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ABSTRACT 

Many aspects of human social behavior are likely to be shaped by punishment, threats of 

punishment, and avoidance of punishment. However, surprisingly little is known about the 

psychological mechanisms underpinning these influences. The goal of the research presented 

in this thesis was to investigate how basic reinforcement-based learning processes contribute 

to adaptive social behavior. To this end, we investigated how human behavior is shaped by 

punishment and threats of punishment in simple laboratory models aimed at capturing 

essential aspects of the social world. In order to probe the mechanisms underlying overt 

behavior, we tested the capacity of simple computational models to describe human behavior.  

In Study I, we investigated how the capacity to control behavior was affected by threat of 

punishment for performance mistakes, motivated by the functional perspective that control is 

most needed when mistakes are costly, as common in social interaction. Furthermore, we 

investigated if activity in the facial corrugator supercilii muscle might function as a novel 

index of this control process. We found that performance was enhanced under threat of 

punishment relative to non-threat, and that activity in the corrugator supercilii responded to 

performance errors during threat of punishment, similar to the known electroencelographic 

correlate of performance errors, the error related negativity. 

Studies II and III investigated how social stimuli, emotional and out-group faces, affected 

avoidance learning when serving as punishers (Study II) and cues for punishment (Study 

III). In both studies, we were interested in how pre-existing negative attitudes (racial bias) 

would affect avoidance learning, motivated by the fact that social groups and group animosity 

play an important role in modern societies. We found that individual differences in racial bias 

strongly modulated avoidance learning, by leading to an increased learning rate in response to 

out-group faces (Study II) and to more biased behavior when out-group faces served as cues 

for electric shocks (Study III). Furthermore, Study III revealed that several types of social 

and non-social stimuli, which previously have been shown to be preferentially associated 

with fear (snakes, threatening faces, out-group faces, and guns), all shared a common effect 

on avoidance learning relative to control stimuli, by promoting adaptive behavior when these 

stimuli were good predictors of aversive outcomes but corrupting behavior when serving as 

bad predictors of aversive outcome. This pattern could be explained by a computational 

model positing two competing valuation systems. 

In Study IV, we asked how avoidance behaviors can be learned and transmitted socially by 

observing others´ behavior in a setting with threat of punishment. We used agent-based 

simulations to show that the omission of expected punishment together with social learning 

can explain the generation, maintenance and transmission of avoidance behaviors that form 

“avoidance traditions” on the group-level. The assumptions underlying this model were 

corroborated in four experiments, which together showed that humans are exceedingly prone 

to copy the behavior of others when threatened with punishment.  



Together, these four studies indicate that important aspects of human social behavior can be 

understood as involving mechanisms of basic reinforcement learning, and that simple 

computational models of these learning processes can provide important insights into human 

behavior. 
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1 INTRODUCTION 

1.1 LEARNING IN THE AVERSIVE AND SOCIAL DOMAINS  

The overall theme of this thesis is how humans learn to avoid different types of punishment, 

such as uncomfortable electric shocks or frowning facial expressions (the aversive domain), 

in simple experimental laboratory models of social interaction (the social domain). The 

questions arising from this focus are likely: what is so important about learning in the 

aversive domain? And why is this relevant in the social domain? I will begin with sketching 

answers to these questions by providing an overview of the wider context this thesis can be 

placed in and thereafter summarize the structure of the thesis. 

Dangers, such as predation, noxious foods or hostile con-specifies are ubiquitous in the 

natural world. Exposure to such dangers is by definition costly, in terms of Darwinian fitness 

(Johnson, Blumstein, Fowler, & Haselton, 2013). An erroneous decision in a dangerous 

environment might be the last decision made by that individual, providing a strong selective 

pressure for optimizing behavior to avoid potentially dangerous consequences. In simple 

organisms living in stable environmental conditions, avoiding danger can be handled by hard-

wired genetic behavioral programs (Fawcett, Hamblin, & Giraldeau, 2012). However, in 

most species, the environment is complex and stochastic, which requires behavioral 

flexibility in the form of learning (Johnston, 1982). Animals learn to avoid objects or 

behaviors followed by naturally aversive consequences, such as pain or nausea. Thus, 

understanding how animals learn avoidance of punishments provides an answer to a 

fundamental aspect of survival (Bolles, 1970). 

In humans, punishment and avoidance of punishment can take many forms. Aside from 

simple primary punishments such as pain, which motivates behavior across species, humans 

are influenced by many other types of punishments, many of which are distinctly social 

(Seymour, Singer, & Dolan, 2007). Loss of money, threats to social status, social disapproval, 

gossip, ostracism and so forth are powerful influences on human behavior (note that some of 

these punishment types can also be relevant for other animals, Cant, 2011). Most importantly, 

punishment and threat of punishment are believed to be fundamental mechanisms for 

maintaining social norms, which can be defined as group-shared expectations of how 

members of the group should behave in a given situation (Bicchieri, 2005; Fehr & 

Fischbacher, 2004). The perhaps most important social norms are those prescribing 

cooperation between unrelated individuals (Bowles & Gintis, 2011). Cooperation is often 

viewed as a mystery when viewed from an evolutionary perspective; how can cooperation 

emerge and be sustained between self-interested individuals? Punishment, in a variety of 

social and non-social currencies, appears to be an important explanatory mechanism for this 

evolutionary puzzle (Boyd, Gintis, & Bowles, 2010; Boyd, Gintis, Bowles, & Richerson, 

2003; Boyd & Richerson, 1992; Fehr & Gächter, 2002): if people are aware of the existence 

of norm prescribing cooperation and believe that transgressions might be punished, 

cooperation can be maintained. A more mundane example might be the norms prescribing 
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which side of a street or an escalator one should use when walking (Bicchieri, 2005). 

Transgressions of such norms are likely to incur social punishment, in the form of facial 

expressions of disapproval or even verbal threats. Importantly, information about possible 

sources of punishment in the environment can often be acquired by observing the behavior of 

others. Such social learning is thought to be important for many species (Griffin, 2004; 

Olsson & Phelps, 2007), but takes especially complex forms in humans (Boyd, Richerson, & 

Henrich, 2011). In summary, much human social behavior is likely to be shaped by 

punishment, threats of punishment, and avoidance of punishment. However, surprisingly little 

is known about the psychological mechanisms underpinning these influences. 

The overall aims of this thesis was therefore to identify how punishment affects adaptive 

behavior in the social domain, by asking how threat of punishment influences the ability to 

control behavior (Study I), how the value of social stimuli, such as emotional faces, 

influences avoidance learning when serving as punishments or as cues predicting punishment 

(Study II-III), and how humans acquire and transmit avoidance behavior through observing 

the actions of others when threatened with punishment (Study IV). Together, these studies 

seek to triangulate some of the basic psychological mechanisms underpinning aversive 

learning in the social domain. The first part of this thesis (Introduction) will start with 

clarifying the theoretical framework on which this thesis builds by discussing the relationship 

between evolutionary function and psychological mechanisms. Then I will review the 

functional basis for learning, as well as characterizing two primary forms of associative 

learning. Thereafter, I will briefly describe the basic computational mechanisms of learning 

and decision making. Finally, I will summarize some important aspects of the neural 

mechanisms underlying learning with a specific focus on how these might relate to, and 

possibly explain, some of the behavioral findings presented in this thesis. 

 

1.2 FUNCTION AND MECHANISM IN THE BEHAVIORAL SCIENCES 

The questions posed in the studies included in this thesis are derived from a particular way of 

viewing both the purpose and the explanations given by the behavioral and cognitive sciences 

(which will be used synonymously for simplicity, as even animal learning theory involve 

“cognitive” constructs such as attention).  In short, I believe that understanding behavior both 

in the light of its putative evolutionary function and it´s mechanistic basis are important and 

mutually illuminating. This view is best defined by considering the relationship between two 

classical models, or frameworks, in biology and cognitive science: Tinbergen´s “four 

questions” and Marr´s “levels of explanation”.  Starting with the former, the Nobel laureate 

Nikolas Tinbergen (Tinbergen, 1963) outlined the “major problems of biology” which 

biologists working with behavior were trying to address. Full understanding of a behavioral 

trait requires answering all four questions, but they are in principle thought to be independent 

from each other.  
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These problems (sometimes phrased as questions) are; (i) what is the survival value of a 

behavioral trait, (ii) what is it´s ontogeny, (iii) how did it evolve, and (iv) what is it´s 

causation. Of these four questions, i (survival value) and iv (causation) are of direct relevance 

for this thesis. In a modern treatise on Tinbergen´s question, Bateson and Laland (Bateson & 

Laland, 2013) suggested that survival value should be rephrased as current utility, to clarify 

that the current survival value of a trait could be distinct from the survival value during earlier 

points of the species evolutionary trajectory (e.g., feathers originated for temperature 

regulation but were co-opted for flight). Regardless, Tinbergen´s first question refer to the 

function of a trait in terms of how it benefits the survival of the organism. Investigating the 

function of behavioral traits is typically the area of behavioral ecology (Winterhalder, Smith, 

& Bruce Winterhalder, 2000). The forth question, causation, refer to the mechanisms that 

generate a particular behavior.  Most fields of psychology and cognitive science are typically 

interested in mechanistic explanations of behavior. Mechanistic explanations are complicated 

by the fact that causation can be understood on different levels of explanation simultaneously. 

For example, explanations of human behavior in crowds can be posed either as due to 

physical interactions between individual agents, or by the psychological motivations 

governing these interactions, or even by the neural events underlying such motivations at the 

level of the brain (and as the interaction of atoms, and so on).  In biology, a successful 

example of how several levels of explanation can be bridged is the study of birdsong, which 

integrates mechanisms involved in gene expression, specific brain nuclei and the sensory 

input that underlie expression and learning of song  (Bateson & Laland, 2013). The problem 

of linking levels in understanding psychological mechanisms will introduced in relation to 

Marr´s levels of explanation below.  Tinbergen´s questions i and iv can be restated as a 

distinction between the ultimate and proximate level of explanation. The ultimate level of 

explanation asks why a behavior exists, whereas the proximate level of explanation asks how 

it works (Laland, Odling-Smee, Hoppitt, & Uller, 2012). Human behavioral science 

(psychology and cognitive science) have traditionally focused on the latter level by trying to 

explain how psychological mechanisms, such as attention or decision-making, works, mainly 

through direct experimental studies. This thesis can be placed in this tradition, but 

Tinbergen´s first question has been an underlying inspiration for many of the topics and 

questions addressed in the studies. Mostly, this inspiration is implicit, but in Study III and IV 

some more direct allusions to function or adaptive value are made.  

