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ABSTRACT
Pancreatic islet transplantation is a promising treatment modality for patients with insulin-
dependent diabetes. Besides whole pancreas transplantation, it is the only treatment that can
make patients normoglycemic without risking episodes of hypoglycemia. It can also prevent,
slow  down  and  even  reverse  the  development  of  secondary  complications  to  diabetes.
Compared to whole pancreas transplantation, islet transplantation is much less invasive and
may also be used in patients with a high surgical risk profile, but clinical outcome data are so
far better for whole pancreas transplantation. However, graft survival necessitates life-long
immunosuppression and for islet  transplantation more than one donor is  usually needed.
There is therefore a need for more specific immunosuppression with less side effects as well
as methods by which the donor pool can be expanded.

In this project we have assessed the capability of costimulation blockade,  i.e. blocking
the second signal of T lymphocyte activation, to prevent rejection of allogeneic (between
individuals) and xenogeneic (between species) islet grafts, in particular when transplanted to
recipients already sensitized to the graft. We have shown that a triple costimulation blockade
regimen with anti-CD154 antibodies, CTLA4Ig and anti-LFA-1 antibodies could not prolong
survival of islet allografts when transplanted under the kidney capsule of sensitized C57BL/6
mice. Either induced antibodies or memory T cells may be responsible for this inability of
conventional costimulation blockade to prolong graft survival in sensitized animals. We tried
to resolve this question in a rat-to-mouse xenotransplantation model, in which immune or
naïve  serum was  injected  intraperitoneal  at  the  time  of  islet  transplantation.  Again,  the
recipient animals were given costimulation blockade. The immune serum had no negative
impact  on  the  grafts  immediately  (within  96  hours)  post-transplantation  or  on  the  graft
survival  long-term in  mice  receiving  costimulation  blockade.  These  results  suggest  that
preformed antibodies are not the main cause for graft rejection in sensitized recipients treated
by costimulation blockade.

In the animal transplantation models used, streptozotocin or alloxan is used to induce
diabetes through their toxic effects on pancreatic -cells. It has been reported that these drugs
are also toxic for other cells and tissues, including cells of the immune system. Therefore, we
compared recipients given streptozotocin or alloxan for diabetes induction with regard to
graft survival times, spleen size and toxic effects on leukemic cells in vitro. We conclude that
streptozotocin  is  more  toxic  on  immune cells  than  alloxan,  and may therefore  not  be  a
suitable  agent  for  diabetes  induction  in  transplantation  models  assessing  different
immunosuppressive  protocols.  Further,  we  showed  that  the  erythropoietin  analogue,
pyroglutamate helix B surface peptide (ARA 290) could protect islets from apoptosis when
exposed to  pro-inflammatory cytokines in  vitro,  while  no clear  effect  was seen on graft
survival when injected into the recipients. Further studies are needed on this potential islet-
protective agent.

In  conclusion,  islet  transplantation  holds  great  promise  for  the  future  as  a
treatment modality for insulin-dependent diabetes. However, further research is needed in
order  to  find  optimal  immunosuppressive protocols  with acceptable side effects  that  can
promote long term graft survival. Costimulation blockade may be such a modality provided
memory T cell activation can be perturbed and tolerance induced also in sensitized recipients
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1 INTRODUCTION

1.1 DIABETES MELLITUS

Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results in the permanent

destruction of insulin-producing beta cells of the pancreas.  Long-standing diabetes with

poor glucose control may lead to complications like retinopathy, nephropathy, neuropathy,

vasculopathy  and  heart  disease  (myocardial  infarction,  stroke  and  peripheral  vascular

disease)[1]. T1DM affects about 347 million people around the world according to WHO

statistics. Formerly known as childhood, juvenile or insulin-dependent diabetes, the cause

of type 1 diabetes is still not fully understood. Some scientists have suggested that type 1

diabetes could be a virally-induced autoimmune response. It is related to life style factors

and  genetics  [2].  Pancreatic  cancer  and  other  diseases  of  the  pancreas  can  also  cause

diabetes, as can certain birth defects [3, 4]. Type 2 diabetes mellitus (T2DM) is the second

type of diabetes and the most common form as about 90% of all diabetics has this form.

T2DM is a multifactorial disease, and both environmental and genetic factors are likely to

influence disease progression [5]. It is a common disorder characterized by a dysregulation

of the glucose and lipid metabolism, and is often part of a metabolic syndrome including

high blood pressure, obesity and T2DM [5]. T2DM occurs when peripheral tissues become

resistant to the effects of insulin, do not make enough insulin or both [6]. Sulfonylureas and

biguanides are examples of drugs used for the treatment of T2DM [7]. Further, patients are

advised  to  do  regular  exercise  and  to  keep  optimal  food  regimens  in  addition  to  the

medication. Despite this, T2DM patients may become dependent on insulin injections and

may develop complications similar to those seen in T1DM patients [7].

1.1.1 Treatment of type 1 diabetes

Insulin replacement therapy by intermittent subcutaneous injections or by way of an insulin

pump, along with dietary management, typically including tracking carbohydrate intake as

well  as  careful  monitoring  of  blood  glucose  levels  using  various  glucose  measurement

devices, is usually sufficient to keep blood glucose levels under control [1,  8]. However,

despite careful control of blood glucose levels, the patient may sometimes experience life-

threatening episodes  of  hyper-  or  hypoglycemia.  Similarly, even though strict  control  of

blood glucose levels by tightly regulated insulin regimens has decreased the incidence of

complications,  many patients  with long-standing T1DM develop retinopathy, neuropathy,

nephropathy, vasculopathy and heart disease [1] . Transplantation (Tx) of whole pancreas and

pancreatic islets on the other hand are procedures that can not only be used to treat T1DM,

but can also reverse it [9, 10]
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1.2 THE PANCREAS

The pancreas  is  a  glandular  organ of  fleshy texture,  and  is  a  part  of  the  digestive  and

endocrine systems of vertebrates. It is the second largest gland in the human body.

1.2.1 Anatomy of the pancreas

Pancreas is located in the posterior abdominal wall, behind the stomach and it is comprised of

the head (the broadest part attached to the concavity of the duodenum - the first section of the

small intestine), the uncinate process (constricted part between the head and the body), the

body (running behind the stomach) and the tail (stretching towards the spleen) (Fig. 1).

Figure 1 Anatomy of the pancreas

1.2.2 Histology of the pancreas

Under  the  microscope,  stained  section  of  the  pancreas  shows  two  different  types  of

parenchymal  tissue.  Islets  of  Langerhans  are  the  lightly  staining  cluster  of  cells,  which

produce hormones responsible for the endocrine functions of the pancreas. Darker staining

cells form acini connected to ducts. Acinar cells belong to the exocrine pancreas and secrete

digestive enzymes into the gut via a system of ducts (Fig. 2).
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Figure 2 Islets of Langerhans

1.2.3 Physiology of the pancreas 

Pancreas is a mixed organ (endocrine and exocrine functions), about 80% of the islets of

Langerhans consists of beta cells, which secret insulin to reduce the glucose level in the blood

avoiding hyperglycemia [11]. Glucagon, the negative regulator of insulin, is secreted from α

cells and stimulates glycogenolysis and gluconeogenesis in the liver.

