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ABSTRACT 
 

The gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the 
gastrointestinal tract (GI). Historically, these tumors were commonly mistaken for myogenic and 
neurogenic masses, and then eventually came to be recognized as a distinct type of soft-tissue 
sarcoma through ultrastructural findings and specific immunomarkers. GISTs can arise anywhere 
along the GI tract, and are believed to originate from or share a common progenitor with the 
interstitial cell of Cajal. The majority of GISTs carry activating KIT or PDGFRA mutations, 
which form the molecular basis for the successful tyrosine kinase inhibitor therapy. Although 
genetic discoveries and treatment advances have greatly improved clinical outcomes, the 
significance of GIST neuroendocrine phenotype, the role of the relatively newly identified 
DOG1, and the impact of regional imatinib pharmacodynamics remain obscure. The aim of the 
overall thesis was to explore functional aspects of the human GIST biology. 

Evaluation of the presence of functional GIST cell stimulus-secretion coupling demonstrated an 
intact intracellular Ca2+-signaling pathway and an active ATP release that is dependent on [Ca2+]e 
levels and is augmentable by pharmacological stimuli. (Paper I) 

The existence and composition of a putative GIST secretome was assessed by shotgun 
proteomics. The findings demonstrate that GIST cells contain a secretome signature made up of 
classically and non-classically released proteins. The protein subsets and appurtenant functional 
clustering varied in the presence of drug stimulation. The types of released proteins, which 
significantly increased through cell stimulation, were consistent with the types of proteins found 
in other cancers. Moreover, the secretome overlapped extensively with exosomal proteins. 
(Paper II) 

A protocol to measure intracellular imatinib levels was developed for use in both in vitro and in 
vivo systems of GIST cells. The liquid-liquid extraction LC-MS TOF-based protocol offered a 
reliable way to determine intracellular imatinib levels with high recovery, good linearity, and low 
limit of detection, in both the experimental and clinical settings. The imatinib uptake differed 
between imatinib-sensitive and imatinib-resistant cell lines, and accumulated in tumors from 
three patients, with large intra- and inter-tumoral variations. (Paper III)  

The functional significance of DOG1 in GIST cells was addressed. DOG1 have different 
subcellular localizations in imatinib-sensitive and imatinib-resistant GIST cells. Specific 
inhibitors or activators modulated the DOG1 activity efficaciously. The overall effect on GIST 
cell viability and proliferation was small, but DOG1 inhibition induced late apoptosis among a 
small proportion of early apoptotic imatinib-resistant GIST cells. (Paper IV) 



 

 

LIST OF SCIENTIFIC PAPERS 

 

The thesis is based on the following papers, referred to in the text by their 
Roman numerals. 

 

I. Berglund E, Ubhayasekera SJ, Karlsson F, Akçakaya P, Aluthgedara W,  
Åhlén J, Fröbom R, Nilsson IL, Lui WO, Larsson C, Zedenius J, Bergquist J, 
Bränström R. 
Intracellular concentration of the tyrosine kinase inhibitor imatinib in gastro-
intestinal stromal tumor cells. 
Anticancer Drugs 2014;25(4):415-422. 
 

II. Berglund E, Berglund D, Akçakaya P, Ghaderi M, Daré E, Berggren PO,  
Köhler M, Aspinwall CA, Lui WO, Zedenius J, Larsson C, Bränström R. 
Evidence for Ca2+-regulated ATP release in gastrointestinal stromal tumors. 
Experimental Cell Research 2013;319(8):1229-1238. 
 

III. Berglund E, Daré E, Branca R, Akçakaya P, Fröbom R, Berggren P-O,  
Lui W-O, Larsson C, Zedenius J, Orre L, Lehtiö J, Kim J, Bränström R. 
Secretome protein signature of human gastrointestinal stromal tumor cells. 
Manuscript. 
 

IV. Berglund E, Akçakaya P, Berglund D, Karlsson F, Vukojević V, Lee L,  
Bogdanović D, Lui WO, Larsson C, Zedenius J, Fröbom R, Bränström R. 
Functional role of the Ca2+-activated Cl- channel DOG1/TMEM16A in 
gastrointestinal stromal tumor cells. 
Experimental Cell Research 2014. Epub ahead of print. 
 
 
 

 



 

 

LIST OF OTHER PUBLICATIONS 

 

1. Ma Z, Lavebratt C, Almgren M, Portwood N, Forsberg LE, Bränström R, 
Berglund E, Falkmer S, Sundler F, Wierup N, Björklund A. 
Evidence for presence and functional effects of Kv1.1 channels in β-cells: 
general survey and results from mceph/mceph mice. 
PLoS One 2011;6(4):e18213. 
 

2. Berglund D, Bengtsson M, Biglarnia A, Berglund E, Yamamoto S, von Zur-
Mühlen B, Lorant T, Tufveson G. 
Screening of mortality in transplant patients using an assay for immune 
function. 
Transpl Immunol 2011;24(4):246-250. 
 

3. Lu M, Berglund E, Larsson C, Höög A, Farnebo LO, Bränström R. 
Calmodulin and calmodulin-dependent protein kinase II inhibit hormone 
secretion in human parathyroid adenoma. 
J Endocrinol 2011;208(1):31-39. 
 

4. Bränström R, Berglund E, Curman P, Forsberg L, Höög A, Grimelius L, 
Berggren PO, Mattsson P, Hellman P, Juntti-Berggren L. 
Electrical short-circuit in β-cells from a patient with non-insulinoma 
pancreatogenous hypoglycemic syndrome (NIPHS): a case report. 
J Med Case Rep 2010;4:315. 
 

5. Lu M, Bränström R, Berglund E, Höög A, Björklund P, Westin G, Larsson C, 
Farnebo LO, Forsberg L. 
Expression and association of TRPC subtypes with Orai1 and STIM1 in 
human parathyroid. 
J Mol Endocrinol 2010;44(5):285-294. 
 

6. Akçakaya P, Caramuta S, Åhlén J, Ghaderi M, Berglund E, Östman A, 
Bränström R, Larsson C, Lui WO. 
Small RNA expression signatures of gastrointestinal stromal tumors: 
associations to imatinib resistance and patient outcome. 
Submitted manuscript. 



 

 

TABLE OF CONTENTS 
 

INTRODUCTION .............................................................................................. 1	
  

Gastrointestinal stromal tumor .................................................................... 1	
  

Historical background ........................................................................ 1	
  

Epidemiology ..................................................................................... 2	
  

Clinical presentation .......................................................................... 3	
  

Clinical workup .................................................................................. 4	
  

Histopathology ................................................................................... 6	
  

Molecular pathology .......................................................................... 9	
  

Risk stratification and prognosis ...................................................... 14	
  

Medical treatment ............................................................................ 16	
  

Surgery of GIST ............................................................................... 23	
  

Monitoring ........................................................................................ 24	
  

AIMS OF THE STUDY .................................................................................. 26	
  

MATERIALS AND METHODS ..................................................................... 27	
  

Patients and clinical material ..................................................................... 27	
  

Established cell lines .................................................................................. 27	
  

Experimental methods ............................................................................... 28	
  

Mutation detection ........................................................................... 28	
  

Luciferase-based detection of ATP release ..................................... 28	
  

Lactate dehydrogenase (LDH) concentrations ................................ 29	
  

Flow cytometry ................................................................................ 30	
  

Cytoplasmic free Ca2+ measurements .............................................. 30	
  

Discovery proteomics ...................................................................... 31	
  



 

 

Imatinib quantification ..................................................................... 34	
  

Protein concentration determination ................................................ 36	
  

Insulin concentration determination ................................................ 36	
  

Western blot ..................................................................................... 36	
  

Immunocytochemistry ..................................................................... 37	
  

Confocal laser scanning microscopy ............................................... 37	
  

Cell proliferation studies .................................................................. 38	
  

Electrophysiology ............................................................................ 38	
  

RESULTS AND DISCUSSION .................................................................... 41	
  

Paper I - Intracellular concentration of the tyrosine kinase inhibitor   
imatinib in gastrointestinal stromal tumor cells. ....................................... 41	
  

Paper II - Evidence for Ca2+-regulated ATP release in gastrointestinal 
stromal tumors. .......................................................................................... 44	
  

Paper III. Secretome protein signature of human gastrointestinal         
stromal tumor cells. ................................................................................... 46	
  

Paper IV. Functional role of the Ca2+-activated Cl- channel 
DOG1/TMEM16A in gastrointestinal stromal tumor cells. ..................... 50	
  

CONCLUDING REMARKS .......................................................................... 54	
  

SUMMARY OF THE THESIS IN SWEDISH ............................................. 55	
  

ACKNOWLEDGEMENTS ............................................................................ 58	
  

REFERENCES ............................................................................................... 64	
  

 



 

 

LIST OF ABBREVIATIONS 
 

ACOSOG 
AKT 
ANO1 

American College of Surgeons Oncology Group 
v-akt murine thymoma viral oncogene homolog 
Anoctamin-1 

ATP 
BRAF 

Adenosine triphosphate 
v-raf murine sarcoma viral oncogene homolog B1 

Ca2+ 

[Ca2+]i 

[Ca2+]e 

CaCC 

Calcium ion 
Cytoplasmic free Ca2+ 

Extracellular Ca2+ concentration 
Ca2+-activated Cl- channels 

CD34 
CD117 
CLSM 
CML 
CT 
DAVID 
 
DNA 
DOG1 

Hematopoietic progenitor cell antigen CD34 
Stem cell factor receptor (c-kit protein) 
Confocal laser scanning microscopy 
Chronic myelogenous leukemia 
Computed tomography 
Database for Annotation, Visualization and 
Integrated Discovery 
Deoxyribonucleic acid 
Discovered on GIST-1 

ERK 
ESI 
ESMO 
ETV1 
EUS 
EV 
fcDNA 
FDA 

Extracellular signal-regulated protein kinase 
Electrospray ionization 
European Society for Medical Oncology 
ETS translocation variant 1 
Endoscopic ultrasound 
Extracellular vesicle 
Free circulating DNA 
Food and Drug Administration 

FDG 
FNA 
GI 

18F-fluoro-2-deoxy-D-glucose 
Fine-needle aspiration 
Gastrointestinal 

GIST 
GLUT4 
HBSS 
HCD 
HIF1α 

Gastrointestinal stromal tumor 
Glucose transporter 4 
Hanks buffered salt solution 
Higher-energy collision dissociation 
Hypoxia-inducible factor α 

HPF 
IC 
ICC 
IGF 

High power field 
Current-clamp 
Interstitial cells of Cajal 
Insulin-like growth factor 

IHC Immunohistochemistry 



 

 

IP3 Inositol triphosphate 
JAK-STAT    Janus kinase – Signal Transducer and Activator 

of Transcription 
KIT 
 
LC 
LDH 

v-kit Hardy Zuckerman 4 feline sarcoma viral 
oncogene homolog 
Liquid chromatography 
Lactate dehydrogenase 

MAPK 
MRI 
MS 
m/z 
mTOR 
MV 
NCCN 
NF1 
NIH 
OS 

Mitogen-activated protein kinase 
Magnetic resonance imaging 
Mass spectrometry 
Mass-to-charge ratio 
Mammalian target of rapamycin 
Microvesicle 
National Comprehensive Cancer Network 
Neurofibromin 1 
National Institutes of Health 
Overall survival 

PCR Polymerase chain reaction 
PDGFRA Platelet-derived growth factor receptor alpha 
PET 
PFS 
PI3K 
PSM 
RAF1 
 
RFS 

Positron emission tomography 
Progression-free survival 
Phosphoinositide-3-kinase 
Peptide-spectrum match 
v-RAF-1 murine leukemia viral oncogene 
homolog 
Recurrence-free survival 

RNA 
SCF 
SCX-SPE 

Ribonucleic acid 
Stem cell factor 
Strong cation exchange solid phase extraction 

SDH 
SSG 
STAT3 

Succinate dehydrogenase 
Scandinavian Sarcoma Group 
Signal transducer and activator of transcription 3 

STS 
TDM 

Soft-tissue sarcoma 
Therapeutic drug monitoring 

TKI 
TMEM16A 
TRPC 
 
VC 
VEGF 

Tyrosine kinase inhibitor 
Transmembrane member 16A 
Transient receptor potential canonical type ion 
channel 
Voltage-clamp 
Vascular endothelial growth factor 

wtGIST wild-type GIST 
  
  



 

 1 

INTRODUCTION 

“There is new ammunition in the war against cancer. These are the bullets.” 
- TIME Magazine on imatinib, May 28, 2001. 

Gastrointestinal stromal tumor 

Historical background 
With roughly 7.6 million deaths annually, cancer is one of the leading causes of 
death worldwide (Jeman et al., 2011). Sarcomas are a rare and heterogeneous 
group of connective tissue tumors of mesenchymal origin. These tumors can 
arise virtually anywhere in the body and are classified as either skeletal sarcomas 
or soft-tissue sarcomas (STS). More than 50 different histological subtypes of 
STS have been distinguished in the classification of the World Health 
Organization (WHO) (Fletcher et al., 2002), and new entities are continuously 
recognized; each with varying clinical phenotypes and behavior (Fletcher et al., 
2013; Jo and Fletcher, 2014). STS are reported to account for approximately 1% 
of all adult malignant tumors (Mastrangelo et al., 2012; Stiller et al., 2013), and 
the gastrointestinal stromal tumor (GIST) is the most common STS of the 
gastrointestinal (GI) tract. Before we came to know GISTs as we do today, 
almost all mesenchymal tumors of the GI tract were considered to be “GI smooth 
muscle tumors”. Thus, GISTs were commonly misclassified as leiomyomas (if 
benign), leiomyosarcomas (if malignant), or leiomyoblastomas. It was also 
difficult to distinguish GIST from Schwannoma and other nerve sheath tumors. 
This was mainly due to the wide morphological spectrum of GISTs, which 
complicated the differential diagnostics (Corless, 2014). In 1969, Welsh and 
Meyer were the first to show cogent evidence supporting ultrastructural 
differences between “GI smooth muscle tumors” and classical smooth muscle 
tumors (Welsh and Meyer, 1969). In the 1980s, Welsh and Meyer’s evidence 
were further supported by immunohistochemical findings: the smooth muscle 
antigen, desmin, is rarely expressed, actin staining is often focal or negative, and 
Schwann cell features are absent in “GI smooth muscle tumors” (Evans et al., 
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1983; Mazur, Clark, 1983). As a result, the term “gastrointestinal stromal tumor” 
was introduced as a histogenetically noncommittal term for these tumors (Mazur, 
Clark, 1983; Chan, 1999). CD34 was the first clinically useful marker for 
distinguishing GISTs from true GI leiomyomas, leiomyosarcomas, and 
Schwannomas in clinical routine (Miettinen et al., 1995). During the 1980s and 
1990s, several other acronyms still flourished within the relevant literature due to 
somewhat disparate results (Chan, 1999). However, this indiscriminate usage of 
acronyms abruptly changed when Kindblom et al. (1998) noticed similarities 
between GISTs and the interstitial cells of Cajal (ICC), as evidence of its 
mesenchymal origin. These GI pacemaker cells – ICCs – were discovered by the 
Spanish Nobel laureate Santiago Ramón y Cajal and are associated with the 
myenteric plexus in the intestinal wall. The ICC is responsible for the initiation 
and coordination of the slow-waves organizing the gut peristalsis. The following 
ICC characteristics provide strong support for the hypothesis that ICCs are the 
originating cells of GISTs: its pluripotent mesenchymal stem cell character 
(Kindblom et al., 1998; Torihashi et al., 1999), its absence in KIT-deficient mice, 
and development of ICC hyperplasia and GISTs when KIT-activating mutations 
are introduced (Kitamura, Hirotab, 2004; Sommer et al, 2004). The greatest 
landmark in the history of GISTs was the discovery of KIT proto-oncogene 
mutations, which distinguished GISTs as unique tumor entities, brought 
knowledge to etiology and pathogenesis at the molecular level, and formed the 
basis for successful molecular-targeted therapies (Hirota et al., 1998; Kindblom 
et al, 1998).  