Motivating this mixture of explanational levels is my conviction that the questions worth 

asking about human psychology are those where asking about the survival value of the 

psychological trait also is meaningful. The specific perspective referred to at the outset of the 

text is thus to ask questions about psychological mechanisms in the light of evolution. Here, it 

should be emphasized that this perspective is not based upon speculation about human 

evolutionary history (so called “just so” stories), which unfortunately is relatively common 

(Bolhuis, Brown, Richardson, & Laland, 2011; Laland & Brown, 2011; Panksepp & 

Panksepp, 2000). Rather, a fruitful approach might be to investigate the psychological 

mechanisms underlying behavioral predictions from formal (evolutionary) models, or to 
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device such models that might explain why a particular trait or psychological mechanism is 

observed (i.e., what is its current utility: McNamara & Houston, 2009; Trimmer, McNamara, 

Houston, & Marshall, 2012).  More informally, meaningful questions can be posed by 

devising laboratory experiments where the dependent variable by some stretch of imagination 

is related to fitness (e.g., the ability to avoid punishment). In the fields of biology and 

behavioral economy, as well as intersections of these fields such as behavioral ecology and 

neuroeconomics, investigating how a behavior works is intimately tied to why (e.g., human 

cooperation) it exists. Economy and evolutionary biology share normative theories, which 

make clear predictions of what behaviors should be observed given some underlying 

assumptions forming an analytical core (such as rationality or maximization of expected 

value) (Hammerstein & Hagen, 2005; McNamara & Houston, 2009). While such predictions 

are not always confirmed, failures commonly result in theory development. In contrast, many 

areas of psychology seem to lack both normative theories and theory development, and thus 

little progress appears to be made (Gintis, 2007). For example, many psychologists appear to 

glee in the fact that humans are not perfectly rational, without asking how such deviations 

from rationality can be understood from a normative or evolutionary perspective (Houston, 

McNamara, & Steer, 2007). Unsurprisingly, I have tried to place this thesis closer to the 

former than the latter approach.  

The topics touched upon in this thesis can be seen as related to adaptive behavior, which in 

theory function to maximize the survival of the individual. Adaptive behavior must however 

be realized by psychological mechanisms. Psychological mechanisms might have built in 

constraints with important implications for understanding how human behavior both comply 

to the predictions of normative theories, but also divergence from such predictions  (Fawcett 

et al., 2014, 2012; McNamara & Houston, 2009).  Closely related to this issue is the growing 

realization within evolutionary biology that adaptive function is constrained by the workings 

of evolved mechanisms, which often are co-opted between different behavioral domains 

(Fawcett et al., 2012; McNamara & Houston, 2009). One such fundamental mechanism, 

which is the major focus of this thesis, is the capacity for learning which contribute to 

adaptive behavior in a wide variety of settings (Bouton, 2007). Next, I expand upon the idea 

of psychological mechanisms by referring to the framework posed by Marr (Marr, 1982; 

McClamrock, 1991).  

Marr proposed a general framework for relating different levels of explanation in the 

cognitive sciences (where I include psychology for simplicity). Conceptually, this framework 

resembles the distinctions made by Tinbergen, but the domain of Marr´s framework is limited 

to Tinbergen´s causation question. The three levels in Marr´s framework are: (i) the 

computational level), (ii) the algorithmic level, and (iii) the implementation level. These 

should, as in Tinbergen´s framework, be seen as complementary and near independent 

perspectives on how a cognitive process works. The computational level concern the nature 

of the problem being solved by the cognitive system, the information involved in solving it, 

and the logic by which it can be solved. The algorithmic level specifies the representations 

and processes by which solutions to the problem are computed. Finally, the implementational 
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level specifies how these representations and processes are realized in neural terms. In this 

thesis, the primary focus is on the two first levels of explanation, although the knowledge of 

the implementational level is occasionally used to illuminate or constrain explanations on the 

other levels (especially in Study I). Ultimately, all three levels have to be understood, as well 

as the mapping between them, to explain how adaptive behavior is instigated. In Studies II-

IV, the computational and algorithmic – level analysis is conducted by constructing formal 

computational models in seeking to understand the mechanisms underlying behavior. 

 

1.3 THE FUNCTION OF LEARNING 

The basic capacity for learning, evident in humans, all vertebrates and many other species is 

an evolutionary adaption that allows flexibility in the mapping between input stimuli and 

behavioral output (Fawcett et al., 2012; McNamara & Houston, 2009; Mery & Burns, 2009; 

Snell-Rood, 2013). At its core, the function of learning is to allow the organism to procure 

rewards, such as food and mates, and avoid danger, such as predators, hostile con-specifics 

and toxic food. Such survival promoting functions can be implemented by wholly genetic 

“hardcoded” programs if the environment is highly stable (Johnston, 1982; Snell-Rood, 

2013). However, if conditions change, for example if new predators emerge or the 

distribution of food sources change, such hardcoded programs are likely insufficient for 

adaptive behavior. Learning allows the organism to adapt its behavior to such changes 

through experience, by associating stimuli or actions with aversive or beneficial outcomes. 

 A basic distinction is made between two types of associative learning: instrumental (or 

operant) conditioning, where animals learn to perform behaviors to enhance their fitness, and 

classical (or Pavlovian) conditioning, where animals learn that a stimulus (referred to as 

conditioned stimulus, CS) predicts a biologically relevant outcome, such as food or pain, 

(referred to as unconditioned stimulus, US, or reinforcer synonymously throughout the thesis) 

(Bouton, 2007). In instrumental conditioning, the relationship between behavior and 

reinforcement can be described by the law of effect, first described by Thorndike (Thorndike, 

1898). The law of effect states that the probability or frequency of a behavior is affected by if 

performing the behavior lead to the increased probability of a positive reinforcement or 

decreased probability of an aversive reinforcement. The law of effect is summarized in Table 

1. Here, it is assumed that a “Positive reinforcement” refers to an outcome with positive 

survival value (such as food or mating) and “Aversive reinforcement” refers to an outcome 

with negative survival value (such as pain or food toxicity). The consequence of this law is 

that animals generally will behave to maximize beneficial outcomes and minimize costly 

outcomes, in conceptual resemblance to how genetic evolution adapts organisms to their 

environment by enhancing beneficial traits and weeding out costly traits (as famously noted 

by Skinner, 1981). The studies included in this thesis exclusively focus on aversive 

reinforcement. Note that many stimuli can acquire reinforcing properties by pairing with 

primary reinforcers. Such secondary reinforcers are exceedingly important for human 



 

14 

behavior, as exemplified with money which functions as a powerful reinforcer in its own 

right. 

 

 

Effect of behavior Positive reinforcement Aversive reinforcement 

Produces reinforcement Reward ↑ Punishment ↓ 

Prevents reinforcement Omission ↓ Avoidance/escape ↑ 

Table 1. The law of effect. Arrows indicate whether behavior increases or decreases in 

frequency. After Bouton (2007) 

 

Classical conditioning similarly functions to adapt the animal to its environment (Domjan, 

2005). By learning that a stimulus predicts the occurrence of reinforcement, the animal can 

respond beforehand. Generally described, a stimulus predicting reinforcement (a CS), elicits 

responses related to the valence of the reinforcer, leading to approach of a CS predicting a 

positive reinforcement and avoidance of a CS predicting an aversive reinforcement. Such 

responses are called prepatory because they prepare the animal for interaction with the 

reinforcer (Bouton, 2007). Importantly, prepatory behaviors are not identical to those elicited 

by the reinforcer, and also are specific to different classes of reinforcers (Bouton, 2007; 

Dayan & Seymour, 2007). As shown in Table 2, classical conditioning shares the same 

mirror-pattern as instrumental conditioning; animals tend to approach stimuli predicting a 

reduction of aversive reinforcement and avoid stimuli predicting a reduction of positive 

reinforcement. Apart from the overt behavioral responses, the CS comes to elicit a host of 

bodily responses, such as physiological arousal or salivation. It is thought that the behavioral 

and physiological responses to the CS reflect a common central (i.e., brain) state, which often 

is identified with specific emotions. For example, classical conditioning with aversive 

reinforcement (typically electric shock) is termed fear conditioning. Fear conditioning evokes 

a constellation of responses including changes in blood pressure, skin conductance, heart rate 

and respiration that prepare the animal for defense, which can be summarized as fear (Ohman 

& Mineka, 2001). In humans, the state of fear also involves subjective negative feelings, but 

these are not necessarily considered to have a causal role or function for the physiological and 

behavioral indices (LeDoux, 2012). Several influential theories of emotion and motivation are 

based in the responses to, and in prediction of, various reinforcers (Rolls, 2000; Solomon, 

1980). For example, while predictions of aversive reinforcers can result in fear, omission of a 

predicted aversive reinforcer results in relief (Fujiwara, Tobler, Taira, Iijima, & Tsutsui, 

2009; Kim, Shimojo, & O’Doherty, 2006; Solomon, 1980). 
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 Positive reinforcement Aversive reinforcement 

S predicts reinforcement Approach S Avoid S 

S predicts no 

reinforcement 

Avoid S Approach S 

Table 2. Response tendencies in classical conditioning. S = stimulus. After Bouton (2007) 

 

There are many important similarities between instrumental and classical conditioning. When 

a response (in instrumental conditioning) or a stimulus (in classical conditioning) stops being 

predictive of reinforcement, both learning processes exhibit extinction, in which the 

probability of a responses decreases, often gradually over time. Similarly, both processes are 

influenced by the magnitude of the reinforcer (higher magnitude typically generates stronger 

and faster acquisition of responding), as well as the timing of the reinforcer (subsequent to the 

response or the CS, and most efficient when presented in close temporal proximity). 

However, a range of both behavioral and neurological evidence indicates some degree of 

independence between instrumental and classical conditioning (Rescorla & Solomon, 1967). 

A CS, which has acquired predictive value through classical conditioning, can either enhance 

or suppress instrumental behavior if presented concurrently with the instrumental task. As 

predicted by combining Tables 1 and 2, the direction of the influence depend on the 

congruency with the instrumental action; an aversive CS suppresses instrumental behavior for 

positive reinforcers but enhances instrumental avoidance behaviors, while an positive CS 

enhances instrumental behavior motivated by positive reinforcers, and suppresses or corrupts 

instrumental avoidance behaviors (although not much research has been conducted regarding 

this last combination: Dayan & Seymour, 2007). This phenomenon is termed Pavlovian-

instrumental transfer (Bouton, 2007; Dayan & Seymour, 2007; Talmi, Seymour, Dayan, & 

Dolan, 2008), and serves as the conceptual basis for Study II and III.  

Importantly, both instrumental (Burke, Tobler, Baddeley, & Schultz, 2010; Morgan, Rendell, 

Ehn, Hoppitt, & Laland, 2012) and classical associations (Olsson & Phelps, 2007) can be 

socially learned by observing the actions of others or by observing the reinforcements 

delivered to others. As mentioned above, social learning is highly functional as it mitigates 

the need for direct experiences to support learning (Boyd et al., 2011; Griffin, 2004; Olsson 

& Phelps, 2007; Rendell et al., 2010; Rendell, Fogarty, & Hoppitt, 2011). In humans, the 

most well-studied type of social learning, particularly in the aversive domain, is observational 

fear learning (Olsson & Phelps, 2007). In observational fear learning, a CS acquires fear-

invoking properties through its association with overt indices of a con-specific´s pain or 

discomfort. This suggests that the emotional behavior of others can function as reinforcers 
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(Olsson & Phelps, 2007). It is in principle possible that the reinforcing properties of others 

pain expressions reflects second-order conditioning (e.g., if others´ pain expressions reliably 

are paired with direct aversive experiences) (Dawson, Avarguès-Weber, Chittka, & 

Leadbeater, 2013), but studies involving non-human primates with controlled rearing 

conditions suggest that this probably is not the case (Cook & Mineka, 1990). Because most 

previous research has involved classical conditioning, it is unclear of humans learn avoidance 

behaviors from others. In Study IV, we sought to extend observational fear learning to 

instrumental behaviors, motivated by the central role threat of punishment is thought to play 

in human social behavior  (Bicchieri, 2005; Bowles & Gintis, 2011; Fehr & Fischbacher, 

2004). 