1.3 WHOLE PANCREAS AND PANCREATIC ISLET TRANSPLANTATION

Whole  pancreas  transplantation  was  first  attempted  in  1966  by the  Minnesota  surgeons

William Kelly and Richard Lillehei [12]. Since then >42,000 pancreas transplants have been

reported  to  the  International  Pancreas  Transplant  Registry  [13].  With  new

immunosuppression  and  improved  surgical  techniques,  1-year  post-transplant  patient  and

graft  survival  rates  are  now  >95%  and  approaching  85%,  respectively.  Pancreas

transplantation is  an option for patients with T1DM, some patients with T2DM, and for

patients with diabetes caused by surgical removal of the pancreas. It restores euglycaemia

and, in contrast to insulin-replacement therapy, without the risk of inducing hypoglycaemia

[13]. In addition, it can prevent, halt or even reverse the secondary complications of diabetes

mellitus. In fact, whole pancreas transplantation is considered the standard of care for patients

with diabetes mellitus and uraemia [13]. However, pancreas transplantation is major surgery

and  technical  complications  are  still  the  most  common  reason  for  graft  loss  following

simultaneous pancreas and kidney transplant, pancreas after kidney transplant and pancreas

transplant alone [13].

Islet transplantation is accomplished by injection through the portal vein of islets isolated by

collagenase digestion of the pancreatic gland using for example the Ricordi protocol for islet

isolation  [10,  14].  Because  islet  transplantation  is  less  invasive  than  whole  pancreas

transplantation  it  is  associated  with  fewer  surgical  complications  [15].  Even  though  the

fraction of insulin-free patients following islet transplantation has increased in recent years

(27% at 3 years if transplanted between 1999-2002 to 44% at 3 years if transplanted between
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2007  and  2010)  [14],  long-term  outcomes  are  typically  better  for  whole  pancreas

transplantation  than  islet  transplantation  [13].  Transplantation  centers  performing  both

procedures  tend  to  reserve  islet  transplants  for  patients  with  a  high  surgical  risk,  while

pancreas transplantation is offered patients with a low surgical risk. A clear disadvantage with

islet transplantation is that in many cases glands from several donors are needed to obtain

enough  islets  to  accomplish  insulin-independence.  Further,  the  primary  goal  of  islet

transplantation is currently not to achieve insulin-independence, but to reduce the incidence

and severity of hypoglycemic events and in exogenous insulin needed [14].

1.3.1 Clinical islet transplantation

Clinical  islet  transplantation  offers  the  patient  intact  islets  of  Langerhans  and  their

physiological ability to control blood glucose levels in a very accurate manner, provided

enough islets are injected, engrafting and surviving the host’s immune attack. A considerable

drawback is that recipients of islets, as with recipients of all allogeneic tissues, will need life-

long immunosuppression. Watson Williams was an English surgeon who transplanted sheep

pancreas tissue to a 15 years old boy in 1893 [10]. The boy died a few days later from

recurring diabetes and complications thereof ([10] This was the first islet xenotransplantation

of that time. In 1977, Najarian injected about 50,000 impure islets into the peritoneal cavity

of a diabetic patient, and as a result there was a decrease in the blood glucose levels [16]. The

report by the research group in Edmonton in July 2000 of 7 consecutive patients that became

insulin-independent  after  islet  transplantation  was  considered  a  big  breakthrough  [14].

Improvements to the immunosuppressive protocol, in which steroids were left out and IL-2

receptor blockers were included, and the fact that islets from more than one donor were

given, have been put forward as an explanation for the improved results [14]. Even though

insulin independence was as low as 10% five years post-transplantation in the cohort  of

patients done under this protocol, glucose instability and problems with hypoglycemia were

reduced  [17].  As  described  above,  further  improvement  of  the  protocols  for  islet

transplantation has increased the fraction of patients that are independent of insulin three

years post-Tx to 44% (transplanted 2007-2010) from 27% (transplanted between 1999 and

2002) [18]. Considering the mere prevalence of diabetes patients that could be eligible for

islet transplantation, the fact that most recipients need islets from more than one donor in

order to become insulin-independent is a huge problem [19-21] Again, improvements to the

protocol may solve this problem. The  Minneapolis group recently reported on a group of

eight  patients  that  became insulin-independent  following transplantation  of  islets  from a

single donor [20]. Immunosuppressive drugs are needed for islet allograft survival, but are

associated  with  side  effects,  including  but  not  limited  to  a  general  drug  toxicity  (e.g.

nephrotoxicity by calcineurin inhibitors), the risk of tumor development or to suffer from

infection (bacterial, viral or fungal infection) [14,  22]. Therefore, there is a need for more

specific immunosuppressive drugs, which are associated with fewer side effects. We have in
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our models evaluated the effect of blocking co-stimulation pathways using biotherapeutic

drugs like antibodies and fusion proteins.

1.4 XENOTRANSPLANTATION

The chronic organ shortage has led the research community to explore the possibility of using 

other species as organ-, tissue- or cell donors in human transplantation, so called 

xenotransplantation. The use of pancreatic tissue from another species may be an alternative 

solution for the lack of human donors in pancreatic islet transplantation [23]. Anatomically and 

physiologically the organs of pigs are similar to those of human organs and it is easy to breed 

pigs [24-26]. Small-scale clinical safety trials have been performed in patients with diabetes and 

Parkinson’s disease. These patients did not experience any symptomatic relief, and the 

immunological rejections are left to be solved before xenografting can be used clinically on a 

routine basis. The most immediate rejection of vascularized organ xenografts is the hyperacute 

rejection (HAR) caused by preformed, natural anti--Gal Abs in the recipient species reacting 

with -Gal antigens on the endothelium in donor organs. This interaction leads to complement 

and endothelial cell activation, formation of microthrombi and microhemorrhagies, cessation of 

blood flow, and eventually rejection. With the engineering of pigs lacking the -Gal epitope, 

HAR can now be avoided. However, even though HAR can be prevented, discordant organ 

xenografts are usually lost in an acute vascular rejection (AVR) hours to days post-

transplantation. It is histopathologically characterized by endothelial cell (EC) swelling, focal 

ischemia, a diffuse microvascular thrombosis with fibrin deposition and a cellular infiltrate, 

dominated by monocytes/macrophages, natural killer (NK) cells and neutrophils. EC activation 

will promote leukocyte recruitment, platelet aggregation and loss of thromboregulation, all 

hallmarks of AVR. AVR triggering events are still controversial, but induced anti-graft Abs and 

molecular species incompatibilities are believed to be important. Islet xenograft rejection is 

discussed below. Besides rejections, infections from pig to man is also a potential obstacle for 

clinical xenotransplantation. However, pigs can be bread in a clean environment to reduce the 

risk of pathogen transmission. Porcine endogenous retroviruses (PERV) are inherited because 

they are integrated in the host’s genome, and one has feared that these viruses may become 

activated following transplantation, infect human cells and thereafter spread in the human 

population [27]. Even though these viruses can infect human cells in vitro, there is no evidence in

the literature for infection of humans following exposure to pig tissue in vivo [28, 29]. In 

addition, the ethics of using animal tissue or cells for transplantation should be discussed and 

assessed if it is acceptable in the community in the context of religious beliefs and animal rights.
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1.4.1 Islet xenotransplantation

It has been shown that pig islets can reverse hyperglycemia and maintain normoglycemia in 

diabetic nonhuman primates for more than six months [30-34]. Different immunosuppressive 

strategies have been taken to accomplish this. Encapsulation without systemic 

immunosuppression [31, 35] or extensive systemic immunosuppression [35] was used to prevent 

rejection. Remaining challenges precluding clinical islet xenotransplantation include, but are not 

limited to, the instant blood-mediated inflammatory reaction (IBMIR) [36, 37] and the strong 

CD4+ T-cell/macrophage-mediated rejection [38, 39].

