indicating a protective role of 

TLR7 in both early and advanced atherosclerosis. The increased atherosclerosis in TLR7-/-

ApoE-/- mice is associated with increased M1 macrophages and necrotic core, decreased 

fibrous cap, as well as increased Ly6Chi monocytes in blood and spleen. Since peritoneal 

macrophages from TLR7-/- ApoE-/- mice secrete more inflammatory cytokines than ApoE-/- 

macrophages upon TLR2 stimulation, the author proposed that the mechanistic explanation is 

probably due to the compensation effect of up-regulation of other TLR siganalings [132]. 

However, the hypothesis needs to be examined in vivo. 

1.4.10 Genetic evidence for TLRs in atherosclerosis 

Despite of the massive experimental studies suggesting the importance for TLRs in 

athoersclerosis, affirming their pathogenic relevance to human atherosclerosis remains a 

challenge. Two functional polymorphisms of TLR4, Asp299Gly and Thr399Ile, were 

associated with lower risk of carotid atherosclerosis and myocardial infarction in some 

studies but not reproducible in others [133]. The interpretation of the negative results should 

take into consideration that the function of the investigated gene is not totally abolished and 

possibly even compensated. Also, cardiovascular events are influenced by multiple factors 

and thus may be not sensitive as an endpoint. 
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1.5 NLRS IN ATHEROSCLEROSIS 

1.5.1 NLR subfamily 

Nucleotide-binding domain, leucine-rich repeat-containing proteins (NLRs), represent a 

group of key sensors which functions as bona fide PRRs or adaptor molecules or regulators 

of signal transduction. NLR family includes at least 22 proteins in human and 33 proteins in 

mice. This section will focus on the role of NLR in inflammation and especially on the 

relevance of NOD1 and NOD2 to chronic inflammatory diseases such as atherosclerosis. 

As its name implies, NLRs contain central nucleotide-binding and oligomerization domain 

and C-terminal leucine-rich repeat (LRR) domain. According to the structures of N-terminal 

domain, NLRs are classified into several subfamilies including the best characterized NLRC 

and NLRP. NLRC subfamily is characterized by consisting of a caspase activation and 

caspase-recruitment (CARD) domain at N-terminal, including nucleotide-binding 

oligomerization domain containing (NOD) 1, NOD2, and NLRC3-5. NLRP subfamily 

contains a pyrin domain (PYD) as N-terminal effector domain and includes NLRP1-14. Both 

CARD and PYD domain are involved in both apoptosis and inflammation [134]. According 

to the current knowledge of the main function, NOD1 and NOD2 are considered to mainly 

function as PRR, and NLRC4, NLRP1, and NLRP3, etc are considered inflammasome-

forming NLRs due to their role in forming inflammasome. 

1.5.2 NLR expression 

Both NOD1 and NOD2 are expressed in a wide variety of tissue types. In adult humans, 

NOD1 mRNA is expressed abunduntly in heart, skeletal muscle, spleen, ovary, and to a lesser 

extent in placenta, lung, liver, kidney, thymus, small intestine, colon, and peripheral blood 

leukocytes. At stage 15.5 (day 15.5), mouse embryo express NOD1 mRNA in liver, thymus, 

cortical region of kidney, lung, gut epithelium and in certain regions of central nervous 

system [135]. Unlike NOD1, the NOD2 mRNA expression seems absence or low in various 

human tissues, except in peripheral blood leukocytes [136], however, NOD2 protein could be 

detected in skin, small intestine, colon, trachea, salivary gland, kidney, and bone marrow 

[137]. 

At cellular level, unlike NOD1, which is widely expressed, NOD2 is found in restricted cell 

types including monocytes in peripheral blood [136], peneth cells in small intestine [138], 

various epithelial cells in digestrion tract [139], and keratinocytes [137] in humans. The 

expression of NOD1 and NOD2 are inducible even in the cells that normally express none or 
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little of these genes. For example, NOD1 expression can be induced by S. aureus and 

Salmonella in osteoblast while NOD2 can only be induced by Salmonella [140]. 

Subcellularly, most NLRs are expressed in cytosol, with the exception of NLRX1 (NOD9) 

which is localized in the outer membrane of mitochondria [141].  

1.5.3 NLR Ligands 

NOD1 and NOD2 sense different structures in bacterial peptidoglycan. The minimum NOD1 

stimulating structure is D-γ-glutyamyl-meso-diaminolimelic acid (iE-DAP) [142, 143], and 

the minimum stimulating structure for NOD2 is muramyl dipeptide (MDP). However, 

although these are generally called NOD1 or NOD2 ligand, there is no evidence of direct 

binding in a manner consistant with other PRRs [144]. 

Evidences indicate that NOD1 and NOD2 expressed in the vessels or unexposed organs could 

be stimulated even without systemic bacterial infection in humans. NOD1 and NOD2 

stimulatory molecules were abundant in foods and soil. For example, high human NOD1 

stimulatory acitivity and some human NOD2 stimulation have been detected in Natto, a 

traditional Japanese food product derived from soybeans fermented with Bacillus. subtilis 

natto, while Lactobacillus plantarum contain iE-DAP structure but does not have NOD1-

stimulatory activity [145]. NOD1 ligands were highly stable at extreme pH (acidic or basic) 

and boiling conditions. Recycling and turnover of bacterial cell wall peptidoglycan results in 

release of peptidoglycan fragment into the environment [146]. Bacteria culture supernatant 

exhibited higher NOD1 stimulatory activities than cell bodies, indicating the possibility of a 

stimulatory effect even without bacteremia[145]. Peptidoglycans can translocate from gut to 

circulation and bone marrow and activate oxidative and non-oxidative killing by neutrophils 

[147]. 

Synthetic NOD1 and NOD2 ligands are essential tools to study the function of the receptors 

for at least two reasons. First, many mechanistic studies use laboratory mice raised under 

specific pathogen free environment and thus the presence of NOD1 or NOD2 ligand in the 

circulation is uncertain. Second, the published studies on NOD1-/- or NOD2-/- mice often 

requires an additional triggers, such as bacterial infection, to induce a specific phenotype. 

Interestingly, NOD1 ligand was initially synthesized and used in vaccine research even 

before NOD1 was characterized. Early in 1982, during screening for immunostimulants by 

Fujisawa Research Laboratory, FK156 was isolated and found to be a potent 

immunostimulatnt, and FK565 was synthesized with similar structure to mimic peptidoglycan 
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fragments [148]. Thirty years later FK565 was found to be NOD1-specific agonist [146] and 

frequently used as NOD1-specific ligand in functional studies since then.  

Peptidoglycans are associated with atheroslcerosis. Gut metagenome study shows that 

patients with symptomatic carotid plaques leading to vascular events have enriched genes 

encoding peptidoglycan synthesis of gut microbiota compared with age- and sex- matched 

controls without cardiovascular health problem [149]. Peptidoglycans are present in some 

atherosclerotic plaques in carotid artery, femoral artery and coronary arteries. Peptidoglycan 

positive plaques are associated with vulnerable features such as high macrophage content, 

and more than 50% atheroma, and less smooth muscle cells in cap and shoulder area [73].  

Inflammasome-forming NLRs, such as NLRP1 and NLRP3, can be activated by a large 

variaties of activators including self activators and pathogen activators. Self activators, or 

sterile activators includes self-derived activators such as ATP, cholesterol crystals, glucose, 

amyloid β, monosodium urate or calcium pyrophosphate dihydrate crystals, and hyaluronan, 

and environment-derived activators such as alum, asbestos, sillica, Alloy particles, skin 

irritants, and UV radiation. Pathogen activators include bacteria-derived pore-forming toxins, 

lethal toxin, flagellin/rod proteins, MDP, RNA, DNA, virus-derived RNA, M2 protein, 

Fungus –derived β-glucans, hyphae, mannan, zymosan, and protozoa-derived hemozoin. 