 

1.4 COMPUTATIONAL AND ALGORITHMIC MECHANISMS OF LEARNING 

The most classic and widely cited theory of classical conditioning is the Rescorla-Wagner (R-

W) model (Rescorla & Wagner, 1972) (which builds upon the earlier model by Bush & 

Monsteller: Glimcher, 2011). The R-W model was designed to explain the fundamental 

computational mechanisms involved in classical conditioning, and was able to account for a 

range of, at that time, puzzling phenomena (R. R. Miller, Barnet, & Grahame, 1995). The 

predictive (or associative) value (V) of the CS on trial t + 1 is given by the following 

equations: 

                                                                                                                                                              

                                                                                                                                                               

where α (0 < α < 1) is a parameter (commonly referred to as the learning rate) which is 

determined by the salience of the CS, β (0 < β < 1) determines the salience of the reinforcer, 

and R is the reinforcement on trial t. The most important part is equation two (which 

commonly is referred to as the prediction error), which indicates how surprising the 

reinforcement was. When the CS perfectly predicts R, δ = 0. The term ∑V is the summed 

predictive value all stimuli presented on trial t. This summation is critical for the success of 

the R-W model as it allows explaining how compound stimuli affect learning, such as the 

blocking phenomenon (Rescorla, 1988). However, in many situations, the model can be 

simplified by just considering the specific CS presented on trial t. Furthermore, the β 

parameter is often removed to limit the number of free parameters in the model. This simple 

model can account for the effect of reinforcement magnitude (by the value of R), extinction 

after non-reinforcement, and that the CS must be predictive (i.e., the correlation between the 

CS and the reinforcer must be stronger than the correlation of no-CS with the reinforcer, 

Rescorla, 1988) of the reinforcement to produce learning. It is worth noting that the R-W 

model assumes the measured performance variable (e.g., skin conductance) to be linearly 

related to the predictive value. 
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In contrast to the algorithmic account of classical conditioning represented by the R-W 

model, the most famous models of instrumental conditioning aim to describe equilibrium 

behavior across an experimental session. The impetus for these models was discovery of the 

probability matching phenomenon (Herrnstein, 1970), which entail that animals on average 

do not maximize reception of reward when choosing between two options  (i.e., concurrent 

schedules of reinforcement), but rather perform each action in proportion to the amount of 

reward received by the action. This relationship, termed the matching law, can in its simplest 

form be summarized as 

  

    

 
  

  

                                                                                                                                                              

where B1 is the frequency of the first action, B2 the frequency of the second action, and R1 and 

R2 the corresponding frequencies of reinforcement. This empirical relationship has motivated 

a very large literature because probability matching is sub-optimal; the optimal strategy 

would be to maximize performance of the action with the highest average reward. It has for 

example been suggested that probability matching emerge because animals seek to maximize 

the momentary rate of reinforcement (Herrnstein, Loewenstein, Prelec, & Vaughan, 1993). It 

is however clear that many behavioral strategies can result in matching (Houston & 

McNamara, 1981). The matching phenomenon is outside the scope of this thesis, but it can be 

noted for completeness that average behavior in Study II and III, which most closely 

resembles concurrent schedules of reinforcement, was consistent with probability matching. 

1.5 FROM LEARNING TO VALUE-BASED DECISION MAKING 

On a very general level of description, the function of learning is to sub-serve value-based 

decision making (Gintis, 2007). Value-based decision making takes places whenever animals 

choose between different actions based on estimates of their value, from foraging to financial 

decisions (Rangel, Camerer, & Montague, 2008). Such estimates can be influenced by 

experience through individual learning, by observing the actions of others through social 

learning as well as by evolutionary predispositions tied to specific stimuli or actions. All 

studies included in this thesis can be viewed as involving value-based decision making in the 

aversive domain. In recent years, the understanding of the mechanisms underlying value-

based decision making has made great progress, and an integrative framework has been 

proposed: value-based decision making require the joint operation of a number of 

computational mechanisms; representation of the feasible actions, internal states, and 

external states, valuation of each action given the internal and external states, action selection 

based on these valuations, outcome evaluation of the outcomes and states that followed the 

action, and learning, by which the representations and valuations are updated based on the 

outcomes (Rangel et al., 2008).  Naturally, the current knowledge about these mechanisms 

differs. Ideally, each mechanisms, and how they interact, should be described on all three of 

Marr´s levels, but for most of these mechanisms, the current state of knowledge is far from 

ideal. For the representation process, almost nothing is currently known. In the studies 

included in this thesis, representation is assumed to accurately correspond to the stimuli 
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presented and actions possible in the experimental task.  Much more is known about the 

valuation process, which is of particular importance for Study II and III wherefore a brief 

summary of the computational and implementation mechanisms of valuation is presented 

below.  

On the basis of a sizable body of human and animal behavioral evidence, the existence of 

three different types of valuation systems has been postulated (Dayan, 2009; Dayan & Niv, 

2008; Rangel et al., 2008). However, the exact number of systems, and how independent they 

are from each other, is currently unknown. The three types of systems should be viewed as an 

operational division of the valuation processes according to the different types of 

computations that are known to be involved (Rangel et al., 2008). These systems partially 

mirror the different types of learning, instrumental and classical (Pavlovian) conditioning, 

which were described above. The Pavlovian systems assign value to a small set of behaviors 

in response to stimuli with intrinsic or acquired evolutionary significance, as when paired 

with an evolutionary valuable reinforcer (Dayan, Niv, Seymour, & Daw, 2006). As described 

in Table 2, these Pavlovian responses are organized along an approach-avoidance dimension 

and serve to optimize the interactions of the animal with its environment. The limited 

behavioral repertoire of the Pavlovian system is it´s hallmark relative to the instrumental 

systems. Importantly, the expression of Pavlovian behaviors are not automatic; the fact that 

Pavlovian responses can be interrupted by other brain systems (as when humans override the 

Pavlovian impulse to overeat in the presence of food) indicate that they must be assigned a 

value which competes with other possible actions (Dayan et al., 2006; Rangel et al., 2008). 

As noted above, such competitive interactions between Pavlovian responses and instrumental 

responding are expressed in the Pavlovian-instrumental transfer phenomena. The Pavlovian 

responses can thus  be viewed as a set of action priors over which the instrumental systems 

operate (Seymour & Dolan, 2008). On the level of functional neurobiology, the Pavlovian 

system involves sub-cortical brain structures such as the amygdala and periaquductal grey 

(LeDoux, 2012; Seymour & Dolan, 2008). Furthermore, Pavlovian responses to certain, so 

called evolutionary prepared, stimuli appear to underlie important learning biases in humans 

and other primates. Stimuli such as snakes or threatening con-specific faces exhibit enhanced 

fear conditioning when paired with an aversive reinforcer relative to control stimuli, which 

have been explained as due to the evolutionary history of these stimuli (Ohman, 2009; 

Ohman & Mineka, 2001). The preparedness phenomena is thought to underlie the uneven 

distribution of human fears and phobias, where for example snakes are common objects of 

phobias relative to cars or electric outlets which likely are more common dangers in the 

modern world (Ohman & Mineka, 2001). The influence of the intrinsic value of prepared 

stimuli on value-based decision making is explored in Study III. Aside from the Pavlovian 

valuation system, current evidence indicates the existence of at least two instrumental 

valuation systems; the habitual system and the goal-directed system. As implied by the name, 

these systems underlie instrumental conditioning, and can flexibly map arbitrary responses to 

desired outcomes. The distinction between the instrumental systems are not of primary 

importance for this thesis, but is briefly summarized for completeness. It is generally thought 
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that the goal-directed system, which involves a “cognitive map” of the relationship between 

actions and outcomes, is recruited when confronted with novel situations, and the habitual 

system, which involves simpler stimulus-response associations, successively assumes control 

during the course of training (Dolan & Dayan, 2013). Behaviorally, these systems can be 

dissociated by manipulations of the value of an outcome (e.g., water), for example by 

allowing the animal to satisfy its need for it (by drinking to satiety; reinforcer devaluation). 

Because the goal-directed system involves a representation of the identity of the outcome, 

such devaluations will directly lead to reduced responding. In contrast, the habitual system, 

which is believed to only keep a “cached” one-dimensional (scalar) representation of the 

value of the action, is insensitive to the devaluations; the animal will perform as if still thirsty, 

until the reinforce is consumed in the new devalued state. Neurally, the goal-directed system 

appears to mainly involve parts of the pre-frontal cortex (Dolan & Dayan, 2013). In contrast, 

the habitual system mainly involves the striatum (Dolan & Dayan, 2013). Both systems are 

important for adaptive behavior, but the precise computational mechanisms governing their 

interaction are an area of active research (Daw, Niv, & Dayan, 2005; Dolan & Dayan, 2013). 

 In comparison to the relatively well-characterized valuation process, little is known about the 

mechanisms of action selection. It is clear that the estimates by the different valuation 

systems must be compared and possibly integrated in some way to produce adaptive 

behavior. The most sophisticated proposal of this comparison process pertains to goal-

directed versus habitual instrumental control. Daw and colleagues (Daw et al., 2005) 

suggested that these systems compete for behavioral control, and that the contribution of each 

system to action selection is weighted by the uncertainty of their respective value estimates, 

thus producing optimal control. The notion of competition between valuation systems for 

action selection have also been extended to the Pavlovian system, which is viewed as a 

hardwired influence on action selection which can either enhance or corrupt instrumental 

behavior depending on the correspondence between the Pavlovian responses and optimal 

action (Dayan et al., 2006). In Study III, we suggest that stimuli with intrinsic (e.g., 

prepared) negative value influences value-based decision making as predicted by a 

computational model where the Pavlovian and the instrumental systems compete for action 

selection at the time of choice. In many models of value-based decision making, the action 

selection stage is implemented with a logistic function known as Softmax (Daw, 2011): 

       
        

          
   

                [4] 

Here, QA refer to the expected value of choosing action A on trial t + 1. As seen, the 

probability of choosing action A is determined by the ratio of the expected value of A and the 

sum of all possible actions, scaled by the parameter β (not to be confused with the β 

parameter in the R-W model). The parameter β is commonly referred to as the exploration vs. 

exploitation parameter. Higher values of β increase the probability of choosing another action 

than the one with the highest expected value, which can be beneficial for ensuring continued 

exploration of the action space (Sutton & Barto, 1998). The Softmax function describes 

human decision making well (Daw, 2011; Daw, O’Doherty, Dayan, Seymour, & Dolan, 
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2006), although alternative decision functions are possible (e.g., ε-greedy). If Qi is interpreted 

as the valuation of the instrumental system, it is clear that other terms can added within the 

Softmax function to represent competition between valuation systems (e.g., Huys et al., 

2011). This approached is used in Study III to model competition between the Pavlovian and 

instrumental systems. 