Already in the beginning of the 1990’s, Groth and coworkers transplanted fetal porcine islet-like 

cell clusters into patients with T1DM. Pig C-peptide was detected in the urine beyond 300 days 

and pig islet cells were detected in biopsies in patients receiving combined fetal pig islet and 

human kidney transplants [40]. Since then two limited clinical trials with pig-to-human islet 

transplantation have been performed in Mexico and New Zealand, respectively. Even though 

most data suggests that the pig islets were rapidly lost in these clinical studies, it has been shown 

that pig islets can reverse hyperglycemia and maintain normoglycemia in diabetic nonhuman 

primates for more than six months. Different immunosuppressive strategies have been taken to 

accomplish this. Encapsulation without systemic immunosuppression [31, 35] or extensive 

systemic immunosuppression was used to prevent rejection. Remaining challenges precluding 

clinical islet xenotransplantation include, but are not limited to, the instant blood-mediated 

inflammatory reaction (IBMIR) and the strong CD4+ T-cell/macrophage-mediated rejection.

1.5 THE IMMUNE SYSTEM

The immune system consists  of  a  collection  of  cells  and  tissues  that  defend us  against

invading  microorganisms,  other  foreign  bodies  and  tumors.  Functionally,  it  protects  us

against infectious agents like bacteria, viruses, fungi and parasites. There are two types of

immunity, innate and adaptive immunity. The innate immune response is responsible for an

immediate response against  microbial  invasion.  It  relies on several factors,  including the

epithelial barriers, factors,  e.g. the complement factors, produced at the epithelial surfaces,

natural  antibodies  and  cellular  elements  such  as  neutrophilic  granulocytes,

monocytes/macrophages  and  natural  killer  cells  [41].  The  adaptive  immune  response  is

slower, but more specific.  It  evolves as a specific response to microbes or foreign cells,

including  transplanted  allogeneic  cells  [41].  T- and  B-lymphocytes  are  the  key  cellular

elements of an adaptive immune response. They carry antigen-specific receptors that bind

peptides  derived  from  protein-based  antigens  in  case  of  the  T-cell  receptor  and

conformational epitopes in case of the B-cell receptor [41]. Besides the cellular elements,

specific antibodies of different classes are important players of the adaptive immune system.
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1.5.1 Islet allo- and xenograft rejection

Islet allografts express donor MHC molecules, which may be recognized by the host’s T-

cells by two pathways. This allorecognition can be direct, i.e. recognition of donor MHC on

donor antigen presenting cells (APC), or indirect, i.e. donor alloantigens are internalized by

recipient APC, processed, and presented as peptides by recipient MHC molecules. T-cells 

triggered by direct recognition are of high frequency, while the latter is a low-frequency 

response. Both pathways are important during allograft rejection and it is thought that the 

direct pathway is responsible for acute rejection and the indirect pathway for chronic 

rejection, which occurs later after transplantation [42]. Early adoptive transfer experiments 

showed that primary CD4+, but not primary CD8+, T cells were not only necessary for 

rejection of islet allografts but were also sufficient to mediate rejection [43]. It was 

speculated that CD4+ T cells could reject islet allografts by a direct cytolytic mechanism or 

IFN- secretion, or by indirectly activating B-cells producing graft-specific Abs that could 

activate complement or mediate an antibody-dependent cell-mediated cytotoxic effect on 

the graft [43]. In light of this it is interesting to note that the presence of HLA Abs before 

transplantation was shown to be associated with reduced graft survival after clinical islet 

allotransplantation. Further, the potential return of the autoimmune disease in grafted 

allogeneic islets has to be considered, and optimal immunosuppression for both autoimmune 

as well as allogeneic rejection should be used [44].

The kinetics and mechanisms of cellular xenograft rejection differs from that of organ 

xenograft rejection, mainly in that HAR does not occur due to the absence of a vascular 

network at the time of transplantation. Host immune cells have to traverse host, and not 

xenogeneic, endothelium to reach grafted cells. The rejection of islets xenografts in rodents is

completed by day 10 and has been shown to be a CD4+ T cell-dependent process. 

Macrophages activated by CD4+ T cells are believed to be direct effectors of cellular 

xenograft rejection and specific depletion of macrophages delays cellular infiltration and 

rejection of adult porcine islets in mice. In addition, it was recently demonstrated that 

macrophages activated by CD4+ T-cells, were capable of both recognition and rejection of 

pancreatic islet xenografts. The role of natural anti-Gal Abs in cellular xenograft rejection is 

still debated. However, T cell activation and the characteristics of antigen presentation can be 

expected to be of similar importance in xenogeneic cell and organ rejection. Islet cells 

transplanted into immunocompetent recipients are rapidly lost due to the reactions described 

above, leading to apoptotic or lytic death of islet cells. The capacity to engineer pancreatic 

islets before transplantation with genes protecting from apoptosis or interfering with immune 

rejections holds great promise for the future. Thus, systemic co-stimulation blockade can 

support xenogeneic islet survival long-term with preserved metabolic control in the recipient. 

This was shown by us in a pig islet-to-naïve C57BL/6 mouse model, and has been shown in 

primates as described above.
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1.5.2 The instant blood-mediated inflammatory reaction

Intra-portal injection is the preferred route of islet administration in clinical islet 

transplantation. The direct interaction between islets and whole blood has been studied in an 

ingenious in vitro system developed by Bennet, Korsgren, Nilsson and coworkers [45]. They 

showed that the injection of pig islets into human whole blood led to islet platelet adhesion 

and coagulation, deposition of complement, leukocyte accumulation, islet damage and as a 

consequence, insulin release. No immunoglobulin deposition could be detected on the islet 

surface, indicating that the complement system was activated via the alternative pathway. 

Injection of human islets into human blood, triggered platelet adhesion, coagulation, but no 

deposition of complement could be seen, and insulin dumping was milder. Clotting and islet 

damage were also evident in vivo during intraportal injection of pig islets into pigs 

(allogeneic) or cynomologus monkeys (xenogeneic). The addition of soluble complement 

receptor-1 (sCR1) and heparin to the blood prior to islet injection inhibited both coagulation 

and complement activation. Furthermore, leukocyte infiltration and islet morphology was 

improved; supporting the notion the inhibiting IBMIR will be important to augment islet 

engraftment. Similar results were observed by addition of a thrombin inhibitor (Melagatoran).

Recently, it was shown that tissue factor (TF), which is a physiological trigger of the 

coagulation cascade, is synthesized and secreted by both  and  cells of islets. Blocking the 

active site of TF was also effective in order to inhibit IBMIR.

1.6 IMMUNOSUPPRESSIVE TREATMENT IN CLINICAL ISLET 

TRANSPLANTATION

In the early days of islet transplantation, the immunosuppressive protocols were similar to

those  used  for  kidney  transplantation  and  including  azathioprine,  cyclosporine  and

corticosteroids [44]. One reason for the improved outcome of islet transplantation using the

Edmonton  protocol  was  the  modified  immunosuppression.  In  their  protocol,

immunosuppression was started already prior to transplantation and steroids were excluded

[46]. They replaced glucocorticoids with daclizumab, a mAb against the IL-2 receptor and for

maintenance  therapy they used  sirolimus  (a  target  of  rapamycin  inhibitor)  and low-dose

tacrolimus  [46].  This  protocol  and slight  modifications  of  it  is  currently in  clinical  use.

However, going forward the aim is to eliminate calcineurin inhibitors completely from the

immunosuppressive  regiment.  One  protocol  has  added  the  TNF-a  receptor  antagonist,

etanercept, and the glucagon-like peptide-1 analogue to the Edmonton protocol [46]. Another

uses  antithymocyte  globulin  (ATG)  and  etanercept  for  induction  and  cyclosporine  and

everolimus for maintenance [44].
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1.6.1 Co-stimulation blockade

Immune  system as  mentioned  before,  is  an  innate  and  adaptive  immunity,  the  adaptive

immunity is include T cells, these T cells are important in the transplantation field, as they

have a response against the foreigners, whether these foreigners are microbes or viruses or

even a transplanted cells or tissue. As soon as T cells recognize these species they will act

against it and fight it. So we have to think how to block these receptors and then T cells will

not be activated against the transplanted agent and the rejection can be reduced or avoided. T

cells have many types of receptors and ligands, some are inhibitors and some are activators

for T-lymphocytes, CTLA4Ig have been blocked in a mouse model resulting in long survival

time for the transplanted islets  [47]. In previous studies we showed that CTLA4Ig, anti-

CD40L and anti-LFA-1 can lead to a longer survival time for the graft [48]. On paper one and

two we used these co stimulations in naïve and sensitized C57BL/6 mice transplanted with rat

or BALB/c mouse islets, presence of HLA in allotransplantation can reduce the graft survival

[49,  50],  and cause  hyper  acute  rejection  [51],  immediate  blood-mediated  inflammatory

reaction (IBMIR) can also occurs [37].   