[150].  

Cholesterol crystals are atherosclerosis-related inflammasome activators. In atherosclerotic 

lesions of high-cholesterol diet fed ApoE-/- mice, cholesterol crystals are present as early as 

two weeks on high fat diet and accumulate further with age. Cholesterol crystals locate both 

in the necrotic core and also in subendothelial area, both intracellularly and extracellularly. 

Intracellular cholesterol crystals are located both inside and outside phagosome. Cholesterol 

crystals are able to activate caspase-1and lead to IL-1β production in LPS-primed human 

PBMCs. This process is dependent on NLRP3 inflammasome [50].  

Internalization of NOD2 ligand MDP may be involved the following pathways as reviewed in 

[151]. First, membrane protein transports, such as human peptide transporter 1 and pannexin-

1 may involved in uptake of extracellular MDP which was cleaved out during bacterial 

peptidoglycan turn over. Second, MDP may be internalized by endocytosis via clathrin and 

dynamin. Third, after phagocytes ingest whole bacteria, peptidoglycans are digested in 

phagolysosome, and the resultant MDP may be transported to cytosol. Two endo-lysosomal 

peptide transporters, SLC15A3 and SLC15A4, are selectively required for NOD2 sensing 
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endosomal MDP as recently reported [152]. Last, peptidoglycan turn over of the ingested 

bacteria may release MDP into infected cells  [151]. 

1.5.4 NLR downstream signals 

NOD1 and NOD2 were the first identified NLR members leading to activation of canonical 

NF-ĸB and MAPKs pathways [141]. Upon activation, NOD 1 and NOD2 self-oligomerize 

and interact with the serine-threonine kinase RICK (also known as RIP2) via a hemophilic 

CARD-CARD interaction and ubiquitination to activate NF-ĸB signaling pathway [136, 153] 

and MAPKs including p38, ERK and JNK pathways [154]. NOD2 activates MAPK and 

cytokine secretion in human macrophages in IL-1β-dependent way [155]. 

RIP2 is a crucial adaptor protein medicating activation of NF-ĸB and MAPKs by NOD1 and 

NOD2 ligation. RIP2-deficiency will abolish the cytokine response from NOD2 stimulation 

but leave the effect from purified TLR4 agonist stimulation untouched. NOD2 utilizes RIP2 

to cooperate with TLR4 for pro-inflammatory cytokine production. Furthermore, NOD1 and 

NOD2 compensate each other in the sense of cytokine production upon pathogen stimulation 

due to the common downstream adaptor RIP2 [154]. 

NLRs are also involved in signaling regulating anti-viral type I IFN production. For example, 

NOD2 can sense ssRNA and interact with mitochondrial antiviral signaling protein (MAVS), 

and subsequently activate transcription factor IRF3, consequently leading to increased IFN-β 

production [156]. Other NLRs are found to negatively regulate type I IFN production. 

NLRX1, the only known NLR expressed in mitochondria, inhibits RIG-I/MDA5-MAVS-

mediated production of antiviral IFN-β [157].  

NLRs take part in forming inflammasomes. Inflammasome is a multi-protein platform which 

activates caspase-1 and consequently mediates cytokine maturation (IL-1β and IL-18) and 

cell death. For NLRC subfamily, CARD domain at N-terminal can probably interact directly 

with pro-caspase-1 in CARD-CARD homophilic interaction, and lead to processing of 

caspase-1 [150]. For example, NOD2 stimulation by MDP induces IL-1β secretion in 

macrophages. Stimulated NOD2 binds to and activates caspase-1 probably with its N-

terminal CARD domain, while the C-terminal LRR domain of unstimulated NOD2 prevent 

caspase-1 activation [158]. NLRP subfamily containing contains a PYD domain at N-

terminal instead of CARD domain, however, inflammasome can be formed together with 

adaptor protein ASC. ASC contains both PYD domain to interact with NLRPs and CARD 

domain to interact with pro-caspase-1. For example, NLRP2 and NLRP3 associate with ASC, 



 

 23 

CARD8 (also named Cardinal) and caspase-1 and form an inflammasome [159]. NLRP1 is 

special in that it contains a CARD domain at C-terminal, which can bind caspase-1 directly 

and assemble inflammasome [160]. ASC is not required in NLRP1 inflammasome but can 

enhance inflammasome activation [161].  

Cross-talk between NLR may exist in forming inflammasome. MDP induces IL-1β secretion 

in a NOD2-RIP2-dependent manner in macrophages. [158]. It has also been observed by gel 

filter assay that NOD2-NALP1-caspase-1 formed a complex [158]. To further complicate the 

picture, MDP-induced IL-1β secretion is shown to be NALP3-dependent [162]. Unlike most 

other studies performed in cells, Faustin et al also showed that MDP, but not LPS or γ-tri-

DAP, directly activate reconstituted NALP1 inflammasome in cell-free environment [161]. 

These data indicate that multiple NLRs may associate with each other in response to one 

stimulus to induce inflammasome activation.  

1.5.5 Regulation of NLR signal 

Dysregulation of inflammasome activation might reduce the host defense in infectious 

disease, or promote sterile inflammation in chronic inflammatory diseases. Activation of 

inflammasome results in maturation of an essential pro-inflammatory cytokine IL-1β. IL-1β 

acts in an auto-crine manner and can further promote the production of other pro-

inflammatory cytokines. Furthermore, inflammasome is involved in necroptosis, a newly 

defined programmed cell death, and leading to the leakage of cellular content which will 

induce more inflammation.  

Several mechanisms have been hypothesized to involve in negative regulation of 

inflammasome activation. For example, NOD2 and NALP1 alternative splicing variants can 

regulate full-length isoforms. Also, pyrin-only proteins and CARD-only proteins can act as 

dominant-negative regulators [150]. RIP3 and RIP1-dependent NLRP3 inflammasome-

mediated necroptosis is regulated by caspase-8, which is a switch between apoptosis and 

necroptosis [163].  

NLR functions 

NOD1 and NOD2 trigger innate and adaptive immunity. NOD1 ligand FK565 can directly 

activate mouse macrophages [164]. NOD1 is indespensible for initiation of adaptive 

immunity, for example, priming antigen-specific Th1 and Th17 cell immunity and 

subsequent antibody responses [165]. NOD1 agonist alone plus OVA antigen elicit priming 
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of antigen-specific T and B cell immunity with a predominant Th2 cell polarization profile 

[165]. NOD2 is indispensable for Th2 polarization of antigen-specific adaptive immune 

response[166]. 

NOD1 and NOD2 interact with RIP2 and are involved in autophagy. Autophagy is a self 

degradation process in which portions of cytoplasma, damaged organelles or long-lived 

proteins are sequestered into double-membrane bounded vesicles and delivered to lysosome 

for degradation. NOD1 and NOD2 are found to be intracellular sensors that responsd to 

invasive bacteria by recruiting autophagy protein ATG16L1 to plasma membrane at bacterial 

entry site. This is crucial process for antigen presentation to CD4+ T cells by dendritic cells. 

[167, 168].  