Epidemiology 
GISTs are responsible for almost one-fifth of all STS, which makes GISTs the 
single most common type of sarcoma (Ducimetiére et al., 2011; Mastrangelo et 
al., 2012; Stiller et al., 2013). Population-based studies report an annual 
incidence of 11-20 cases per million inhabitants of clinically relevant GISTs 
(Chan et al., 2006; Goettsch et al., 2005; Nilsson et al., 2005; Tryggvason et al., 
2005). GIST prevalence is around 130 per million inhabitants (Nilsson et al., 
2005). As subclinical GISTs are much more common than the overt tumors, 
these estimates captures only the minimum prevalence of GISTs. Micro-GISTs – 
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referring to GISTs less than 1 cm in diameter – are incidental findings in 10-
22.5% of stomachs thoroughly examined at autopsy or after surgical removal 
(Abraham et al., 2007; Agaimy et al., 2007). Even though micro-GISTs seem 
quiescent with low mitotic counts (Kawanowa et al., 2006), the type and 
frequency of KIT mutations found in micro-GISTs are essentially the same as in 
clinically significant GISTs (Agaimy et al., 2007, Rossi et al., 2010). This 
suggests that the pool of micro-GISTs among the general population can 
probably develop into more advanced lesions, but that additional molecular 
aberrations are required for malignant transformation. GISTs arise at any age, 
even in infancy, but show proclivity toward developing in the middle-aged and 
elderly, with a median age of 63 years at diagnosis (Miettinen et al., 2005). More 
than 80% of patients are older than 50 years (Ducimetiére et al., 2011). Men and 
women are affected almost equally (Tran et al., 2005), and there is no ethnical 
predilection. Patients younger than 20 are very few (Joensuu et al., 2012), and 
pediatric GISTs are usually clinically distinct with female predominance, lack of 
KIT or PDGFRA mutations, gastric location, and potential lymph node 
metastases (Pappo, Janeway, 2009). GISTs commonly present in the stomach 
(50-60%) and the small intestine (30-35%), and occur less frequently in the 
colorectal areas (5%) and the esophagus (<1%). Adult GISTs almost never 
spread via the lymph vessels, and metastases have a predilection to the liver, 
whereas locoregional recurrences appear in the omentum or peritoneum 
(DeMatteo et al., 2000). Extra-gastrointestinal tract tumors (E-GISTs) can 
occasionally (<5%) be found in the omentum, the mesentery, or the 
retroperitoneum. There is an ongoing debate to whether E-GISTs are metastases 
from undetected primary tumors or the primary lesions themselves (Joensuu et 
al., 2012).  

Clinical presentation 
The clinical spectrum of GISTs ranges from local lesions to highly aggressive 
and disseminated tumors. About 25% of GISTs are discovered en passant during 
imaging, endoscopy, or surgery for other GI-related diseases. The majority of 
patients present with vague and non-specific symptoms. Gastrointestinal 
bleeding, abdominal pain or discomfort, dyspepsia, dysphagia, satiety, nausea, 
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vomiting, constipation or diarrhea, and a palpable tumor account for some of the 
more common symptoms. GISTs may also produce symptoms that are secondary 
to obstruction, such as tumor rupture, hemorrhages and bowel perforation, of 
which some may require emergent care. Because GISTs are submucosal tumors, 
the overlying mucosa is susceptible to pressure-related necrosis and ulceration 
that creates hemorrhaging from the disrupted vessels. Patients with significant 
blood loss may experience anemia-related symptoms (Bumming et al., 2006; 
Muccariani et al., 2007; Caterino et al., 2011). 

Clinical workup 
Expeditious management of GISTs at early stages is important for reducing the 
risk of progression. About 40% of patients with localized GISTs at the time of 
diagnosis eventually develop metastases, while 10-20% of patients present with 
metastases from the time of diagnosis (Joensuu, 2013). Consequently, a 
multidisciplinary approach to treatment involving surgeons, oncologists, 
pathologists, radiologists, among others, is advocated to optimize the outcome 
for a rare tumor such as GIST (Mullady, Tan, 2013). For these reasons the 
Scandinavian Sarcoma Group (SSG) recommends that any patient with a tumor 
larger than 5 cm in diameter, or with deep tissue tumors of any size, should be 
referred to an experienced sarcoma center for workup. A reliable diagnosis is 
crucial, since treatment options differ markedly between different abdominal 
tumors. At present, no test applicable to blood samples exists that can confirm or 
rule out GISTs: diagnosis is based on morphology and immunophenotyping, as 
well as mutation analysis at some centers. The standard approach to diagnose 
gastric, duodenal and rectal GISTs is by collecting endoscopic ultrasound-guided 
tumor material. Endoscopic ultrasound (EUS)-obtained fine-needle aspirations 
(FNAs) are preferable to transcutaneous approaches in order to minimize 
spillage of tumor cells into the abdominal cavity. EUS in itself also provides 
important diagnostic features, in addition to the location and size of tumors (Sepe 
et al., 2009). High-risk biopsies of cystic lesions should only be performed at 
experienced centers. Core-needle biopsies are indicated in neo-adjuvant settings, 
when mutation status is needed, or if FNA is insufficient. Considering that 
metastases are rare outside of the abdominal cavity, anatomic imaging of the 
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abdomen and pelvis, by contrast-enhanced computed tomography (CT) or 
magnetic resonance imaging (MRI), is usually adequate for detection, staging, 
and allows anatomical judgment. This is crucial for surgeon consideration of 
treatment options, avoidance of unmerited operations, optimizing the chances for 
adequate surgical margins without tumor rupture and spillage, evaluation of 
treatment responses in the neo-adjuvant setting, and monitoring of postoperative 
patients for recurrences (Figure 1) (Chourmouzi et al., 2009).  

 

Figure 1. CT of the pelvis and abdomen is helpful to diagnose and stage GISTs: it 
provides information about size, location, and relationship to adjacent structures. The 
case above shows a local gastric GIST. CT can also detect multiple tumors and 
metastatic spread. Ghanem et al. (2003) described CT characteristics on histologically 
verified GISTs by dividing them into small (<5 cm), intermediate (5-10 cm), and large 
(>10 cm) tumors. Small masses usually appear as sharply demarcated and homogenous, 
with mainly intraluminal growth. Large masses more often feature irregular margins, 
varying densities, and aggressive behavior. 

GISTs have an increased GLUT4 expression and glucose uptake (van den 
Abbeele et al., 2012). Based on these observations, dual modality 18F-
fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT has become 
increasingly common in the work-up of patients with GISTs to obtain both 
anatomic and functional information (Figure 2). It is useful in the imaging of 
initial disease evaluation, treatment response, and detection of recurrent tumors 
(Malle et al., 2012).  
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Figure 2. Example of a large, locally advanced, gastric GIST, scanned with 18F-FDG 
PET/CT before (left) and one month after initiation of imatinib treatment (400 mg daily) 
(right). Different patient than in Figure 1. 

Histopathology 
GISTs are generally well demarcated with a fleshy pink or tan cut surface, and 
can contain hemorrhagic and cystic degenerative areas. Clinically significant 
GISTs range from 1 cm to more than 40 cm in diameter, with an average 
diameter of 5 cm (Nilsson et al., 2005; Miettinen et al., 2005). In addition to size, 
the pathologist should also always determine the mitotic count on a total area of 
5 mm2 (equivalent to 50 high power fields (HPFs)), as both are important 
prognostic variables (Joensuu, 2008). There are several different morphological 
patterns that overlap with various other GI tumors, which include three main 
patterns: 1) spindle cell (70%), 2) epitheloid (15%), or 3) mixed forms (15%) 
(Fletcher et al., 2002; Kindblom et al., 1998; Miettinen, 1988). Relying purely on 
morphology-based diagnostics makes the list of differential diagnoses long. 
Immunohistochemical analyses are therefore used for suspected GISTs for more 
accurate diagnosis (Figure 3). α-SMA is variably expressed in GIST, whereas 
desmin is usually absent. As previously mentioned, CD34 was the first marker 
that helped to distinguish between true GI smooth muscle tumors and GISTs 
(Miettinen et al., 1995) (Table 1). Three years later, two groups reported over-
expression of the highly sensitive and specific marker KIT (CD117), which, for 
the first time, led to reliable diagnostics of GISTs (Hirota et al., 1998; Kindblom 
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et al., 1998). CD117 staining pattern can be membranous, diffusely cytoplasmic 
or perinuclear. Additional biological insight about STS and GIST was retrieved 
from microarray-based gene expression studies (Allander et al., 2001; Katoh and 
Katoh, 2003; Khan et al., 2001; Nielsen et al., 2002). In 2004, through guidance 
from these studies, West and co-workers generated an anti-serum against the 
protein FLJ10261, which turned out to be an even more reliable marker than 
CD117 (West et al., 2004). Today, this marker is known as DOG1 (discovered 
on GIST-1), but has aliases such as ANO1 (anoctamin 1), TMEM16A, and 
ORAOV2 (over-expressed in oral carcinoma). Almost 97% of GISTs are DOG1 
positive, including some KIT-negative tumors. Together CD117 and DOG1 
diagnose nearly 100% of GISTs, and are rarely expressed in other mesenchymal 
tumors (Miettinen et al., 2009). DOG1 is a Ca2+-activated Cl- channel protein 
(Yang et al., 2008). Since DOG1 is so abundant in GIST, we hypothesized that it 
is likely that it plays an important functional role. Very little data exist in this 
field, which was therefore explored in paper IV.  

 

  

 

 

  

 

 

 

 

Figure 3. Macroscopic and microscopic appearance of a gastric GIST. (A) Intra-
operative photograph. (B) Hematoxylin and eosin (HE) stained GIST cells with spindle 
cell morphology. Immunohistochemistry positive for (C) CD117 and (D) DOG1. 
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Figure 4. Tyrosine kinase receptor functions in health and disease. Left, Native KIT and 
PDGFRA are activated by their respective ligands, SCF and PDGF, which lead to 
receptor dimerization and subsequent activation. Right, in GIST cells, mutated receptors 
are constitutively activated independently of ligand binding. Tyrosine kinase inhibitors, 
like imatinib, fit into the ATP-binding pocket of the intracellular part of the receptor and 
hinder its activation.  

Table 1. Immunohistochemical markers for GIST. 

Target protein Proportion positive 
tumors (%) 

DOG1 (discovered on GIST-1) 
KIT (stem cell factor receptor) 

88-97 
88-95 

CD34 (hematopoietic progenitor cell antigen) 60-70 
α-SMA (alpha smooth muscle actin) 30-40 
S-100 protein 5 
Desmin < 5 
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Molecular pathology 
Multicellular organisms regulate cell growth tightly. When a cell loses the ability 
to adjust itself to an organism’s needs, it exhibits cancer hallmarks: constant 
proliferation, immortality, evasion of growth suppression, resistance to cell 
death, angiogenesis, invasion and metastasis, change in metabolism, and immune 
surveillance escape (Hanahan and Weinberg, 2011). The KIT molecule (stem 
cell factor receptor) is a growth factor receptor that belongs to the type III 
tyrosine kinase receptor family. The platelet-derived growth factor receptor types 
A and B (PDGFR-A and B), and colony stimulating factor 1 (CSF-1) also belong 
to the same group of receptors. The KIT protein is encoded by the KIT gene, 
which is located in chromosomal region 4q12 (www.ensembl.org); its 
extracellular domain consists of five immunoglobulin domains (Chan, 1999). 
The second and third loops bind the ligand, the stem-cell factor (SCF, also 
known as steel factor or mast cell growth factor). Once the receptor has bound 
the ligand, it undergoes homodimerization and autophosphorylation and 
activates downstream signaling (Blume-Jensen et al., 1991). The platelet-derived 
growth factor is the ligand for the PDGFRA receptor (Figure 4). The 
intracellular parts of the KIT and PDGFRA receptors consist of a 
juxtamembrane domain, a tyrosine kinase domain I (ATP-binding pocket), and a 
tyrosine kinase domain II (activation loop). The juxtamembrane region regulates 
dimerization, and mutations in this region disturb its normal function (Chan et 
al., 2003). Changes in the kinase II domain affect the activation loop that 
regulates the ATP-binding pocket of the KIT and PDGFRA receptors (Figure 5).  

Hirota and co-workers published their breakthrough discovery of KIT mutations 
in GISTs in 1998. It is now well established that most GISTs (75-80%) have 
oncogenic KIT mutations (Hirota et al., 1998; Corless et al., 2011) that render the 
kinase constitutively active through ligand-independent self-phosphorylation 
(Figure 4). Oncogenic signals are passed on downstream by the active receptors 
mainly through the MAPK, PI3K/AKT, and STAT3 pathways, thereby 
promoting cell survival and proliferation (Figure 6) (Corless et al., 2011; 
Duensing et al., 2004; Rubin et al., 2007).  
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Figure 5. Topology and functional domains of the type III receptor tyrosine kinases KIT 
and PDGFRA. Corresponding exons with recurrent mutations in GISTs are indicated.  