As for action selection, little is known about outcome evaluation. Human fMRI studies have 

identified the orbitofrontal cortex (OFC) as a nexus for value related signals (Hare & 

O’Doherty, 2008; Padoa-Schioppa & Assad, 2006; Plassmann, 2010; Rangel et al., 2008) . 

Such signals generally correlate with subjective reports about the quality of the experience, 

across modalities. Furthermore, such responses can also be identified for secondary 

reinforcers, such as money. Thus, the OFC appears to represent valuation of outcomes as a 

common currency.  

Finally, the learning process has been focus of intense attention within psychology and 

cognitive neuroscience under the guise of reinforcement learning (RL). Reinforcement 

learning was originally formulated to solve adaptive control problems within the field of 

artificial intelligence, but the inspiration mainly came from animal learning theory (Glimcher, 

2011). A simple formulation of a RL model (Q-learning) is described below:  

                                                                                                                                                                   

                                                                                                                                                                         

As above, Qi refer to the expected value of choosing action i on trial t + 1. As seen, this 

formulation is identical to the R-W model, but the Q-values represent estimates of expected 

value instead of predictive value/associative strength as in the original R-W formulation 

(Glimcher, 2011). Combined with the Softmax function (equation 4), equations 5-6 

constitutes a simple model of value-based decision making. Variations of this model 

(equation 4-6) are used in Study II-IV to model human behavior. However, much of the 

enthusiasm for RL within psychology and cognitive neuroscience can be traced to the finding 

that the mammalian brain appears to actually compute prediction errors during the course of 

learning. The implementational mechanisms sub-serving RL are briefly reviewed below. 

 

1.6 IMPLEMENTATIONAL MECHANISMS OF LEARNING AND DECISION MAKING 

The best understood aspect of learning concern how the habitual system learns by trial and 

error in a manner resembling the R-W model. The basic idea is that a prediction error signal 

is computed by comparing the actual outcome of an action or state with its predicted outcome 

(equation 2). Such prediction error signals have been identified in the mammal brain, 

originally using single cell recordings in the dopaminergic midbrain of macaques during 

reward learning (Waelti, Dickinson, & Schultz, 2001) and later using functional magnetic 

resonance imaging (fMRI) in humans (Seymour et al., 2004). Recently, causal manipulations 

have also been conducted in behaving rodents using optogenetic methods, thus showing that 
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dopaminergic prediction errors have a casual role in learning (Steinberg et al., 2013). Activity 

in dopaminergic neurons during learning shows a pattern resembling how reinforcements 

affect behavior (Table 1). An unexpected positive reinforcement leads to increased phasic 

firing in these neurons, while the omission of an expected positive reinforcement leads to 

reduced firing (Tobler, Dickinson, & Schultz, 2003). As expected from a prediction error 

account, fully expected positive outcomes do not induce increased firing, showing that these 

neurons code for prediction errors rather than for the sensory aspects of reward. For aversive 

reinforcements, the picture is less clear. Aversive outcomes generally result in decreased 

firing rates, but due to the low baseline firing rates of midbrain dopaminergic neurons, it has 

been argued that the possible range of this reduction is too limited for coding a range of 

aversive outcomes with any resolution (Dayan & Niv, 2008). Rather, it has been proposed 

that some other neural system, possibly involving serotonin, contributes to positive aversive 

prediction errors (i.e., prediction errors where an unexpected aversive outcome results in 

increased firing rates), although this is presently unclear (Boureau & Dayan, 2011; Dayan & 

Huys, 2009). Thus, the extensive evidence in support of reward prediction errors in the 

dopaminergic midbrain do not speak directly to the studies included this thesis, which 

exclusively focuses on the aversive domain. However, the evidence do show that the RL 

framework is realistic, which makes a generalization to the aversive domain plausible 

(Delgado, Li, Schiller, & Phelps, 2008; McNally, Johansen, & Blair, 2011). For example, 

aversive prediction errors have been shown in the mice amygdala (McHugh et al., 2014) and 

in the human striatum (Delgado et al., 2008), although the generating sources of these signals 

are still unknown. 

It should be noted that the dopaminergic reward prediction errors do not correspond to those 

computed by the simple R-W model, but rather the slightly more complicated temporal 

difference model (Glimcher, 2011; Waelti et al., 2001). The temporal difference model of RL 

was developed to solve problems of how autonomous agents should adapt their behavior to 

the environment (Sutton & Barto, 1998). The temporal difference model is basically a 

continuous time- extension of the basic R-W model, where prediction errors and updated 

expected value estimates are computed on every time-step (rather than once per experimental 

episode). Importantly, the expected value of performing an action in response to a stimulus or 

in a particular state depends not only on the outcomes (if any) on that precise time step, but 

also on the discounted value of all expected future outcomes (which can depend on the 

chosen action in that state). Temporal difference RL allows a solution to the temporal credit 

assignment problem, which refer to the fact that if rewards are delayed it is difficult to 

correctly determine the action or stimulus that predicted the reward. The solution is 

accomplished by attributing each obtained reward not only to the current time-step but also a 

few of the preceding moments (Glimcher, 2011). Dopaminergic neurons apparently reflect 

this process in the propagation of phasic activity from the delivery of an unexpected reward 

to the stimulus that predicted it over the course of experimental trials (Waelti et al., 2001). 

Reinforcement learning prediction errors in the dopaminergic midbrain are also widely 

believed to underlie neural activity in the human anterior cingulate cortex (ACC) in response 
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to outcomes, particularly response errors, which are worse than expected (Holroyd & Coles, 

2002, but see Ullsperger, Fischer, Nigbur, & Endrass, 2014). This activity, as measured using 

electroencephalography (EEG) in humans, is known as the error related negativity (ERN; 

Hajcak, 2012). Importantly, the ERN is amplified as a function of the severity of the 

consequences of errors, such as monetary punishment  (Hajcak, Moser, Yeung, & Simons, 

2005), social evaluation (Hajcak et al., 2005), and punishment with an aversive noise (Riesel, 

Weinberg, Endrass, Kathmann, & Hajcak, 2012), in concordance with enlarged aversive 

outcomes, and thus larger negative prediction errors. Based on such findings, researchers 

have proposed that the ERN might index “affective” qualities of error monitoring (Hajcak, 

2012) in addition to the traditional emphasis on cognitive control (Gehring, Goss, Coles, 

Meyer, & Donchin, 1993).  A recent meta-analysis of fMRI studies showed extensive 

overlapping activation to cognitive control, negative emotion and pain in the anterior mid 

cingulate cortex (aMCC) (Shackman et al., 2011). It was postulated that this regions 

integrates information about negative reinforcers (e.g., pain) arriving from cortical and 

subcortical afferents (e.g., insula, striatum, amygdala), to bias behavioral selection away from 

punishment. The bias of behavioral selection would foremost needed in demanding or 

potentially costly situations, for example, when the consequences of action are uncertain 

(e.g., probabilistic learning), multiple conflicting response alternatives are active, or when 

failure of an intended action is associated with potential punishment (Shackman et al., 2011). 

This hypothesis is of particular relevance for Study I.  
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2 AIMS 

 

The overall aim of this thesis was to investigate how aversive learning shapes adaptive 

behavior in the social domain. To this end, the following objectives were specified: 

 To investigate how threat of punishment affects action selection, and to evaluate 

corrugator EMG as a novel index of the control processes active under threat of 

punishment (Study I) 

 

 To assess how facial expression function as reinforcers in social avoidance 

learning, and to understand how individual differences in negative racial bias 

modulates the effect of social reinforcers (Study II) 

 

 To understand how the intrinsic negative value of “preparded” social and non-

social stimuli affects avoidance learning (Study III) 

 

 To investigate how threat of punishment can generate and propagate avoidance 

behaviors between individuals through social learning (Study IV) 
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3 OVERVIEW OF THE STUDIES 

3.1 STUDY 1 

Background and objectives 

Cognitive control over action selection has received extensive attention over the last three to 

four decades, and much is known both about the psychological and neural mechanisms 

involved (Botvinick, Braver, Barch, Carter, & Cohen, 2001; E. K. Miller & Cohen, 2001). 

However, this vast body of research has generally disregarded how the consequences of 

failed control affect behavior, which surprising when viewed from a functional perspective: 

control is most needed when control failure is costly. Such costly consequences might take 

place both in the non-social (e.g., failing to override a habitual tendency to look to the right 

when crossing the street in Britain) and the social (e.g., failing to control verbal behavior in a 

hostile interaction) domains. In this study, we investigated how cognitive control over action 

selection was influenced by threat of punishment and response conflict in a simple 

experimental model designed to capture situations where failure to respond correctly is 

costly. As described in the introduction, the ACC integrates signals related to danger and 

control demands, with the hypothetical function of promoting adaptive behavior (the 

Adaptive Control Theory, Shackman et al., 2011). We investigated if activity in the 

corrugator supercilii muscle of the upper face would potentially index the computations of the 

ACC. The rational for this hypothesis was the known electro-physiological correlate of ACC 

activity following response errors (i.e., control failure) and response conflict, the ERN, which 

also is responsive to aversive stimuli. The ACC enervates the corrugator supercilii muscle 

(Morecraft, Louie, Herrick, & Stilwell-Morecraft, 2001; Shackman et al., 2011), which 

motivated us to look for functional similarities between activity in this muscle and the ERN. 

We hoped that activity in this muscle could function as an index of the implementational 

level mechanisms involved in action selection during threat of punishment, and thus shed 

light on the underlying process. We predicted that (i) behavioral performance should be 

enhanced by punishment threat, and (ii) cEMG activity should be sensitive to the 

combination of response conflict, punishment threat, and error commissions.  

Methods 

Forty participants took part in the experiment. Participants were randomly assigned to the 

Punishment Risk group (n = 22, 11 male), and the Control group (n = 18, 10 male). Four 

participants were excluded from the Control group, as they faultily reported a relationship 

between their performance and the number of received electric shocks (see below for details). 

The participants performed a two-choice speeded gender decision task (is the individual 

displayed male or female), and responded behaviorally with a keyboard. The probability of 

each target gender was asymmetric (75% male faces/25% female faces, or the reverse), 

giving a correspondingly asymmetric response ratio. This manipulation was based on the 

Go/No-Go task (Simmonds, Pekar, & Mostofsky, 2008), where the high probability target 

induces a pre-potent tendency to respond, which has to be inhibited for low probability 
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targets. However, the standard Go/No-Go task has apparent limitations due to the lack of a 

recorded response for the critical low probability (no-go) condition. For this reason, 

responses to both targets were collected. It should be noted that evidence from fMRI (Kenner 

et al., 2010; Mostofsky & Simmonds, 2008) and computational modeling (Gomez, Ratcliff, 

& Perea, 2007) indicate that response inhibition and response selection is highly related, or 

even overlapping, processes, suggesting that the task used in the present study and the 

standard Go/No-Go task are comparable. The 75% target condition is referred to as Low 

Conflict and the 25% target condition is referred to as High Conflict. The Low Conflict and 

High Conflict gender was counterbalanced across participants.  