NOD1 and NOD2 are essential for mucosal host defense. NOD1 signaling in 

nonhematopoietic cells are involved in host defense against Listeria monocytogenes[169]. In 

line with this, NOD1-deficient mice are susceptible to Gram positive bacteria Clostridium 

difficile infection with antibiotics treatment, which is associated with reduced neutrophil 

recruitment and impaired production of CXCL1[170]. NOD2 are involved in host defense 

also by inducing an inflammatory cytokine IL-32 and therefore promote rapid monocyte 

differentiation into dendritic cells and a specific DC programming to CD1b+ DC with 

enhanced ability of MHC class I-restricted antigen presentation to CD8+ T cells [171]. 

Although IL-32 receptor has not been identified, it has been implicated to be expressed in 

human atherosclerotic arteries and human IL-32γ-expressing transgenic mice develop 

vascular inflammation manifested as smooth muscle cell hyperplasia and immune cell 

infiltration in the adventitia of aortas [172]. NOD1 and NOD2 double knock-out mice have 

decreased inflammatory response and increased Salmonella colonization of the mucosal 

tissue compared with wild-type mice [173]. However, there is no difference in proliferation 

and activity of lymph node-derived T cells in NOD1-/- or NOD2-/- mice compared with wild-

type [174], probably because of the compensation between the NOD1 and NOD2 as they 

both signal through RIP2.  

NOD1 and NOD2 are involved in pathogenesis of autoimmune and chronic inflammatory 

diseases which may share pathological mechanisms with atherosclerosis. NOD1 variants are 

associated with autoimmune diseases such as such as asthma [175, 176], atopic eczema [177], 

and NOD2 variants are associated with chronic inflammaotry disease such as Crohn’s disease 

[52, 178]. The imbalance between protective and harmful bacteria and the decreased 

complexicity of gut bacteria is observed in Crohn’s disease [179]. One attracting hypothesis 
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is that the role of NOD1 or NOD2 in IBD is mediated by the disturbance of gut microbiota, 

however, the causitive relation between IBD and microbiota disturbance is under debate.  

NOD2 has been shown to induce an important inflammatory disease associated micro-RNA 

miR-29. NOD2 combined with TLR2 or TLR5 stimulation in dendritic cells increases miR-

29. Neither TLR2 or TLR5 alone or the combination of TLR2 and TLR5 does not result in 

miR-29 upreguation, indicating a essential role of NOD2 signaling in induction of miR-29 

[180]. miR-29 exerts dual funcitons in inflammatory diesease. First, miR-29 can down 

regulate IL-12p40 directly and IL23p19 indirectly, which are two subunit of IL-23. IL-23 and 

IL-6 are required for induction of Th17 cells, which is important for antimicrobial immunity 

at mucosa and a hallmark of the inflammatory response in Crohn’s disease. This provide a 

potential mechanism for the role of NOD2 in Crohn’s disease [180]. Second, miR-29b 

mediates epigenetic regulations that are involved in atherosclerosis. In human aortic smooth 

muscle cell cultrue, oxLDL upregulates miR-29 expression and induce miR-29-dependent 

down-regulation of DNA methyltransferase 3b and consequently upregulate MMP-2/MMP-9 

genes [181]. 

Knowledge is merging on the role of NLRs in atherosclerosis. NLRP3 forms the caspase-1 

activating cytoplasmic complexes, NLRP3 inflammasome, upon the stimulation of 

cholesterol crystals, and Ldlr-/- mice reconstituted with NLRP3-/-, ASC-/- or IL-1α-/-IL-1β-/- 

bone marrow and fed a high-cholesterol diet have reduced atherosclerosis and necrotic core 

area compared with wild-type bone marrow transplanted mice [50]. However, Menu and co-

workers later used NLRP3-/-/Apoe-/- mice and showed that atherosclerosis progresses 

independently of the NLRP3 inflammasome [182]. NOD1 activation induces cardiac 

dysfunction and this is associated with increases cardiac fibrosis and apoptosis[183]. NOD1 

ligand also induce vascular inflammation manifested by coronary arteritis and valvulitis. The 

inflammation is associated with high expression of chemokines/cytokines and matrix 

metallopeptidases [184]. The association between NOD2 polymorphisms and cardiovascular 

diseases was shown in an retrospective study comparing angiografically documented patients 

and healthy controls[185], but failed to be identified in a prospective study using 

cardiovascular disease as a readout [186]. 
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2 METHODOLOGICAL CONSIDERATIONS 

2.1 HUMAN CAROTID ATHEROSCLEROTIC PLAQUE MODEL 

Human atherosclerotic plaques collected from carotid endarterectomy were used in this thesis 

to analyze the mRNA and protein expression of the genes of interest. Using carotid plaques 

as a surrogate for characterizing the culprit plaques in coronary or cerebral events have both 

advantage and disadvantage. The advantages include that it is the easiest plaque to access in 

humans. Moreover, plaque characteristics show a certain degree of similarities among 

vascular territories because systemic factors influences atherosclerotic burden and the 

presence of necrotic core [187]. However, inflammation may distributed non-homogenously 

in atherosclerotic arteries [187]. Thus, the results require to be supported by other models. 

Human atherosclerotic plaque culture was used to determine the functional relevance of the 

receptors in human atherosclerosis. The advantage of this model compared with cell culture 

experiments are that it can be used to analyze the responses of all cell types in the intima of 

human atherosclerotic plaque to a certain stimulus. Secretory proteins or lipids in the 

supernatant, as well as mRNA or protein, including phosphorylated proteins in the tissue 

were analyzed in response to PRR stimulation. The disadvantage is that heterogeneity of the 

plaque tissue and various severity of the disease caused big variations, thus, normalization to 

the untreated plaque tissue from the same patient and adequate number of replicates are 

necessary.  

2.2 MOUSE MODELS OF ATHEROSCLEROSIS 

Animal models are useful for exploring the function of PRRs in atherosclerosis. Compared 

with human carotid plaque models, animal models provide more mechanistic insights with 

pharmacological treatment and genetic modifications. Multiple species has been used as 

animal models of human atherosclerosis, including mice, rabbits, pigs, non-human primates, 

dogs,  hamsters, guinea pigs, and birds. However, mouse models have the advantage of rapid 

breeding, affordability, and genetic modifiablility. Mice are generally resistant to 

atherosclerosis, but genetically modified mice are widely used as model of human 

hyperlipidemia and atherosclerosis. Cautions are needed when extrapolate the results to 

human disease due to the differences between species. In this section, I will mainly discuss 

the pros and cons of the three  mouse models that were used in this thesis, the other mouse 

models were well reviewed in [188]. 
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ApoE-/- mice 

ApoE is a lipoprotein found in chylomicrons, chylomicron remnants, VLDL, and some 

isotypes of HDL, and mediate cholesterol metabolism by binding to LDL receptor and 

chylomicron remnant receptor [189]. Except for its role of decreasing the absorption of 

dietary cholesterol and increasing biliary cholesterol excretion [190], ApoE can also inhibit 

LDL oxidation, and has a dual role in inflammation as reviewed in [191] and [192]. 

ApoE-/- mice develop spontaneous atherosclerosis due to accumulation of atherogenic 

cholesterol–rich remnants in the plasma [193]. Although the plasma cholesterol level of wild-

type mice does not alter when fed with chow diet (0.02% (wt/wt) cholesterol) or high fat diet 

(0.5% (wt/wt) cholesterol) for 3 weeks, 10-13 weeks old ApoE-/- mice have 6 times higher 

plasma cholesterol than wild-type mice of the same age when both are fed chow diet, and 12-

fold higher when both are fed with high fat diet [190]. ApoE-/- mice fed chow diet develop 

foam cell accumulation in aortic sinus at 12 weeks old [193]. In our experiment we used mice 

from 12-14 weeks age and measured atherosclerotic lesion development at 20-22 weeks age 

to allow the analysis of lesion composition. 

