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To my mother, 

In honor of the sacrifices you have made for me. 



 

 

  



 

 

 
 

Just keep swimming. 

And if all else fails… 

Do. 

Or do not. 

There is no try. 

 ~Yoda 



 

 

ABSTRACT 
Sexually reproducing organisms employ a specialized cell division called meiosis to 
form unique, haploid gametes from a diploid precursor cell. Upon fertilization, two 
opposite-sex gametes fuse to create a zygote that will develop into the offspring. 
Fundamental to meiosis is the formation and repair of programmed DNA double-strand 
breaks (DSBs) during prophase. These DSBs are repaired using the homologous 
chromosome (homolog) as a template for homologous recombination, which creates 
linkages between the homologs that are essential for faithful segregation. Following 
prophase, two successive rounds of chromosome segregation ensue. The first, meiosis I 
(MI), segregates homologs and the second, meiosis II (MII), segregates sister 
chromatids. Recombination is dependent on chromosome structure, and events that alter 
the DNA landscape will impact meiotic fidelity and, in turn, genomic integrity in 
gametes and future offspring. Thus understanding the relationship between chromosome 
structure and meiosis can help gain insight into human fertility and underlying causes of 
genetic disorders. It was the goal of this thesis to investigate factors known to 
regulate chromosome structure and determine their influence on meiosis in the 
budding yeast Saccharomyces cerevisiae and mice. In addition, we tested a novel 
method to search for new mammalian meiotic factors that may impact fertility. 

In Paper I, we identified a role for the conserved Structural Maintenance of 
Chromosomes (SMC) 5/6 complex during meiotic recombination in budding yeast. 
smc5/6 complex mutants experienced a DSB-dependent segregation block, suggesting 
that the defect was caused by recombination. Consistent with this notion, Smc6-deficient 
cells accumulated high levels of recombination intermediates, particularly between sister 
chromatids, which is normally not seen in the wild type. Return-to-function studies 
indicated that the Smc5/6 complex was most crucial during resolution of recombination 
intermediates. These results suggest that the Smc5/6 complex works primarily in the 
resolution of recombination structures formed outside of homolog-directed pathways 
during meiosis. 

We characterized a role for DNA topoisomerases Top2 and Top3 during meiosis in S. 
cerevisiae by using meiosis-specific mutants in Paper II. Cells deficient for either Top2 
or Top3 experienced a segregation block. While top3 cells were rescued completely by 
removing recombination, the top2 mutant was only partially rescued. This suggests that 
Top3 mainly functions during meiotic recombination. In contrast, the data indicates that 



 

 

Top2 has a role outside of recombination. In line with this idea, some of the segregation 
defects in cells lacking Top2 seemed to arise from break-independent sister 
entanglements. Since Top2 is known to be important in resolving sister chromatid 
intertwinings during mitosis to facilitate proper segregation, it is likely that it plays a 
similar role during meiosis. 

The CCCTC-binding factor (CCTF) is an architectural protein essential for proper 
genome structure and function in higher eukaryotes. In Paper III, we created a testes-
specific ctcf mouse mutant strain (cctf-cKO) in order to study the function of CTCF 
during gamete (sperm in males) formation in mice. CTCF-deficient mice completed 
meiosis and sperm specialization without any major abnormalities, though mice were 
infertile and had low sperm counts. Sperm from the ctcf-cKO had chromatin compaction 
defects, most likely due to lack of sperm-specific compaction factors. These findings 
indicate that CTCF is essential for proper chromatin organization during spermiogenesis 
and suggest that infertility in ctcf-cKO mice was a result of the chromatin defects in the 
sperm.  

Using a method called phylogenetic profiling in Paper IV, we showed that new meiotic 
factors can be discovered by clustering proteins according to their function.  
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INTRODUCTION 
Formation of healthy gametes is essential for the propagation of sexually reproducing 

organisms, as it is gamete fusion that creates the offspring. Central to gamete production 

is a specialized cell division called meiosis, which is designed to create genetic diversity 

and preserve the chromosome number in a species. These features rely on chromosome 

structure for their accurate execution. If chromosome structure is abnormal, meiosis is 

defective and can lead to aneuploidy. In humans, aneuploidy is the leading cause of 

infertility and aneuploidy in females increases with age. The reasons for this high rate of 

aneuploidy are not well understood, but studying meiosis has allowed researches to gain 

some insight into infertility and fertility mechanisms. The overall aim of this thesis 

was to investigate the interplay between chromosome structure and meiotic 

integrity in order to better understand factors underlying gamete formation and 

fertility. 

SPECIFIC AIMS OF THIS THESIS: 

◊ In Paper I, to elucidate the function of the Smc5/6 complex during meiosis in 

the budding yeast Saccharomyces cerevisiae. 

 

◊ In Paper II, to investigate the meiotic roles of topoisomerases Top2 and Top3 

in the budding yeast Saccharomyces cerevisiae. 

 

◊ In Paper III, to use a conditional knockout mouse to determine if CTCF is 

crucial during spermatogenesis. 

 

◊ In Paper IV, to use phylogenetic profiling to find new meiosis-specific genes. 
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MEIOSIS 
Survival of all organisms depends on their ability to grow and reproduce. Growth is 

achieved by cell division following DNA replication to produce two daughter cells from 

a single parent. This process, called mitosis, produces cells that are both identical to one 

another and to the precursor cell (Figure 1). Reproduction, on the other hand, can be 

achieved via several different mechanisms depending on the organism. Most eukaryotes 

use sexual reproduction to proliferate, which fuses the genetic material from two, often 

opposite-sex, individuals to create unique offspring. In order to preserve the 

chromosome number through generations, sexually reproducing organisms must first 

form gametes containing half the chromosome number as the rest of the organism. The 

reductive division used for gamete formation is called meiosis. In contrast to mitosis, 

meiosis produces cells that are haploid and genetically distinct from both the parent cell 

and one another (Figure 1). Central to this process is recombination, which is necessary 

for proper chromosome segregation in budding yeast and mice and also creates genetic 

diversity within a species. In this section, meiosis will be presented in the context of 

events that occur in the budding yeast Saccharomyces cerevisiae and mice. Gene and 

protein names are given for S. cerevisiae and are the same in mice unless otherwise 

specified.  

General overview of meiosis 

The regulatory pathways dictating the transition from the mitotic to the meiotic 

program are poorly conserved among species. In diploid yeast, starvation leads to 

irreversible entry into meiosis due to expression of the master regulator protein Ime1 

(Kassir, Granot et al. 1988, Simchen and Kassir 1989, Mandel, Robzyk et al. 1994), 

which in turn activates a cascade of early meiotic genes. In the continued absence of 

nutrients, cells will then express middle and late meiotic genes to complete the meiotic 

program (Winter 2012). In mice, meiotic induction depends on the Stra8 (Stimulated by 

retinoic acid gene 8) gene in both males and females (Anderson, Baltus et al. 2008). 
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Figure 1. Meiotic and mitotic cell divisions. Cohesin presented as yellow squares, spindles shown with 
green dashed lines. 
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Following meiotic induction, meiotic S phase replicates homologous parental 

chromosomes (homologs) into a pair of sister chromatids and loads a complex called 

cohesin between sisters to form sister chromatid cohesion (SCC) (Figure 1). 

Programmed double-strand breaks (DSBs) are then induced that are repaired via 

homologous recombination during prophase. Whereas mitotic cells prefer the sister 

chromatid as a repair template, meiotic recombination favors the homolog. After 

prophase, two consecutive nuclear divisions ensue. The first, meiosis I (MI), segregates 

homologs, while the second, meiosis II (MII), segregates sister chromatids. The final 

meiotic products are packaged into spores in yeast while the gametes formed during 

mammalian meiosis are stored in the gonads. In budding yeast and mice, recombination 

is essential for proper homolog segregation at MI because it creates stable chromosomal 

connections between the homologs. These attachments, together with cohesin, ensure 

proper chromosome orientation at the first meiotic spindle (reviewed in Handel and 

Schimenti 2010). 

Meiotic recombination 

Meiotic recombination is the key feature of meiosis. It is initiated by the 

formation of programmed DNA DSBs (reviewed in (Keeney 2001). Meiotic DSBs are 

catalyzed by the conserved Spo11 protein in both yeast and mice (Keeney, Giroux et al. 