1.7 IMPROVEMENT OF GRAFT ISLET QUALITY: 

STUDY OF A NEW CYTOPROTECTIVE DRUG

Islet quality may decrease during their isolation and manipulation, and this may reduce the

number of islets obtained from the donor. In clinical islet transplantation using the portal vein

route for injection, many islets are destroyed due to the immediate blood mediated reaction

(IBMIR; see above) [52]. In this process, coagulation pathways are activated and a severe

inflammatory response is induced around the grafts, which can impair function and cause

islet apoptosis. Drugs that reduce the inflammatory or pro-thrombotic responses in recipients

or increase robustness of islets may improve graft survival and reduce the number of donors

needed for each patient.

Erythropoietin (EPO) is a hormone that regulates haematopoiesis by its binding to the 

erythropoietin receptor (EPO-R). Administration of high doses of EPO is known to show 

tissue protective effect. Brines et.al. [53] found that EPO mediates tissue protection through 

an erythropoietin and common beta-subunit (CD131) heteroreceptor. The heterodimer 

EPO-Rs are expressed in a variety of tissues and cells including the small bowel [54], 

myoblasts [55], neuronal cells [56], kidney cells [57] and cells in pancreatic islets [58].

Recently, an erythropoietin analogue, pyroglutamate helix B surface peptide (ARA 290), 

without hematopoietic function was developed. It has 11 amino acids and a high specificity 

for the EPO-R-CD131 heterocomplex [53]. The drug is currently in ongoing or planned 

phase 2 clinical trials in patients with sarcoidosis, type 2 diabetes and rheumatoid arthritis.

It has been reported that pancreatic islets express EPO-R-CD131 heteroreceptors and that 
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EPO can improve rat islet cell viability and function when exposed to pro-inflammatory 

cytokines [58]. Our hypothesis is that ARA 290 treatment may improve islet viability and 

function during inflammation such as the cytokine-induced inflammation caused by IBMIR 

or brain death.

1.8 STREPTOZOTOCIN AND ALLOXAN

Streptozotocin (STZ) and alloxan (ALX) are widely used agents for induction of diabetes in 

experimental animal models of insulin-dependent diabetes, in particular those used for islet 

transplantation research. They have a cytotoxic effect on pancreatic beta cells, which are 

killed by necrosis leading to insulin deficiency and diabetes. Because of their similarity to 

glucose, both agents accumulate in beta cells through uptake via the glucose transporter, 

GLUT2 [59, 60]. The cytotoxic mechanisms of STZ and ALX are completely different [61]. 

In the presence of intracellular thiols, e.g. glutathione, ALX generates reactive oxygen 

species through a cyclic redox reaction [62]. The final product of these reactions is hydroxyl 

radicals that are finally responsible for beta cell death [63]. In addition, ALX inhibits the beta 

cell glucose sensor, glucokinase, thereby perturbing glucose-induced insulin secretion [63]. 

Through its alkylating properties, STZ on the other hand exerts its beta cell-destroying action 

by modifying macromolecules and fragmenting DNA [63]. Because it also fragments 

mitochondrial DNA, it perturbs mitochondrial metabolism and thereby glucose-induced 

insulin secretion [61]. Additional organs, like the kidney and liver, expressing the GLUT2 

transporter are also affected by the two drugs, mainly by STZ [64, 65].Despite the fact that 

both STZ and ALX are used to induce diabetes, significant differences are observed in terms 

of their effects on the host’s immune system [66]. STZ affect adaptive immunity and it has a 

direct toxicity on lymphocytes, mainly CD8+ T cells and B cells [67]. Rubinstein et al have 

suggested that the hyperglycemic state in mice mainly affects the immunological memory 

[68]. Sakowicz-Burkiewicz et al reported that T cells isolated from the spleen of rats with 

STZ-induced diabetes proliferated less than cells isolated from normal rats when stimulated 

with mitogen, anti-CD3 or anti-CD28 antibodies [69]. Considering the different effects of 

ALX and STZ on the immune system [70], islet transplantation models using mice with 

diabetes induced by the two drugs may confound results of studies on novel immune-

modulating treatment regimens [70]. In some cases, islet allografts were accepted without 

immunosuppressive treatment [70]. Some authors have suggested that STZ is a mild 

immunosuppressive agent, while ALX is not [67]. However, some reports claim that mice 

with ALX-induced diabetes can accept islet allografts permanently [70].Even though there 

are several reports on the effects of STZ and ALX on beta cells [63], few investigations have 

done a side-by-side comparison of their cytotoxic effects in vitro and their effects on the 

immune system in vivo [71, 72]. It is important to understand the differences in immune 

response between non-diabetic control mice and mice with STZ-ALX-induced diabetes. We 

also investigate their cytotoxic effects on human and murine leukemic cell lines. 
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2  AIMS

 To investigate the effects of costimulation blockade using anti-CD154 and CTLA4Ig

with or without anti-LFA-1 antibodies on allogeneic islet graft survival in sensitized

mice

 To investigate the effect of preformed donor-reactive antibodies on rat islet xenograft

survival in mice with or without costimulation blockade

 To evaluate the effect of ARA 290 - an erythropoietin analogue - on islet viability and

function in vitro and in a syngeneic rat islet transplantation model

 To assess  and  compare  the  effects  of  streptozotocin  (STZ)  and  alloxan  (ALX)  on

rejection kinetics, lymphocyte number and function in vivo, and cytotoxic potency in

vitro
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3 MATERIALS AND METHODS

3.1 ETHICAL PERMISSION

All  animal  experiments  were  approved  by  the  regional  committee  (Stockholm  södra

djuretiska  nämnd)  on  animal  ethics,  S161-08,  S163-08,  S35-10,  S74-11 and  S78-11 for

papers II and IV, S14-07 and S15-07 for paper Ie, and S84-12 and S17-13 for paper III. The

requirements of the Animal Welfare Act and the National Institutes of Health guidelines for

the care and use of laboratory animals were followed. The animals were fed a commercial

diet with free access to food and water.

3.2 ANIMALS AND TRANSPLANTATION MODELS

A mouse allogeneic transplantation model using C57BL/6 mice as recipients and BALB/c as

donors  were  used  in  paper  I.  Recipients  were  sensitized  by  transplantation  of  BALB/c

pancreatic islets under the kidney capsule or by intraperitoneal injection.

In paper II, we used a rat-to-mouse islet xenotransplantation model with C5BL/6 mice as 

recipients and Lewis rats as donors. Recipients were divided into three groups receiving: (i) 

isotype control Abs; (ii) anti-CD154 and CTLA4Ig; or (iii) anti-CD154, CTLA4Ig, and 

anti-LFA-1 every second day, day 0–8. At the time of transplantation (Tx), half of the 

animals in each group received naïve mouse serum and half xenoimmune serum derived 

from mice previously transplanted with rat islets.

In manuscript III, we used a syngeneic rat transplantation model with male Lewis rats as

donors and female Lewis rats as recipients. More islets can be retrieved from male rats and

female rats do not increase their body weight as much as male rats.