ApoE is expressed mainly in hepatocytes, but also in bone marrow cells. Transplantation of 

bone marrow cells with wild-type ApoE fully rescue dyslipidemia and prevent atherogenesis 

in ApoE-/- mice [194]. Thus, ApoE-/- mice were not used as recipients in bone marrow 

transplantation experiments. 

Ldlr-/- mice 

LDL receptor (Ldlr) is expressed mainly on hepatic cells. It binds with a high affinity to 

ApoE on intermediated density lipoprotein (IDL), derived from triglycerides-rich VLDL by 

lipase, and binds with a low affinity to ApoB-100 on LDL. It functions as one of the main 

mechanisms to remove IDL and LDL from the plasma [195]. 

Ldlr-/- mice developed atherosclerosis when fed a high-cholesterol diet due to 

hypercholesterolemia [196]. Ldlr-/- mice has two-fold increased plasma cholesterol compared 

with wild-type mice at 7-8 weeks age fed on normal chow diet [195, 196], while with 2 

weeks of high fat diet (1.25% cholesterol), the differences enlarges to 12 fold between male 

mice and 14 fold between females [196].  Ldlr-/- mice developed xanthomatosis when fed 

with a western diet for more than 12 months [196].  
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2.3 STRATEGIES TO STUDY PRRS IN ATHEROSCLEROSIS 

Pharmacological intervention and genetic modification are used to study pattern recognition 

receptors in atherosclerosis in mouse models. The advantage of genetic modification is the 

specificity of the interrupted receptor and the targeted cell population. However, the 

compensatory effect due to disruption of the gene since born may influence the interpretation 

of the result. Thus, we also used pharmacologically synthesized ligand of the PRRs to 

investigate the direct effect within the controlled time period.  

Transplantation of bone marrow with genetically modified PRR 

Bone marrow transplantation was performed from a genetic modified donor to Ldlr-/- 

recipient to study the role of PRRs (mutated in donors) in bone marrow cells in 

atherosclerosis. 6-9 weeks old Ldlr-/- mice were irradiated with lethal doses (2 doses of 700 

rad 3 hours apart) and receive bone marrow cells from the donor mice.  The transplanted 

mice were recovered for 4 weeks, and fed a high fat diet for 8 weeks for analysis of 

atherosclerosis development. 

Pharmacological interventions with PRR ligands 

Commercially available NOD2 ligands includes MDP derivatives and muramyl tripeptide. In 

paper 1-2 we used minimal bioactive motif of peptidoglycan, MDP, as NOD2 ligand. MDP is 

muramyl dipeptide, N-Acetylmuramyl-L-Alanyl-D-Isoglutamine (L-D isoform).  

Commercially available NOD1 ligands include iE-DAP and its derivative C12-iE-DAP. In 

pilot experiment we found iE-DAP did not give a satisfactory response (data not shown), 

thus, C12-iE-DAP was chosen to get a strong effect. Later, we acquired FK565 as a gift from 

Astellas, Tsukuba, Japan, which has been reported to be even stronger NOD1 stimulator than 

C12-iE-DAP in endothelial cells [184].  Therefore FK565 was used in animal experiments. 

CpG oligonucleotides are also been used as TLR9 ligands, including CpG group A, B and C. 

Group A is efficient in type I IFN production, group B is efficient in inducing B cell 

activation, and group C induces both effects. In paper 4 we use CpG-ODN 1826 as TLR9 

agonist. It is a 20-mer synthetic single-stranded DNA containing a completely 

phosphorothioated backbone and two CACGTT motifs, namely CpG motifs, which contains 

unmethylated CpG dinucleotides. CG was switched as a DNA control. However, the control 

has been reported to induce the activation of TLR7/TRIF pathway [197]. Thus, PBS was also 

used as control.  
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3 RESULTS AND DISCUSSIONS 

3.1 NOD2 IS EXPRESSED AND FUNCTIONAL IN HUMAN 

ATHEROSCLEROSIS 

The main aim of paper 1 was to investigate the role of NOD2 in human atherosclerosis. 

NOD2 is of interest in human atherosclerosis because peptidoglycan, the natural ligand of 

NOD1, NOD2, and TLR2 is present in human atherosclerotic plaques and associated with 

unstable plaque phenotype [73]. The function of TLR2 in human atherosclerosis has been 

addressed in many studies, for example, [55, 73], but not NOD1 or NOD2. Given the 

importance of eicosanoids in inflammation and atherosclerosis [198-200], we hypothesized 

that NOD2 signal affects eicosanoids metabolism in human atherosclerosis plaques.  

As a basis, we characterized the expression of NOD2 in human atherosclerotic plaque tissue. 

In endothelial cells, NOD2 expression is induced by inflammatory mediators, such as IL-1β 

and TNF-α [201] [107]. The mRNA expression of NOD2 is regulated by NF-ĸB pathway, as 

the TNF-α induced NOD2 expression is mediated by transcriptional activation of NOD2 

promoter by p50 and p65 subunits of NF-ĸB [202]. TNF-α induced NOD2 expression is a 

rapid process which takes place in less than 3 h. In immune cells, NOD2 expression is up-

regulated in granulocyte and monocytes/macrophages in peripheral blood after differentiation 

from hematopoietic progenitor cells [202]. We found that the expression of NOD2 is higher 

in atherosclerotic plaques tissue than normal artery control internal mammary arteries in 

mRNA level measured by real-time PCR and microarray, and in protein level measured by 

western blot and immunostaining (Figure 2). Moreover, NOD2 protein is located mainly in 

necrotic core and endothelial layer in the atherosclerotic plaques, expressed by endothelial 

cells and macrophages.  Besides inflammatory cytokines, NOD2 expression is also up-

regulated by TLR4 or NOD2 ligation with LPS and MDP in ex vivo plaque tissue culture. 

These results indicate that NOD2 is expressed in atherosclerotic plaques and the expression 

may be further up-regulated with the plaque development. These data serve the basis for the 

function of NOD2 in regulating eicosanoid pathway in atherosclerosis. 
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Figure 2. Enhanced expression of NOD2 in atherosclerotic lesions. 
Immunohistochemical analysis of NOD2 protein in (a) internal mammary arteries 
and (b) the atherosclerotic plaques stained by NOD2 antibody or (C) isotype control 
antibody (IgG).  

Another main finding of paper 1 was NOD2 signal specifically regulates COX2-PGE2-

EP2/EP4 axis among the eicosanoid pathways in atherosclerotic plaque tissue. We found that 

atherosclerotic plaque tissue culture release high level of HETEs including 12-HETE, 5-

HETE, and 13-HODE, and to a less extent prostanoids in the rest state, and a considerable 

level of leukotrienes LTB4 and LTE4. Among the eicosanoids that we analyzed, only PGE2 

is increased by NOD2 stimulation. The enzymes COX-2 and mPGES-1 as well as the 

receptors for PGE2, EP2 and EP4, were also increased both in atherosclerotic plaque culture 

and in monocytes/macrophages, indicating that NOD2 activates COX2-PGE2 pathway in 

atherosclerosis (Figure 3). Furthermore, we elucidated that NOD2-induced PGE2 is mediated 

by MAPK p38 activation, and NOD2-induced IL-1β and TNF-α contribute at least part to the 

COX-2--PGE2 axis. One limitation of this experiment was that 15-HETE and cystainyl 

leukotrienes, which are abundant in atherosclerosis [203], were not measured due to the 

limited amount of the material.  