1997, Romanienko and Camerini-Otero 2000, Baudat and Keeney 2001), which cleaves 

DNA via a type II topoisomerase-like reaction (for more on topoisomerases, please see 

the following section) to generate a transient, Spo11-bound DNA intermediate 

(Bergerat, de Massy et al. 1997, Keeney 2008). After break induction, Spo11 is removed 

and the 5’ ends are resected to generate 3’ DNA overhangs (Figure 2). To facilitate 

strand exchange, the 3’ overhangs are coated with two conserved RecA-like 

recombinases. The first, Rad51, is a major repair protein in vegetative cells that favors 

sister-directed repair, while the second, Dmc1, is meiosis-specific and promotes the 

homolog as a repair template (Bishop, Park et al. 1992, Shinohara, Ogawa et al. 1992, 

Barlow, Benson et al. 1997, Yoshida, Kondoh et al. 1998). Despite these differences in   
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Figure 2. Schematic 
representation of 
meiotic recombination. 
Meiotic recombination is 
initiated by Spo11-catalyzed 
DNA double-strand breaks 
(DSBs). Spo11 is removed 
from the DNA in the form of 
Spo11-oligonucleotide 
complexes, allowing the 5’ 
ends of the DSB to be resected 
to generate 3’ single-stranded 
overhangs coated by Rad51 
and Dmc1 (not shown) that 
can invade a homologous 
strand for repair. Strand 
invasion gives rise to a D-
loop, forming an initial joint 
molecule (JM) intermediate. 
Following stabilization and 
DNA synthesis, the initial JM 
gives rise to another transient 
JM species called the single-
end invasion (SEI). (A) The 
SEI can be quickly dissociated 
to re-ligate the newly 
synthesized DNA end to the 
complementary free break end 
in a process called synthesis-
dependent strand annealing 
(SDSA). Additional DNA 
synthesis and ligation yields a 
mature non-crossover product. 
(B) Alternatively, the SEI can 
be stabilized to facilitate 
capture of the second 3’ DSB 
end via engagement of the 
intact homologous strand. 
Further processing yields 
gives rise to a stable JM 
intermediate known as a 
double-Holliday junction 
(dHJ). Resolution of the dHJ 
yields crossover products. 
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template preferance, yeast and mice require both Rad51 and Dmc1 for proper homolog-

directed repair during meiosis (Bishop 1994, Shinohara, Gasior et al. 1997, Tarsounas, 

Morita et al. 1999).  

Once the broken DNA is coated with Rad51 and Dmc1, it invades an intact 

homologous sequence from the homolog, forming a displacement loop (D-loop) and 

initial DNA joint molecule (JM). After stabilization and DNA synthesis, this structure 

gives rise to an unstable type of JM called a single-end invasion (SEI) (Figure 2) 

(Hunter and Kleckner 2001). Further processing of the SEI in subsequent repair steps 

can give rise to two classes of products. The first, called non-crossovers (NCOs), repair 

without mutual exchange of flanking sequences, whereas the second, known as 

crossovers (COs), repair by mutually exchanging DNA between the homologs in order 

to physically attach them to one another (Mimitou and Symington 2008, Schwartz and 

Heyer 2011).  

The majority, if not all, of meiotic NCOs are formed via the so-called synthesis-

dependent strand-annealing (SDSA) pathway (Figure 2A) (Paques and Haber 1999, 

Allers and Lichten 2001, Hunter and Kleckner 2001). In SDSA, the invading strand is 

displaced from the D-loop to dissolve the SEI. Then, the displaced strand anneals to 

complementary DNA sequences on the other end of the DSB, which, after additional 

DNA synthesis and ligation, reseals the break to form a NCO. The Blooms helicase 

ortholog Sgs1 has been proposed to promote NCO formation during yeast meiosis by 

facilitating unwinding of the SEI (De Muyt, Jessop et al. 2012, Zakharyevich, Tang et 

al. 2012). Unlike NCO formation, which goes via transient JMs, CO formation involves 

the formation of stable JM intermediates. In the CO-forming pathway, the SEI is 

stabilized and the second DSB end is captured via the D-loop to form a stable JM called 

a double-Holliday junction (dHJ) (Figure 2B) (Schwacha and Kleckner 1995). In order 

to be processed into its products, the dHJ must be resolved. This can be achieved by 

either symmetric DNA cleavage by endonucleases (dHJ resolution) or by combined 

activity of a helicase and topoisomerase (dHJ dissolution) (Schwartz and Heyer 2011, 
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Youds and Boulton 2011). Even though dHJ dissolution could lead to NCO formation, 

NCOs and dHJs form concurrently whereas COs are found only after dHJ 

disappearance, suggesting that COs are the main products of dHJ processing during 

meiosis (Figure 2) (Storlazzi, Xu et al. 1995, Allers and Lichten 2001). The decision to 

repair a DSB via a NCO or CO is believed to occur at or prior to SEI formation and 

involves several factors, some of which are discussed below (Hunter and Kleckner 2001, 

Bishop and Zickler 2004, Borner, Kleckner et al. 2004). 

Because COs establish links between homologs necessary for proper 

segregation at MI, CO formation is tightly regulated. As such, many factors have been 

identified that promote CO formation specifically. In budding yeast, the meiosis-specific 

ZMM proteins (Zip1-4, Mer3, Msh4, Msh5, Spo16) are essential for CO, but not NCO, 

formation (Borner, Kleckner et al. 2004, Lynn, Soucek et al. 2007, Shinohara, Oh et al. 

2008). One way ZMM proteins may promote COs is by synaptonemal complex (SC) 

formation. Zip1-4 are responsible for forming the SC, which holds homologs together 

during recombination, thus facilitating inter-homolog repair. SC formation is also 

critical for proper recombination in mice (SC is discussed further in the next section). 

Outside of the SC, MutS homologs Msh4 and Msh5 are thought to promote crossing 

over early by stabilizing dHJ formation (Ross-Macdonald and Roeder 1994, 

Hollingsworth, Ponte et al. 1995). Mice lacking Msh4 and Msh5 are CO-deficient, 

suggesting a role for these proteins during mammalian CO formation as well (de Vries, 

Baart et al. 1999, Edelmann, Cohen et al. 1999). At later stages of recombination, the 

MutLγ complex Mlh1-Mlh3 marks crossover sites and is responsible for the majority of 

CO formation in budding yeast and mice (de Boer, Dietrich et al. 2007, Zakharyevich, 

Tang et al. 2012). How Mlh1-Mlh3 promotes CO formation was recently discovered in 

budding yeast by the finding that Mlh1-Mlh3 is an endonuclease that specifically binds 

to dHJs (Ranjha, Anand et al. 2014, Rogacheva, Manhart et al. 2014). In addition to COs 

designated by Mlh1-Mlh3, a minority of COs in budding yeast and mice is dependent on 

dHJ resolution by the endonuclease Mus81-Mms4 (de los Santos, Hunter et al. 2003, 

Osman, Dixon et al. 2003, Holloway, Booth et al. 2008). Interestingly, the choice of dHJ  
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Figure 3. SC structure in mice and yeast. 

resolution pathway (Mlh1-Mlh3 vs. Mus81-Mms4) in budding yeast depends on Sgs1 

(De Muyt, Jessop et al. 2012, Zakharyevich, Tang et al. 2012).  

All the components mentioned above must work individually and together for 

proper CO levels, as they alone do not dictate CO formation. The choice between CO 

and NCO is also decided on a chromosome- and genome-wide level. Three key 

elements lie behind this global CO control: assurance, interference, and homeostasis. 

CO assurance provides each homolog pair with at least one CO; interference distributes 

these COs in a non-random way on chromosomes so that they are widely spaced; 

homeostasis ensures a constant number of COs independent of DSB numbers (Youds 

and Boulton 2011). This global control of CO designation implies that whole-

chromosome structure is just as important as local binding of CO-promoting factors. 

These two levels of CO control must work together to ensure proper recombination 

outcomes.  

The synaptonemal complex 

During meiosis, the synaptonemal complex (SC) links homologous 

chromosomes to one another via its protein lattice (Figure 3) (Fraune, Schramm et al. 

2012). The SC is thought to facilitate homolog-directed recombination and CO 
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formation by holding homologs in close proximity during DSB repair. In line with this 

hypothesis, Drosophila males, which do not perform meiotic recombination, lack an SC 

(Zickler 1999). Proper SC formation in budding yeast and mice is dependent on DSB 

formation (Agarwal and Roeder 2000, Baudat, Manova et al. 2000, Romanienko and 

Camerini-Otero 2000), and meiosis in these organisms depends on SC formation, as 

mutating any SC components leads to CO loss and abnormal meiosis.  