Mutation analysis is important in the clinical evaluation as a diagnostic tool, to 
predict the sensitivity to tyrosine kinase inhibitors, and for prognostic purposes 
(Figure 5, Table 2). Most KIT mutations affect the juxtamembrane domain 
encoded by exon 11 (65%) that promotes the activation loop to switch into its 
active conformation.  
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Figure 6. Signaling pathways in GIST. Typically, KIT or PDGFRA mutated receptors 
are constitutively active conferring signals through the MAPK (RAF, MEK, ERK), 
PI3K/AKT, and STAT3 pathways. Signaling through the MAPK pathway also 
maintains the ETV1 activity, a lineage survival factor regulating gene expression in 
GIST (Chi et al., 2010). A few GISTs, earlier classified as wtGISTs, contain mutations 
in NF1, RAS, and BRAF, resulting in MAPK activation downstream of the receptors. 
SDHx complex mutations result in higher HIF1α levels and increased VEGF and IGF 
transcription. Adapted and modified from Joensuu 2013 and Corless 2014. 

 



 

12 

 
Table 2. Molecular classification of GISTs.  

  (Adapted from Corless et al., 2011 and 2014). 

Among the different types of exon 11 mutations, deletions stand out as 
conferring the poorest progression-free and overall likelihood of survival 
(Andersson et al., 2006). Mutations can also occur in the extracellular domain 
(encoded by exon 9), and they are believed to change the receptor conformation 
in a fashion similar to how the normal ligand binds (Lux et al., 2000). 
Interestingly, these mutations are almost exclusively restricted to GISTs in the 
small or large intestine, although there might be a population differences 
(Sakurai et al., 2001). Exon 9 mutations are critical because of their poor 
response to imatinib and higher tyrosine kinase inhibitor (TKI) dose 
requirements (Marrari et al., 2010). Exon 13 and exon 17 mutations are rare and 
possess variable imatinib sensitivity, but can be detected in recurrences and cases 
with imatinib resistance (Corless et al., 2011). PDGFRA mutations, homologous 
to those in KIT, have been discovered in about 30% of KIT-negative GISTs (i.e. 
10% prevalence) (Hirota et al., 2003). KIT and PDGFRA mutations are mutually 
exclusive (Heinrich et al., 2003). Most PDGFRA mutant GISTs are indolent and 

Genetic type Frequency (%) Anatomical distribution 
KIT mutation 75-80   Exon 8 Rare Small bowel 
Exon 9 (e.g. ins AY502-503) 8 Small bowel, colon 
Exon 11 (deletions, insertions, 
substitutions) 65 All sites  
Exon 13 (e.g. K642E) 1 All sites  Exon 17 1 All sites      PDGFRA mutation ~10   Exon 12 (e.g. V561D) 1 All sites  Exon 14 (e.g. N659K) <1 Stomach  Exon 18 (D842V) 6 Stomach, mesentery, omentum 
Exon 18 (other)                                        1 All sites      Wild-type KIT and PDGFRA 10-15 All sites  BRAF V600E ~2-7   SDHA/B/C/D mutations ~6 Stomach and small bowel 
HRAS, NRAS, and PIK3CA <1   Pediatric/Carney's triad ~1 Stomach  NF1-related <1 Small bowel 
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found in the stomach (Lasota et al., 2004). However, D842V substitutions are 
exceptions, which are known for primary imatinib resistance (Corless et al., 
2005). Although the intracellular signaling pathways activated by PDGFRA are 
almost identical to those in KIT-mutant GISTs (Heinrich et al., 2003), the gene 
expression profile is distinct (Kang et al., 2005; Subramanian et al., 2004). The 
two tumor types are difficult to distinguish morphologically, but irrespective of 
mutation status they are DOG1 positive (West et al., 2004).  

Approximately 10-15% of GISTs do not have mutations in either KIT or 
PDGFRA, and have been named wtGISTs. This heterogenous subgroup of 
GISTs still has phosphorylated active KIT and is clinically very similar to KIT 
and PDGFRA-mutated GISTs. Proposed mechanisms that drive these mutations 
downstream of the kinase receptors include: the BRAF V600E mutation, NF1 
mutations, RAS-family mutations (HRAS, NRAS, KRAS), or mutations in SDH/A-
D (Agaram et al., 2008; Kinoshita et al., 2004; Janeway et al., 2011; Miranda et 
al., 2012). Mutations in RAS, BRAF, and NF1 activate the MAPK pathway, 
while loss of the SDH complex function leads to accumulation of succinate, and 
subsequent upregulation of HIF1α transcription and its target genes (IGF1R and 
VEGF) (Figure 5). The majority of GISTs occur as sporadic tumors without 
known risk factors, but some are part of tumor syndromes. Germ-line autosomal 
dominant mutations in familial GISTs affect both KIT and PDGFRA exons, 
which leads to tumor development in the stomach or small intestine at early ages 
(Chompret et al., 2004; Nishida et al., 1998). These patients can also have altered 
skin pigmentation, ICC hyperplasia, and hematologic disorders. This 
underscores how constitutional mutations in the KIT gene also affect other cells 
where KIT is important (hematopoietic cells, melanocytes, and ICCs) (Chan, 
1999). The non-hereditary syndrome, Carney’s triad, is associated with gastric 
GISTs, paragangliomas, and pulmonary chondromas. GISTs associated with 
Carney’s triad are wtGISTs, as they lack KIT and PDGFRA mutations but have 
SDHx mutations (Carney et al., 1977; Janeway et al., 2011). The germline 
mutation variant is called Carney-Stratakis syndrome with mutations in SDHx 
subunits (Carney and Stratakis, 2002; Dwight et al., 2013). This puts patients at 
increased risk for a dyad of GIST and paraganglioma. As already pointed out, 
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NF1 mutations lead to MAPK pathway activation. It is believed that almost one-
tenth of patients with neurofibromatosis type 1 (von Recklinghausen’s 
neurofibromatosis) develop KIT positive small intestine GISTs lacking KIT 
mutations (Takazawa et al., 2005). Furthermore, homozygous mutations and 
some chromosomal changes have been associated with GIST malignant 
progression and metastatic potential (Corless, 2011). 

Risk stratification and prognosis 
The clinical course of GISTs ranges from small indolent tumors to highly 
aggressive sarcomas. As in other malignancies, the key to choosing the correct 
treatment and follow-up strategies is to accurately determine disease grade, risk 
of recurrence and progression. Every GIST patient should be assessed by any of 
the commonly used risk stratification schemes (NIH consensus criteria, AFIP 
criteria, or modified NIH criteria), nomograms, or heat and contour maps, to 
determine which patients are likely to benefit from adjuvant therapy (Fletcher et 
al., 2002; Gold et al., 2009; Joensuu, 2008; Joensuu et al., 2012; Miettinen and 
Lasota, 2006; Rossi et al., 2011). At sarcoma center Karolinska, we use the 
modified NIH criteria to estimate the risk of recurrence after surgery (Table 3). 
The prognostic information is based on four factors: 1) tumor size, 2) mitotic 
count, 3) location, and 4) the presence of tumor rupture. In general, non-gastric 
large tumors with a high mitotic index have the poorest recurrence-free survival 
(RFS) (Joensuu, 2008). In the event of intraoperative tumor pseudo-capsule 
rupture, the patient is immediately at high risk of peritoneal relapse, and thus 
should be considered for adjuvant therapy. Other factors such as age, related 
diseases, and mutation status also influence the decision-making process for 
adjuvant therapy. Mutation status is not yet part of any risk stratification scheme, 
but it is important for choosing drugs and dosages. For example, PDGFRA 
D842V-mutated GISTs are not sensitive to imatinib and should not receive this 
adjuvant treatment, while exon 9 KIT mutated tumors should be treated with 
higher imatinib doses (800 mg daily), if tolerated. 
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Table 3. Criteria for risk-stratification of GIST recurrence after surgery. 

*Data from ten pooled population-based series.  
HPF = high power microscope field. NIH = National Institutes of Health. 
RFS = Recurrence-free survival. 
If tumor rupture is present (regardless of size, count, location): High risk. 
Modified NIH criteria. Adapted from Joensuu, 2008 and 2013. 
  

 Tumor characteristic 10-year 
RFS (%)* Risk Diameter (cm) Mitotic count  

(per 50 HPFs) Location 

Very low  <2.0 ≤5 Any 94.9 
Low 
Intermediate 

2.1-5.0 
2.1-5.0 

≤5 
>5 

Any 
Gastric 

89.7 
- 

Intermediate ≤5.0 6-10 Any 86.9 
Intermediate 5.1-10.0 ≤5 Gastric 86.9 
High >10.0 Any Any 36.2 
High Any >10 Any 36.2 
High >5.0 >5 Any 36.2 
High 2.1-5.0 >5 Non-gastric 36.2 
High 5.1-10.0 ≤5 Non-gastric 36.2 
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Medical treatment 
“I don’t think we’re going to hit home runs, but if we can get a series of line-
drive singles going and put enough singles back to back, we can score runs.” 

                  - Dr. Leonard Saltz on imatinib treatment, Memorial Sloan-Kettering. 

 

Considering that GIST is a rare tumor, which necessitates treatment planning by 
physicians from several specialties, it is important to organize the treatment 
around centers with multidisciplinary experience (Mullady and Tan, 2013). At 
our center, GIST treatment follows the Scandinavian Sarcoma Group (SSG) and 
the European Sarcoma Network Group guidelines (ESMO, 2012). Figure 7 
summarizes the workflow basics.  

 

 

Figure 7. Schematic flow-chart for the treatment and follow-up of histologically 
verified GISTs. 
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GISTs emerged as a solid paradigm for receptor tyrosine kinase-induced tumors 
in 2002, when the Food and Drug Administration (FDA) approved the TKI 
imatinib for the treatment of advanced and metastatic GISTs (Dagher et al., 
2002). In the pre-imatinib era, patients with advanced disease had a median 
survival rate of 10-20 months (Joensuu, 2002); imatinib treatment offers a 
prolonged survival of, on average, approximately 5 years, compared to historical 
controls. Imatinib was not designed for GISTs originally, but for chronic 
myelogenous leukemia (CML), which has the bcr-abl oncogene present in 95% 
of cases. The inhibitory effect by imatinib on bcr-abl colony formation was 
impressive, with a 92-98% response (Druker et al., 1996). Imatinib (also known 
as STI571, or Gleevec® in the US, Glivec® elsewhere) exerts its effect via 
competitive blockage of the ATP-binding site of bcr-abl, KIT, and PDGFRA 
receptors, which terminates downstream phosphorylation (Reichardt et al., 2011; 
Ricci et al., 2002). 

 

Adjuvant therapy 

The use of adjuvant treatment should be considered in all operable high-risk 
primary GISTs. A one-year adjuvant daily regimen of 400 mg imatinib was 
embraced for imatinib-sensitive, high-risk GISTs (categorized by for example 
modified NIH criteria), as the standard of care when the first randomized 
ACOSOG Z9001 placebo-controlled phase III trial showed convincing 
prolongation of RFS in comparison to placebo (DeMatteo et al., 2009). Three 
years later, a second randomized controlled trial on high-risk operable GISTs 
proved superiority of a 3-year adjuvant imatinib treatment over one year, with 
improved RFS and OS (Joensuu et al., 2012). The current adjuvant standard of 
care duration is therefore three years. However, the optimal adjuvant treatment 
duration is still unknown. Imatinib is generally well accepted by patients, but 
some develop more severe side-effects. The most common adverse effects, of 
any grade, include anemia, periorbital swelling, diarrhea, nausea, muscle cramps, 
fatigue, and low white blood cell count  (DeMatteo et al., 2009; Joensuu et al., 
2012). Most of these side-effects can be managed by symptomatic treatment 
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(Joensuu et al., 2011). If the recurrence risk is predicted to be low or very low, 
adjuvant therapy is generally not indicated. In patients with intermediate risk, 
there is still some ambiguity and individual assessments are necessary. Future 
studies are needed to clarify the best treatment options for this group of patients. 
About one-third of patients suffer from tumor relapse within two years of 
treatment completion. Most of them are still imatinib-sensitive, and imatinib re-
challenge is therefore an option (Reid, 2013). 

 

Mutation analysis 

Mutational analysis has proven to be an important tool in clinical decision-
making among primary GISTs, and is required for adjuvant therapy decisions. 
Information regarding mutational status provides prognostic information and 
knowledge about a GIST’s sensitivity to TKIs. Imatinib is most efficient in exon 
11 mutated tumors (Heinrich et al., 2003), but other mutations are also 
responsive (Corless et al., 2011). Oppositely, PDGFRA exon 18 D842V 
substitution mutated GISTs are usually imatinib-insensitive and do not benefit 
from adjuvant therapy, regardless of risk classification (Prenen et al., 2006). 
Moreover, the available randomized clinical trials have been too small for 
subgroup analysis to bring consensus among the true wtGISTs. WtGISTs are 
often more indolent tumors with lower sensitivity to imatinib. However, the 
sensitivity to imatinib may vary, and the benefit to high-risk wtGISTs has been 
difficult to foretell, which is why individualized clinical decision-making has 
been proposed on a case-to-case basis (Reichardt et al., 2012). Interestingly, 
clinical trials have only been conducted in the adjuvant setting with imatinib 400 
mg/day, and exon 9-mutated GIST responses were suboptimal with this dosing. 
In the advanced disease setting, on the other hand, studies support an imatinib 
dose increase to 800 mg/day to induce a significantly higher response rate and 
prolonged progression-free survival (PFS) (Joensuu et al., 2012; MetaGIST, 
2010). Some clinicians believe that this evidence is sufficient to use the same 
dose also in the adjuvant setting for exon 9 mutations, though this treatment 
strategy is not yet supported by any controlled trials (Heinrich et al., 2008). 



 

 19 

Obtaining such evidence can be somewhat troublesome given the rarity of exon 
9 mutations and the potential side-effects inflicted by the higher imatinib doses. 
Other tumor genotypes such as SDHx deficiency and NF1 patients often have 
poor responses to imatinib (Chou et al., 2012; Yantiss et al., 2005). Primary 
imatinib resistance is seen in about 15% of GISTs (defined as progression within 
the first 6 months of treatment). 