Figure 3. NOD2 induces COX-2/PGE2 pathway in atherosclerotic plaques. (A) PGE2

released from ex vivo cultures of human carotid atherosclerotic plaque stimulated 
with TLR4 agonist LPS, NOD1 agonist 12CDAP or NOD2 agonist MDP. (B) Protein 
levels of COX-1, COX-2, mPGES-1 in the MDP stimulated macrophages determined by 
western blot. 

A B

 

This result is of interest because eicosanoids including leukotrienes, prostaglandins, lipoxins 

and hydroxyeicosatetraenoic acids (HETEs), exert broad functions in atherosclerosis [198-

200]. For instance, leukotriene LTB4 is potent chemoattractant [204, 205], 15-HETE inhibits 

neutrophil activation and 13-HODE inhibits cell adhesion to endothelium [206]. The function 
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of plaque PGE2 varies between either stimulation or inhibition on platelet and athero-

thrombosis depending on stimulation of either EP3 or EP4 [207, 208]. 

Besides eicosanoids pathways, we also explored cytokine production induced by NOD2 in 

monocytes/macrophages and in atherosclerotic plaques. We found that NOD2 induces 

remarkable production of inflammatory cytokines TNF-α, IL-8, IL-1β, IL-10 and IL-6 

mediated by NF-ĸB and MAPK in human monocytes/macrophages [209-211]. In consistent 

with these findings, we found NOD2 stimulation by MDP also induces the production of IL-

8, IL-1β, IL-10 and IL-6 via MAPK p38 pathway in atherosclerotic plaques.  

NOD2 stimulation by bacterial peptidoglycan component MDP induces NF-κB [136] and 

MAPK activation [209] in monocytes/macrophages. Over-expression of NOD2 activates NF-

ĸB pathway [107]. NOD2 signal requires autocrine IL-1β to exacerbate MAPK activation 

[155, 211]. In accordance with the previous findings in monocytes/macrophages, we 

confirmed activation of NF-ĸB and MAPK induced by MDP in both human monocyte cell 

line THP-1 cells and in human atherosclerotic plaques at a relatively late time point, 1.5 h 

after NOD2 stimulation. The pharmacological inhibition of the NF-ĸB and MAPK pathway 

shows that in plaque tissue NOD2 induced cytokine response are dependent on MAPK p38 

pathway. 

A limitation of using pharmacological inhibitors to delineate signal pathways is that most 

inhibitors interfere with more than one signal pathways. The p38 inhibitor SB203580 used in 

our study, as well as other p38 inhibitors SB220025 and PD169316, inhibits auto-

phosphorylation of RIP2, an adaptor of NOD2 induced signal [212], at concentrations 

comparable to those used to inhibit p38 [213], and thus make it difficult to delineate the role 

of p38 and RIP2 in NOD2 signal with the inhibitory effect of SB203580 on the NOD2-

induced cytokine production. On the other hand, NF-ĸB inhibitor BAY-11-7082 can also 

activate p38 [214], which make it difficult to delineate the role of NF-ĸB by a strong MAPK 

p38 inducer. Alternatively, siRNA might be another available strategy for the inhibition.  

Taken together, this study elucidated that NOD2 is highly expressed in human atherosclerotic 

plaques and NOD2 induces PGE2 production in atherosclerosis. These results identified the 

PRR signaling that selectively govern PGE2 pathway in atherosclerosis. This also adds 

evidence to and illustrates a mechanism of how pattern recognition receptors and innate 

immune immunity involves in atherosclerosis. Further work is expected to determine the 

functional role of NOD2 in atherosclerosis in vivo.  
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3.2 NOD2 INDUCES VULNERABLE ATHEROSCLEROTIC PLAQUES 

The main aim of paper 2 was to investigate the function of NOD2 in atherosclerosis in vivo. 

Bacterial peptidoglycan can be detected in the circulation in systemic infection [215], and 

even in milder circumstances such as alcohol intake [216]. NOD2 is important sensor for 

peptidoglycan. The motivation also comes from paper 1 where we found NOD2 leads to 

rapid activation of prostaglandin E2 in ex vivo human atherosclerotic plaques culture [217]. 

We hypothesized that NOD2 signaling may lead to vascular inflammation and accelerate 

atherosclerosis.  

The main approach of this paper is to evaluate atherosclerosis in Ldlr-/- mice w/o NOD2 

stimulation and w/o NOD2-deficiency. The first major observation was that when we i.p. 

injected NOD2 ligand MDP, the minimal bioactive peptidoglycan motif, into high fat diet fed 

Ldlr-/- mice, and compared with PBS controls, we found that NOD2 stimulation aggravated 

atherosclerosis and vascular inflammation, and that NOD2 signal remarkably enlarged lipid-

rich necrotic core in the lesion (Figure 4). The second major observation was that Ldlr-/- mice 

transplanted with bone-marrow from Nod2-/- mice have similar atherosclerotic lesion area but 

reduced necrotic core compared with the mice reconstituted with wild-type bone marrow 

(Figure 5). This result suggests that NOD2 signaling of myeloid derived cells have a critical 

role in regulation of necrotic core formation in atherosclerotic plaques. Since NOD2 is also 

expressed abundantly in endothelial cells, NOD2 signal in non-myeloid cells may also be 

involved in the development of atherosclerosis, and remains to be investigated.  

In this study we identify NOD2 as a novel signal involved in the formation of lipid-rich 

necrotic core. Necrotic core refers to the core area of atheroma rich in foam cells, cell debris 

and extracellular lipids. Previously it has been recognized that both apoptosis and necrosis of 

macrophage foam cells are present in the necrotic core in human atherosclerotic lesion as 

identified by transmission electron microscopy and nick end-labelling using terminal 

deoxynucleotidyl transferase (TUNEL) [218]. It has also been proposed that stimuli in the 

atherosclerotic plaques, such as oxidized low-density lipoprotein (LDL), induce macrophage 

apoptosis based on the in vitro findings that human monocytes-macrophages underwent 

apoptosis with 50µg/ml or higher concentration of ox-LDL after stimulation for 24 hours 

[219].  However, early morphological observations suggest that the abundant extracellular 

lipids may not necessarily result from cell necrosis, because the size of extracellular lipid 

droplets are much smaller than intracellular ones, and extracellular lipid droplets make up 

40% of lipid-rich core volume in early human fibro-lipid lesions [220]. However, the relative 
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importance and causal relationship among foam cell formation, extracellular lipid 

accumulation, macrophage egress and cell death in the formation of necrotic core remains to 

be understood. 

 

Figure 4. NOD2 stimulation increases atherosclerosis. (A) Oil Red O staining of the lipids in 
aortic root cryosection showing increased atherosclerosis in MDP (NOD2 ligand) than PBS-
treated Ldlr-/- mice fed with high fat diet. (B) Nuclei staining with toluidine blue in aortic root 
sections showing that MDP (NOD2 ligand) increases the area of necrotic core (area in absence of 
nuclei, circled in red line) in the same  mouse model.
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Figure 5. Myeloid cell NOD2 signaling regulates necrosis in atherosclerotic lesions. (A) Oil Red O 
staining in aortic root cryosection of Ldlr-/- mice transplanted with wild-type or NOD2-/- bone 
marrow showing equal lesion size. (B) Toluidine blue staining in aortic root sections showing that 
Ldlr-/- mice transplanted with NOD2-/- bone marrow has smaller necrotic area in the 
atherosclerotic lesions.
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Several molecular mechanisms have also been shown to alter necrotic core formation in 

atherosclerosis. For example, insulin receptor-deficient mice develop bigger lesions with 

increased necrotic core and increased number of apoptotic cells [221]. Protease inhibition in 

advanced atherosclerotic plaques results in a significant decrease in collagen content and a 

significant enlargement of the necrotic core [222]. However, a schematic picture of the 

molecular mechanisms leading to necrotic core are yet unrevealed. 