SC dynamics define four specific stages of prophase: leptotene, zygotene, 

pachytene, and diplotene (Figure 4). Following replication, loading of axial elements 

(AEs) along the length of sister chromatids defines leptotene. In mice, AEs are 

composed of both synaptonemal complex proteins (SYCP2 and SYCP3) and cohesin 

complexes (reviewed in Yang and Wang 2009). Yeast AEs are made up of cohesin 

complexes and the meiosis-specific proteins Red1, Mek1, and Hop1 (Page and Hawley 

2004). At zygotene, transverse 

filaments (TFs) (SYCP1 in mouse; 

Zip1 in yeast) begin to form between 

the AEs. In mice, a set of proteins 

(SYCE1, SYCE2, TEX12) begins to 

form a longitudinal central element 

(CE) during zygotene that bridges the 

TFs projecting from each sister axis; no 

CE exists in yeast. Once two 

homologous AEs are closely aligned, a 

complex and coordinate protein 

polymerization process called synapsis 

takes place that tethers homologs 

together along their entire length by the 

SC. Yeast SCs lack a CE, instead 

forming a central region (CR) that 

consists of Zip1 TFs that are “zipped” together during pachytene. After synapsis, AEs 

Pachytene
Full SC

Synapsis

SYCP3 (AE) SYCE2 (CE)

SYCP3 (AE) SYCE2 (CE)
XY

SYCP3 (AE) SYCE2 (CE)

Diplotene
SC disassembly

Chiasmata appearance

Zygotene
TF assembly
CE assembly

Leptotene
AE assembly

SYCP3 (AE)

Figure 4. Stages of prophase in mouse spermatocytes. 
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are referred to as lateral elements (LEs). SC disassembly begins during diplotene, the 

final stage of prophase. By the end of diplotene, all LEs have disappeared and homologs 

are connected by chiasmata, the physical manifestations of crossovers at the 

chromosomal level. 

Inter-homolog vs. inter-sister recombination in Saccharomyces cerevisae 

Meiotic chromosomes are organized into a loop-axis configuration (Figure 3). 

It is believed that DSB formation occurs at the top of the chromatin loops while 

recombination is carried out at the axis. Components that shape this loop-axis structure 

are important for the integrity of meiotic recombination. 

Unlike mitotic recombination, which favors the sister chromatid, meiotic 

recombination prefers the homologous chromosome as a repair template (Schwacha and 

Kleckner 1997). In addition to the SC’s role in homolog synapsis, inter-homolog bias is 

due to combined efforts of mechanisms that promote homolog strand invasion, such as 

Dmc1, and meiotic axis components such as Red1, Hop1, and Mek1 that hinder use of 

the sister as a repair template by inhibiting recruitment of sister-promoting 

recombination factors (Bishop, Park et al. 1992, Hollingsworth and Ponte 1997, 

Schwacha and Kleckner 1997, Shinohara, Gasior et al. 1997, Niu, Wan et al. 2005, 

Carballo, Johnson et al. 2008). The meiotic axis includes the cohesin subunit Rec8 

(Revenkova and Jessberger 2006). Cohesin is responsible for sister chromatid cohesion, 

and it is required for inter-sister recombination during DSB repair in vegetative cells 

(more on cohesin in following section). During meiosis, Rec8 is required for proper axis 

configuration, and its absence leads to altered DSB distribution thought to be a result of 

abnormal tethering of chromatin loops (Kugou, Fukuda et al. 2009, Kim, Weiner et al. 

2010). In line with the idea that cohesin is needed to properly tether chromatin loops, 

mice that lack Rec8 have shortened axes (Bannister, Reinholdt et al. 2004); this 

phenotype is also observed in the absence of another meiosis-specific murine cohesin 

component, SMC1β, which was shown to have longer chromatin loops tethered to the 

shortened axis (Revenkova, Eijpe et al. 2004). Interestingly, Rec8 is needed to maintain 
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inter-homolog bias during the SEI-to-dHJ transition, even though Rec8 traditionally aids 

in inter-sister recombination (Kim, Weiner et al. 2010). Homolog-promoting 

components of the meiotic axis counteract the inter-sister bias created by Rec8, allowing 

inter-homolog events to dominate (Kim, Weiner et al. 2010). Concurrent activities of 

these mechanisms establish a bias for inter-homolog recombination but do not eliminate 

inter-sister recombination altogether, with the possibility that as many as one-third of 

meiotic repair is directed to the sister, at least in yeast (Goldfarb and Lichten 2010, Kim, 

Weiner et al. 2010). Whether between sisters or homologs, all DNA linkages (i.e. JMs) 

must be properly resolved for accurate chromosome segregation.  

 

Figure 5. The MI and MII spindle forces. AI=Anaphase I; AII=Anaphase II 

Meiotic segregation  

Proper homolog segregation at MI depends on chiasmata formation and sister 

chromatin cohesion, as it is these two that oppose the pulling tensions of the first meiotic 

spindle to facilitate segregation (Figure 5) (reviewed in Handel and Schimenti 2010) 

(for further reading on cohesin’s role in segregation in budding yeast, please see 

Marston 2014). Chiasmata are responsible for linking the homolog pairs at the 

chromosomal level so that they remain associated until segregation (reviewed in Whitby 

2005). These stably attached homolog pairs are called bivalents. At the same time, sister 

chromatid cohesion prevents premature sister separation. Sister chromatid cohesion is 
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also necessary for bivalent maintenance, as early loss of cohesion on the telomere-

proximal side of chiasmata can lead to untimely chiasmata dissolution. Once chiasmata 

and sister chromatid cohesion are properly in place, homologs can bi-orient, meaning 

that non-sister kinetochores orient to opposite spindle poles. Homolog bi-orientation at 

metaphase I, and subsequent segregation at anaphase I, is achieved by the specific loss 

of arm cohesion, which facilitates chiasmata resolution, and maintenance of centromeric 

cohesion, which prevents sister chromatid separation until MII. This is different from 

mitosis when all cohesion is lost at the metaphase-anaphase transition (Figure 1). At 

MII, cohesion is lost at the centromeres, allowing sister segregation (this process is 

reviewed in Wassmann 2013). Step-wise loss of cohesion is a hallmark of meiotic 

segregation and is mainly achieved by specialization of meiosis-specific cohesin 

complexes (reviewed in McNicoll, Stevense et al. 2013). Overall, proper segregation at 

MI and MII is crucial for proper gamete formation and reproductive success of an 

organism.  

 

MAMMALIAN GERM CELL FORMATION 

In the gonads of mammalian organisms, diploid germ cells produce haploid gametes 

that, after fusion with another gamete from the opposite sex, will produce the offspring. 

The collective process of gametogenesis (gamete formation) is known as 

spermatogenesis in males and oogenesis in females, and takes place in the testes and the 

ovaries, respectively. 

Spermatogenesis 

Sperm, also known as mature spermatozoa, are the final products of 

spermatogenesis and are the gametes used for sexual reproduction. Failure to complete 

spermatogenesis or the generation of improper sperm can lead to infertility or genetic 

disorders, making it important to understand the steps of this intricate process. 

Spermatogenesis takes place in the seminiferous tubules of the testes. The seminiferous
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 tubule is comprised of a central lumen surrounded by an epithelium arranged in layers 

of different germinal cell types (Figure 6). 

 

Figure 6. Spermatogenesis in the context of the seminiferious tubules. 

The epithelium of the seminiferous tubules can be staged according to the 

cellular associations found within. In mouse, twelve (I-XII) epithelial stages have been 

well defined by observing the changes in the forming acrosomal region of the 

spermatids using the periodic acid-Schiff’s reaction (PAS) (Hess and Renato de Franca 

2008). For simplicity, the stages of the seminiferous epithelium in mouse are generally 

categorized as early (stages I-V), middle (stages VI-VIII), and late (stages IX-XII) 

(Figure 7). In addition to germinal cells, the tubules also contain somatic cells called 

Sertoli cells, which serve to nourish, protect, and support the spermatogenic cells 

(reviewed in Hess and Renato de Franca 2008, Kaur, Thompson et al. 2014). The space 
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between the tubules is made up of testosterone-producing Leydig cells, blood vessels, 

and lymphatic fluid. 

Spermatogenesis consists of multiple rounds of mitosis, one round of meiosis, 

and a differentiation step called spermiogenesis (Figure 6) (reviewed in Hess and 

Renato de Franca 2008). In the mitotic phase, primordial germ cells undergo two rounds 

of mitosis to form type A spermatogonial stem cells, which proliferate to produce two 

kinds of cells: spermatogonial stem cells and differentiating spermatogonia. The 

differentiating spermatogonia (intermediate and type B spermatogonia) will grow and 

differentiate to form the primary spermatocytes that enter meiosis. During the meiotic 

phase, primary spermatocytes undergo replication and, following recombination during 

prophase, segregate their homologous chromosomes at MI to form secondary 

spermatocytes. These secondary spermatocytes then segregate their sister chromatids at 

Figure 7. Stages of the seminiferous epithelium in the mouse. Sertoli cells separate each stage. Along the 
bottom are photos of typical cells for early, middle, and late spermatid nuclei as visualized by using the PAS 
reaction and hematoxylin. Spermatogonia (A, In=intermediate, B); spermatocytes (Pl=preleptotene, 
L=leptotene, P=pachytene, D=diakinesis, Mi=meiotic division); round spermatids (1-8); 
elongating/elongated spermatids (9-16). (Hess and Franca 2008) 
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MII to generate haploid spermatids. The spermatids then enter the final phase of 

spermatogenesis, spermiogenesis.  