In manuscript IV, we have compared the effect of STZ and ALX on C57BL/6 mice recipients

with regard to body weight, rejection kinetics, spleen size and cytotoxic effects on cell lines

in vitro.

3.3 INDUCTION OF DIABETES

Alloxan (ALX, 75 mg/ml) or streptozotocin (STZ, 180 mg/ml for a mouse and 55 mg/kg for

a rat) was used to induce diabetes. An animal was considered diabetic if its blood glucose

level exceeded 20 mM for two or more consecutive days. ALX was used in papers I and IV,

and STZ in paper II, III and IV.
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3.4 ISLET ISOLATION AND PREPARATION

Islets from male Lewis rats were digested using a collagenase solution in Hanks balanced salt

solution and were purified using density gradient centrifugation. Isolated islets were cultured

in RPMI 1640 medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100

U/ml penicillin and 100 μg/ml streptomycin at 37ºC in a humidified atmosphere (5% CO2

and 95% air).

Mouse islets were isolated following a procedure similar to that used for rat islet isolation.

Collagenase  concentration  was  1.5  mg/ml,  the  injection  volume  was  2  ml/mouse  and

digestion time was 8 min.

3.5 GENERATION OF IMMUNE MOUSE SERUM AND MOUSE 

ECIPIENTS SENSITIZED AGAINST DONOR ISLETS

In order to generate mouse serum containing anti-donor islet antibodies (Abs) and sensitized 

mouse recipients, Lewis rat islets (in paper II) or Balb/c mouse islets (paper I) were 

transplanted/injected to/in C57BL/6 mice. The mouse serum was collected four weeks after 

transplantation and the induction of anti-donor Abs was verified by flow cytometry on B cell-

depleted splenocytes. Mouse sera that had a reactivity >10 channels above the negative 

control serum were considered positive. All naïve mice lacked anti-rat Abs of IgG isotype. 

The appearance of IgG Abs against rat splenocytes was taken as proof of successful 

sensitization.

3.6 TRANSPLANTATION OF ALLOGENEIC ISLETS TO THE SENSITIZED 

RECIPIENTS

In paper I, 3-4 days after induction of diabetes (blood glucose >20 mmol/L), 200 Balb/c

islets were transplanted under the right kidney capsule of C57BL/6 mice. Recipients were

divided into 4 groups: group 0, naïve recipients transplanted with 200 allogeneic islets;

group  1,  mice  receiving  isotype  control  antibodies  (human  IgG,  hamster  IgG,  and  rat

IgG2a); group 2, mice treated with anti-CD154 and CTLA4Ig; and group 3, injected with

anti-CD154, CTLA4Ig, and anti-LFA-1. Injections were given every second day from day

-2 up to day 8. Graft function was estimated by daily monitoring of blood glucose and body

weight. Non-fasting blood glucose levels of <10 mmol/L in transplanted recipients reflected

functional grafts. Blood glucose levels of >20 mmol/L (360 mg/dL) for >2 consecutive

days were considered to be indicative for graft  rejection,  in which case the mouse was

sacrificed.
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3.7 RAT ISLET-TO-MOUSE TRANSPLANTATION MODEL: 

STUDY GROUPS, PROCEDURE AND FOLLOW UP

In paper II, Lewis rat islets (100-150) were transplanted under the left kidney capsule of 

diabetic C57BL/6 mice. Table 1 summarizes the different study groups. The body weight and 

blood glucose levels were monitored daily for the first ten days and then once a week if there 

were no signs of rejection. Rejection was defined as above. If recipients were normoglycemic

>3 months, the graft-bearing kidney was explanted to verify reoccurrence of diabetes. Serum 

samples were collected at the end of the follow-up.

Table 1: Study groups used.

Group n Injected seruma Costimulation blockadeb

1 4 naïve isotype control Absc

2 5 immune isotype control Abs

3 5 naïve CTLA4Ig, anti-CD154 Abs, rat IgG2ad

4 6 immune CTLA4Ig, anti-CD154 Abs, rat IgG2a

5 5 naïve CTLA4Ig, anti-CD154 Abs, anti-LFA-1 Abs

6 6 immune CTLA4Ig, anti-CD154 Abs, anti-LFA-1 Abs
aOne hundred l naïve  or immune serum were injected intraperitoneally (i.p.) at the time of transplantation
bisotype control antibodies or costimulation blockade-inducing antibodies/fusion proteins were given i.p on days 
0, 2, 4, 6, and 8 after transplantation
cAbs, antibodies (human IgG, hamster IgG and rat IgG2a)
drat IgG2a is an isotype control for anti-mouse LFA-1

3.8 INTRAPERITONEAL GLUCOSE TOLERANCE TESTS (IPGTT)

In  order  to  assess  islet  graft  function  in  paper  II,  intraperitoneal  glucose  tolerance  tests

(IPGTT)  were  performed  on  euglycemic  recipients  at  one  and  four  months  after

transplantation  as  described  [48].  The  area  under  the  curve  (AUC)  was  calculated  and

compared between study groups and to that of healthy controls.

3.9 MORPHOLOGICAL EXAMINATION OF EXPLANTED GRAFTS

Graft-bearing kidneys were removed at the end of the observation period. The grafts with

adjacent kidney tissue were fixed, dehydrated and sectioned. Serial sections (4 m thick)
were obtained and stained with hematoxylin and eosin for scoring. The scoring was based on

the evaluation of sections taken at four to eight different levels throughout the graft. In order

to compare graft mass and the degree of cell infiltration into the graft,  each section was

scored  with  regard  to  the  fraction  of  endocrine  cells,  and  the  degree  of  immune  and

inflammatory cell infiltration. The scoring was based on cell  counting performed by two

individuals independently.
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Apoptotic cells were detected by the  terminal deoxynucleotidyl transferase dUTP nick end

labeling (TUNEL) assay using the DeadEnd™ Fluorometric TUNEL System. One glass slide

from each  graft  containing  two sections  was  used  for  TUNEL staining.  The  number  of

TUNEL-positive cells in two sections (taken at two different levels) of the graft was counted

under the fluorescence microscope and the mean number of apoptotic cells were used for

scoring.

3.10 APOPTOSIS INDUCTION AND DETECTION

In manuscript III, islet apoptosis was induced by delivering a pro-apoptotic signal with rat-

specific  cytokines  as  follows:  interleukin  (IL)-1β  (0.5  ng/mL),  interferon  (IFN)-γ  (100

ng/mL) and tumor necrosis factor (TNF)-α (50 ng/ml) for 6 or 12 hours with or without 100

nM ARA 290.

Apoptosis  was  assessed  using  the  Caspase-Glo  3/7  Assay.  In  total,  50-100  islets  were

transferred to a  1.5 mL eppendorf  tube.  The islets  were pelleted by brief  centrifugation,

resuspended and sonicated for  10 seconds.  The Caspase-Glo 3/7 reagent  was added and

incubated at room temperature for one hour. The luciferase activity was measured with a

luminometer. The luciferase activity was related to the amount  of double stranded DNA

(dsDNA),  as  determined by the  Quant-iT™ Pico  Green® dsDNA Assay Kit,  in  order  to

correct  for  the  number  of  cells.  Fluorescence  was  measured  with  a  fluorometer.  Each

treatment/assay was based on n=5 replicate samples.

3.11 THE MTT ASSAY FOR ISLET VIABILITY ASSESSMENT

The  MTT  (3-[4,  5-dimethylthiazol-2-yl]-2,  5-diphenyltetrazolium  bromide)  assay  was

conducted as previously described. Briefly, 20 μL of MTT solution was added to each well

containing 20 islets in 200 μL of RPMI-1640 medium and incubated for 2 hours at 37°C.

After  incubation,  the  plate  was  centrifuged,  the  incubation  medium  discarded,  and  the

precipitates dissolved in 200 μL of dimethyl sulfoxide. After further centrifugation, 50 µL of

the  supernatant  was  removed  for  the  MTT  assay.  The  absorbance  was  measured

spectrophotometrically at 550 nm.