 

Advanced/metastatic GIST and imatinib resistance 

The first-line treatment of locally advanced or metastatic GISTs is imatinib 400 
mg/daily unless the tumor expresses imatinib-resistant gene mutations. The first 
imatinib-treated patient was reported in 2001, and had a complete metabolic 
response within one month (Joensuu et al., 2001). It is now known that tumor 
regression, durable stable disease, or both can be achieved in more than 80% of 
patients, and that tumor burden decreases in about 50% (Blanke et al., 2008; 
Demetri et al., 2002; Verweij et al., 2004). The long-term outcome seems to be 
similar between patients with stable disease and those with an objective response 
(Blanke et al., 2008). The use of imatinib should never be discontinued in 
advanced GISTs due to the high risk of progression within one year of cessation, 
excepting for those patients that experience serious/toxic side-effects (Le Cesne 
et al., 2010; Patrikidou et al., 2013). Unfortunately, even if the patients do follow 
the prescriptions carefully, the vast majority will still have disease-progression 
within two years while on therapy (Blanke et al., 2008; Verweij et al., 2004). The 
most common cause of TKI resistance is acquired secondary mutations in the 
KIT or PDGFRA receptors, which lead to interference with drug binding and 
subsequent overgrowth of mutated tumor clones. These secondary mutations 
develop almost solely in the same gene and allele as the initiating oncogenic 
mutation (Antonescu et al., 2005; Corless et al., 2011). Other studies have 
observed a significant intra- and inter-lesional heterogeneity of secondary 
mutations in progressing GISTs, which underscore the challenges faced in trying 
to treat patients when first-line imatinib fails (Liegl et al., 2008; Wardelmann et 
al., 2005). Sunitinib has approval as a second-line therapy for advanced GIST 
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patients presenting with imatinib-resistance or intolerance (Demetri et al., 2012). 
This is a small-molecule TKI that possesses multitargeted properties with 
inhibiting effect on KIT, PDGFRA, and VEGFRs. Median time to disease 
progression is prolonged from 1.5 months to 6.3 months compared to placebo 
(Demetri et al., 2012). More recently, the FDA approved the multikinase 
inhibitor Regorafenib for the third-line treatment of advanced GISTs with failure 
or intolerance to both imatinib and sunitinib, with a significantly increased 
median PFS from 0.9 months in the placebo group to 4.8 months in Regorafenib 
treated patients (Demetri et al., 2013).  

As with imatinib treatment, GISTs commonly develop resistance over time also 
against these drugs. Several additional TKIs (e.g. Nilotinib, Sorafenib, 
Dasatenib) have been tested, but none have proven activity or results sufficient 
for clinical implementation. Masitinib is an oral TKI with encouraging results 
from a phase II study (Le Cesne et al., 2010), and is currently under investigation 
in the first-line setting in a randomized phase III trial. Another alternative in 
selected advanced GISTs progressing on imatinib is dose-escalation (Hislop et 
al., 2012). 

Most imatinib-resistant GISTs are still dependent on tyrosine kinase signaling, as 
supported by preclinical studies (Heinrich et al., 2006). Based on the identified 
intracellular signaling pathways in GISTs (Figure 5) several new strategies 
targeting pathways downstream of the receptors are therefore under evaluation in 
clinical trials. According to ClinicalTrials.gov (a service of the U.S. National 
Institutes of Health), accessed April 12 2014, 19 agents are under investigation, 
including: a selective cyclin D inhibitor (PD-0332991), a Hsp90 inhibitor 
(AUY922), a MEK inhibitor (MEK162), multikinase inhibitors (masitinib, 
dasitinib, regorafenib, pazopanib, nilotinib, sorafenib, vandetanib), an 
immunomodulating agent (ipilimumab), a hypoxia-activated prodrug (TH-302), 
a hedgehog signaling pathway targeting agent (vismodegib), a gamma-
secretion/notch signaling pathway inhibitor (R04929097), oral angiogenesis 
inhibitors, PI3K inhibitors (BKM120, BYL719), and BRAFV600E inhibitors 
(dabrafenib, trametinib). 
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Therapeutic drug monitoring and drug transporters 

Another interesting aspect of imatinib resistance is imatinib trough 
concentrations. Plasma levels below 1100 µg/L four weeks after treatment 
initiation, are associated with shorter time to GIST progression than as compared 
to concentrations >1100 µg/L (Demetri et al., 2009). Eechoute and co-workers 
reported that the plasma imatinib concentration drops with up to 30% from 
baseline within three months on treatment (Eechoute et al., 2012). The 
mechanism by which this pharmacokinetic phenomenon happens is unknown, 
but the authors consider drug transporter expression as one possible explanation. 
Current evidence supports that imatinib therapeutic drug monitoring (TDM) may 
provide complementing information to clinical evaluation regarding efficacy, 
safety, and compliance. In patients with poor treatment response, major drug 
interactions, or unexpected observed toxicities, a dose adjustment may be needed 
(Judson, 2012; Teng et al., 2012). 

A well-documented efflux pump is the p-glycoprotein (ABCB1 or MDR1), a 
member of the ATP-binding cassette transport superfamily, and is associated 
with multidrug resistance (Gottesman et al., 2002). Both ABCB1 and ABCC1 
are expressed in roughly 75% of GISTs  (Perez-Gutierrez et al., 2007; Plaat et 
al., 2002; Theou et al., 2005), which imply a possible role in drug transport. 
Although preclinical data suggest that the cellular over-expression of ABCB1 
cause decreased intracellular levels of imatinib (Hamada et al., 2003; Widmer et 
al., 2003), it is not known whether this has functional consequences in GIST 
cells. It is also not known whether imatinib treatment induces over-expression of 
drug transporters. However, clinical observations indicate that imatinib dose-
escalation to 600 mg or 800 mg/day can sometimes control advanced GISTs 
progressing on imatinib (Hislop et al., 2012). Imatinib is likely to be transported 
into cells by the OCT-1 influx protein, a member of the solute carrier 
superfamily (SLC) (Thomas et al., 2004). This was shown in CML cell lines and 
the tumoral expression of OCT-1 in CML patients and has been correlated with 
patient outcome. Similar drug transporter correlations are limited in GIST 
patients. We therefore set out to develop a protocol to measure the intracellular 
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imatinib concentration so that concentration measurements can be correlated 
with the drug transporter expression in GIST patients (paper I). 

 

Neo-adjuvant treatment 

An area in GIST treatment that is under rigorous investigation is whether 
selected patients can benefit from neo-adjuvant imatinib treatment. Several 
studies have shown promising cytoreductive effects on locally advanced GIST 
patients treated 2-6 months with imatinib before surgery, inducing tumor 
regression and a decrease in tumor vascularity. These effects have provided 
useful help to the surgeon during tumor resection, allowing for a less mutilating 
procedure (Eisenberg and Trent, 2011; Fiore et al., 2009; McAuliffe et al., 2009; 
Rutkowski et al., 2013). Knowledge about mutation status and tumor response 
early after neo-adjuvant treatment initiation is important for identification of 
patients likely to benefit from the treatment and for timely planning of surgical 
excision. We apply a six months long neo-adjuvant treatment at our center to 
minimize the risk of disease-progression during therapy. 
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Surgery of GIST 
“After reviewing all facts, I am pleased to say that the operation is needed, that 
it shall provide excellent results.” 

                     - Dr. Michael DeBakey, surgical pioneer. 

Even though targeted therapy has revolutionized the oncological treatment of 
GISTs it cannot clear the disease completely, perhaps because of persistent 
mature GIST cells or due to GIST stem cells (Agaram et al., 2007). To date, the 
only chance to be cured from a non-metastatic operable GIST is by complete 
surgical resection without tumor rupture (R0, i.e. surgical margins without any 
tumor cells) (Joensuu et al., 2012). Radical surgery can be achieved by open or 
minimally invasive surgery (Novitsky et al., 2006). Based on pooled cohorts of 
2459 patients, about 60% of patients with operable GISTs are cured, with few 
recurrences after 10 years (Joensuu et al., 2012). Wedge resection is particularly 
common for small to medium-sized gastric lesions, and segmental resection for 
localized intestinal tumors. Resection of clinically negative lymph nodes is not 
needed in adults since the prevalence of lymph node metastasis is less than 1% 
(Everet and Gutman, 2008). Of note, in young and pediatric patients lymph node 
metastasis rate is higher (Agaimy and Wunsch, 2009). Tumor resection is 
commonly considered for tumors larger than 2 cm in diameter (ESMO, 2012; 
Joensuu, 2013). Colorectal GISTs, however, should only be operated on after 
having considered neo-adjuvant down-staging, which can allow more structure-
preserving surgery and less technical challenges (Jakob et al., 2013). In 
metastatic disease, surgery might still fill an important role among selected 
patients, provided they are stable or have limited disease progression on TKI 
treatment. By removing TKI-resistant tumor clones, resistance to TKI therapy 
may be delayed or possibly even prevented (Bamboat and DeMatteo, 2014; 
Gronchi et al., 2007; Raut et al., 2006). 
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Monitoring 
As previously emphasized, GIST patients should preferably be followed at 
experienced sarcoma centers, especially since there is not yet enough data to 
support one optimal routine follow-up policy. Institutions therefore have 
different monitoring preferences. Regardless of protocol used, all patients should 
be informed about the importance of therapy adherence, potential drug and food 
interactions, and how to manage side-effects, when put on TKI treatment. 

Follow-up schedules for GIST usually include physical examination (PE), blood 
chemistry analysis, blood cell count, and imaging. In the randomized trials for 
adjuvant imatinib therapy, PE and blood biochemistry were monitored every 1-3 
months while on therapy (DeMatteo et al., 2003; Joensuu et al., 2012). Imaging 
is usually performed of the pelvis and abdomen, since most relapses are found in 
the liver and/or peritoneum (infrequently in bone or lungs). Different imaging 
modalities can be used (e.g. CT/MRI/FDG-PET). CT is considered the gold 
standard of imaging in GIST, but FDG-PET represents the most sensitive 
technique for tumor staging and evaluating therapy response. At our center, we 
currently follow the ESMO imaging guidelines (2012) for high-risk patients 
(Table 4), with the highest propensity to recur within the first two years after 
adjuvant therapy discontinuation. Depending on the presence of side-effects 
and/or toxic effects, clinical monitoring can be motivated more frequently. The 
benefit of following low-risk GISTs is not established, but can be carried out at 
6-12 month intervals for five years (ESMO, 2012). Very-low risk patients have 
so low risk for recurrence that routine follow-up is not automatically merited.  

The follow-up schedules are based partly on expert opinions, and vary between 
studies and guidelines (Table 4). They may be replaced by more tailored 
approaches: for example, Joensuu and co-workers (2014) recently developed a 
mathematical model where they adjusted the timing of CT scans with the hazard 
of cancer recurrence with time. Their result showed that such adjustment could 
detect tumor recurrences earlier compared to current guidelines, and without 
using increased imaging frequencies (Joensuu et al., 2014). Routine MRI instead 
of CT is seldom performed due to limited access, but can be considered 
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especially in young patients to lower the accumulated radiation dosages. MRI at 
the same frequency as CT is considered to be equally efficient (Reichardt et al., 
2012). Since most GISTs recur within the first two years after imatinib cessation 
it is justified to re-intensify the follow-up imaging during this period (Joensuu et 
al., 2013; ESMO, 2012). Recurrences occur only sporadically after more than 10 
years of monitoring (Joensuu et al., 2012).  

Free circulating DNA (fcDNA) has been possible to detect and quantify in 
plasma from GIST patients (Maier et al., 2013). However, currently, there are no 
known protein biomarkers used in the follow-up for detection of disease relapse, 
therapy responses, or disease progression in GIST patients, even though GIST 
cells have a neuroendocrine phenotype (Bumming et al., 2007; Erlandsson et al., 
1996). In paper II and paper III the presence of functional cell secretion and 
protein secretome in GIST cells have therefore been evaluated. 

Table 4. CT monitoring of GIST patients after surgery. 
 

  
# of CT scans1 

Guideline/study Follow-up with abdominal and pelvic CT3 Year 1-5 Year 1-10 
SSG XVII 
guidelines 6 m intervals for 5 y, then annually 10 15 

ACOSOG 
Z9001 

3 m intervals for 2 y, then 6 m intervals 
for 5 y 14 NA 

ESMO 2012 
guidelines2 

3-6 m for 3 y, then 3 m intervals for 2 y, 
then 6 m intervals for 3 y, then annually 14-20 22-28 

NCCN 2012 
guidelines 3-6 m intervals for 3-5 y, then annually 8-20 13-25 

Abbreviations: ACOSOG, American College of Surgeons Oncology Group; ESMO, 
European Society for Medical Oncology; NA, not available; NCCN, National 
Comprehensive Cancer Network; SSG, Scandinavian Sarcoma Group. 
1 One abdominal CT scan is considered to deliver an effective radiation dose of 8 mSv 
on average, corresponding to 3.3 years of natural background radiation (Davies et al., 
2011). 
2 The ESMO guidelines acknowledge that the optimal monitoring schedule is unknown 
and exemplify how some departments choose to follow their patients. 
3 0-3 years = during adjuvant imatinib therapy. >3 years = after imatinib cessation. 
(Adapted and modified from Joensuu et al., 2014). 
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 AIMS OF THE STUDY 

 

The overall aims of the thesis were to elucidate the presence of a functional 
GIST cell stimulus-secretion mechanism, to determine the existence of a GIST 
secretome and its constituents, to measure intracellular imatinib concentrations, 
and to investigate the role of DOG1 in GIST cells.  

 

The specific aims were: 

• To develop a novel protocol for the measurement of intracellular imatinib 
concentration in in-vitro and in-vivo systems of GIST cells. 

• To characterize stimulus-release coupling in GIST cells by confocal 
microscopy of cytoplasmic free [Ca2+]i and luminometric measurements 
of extracellular ATP levels.  

• To determine the existence of a GIST secretome and its protein 
composition from imatinib-sensitive GIST cells by applying shotgun 
proteomics. 

• To examine the functional role of DOG1 pharmacological modulation on 
apoptosis, proliferation, and viability in GIST cells. 
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MATERIALS AND METHODS 

 

Below is a general introduction to the materials and methods used in papers I-
IV. More detailed methodological descriptions are outlined in each original 
paper. 

 

Patients and clinical material 
The thesis includes imatinib concentration determinations on human plasma and 
tumor tissue specimens from three patients (paper I). Plasma and tissue samples 
were snap-frozen to -80°C in conjunction with surgery and stored until further 
use. All samples were collected with informed consent and ethically-obtained 
approval from patients undergoing surgery for GISTs. Approval of the study was 
obtained from the regional ethical review board in Stockholm. 