A series of morphological changes occur during spermiogenesis that transform 

round spermatids into elongated, compact sperm over the course of sixteen steps 

(Figure 7). There are three types of developing spermatids in the seminiferous 

epithelium: early spermatids with round nuclei, intermediate spermatids with elongating 

nuclei, and mature spermatids with condensed nuclei (reviewed in Dadoune 2003). 

Central to spermatid differentiation is the attachment of specialized structures and 

compaction of the spermatid head, both of which allow sperm to carry out their function 

during fertilization. In early spermiogenesis, specialized structures called an acrosome 

and axoneme begin to develop at opposing poles of the round spermatids (reviewed in 

O'Donnell and O'Bryan 2014). The acrosome, which eventually caps the entire sperm 

head, arises from the Golgi apparatus and facilitates fertilization by the secretion of 

enzymes that digest the outer surface of the female gamete to allow nuclear fusion. The 

axoneme is a microtubule-based structure that is equally as crucial to fertilization, as it is 

the core structure of the flagellum that mobilizes sperm. Though initially formed in early 

stages, the acrosome and axoneme continue to develop throughout spermiogenesis 

parallel to nuclear reshaping. 

Compaction of the spermatid nucleus begins approximately halfway through 

spermiogenesis with the formation of a microtubule-based organelle called the 

manchette. The manchette encompasses the nucleus directly below the acrosome in 

stage 7-8 spermatids, sliding down the nucleus in subsequent elongation steps before 

being dismantled in step 14 spermatids (reviewed in O'Donnell and O'Bryan 2014). This 

movement of the manchette facilitates nuclear compaction by altering the shape of the 

nucleus. DNA remodeling allows for nuclear compaction as well. During step 10 of 

spermiogenesis, histones begin to be replaced with protamines, which allow for tight 

DNA packaging due to their affinity for the minor groove of DNA (reviewed in Braun 

2001). Mice have two protamines, protamine 1 (PRM1) and protamine (PRM2), both of 
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which are required for proper sperm formation (Cho, Willis et al. 2001, Cho, Jung-Ha et 

al. 2003). It is unclear why a nuclear compaction is essential for sperm formation, but it 

is proposed that the small head protects sperm from damage and facilitates in motility 

during fertilization (reviewed in Carrell, Emery et al. 2007).  

Oogenesis 

Unlike males, who can produce millions of new gametes each day from a 

replenishing pool of spermatogonial germ cells, females are born with a fixed number of 

cells with the potential to become mature gametes. These cells, called primary oocytes, 

are housed in individual primordial follicles and are arrested at a diplotene-like dicyte 

stage at the end of meiotic prophase at birth. Once the animal reaches sexual maturity, a 

hormone surge triggers the development of a subset of primordial follicles and 

subsequent maturation of the primary oocytes within. The oocytes complete meiosis to 

form mature ovum, also referred to as eggs, which are the gametes with the potential to 

be fertilized. The process of oocyte maturation and egg release, called menstruation, 

occurs once a month until menopause when menstruation ceases. (reviewed in Pepling 

2006) 

 

PROTEINS THAT SHAPE CHROMOSOMES 

Though visualized under the microscope earlier, chromosomes were not linked to 

heredity until the turn of the 20th century, and it took scientists almost fifty more years to 

identify DNA as the basic unit of heredity. After Watson and Crick described the DNA 

double helix in 1953, research in the field boomed and provided evidence that made it 

impossible to deny the importance of DNA for life. We now know that proper 

organization of DNA into chromosomes, via the action of DNA-altering proteins, is just 

as important as DNA sequence itself. There are a multitude of proteins and protein 

families that influence overall chromosome structure and function. This section will 
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focus on the proteins and protein complexes most relevant to this thesis: topoisomerases, 

SMC complexes, and CTCF, with an emphasis on their functions in budding yeast and 

mice. Where relevant, findings from Papers I-III will be presented and discussed. 

Topoisomerases 

The DNA double-stranded helix must be manipulated in almost every major 

DNA-based cellular activity. Unwinding of the duplex during processes such as 

replication, transcription, and recombination can lead to DNA supercoiling (Figure 8), 

which can threaten genomic integrity if not properly managed. Other topological 

structures that can be deleterious to a cell are sister chromatid intertwinings (SCIs), 

which are the wrapping of chromatids around each other. To avoid genome instability 

caused by such topological structures, cells employ an essential class of enzymes known 

as topoisomerases. 

 

Figure 8. Topological structures must be removed by topoisomerases. (A) Illustration of twist-induced 
supercoiling. Pulling apart two ends of a twisted rope generates positive supercoils. (Carter and Sjögren, 
2012) (B) Positive DNA supercoils accumulate in front of the replication fork, which require Top1 and Top2 
for removal. Top2 also works behind the replication fork to resolve SCIs that build up behind the fork. 
(Kegel, Betts-Lindroos et al. 2011)  

Topoisomerases facilitate DNA transformations by utilizing a reversible 

transesterification reaction. This reaction creates a transient break in the DNA where 

strand passage can occur, which, following re-ligation of the break, results in the relief 

of topological stress (reviewed in Chen, Chan et al. 2013). Topoisomerases are divided 

into two classes depending on the kind of break they induce: type I topoisomerases 

create a DNA single-stranded break (SSB), while type II topoisomerases create a DNA 
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double-stranded break (DSB) (reviewed in Wang 1996). These classes are further 

categorized into subfamilies A, B, or C based on amino acid sequence and reaction 

mechanism (reviewed in Schoeffler and Berger 2008). The topoisomerases at work in 

eukaryotic cells are type IA (yeast Top3), type IB (yeast Top1), and type IIA (yeast 

Top2). The most relevant functions of these topoisomerases as they relate to this thesis 

will be described for budding yeast below. For further reading on topoisomerases, please 

consult (Chen, Chan et al. 2013), (Wang 2002), and references therein. 

Top3 (Paper II) 

Top3 is the DNA-cleaving component of the Top3-Sgs1-Rmi1 complex. 

Though this complex has roles during replication, its best characterized function is 

during recombination in vegetative cells due to its ability to resolve double-Holliday 

junctions (dHJs) (reviewed in Cejka, Plank et al. 2012). A study in meiosis suggests that 

Top3 functions during meiotic recombination as well, since top3 mutants experienced a 

recombination-dependent segregation block at MI (Gangloff, de Massy et al. 1999).  

In Paper II, we further explored the meiotic function of Top3 by using a 

meiotic null (mn) allele of TOP3, top3-mn. The meiotic null allele was constructed by 

replacing the endogenous promoter of TOP3 with the mitosis-specific CLB2 promoter 

(Lee and Amon 2003), which is down regulated after meiotic S phase (Grandin and 

Reed 1993, Dahmann and Futcher 1995). In this way, replication defects are avoided 

using this system. Despite incomplete reduction in Top3 protein levels in the top3-mn, 

40% of cells were unable to complete meiotic divisions and instead formed cells with 

one nuclear mass outside of four empty spores. This illustrates the necessity of Top3 for 

meiosis, as even a small loss in Top3 levels causes a phenotype. Consistent with spore 

formation in these cells, which indicates completion of the meiotic program in S. 

cerevisiae (Neiman 2011), Top3-deficient cells had normal spindle and synaptonemal 

complex (SC) dynamics. 
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 The phenotype in top3-mn cells is reminiscent of that observed in smc6 mutants 

(Copsey, Tang et al. 2013, Lilienthal, Kanno et al. 2013, Xaver, Huang et al. 2013) 

(Paper I) and mus81 sgs1 and mms4 sgs1 double mutants (Jessop and Lichten 2008, 

Oh, Lao et al. 2008), which accumulate recombination intermediates. Accordingly, we 

found that the segregation block in top3-mn was rescued when DSBs were eliminated. 

Given the role of Sgs1 and Top3 in mitotic recombination, it is very likely that they 

work in conjunction during meiosis as well. Indeed, rescue of the top3 meiotic 

segregation in an sgs1 background suggests interplay between Sgs1 and Top3 in meiosis 

(Gangloff, de Massy et al. 1999). However, 

in meiosis, accumulation of unresolved 

recombination intermediates and subsequent 

segregation block is only achieved when 

SGS1 is removed along with an 

endonuclease component (MUS81/MMS4) 

(Jessop and Lichten 2008, Oh, Lao et al. 