Punishment threat (referred to as Punishment risk in the article, and below) was manipulated 

block-wise, with three levels; No Risk, Low Risk, and High Risk. For Low- and High Risk 

blocks, participants were instructed that any errors (both commissions and omissions) during 

the block might be punished with a mild electric shock after the block. Critically, the actual 

number of delivered shocks was identical for all participants. The intention was to manipulate 

punishment risk without introducing performance-contingent variability in the amount of 

experienced shocks across participants. Participants received 0-2 electric shocks after Low 

Risk blocks, and 2-4 electric shocks after High Risk blocks. Thus, no actual relationship 

between individual performance and number of shocks existed. Importantly, funneled 

interviews after the experiment showed that all 22 participants in the Punishment Risk group 

believed that there was a direct relation between their own performance and the number of 

shocks they received.  

 As noted above, 14 participants were randomly assigned to the Control group. The Control 

group performed the same experimental task and received the same number of electric shocks 

as the Punishment Risk group, but was explicitly informed that there was no contingency 

between performance and punishment. The purpose of this manipulation was to delimitate the 

effect of punishment threat on corrugator activity from general shock anxiety. Four 

participants in the control group faultily reported a relationship between their performance 

and the number of shocks they received, and were therefore excluded from the analyses. 

Both groups completed 12 blocks (4 blocks per Punishment Risk level) of 80 trials (total of 

960 trials). Both block order (Punishment Risk) and trial order (Response Conflict) were fully 

randomized for each participant. A colored frame surrounding the target stimulus indicated 

Punishment Risk level (control group: ordinal amount of expected shocks) during the blocks 

(No Risk = green, Low Risk = yellow, High Risk = red).  

Electromyographic (cEMG) activity of the left corrugator supercilii muscle was recorded 

using a BioPac (MP100; Biopac Systems Inc, www.biopac.com) device equipped with two 

miniature Ag/AgCl electrodes filled with electrolyte gel (Fridlund & Cacioppo, 1986). A 

third ground electrode was placed on the mid forehead, proximal to the hairline. The raw 

EMG signal (sample rate 1000 Hz) was amplified and filtered through a 28–500 Hz IIR band 

pass, followed by a 50 Hz IIR band stop. The signal was rectified and integrated with a time 

constant of 20 ms. 
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The cEMG data was extracted in 100 ms time bins locked to the behavioral response on each 

trial using in-house software. Time-bins were extracted both prior (Pre) and following (Post) 

the behavioral response. The number of  Pre-response relative to Post-response time-bins 

extracted on each trial was dependent on RT (e.g., for a trial with relatively long RT, more 

Pre-response time-bins and fewer Post-response time-bins were extracted, compared to a 

short RT trial). A 100 ms pre-stimulus baseline (mean cEMG amplitude) was subtracted from 

all time-bins to reduce slow signal drift and tonic level differences. Baseline measures below 

or exceeding 3 standard deviations were replaced and interpolated as an un-weighted average 

from the six adjacent baseline means. The peak cEMG amplitude was computed for each 

time-bin. 

 

Results & Conclusion 

First, as predicted from a functional perspective, the results showed that the perceived risk of 

punishment for error commissions attenuated the detrimental effect of high response conflict 

on performance. This effect was however non-linear: Low Risk enhanced performance, while 

High Risk had little effect (Figure 1). Second, the cEMG was highly sensitive to both 

punishment risk and response conflict, showing the predicted properties of a signal that 

integrates cognitive control demands and avoidance motivation.  

 

Figure 1. Study 1. Performance accuracy as a function of punishment risk and conflict. 

In particular, the study provided the first report of cEMG activity as a correlate of error 

monitoring (Figure 2), and showed that this correlate (i) operates on a similar time-scale as 

the ACiC generated index of error processing, the ERN, (ii) is modulated by the expected 
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aversive consequences of errors, and (iii) related to behavioral adjustments following errors 

(post-error slowing).  

 

Figure 2. Study I. Corrugator EMG activity within 100 milliseconds following Correct and 

Error responses for the different levels of punishment risk. 

These finding stresses the importance of considering not only the goals of behavior, but also 

the potentially aversive or costly consequences of failure, to fully characterize cognitive 

control over action selection. We also for the first time demonstrated that cEMG is sensitive 

to the interaction of cognitive control and punishment avoidance. This finding is concordant 

with the proposed integrative role of the ACC in potentially dangerous and control 

demanding situations (Shackman et al., 2011), and suggest that further investigation of the 

response properties of the cEMG might be highly fruitful for understanding the 

implementational processes underlying action selection, reinforcement learning and cognitive 

control in the aversive domain. 

 

3.2 STUDY 2 

Background and objectives 

Reinforcement learning is likely to play an important role in adaptive social behavior, by 

allowing one´s behaviors toward others to be based on the emotional significance of their 

previous actions toward oneself (Ruff & Fehr, 2014). Facial expressions is a class of 

reinforcers that might play an important role in such social RL by signaling benign and 

malign behavioral intentions (Blair, 2003; Heerey, 2013). The face also conveys information 

about an individual’s racial and ethnic group belonging, and such markers of social group 

membership might affect learning from social reinforcement.  In support of this conjecture, 
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previous research has shown superior memory for angry, relative to neutral or happy, racial 

out-group faces (Ackerman et al., 2006), and more persistent fear conditioning to racial out-

group versus in-group faces (Navarrete et al., 2009; Olsson, Ebert, Banaji, & Phelps, 2005).  

It is however unknown whether the group-membership (race) of a face can modulate the 

value of its emotional expression, and thus shape behavior during social interaction. Related 

to this, little is known about the possible mechanisms underlying the impact if social 

reinforcement on behavior. To address these issues, we examined how racial bias shaped 

avoidance behavior reinforced by threatening (angry) and friendly (happy) facial expressions 

posed by racial in- or out-group individuals, which is analogous to how our behavior is 

shaped as a function of the facial feedback we receive from others in response to our actions 

(Blair, 2003). We used a novel experimental model of a dynamic social situation in which 

facial race and emotion reinforce behavior to elucidate (1) how individual differences in 

racial bias modulate social RL from facial expressions posed by racial in- or out-group 

members, and (2) the underlying computational mechanisms, and how these are shaped by 

racial bias, by computational modeling. First, we reasoned that because angry out-group faces 

(Black for the White experimental group) were potentially perceived as more threatening than 

angry in-group and happy out-group faces, learning to avoid them should be easier. 

Importantly, we predicted that this learning bias would be directly related to individual 

differences in racial bias. Second, we aimed to understand not only if, but also how, social 

reinforcers (here emotional expressions) and racial belonging together would affect RL by 

elucidating the underlying computations. As described in the introduction, value-based 

decision making can be parsed into a number of separate sub-processes, where two of the 

most important are outcome evaluation (OE; what was the positive or negative value of the 

outcome?) and outcome learning (OL; how fast, i.e., at what rate, does an unexpected 

outcome affect subsequent behavior?) (Rangel et al., 2008).  We sought to determine which 

of these processes were most sensitive to the emotional expression and racial belonging of the 

reinforcing faces. 

 

Methods 

Thirty participants of European decent (20 women) performed a probabilistic two-choice 

learning task. They were instructed (by a 1 s text message prior to each of the 16 blocks of the 

experiment) to choose the one out of two abstract fractal stimuli that lead to least exposure 

(“avoid”) of the emotional face (angry or happy depending on block). The rational for 

contrasting angry and happy faces was to assess the specificity of the predicted interaction of 

racial bias, emotion and race. Each fractal differed in terms of the probability that it was 

followed by an emotional face (P = .3, the instrumentally optimal choice, or P = 0.7, the 

instrumentally sub-optimal choice). The presentation of the neutral or emotional face, 

subsequent to the participant’s choice, served as the only feedback on the choice made. By 

repeatedly choosing among these two fractals, the participants learned across trials which 

choice was optimal in each block. No instructions regarding the racial group belonging of the 
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stimuli were provided. The stimuli gender was randomized for each block of the 12 

experimental blocks (four block for each experimental condition), each consisting of 30 trials. 

Because the racial group of the facial stimuli was irrelevant to the instructed goal of the task, 

this design allowed us to probe the indirect effects of emotion and race in interaction on 

instrumental learning. Following the experiment, the participants completed a validated 

Swedish version of the Modern Racism Scale to assess explicit negative attitudes toward non- 

European immigrants in Sweden (Akrami, Ekehammar, & Araya, 2000), and the Race 

Implicit Association Test (Greenwald & Banaji, 1995) to measure implicit racial bias. 

 

Results & Conclusion 

Individual differences in explicit racial bias strongly, and uniquely, modulated the impact of 

out-group faces on behavior, so that the higher the explicit racial bias, the better learned 

avoidance of threatening out-group individuals. Previous findings have shown more 

persistent fear conditioning to racial out-group, relative to racial in-group faces (Navarrete et 

al., 2009; Olsson et al., 2005), and to angry, compared to neutral, in-group faces (Öhman & 

Mineka, 2001). The present results provide an important extension of previous research by 

showing that reinforcing facial expressions and markers of racial group-belonging interact in 

their impact on instrumental learning as a function of individual differences in racial bias (see 

Figure 3). 
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Figure 3. Study II. The probability of optimal avoidance when out-group faces served as 

reinforcers as a function of their emotional expressions and individual differences in racial 

bias. 

 

By applying a RL model-based analysis, we distinguished between two competing 

hypotheses about the computational processes underlying social avoidance learning; OE and 

OL (Lin, Adolphs, & Rangel, 2011; Rangel et al., 2008). The model comparison provided 

strong support for the OL-hypothesis. We found that social reinforcement and racial group-

belonging together affected how rapidly unexpected outcomes were transformed into future 

behaviors. Importantly, individual differences in both explicit and implicit racial bias were 

positively and selectively correlated with the learning rate associated with threatening racial 

out-group faces. These correlations indicate that individuals with higher, as compared to 

lower, racial bias more rapidly update the value of each action to adjust their subsequent 

behavior when exposed to threatening racial out-group faces. This rapid value updating was 

functional; individuals with high explicit racial bias exhibited enhanced performance when 

their actions were reinforced by threatening out-group faces. Taken together, these results 

suggest a computational mechanism for how racial bias affects social reinforcement, 

dependent on the racial belonging of the reinforcing individual. These findings have 

implications for understanding the role of learning in social interaction, and how this learning 

is modulated by the racial group belonging of the people that interact. 
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3.3 STUDY 3 

Background and objectives 

Humans and non-human primates preferentially acquire conditioned fear to certain 

archetypical, “prepared” threatening stimuli (referred to as Pavlovian triggers in Study III), 

several of which are highly important for the social domain (i.e., threatening faces and out-

group faces). Yet, how these learning biases influence voluntary behavior, their basic 

mechanistic underpinnings, and how they interact with learning experiences during the life 

span of the individual remain unknown. In Study III, we investigated how four classes of 

such stimuli that previously have been shown to be preferentially associated with fear 

(snakes, threatening in-group faces, racial out-group faces, and guns) influenced voluntary 

behavior.  We investigated the behavioral consequences of these stimuli on behavior using a 

novel experimental model and computational analyses. Furthermore, we sought to 

characterize the computational mechanisms through which stimulus driven biases interact 

with learning experiences using RL modeling. We also aimed to clarify how the negative 

value associated with the Pavlovian triggers was acquired by conducting two independent 

ratings studies. These rating studies probed the degree of negative individual and social 

exposure the participants had with the different Pavlovian triggers. 