Several possibilities are raised on how NOD2 signal promotes necrotic core formation. First, 

NOD2 promotes lipid accumulation of macrophages by up-regulating the oxidized LDL 

uptake and down regulating cholesterol efflux. This is related to the up-regulation of the 
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expression of scavenger receptor gene SRA1/2 and the down-regulation of cholesterol 

transporter ABCA1 protein. Second, NOD2 facilitate the formation of autophagosome in the 

context of bacterial infection [168], and fusion of autophagosome with lysosomes is 

essential for lysosomal acid lipase to hydrolyze cholesteryl esters into free cholesterol for 

ABCA1-dependent efflux [223]. Future work is needed to elucidate whether NOD2 

activation contributes to lipid retention mediated by autophagy pathway. Third, necrotic 

core is composed of foam cells with large lipid droplets, apoptotic and necrotic cells [224], 

extracellular lipid including aggregated LDL, and extracellular matrix [225]. Although 

NOD2 does not affect apoptosis in the necrotic core, this does not rule out the possibilities 

that MDP affects other type of cell death in the necrotic core. Since MDP induce caspase-1 

dependent IL-1β secretion in the plaques, and Caspase-1 activation induced by NLRC4 

leads to pyroptosis, a programmed cell death with rapid loss of cell membrane integrity and 

leakage of cytosolic contents [226] and was proposed to exist in atherosclerosis [227], 

future work needs to be done on whether NOD2 induced caspase-1-dependent pyroptosis 

contribute to NOD2-induced necrotic core formation in atherosclerosis.  

Necroptosis, meaning programmed necrosis, may be an important signal in necrotic core 

formation in atherosclerosis. Necroptosis can be induced by TLR or cytokine stimulation in 

combination with caspase inhibition. Receptor interacting protein 3 (RIP3) is required for 

necroptosis of macrophages. RIP3 deletion prevent macrophage necroptosis in response to 

oxidized LDL under caspase inhibition in vitro. Furthermore, RIP3-/-Ldlr-/- mice have reduced 

macrophage necroptosis as well as lesion burden than Ldlr-/- mice [228]. It is a limitation in 

our study that we could not identify the role of NOD2 in macrophage necroptosis, neither 

could we identify whether this is possible mechanisms for NOD2 accelerated necrotic core 

formation in mouse atherosclerosis.  

Intraplaque hemorrhage (IPH) is a common phenomenon associated with vulnerability of 

atherosclerotic plaques. Carotid plaque with IPH or marked intraplaque vessel formation 

demonstrated an increased risk of cardiovascular outcome including vascular death, nonfatal 

stroke, nonfatal myocardial infarction, and vascular intervention [7]. IPH is barely detectable 

in early intimal thickening, frequently present and increased in fibro-atheroma with necrotic 

core from early to late stage, and maximized in thin-cap fibro-atheroma. Quantification of the 

degree of intraplaque hemorrhage by staining of iron and erythrocyte-specific glycophorin A 

is associated with the size of necrotic core as well as the extent of macrophages in plaques 

[229]. It has been proposed that free cholesterol in erythrocytes membrane may contribute to 
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cholesterol clefts in the necrotic core or even acts as immune stimuli. It is a limitation that 

IPH was not described in our study. 

Figure 6. NOD2 stimulation increased ox-LDL uptake and cholesterol efflux in macrophages. (A) 
In vitro analysis of FITC-labeled oxidized LDL uptake in the J774 cell line after 24 hours MDP 
(1μg/mL) or PBS treatment by flow cytometry. (B) Quantification of oxidized LDL uptake by 
median fluorescent intensity (MFI), using data collected as in (A). (C) Cholesterol efflux from Raw 
264 cells to apoA-I after treatment with the indicated doses of MDP.  
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Figure 7. NOD2 promotes necrotic core formation. Atherosclerosis is an inflammatory disease 
involves activation of innate immunity via Toll-like receptors and Nucleotide-binding 
oligomerization domain-containing protein (NOD)-like receptors. NOD2 is a crucial signal 
exacerbates atherosclerosis with enlarged necrotic core in the lesion. Myeloid-specific ablation 
of NOD2 restrained necrotic core formation. We proposed two mechanisms: i) Activation of 
NOD2 leads to vascular inflammation mediated by MAPK p38 and NF-ĸB pathways and ii) NOD2 
increases lipid accumulation in macrophages by enhancing the uptake of oxidized low density 
lipoprotein and impairing cholesterol efflux.  

Of note, a recent study showed the protective role of NOD2 for Porphyromanas gingivalis 

infection-mediated vascular inflammation and atherosclerosis [230]. The explanation of the 

discrepancy may be similar to the TLR4 results [122, 126] as discussed in page 17 paragraph 

2. PRRs play important role in host defense. Deficiency in PRR signaling leads to deficiency 

in host defense, which may result in increased activity and replication of pathogenic bacteria 

or disturbance of commensal bacteria homeostasis. Certain bacterial infection is deleterious 

for atherosclerosis. Infection may trigger a NOD2-independent pathway, for example, 

through stimulation of other PRRs, which lead to accelerating atherosclerosis, and this 

alternative pathway is stronger than the protective effect of NOD2-deficiency. This should be 

put into consideration when targeting deleterious PRR signaling in the treatment of 

atherosclerosis. 
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In summary, our results provide the first evidence that the direct NOD2 activation promotes 

atherosclerosis, and suggest an important mechanism of enhanced vascular inflammation and 

necrotic core formation mediated by NOD2 (Figure 7). Enhanced inflammation, enlarged 

necrotic core, and thin fibrous cap are recognized as features of vulnerable plaques [225], and 

predict the risk of cardiovascular disease outcome in human [7, 8], thus, our findings may be 

of clinical importance. 

3.3 NOD1 PROMOTES OCCLUSIVE ATHEROSCLEROSIS 

The aim of paper 3 was to investigate the role of NOD1 in atherosclerosis. The motivation is 

similar to paper 1 and 2 in the sense that peptidoglycans, which are sensed by NOD1, NOD2 

and TLR2, are present in human atherosclerotic plaques and are associated with unstable 

plaques [73]. NOD1 and NOD2 both belong to NLR family and share similarities in 

structure, natural ligands, downstream signaling pathways (RIP2-NF-ĸB or MAPKs), but also 

has distinctive expression profile. Another difference is that only NOD2 ligand MDP was 

shown to activate NALP3/cryopyrin inflammasome which is independent of RIP2 [231]. As 

described in paper 2, NOD2 exacerbates lipid retention in foam cells, enhances vascular 

inflammation, and promotes necrotic core formation a in atherosclerosis [232]. We thus asked 

what the role of NOD1 is in atherosclerosis. 