2008). This indicates that Top3’s meiotic 

function depends on more than just Sgs1. 

Recent data suggests that Smc6 binding in 

mitosis partially depends on Top3 (Berta et 

al., unpublished). Given the recently defined 

role for Smc6 during meiotic recombination 

(Paper I), it may be that the phenotype in 

top3-mn cells is due to loss of Smc6 on chromosomes. However, no detectable changes 

in Smc6 loading onto meiotic chromosomes were detected in Top3-deficient cells by 

immunofluorescence. This may indicate that Top3 does not regulate meiotic Smc6 

binding. Alternatively, Top3 may influence small changes in Smc6 loading. The Top3-

dependent changes in mitotic Smc6 binding were detected using the more sensitive 

chromatin immunoprecipitation technique, making it possible that our 

immunofluorescence analysis was not sensitive enough to detect changes in Smc6 
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Figure 9. Possible role for Top3 in the removal 
of inter-sister dHJs. 
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loading. In conclusion, Paper II proposes a role for Top3 during meiotic recombination 

(Figure 9), and it will be interesting to explore this role in the future. Critical to future 

endeavors is the creation of a meiosis-specific TOP3 allele that effectively reduces Top3 

levels, as the top3-mn used in this investigation only reduced protein levels slightly. If 

an efficient mutant is created, it will be interesting to explore what, if any, role Top3 

plays during meiotic recombination. Two lines of evidence suggest that any Top3-

mediated dHJ processing would be outside of established CO-forming meiotic 

pathways. First, the Top3-Sgs1-Rmi1 complex dissolves dHJs into NCO products, 

which are not products of meiotic dHJ resolution. Second, the factors responsible for 

virtually all inter-homolog dHJ resolution during meiosis have been identified 

(Zakharyevich, Tang et al. 2012). Instead, Top3 may be needed to process inter-sister 

dHJs. Inter-sister DSB repair during meiosis is not well understood, but resolution of 

inter-sister recombination intermediates is required for proper segregation. 

Top1 

Top1 is the most important factor for removal of supercoil-induced stress in the 

cell (Wang 2002). Together with Top2 (see below), it works to release supercoils ahead 

of the replication fork (Bermejo, Doksani et al. 2007). Due to its overlapping function 

with Top2, Top1 is non-essential in yeast (Chen, Chan et al. 2013). The function of 

Top1 during meiosis was not investigated in this thesis, and to our knowledge no 

meiotic function has been reported. 

Top2 (Paper II) 

Chromosome replication creates two topological structures which must be 

handled by topoisomerases: supercoils ahead of the replication fork and SCIs behind it 

(Figure 8B). While both Top1 and Top2 can remove supercoils, elimination of SCIs 

relies almost solely on Top2 (Figure 8C), and cells lacking Top2 complete replication 

but are unable to segregate their chromosomes (Holm, Goto et al. 1985, Bermejo, 

Doksani et al. 2007, Baxter and Diffley 2008). A catalytically dead top2 mutant, 
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however, leads to a checkpoint-induced replication arrest (Baxter and Diffley 2008). 

During mitosis, newly replicated sister chromatids must be held until their timely 

segregation at the metaphase-anaphase transition (Figure 1B). If sisters are not 

connected, not only will they fall apart prior to anaphase, they will also be unable to 

satisfy the spindle checkpoint due to lack of tension, causing spindle assembly 

checkpoint-mediated arrest. SCIs were originally proposed to be the factor linking sister 

chromatids, but this model was disfavored upon the discovery of proteins that 

functioned in the regulation of sister cohesion (Guacci, Koshland et al. 1997, Michaelis, 

Ciosk et al. 1997), which are know known components of the cohesin complex. More 

recently, cohesin was proposed to protect SCIs from Top2, suggesting once again that 

SCIs may play a role in keeping sisters together (Farcas, Uluocak et al. 2011). Together 

with the condensin complex (discussed further below), Top2 also aids in proper 

chromosome condensation and axis organization in vegetative cells (Koshland and 

Strunnikov 1996). During meiosis, Top2 binds to the meiotic chromosome axis (Klein, 

Laroche et al. 1992), and mutations in top2 during meiosis lead to lack of chromosome 

condensation and a segregation block that is partially dependent on recombination 

(Rose, Thomas et al. 1990, Rose and Holm 1993). Recently, Kleckner and colleagues 

also reported that the structural role of Top2 makes it a key factor in meiotic crossover 

interference (Zhang, Wang et al. 2014). 

In Paper II, we further characterized the meiotic role of Top2 by using the 

meiosis-specific mutant top2-mn. (This mutant was constructed as described for top3-

mn.) The top2-mn displayed a mixture of two phenotypes: cells that accumulated as 

uninucleates (40%) and cells that formed 1-3 empty spores with one nuclear mass 

outside (60%). Since certain top2 mutants experience replication defects during mitosis 

(Baxter and Diffley 2008), the uninucleate population in top2-mn could be blocked due 

to problems during pre-meiotic S phase. While we believe that replication defects were 

avoided using the meiotic null, we cannot completely exclude this possibility.  
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Given the role of Top2 in SCI resolution during mitosis, it seems likely that it 

has a similar function during meiosis. SCI resolution is imperative for meiotic 

segregation, since any lingering inter-sister links on the telomere-proximal side of 

chiasmata will inhibit homolog segregation. In the absence of chiasmata (i.e. no 

recombination), a portion of sister segregation may also be blocked if SCIs are not 

resolved, but some cells should successfully segregate their homologs. In line with this 

reasoning, we found that removing recombination rescued almost the entire segregation 

block in the top2-mn, as 50% of total cells were able to complete some nuclear division 

(30% completed MII; 20% completed MI), compared with the 60% segregation block 

when top2-mn underwent meiosis with DSBs. The remaining cells accumulated as 

uninucleates (30%) or cells with 1-3 spores with an unsegregated DNA mass (20%). 

Top2 was not needed for recombination itself, as JM dynamics and CO/NCO formation 

were unperturbed in its absence. Together, these data suggest that Top2 is needed to 

remove SCIs that inhibit chromosome segregation as a result of chiasmata-dependent 

homolog links. Consistent with this idea, segregation was impeded if recombination was 

eliminated and cells only underwent a MII-like division (i.e. segregated sister 

chromatids). This suggests that recombination-independent SCIs are the source of the 

recombination block in Top2-deficient cells. Hence, the findings in Paper II point to a 

role for Top2 in SCI removal during meiosis. Top2 seems to be particularly important 

for resolving SCIs that sit downstream of chiasmata, which must be resolved for 

homolog segregation (Figure 10).  

 

Top2

Top2

S phase Recombination MI

Figure 10. SCI removal by Top2 would facilitate segregation of recombined homologs. Based on 
similar sketch from (Rose et al., 1990). 



Proteins	
  that	
  shape	
  chromosomes	
  

	
  
 

  23 

SMC protein complexes 

Structural maintenance of chromosomes (SMC) proteins are members of a 

conserved class of proteins that are needed for genome integrity. Their unique structure 

and global functions make them crucial components of chromosome architecture in a 

cell. SMCs are large proteins (1,000-1,300 amino acids) that contain two nucleotide-

binding motifs, Walker A and Walker B, which are found at the N- and C-terminal 

domains, respectively (Figure 11A) (reviewed in Hirano 2006). Bridging the termini are 

two long coiled-coil motifs with a hinge in the center, which facilitate folding over of 

the SMC monomer onto itself in order to create an ATP-binding head at one end and a 

hinge domain at the other (reviewed in Hirano 2006). SMC proteins interact with one 

another via their hinge domains and other non-SMC proteins via their head domains. In 

this way, the SMC proteins make up the cores for the so-called SMC complexes: Smc2-

Smc4 in condensin, Smc1-Smc3 in cohesin, and Smc5-Smc6 in the Smc5/6 complex 

(Figure 11B). These complexes will be discussed further below, with an emphasis on 

the roles of cohesin and the Smc5/6 complex in yeast and mice, particularly during 

meiosis. Unless otherwise specified, the gene and protein names are given for yeast. 

Condensin 

Briefly, the condensin complex is essential for chromosome condensation 

during mitosis and meiosis (Wood, Severson et al. 2010). In addition to the core SMC 

proteins Smc2 and Smc4, the condensin complex includes three non-SMC elements 

(Figure 11B) (reviewed in Losada and Hirano 2005). Mutations in condensin during 

meiosis lead to defects in axis organization (Yu and Koshland 2003, Yu and Koshland 

2005).  
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Figure 11. The SMC complexes. (A) Basic structure of an SMC protein. (B) Structure of the condensin, 
cohesin, and the Smc5/6 complex. See text for details. 