3.12 STATIC GLUCOSE-STIMULATED INSULIN SECRETION (SGIS) TESTS

In manuscript III, the static glucose-stimulated insulin secretion (SGIS) was assessed. Twenty

islets  were  hand-picked  and  transferred  to  24-well  Transwell® plates  (8.0  μm pore  size

membrane)  in  1.5 mL of  Krebs-Ringer  bicarbonate  buffer  (KRBB) containing 1.67 mM

glucose (low glucose KRBB). The islets were incubated for 60 min with 1.5 mL of low

glucose KRBB, followed by incubation with high glucose KRBB (glucose 16.7 mM) for

another 60 min.  The supernatants were collected and the insulin in the supernatants was
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quantified using a rat insulin enzyme-linked immunosorbent assay (ELISA) kit. A stimulation

index was calculated by dividing the total amount of insulin released from the islets cultured

in the high-glucose KRBB by the total amount of insulin released from the islets cultured in

the low-glucose KRBB.

3.13 TRANSPLANTATION OF A MARGINAL NUMBER OF ISLETS

To determine the optimal number of islets in manuscript III, preliminary transplantation under

the kidney capsule using 600, 500, 400, 300, 250 and 150 islets was performed. The cure rate

of the groups that were transplanted with more than 250 islets was 100%, but no groups were

cured by transplantation with 150 islets. Therefore, the marginal islet number was determined

to be 220. In total, 220 Lewis rat islets were picked and washed once with HBSS and then

packed into a 24 GA Venflon™ (BD) using a Hamilton syringe. The islets were placed under

the left kidney capsule of diabetic female Lewis rats.

3.14 ARA290 TREATMENT

Recipient rats were randomized into either the vehicle treated control group (n=5) or the ARA

290 group (n=4).  On the day of transplantation,  ARA 290 (60  µg/kg)  was administered

intraperitonealy at 0 and 2 hours pre-transplantation and subcutaneously (120 µg/kg) at 6 and

12 hours post-transplantation. The same dose was administered subcutaneously twice a day

from postoperative day (POD) 1 to 7 and finally, once a day from POD 8 to 14.

3.15 POST-TRANSPLANT MANAGEMENT OF RECIPIENT ANIMALS

In manuscript III,  the non-fasting blood glucose levels and weights of the animals were

measured daily for 30 days. Subsequently, graftectomy was performed at 28 POD and the

blood glucose levels were followed for another 3 days in order to confirm the recurrence of

diabetes. Two of the rats in the control group were discarded because their blood glucose

level remained below 20 mM after the graftectomy (n=7 total  but it  became 5 in final).

Several  of  the  kidneys  with  graft  bearing  were homogenized in  acid-ethanol  for  insulin

extraction. All of the rats were sacrificed 3 days after the graftectomy at 31POD.

3.16 ORAL GLUCOSE TOLERANCE TEST (OGTT)

An oral glucose tolerance test (OGTT) was performed four weeks after transplantation in all

the transplanted rats. A total of 1.5 g glucose/kg bodyweight was administered orally to the

rats after 16 hours of fasting, and the blood glucose levels were measured at 0, 5, 10, 15, 20,

30, 45, 60, 90 and 120 minutes after glucose challenge. The insulin levels in the plasma were

measured at 0, 10, 20, 30, 45, and 60 minutes using a rat insulin ELISA kit (Mercodia).
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3.17 CELL CULTURE, DETERMINATION OF CYTOTOXICITY AND IC50 VALUES

The HL60 cell line was purchased from DSMZ, and the K562 and C1498 cell lines were

purchased  from  ATCC.  HL60  and  K562  cells  were  cultured  in  RPMI  1640  medium

supplemented with 10% heat-inactivated fetal bovine serum (FBS) and C1498 cells were

cultured  in  DMEM  medium  supplemented  with  10  %  heat  inactivated  FBS  and  1%

penicillin/streptomycin.  Cells  were  cultured  in  a  concentration  of  2×105 cells/ml  and

incubated at  37°C in a  95% humidified and 5% CO2 atmosphere.  All  experiments were

performed on exponentially growing cells in complete medium.

Human and murine cell lines were cultured in triplicate in 96-well plates at a density of 2x104

cells/well  in the absence (untreated control) or presence of  various concentrations of ALX

(20-3000 µg/ml) or STZ (1-3000 µg/ml) for 48h at 37  °C under a humidified atmosphere

containing  5%  CO2.  Cells  incubated  in  complete  media  including  dH2O  in  a  final

concentration of 0.1% served as control for solvent toxicity and cells incubated in complete

medium used as a control for the experiments. The effects of the tested drugs on tumor cell

growth  or  viability  were  determined  employing  the  MTT  assay  (Sigma-Aldrich)  in

accordance with the manufacturer’s instructions. The IC50 values (drug concentration that

induce  50% inhibition  of  the  cell  growth)  were  calculated  using the  GraphPad Prism 4

program (GraphPad software Inc., CA, USA).

3.18 ISLET TRANSPLANTATION 

For  manuscript  IV,  rat  or  mouse  islets  were  handpicked  under  the  microscope  and

transplanted under the kidney capsule of recipients with chemically induced diabetes (non-

fasting blood glucose >20 mM). Recipient’s body weight and blood glucose were measured

daily until rejection. Rejection was defined as described above. When grafts were rejected,

the mice were sacrificed. The grafts, spleen and serum were harvested.

3.19 PROLIFERATION TESTS

Isolated splenocytes from C57BL/6 mice were used as responder cells and splenocytes from

Balb/c mice were used as allogeneic stimulators. Some of C57BL/6 mice were injected with

STZ at a dose of 180 mg/kg or ALX 75 mg/ml four days prior to euthanasia. The stimulator

cells were irradiated with a 15 Gy dose. Subsequently, 105 responder cells/well and 4 x 105

stimulator cells/well were mixed to a final volume of 200 l in RPMI 1640 supplemented
with 10% FBS, 2 mmol/l L-glutamine, 100 U/ml penicillin, 100 g/ml streptomycin and 50

M 2-mercaptoethanol. The proliferation test was performed in triplicate in U-bottomed, 96-
well tissue culture plates. Cells were incubated at 37°C in humidified air containing 5% CO2.

Each culture was labeled with 2 Ci  3H thymidine (Amersham, UK) approximately 20
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hours prior to harvest (day 5). 3H thymidine incorporation was measured using a beta
counter (Wallac, Sverige AB, Sweden).

3.20 STATISTICS

Differences between two groups were analyzed by the Mann Whitney U test. If comparisons

between three or more groups were performed, the Kruskal-Wallis test with Dunn’s multiple

comparison tests (GraphPad Prism ver.6) was used. Survival was analyzed by a log-rank

(Matel-Cox) test with the Bonferroni post-hoc test for multiple comparisons. A P-value of

less than 0.05 was considered statistically significant.
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4 RESULTS AND DISCUSSION

4.1 PAPER I

Naïve mice rejected islet allografts between 7 and 29 days (mean 16 ± 8 d), sensitized mice

in the control group (group 1) between days 0 and 14 (mean 7 ± 5 d), sensitized mice

receiving double (anti-CD154 and CTLA4Ig) costimulation blockade (group 2) between

days 4 and 16 (mean 8 ± 4 d), and sensitized mice receiving triple (anti-CD154, CTLA4Ig

and anti-LFA-1) costimulation blockade (group 3) between days 4 and 26 (mean 11 ± 7 d).