The first major observation was that NOD1 stimulation with NOD1 ligand C12-iE-DAP 

induced inflammatory responses with increased production of proinflammatory cytokines 

IL-1β, IL-8 and IL-6 production and anti-inflammatory cytokine IL-10 mediated by p38 

and ERK pathways in human plaque tissue culture (Figure 8). Previous reports showed that 

NOD1 ligand iE-DAP stimulate NF-kB activation and TNF-α and IL-6 production in 

macrophages, however, whether the cytokine response is dependent on NF-kB activation 

was not verified [143]. Listeria monocytogenes induces IL-8 secretion by NOD1 in 

endothelial cells, and this is dependent on p38 pathway [233].  Our study is consistent with 

these results and contributes to the understanding of the function of NOD1 in 

atherosclerotic tissue which is a complex inflammatory tissue composed of multiple types of 

activated cells. 
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Figure 8. Relevance of NOD1 with human atherosclerosis. (A) Levels of NOD1 mRNA in carotid 
plaque of symptomatic (n=85) and asymptomatic (n=40) patients in Bike biobank. Symptoms 
include amaurosis fugax, transient ischemic attack and stroke. *P<0.05. 
(B) Plaque IL8 response to NOD1 stimulation. Fresh human carotid plaques were pretreated with 
p38, MEK 1, JNK, NF-kB inhibitor or control for half an hour, and then treated with C12-DAP or 
medium for 20 h. Wilcoxon matched-pairs signed rank test, * P<0.05, **P<0.01.

A B

 

The second major observation was that NOD1 stimulation lead to accelerated atherosclerosis 

with severely occlusive lesions (Figure 9) in Ldlr-/- mice, accompanied by arterial elastin 

degradation, SMC phenotype alteration, and distinctive systemic and lesional inflammatory 

responses (Figure 10). Although both accelerated atherogenesis and vascular inflammation, 

NOD1 and NOD2 stimulation resulted in different atherosclerotic plaque features. NOD2 

induced atherosclerotic plaques with remarkably enlarged necrotic core, while NOD1 

increased cellular content in the plaques. Moreover, myeloid depletion of NOD1 in Ldlr-/- 

mice does not alter atherosclerosis or vascular inflammation. Unlike NOD2 preferentially 

expressed in myeloid cells, NOD1 is ubiquitously expressed by multiple cells such as 

vascular SMC, endothelial cells, and epithelial cells [184, 234]. Thus, we hypothesized that 

NOD1 in non-myeloid cells may exert a more important role in atherosclerosis. 

The observations in this study raised several interesting questions. In vivo NOD1 stimulation 

induced occlusive atherosclerosis lesion which resembles intima hyperplasia. However in 

vitro study failed to show any effect of NOD1 on proliferation of VSMC. A previous study 

showed that NOD1 acts as gate-keeper for the activation state of Rho GTPase by sensing 

virulence factors [235]. Rho GTPase activation is required for up-regulation of Skp2 that 

promotes degradation of p27Kip1, a checkpoint protein in G1 phase, which will lead to 

VSMC proliferation and intima formation [236]. This raised the possibility for NOD1 

directly induce VSMC proliferation. Although we did not observe the effect in vitro, the 

hypothesis requires to be tested in vivo.  

Another question is the contribution of inflammation induced elastin degradation in the 

development of severe occlusive atherosclerosis. Studies showed that elastin is essential in 

VSMC homeostasis. Lack of elastin induces VSMC proliferation and migration [237] and 
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severe stenosis of aorta, and Eln+/- mice also have reduced aorta cavity with more numerous 

but thinner elastin lamellae [238]. Deficiency of cathepsin K, one of the most potent elastases 

and collagenase, decreases atherosclerosis with concomitant decreased elastin breaks in the 

media underlying advanced atherosclerotic plaques [239]. Unfortunately we could only test 

the mRNA expression of several elastinolytic MMPs, but measurement of other elastase 

activity and natural inhibitors of elastases such as tissue inhibitor of metalloproteinase TIMP 

are also of interest. 

How does NOD1 signal accelerate atherosclerosis? Hypothetic mechanisms based on our 

findings and others are summarized in figure 11. NOD1 activation induces chemokines 

CCL2, CCL5 and CX3CL1 in smooth muscle cells. This is interesting because CCL2 

promotes mobilization of monocytes from bone marrow [240] and CX3CL1 promotes 

survival of monocytes in the circulation [30, 241], both of which may contribute to 

monocytosis in the blood. CCL5 facilitate the recruitment of monocytes [27] and neutrophils 

[242] into the intima and media, where monocytes are activated and differentiated into 

macrophages. Thus, NOD1 stimulation promotes monocyte mobilization from bone marrow, 

increases monocyte survival and recruitment to the lesion, contributing to lesion 

development. The cross-talk between macrophages and smooth muscle cells via 

CX3CL1/CX3CR1 activates both cell types [113] and lead to production of pro-inflammatory 

cytokines and elastases including MMP9, MMP10 and MMP12. PDGF-BB, PDGF-DD or 

oxidized phospholipids repress the transcriptional expression of VSMC marker gene 

dependent on binding of Kruppel-like factor-4 to the G/C repressor element in the SM22α 

promoter [36].  NOD1 act as an additional signal promoting SMC phenotypic switching. 

NOD1 stimulated smooth muscle cells switches phenotype by downgrading α-actin 

expression and upgrading MMP9 expression and migration ability. Activated MMP9, 

MMP10 and MMP12 acts as elastases that degrade elastin lamellae.  Loss of elastin lamellae 

enhances smooth muscle cells activation and phenotype switching [237], and also facilitates 

the infiltration of macrophages and neutrophils into the medial layer of the artery. 
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Figure 9. Athersclerosis in NOD1 stimulated Ldlr-/- mice. (A) Sudan IV staining 
of neutral lipids in the aortic arch shows that FK565-treated mice developed 
2.5-fold larger lesions compared to controls. (B) Masson Trichrome staining of 
the innominate artery shows occlusive lesions in FK565-treated group but not 
in the control.
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Figure 10. Characteristics of NOD1 stimulated atherosclerosis. Ldlr-/- mice were 
stimulated with NOD1 ligand FK565 or control water. (A) aortic root sections 
stained for elastin (Verhoeff-Van Geison staining). (B) Immunostaining of smooth 
muscle α-actin in innominate artery. (C) Immunostaing of macrophages (CD68), 
neutrophils and T cells in the media of aortic root.
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Figure 11. Hypothetic mechanisms of NOD1 accelerated atherosclerosis. NOD1 activation 
induces chemokines CCL2, CCL5 and CX3CL1 in VSMC, which promotes mobilization of 
monocytes from bone marrow, survival of monocytes in the circulation, and facilitate the 
recruitment of monocytes and neutrophils into the intima and media, where monocytes are 
activated and differentiated into macrophages. The cross-talk between macrophages and 
smooth muscle cells via CX3CL1/CX3CR1 activates both cell types and lead to production of pro-
inflammatory cytokines and elastases including MMP9, MMP10 and MMP12. Smooth muscle 
cells switches phenotype by downgrading α-actin expression and upgrading MMP9 expression 
and migration ability by direct NOD1 stimulation. Activated elastases can degrade elastin and 
further enhance smooth muscle cell phenotype switching and facilitate macrophage migration.  
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Taken together, we identified NOD1 as a danger signal in atherosclerosis. This study also 

point out the remarkable difference in the phenotype of atherosclerotic lesions between 

NOD1 and NOD2 stimulated hyperlipidemic mice. In large arteries, the majority of plaque 

ruptures are asymptomatic. The current paradigm is that the erythrocyte-rich thrombus is 

incorporated into the plaques and resolved by the formation of the fibrous cap composed of 

migrated and proliferated VSMCs and its glycosaminoglycan and collagens. In smaller 

arteries, this healing process leads to narrowing of the lumen (stenosis) [243]. However, 

symptomatic plaque ruptures trigger thrombosis which severely and rapidly restricts the 

vessel lumen, and the emboli break off and block the downstream vessels. This leads to 

severe consequences such as myocardial infarction and stroke. Thus, it is of importance to 

understand the development of atherosclerotic plaque and the conversion of a stable, 

asymptomatic plaque to an unstable, vulnerable plaque. The results of our animal study points 

out NOD2 as an important signaling in development of unstable plaques, while NOD1 seems 

to be an important signal in arterial stenosis. This work contributed to the understanding of 

the complexity of different roles of pattern recognition receptor in atherosclerosis. 