Cohesin 

As stated previously, the cohesin complex is a meiotic axis component required 

for proper recombination. It is also essential for sister chromatid cohesion (SCC) during 

mitosis and meiosis (reviewed in Peters and Nishiyama 2012). Cohesin is loaded to 

chromatids at telophase in metazoans and G1/S phase in yeast to prevent separation of 

sister chromatids until the metaphase-anaphase transition and most likely carries out its 

cohesive function by forming a ring encircling sisters (Michaelis, Ciosk et al. 1997, 

Klein, Mahr et al. 1999, Gruber, Haering et al. 2003, Haering, Schoffnegger et al. 2004, 

Haering, Farcas et al. 2008). Importantly, cohesin is required for DSB repair, and is 

recruited to DSB sites even after replication (Sjogren and Nasmyth 2001, Strom, 

Lindroos et al. 2004, Strom, Karlsson et al. 2007). In higher eukaryotes, cohesin also 

promotes genome organization together with the CCCTC-binding factor, CTCF. The 
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interplay between CTCF and cohesin is crucial for mammalian genome function (CTCF 

will be discussed more in the next section). 

The cohesin complex consists of a heterodimer between Smc1 (SMC1α in 

mice) and Smc3 (SMC3 in mice) bridged by an α-kleisin subunit, Scc1/Mcd1 (RAD21 

in mice), to which an additional non-SMC subunit binds: sister chromatid cohesion 3 

(Scc3, called SA or STAG in mice) (Figure 11B) (yeast review in Haering, Lowe et al. 

2002; mammalian review in McNicoll, Stevense et al. 2013). Vertebrates have two SA 

proteins, SA1 and SA2, that give rise to two functionally different mitotic cohesin 

complexes (reviewed in Canudas and Smith 2009). During meiosis, the kleisin subunit 

of cohesin is replaced with Rec8 in yeast and REC8 or RAD21L in vertebrates (Klein, 

Mahr et al. 1999, Bannister, Reinholdt et al. 2004, Lee and Hirano 2011, Polakova, 

Cipak et al. 2011). Mice have two additional meiosis-specific components for the SMC3 

and SA subunits: SMC3β and STAG3, respectively (Prieto, Suja et al. 2001, 

Revenkova, Eijpe et al. 2001).  

As mentioned earlier, cohesin is removed stepwise in meiosis (Figures 1, 5). At 

MI, arm cohesin is cleaved away in order to allow homolog segregation; centromeric 

cohesin is maintained until MII when sister chromatids are segregated. In addition to its 

role in SCC, cohesin is necessary for proper architecture of the meiotic axis (for more on 

the meiotic axis, please see the Meiosis section in this thesis) as well as SC formation 

and DSB repair in yeast and mice (Klein, Mahr et al. 1999, Pelttari, Hoja et al. 2001, 

Llano, Herran et al. 2012). Studies have found both unique and overlapping functions 

for the different meiotic subunits in mice, suggesting interplay between at least six 

different cohesin complexes during meiosis (Ishiguro, Kim et al. 2011, Jessberger 2011, 

Lee and Hirano 2011, Fukuda, Fukuda et al. 2014, Hopkins, Hwang et al. 2014, 

Ishiguro, Kim et al. 2014).  
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The Smc5/6 complex (Paper I) 

The most enigmatic of the SMC complexes is the Smc5/6 complex. The 

complex consists of eight subunits, all of which are essential in yeast: Smc5, Smc6, 

Nse1, Mms21 (Nse2) and Nse3-6 (Figure 11B). These components were originally 

discovered in fission yeast as part of the mitotic homologous recombination repair 

pathway (Lehmann, Walicka et al. 1995, Fousteri and Lehmann 2000, Morikawa, 

Morishita et al. 2004, Andrews, Palecek et al. 2005), and was later found to function in 

the resolution of recombination intermediates that accumulate following damage during 

mitotic S phase (Branzei, Sollier et al. 2006, Sollier, Driscoll et al. 2009, Chavez, 

George et al. 2010). The Smc5/6 complex in budding yeast is crucial for DNA repair, 

and evidence suggests that one of its repair function may be due to the complex’s ability 

to recruit cohesin genome-wide following DNA damage (Onoda, Takeda et al. 2004, 

Zhao and Blobel 2005, Cost and Cozzarelli 2006, De Piccoli, Cortes-Ledesma et al. 

2006, Lindroos, Strom et al. 2006). Mutating genes involved in the removal of aberrant 

recombination structures at blocked replication forks worsens the phenotype in smc5/6 

mutants (Morikawa, Morishita et al. 2004, Hwang, Smith et al. 2008, Chen, Choi et al. 

2009). Homologous recombination is not essential in yeast, however, indicating that the 

Smc5/6 complex, while important for recombination, plays another vital role. One 

possibility is that Smc5/6’s crucial function is during replication, where it has been 

shown to reduce topological stress in vegetative cells (Kegel, Betts-Lindroos et al. 

2011). The finding that removing Top2, which increases the amount of SCIs, increases 

the amount of Smc6 binding supports a role for Smc6 in DNA topology (Kegel, Betts-

Lindroos et al. 2011). In contrast, recent studies indicate that the Smc5/6 complex’s vital 

meiotic function is during recombination.  

In C. elegans, Smc5 and Smc6 are required to process recombination structures 

in germ line cells (Bickel, Chen et al. 2010). Fission nse1-3 are needed for proper 

meiotic chromosome segregation (Pebernard, McDonald et al. 2004, Wehrkamp-

Richter, Hyppa et al. 2012), and mutations in nse6 lead to the accumulation of meiotic 
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JMs in the form of single HJs that resemble those found in cells lacking the 

endonuclease Mus81 (Wehrkamp-Richter, Hyppa et al. 2012). These HJs were DSB-

dependent, but the nse6 mutant used in this study was not meiosis-specific and 

accumulated recombination intermediates already in mitosis and pre-meiotic S phase. 

Similarly, the authors of a study in budding yeast attributed the meiotic segregation 

defect in their smc6 mutant to defects prior to meiotic recombination (Farmer, San-

Segundo et al. 2011).  

In Paper I (Lilienthal, Kanno et al. 2013), we identified a recombination-

specific role for the Smc5/6 complex during meiosis in budding yeast. Unlike the studies 

described above, the mutants used in our investigation were meiosis-specific, either by 

conditional gene depletion by promoter replacement (using so-called meiotic nulls (mn): 

smc5-mn, nse4-mn, nse2-mn) or by temperature-dependent protein inactivation after 

meiotic S phase completion (using the smc6-56 allele). This allowed us to study meiotic 

functions of the Smc5/6 complex exclusively. Cells deficient for Smc5/6 complex 

components in meiosis were unable to segregate their DNA, instead forming only cells 

with one DNA mass outside of four empty spores. However, when the temperature-

sensitive mutant smc6-56 underwent meiosis at restrictive temperature from the time 

nutrient depletion began (i.e. upon meiotic induction prior to S phase), 20% of cells 

remained uninucleate, suggesting a role for the Smc5/6 in meiotic DNA replication. We 

chose not to pursue this phenotype here, though it will be of interest to characterize this 

defect further in future studies. Since spores in S. cerevisiae form around duplicated 

spindle pole bodies (reviewed in Neiman 2011), the “one DNA mass outside of four 

spores” phenotype indicates that smc5/6 mutants complete the meiotic program despite 

unsegregated DNA. In line with this, spindle duplication and elongation were normal in 

these mutants. In addition, SC and cohesin dynamics were unperturbed, supporting the 

notion that the Smc5/6 complex is needed for chromosome segregation but not meiotic 

progression.  
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Knowing the relationship between the Smc5/6 complex and the cohesin 

complex during mitosis, we were curious as to whether they had related functions during 

meiosis as well. Cohesin loading and removal at the chromosomal level was not 

inhibited in the smc6-56 mutant, suggesting that the Smc5/6 complex does not regulate 

cohesin. In addition, the dynamics of sister chromatid cohesion were normal in these 

cells, further supporting the notion that the Smc5/6 complex does not affect cohesin and 

its functions. To determine whether the nuclear division failure was due to break-

independent sister entanglements and to further explore the possibility that defective 

cohesin may block chromosome segregation in Smc6-deficient cells, we monitored 

nuclear division in cells that were forced to undergo a single mitosis-like division (i.e. 

segregating sisters) in the absence of recombination. In this background, the smc6-56 

mutant was able to complete nuclear divisions, indicating that the Smc5/6 complex is 

not needed to process recombination-independent chromatid entanglements and further 

supports the notion that the block in Smc6-deficient cells is a result of cohesion-

independent mechanisms. In contrast to these findings, another study found that the 

segregation block in smc5-mn cells was rescued when the cohesin component Rec8 was 

artificially cleaved from chromosomes (Copsey, Tang et al. 2013). It may be that 

different subunits of the Smc5/6 complex function in different pathways during meiosis. 