 

Established cell lines 
Two established human GIST cell lines were used for functional studies: 1) the 
imatinib-sensitive GIST882 (paper I-IV), and 2) the imatinib-resistant GIST48 
(paper I, IV). For method validation purposes in paper II and paper III, we 
used the murine insulin-secreting pancreatic β-cell line MIN6m9. We used HEK-
293 (human embryonic kidney) cells for flow cytometric control experiments in 
paper I and paper II. 
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Experimental methods 

Mutation detection 
The British biochemist and Nobel Prize laureate Frederick Sanger developed the 
“dideoxy” chain-termination method for DNA sequencing, also known as the 
“Sanger method”, in the 1970s (Sanger et al., 1977). By mixing chain-
terminating fluorescent dideoxynucleotides (ddNTP) with deoxynucleotides 
(dNTP), polymerase chain reaction (PCR) creates DNA fragments of varying 
lengths that can be read as a chromatogram. Each curve then depicts a nucleotide 
in the DNA sequence. DNA sequencing can be used to search for genetic 
mutations, such as substitutions, insertions, and deletions, in selected genome 
regions. The Sanger method was used in paper I and paper II to identify and 
confirm the KIT mutation status of GIST882 and GIST48 cell lines. In paper I, 
tumor tissue specimens from three patients were searched for mutations in hot 
spot exons of the KIT and PDGFRA genes, using previously described 
methodology (Sihto et al., 2005). If no mutation was found in the KIT or 
PDGFRA genes, the tumor was considered wtGIST. 

Luciferase-based detection of ATP release 
Several techniques have been developed for analysis of cellular response and 
release events, for example electrophysiology and fluorescence imaging (Smith, 
Betz, 1996). Although powerful, most currently available methods are either 
cell-type dependent, invasive or restricted to being low-throughput. A 
commercially available assay to detect ATP release as an indicator of cell 
secretion, from large numbers of GIST cells in vitro, was therefore used (paper 
II). The detection is based on luminescence and measures extracellular ATP in 
the 10-11 to 10-16 molar range within which the ATP release is the limiting 
component in the luciferase reaction (Figure 8). 
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Figure 8. Schematic illustration of assay principle. Recombinant luciferase catalyzes the 
above reaction in the presence of ATP and oxygen. 

 

Measurements of the emitted light enabled quantitation of extracellular ATP. 
Standard curves and usage of “blank” samples ensured a good calibration quality 
and low background to signal ratio. Several steps were taken to avoid biased 
measurements. To minimize biased ATP release from dying cells, the GIST cells 
were cultured sub-confluent. Cells were carefully washed to remove any loose 
cells or particles prior to static incubation in triplicates with seven different 
conditioned media. Supernatant was collected from flasks kept upside down, to 
avoid detaching of cells, and then centrifuged to obtain cell-free samples. The 
supernatant was analyzed within 5 min after collection with a multi-well plate 
reader at the 560 nm emission wavelength. To avoid technical variations the 
samples were measured twice. Stimulation of MIN6m9 β-cells with glucose 
increased insulin release and ATP accumulation, and served as method 
validation. 

Lactate dehydrogenase (LDH) concentrations 
The UniCel DxC 800 clinical system (Beckman Coulter) was used together with 
a LDH reagent in an enzymatic method to measure the reversible conversion of 
lactate into pyruvate by LDH. It monitors changes in absorbance at 340 nm 
during a certain time interval, which is correlated to the LDH activity. LDH 
concentrations were utilized as an indicator of possible cell lysis in paper II. 
The method, with a 0.1-45 µkat/L detection range, was performed at the routine 
clinical chemistry laboratory at the Karolinska University Hospital. 
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Flow cytometry 
Flow cytometry is a biophysical method used for concurrent measurements of 
numerous physical characteristics at the single-particle level, commonly cells, as 
they flow in liquid suspension through one or several laser beams of light 
(Normal, 1980). The technique is routinely used today in both basic research and 
clinical practice. Cell properties that can be evaluated include relative size 
(detected by forward scattered light), relative granularity or internal complexity 
(detected by side scattered light), and relative fluorescence emission intensity. 
Every flow cytometer contains three main modules: the fluidic system that 
brings the particles to the interrogation point in the stream of fluid, the laser 
optics system which focuses the laser beams and directs the scattered and 
emitted light to appropriate detectors, and the electronic system that converts the 
detected light into electronic signals. Multiple software solutions exist for the 
computerized data processing. Flow cytometry was used to verify CD117 
expression on the cell surface of GIST cells (paper I), and to assess single-cells 
stained with 7-aminoactinomycin D (7-AAD) (paper II and IV) and Annexin V-
PE (paper IV). 

Cytoplasmic free Ca2+ measurements 
The bioimager BD PathwayTM 855 (Becton Dickinson Biosciences, CA, USA) is 
an advanced optical system with motionless stage and movable optics for cell 
imaging in multi-well plates and high-content analysis. The system provides 
illumination possibilities across the spectrum from λ 340-750 nm wavelengths 
and 16 different excitation filters. Liquid handling, environmental control, and 
laser focusing, are all automated. Transmitted light enables the capture of bright 
field images. Fluorescence images can be acquired in both wide-field and 
spinning disc confocal modes, and the latter together with a long single-
wavelength Ca2+ dye (X-rhod-1 AM) was used to detect cytoplasmic free Ca2+  
([Ca2+]i) changes in response to different basal and stimulatory conditions in 
GIST cells (paper II). 
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Discovery proteomics 
The proteome consist of all proteins expressed by the genome (Wilkins et al., 
1996). Proteomics refers to the large-scale in-depth investigation of proteins, 
their expression, functions, and structures. More than 100.000 protein isoforms 
are expectedly expressed in human cells, and the human proteome is dynamic 
and variable at certain times, in different cell types and conditions (Gstaiger and 
Aebersold, 2009). Mass spectrometry (MS) is a commonly used analytical 
technique to identify and quantify proteins in biological samples (Domon and 
Aebersold, 2006; Nilsson et al., 2010; Geiger et al., 2012). There are two main 
spectrometry-based proteomics approaches: bottom-up and top-down. A bottom-
up label-free discovery (also known as shotgun) proteomics strategy was used to 
examine the existence and composition of a GIST cell secretome (Figure 9) 
(paper III). Isolated proteins were first broken down into peptides by in solution 
tryptic digestion, which produces peptides amenable to ionization in the 
electrospray (ESI) source. Peptides can subsequently be analyzed by liquid 
chromatography coupled to tandem mass spectrometry (LC-MS/MS), which 
combines the physical separation properties of LC with the mass analysis 
capabilities of MS (Yates, 2009). 

In the first part, the reversed-phase liquid chromatography column separates 
peptides based on their hydrophobicity, thereby reducing the sample complexity. 
Peptide separation also increases the chances of detecting low-abundant proteins 
that would otherwise be masked by high-abundant signals. The MS instrument 
usually contains three main components: an ion source, a mass analyzer and a 
detector (Figure 10). The mass analyzer in paper III was a Q Exactive Hybrid 
Quadrupole-Orbitrap mass spectrometer (Thermo Scientific), which was coupled 
to a nano-electrospray ionization (ESI) source that ionized peptides eluted from 
the LC column. The Orbitrap separated ions based on their m/z (mass-to-charge 
ratios) resonance frequencies. This generated a mass spectrum; i.e. an abundance 
plot of all separated ions with ion counts (intensity) on the y-axis and m/z on the 
x-axis. Since mass spectra were recorded continuously over time during LC-
separation, there was an indexation of each time point in the LC chromatogram 
to the single mass spectrum of that time point. 
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Figure 10. Illustration of tandem mass spectrometry modules. The nano-ESI ionizes 
LC-eluted peptides, and the mass analyzer MS1 separate the precursor ions before they 
were fragmented by higher-energy collision dissociation (HCD). The second mass 
analyzer (MS2) analyzes fragmented ions, and mass spectra were ultimately generated 
through detector measurements of ions, based on m/z ratios. 

By matching the fragment ion spectra (MS2) against established databases of in-
silico generated peptide sequences, the peptides were identified, and from there 
inferred the originating protein. This was carried out with the Sequest search 
algorithm and scoring scheme, which matched the theoretical peptide spectrum 
with the experimentally observed spectrum (Sadygov et al., 2004). The outputs 
were peptide-spectrum matches (PSMs) and associated scores, which reflected 
the degree of similarity between measured and predicted spectra. A 1% false 
discovery rate (FDR) at peptide level was accepted. Peptide quantification was 
obtained from measurements of precursor ion intensities in the first MS spectrum 
(MS1), which is considered to accurately determine low abundant protein 
quantities (Wiener et al., 2004; Old et al., 2005). To express quantitative changes 
each protein area was normalized to the total intensity of all identified proteins. 
Only proteins present in at least two biological replicates were included in the 
quantitative analysis, and expressed as Log2 ratio to make the data normally 
distributed. Algorithms for zero values were avoided by setting an arbitrary 
value equal to half the minimum value among all normalized proteins if no 
peptide was identified in an experimental group.  

To assess secretory properties among identified proteins classical secretory 
proteins (SP+, endoplasmic reticulum/Golgi-dependent pathway) were predicted 
with a N-terminal signal sequence using SignalP 4.1 software. Proteins not 
predicted as classically secreted with SignalP 4.1 were assessed for non-classical 
secretion (SP-) with SecretomeP 2.0 and Gene Ontology (GO). Database for 
Annotation, Visualization and Integrated Discovery (DAVID) was used to see if 
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the identified proteins clustered into biological processes of interest. Proteins 
were also compared to the exosomal proteins reported in Exocarta. 

 

Imatinib quantification 
Imatinib concentration in two human GIST cell lines, in plasma and tumor 
samples from three GIST patients were determined as described in paper I in 
two steps: liquid-liquid extraction (LLE) and LC-MS (TOF) analysis (Figure 
11). In brief, GIST cells cultured in monolayers were statically incubated for 
three hours with different imatinib concentrations. They were subsequently 
trypsinized, centrifuged, and stored as a cell pellet in -80°C. The clinical samples 
(plasma, adipose, and tumor tissues) were collected and prepared in conjunction 
to surgery, and stored at -80°C until further use.  

Sample preparation prior to LC-MS analysis 

Preparation of cell culture and tissue samples involved homogenization prior to 
the extraction. Cell culture samples were homogenized using sonication (3 mm 
probe (Sonics Vibra Cell, Chemical instrument AB, Sweden) at 30% amplitude) 
where tissue samples were frozen in liquid nitrogen and homogenized with 
mortar and pestle. Cell culture, plasma (100 µL) and tissue (50 mg) samples 
were spiked with a known amount of trazodone as an internal standard (IS). 
Imatinib was extracted into methanol. Plasma samples were thoroughly 
vortexed, and the tissue samples were disrupted by blending (Polyron PT 1200, 
Kinematica) to facilitate the extraction. Samples were centrifuged, and the 
resulting supernatants were transferred into new vials and dried under a gentle 
stream of nitrogen. The residues were re-dissolved in methanol:water (20:80, 
v/v) prior to the LC-MS analysis. 
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Figure 11. Schematic illustration of a LC-MS (TOF) system. 

 

Determination of imatinib by LC-MS (TOF)  

The LC-MS system contained the following parts: an Agilent model 1100 Auto-
sampler, an Agilent 1100 Quaternary pump and an Agilent ZORBAX C18 (5 
µm, 2.1x50 mm) reversed phase analytical column controlled by Agilent 
ChemStation software (Agilent Technologies, Palo Alto, CA, USA). The mobile 
phase ran at linear gradient containing 0.1% formic acid in both methanol and 
water. The chromatographic system was coupled to a time-of-flight (TOF) mass 
spectrometer (Agilent Technologies, CA, USA), equipped with electrospray 
ionization (ESI). The detection was performed in positive ion mode. The TOF 
mass analyzer used in this study is based on the principle that particles with 
different masses require different time to travel a given distance, under the 
assumption that they are charged with equal kinetic energy by the ESI. The 
ionization potential was 3800 V and ion source temperature was at 300 ºC. The 
nebulising gas was used for ESI at the rate of 15 psi. The voltages fixed at 
fragmentor, skimmer, and octopole guides were 225, 60, and 250 V, 
respectively. The ion pulser at the TOF analyzer was set at the measurement 
frequency of two cycles/s, and peak lists were achieved using the molecular 
feature extractor software “MassHunter“ (Agilent Technologies, Santa, CA, 
USA). Extraction of total ion chromatogram for imatinib and trazodone were 
done with m/z ranges 494.15 – 494.3 and 372.1 – 372.2, respectively. 
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Quantification was inferred by comparing imatinib and IS peak areas. The results 
were obtained by mean value of triplicate analysis, and results were normalized 
to protein content. 

Protein concentration determination 
Protein concentrations were determined in GIST cell line samples and tissue 
specimens to enable imatinib normalization in paper I. Protein precipitates were 
homogenized, clarified and assessed by the Dot-it-Spot-it protein assay (Maple 
Stone AB) according to the manufacturer’s instructions. The blackness intensity 
was quantified in each dedicated spot on the image with Image J 
(http://rsbweb.nih.gov/ij/). Protein concentrations were estimated by comparing 
the sample results with the results from a calibration curve using Rodbard curve 
fitting in Image J.  

Insulin concentration determination 
In paper II and paper III the ArcDia 2-photon fluorescence excitation 
microparticle fluorometry (TPX) assay for insulin content (Arc-Dia Group, 
Turku, Finland) was used as an orthogonal method to validate data obtained 
from ATP measurements and discovery proteomics experiments in MIN6m9 
cells. The assay was performed according to the manufacturer’s instructions, 
using a recombinant human insulin standard to determine the insulin 
concentration. 

Western blot 
Western blot, also known as immunoblot, is an analytical antigen-antibody 
mediated reaction method used for the detection of specific proteins of interest. 
Protein-containing samples are first electrophoretically separated in 
polyacrylamide gels based on their respective molecular weights, where smaller 
polypeptides travel faster than large through the gel. Next, the proteins are 
transferred to nitrocellulose membranes, and non-specific protein binding is 
blocked by the addition of non-fat milk. At this point, the protein of interest is 
targeted by a primary antibody, which in turn binds an enzyme-linked 
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horseradish peroxidase secondary antibody (used in this thesis). The resulting 
chemiluminescence signal is detected visually on a film or by a scanner. We 
used Western blot as an orthogonal method in paper III to verify the shotgun 
proteomics data. 