Two naïve mice transplanted with islet allografts and receiving triple therapy accepted their

allografts (±180 days; data not shown). Blood glucose and body weight data of individual

mice  after  transplantation  is  shown  in  Figure  3.  The  data  of  naïve  mice  that  were

transplanted with  allogeneic  islets  and treated  with costimulation blockade is  shown in

Figure  3B.  The graft  function  was  maintained  over  60  days,  which  was  confirmed  by

graftectomy resulting in recurrence of diabetes.
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Figure 3 Blood glucose and body weight after transplantation in each group are shown. 
(A) Naïve C57Bl/6 recipients were transplanted with Balb/c islets and isotype control antibodies were injected as
described in the materials and methods. Grafts were rejected between 7 and 23 days. 
(B) Naïve C57Bl/6 recipients were transplanted with Balb/c islets with costimulation blockade treatment; grey 
bar shows the results of a mouse treated with CTLA4Ig and anti CD154, dark bar with CTLA4Ig, anti CD154 
and anti LFA-1 antibodies. Arrows indicated the graft bearing nephrectomy in order to confirm the graft 
function. 
(C-E) Sensitized mice were transplanted with Balb/c islets and treated with (C) isotype control antibodies, (D) 
CTLA4Ig and anti CD154 antibodies, and (E) CTLA4Ig, anti CD154 and anti LFA-1 antibodies. 

Table 2: Graft Survival after islet allotransplantation
Group Graft Survival (d)
Naive mice (n=5) 7,14,29,15,14
Sensitized mice treated with isotype 
control Abs  (n=8)

0,0*, 4,5,8,9,13,14

Sensitized mice treated with double 
costimualtion blockade  (n=7)

4,4,6*, 7*, 8,8,16

Sensitized mice treated with triple 
costimualtion blockade  (n=10)

4,5*, 6,7*, 7*, 8,13,14,17,26

*Immunized by intraperitoneal injection of a BALB/c pancreatic digest (including
islets); others immunized by transplantation of 200 islets under the kidney capsule.Triple co stimulation 
blockade could not prolong the graft to survive in the sensitized mice model. 

4.1.1 Discussion 

Costimulation blockade has been proven useful in order to induce long term graft survival in 

rodent models. However, it has been difficult to achieve similar efficiency in large animal 

models. In larger animals and humans, costimulation blockade needs to be complemented 

with conventional immunosuppressive drugs used for maintenance therapy (e.g. rapamycin or

MMF) or repeated injections of costimulation blockade agents are necessary [73]. A potential 

explanation for this is the higher frequency of alloreactive memory cells in larger animals and

humans.

Previously, we have shown that double costimulation blockade with CTLA4Ig and anti-

CD154 Abs can induce long-term graft survival, and addition of anti-LFA-1 Abs improves 

graft function in the immediate post-transplantation period. [48]. L FA-1 is expressed on all 

hematopoietic cells including memory T cells and NK cells. Thus, blocking LFA-1 may 

prolong graft survival even in sensitized patients. However, we show here that even triple 

costimulation blockade did not prolong graft survival in sensitized recipients.

Several studies have examined the effect of additional costimulation blockade combinations 

on graft survival in sensitized recipients. Some reagents such as anti-OX40L Abs have shown

promising effects in rodents [74].

43



Culture in vitro of T cells with donor-specific antigens and co-stimulatory blockade facilitates

generation of donor-specific regulatory T cells (Treg) [75]. Clinical trials using such in vitro 

generated Treg cells for graft-specific immunosuppression have been initiated.

Costimulation blockade is useful to induce energy or tolerance to antigens. However, 

additions to this therapy may be needed. We have recently observed that a combination of co-

stimulatory blockade and mesenchymal stem cells improved islet graft survival in a rodent 

model compared to costimulation blockade or MSCs alone.

4.2 PAPER II

4.2.1 Early effects of immune antibodies on islet xenografts

The early effect of immune antibodies (Fig. 4A) on xenografts was examined at 48 and 96 

hours after transplantation. Recipient mice were transplanted with rat islets, injected 

intraperitoneal with naïve or immune serum and treated with control Abs or triple (anti-

CD154, CTLA4Ig and anti-LFA-1) costimulation blockade. At both 48  and 96 hours post-

rat islet transplantation/post-serum injection, anti-rat splenocyte IgG Abs were detected in 

mice injected i.p. with immune, but not naïve, serum (Fig. 4B and C). 

Figure 4 Detection of anti-Lewis rat antibodies in mouse serum samples using flow cytometry 
Anti-rat antibodies (Abs) in pooled serum from sensitized (n=17; thick black line) and naïve (n=5; filled curve) 
C57BL/6 mice were analyzed by flow cytometry using rat splenocytes as target cells (A). The serum samples 
shown in A were used as immune and naïve serum in the mice analyzed in B-G. The serum of mice transplanted 
with rat islets, injected with naïve (filled curve) or immune (thick black line) serum, and receiving control Abs 
(B and D) or costimulation blockade (C and E) were analyzed 48 (B and C) or 96 (D and E) hours post-
transplantation (post-Tx) using flow cytometry and rat splenocytes as target cells. 

The average MCF of mouse anti-rat IgG Abs detected by flow cytometry in mice of each 

group is shown in Tables 3A and B. At 48 hours after transplantation, immune serum-injected
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groups showed significantly higher levels of anti-rat Abs than naïve serum-injected groups. 

At 96 hours the difference was less pronounced (Fig. 4E and F).

The effect of immune serum on rat islet xenograft morphology 48 and 96 hours post-Tx in 

recipients receiving costimulation blockade or control Abs was evaluated by histological 

examination of graft sections. At 48 hours, the graft mass and the number and type of 

infiltrating cells were similar in the groups of mice injected with naïve and immune serum, 

respectively (Table 3A). Even though statistical significance was not reached, there appeared 

to be slightly more TUNEL-positive (apoptotic) cells in the group given immune serum and 

costimulation blockade compared to the group receiving naïve serum and costimulation 

blockade (Table 3A, Fig. 5A). Histology sections did not show significant differences 

between the groups. PMN and MNC were seen 96 hours post-transplantation in the groups 

treated with control Abs irrespective of whether they were given naïve or immune serum 

(Table 3A and B).

Table 3A: Histological scoring of grafts recovered 48 hours post-transplantation

  anti-rat aAbs dGraft dInfiltrating cells dApoptotic

 n bMCF mass MNC PMN cells

naïve serum, isotype control 3 9.9±3.1 1.6±0.3 1.2±0.7 1.1±0.5 1.3±0.3
immune serum, isotype control 4 c26.0±5.5 1.4±0.6 1.3±0.3 1.4±0.3 1.6±0.3
   
naïve serum, triple Ab 4 8.6±1.7 1.8±0.9 1.4±0.5 1.6±0.5 1.0±0.7

immune serum, triple Ab 4 c25.9±2.9 1.8±0.5 0.7±0.5 0.8±0.8 2.1±0.9

Table 3B: Histological scoring of grafts recovered 96 hours post-transplantation

  anti-rat aAbs dGraft dInfiltrating cells dApoptotic

 n bMCF mass MNC PMN cells

naive serum, isotype control 3 13.1±5.0 1.6±0.5 2 1.4±0.5 1.3±0.6
immune serum, isotype control 4 e21.0±3.7 1.5±0.7 1.7±0.5 1.2±0.4 1.2±0.4
   
naïve serum, triple Ab 3 9.0±1.0 3 0.1±0.1 0.1±0.1 1.3±0.6

immune serum, triple Ab 3 14.0±1.3 3 0.8±0.2 0.1±0.1 0.7±0.6
aAbs, antibodies
bMCF, mean channel fluorescence
cP<0.01 compared with naïve sera injected groups (Table 3A)
eP<0.05 compared with naïve sera injected groups (Table 3B)
dEach graft was scored by two persons and the Table shows the mean score±SD of each group. For definitions of
the score, see the Materials and Methods
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Figure 5 Histological examination of early effect of immune antibodies on the xenografts. 
Mouse kidneys bearing rat islet xenografts were explanted at 48 and 96 hours after transplantation, sectioned and
analyzed with regard to TUNEL (white arrows) and insulin (brown) positive cells (A; 48 hours). Bars, 20 mm. 
The effect of the costimulation blockade was seen at 96 hours post-Tx. Grafts from mice given isotype control 
antibodies (B left) exhibited a moderate infiltration of polymorphonuclear and mononuclear cells (blue arrows), 
while grafts receiving triple costimulation blockade (B right) had fewer infiltrating cells and well-maintained 
endocrine tissue (red arrows). Only a few TUNEL-positive cells were observed in grafts harvested at 96 hours 
post-Tx (black arrows). Magnification: 40x and bars, 50 mm. 