Alternatively, cohesin removal, through elimination of SCC, may reduce the likelihood 

of repairing DSBs via the sister. Given that the Smc5/6 complex is required to remove 

such structures in mitosis, it may be that it is needed for resolution of inter-sister 

recombination intermediates during meiosis as well. We favor this explanation since we 

find that smc6 mutants accumulate inter-sister repair intermediates that depend on Smc6 

function for their removal (see below). Moreover, we found that Smc6 localization on 

meiotic chromosomes depended on Rec8, suggesting that Smc6 is not needed when 

SCC is absent. Reduction in Smc6 binding is also observed in mitotic cells when 

mutating the cohesin component SCC1, which leads to loss of cohesion (Jeppsson et al., 

unpublished). On the other hand, this may indicate that Smc6 loading is dependent on 

meiotic axis organization.  
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The segregation block in smc6-56, smc5-mn, nse2-mn, and nse4-mn was 

rescued when DSBs were eliminated, indicating that the block is recombination-

dependent. Despite this, DSB repair was complete and efficient, suggesting that the 

accumulation of recombination intermediates may cause the problem in Smc6-deficient 

cells. Using return-to-function studies, we determined that the Smc5/6 complex 

performs its most critical functions during resolution of recombination intermediates. In 

line with this, we detected accumulation of 2.5-3 fold higher levels of total joint 

molecules (JMs) when Smc6 was dysfunctional throughout meiosis. NCO formation 

was not affected, but the smc6 mutant had a higher ratio of IS-JMs to total JMs, 

suggesting a role for Smc6 in the prevention and/or resolution of IS-JMs. JMs persisted 

at later time points and although some IH-JMs remained, many lingering species seemed 

to be IS-JMs. Surprisingly, CO formation was normal in smc6-56 cells despite 

remaining IH-JMs. It may be that the IH-JMs that persist are not enough to cause a 

significant change in CO levels. On the other hand, additional IH-JMs might be forming 

from extra DSBs. Steady-state DSB levels were slightly higher in the smc6 mutant at 

one break site, which may account for extra recombination events. 

To further characterize the role of Smc6 

in recombination, we investigated JM dynamics 

in cells that had functional Smc6 during JM 

formation but not resolution. Under these 

conditions, segregation was completely blocked. 

Even though JMs formed at normal levels and 

ratios, cells were not able to resolve JMs in 

Smc6’s absence. The remaining JMs were 

between both homologs and sisters, but the IS-

JM: total JM ratio increased when Smc6 was 

inactivated, suggesting that IH-JMs, but not IS-

JMs, can be resolved. Again CO and NCO levels were unaffected. When the scenario 

was reversed and Smc6 was functional during resolution but not formation of JMs, all 

X X

Smc6

Chiasmata

Aids in prevention

Promotes

resolution

IH-JM IS-JM

Figure 12. Possible role for Smc6 in the 
resolution of recombination intermediates. 
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JMs could be resolved despite higher and altered levels of JM species during formation. 

In line with the notion that JMs are the culprits of the segregation block, these cells 

completed nuclear divisions. These data suggest that the Smc5/6 complex is responsible 

for IS-JM resolution and is important in resolving a subset of non-CO forming JMs 

(Figure 12) and leads us to propose that the Smc5/6 complex is pivotal in resolving 

recombination intermediates that form outside of canonical meiotic pathways. 

CTCF (Paper III) 

Genome organization in eukaryotes requires extensive packaging of the 

chromatin into the fixed, confined space of the nucleus. It has been proposed that 

specific factors exist that ensure proper chromosome architecture and function by 

mediating intra- and inter-chromosomal contacts. One such candidate is the essential 

CCCTC-binding factor (CTCF) found in vertebrates. CTCF is a huge protein that 

contains a conserved DNA-binding motif consisting of eleven zinc finger domains 

(Klenova, Nicolas et al. 1993), which make it possible for CTCF to bind multiple DNA 

regions at the same time. CTCF was initially characterized as a transcription factor 

capable of both activating and repressing gene expression in heterologous reporter 

assays (Baniahmad, Steiner et al. 1990, Lobanenkov, Nicolas et al. 1990, Filippova, 

Fagerlie et al. 1996). Using transgenic assays, CTCF was later found to be the major 

DNA-binding component that establishes insulators, meaning that it buffers regions of 

defined gene expression and/or chromatin state (Bell, West et al. 1999). The insulator 

properties exhibited by CTCF were thought to be a result of its ability to modify 

chromosome structure. This idea is supported by the finding that many CTCF sites 

overlap with cohesin (Kim, Abdullaev et al. 2007), which, in addition to its roles in 

sister chromatid cohesion, regulates gene expression (reviewed in Merkenschlager and 

Odom 2013). Not long after the discovery of CTCF-cohesin binding sites, it was shown 

that both CTCF and cohesin are required for long-range genome interactions (Bowers, 

Mirabella et al. 2009, Hadjur, Williams et al. 2009), and recent evidence has further 

implicated the coordinated roles of CTCF and cohesin in setting up proper chromosome 
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structure (reviewed in Merkenschlager and Odom 2013). In addition, the recent ability 

to study the three-dimensional structure of genomes has generated more evidence 

supporting the notion that CTCF is a key architectural protein (reviewed in Ong and 

Corces 2014).  

Although the majority of investigations into CTCF’s function have focused on 

vegetative cells, studies suggest that it works during gametogenesis as well. In females, 

CTCF is required for proper meiosis and oocyte growth, and fertilized CTCF-deficient 

oocytes lead to offspring with defects in early embryonic development (Fedoriw, Stein 

et al. 2004, Wan, Pan et al. 2008). CTCF is expressed in all cell types of the 

seminiferous epithelium in the testes, suggesting that it may also play a role during 

spermatogenesis (Sleutels, Soochit et al. 2012) Though these studies hint to a role for 

CTCF in these processes, the function of CTCF during gametogenesis has been difficult 

to study due to the lack of a viable knockout mouse model. 

In Paper III, we created a testes-specific ctcf knockout mouse strain (ctcf-cKO) 

to elucidate CTCF function during spermatogenesis. Excision of ctcf in the ctcf-cKO 

was germ-line specific and occurred from pre-leptotene cells and onward, and mice 

exhibited seminiferous tubule atrophy along with low sperm counts and infertility. To 

explore the reasons behind the low sperm counts, we analyzed CTCF function in 

meiosis.  

Early in meiosis, γH2AX marks DSB sites. It is removed from autosomal 

chromosome axes concurrent with DSB repair, but a subset remains associated with the 

XY body, which is silenced during meiosis due to the inability for the non-homologous 

X- and Y-chromosomes to synapse (Hunter, Borner et al. 2001, Fernandez-Capetillo, 

Mahadevaiah et al. 2003, Inselman, Eaker et al. 2003). CTCF bound to meiotic 

chromosomes with a strong preference for the XY body, suggesting that it may play a 

role in meiosis, particularly at the XY body. However, ctcf-cKO mice had no major 

defects in cohesin loading, DSB formation, SC dynamics, chromosome pairing, XY 

body formation or recombination, suggesting a non-essential role for CTCF during 
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meiosis. Because the ctcf-cKO did not fully excise Ctcf, we cannot rule out the 

possibility that CTCF plays a role during meiosis. However, despite a normal meiosis, 

Ctcf-deficient mice had low sperm counts and were infertile, implying a role for CTCF 

during post-meiotic stages of spermatogenesis.  

In line with this notion, elongating spermatids were apoptotic in the ctcf-cKO 

and mature ctcf-cKO sperm showed structural aberrations. Stage 8-10 elongating 

spermatids lacked a manchette, while stage 12-14 spermatids had an abnormal 

manchette. Later-stage ctcf-cKO sperm exhibited abnormal head structure and 

inconsistent DNA compaction, both of which may be related to the manchette 

abnormalities in earlier stages. Mature sperm from ctcf-cKO mice had less-elongated 

heads with visible regions of decondensed chromatin, suggesting a role for CTCF in 

chromatin compaction. Tail morphology was also irregular in the ctcf-cKO, most likely 

due to abnormal head shape. Consistent with a role for CTCF in chromatin compaction 

during spermiogenesis, CTCF-deficient mice were unable to incorporate the sperm-

specific compaction factor protamine 1 (PRM1), which disrupts the protamine balance 

known to be crucial for sperm compaction (Cho, Willis et al. 2001, Cho, Jung-Ha et al. 