Immunocytochemistry 
Immunocytochemistry is an analytical method dependent on a specific antigen-
antibody reaction at the protein level. Before conducting functional experiments 
on DOG1 in paper IV, stable expression of DOG1 and CD117 was verified in 
both the GIST882 and GIST48 cell lines. Cultured cells were harvested, washed, 
spun onto microscope slides, air-dried, and fixated in paraformaldehyde. After 
peroxidase blocking, the cells were incubated with CD117 and DOG1 
antibodies. Next, the EnVision™ Detection Systems Peroxidase/DAB was 
applied on the cells. Cell nuclei were counter-stained with Mayer’s 
Haematoxylin, and replacement of primary antibody with antibody diluent was 
used as negative control.  

Confocal laser scanning microscopy 
In contrast to conventional microscopy that illuminates the whole specimen, a 
confocal laser-scanning microscope (CLSM) illuminates one spot in the focal 
plane of interest, and images are acquired by sample raster-scanning with the 
focused laser beam. An optical arrangement of the objective, tube lens, and 
pinhole diaphragm essentially allows only light from one spot in the focal plane 
of interest to pass and be detected by the detector (Figure 12). Light from out-of-
focus regions of the cells is thereby prevented, creating high-resolution images 
of reflected or fluorescence light. In paper IV, GIST cells cultured on coverslips 
were washed, fixated, permeabilized, incubated with primary antibodies against 
DOG1 or CD117 and with fluorescently labeled secondary antibodies, to 
investigate their respective expression and subcellular locations. DAPI (4,6-
Diamidino-2-Phenylindole) was used for cell nuclei visualization. CLSM 
imaging was performed using a LSM510 ConfoCor3 instrument. 
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Figure 12. Confocal microscopy principles (adapted and modified from the LSM510 
ConfoCor manual, Carl Zeiss). 

Fluorescence of TRITC and Cy3 tags on the secondary antibodies was excited at 
543 nm and emitted light was separated, spectrally selected, and recorded with 
an avalanche photodiode. DAPI fluorescence was excited using the 365 nm line 
of a mercury lamp, spectrally selected and detected in a semi-confocal 
arrangement using a photomultiplier tube (PMT). 

Cell proliferation studies 
In paper IV, the proliferation, viability, and cytotoxicity of exponentially 
growing GIST cells were assessed in the presence of different pharmacological 
agents, by the commercially available colorimetric WST-1 assay. WST-1 is a 
stable tetrazolium salt that is cleaved by mitochondrial succinate-tetrazolium 
reductase into a water-soluble formazan, which can be quantitated 
spectrophotometrically in a multi-well plate reader format. The amount of 
formed formazan is directly correlated to the number of viable, proliferating 
cells. 

Electrophysiology 
Patch-clamp is an electrophysiological method for the study of ion fluxes across 
biological membranes in single cells. The technique was first described in 
current recordings from denervated frog muscle fibers (Neher, Sakmann, 1976), 
and the inventors Erwin Neher and Bert Sakmann were awarded the Nobel Prize 
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in Physiology or Medicine fifteen years after the publication of their original 
work. The technique was improved in 1981, enabling high-resolution current 
recordings from single ion channels (Hamill et al., 1981). A central step to obtain 
such high-resolution recordings is an electrical tightseal, typically exceeding 109 
Ω, between the glass pipettes and the cell membranes. Patch-clamp can be 
carried out in one of two modes: voltage-clamp (VC) or current-clamp (IC). In 
the VC mode, the voltage of cells or membrane patches is clamped while 
measuring the ion-channel currents, and vice versa in IC. All configurations that 
can be obtained originate from the “cell-attached” tightseal mode (Figure 13), 
and the configuration of choice is dependent on the research question to be 
answered. In cell-attached configuration, channel recordings are possible from 
ion channels encircled by the pipette tip, with the alternative to alter the 
extracellular solution while not affecting the internal cell milieu. Glass pipette 
withdrawal at this stage creates an excised patch with the cytosolic side facing 
the bath solution (“inside-out”), which can be modulated during the experiments. 
Applying mechanical suction through the pipette in cell-attached mode ruptures 
the plasma membrane only beneath its tip, and creates the necessary connection 
between the pipette and intracellular compartment for “whole-cell” recordings.  

 

 

 

 

 

 

 

 

Figure 13. Patch-clamp configurations. 
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One disadvantage with this configuration is a second-fast dilution of cytoplasmic 
constituents. By using pore-forming antibiotics in the pipette, like amphotericin 
B or nystatin, electrical access to the whole cell can be obtained while preserving 
the intracellular milieu (“perforated whole-cell”). Lastly, the “outside-out” mode 
is the most difficult but can be obtained from the “whole-cell” configuration, and 
is suitable for the study of receptor-operated ion channels. In paper IV, GIST 
cells were voltage-clamped at -60 mV in a whole-cell configuration and 
depolarized for 600 ms in +20 mV increments until +100 mV, to study Ca2+-
activated Cl- channels (DOG1) in GIST cells. Ion currents were measured at 
every step and the channel recordings were displayed according to the 
convention that upward deflection denotes inward current. Desired free Ca2+ 
concentrations were calculated with the MaxChelator software (Stanford, USA). 
All experiments were performed in room temperature. By fitting the data to the 
logistic regression Hill model the dose-response relation of a chloride channel 
blocker could be assessed in detail: 

𝐼
𝐼!
= 1−

𝐿

1+ [𝑋]
𝐼𝐶!"

!! 

where [X] is the concentration of the compound, L is the maximal inhibition 
caused by the compound, IC50 is the concentration of [X] causing half-maximal 
inhibition and h is the slope parameter (Hill coefficient). The I/Ic represents the 
relative whole-cell current at +100 mV, expressed as the ratio of mean current 
found during (I) and prior to (Ic) the addition of the test drug.  
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RESULTS AND DISCUSSION 

 

Paper I - Intracellular concentration of the tyrosine kinase 
inhibitor imatinib in gastrointestinal stromal tumor cells. 
The imatinib success story in the treatment of GIST has not only relied on its 
ability to block the KIT and PDGFRA receptors, but also on its favorable 
pharmacokinetic properties. Imatinib has a high bioavailability irrespective of 
dose and route of administration (~98%) (Peng et al., 2004). The T1/2 is around 
18 hours, which makes once daily dosing appropriate. Imatinib is metabolized by 
the cytochrome P450 system in the liver and CGP-74588 is an active metabolite 
that is mostly secreted in the bile (urinary elimination is low). Age, ethnicity, 
gender and weight do not seem to impact the pharmacokinetics significantly 
(Peng at al., 2005). However, Eechoute and co-workers (2012) have reported 
that the plasma imatinib concentration drops for unknown reasons with up to 
30% within three months after treatment initiation. They proposed changes in 
drug transporter expression as one possible explanation for this phenomenon, 
which raises the question if the drug distribution and possibly drug response can 
also vary within GIST tumors. To date there has been no readily accessible way 
to obtain regional pharmacokinetic/pharmacodynamic information from GIST 
tumors. Thus, it is not known if a similar pharmacokinetic phenomenon, as the 
one observed in plasma, occurs within the tumor. Neither is it known if the 
imatinib plasma concentration correlates to the intracellular concentration of the 
drug, and if the risk of local recurrences, metastasis or tumor resistance could be 
partly explained by differences in intracellular imatinib levels. It is important to 
keep in mind that imatinib requires access to its intracellular target, the ATP-
binding site of the tyrosine kinase receptors, probably through active uptake 
(White et al., 2006), to exert its inhibitory effects. Also, some multidrug 
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transporter (efflux) proteins have high affinity for TKIs (Ozvegy-Laczka et al., 
2005). 

We have developed a liquid-liquid extraction (LLE) LC-MS (TOF)-based 
method for intracellular imatinib concentration measurements in in vitro and in 
vivo GIST cell systems. The analytical protocol was validated using cell lines, 
and extended to measurements of imatinib in plasma, tumor, and adipose 
(reference) tissues from patients. Calibration curves were created by plotting the 
peak area of imatinib normalized to internal standard (IS) peak area versus the 
nominal concentrations of imatinib. The linearity was determined by linear 
regression analysis and the correlation coefficient (r2) of imatinib (30-7000 
ng/mL). R2 was 0.994. Quality control (QC) samples were prepared in three 
concentrations for intra- and inter-assay imatinib validation (100, 1000, 2 000 
ng/mL). The variation coefficients were less than 8% with an accuracy ranging 
from 93 to 110%. Patient samples were analyzed in triplicates and imatinib peak 
area was normalized to IS peak area and all the measurements were calculated 
from the calibration curve. The limit of detection was set three times above the 
baseline separation (single to noise >3). The limit of quantification was 
calculated from the standard curve where single to noise >6. Calculated imatinib 
recovery was > 90% (unpublished data). 

Clinically relevant imatinib incubation doses were chosen for the in vitro 
experiments, and significant differences were detected between the imatinib-
sensitive and resistant cells. Imatinib was also determined in plasma, tumor 
tissue specimens, and fat (reference tissue) in clinical samples from three 
patients. There appeared to be a high degree of drug accumulation in the tumors, 
which cohere well with the volume of distribution (Vz/f) of imatinib in previous 
pharmacokinetic studies (Gschwind et al., 2005). As expected, the imatinib 
levels were lowest in the reference tissue (fat), but showed regional 
accumulation in the tumors, with highest levels in the periphery. It is plausible 
that disease-related factors, such as drug transporters and intratumoral 
heterogeneity can result in the observed variable drug distribution (Saunders et 
al., 2012; Wardelmann 2006). Our analytical method also encompasses any 
possible influence on drug levels mediated by the tumor stroma (Davids et al., 
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2013), since both stromal cells and tumor cells are analyzed in the tumor 
specimen. This study was performed as a methodological proof-of-concept study 
and transporter expression was thus not studied. However, multidrug transporter 
expression can be detected in the majority of GISTs (Plaat et al., 2000; Perez-
Guierrez et al., 2007; Theou et al., 2005). A correlation between imatinib drug 
transporters and patient outcome has already been established in CML (Thomas 
et al., 2004). Whether such correlations exist for tumor cells from GIST patients 
is not known. If a correlation will be found, no current straightforward approach 
exist to overcome multidrug resistance, and Higgins (2007) therefore suggested 
that implementation of strategies to avoid multidrug resistance may be more 
efficient than trying to overcome the resistance once it has occurred. 

Based on these findings and current literature larger clinical studies are 
encouraged to correlate drug transporter expression over time with intracellular 
imatinib levels in tumor tissues to understand if drug transporters impact 
pharmacodynamics in GIST. At our center we have already started to include 
patients for a larger trial. From a clinical perspective, intracellular imatinib 
measurements may also be useful in selected patients. Trough imatinib plasma 
levels have been correlated with PFS (Demetri et al., 2009), and KIT exon 9 
mutated GISTs with higher imatinib dose requirements. TDM can be used to 
assess compliance, drug interactions, and to reduce adverse effect rates (Teng et 
al., 2012). If our technique could be adapted for measuring imatinib 
concentrations from FNAs, analysis of drug concentration in close vicinity to its 
actual point-of-action may be more useful than plasma-level measurements, 
especially as a tumor- and location-dependent imatinib uptake is shown. 
Moreover, patients who do not respond to imatinib, while pharmacogenetic 
interpretation expects a sensitive tumor, may have altered uptake and/or efflux 
mechanisms. In these selected cases an early dose increase or switch to another 
TKI could be beneficial. Intracellular imatinib concentration determinations 
could in this way be used as a tool to complement other follow-up strategies, 
TDM, and imaging modalities, to better reflect tumor biology. 
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Paper II - Evidence for Ca2+-regulated ATP release in 
gastrointestinal stromal tumors. 
ICCs are believed to be the progenitor cells of GIST, and they share several 
features, such as high KIT and DOG1 expressions. The spontaneous rhythmic 
oscillations responsible for motor activities in the GI tract are Ca2+-dependent, 
initiated by the ICCs, and then propagated to the surrounding smooth muscle 
cells. High conductance Ca2+-activated chloride (Cl-) (TMEM16A) currents have 
been suggested as one important generator of slow wave activity in ICC. The 
slow wave amplitude and frequency is regulated partly by inhibitory and 
excitatory enteric neurons utilizing purines, nitric oxide, acetylcholine, 
substance-P, and TRPCs, among others (Sanders et al., 2011). ICCs also have 
cell surface receptors for serotonin (5-HT) that can modulate the pacemaker 
activity (Liu et al., 2011; Shahi et al., 2011).  

A functional similarity between GIST and ICC was proposed when oscillations 
and ion channels necessary for pacemaker activity were found also in GIST 
(Furuzuno et al., 2006). GISTs show indication of a neuroendocrine phenotype 
through the expression of exocytotic proteins required for cell secretion and 
stores of synaptic-like vesicles (Bümming et al., 2007; Erlandsson et al., 1996). 
However, it is not known if GISTs contain a functional regulated secretory 
pathway. In many cell systems, ATP is stored at high concentrations within 
secretory vesicles and co-released during exocytosis (Aspinwall and Yeung, 
2005; Leitner et al., 1975). The identification of signaling pathways plays an 
important role in understanding the mechanism of cellular response. The key 
oncogenic mutations of KIT and PDGFRA in GIST cause dysregulation of PI3K-
AKT, MEK-MAPK, and STAT signaling pathways (Duensing et al., 2004; 
Rossi et al., 2006; Rubin et al., 2001), involved in cell cycle, protein translation, 
metabolism, apoptosis (Liegl-Atzwanger et al., 2010), and potentially cellular 
secretion (Jiang and Wong, 2013; Yano et al., 1993). In paper II, ATP was used 
as a universal tracer to evaluate cellular response and secretion events in GIST 
cells during stimulation with KCl, thapsigargin, acetylcholine, serotonin, 
substance-P, and low [Ca2+]e levels. The method of measuring cell response and 
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secretion was validated in MIN6m9 cells, showing co-secretion of insulin and 
ATP upon glucose stimulation.  