 

Methods 

Experiment 1 (snake vs. flower stimuli) included 32 (21 female) participants, Experiment 2 

(angry face vs. happy face stimuli) included 42 (22 female) participants, Experiment 3 (out-

group face vs. in-group face stimuli) included 48 (34 female) participants, and Experiment 4 

(gun vs. flower stimuli) included 34 (18 female) participants. No participant took part in more 

than one experiment. The first ratings sample involved 59 (39 female) participants, and the 

second ratings sample 35 (26 female) participants. All four experiments had identical 

experimental design, and only differed in the stimuli selection. The experimental task was a 

two-choice decision task with probabilistic aversive reinforcement (electric shocks). The 

participants were instructed to try to learn to avoid shocks, and that one choice stimulus 

might be better than the other for doing so. The task had a mixed two-by-two design, with 

one between-participants factor (Pavlovian Compatibility: Compatible To 

Incompatible/Incompatible to Compatible) and one within-participants factor (Phase: 

First/Second). After half the experiment (35 trials) the choice – reinforcement contingency 

reversed. For the Compatible To Incompatible - groups, choosing the Pavlovian trigger was 

the sub-optimal instrumental action (P(Shock) = .7)  in the First half and optimal (P(Shock) = 

.3)  in the Second half, while the reverse was true for the Incompatible to Compatible - 

groups. This design allowed us to control for the order effect of presentation, and disentangle 

transient and sustained effects of Pavlovian triggers on instrumental learning. The 



 

32 

participants were not informed about the contingency reversal. The participants performed 6 

practice trials (no reinforcement), followed by the experimental session (70 trials). 

Participants used the left and right arrow keys on a computer keyboard to indicate their 

choices. The location of the choice stimuli varied randomly between the left and right 

position across trials to prevent spatial selection strategies.  

We conducted two rating studies with independent samples of participants, who rated the 

stimuli used in Exp. 1-4. In the first rating study, the dimensions were “Threat” and 

“Danger”, rated on a 7 – graded scale, and anchored with “Not at all”(1) and “Very”(7) . The 

participants also reported how many individual negative experiences they had experienced in 

relation to what the images depicted, using a three-graded scale consisting of “None”, “Few”, 

and “Many”. In the second ratings study, we asked the participants to estimate how much 

negatively valenced exposure they had experienced to the different Pavlovian triggers 

through (i) individual experience, (ii) family and friends, (iii) news media, and (iv) popular 

culture.   

   

Results & Conclusion 

Collectively, our findings showed that the intrinsic value of stimuli predicting danger, 

Pavlovian triggers, has a strong influence on voluntary behavior. More specifically, the 

influence of Pavlovian triggers took the form of a stimulus-driven bias that either enhanced or 

corrupted voluntary behavior depending on the compatibility with the optimal instrumental 

action. This pattern was consistent across all four types of Pavlovian triggers; snakes, guns, 

threatening faces and out-group faces, showing that both archetypically phylogenetic (e.g., 

snakes) and ontogentic (e.g., guns) stimuli can affect voluntary behavior (Figure 4). For out-

group faces (Exp. 3) the pattern was qualified by the fact that only participants with above 

average explicit racial bias exhibited this stimulus-driven bias. 
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Figure 4. Study III. Probability of optimal behavior for the four classes of Pavlovian 

triggers: (A) Snakes (interaction: p < .01), (B) Threatening faces (interaction: p < .01), and 

(C) Out-group faces for participants high in racial bias (interaction: p < .05), (D) Guns 

(interaction: p <.01). Black bars = Compatible to Incompatible, grey bars = Incompatible to 

Compatible.  Error bars denote SEM. 

 

Our analyses of the computational basis of the Pavlovian influence on instrumental behavior 

provide support for a simple proposal: the intrinsic value of Pavlovian triggers primarily 

affect the action selection, rather than the updating or learning, process. In the independent 

systems - model, which provided the most parsimonious account of the data, the Pavlovian 

value down-weighted the instrumentally learned value of the action represented by the 

Pavlovian trigger at the time of choice, resulting in avoidance. The Pavlovian valuation 

process appears to be learning-independent (within the time-scale of the experiment) and 

automatically triggered, as shown by the shift in the direction of the Pavlovian bias after the 

contingency reversal in our experiments (see Figure 4).  The fact that guns were associated 
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with a Pavlovian value, as estimated in the RL model, comparable to snakes and higher than 

both out-group and threatening faces clearly demonstrate that evolutionary predispositions 

are not necessary for the results of Study III. Instead, the pattern of estimated Pavlovian 

value of the stimuli types matched their perceived dangerousness, as rated by an independent 

sample. Perceived dangerousness or deadliness has been suggested as the factor underlying 

both phylogenetic and ontogenetic fear-relevant stimuli, thought to result in fear learning 

biases through an enhanced expectancy for associated negative events (Davey, 1992, 1995). 

A classical account of the etiology of human fears suggested that multiple pathways jointly 

contribute to the acquisition of fears (Rachman, 1977). These pathways are direct experience, 

observation (or vicarious) and verbal transmission of threat information. The effectiveness of 

the last two pathways, about which the preparedness literature generally has been silent, has 

been repentantly demonstrated in both children and adults (Askew & Field, 2008; Olsson & 

Phelps, 2007; Phelps et al., 2001). Our second ratings study, where we asked participants to 

estimate the amount of negatively valenced exposure from different sources to the four types 

of Pavlovian triggers, provide qualitative support for the idea that the Pavlovian value of all 

types except threatening faces is, at least partially, acquired socially, through observational 

and/or verbal pathways. 

 

3.4 STUDY 4 

Background and objectives 

The results of Study III suggested that socially acquired negative valuations can powerfully 

impact individual avoidance learning and decision making. It´s long been recognized in 

behavioral ecology that animals are prone to influence the behavior of each other, especially 

if the environment is dangerous (Rendell et al., 2011; Webster & Laland, 2008). This is an 

adaptive strategy: social learning allows avoiding the costs associated with individual 

learning when the environment is dangerous, for example through threat of predation 

(Griffin, 2004). A limited research literature has shown that humans can acquire conditioned 

fear responses through observing how another individual (the Demonstrator) is exposed to 

aversive reinforcement (Olsson & Phelps, 2007). However, very little is known about how 

actual (instrumental) avoidance behaviors are transmitted socially in humans. In Study IV, 

we aimed to extend the understanding of human social learning about aversive outcomes by 

directly exploring how social information can influence avoidance behaviors. As outlined in 

the introduction, many uniquely human behavioral patterns, such as social norms and taboos, 

are maintained through the threat of punishment. Collectively, such large scale behavioral 

patterns involving threat of punishment can be described as “avoidance traditions”. In 

humans, many avoidance traditions are likely to be adaptive, such as cooperative norms 

maintained by threat of punishment (Fehr & Fischbacher, 2004) and taboos prohibiting 

dangerous food (Henrich & Henrich, 2010). Other avoidance traditions are arbitrary or even 

destructive (Aunger, 1994; Mani, 1987), such as when behaviors that were adaptive in the 

past has become maladaptive in modern societies (Boyd et al., 2011). We addressed a little 
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studied, but crucial aspect for understanding how punishment shapes avoidance traditions: the 

motivational influence of punishment on the punishee, and how this influence can support the 

emergence, maintenance, and transmission of avoidance traditions. Despite the large 

theoretical and empirical literature investigating the influence of punishment on cooperation 

and other behavioral traditions, surprisingly little is known about the psychological and 

computational mechanisms of learning and decision-making underpinning this influence. We 

hypothesized that the rewarding effect of avoiding a possible punishment (see Table 1) 

together with a tendency to copy the behavior of others can provide building blocks to help 

explain the emergence, maintenance and transmission of avoidance traditions. Their joint 

impact on behavior would thereby present an important complement to established game 

theoretic analyses of how rare punishment affects large scale behavior patterns. To address 

our hypothesis, we first developed an agent-based simulation model that mimicked the core 

features of avoidance traditions that we discuss above: (i) one´s actions risk being punished, 

(ii) others’ actions can be observed, and (iii) there is an uncertainty about the optimal course 

of action. Agent-based simulations is a computational modeling framework commonly used 

within biology and social sciences such as economy, but which yet has to receive much 

attention within psychology (Smith & Conrey, 2007). The premise of agent-based 

simulations is that complex systems can be understood and explained as emergent 

phenomena generated by the interaction of many simple individual agents. We used this 

modeling technique to investigate if the combination of rewarding punishment omission and 

behavior copying can in principle generate, maintain and transmit inter-generational 

avoidance traditions. We then confirmed the assumptions underlying this model in four 

separate experiments that each addressed specific aspects of the agent-based simulation 

model. 

Methods 

The agent-based simulation model was intended to capture the essential structure common to 

avoidance traditions in both social and non-social domains. Individual agents in a population 

(N = 100 in Figure 5) made repeated decisions between two possible actions [A, B] under 

threat of punishment. None of the actions were associated with external reward. Instead, we 

varied the probability that action B was punished to explore the role of rare punishment in 

avoidance traditions. In contrast to standard game theoretic models of punishment, there was 

no strategic interaction between the individuals. Instead, each agent first (Observation phase) 

observed M number of choices by another, randomly selected, agent (the “Demonstrator” 

agent), and subsequently chose individually M times (Choice phase). To generate a simple 

“birth-death” process, the agents were probabilistically removed (average lifespan = 2M) and 

replaced with completely naïve individuals. The model did not include any heritable traits. 

Each individual was based on a simple RL model (see Equations 4-6), but with an additional 

learning rate parameter that regulated the influence of observed actions on the individuals 

value estimates. The experiments mimicked the structure of the agent-based model, and had a 

computerized setup involving repeated choices between the two options [A, B]. A total of 120 

human volunteers participated after providing written informed consent. Prior to the 
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experimental procedure, each participant was attached to the shock electrodes (all 

experiments except Exp. 2) and the shock amplitude was determined individually to be 

“uncomfortable but not painful”. The participants in all experiments, except Exp. 2, received 

identical instructions. They were informed to avoid electric shocks by choosing between two 

images, that they first  would observe the choices, but not their consequences, of a previous 

participant (Observation phase), and that they thereafter  would do the same task (i.e., choose 

between the same images) themselves during which they might receive shocks based on their 

choices (Choice phase). The purpose of this instruction was to induce an experience of 

threatening punishment. In Exp. 2, the subjects received the same information as in the other 

experiments, but were told that their choices could be awarded by points. These points would 

increase their chance of winning a lottery for extra movie vouchers. They were instructed that 

delivery of points would be signaled with a “$” - symbol. The “$” – symbol was never 

shown. To provide unambiguous and clearly defined social information, we used a computer-

controlled Demonstrator that consistently chose option A in Exp. 1-3. In Exp. 4, we relaxed 

this premise, and allowed the participants to observe the choices of real former experimental 

participants. In Exp. 1 (n = 25), none of the options could actually be punished. In Exp. 2 (n = 

20), the participants were instructed that they could be rewarded, but in reality, none of the 

actions led to reward. In Exp.3 (n = 20), the participants were randomly punished with 

electric shocks, and finally, Exp. 4 (n = 50) had the same setup as Exp. 1, but the participants 

observed the choices of actual prior participants in a transmission chain design (Mesoudi & 

Whiten, 2008). 