2003). Thus, infertility in ctcf-cKO mice is likely caused by chromatin compaction 

defects in sperm, which result from improper protamine incorporation during 

spermiogenesis. 

 

FINDING NOVEL MEIOTIC FACTORS 

In 1859, Charles Darwin published his revolutionary work On the Origin of 

Species by Means of Natural Selection, which laid the foundation of evolutionary 

biology. Though controversial when first presented, researchers have transformed 

Darwin’s theory of evolution into a fundamental biological dogma. Now the pressing 

question for many biologists is not if or why evolution happened, but rather what can we 
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gain from it. Namely, how can we utilize evolutionary relationships to gain insights into 

human health and disease mechanisms? 

One way to extract information from evolution is by studying co-evolution, 

which is a pivotal aspect of evolutionary theory. Co-evolution is defined as the 

interdependence between the evolutionary changes of two interacting entities (Ehrlich 

and Raven 1964). Co-evolution was originally studied at the species level, but recent 

advances in technology and genome sequence availability have made it possible to 

examine co-evolution at the molecular level as well (reviewed in de Juan, Pazos et al. 

2013). Of most interest in modern studies is protein co-evolution, which detects the 

relationship between interacting and functionally related proteins.  

The co-evolution search at the protein level often makes use of phylogenetic 

trees, which are visual representations of the evolutionary relationships between a set of 

biological factors (in this case, proteins) (reviewed in Ochoa and Pazos 2014). It has 

been shown that structurally and functionally interacting proteins have similar 

phylogenetic tree patterns. That observation has led to the development of methods that 

use sequence input to predict protein interactions (structural and functional) based on 

phylogenetic tree similarity (Ochoa and Pazos 2014). Phylogenetic profiling, however, 

predicts protein interactions based on the joint presence or absence of proteins across 

species. This method is based on the notion that co-evolving populations will lose or 

maintain biological entities, such as proteins, as evolution, via natural selection, in that 

environment deems necessary (Pellegrini, Marcotte et al. 1999). Since proteins in the 

same phylogenetic cluster are related based on functional evolutionary conservation or 

divergence, rather than sequence homology, proteins that lack sequence conservation 

but function in the same pathway can be discovered. This feature of phylogenetic 

profiling make it of particular use in studying new potential meiosis-specific proteins, 

which are conserved on a functional but not sequence level, making them difficult to 

study using other established screens (reviewed in Bolcun-Filas and Schimenti 2012). 



Finding	
  novel	
  meiotic	
  factors	
  

	
  
 

 34 

Since proteins that make up specialized complexes are expected to have a 

similar phylogenetic profile, it may be possible to use phylogenetic profiling to predict 

novel protein components of such complexes. In Paper IV (Tabach, Golan et al. 2013), 

we used phylogenetic profiling to predict protein members of the meiosis-specific 

synaptonemal complex (SC). As predicted, known proteins of the SC clustered strongly 

with other meiosis-specific proteins, demonstrating the ability of phylogenetic profiling 

to cluster proteins that work in the same complex. The SC proteins also shared the 

phylogenetic profile with other uncharacterized proteins, many of which contained a 

predicted coiled-coil structure that is characteristic of many SC proteins (Costa and 

Cooke 2007), suggesting new components of the SC. To test if these uncharacterized 

proteins were meiosis-specific, as would be expected for SC proteins, we analyzed the 

mRNA expression patterns in various mouse tissues. Several were highly expressed in 

the ovary and/or testes. One gene, Ccdc105 (coiled-coiled domain containing gene 105), 

encoded a protein most similar phylogenetic profile to SC proteins and was expressed in 

testes only. Using an antibody raised against CCDC105, we found that CCDC105 

resides in the nuclear fraction in testes by western blotting. CCDC105 localized to the 

heterochromatic centromeres in in spermatocytes in late diplotene, and was also found in 

heterochromatic regions in post-meiotic round spermatids. These data suggest that 

CCDC105 may play a role in late stages of meiosis and spermiogenesis. Together, the 

results in Paper IV indicate that phylogenetic profiling can be used to find new genes 

that impact meiosis. Since meiosis is key for gametogenesis and reproduction, finding 

new meiotic factors can help researchers find ways to treat and perhaps prevent 

infertility. 
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CONCLUSIONS 

The goal of this thesis was to explore the relationship between proteins that 

dictate chromosome structure and their function in meiosis.  

In Paper I, we showed that the Smc5/6 complex is imperative for proper 

meiotic recombination in budding yeast. Using meiosis-specific alleles, we found that in 

the absence of Smc5/6 complex components, cells were unable to divide their nuclei due 

to the accumulation of recombination intermediates. Many of these intermediates were 

formed between sister chromatids, a situation very rarely observed in wild-type cells 

most likely due to the transiency of meiotic inter-sister repair. This suggests that Smc6, 

and the complex as a whole, facilitates proper recombination by promoting the 

prevention and/or resolution of inter-sister repair intermediates. In support of the latter 

notion, all recombination intermediates were resolved and nuclear divisions were 

restored when Smc6 function was turned on at the resolution step of recombination. 

Also in support of a sister-specific function for Smc6 during recombination were the 

normal levels of crossover formation in the smc6 mutant, despite accumulating 

recombination structures. We therefore propose that the main function of the Smc5/6 

complex during meiosis is to aid in the resolution of inter-sister recombination 

intermediates. 

In Paper II, we utilized meiosis-specific mutants for topoisomerases Top2 and 

Top3 and found that both are necessary for proper meiotic segregation in budding yeast. 

In the absence of Top2, cells experienced a partially recombination-dependent 

segregation block. This block was not due to the accumulation of recombination 

intermediates as the timing of intermediate formation and removal, as well as crossover 

and non-crossover formation, was normal. Top2-deficient cells were not able to 

segregate their sisters when undergoing a meiosis II-like division in the absence of 

recombination, suggesting that it is recombination-independent structures which block 

top2 cells. Based on these data, we conclude that Top2 is needed for the segregation of 
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recombined chromosomes during meiosis due to its ability to resolve sister chromatid 

intertwinings. The segregation block in the top3 mutant was fully recombination-

dependent. Given its role in removal of recombination intermediates in mitosis, we 

suggest that it works during meiosis in the processing of recombination structures as 

well. 

We defined a role for the CCCTC-binding factor CTCF during spermatogenesis 

in mice in Paper III by creating a testes-specific knockout mouse for Ctcf (ctcf-cKO). 

The ctcf-cKO was able to complete meiosis normally, but had a very low sperm count 

and formed aberrant sperm. On closer examination, sperm from ctcf-cKO mice did not 

compact chromatin correctly, leading to head abnormalities and aberrant tail attachment, 

which most likely contributed to the infertility in these mice. In line with the lack of 

chromatin compaction, CTCF-deficient sperm were not able to load sperm-specific 

chromatin compaction factors, suggesting a role for CTCF in their recruitment and/or 

loading. Together, these results implicate CTCF as an important factor for proper 

chromatin compaction during spermiogenesis.  

Finally, in Paper IV, we used phylogenetic profiling to discover a meiosis-

specific, previously uncharacterized protein called CCDC105. CCDC105 showed an 

evolutionary clustering with known components of the synaptonemal complex, 

suggesting that it plays a role in organizing chromosome structure during meiosis. In 

line with this, we found that CCDC105 localized to heterochromatic regions on meiotic 

chromosomes in late prophase. These findings indicate that phylogenetic profiling can 

be used to find novel factors in pathways known to involve specific protein complexes. 

In conclusion, this thesis focused on factors that uphold the integrity of gamete 

formation. While CTCF seems to be important for differentiation of male gametes, and 

the role of CCDC105 is uncharacterized as of yet, the Smc5/6 complex, Top2, and Top3 

are imperative for proper meiotic segregation. Mistakes in chromosome segregation can 

lead to aneuploidy, which is a hallmark of tumor cells. When aneuploidy occurs in the 

germ line, it can lead to genetic disorders such as trisomy of chromosome 21, more 
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commonly known as Down’s syndrome. Moreover, aneuploidy is the leading cause of 

infertility and spontaneous abortions in humans. Due to the increasing use of in vitro 

fertilization, researchers have been able to study aneuploidy in the germ line and its 

embryonic consequences more closely. This has led to a striking observation: as 

maternal age increases, so does aneuploidy and, in turn, maternally-contributed 

infertility and trisomy. The exact reason for this correlation is not yet clear, but it has 

been suggested that the integrity of meiotic chromosomal features, such as cohesin and 

chiasmata, are key predictors of aneuploidy. Since female gametes are arrested at 

meiosis I at birth, it may be that these factors degenerate with time. Understanding more 

about how chromosome structure impacts meiotic integrity is the key to treating, and 

perhaps preventing, infertility and genetic disorders in the future. 
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