3.4 TLR9 RESTRAINS ATHEROSCLEROSIS 

The aim of paper 4 was to investigate the role of TLR9 signaling in atherosclerosis. TLR9 is 

expressed in human atherosclerotic tissue. Stimulation of atherosclerotic tissue culture with 

TLR9 ligand CpG DNA up-regulates IFN-α and modulates CD4+ T cell function [244]. At 

the time of the study design (year 2005), TLR9 was found to mediate the activation of B cells 

and pDC by DNA immune complex in SLE patients [245], a population with extremely high 

risk for MI [246]. However, TLR9 was found to be protective against SLE in various murine 

SLE models [82].Thus, we asked the question of the role of TLR9 in atherosclerosis.  

The fundamental approach of the study was to stimulate hypercholesterolemic mice with 

synthesized TLR9 ligand CpG (a type B CpG, murine TLR9 ligand) or PBS for 8 weeks. 

The first major observation was that TLR9 stimulation enhanced both systemic and local 

inflammatory response (Figure 12), however, the atherosclerotic burden is reduced as well 

as the necrotic core (Figure 13). There is no remarkable differences in the cholesterol levels 

between the groups that could explain the discrepancy of inflammatory responses and 

atherosclerotic burden. 
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Figure 12. Increased local inflammation in CpG-treated Apoe-/- mice. 
Immunohistochemistry analysis of cellular composition in the lesion. 
Aortic roots were stained for macrophages (CD68, p=0.0139), T cells 
(CD3, p<0.0001, CD4, p=0.0381) and smooth muscle cells (α-actin) in 
CpG (n=4-9) and PBS (n=6-9)-treated Apoe-/- mice.  

Like TLR9, other TLRs, TLR3 and TLR7, also exert athero-protective roles, however, 

since these TLRs are activator of inflammation, and inflammation is an important 

mechanism in atherosclerosis [5], the mechanism of the protective TLRs in atherosclerosis 

remains puzzling. TLR3 stimulation with its ligand Poly (I:C) activates both pro- and anti- 

inflammatory response in smooth muscle cells but decreases atherosclerosis [131]. Myeloid 

ablation of TLR3 in Ldlr-/- mice decreased atherosclerosis indicating a pro-atherogenic role 

for TLR3 in haematopoietic immune cells [247]. TLR7-deficiency is pro-atherogenic and 

the mechanisms is proposed as that TLR7 restrains the activation of classical/inflammatory 

macrophages (M1) by TLR2 and TLR4 ligands [132]. A recent study by Koulis et al also 

showed a protective role of TLR9 in atherosclerosis, and the authors proposed CD4+ T cells 

activation is responsible for the accelerated atherosclerosis in TLR9-deficient mice [248]. 

However, we and others showed that TLR9 signal activate adaptive immunity and promotes 

Th1 responses [249, 250], therefore, it is unlikely that CD4+ T cell is the mechanism for the 

protective effect of TLR9 in atherosclerosis. In paper 4 we described a remarkable induction 

of anti-inflammatory cytokine IL-10 and anti-inflammatory mediator indoleamine 2, 3-

dioxygenase (IDO) upon TLR9 stimulation (Figure 14). IDO, an enzyme that degrades 

tryptophan to kynurenine, has an immune regulation function. CpG induces splenic 

marginal zone CD19+ DCs to produce IDO which suppress T cell response, dependent on 

Type 1 IFN [251] as well as PD-1/PD-1 ligand and CTLA4/B7 co-inhibitory interactions 

[252]. Up-regulation of IDO was found to be pronounced in human atherosclerotic plaques 

compared with non-atherosclerotic artery.[253]. IDO activity has a positive correlation with 

carotid artery intima/media thickness, an early marker of atherosclerosis [254]. 

Furthermore, given the potent effect of IL-10 on inflammation resolution, immune 

suppression and tissue repairing, our observation might provide a mechanistic insights to this 

puzzle. Further work is needed on whether TLR9 stimulation evoked anti-inflammatory 

mechanism is responsible for decreased atherosclerosis. 
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Figure 13. Decreased necrotic core in atherosclerotic lesions of CpG-
treated Apoe-/- mice.(A)Representative histological analysis of aortic 
root stained with toluidine blue. 10* magnification. Scale bar, 0.2mm. 
(B) Percentage of necrotic core in the lesions in aortic root of PBS (n=8) 
and CpG (n=9)-treated Apoe-/- mice. Area in the absence of nuclear 
staining in the lesion was quantified as necrotic core. p=0.007.
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A

Figure 14. Increased the expression of IDO and IL10 in the aorta 
of CpG-treated Apoe-/- mice. (A) mRNA expression of IDO and 
(B) IL-10 in the aorta of Apoe-/- mice 3days after a single 
injection of PBS (n=4) or CpG (3 µg/ml, n=5 or 30 µg/ml, n=4). 
Mann Whitney test, * p < 0.05, ** p < 0.01.  
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4 CONCLUSIONS 

This thesis illustrated the distinct roles of TLRs and NLRs in contribution to the complex 

pathogenesis of atherosclerosis (Figure 15). Specific conclusions include the following: 

NOD2 is abundantly expressed in endothelial cells and macrophages in human 

atherosclerotic plaques. NOD2 specifically activates COX2-PGE2 axis via NF-κB and 

MAPK p38 pathway in human atherosclerotic tissue. NOD2 activation promotes 

atherosclerosis in vivo, which is associated with enlarged necrotic core in the atherosclerotic 

plaques and enhanced vascular inflammation. NOD2 induced lipid retention in macrophages 

may contribute to the necrotic core formation, and thereby contribute to the development of 

vulnerable atherosclerotic plaques. 

NOD1 induces cytokine production in human atherosclerotic plaques. Activation of NOD1 

enhances the development of occlusive atherosclerosis with elastin degradation and smooth 

muscle cell activation. NOD1 induces smooth muscle cell activation manifested by increased 

chemokine and MMP production, which may contribute to the mechanism of NOD1-induced 

occlusive atherosclerosis. 

TLR9 stimulation in vivo decreases atherosclerosis and necrotic core although activates 

inflammatory responses in arteries and blood. Two anti-inflammatory mediators IL-10 and 

IDO are induced by TLR9 stimulation and probably contribute to the protective mechanisms 

of TLR9 in atherosclerosis. 
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Figure 15. The role of NOD2, NOD1, and TLR9 in atherosclerosis. NOD2 in Ecs
and macrophages promotes vascular inflammation and necrotic core formation 
and thereby promotes atherosclerosis. NOD1 signal in smooth muscle cells 
enhance chemokine and MMP production, elastin degradation and thus results 
in occlusive atherosclerosis. TLR9 stimulation decreases necrotic core formation 
and atherosclerosis probably through IL-10 and IDO.
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