 

Results & Conclusion 

Collectively, the results from our agent-based simulation model and the four empirical 

experiments show that omission of threatening punishment (referred to as rewarding 

punishment omission: RPO) in combination with social learning (referred to as behavior 

copying: BC) can underlie the emergence, maintenance, and transmission of both adaptive 

(when actual punishment is possible) and arbitrary (when no actual punishment is possible) 

avoidance traditions (see Figure 5). 
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Figure 5. Study IV. Two typical simulation runs, with (A) and without (B) punishment. In 

(A), behavior B had a 0.5 % risk of being punished.  BC = Behavior Copying, RPO = 

Rewarding Punishment Omission.+ indicates the presence of the learning mechanism and - 

absence of the mechanism. M  = 20, N = 100. 

 

 The four empirical experiments showed that omission of threatening punishment (Exp. 1 & 

Exp. 4), but not reward (Exp. 2) leads to faithful behavioral imitation. Even if actions were 

randomly punished (Exp. 3), the action of the Demonstrator was imitated. Finally, in Exp. 4, 

we established that the rewarding omission of punishment together with social learning can 

transmit avoidance behaviors in an inter-generational fashion as assumed by the agent-based 

model. 
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.  

Figure 6. Study IV. The probability of copying the Demonstrator choice (A) in Experiments 

1-4. ** = p < .01 compared to 0.5. The red lines show the simulated P(A) from the RL model 

with parameter values estimated from the empirical data. Error bars represent 1 SE. 

These findings offer an important complement to traditional game theoretic analyses of 

punishment in strategic interaction by providing a mechanistic, motivational basis for how 

individuals are affected by the threat of (rare) punishment in systems where the actions of 

others can be observed. The proposed mechanisms are consistent with current knowledge 

about the computational and neurobiological basis of learning and value-based decision 

making (Rangel et al., 2008; Seymour et al., 2007), and thereby provides a plausible 

explanation for how exceedingly rare punishment can motivate behavior and how this 

behavior can spread in groups.  

 

4 GENERAL DISCUSSION 

The overall aim of the studies presented in this thesis was to illuminate the psychological and 

computational mechanisms underpinning adaptive behavior based on aversive leaning in 

(simple experimental models of) the social domain. The role of avoidance and punishment in 

the social domain is likely to be of paramount importance for understanding the behavior of 
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both human and non-human animals. Our general approach was to develop simple 

experimental model paradigms that captured the essential underlying structure of (aspects) of 

the social domain in order to characterize the psychological and computational mechanisms 

involved. Here below, I will begin with discussing some aspects of the results of each study, 

and thereafter touch upon some more general theoretical and methodological questions and 

conclusions suggested by these studies. 

In Study I, we investigated how control over action selection in a simple social situation, 

involving decision about the gender of novel human faces, was affected by threat of 

punishment. This question is of importance in both social and nonsocial settings, because 

previous research on cognitive control has generally neglected the consequences of deficient 

control. In line with the functional hypothesis that humans are adapted to avoid costly errors, 

we found that behavioral performance was enhanced during threat of punishment. However, 

we found that this effect was curvilinear (See Figure 1). Performance was enhanced during 

Low threat of punishment, but not during High threat of punishment, relative to the No 

punishment baseline. We speculate that this pattern correspond to the classical inverted-U 

shape function between arousal and performance (Teigen, 1994). Although surprising, this 

finding is an intriguing demonstration that behavior is not necessarily maximally adaptive, 

even when it might be associated with potential fitness costs in natural settings. This pattern 

might be illuminated by the recent view in the field of behavioral ecology that behavior is not 

likely to be adaptive in all circumstances but rather constrained by evolved mechanisms 

shared across domains (Fawcett et al., 2014; McNamara & Houston, 2009)  so that it 

adequate on average (i.e., satisficing rather than maximizing: Gigerenzer & Goldstein, 1996). 

However, strong conclusions about this pattern of results should await replication studies 

involving a fully parametric manipulation of the cost associated with punishment. Based on 

the proposal that the ACC integrates signals of danger and control demands in order to 

coordinate adaptive behavior (Shackman et al., 2011), and because this brain region enervates 

the muscles of the upper face (Morecraft et al., 2001), we predicted that activity in the 

corrugator supercilii (cEMG) muscle might index the underlying process. In support of this 

prediction, we found that cEMG activity was amplified after response errors, particularly 

during high threat of punishment, and that this activity predicted slower response times on the 

subsequent trial. Moreover, cEMG activity prior to the response predicted performance 

accuracy, in line with influential theories suggesting that the ACC resolves response conflict. 

As outlined in the introduction, one influential theory of ACC function in monitoring of 

action selection states that neural post-error activity in this region (i.e., the ERN) reflects a 

phasic decrease in the firing of mid-brain dopaminerigic following worse than expected 

outcomes or synonymously, a negative prediction error. Our cEMG data fits with this 

account, as the responses to more costly errors during the High threat of punishment 

condition were amplified. However, we did not directly test if cEMG activity correlates with 

prediction errors derived from a RL model, which make this reasoning speculative. 

Replication of our findings using a task suited for RL modeling or with the axiomatic 

approach to the necessary and sufficient criteria for a prediction error signal (Rutledge, Dean, 
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Caplin, & Glimcher, 2010) is thus needed. Such a replication would also tie the findings of 

Study I more tightly to the general value-based decision making framework outlined in the 

introduction. Regardless, Study I provides preliminary evidence for adaptive arbitration 

between habitual and controlled responding during threat of punishment. 

In Study II and III we addressed a core process in value-based decision making by asking 

how the differential value of different social stimuli affects learnt avoidance behaviors. 

Furthermore, both studies shared a common methodological approach, by using two choice 

probabilistic decision making tasks and computational RL modeling as analysis strategy. 

However, the two studies approach the topic from different directions. In Study II, we sought 

to understand how emotional (angry and happy) facial expression could function as 

reinforcers of avoidance learning. Others facial expressions in response to one’s own 

behavior have previously been suggested to play an important role in shaping social 

interaction (Blair, 2003), but research in support of this proposal have remained relatively 

scarce (Heerey, 2013; Lin et al., 2011; Shore & Heerey, 2011). In particular, we investigated 

how preexisting negative attitude to social out-groups (e.g., defined by racial belonging) 

shape such learning. In summary, Study II showed that negative racial bias specifically 

enhanced avoidance learning when one´s actions were reinforced by threatening out-group, 

but not in-group faces. Thus, individual differences in racial bias powerfully modified basic 

emotional learning from the facial expressions of others. Seeking to understand what value-

based decision making process racial bias primarily affected, we formulated a series of RL 

models based on the R-W algorithm. These models implemented two competing hypothesis: 

(i) that differences between the experimental conditions primarily could be explained by 

differences in learning from different types of social reinforcers, or (ii) by differences in 

outcome evaluation of the different social reinforcers (akin to differences in reinforcer 

magnitude). The results supported the first hypothesis. Thus, the different types of social 

reinforcement were similarly valued, but differed in the rate with which they were 

transformed into future avoidance behaviors. Individual differences in racial bias were 

specifically related to the estimated learning rate associated with threatening out-group faces, 

suggesting a computational mechanism for how individual differences in racial bias affects 

learning from social reinforcement delivered by racial out-group individuals. Although not 

conceptualized as such in the published article (Lindström, Selbing, Molapour, & Olsson, 

2014), the value of the learning rate parameters of the R-W model are typically interpreted as 

determined by salience of the CS, or similarly, the attention devoted to processing the CS 

(Pearce & Bouton, 2001). Thus, our results suggest that racial bias, which we understand as a 

type of negative valuation, affects attentional processing of the CS which appear to be in-line 

with research on out-group face recognition (Levin, 2000).  

A related question concern how these effects of racial bias should be understood within the 

general learning theory framework. Regardless of if facial expressions best are 

conceptualized as primary or secondary reinforcers (Blair, 2003; Shore & Heerey, 2011), a 

simple explanation is that individual differences in racial bias reflect individual differences in 

negative experiences with out-group individuals, either by individual or socially-mediated 
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conditioning (see below for discussion). By this account, in- and out-group faces should 

differ in reinforcer magnitude (if secondary reinforcers) or the degree of change in associative 

value due to preconditioning (if primary reinforcers). This was however not what we found, 

as the models based on differences in learning rates (or salience) best explained behavior. 

Thus, the simplest R-W account appears insufficient for accounting for pre-existing 

individual differences. However, it is unclear what alternative account would fare better. 

Instead of investigating social stimuli as reinforcers of avoidance learning, in Study III we 

asked how the intrinsic (i.e., pre-experimental) value of social (and non-social) stimuli affect 

avoidance learning when predicting an aversive reinforcer. The impetus for this question was 

the famous findings in classical conditioning showing enhanced fear acquisition and retarded 

fear extinction to “evolutionary prepared” stimuli such as snakes, angry faces (Ohman & 

Mineka, 2001), and out-group faces (Navarrete et al., 2009; Olsson et al., 2005). Despite the 

possible relevance for a range of real world behaviors, especially in the social domain, the 

influence of such stimuli on voluntary instrumental behavior has been unknown. We 

hypothesized that such stimuli (termed Pavlovian triggers in the manuscript) might trigger the 

Pavlovian valuation system during voluntary behavior and thus induce systematic deviations 

from the predicted instrumental behavior. Put differently, if the Pavlovian and the 

instrumental systems were put in conflict, the intrinsic value of the stimuli should be 

revealed. To asses if a putative evolutionary history would be necessary for these effects to 

emerge, we also included gun stimuli in one experiment. Briefly summarized, we found a 

strong and consistent effect of Pavlovian triggers on instrumental behavior. This influence 

was best accounted for by a RL model where the Pavlovian influence took the form of a fixed 

bias parameter within the Softmax function. Thus, we found that the Pavlovian influence 

biased the instrumentally learned value at the time of choice, resulting in either adaptive or 

maladaptive behavior depending on if the Pavlovian trigger best predicted the aversive 

reinforcer (Figure 4). This conclusion is in concordance with previous modeling-based 

analyses as well as the known neuro-anatomical correlates of the interaction between the 

Pavlovian and instrumental valuation systems (Guitart-Masip, Duzel, Dolan, & Dayan, 

2014). The RL modeling approach allowed us to quantify the Pavlovian value of the different 

stimuli, which showed that both archetypically prepared stimulus, snakes, and the obviously 

non-prepared gun stimulus hade the same Pavlovian value. This finding, together with the 

rating studies we conducted, which showed a strong similarity in the Pavlovian influence and 

average threat ratings of each stimulus but not with the history of individual negative 

experience, suggest that social and cultural influences on the Pavlovian valuation system 

might be profound (Davey, 1995). An important feature of these data that testify to the 

importance of learning for Pavlovian triggers was the fact that negative racial bias was 

positively correlated with the estimated Pavlovian value of out-group faces (there was no 

comparable correlation for snakes). 