In many cell types, [Ca2+]i have a pivotal role in triggering cell secretion (Jahn 
and Fasshauer, 2012). In GIST882, modulators of [Ca2+]i, thapsigargin, 
charbachol, and KCl, had a strong influence on ATP release. Serotonin and 
substance-P, on the other hand, was not able to augment the ATP response. By 
choosing the two compounds with the most profound effect on ATP release, 
thapsigargin and KCl, we confirmed their ability to increase [Ca2+]i. 
Thapsigargin’s and Carbachol’s effects can partly be explained by the TRPC 
channels expressed in GIST (Furuzuno et al., 2006). Carbachol has an ability to 
activate non-selective cation channels (like TRPCs) via muscarinic receptors (So 
et al., 2009; Tsvilovskyy et al., 2009), and thapsigargin has an ability to block 
the sarcoplasmic/endoplasmic reticulum Ca2+-ATPas (SERCA) pump and 
activate store-operated calcium entry (SOCE) via TRPCs. To confirm that the 
source of ATP was not related to cell lysis or compromised cell membrane 
integrity, trypan blue exclusion staining, lactate dehydrogenase measurements, 
and flow cytometric analysis of 7-AAD in the control and thapsigargin treated 
groups were performed. No differences were found, indicating preserved cell 
integrity and active ATP release. To strengthen the hypothesis that the increase 
in ATP release was indeed Ca2+-regulated we excluded extracellular Ca2+, which 
markedly reduced the thapsigargin stimulatory effect. Furthermore, the effects 
on ATP and [Ca2+]i by high doses of KCl supported an electrically active cell 
secretion, indicating that the previously found K+ and Ca2+ channels are probably 
functional in GIST (Furuzuno et al., 2006; Suehara et al., 2008; Yamaguchi et 
al., 2008). The expression of substance-P and serotonin receptors in ICC has 
been found to have modulatory effects on pacemaker currents. So far no study 
has demonstrated the existence of substance-P and serotonin receptors in GIST, 
and no effect of serotonin and substance-P analogues on ATP release could be 
detected. 

From these findings it is concluded that GIST cells have, as ICCs, a functional 
intracellular Ca2+ signal transduction pathway. The signal transduction leading to 
ATP release is, at least partly, dependent on [Ca2+]i since several modulators of 
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[Ca2+]i affect the release in GIST. Understanding the release of ATP in GIST 
cells may be useful for dissecting the signaling network, mapping exocytotic 
components, and possibly for drug development. Besides being a useful marker 
for cellular response, release of ATP from GIST cells may have importance for 
tumor tissue homeostasis and immune surveillance escape (Burnstock and Lavin, 
2002; Pellegatti et al., 2008). 

 

Paper III. Secretome protein signature of human gastrointestinal 
stromal tumor cells. 
In spite of major improvements in clinical management, GISTs do still have a 
significant mortality due to metastasis and recurrences. There is an unmet need 
for reliable follow-up modalities that can detect disease relapse, therapy 
responses, and disease progression. Tumor-specific secreted, shed or leaked 
proteins (collectively known as secretome) are considered promising sources for 
biomarkers, and suitable for detection in biofluids. MS-based proteomics 
analyses of conditioned media (CM) collected under well-defined conditions 
have aided biomarker discovery significantly, and generated several candidates 
that have also been validated in clinical samples (Dowling and Clynes, 2011). 
Cell cultures are in vitro systems that differ at the molecular level from in vivo 
situations. Although this makes direct correlations between CM and clinical 
samples difficult, it enhances the chances of identifying secretory proteins 
compared to complex clinical specimens by lowering the protein dynamic range 
and protein diversity. Also, GISTs are rare tumors (Nilsson et al., 2005; Zahm 
and Fraumeni, 1997), which make biomarker validation complex. Biomarker 
discovery can therefore be facilitated by analyzing proteins (secretome) released 
into CM.  

As previously discussed, GIST cells possess a neuroendocrine phenotype. In 
paper II we found an intracellular Ca2+-dependent ATP release from GIST cells, 
reflecting functional cell release. The purpose of this study was to extend the 
hypothesis regarding the presence of cell secretion and determine if a cancer 
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protein secretome exists in GIST cells. Experiments were carried out in vitro, 
and KIT-mutated imatinib-sensitive GIST882 cells were kept shortly in one of 
four conditions (non-stimulated, KCl, thapsigargin, or imatinib pre-treatment 
followed by thapsigargin stimulation) before the supernatants were collected for 
purification and LC-MS/MS analysis. 

The methodological approach was first validated in a murine insulin-secreting 
pancreatic β-cell line (MIN6m9) with a known secretory signature in response to 
glucose stimulation. Following static incubation for 30 minutes, 656 proteins 
were identified in total by LC-MS/MS analysis. The proteins were classified on 
the basis of quantitative changes (Log2R ≥ 1.0 or Log2R ≤ -1.0) and statistical 
significance. By comparing results from low (0.1 mM) and high (25 mM) 
stimulatory glucose conditions an increased release of a subset of 15 proteins 
was identified. The majority of proteins in this subset were secreted through the 
classical secretory pathway, known for being localized in the insulin granules 
and to be co-secreted with insulin. The results were confirmed with the 
orthogonal ArcDia TPX insulin assay method, verifying increased extracellular 
insulin levels upon glucose stimulation. Based on these findings it was 
concluded that the shotgun proteomics experimental approach was suitable for 
exploring the composition of the putative protein secretome from statically 
incubated GIST cells. 

The GIST882 cell secretome was investigated following similar principles as for 
MIN6m9. In total, LC-MS/MS identified 764 proteins in the conditioned media 
from all groups combined. 555 proteins were left for quantitative analysis after 
excluding proteins not found in at least two biological replicates. These proteins 
were spread into the following groups, according to secretory properties: 9.9% 
classically secreted (SP+), 39.8% non-classically released (SP-), and 64.9% of 
exosomal origin. There was a major overlap between non-released, SP+, and SP- 
proteins with the proteins of exosomal origin. Exosomes have been assigned a 
potential source for biomarkers (Thery et al., 2002). They have also been shown 
to impact tumor physiology, pathogenesis, intercellular communication and 
disease progression in several cancers, including tumors of the GI tract (Ji et al., 
2013) and sarcomas other than GIST (Camussi et al., 2013; Kim et al., 2002; 
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Miller et al., 2013). The possibility of extracellular vesicle existence in GIST 
adds another complexity to the analysis warranting further investigations. We 
have therefore initiated a project to specifically isolate, purify, and analyze 
exosomes and microvesicles (MVs) (collectively known as extracellular vesicles, 
EV) from GIST cells, with respect to their protein and RNA contents. 

In un-stimulated samples (culture medium), 375 proteins were found. The 
secretory proteins (9.4% classically and 40.9% non-classically released) 
clustered according to DAVID into functions responsible for e.g. regulation of 
apoptosis, cell growth, MAP kinase activity, immune response, development and 
response to wounding, organic substance, hormone stimulus, oxidative stress, 
endogenous and external stimuli. By comparing the stimulated groups with the 
un-stimulated group, subsets of proteins being significantly released upon 
stimulation were revealed. In paper II, KCl and thapsigargin effectively 
triggered a brisk [Ca2+]i increase and concurrent ATP release. Since the secretion 
is dependent on [Ca2+]i (Jahn, Fasshauer, 2012) in a number of tissues we 
therefore hypothesized that stimulation of the GIST cells with the same 
conditions used in paper II would maximize the chances of analyzing secretory 
proteins. KCl-stimulated samples contained 398 proteins, whereof 50.3% were 
secretory (9.8% classically and 40.5% non-classically released). The induced 
quantitative changes were minor with only five proteins significantly increased 
compared to un-stimulated samples. The majority of these have previously been 
described in cancers of abdominal origin. 

In the secretome analysis using thapsigargin as stimulation, 432 proteins were 
identified in all replicate experiments, whereof 50.2% were secretory by either 
classical (10%) or non-classical (40.3%) mechanisms. The majority of 
significantly elevated proteins in this group have already been acknowledged in 
other tumor types. The greater effect observed with thapsigargin than with KCl 
treatment can possibly be explained by an irreversible block of the SERCA 
pump which prolongs Ca2+ signaling and consequently also cell secretion. 
Depolarization of the plasma membrane by high KCl causes only a transient 
Ca2+ increase (Pan, Kao, 1997). 
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Since KIT manipulation can alter cell secretion activity (Chen et al., 2010) we 
sought to also investigate if pre-incubation blockage of the mutated KIT protein 
with 1100 ng/ml imatinib before thapsigargin stimulation could change the GIST 
cell secretion pattern. In this group, 526 proteins were detected, whereof 49% 
were part of either classical (9.5%) or non-classical (39.5%) secretory pathways. 
Indeed, compared to thapsigargin stimulation alone there was a radical change of 
quantitatively released proteins, and among the significantly increased proteins, 
only three were shared between the two groups. This could potentially have 
clinical implications when searching for biomarkers in imatinib-treated versus 
non-treated GIST patients. Furthermore, DAVID functional annotation of 
proteins exclusive to imatinib showed enrichment of proteins with translational 
and transcriptional properties, which were vastly different to the functions of 
secreted proteins in un-stimulated samples (see above). Interestingly, the most 
increased protein following imatinib treatment was Y-box-binding protein 1 
which is known for its involvement in the acquisition of global drug resistance 
through increased ABCB1 expression (Basaki et al., 2007). Proteins at high 
levels in each group were validated performing Western blot analysis. 

It is important to keep in mind that measurements of secreted proteins in vivo 
might reveal other protein subsets. There are several factors, such as stromal 
cells in the tumor microenvironment, which can potentially influence tumor cell 
secretion (Zhong et al., 2008). 

To conclude, these findings demonstrate that GIST cells contain a secretome 
signature made up by classically and non-classically released proteins. The 
subset compositions were dependent of stimulatory condition. Proteins having a 
significant increase in the release were associated with proteins already found in 
other cancer types. This study therefore motivates further quantitation of 
differentially expressed proteins in sera from GIST patients and characterization 
of the expression in GIST tissues. 
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Paper IV. Functional role of the Ca2+-activated Cl- channel 
DOG1/TMEM16A in gastrointestinal stromal tumor cells. 
Ca2+-activated Cl- channels (CaCCs) have important regulative functions in 
normal cellular physiology (Ferrera et al., 2010; Hwang et al., 2009), and can be 
involved in tumorigenesis, cancer progression, metastasis, cell proliferation, and 
migration (Duvvuri et al., 2012; Elble and Pauli, 2001; Habela et al., 2009; 
Sontheimer, 2008; Spitzner et al., 2008). Clinically they have been suggested as 
potential drug targets in the treatment of asthma, secretory diarrhea, and 
hypertension (Verkman and Galietta, 2009). Even though CaCCs are 
omnipresent and play important roles both in normal physiology and disease, 
awareness of their full biological role has been limited due to the lack of specific 
CaCC modulatory drugs and inadequate insight in Cl- conductance and 
regulation (Hartzell et al., 2005). In 2004, DOG1 (a CaCC also known as 
TMEM16A or ANO1) over-expression was discovered in almost all GISTs 
(West et al., 2004). DOG1 was rapidly included as a tumor marker in routine 
diagnostics (Espinosa et al., 2008). However, its functional role in GIST has 
remained largely unknown, while in, for example, head and neck squamous cell 
carcinomas, DOG1 is known to cause cell migration and is correlated with poor 
prognosis (Ruiz et al., 2012). Advances in pharmacological high throughput 
screenings have recently identified specific blockers and activators of DOG1 
(Namkung et al., 2011). In this study, evaluation of DOG1’s functional role in 
GIST cells by specific activation and inhibition of DOG1, and measurements of 
cell viability, apoptosis, and proliferation in vitro was conducted. 

The expression of DOG1 and CD117 in the imatinib-sensitive cell line GIST882 
and the imatinib-resistant GIST48 was first verified by immunocytochemistry. 
Detailed analysis with CLSM showed that DOG1 was localized at the cell 
periphery in GIST882 cells, including the plasma membrane, whereas 
perinuclear localization was observed in GIST48 cells. Next, the 
electrophysiological technique patch-clamp was used to characterize DOG1-
currents in GIST882 cells. This cell line was chosen based on its plasma 
membrane predominance of DOG1. CaCCs are usually activated by cytosolic 
Ca2+ concentrations between 0.2 - 1.0 µM, and by modulation of membrane 
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potential (Frings et al., 2000; Hartzell and Putzier, 2005). To verify that DOG1 
was functional GIST882 cells were therefore voltage-clamped (Vh) at -60 mV 
and depolarized for 600 ms in +20 mV increments until +100 mV, while keeping 
[Ca2+]pip at either activating (305 nM) or inhibitory (90 nM) levels. Whole-cell 
currents increased from 3.8±0.6 pA/pF to 13.5±3.2 pA/pF at Vm +100 mV by 
elevating [Ca2+]pip from 90 nM to 305 nM, verifying that DOG1 is indeed Ca2+- 
and voltage-dependent. Next, the effects of the specific DOG1 activator Eact and 
inhibitor T16Ainh-A01 on whole-cell CaCC currents in GIST882 cells were 
evaluated using the same voltage-protocol as described above. Whole-cell 
currents were measured when [Ca2+]pip was kept at 305 nM and Vm at +100 mV. 
When the effect of 1, 10, and 30 µM T16Ainh-A01 were plotted in a dose-
response diagram, and fitted to a four-parameter logistic Hill regression model it 
was found that IC50 was 4.3 µM, and the Hill’s-slope (h) 0.66, which refers to 
the steepness of the curve. A coefficient less than 1 indicates negative 
comparability of T16Ainh-A01 binding to the DOG1 protein. The inhibitory 
effect of 30 µM T16Ainh-A01 on DOG1-current was approximately 60%, 
whereas the DOG1 activator Eact (30 µM) elicited a 70% DOG1-current 
increase when [Ca2+]pip was 305 nM. Eact could not increase the DOG1-current 
when [Ca2+]pip was 90 nM, and an increase in Eact concentration to 60 µM did 
not induce any further response in the low [Ca2+]pip. In other cells expressing 
DOG1, T16Ainh-A01 has proven more potent by an almost complete channel 
block (Namkung et al., 2011). A possible explanation to this is that several Cl- 
channels, including DOG1, with different pharmacological properties, make up 
the Cl- currents in GIST882 cells.  

PE-labeled Annexin V/7-AAD 2-color flow cytometric analysis was used to 
examine the effect of T16Ainh-A01 and Eact on the induction of apoptosis in 
GIST882 and GIST48 cells after 48 h incubation. The combination of these two 
antibodies can discriminate between viable cells, early apoptotic cells, and late 
apoptotic/necrotic cells. Only adherent cells were analyzed to increase the 
sensitivity for early apoptotic events. Flow cytometric analysis showed that 
GIST882 cells incubated with T16Ainh-A01 presented with significantly fewer 
early apoptotic cells than un-stimulated cells, while Eact (3 µM) treated cells 
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were more viable than the control (P < 0.05). Although these changes were 
statistically significant, it is important to stress that the absolute changes were 
small. A possible explanation to why the effect was seen by 3 µM Eact, but not 
by 30 µM, is that the dose-response curve does not follow a linear relationship. 
Instead, Eact may have a dose-optimum centered around half its maximum 
activating effect (EC50), which is approximately 3 µM. In GIST48, no effect of 
DOG1 modulation could be seen among cells with high (>92%) viability in 
controls. In contrast, when a small proportion of untreated control GIST48 cells 
showed signs of early apoptosis by Annexin V positivity, likely due to natural 
cell culture variation, there was a marked effect by T16Ainh-A01, shifting early 
apoptotic cells to late apoptotic stages (evident by 7-AAD positivity).  