The role of social learning in the acquisition of Pavlovian triggers thus provide an important 

avenue for future research, underscored by the fundamental impact of culture on human 

behavior (Boyd et al., 2011). Even an influential account of evolutionary preparedness theory 
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(Ohman & Mineka, 2001) acknowledges that cultural artifacts with strong cultural threat 

value, such as guns, can come to evoke the same aversive response by engaging the human 

“fear module” similarly to phylogentically fear-relevant stimuli. The details for how 

ontogenetic threats can piggyback on learning systems evolved for phylogenetic threats 

remain unclear.  Our results do obviously not rule out an evolutionary contribution to the 

effect of Pavlovian triggers on behavior, although the magnitude of this contribution must 

remain unspecified. Ongoing work based on evolutionary simulations suggest that  

preparedness is likely to enhance social as well as individual learning (Lindström, Selbing, & 

Olsson, n.d.), but empirical studies remain scarce (Barrett & Broesch, 2012; Cook & Mineka, 

1990; Curio, Ernst, & Vieth, 1978). More generally, it is obvious that the behavioral 

tendencies revealed in Study III can be adaptive in an evolutionary sense, if the Pavlovian 

triggers actually are more predictive of punishment than other stimuli. The Pavlovian 

influence might be viewed as a strong prior (in the Bayesian sense) that allows an 

approximation of Bayesian inference (Marshall, Trimmer, Houston, & McNamara, 2013). An 

interesting venture would therefore be to use evolutionary models to understand and predict 

the environmental conditions leading to such priors, akin to how recent work have modeled 

emotions and moods as ecologically rational priors for decision making (Trimmer, Paul, 

Mendl, McNamara, & Houston, 2013). 

Directly comparing the results of Study II and Study III reveal several important features: 

first, and perhaps unsurprisingly, different social (and non-social) stimuli have clear 

differential influences on avoidance learning in the social domain, and these differences can 

be explained by RL modeling (Ruff & Fehr, 2014), and second, individual differences in 

racial bias are highly important for understanding the basic computational mechanisms 

underlying social interactions involving different social groups. The latter finding is 

surprising, and might have important implications for understanding biased behavior in real 

world settings. Especially, delineating how such biases can be reduced is obviously of pivotal 

importance. I will return to related issues below when discussing the consequences of 

adaptive sampling for social behavior.  

A direct comparison also reveals a puzzling discrepancy: the results of the RL modeling gave 

contrasting accounts of the underlying mechanisms.  As described above, these studies 

address two sides of the same topic; social stimuli as reinforcers (Study II), and as cues or 

targets for actions (Study III). It is likely that the difference between these processes is 

reflected in the discrepant results. In Study II, we found that behavior was best accounted for 

by an RL model where different social reinforcers were associated with different learning 

rates (and not by different outcome magnitudes) and that individual differences in racial bias 

correlated selectively with the estimated learning rate for threatening out-group faces. In 

contrast, in Study III, we found that behavior best was described by a model where the 

stimulus elicited a fixed (Pavlovian) bias at the time of choice, rather than affecting the 

learning rate. Similarly, individual differences in racial bias were correlated with this 

Pavlovian bias parameter. Currently, it is unclear how to best reconcile these two models into 
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a unified account, which obviously is needed for understanding the computational 

mechanisms involved in avoidance learning in the social domain. 

The results of Study II and Study III share a common caveat: computational modeling is 

associated with important limitations. No computational model, especially not one at the high 

level of abstraction used in Study II-III, is likely to provide a complete account of the 

processes underlying complex behavior. Furthermore, conclusions from model comparisons 

are contingent on the selected set of candidate models. Although, in theory, an unknown 

number of other models are possible, only a limited number of models can be tested 

(McClelland, 2009). Thus, while the results support particular candidate hypothesis, there are 

likely (many) other hypotheses consistent with the behavioral data. This caveat points to the 

importance of using several kinds of data, such as neuroimaging or single cell recordings, and 

models placed at different levels of Marr´s explanational framework (Marr, 1982; 

McClamrock, 1991), to constrain theory construction. Ideally, the models formulated in 

Study II-III should also be reconstructed with a high degree of biological realism, for 

example as detailed neural networks, to show that the known principles of nervous systems 

operating within the neural architecture of the human value-based decision making systems 

could reproduce the behavioral results (O’Reilly & Munakata, 2000). 

In Study IV, we expanded the basic value-based decision framework to include social 

learning from the actions of others (Seymour et al., 2007). Specifically, we sought to provide 

a computational basis for how rare or non-existent punishment can generate widespread 

behavioral avoidance traditions, and thereby promoting, for example, norms of cooperation or 

food taboos (Fehr & Fischbacher, 2004; Henrich & Henrich, 2010). The economic and 

evolutionary literatures on social norms and traditions have generally been silent on the 

psychological mechanisms underpinning observed behavior. We hypothesized that the 

rewarding quality of avoiding an aversive outcome (see Table 1) might provide the 

motivational building block needed for such avoidance traditions, together with a social 

learning mechanism allowing avoidance behavior to be transmitted between individuals. As 

predicted, we found in four experiments that these mechanisms together can underlie 

avoidance behaviors by showing that humans are extremely prone to copy the behavior of 

others when in situations where punishment (electric shock) is possible (see Figure 6) and to 

transmit this behavior to other individuals in an intergenerational fashion. 

An important part of Study IV was to provide a proof of principle that punishment omission 

and social learning together can generate, maintain, and transmit large scale avoidance 

traditions (Figure 5). To do this, a novel methodological approach was introduced; we used 

agent-based simulation models to investigate the emergent consequences of punishment 

omission and social learning in tandem in populations of simple agents. This modeling 

approach is widely appreciated and used within biology (DeAngelis & Mooij, 2005) and parts 

of the social sciences (Bonabeau, 2002), but relatively unknown within psychology (Smith & 

Conrey, 2007). However, in my opinion, agent-based simulation has the potential to provide 

bridges between detailed individual-level psychological (and neural) mechanisms and the 
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resulting behavior in groups and populations; a mechanistic linkage between micro and 

macro - levels of explanation (Hedström & Ylikoski, 2010). Furthermore, such models allow 

investigating the evolution of psychological computational mechanisms in populations of 

agents, and thereby provide a link between the mechanistic and functional levels of analysis 

of Tinbergen´s framework (Fawcett et al., 2012; McNamara & Houston, 2009; Nolfi, Parisi, 

& Elman, 1994; Trimmer et al., 2012). Obviously, however, models are most powerful when 

clearly related to empirical data. In Study IV, we confirmed the assumptions underlying the 

agent-based simulation by testing the basic predictions across four experiments, where we 

also used a model-fitting approach to confirm that human behavior correspond to the 

parameter range needed to reliably produce traditions in the simulation model. Thus, the 

empirical experiments were used to constrain the simulation model, which in turn was used to 

extrapolate from the results of the empirical experiments (c.f., Rand, Tarnita, Ohtsuki, & 

Nowak, 2013). 

However, it is worth asking how general the findings of Study IV are in terms of different 

time scales and types of punishments. The agent-based simulations model makes no 

assumptions about either: the general pattern of results is predicted to generalize to any 

situations with the same underlying structure and where the psychological impact of avoiding 

threatening punishment is potent enough. Such simplicity in the modeling formulation is 

commonly seen as a virtue because the model might reveal explanatory generalities across 

many situations (Evans et al., 2013). It can, however, also be criticized for not actually 

corresponding to any natural system (Evans et al., 2013). Our experimental tests of the model 

assumptions, however, are naturally limited to a specific timescale (brief) and one type of 

punishment (electric shocks). Furthermore, the experiments mainly pertain to arbitrary 

avoidance traditions since sufficiently rare punishment for adaptive avoidance traditions 

could not be experimentally administered. This situation is common to many experimental 

tests of theoretical models, such as the Prisoner´s Dilemma. The Prisoner´s Dilemma is 

commonly considered to have far reaching implications for human behavior at different time 

scales and in a variety of payoff currencies, but experimental tests are normally restricted to 

the behavioral laboratory with monetary payoffs (Guala, 2012). The discrepancy between 

theoretical scope and experimental tests is a topic of debate (Guala, 2012), but there is 

however a general agreement that lab experiments are important for model and theory 

development, and that simple models do contribute to understanding of complex phenomena 

(Bowles & Gintis, 2011; Fehr & Gächter, 2002; Janssen, Holahan, Lee, & Ostrom, 2010).  

Finally, one might consider if there are any general mechanisms by which the specific 

mechanisms identified in the studies of this thesis might influence everyday behavior. One 

such mechanism likely to mediate the influence of socially mediated valuations on learning 

and decision making is adaptive sampling. Adaptive sampling refers to the simple fact that if 

the value of an option is unknown, the only way to discover its value is by sampling it. If the 

outcome is favorable (relative to other options for example) the probability of choosing it 

again will increase and similarly, if the outcome was unfavorable, the future probability of 

choosing the option will decrease. This is exactly what the simple RL models used in this 
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thesis assumes. Such adaptive sampling will, for example, result in risk aversion due to the 

simple fact that high variance options often will result in unfavorable outcomes and that the 

true expected value of the uncertain option thus never is correctly estimated (Denrell, 2007). 

Of specific relevance to the social domain is the fact that negative initial outcomes, due to 

high variance or other factors, will decrease the future willingness to sample the option again. 

If the options are interactions with specific individuals, it is easy to see that this process can 

result in avoidance of a particular individual if the initial experience was negative and there is 

no extrinsic motivation for interacting with the individual again (Denrell, 2005). False 

negative initial expressions will thus remain uncorrected, whereas false positive expression 

will be corrected due to continued interactions. This process might for example contribute to 

inter-group biases and ostracism (Denrell, 2005). It is easy to see that the findings of Study II 

and III imply that this sampling based avoidance process will be amplified for certain stimuli 

or due to prior negative attitudes. For example, adaptive sampling could cause even a mild 

Pavlovian bias to decrease the probability of learning the true value of an option, such as 

interacting with an out-group member, which could have dramatic consequences for the 

future behavioral trajectory (Denrell, 2005). This pattern could be seen in Study III when 

choosing the Pavlovian trigger represented the optimal action. Due to the Pavlovian 

influence, the participants instead tended to oversample the sub-optimal action, and thereby 

never accurately estimating the value of the other (optimal) option. Similarly, Study II 

showed that individuals with high racial bias learned faster than low bias individuals to avoid 

threatening out-group members, and would thus less be likely to revise their impression 

through future interactions. One factor that can either exaggerate or reduce such biases is 

social learning. Social learning can provide information about the outcomes of non-sampled 

options, which can reduce risk aversion (Arbilly, Motro, Feldman, & Lotem, 2011; Fazio, 

Eiser, & Shook, 2004). However, social learning can also propagate false negative 

impressions of the options, which thereafter are unlikely to be corrected by individual 

sampling (Fazio et al., 2004). In Study IV, we saw that social learning thus could underlie 

arbitrary avoidance traditions. 

Together, the four studies included in this thesis show, in line with a growing literature (Ruff 

& Fehr, 2014), that basic value-based decision mechanisms play an important role in shaping 

social behavior in response to punishment and threats of punishment. Understanding the role 

of these mechanisms in social behavior might function as an important building block for 

bridging the questions of how and why (Bateson & Laland, 2013) through evolutionary 

modeling, and as a starting points for more detailed analysis at all levels of mechanistic 

explanation (Marr, 1982), 
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