To further test whether DOG1 activity affects GIST cell proliferation and 
survival formazan formation was measured with the colorimetric assay WST-1. 
GIST48 and GIST882 cells were incubated with either Eact (3 µM, 10 µM, 30 
µM), or T16Ainh-A01 (1 µM, 10 µM, 30 µM) for 0 h, 24 h, 48 h, and 72 h. 
Growth rates were compared to untreated cells grown in fully supplemented 
medium and to imatinib treated cells. Proliferation analysis demonstrated that 
both cell lines remained relatively stable throughout all time points during 
DOG1 modulation. GIST882 cells take longer to passage than GIST48 cells, 
which was verified by comparing the onset of cell growth in controls. Minor pro-
proliferative changes were detected in GIST882 cells after 72 h incubation with 
30 µM Eact and 1 µM and 10 µM T16Ainh-A01. These absolute changes were 
small, especially when compared to the imatinib effect. In GIST48, all Eact and 
T16Ainh-A01 concentrations except 30 µM T16Ainh-A01, evoked significant pro-
proliferative effects. As for GIST882, these changes were negligible compared to 
the large imatinib effect. Furthermore, it is not expected for both activators and 
inhibitors of DOG1 to possess pro-proliferative properties. These results are in 
accordance with the recent study by Simon et al. (2013); DOG1 has 
partial/minor effects on the viability of unstressed GIST cells. In addition, we 
also show that DOG1 may have pro-apoptotic effects on some early apoptotic 
GIST cells. 



 

 53 

The detection of small in vitro effects by pharmacological DOG1 modulation 
raises the question of other potential explanations to DOG1 over-expression in 
GIST. For example, the TMEM16A gene encoding DOG1 is located in the 
chromosomal region 11q13.3 (Katoh and Katoh, 2003), which is commonly 
amplified in cancers (Akervall et al., 1995; Sugahara et al., 2011), and may 
include other cancer-relevant genes (Gibcus et al., 2007). High DOG1 
expression could also simply be a trait inherited from the ICCs from which GIST 
cells are thought to originate or share common progenitor with (Chen et al., 
2007; Gomez-Pinilla et al., 2009). 

The two human cell lines used in this paper harbor mutations in exon 11, exon 
17 (GIST48), and exon 13 (GIST882), and are commonly used in functional 
studies of GIST. However, they do not represent the entire mutational spectrum. 
Studies including additional mutations may provide a more complete 
understanding of DOG1’s functional role in GIST. Furthermore, there was an 
incomplete block and activation of Cl- currents with the DOG1-specific 
modulators. Less specific CaCC activators and inhibitors may therefore induce 
more profound effects.  

From this study it is concluded that the pattern of the highly expressed DOG1 
varies on a cellular level in imatinib-sensitive and imatinib-resistant GIST cells. 
Generated DOG1 Cl--currents are voltage- and Ca2+-dependent, and can be 
regulated pharmacologically by DOG1-specific agents. DOG1 modulation has 
minor effects on cell viability and proliferation in vitro, but may impact early 
apoptotic GIST cells to undergo late apoptosis. Even though this study does not 
support DOG1 as a therapeutic target in GIST, further studies are warranted by 
reason of DOG1’s strong expression in GIST and potential impact on other not 
herein investigated cell functions, such as cell migration and metastasis. 
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CONCLUDING REMARKS 

Within one and a half decades, GISTs have emerged from historical obscurity to 
provide a model for molecularly targeted therapies. GIST is the most prevalent STS 
in the GI-tract and was the first solid tumor targeted by TKI therapy. Along with the 
development of more sophisticated molecular methods, the understanding of GIST 
molecular pathology, new treatment options, and follow-up strategies, is 
continuously growing. This thesis has focused on further functional characterization 
of certain aspects of the human GIST biology, with emphasis on GIST cell response 
and secretion, DOG1 function, and regional imatinib pharmacodynamics. The main 
findings include: 

• The development of an analytical method to measure intracellular imatinib 
levels in experimental and clinical settings. Imatinib uptake varied between 
imatinib-sensitive and imatinib-resistant cell lines, reflective of potential 
differences in uptake mechanisms. Imatinib accumulated in clinical samples, 
showed intratumoral regional differences, and unequal intertumoral levels. 

• The demonstration of an intact intracellular Ca2+-signaling pathway in GIST 
cells, and a Ca2+-dependent active ATP release that is modifiable by various 
stimuli. 

• The recognition of a GIST secretome signature made up by classically and 
non-classically released proteins. The subset compositions were stimuli-
dependent, and released proteins clustered differently according to function 
in untreated and imatinib-treated samples. Several of the proteins with a 
significant increase upon thapsigargin or KCl stimulation had already been 
acknowledged in other cancer types. There was a considerable overlap 
between secreted proteins and proteins of exosomal origin. 

• The identification of different subcellular DOG1 localizations in imatinib-
sensitive and imatinib-resistant GIST cells. DOG1 generated voltage- and 
Ca2+

i-dependent currents that were regulated by a specific DOG1 inhibitor 
and activator. DOG1 activity had small effects on cell viability and 
proliferation in vitro, but impacted early apoptotic GIST cells to undergo 
late apoptosis. 
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SUMMARY OF THE THESIS IN SWEDISH 

 
Populärvetenskaplig sammanfattning 
 
Sarkom är sällsynta och heterogena bindvävstumörer som kan uppstå var som 
helst i kroppens mjukdels- och stödjevävnad. De utgör 1-2% av alla elakartade 
(maligna) tumörer. I magtarmkanalen är gastrointestinala stromacellstumörer 
(GIST) den helt dominerande sarkomtypen med en nyinsjuknandefrekvens på 
ungefär femton fall per miljon invånare och år. De vanligaste lokalisationerna för 
GIST är magsäck och tunntarm, men de kan även förekomma i matstrupe, 
tjocktarm, ändtarm, tarmkäx (oment) eller bakom den bakre bukhinne-
begränsningen (retroperitonealt). Oftast är de personer som drabbas av GIST 
äldre än 60 år. Vanligaste platserna för spridd (metastaserad) tumörsjukdom är i 
levern eller i bukhålan, däremot sällan i lymfsystem eller utanför bukhålan 
(extraabdominellt), såsom exempelvis skelett och lungor. Det kliniska 
spektrumet är brett med alltifrån lokalt växande tumörer med närmast godartat 
(benignt) beteende (även om GIST aldrig helt kan klassas som benigna) till 
högmaligna tumörer med snabb spridning och dålig prognos. Ungefär en 
fjärdedel av GIST upptäcks en passant genom bildgivande diagnostik vid 
utredning av annan sjukdom. Majoriteten av patienter upplever diffusa och 
ospecifika symtom, medan vissa kan vara helt besvärsfria vid diagnos. Som 
tumörbegrepp beskrevs GIST första gången i slutet av 1990-talet. Innan dess 
medförde den diagnostiska osäkerheten att GIST uppfattades vara nerv- eller 
muskeltumör. För närvarande definieras GIST som en spolcellig, epiteloid eller 
ibland pleomorf mesenkymal tumör som uttrycker tyrosinkinasreceptorn KIT, 
vanligtvis detekterad med CD117-antikropp, som en del i ett diagnostiskt 
mönster. GIST anses utgå ifrån stamceller som under normala betingelser är 
programmerade att utvecklas till Cajals interstitiella celler (Cajalceller), vilka 
fungerar som magtarmkanalens pacemakerceller och därmed utgör en länk 
mellan den parasympatiska innervationen och tarmens glatta muskulatur. 
Signalvägarna inuti Cajalcellen är relativt välstuderade, men om signalvägarna 
likt de som ses i Cajalcellen existerar i GIST-cellen är till stora delar oklart. 
Tyrosinkinasreceptorn KIT utgör en hörnsten i den normala utvecklingen och 
funktionen hos Cajalcellen. Både Cajalcellen och GIST uttrycker KIT, och 
genetiska förändringar (s.k. mutationer) i KIT anses vara en tidig händelse vid 
tumörutvecklingen. Mutationerna leder till okontrollerat överaktiva KIT-
receptorer, vilka i sin tur stimulerar signaleringsvägar vilket leder till ökad 
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cellproliferation och förlängd cellöverlevnad. På motsvarande sätt leder även 
mutationer i PDGFRA-genen till tumöruppkomst. Cirka 10-15% av GIST saknar 
mutationer i dessa gener och de flesta har då istället mutationer i andra delar av 
signalvägarna. På senare år har man identifierat en kalcium- och 
spänningskänslig kloridkanal (DOG1) i GIST. DOG1s funktion är till stor del 
okänd i GIST, men har visat sig vara en utmärkt markör för sjukdomen. 
Använda tillsammans verifierar CD117 och DOG1 i praktiken samtliga GIST. 
Radikal tumörborttagning (kirurgisk resektion) av lokalt växande sjukdom kan 
bota upp emot 60% av GIST-patienterna och det finns idag ett relativt 
tillförlitligt riskklassifikationssystem som uppskattar återfallsrisken efter 
operation. Generellt sett har stora tumörer med hög tillväxthastighet högst 
återfallsrisk. Medelöverlevnaden för patienter med obehandlad avancerad/ 
metastatisk sjukdom är mellan 10-20 månader. För patienter med GIST har det 
dock skett en dramatisk förbättring av överlevnaden efter introduktionen av 
tyrosinkinashämmare (däribland imatinib, Glivec®), som har förlängt medel-
överlevnaden med ungefär 5 år jämfört med historiskt obehandlade kontroller. 
Tyrosinkinashämmare är inget klassiskt cytostatikum utan utgör den nya 
generationens antitumoral behandling som specifikt blockerar ett nyckelprotein i 
en signalväg. Trots detta medicinska genombrott tenderar majoriteten av de 
avancerade fallen att utveckla resistens mot tyrosinkinashämmare och 
progrediera inom några år. Utan möjlighet till specifik uppföljning av 
tumörbördan förlitar man sig idag på upprepade bildgivande och fysikaliska 
undersökningar för att övervaka tumöråterfall eller kvarvarande sjukdom. 
Detaljstudier har tidigare visat att GIST möjligen skulle kunna tillhöra en klass 
av s.k. neuroendokrina tumörer. Denna grupp av tumörer utmärker sig bland 
annat genom frisättning av hormoner och andra ämnen. Vilka ämnen eller 
hormoner som eventuellt utsöndras från GIST är däremot oklart, likaså vilka 
signalvägar som i så fall är verksamma. Denna avhandling har detaljstuderat 
molekylära aspekter på humana GIST-celler i syfte att öka kunskapsläget kring 
dess neuroendokrina fenotyp, betydelsen av DOG1 för cellöverlevnad och 
celldelning samt utvärdering av imatinib inuti GIST-cellen. 
 
Avhandlingen visar att GIST-celler har en intakt intracellulär kalciumsignalering 
och en aktiv frisättning av ATP som är beroende av extracellulära kalciumnivåer. 
Graden av ATP-frisättning är möjlig att modulera med olika farmakologiska 
stimuli (Artikel I). Detaljstudier med en avancerad metod för att detektera 
proteiner i ett prov (s.k. proteomik) visar att klassiska och icke-klassiska 
proteiner frisätts utöver ATP. Betydelsen av proteinerna går inte direkt att 
överföra till den kliniska situationen då de dels identifierats i cellodling (in 
vitro), dels hittats ifrån GIST-celler från en enskild patient vilket inte 
representerar hela sjukdomsspektrumet. Flera av de ämnen vars utsöndring 
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ökade vid stimulering har dock påträffats i andra cancertyper. Funktionerna 
bland de ämnen som frisattes förändrades markant vid behandling med 
tyrosinkinashämmare. Detta kan ha betydelse vid analys av ämnen från 
behandlade respektive obehandlade patienter. I samtliga analyserade grupper 
förelåg även stor överlappning med proteiner som ingår i så kallade exosomer, 
vilka utgör en annan potentiell källa för cell-till-cell-signalering och sjukdoms-
specifika biomarkörer (Artikel II). 
 
Därefter utvecklades ett protokoll för att kunna mäta nivåerna av imatinib inuti 
själva tumörcellen. Mätningar i cellinjer visade att upptaget av imatinib är lägre i 
celler med motstånd mot läkemedlet (imatinib-resistenta) jämfört med imatinib-
känsliga celler. I tumörmateriel från tre GIST-patienter påvisade tekniken en 
ansamling av läkemedlet i tumören, med påtagliga variationer inom och mellan 
tumörerna. Denna metod har potential att kunna användas kliniskt för att 
genomföra imatinibmätningar i olika tumörområden vilka kan korreleras till de i 
GIST funna imatinibtransportörerna (Artikel III).  
 
I den sista studien undersöktes funktionen av DOG1. På cellnivå återfanns 
DOG1 antingen runt om cellkärnan (perinukleärt) eller i cellens yttre membran 
(plasmamembran) beroende på om cellen var känslig eller okänslig för imatinib. 
Specifika DOG1-hämmare och -aktiverare påverkade kanalaktiviteten i stor 
utsträckning, men hade relativt modest effekt på cellöverlevnad och celldelning 
bland välmående celler. Däremot inducerade DOG1-inhibition sen celldöd hos 
imatinib-resistenta celler som uppvisade tecken till tidig programmerad celldöd 
(Artikel IV). 
 
Sammanfattningsvis utgör studierna som ingår i denna avhandling en grund för 
att påbörja kliniska studier för att studera förekomsten av GIST-specifika ämnen 
i exempelvis blod från patienter. Sådana specifika tumörmarkörer skulle kunna 
användas vid uppföljning och kontroll av sjukdomen. En uppföljande studie har 
redan påbörjats för att utvärdera imatinibs lokala farmakodynamik/farmako-
kinetik i relation till transportöruttryck. Ytterligare studier kring DOG1s roll i 
GIST är även motiverade, då dess effekt på flera cellfunktioner, såsom migration 
och metastaseringsförmåga, ännu inte kartlagts helt. Förhoppningen är att 
resultaten från denna avhandling ska kunna bidra till utveckling av bättre verktyg 
i omhändertagandet av patienter med GIST, samt peka mot nya tänkbara mål för 
en mer individanpassad terapi och uppföljning. 
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