4.2.2 Rat islet xenograft survival in mice treated with 

costimulation blockade 

C57BL/6 mice were divided into six groups (Table 1), control (groups 1 and 2), double

(groups 3 and 4) and triple (groups 5 and 6) costimulation groups given naïve and immune

serum, respectively. Blood glucose and body weight were followed in all animals. Control

groups rejected their grafts within two weeks, while mice in groups receiving costimulation

blockade (groups 3-6)  had prolonged graft  survival.  No statistical  differences  were  seen

between immune and naïve serum-injected groups, i.e. group 1 vs. 2, group 3 vs. 4 and group

5 vs. 6 (Fig. 6). IPGTT was performed one and four months after transplantation in order to

further  examine  graft  function.  Following  the  intraperitoneal  glucose  challenge,  blood

glucose recovery was similar between naïve and immune serum-injected groups.
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Figure 6 No effect of donor-specific antibodies on islet xenograft survival prolonged by costimulation blockade 
Rat islet xenograft survival (%) in mice receiving isotype control antibodies (A), double (B) or triple (C) 
costimulation blockade. Half of the mice in each group received naïve (broken lines) and half immune (solid 
lines) mouse serum. Rejection was defined based on the non-fasting blood glucose levels as described in 
Materials and Methods. 

Explanted grafts were further assessed by histopathological examination. Hematoxylin and

eosin staining, anti-insulin and TUNEL staining were performed. Sections from group 1 and

2 showed many apoptotic cells and very few insulin positive cells, infiltration of MN and

PMN cells were seen. In the functional grafts, insulin positive cells were clear and no/very

few apoptotic cells were found, while the rejected grafts had massive MNC infiltration and

many TUNEL positive cells. A few mice in groups 5 and 6 had functional grafts but many

TUNEL+ cells, which may suggest early stage graft rejection (Table 4; Fig. 7 and 8).
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Figure 7 Sections of explanted rat islet grafts from mice treated by costimulation blockade and given naïve or 
immune mouse serum were stained by hematoxylin & eosin and anti-insulin antibodies. 
Explanted grafts from mice in each group were sectioned and stained by hematoxylin and eosin (H&E) and anti-
insulin antibodies. Insulin-positive cells are stained brown. A representative section from one graft in each group 
is shown in panels A to J. The numbers on the left upper corner of each picture correspond to the mouse ID 
number referred to in Table 4. The sections were from a graft out of the group receiving isotype control 
antibodies (Abs) and naïve serum (A), isotype control Abs and immune serum (B), a functional graft from the 
group treated with double costimulation blockade and given naïve serum (C), and a rejected graft from the same 
group (E). In panel D a section of a functional graft from the group receiving double costimulation blockade and 
immune serum is shown, and in F is shown a section of a rejected graft from the same group. A functional graft 
from the group receiving triple costimulation blockade and naïve serum is shown in G and a section from a 
rejected graft of the same group is shown in panel I, while in H a functional graft from the group treated by triple
costimulation blockade and given an intraperitoneal injection of immune serum is shown and in panel J we show
a rejected graft from the same group. The original magnification was 40x and bars indicate 50 mm. 
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Figure 8 Detection of apoptotic cells using the TUNEL assay on explanted islet grafts. 
Explanted grafts from mice in each study group were also examined by the TUNEL assay in order to quantify 
the number of apoptotic cells. The sections are from the same recipients and presented in the same order as 
shown in Fig. 6. Green spots represent TUNEL positive cells. White arrows point at TUNEL positive cells. The 
scores given under each panel can be found in Table 4 and how they were calculated is described in the Materials
and Methods section. The bars indicate 100 mm. 

Explanation of Table 4 below:
ND: not done because of technical failure
aGraft function at the time of graftectomy. Maintained: a non-fasting blood glucose level of <10 mM; Rejected: 
blood glucose levels in two consecutive samples >20 mM.
bScore shows mean ±SD from three different levels of samples. When all the scores were the same, SD (±0) was
left out.
cNo TUNEL staining, number of apoptotic cells estimated from HE stained slides
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Table 4: Transplantation results, anti-donor antibodies and histology scoring in each group

Histological analysis (score)b

Infiltrating cells

Mouse ID Graft functiona Anti-rat antibodies(IgG; MCF) Endocrine tissue MNC PMN Apoptotic cells

Group 1

#7 Rejected 51.57 1.3±0.57 2 2.7±0.57 3

#26 Rejected 38.85 1 2 1 3

#40 Rejected 34.84 1 2 2.7±0.57 3

#51 Rejected ND 0 3 1 3

Group 2

#27 Rejected 43.74 0.3±0.57 2.7±0.57 1.7±0.57 ND

#41 Rejected 49.99 1 2.3±0.57 1.7±0.57 3

#50 Rejected 71.79 1.3±0.57 2.7±0.57 2.3±0.57 3

#52 Rejected 27.12 0.3±0.57 2.3±0.57 1 3

#59 Rejected 194.78 0.3±0.57 1.7±0.57 1.7±0.57 3

Group 3

#49 Maintained 13.17 3 0 0 1

#28 Rejected 14.10 1.3±0.57 1.7±0.57 1.3±0.57 2

#42 Rejected 22.99 2.3±0.57 2±1 1 3c

#55 Rejected 6.95 2.7±0.57 2.7±0.57 1 1,3±0,55

#60 Rejected 6.64 1.7±0.57 0.7±1.15 2 2

Group 4

#38 Maintained 10.25 2.3±1.2 0 0 0

#61 Maintained 3.10 2.7±0.57 0.7±0.57 0 1

#67 Maintained 16.98 ND ND ND ND

#39 Rejected 97.82 0.7±0.57 3 1.7±0.57 3

#43 Rejected 7.04 0.7±0.57 2.3±0.57 1.3±0.57 1

#48 Rejected 254.07 0.3±0.57 3 1.7±0.57 3

Group 5

#62 Maintained 69.28 2 2.3±1.15 1.3±0.57 3

#68 Maintained 16.63 3 1 0.7±0.57 1

#46 Rejected 93.19 0 3 1.7±0.57 3

#47 Rejected 28.54 0.7±0.57 3 1.7±0.57 3

#57 Rejected ND 1.3±0.57 2.3±1.15 0.7±0.57 3

Group 6

#30 Maintained 73.49 2.3±0.57 2.3±1.15 0.7±0.57 1

#63 Maintained 79.91 3 1.7±0.57 0.7±0.57 3

#12 Rejected 61.71 0.7±0.57 3 2 3

#45 Rejected 221.67 1.3±0.57 2.7±0.57 2 3

#56 Rejected 367.45 3 3 1.3±0.57 3**

#69 Rejected ND 0 3 2.3±1.15 3
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Taken together, our study indicates that the existence of donor-specific antibodies alone at the

time of transplantation do not affect graft survival irrespective of whether the mice received

costimulation blockade or not.

4.2.3 Discussion

Previous studies have investigated the effect of antibodies, either adoptively transferred or 

induced in the recipient prior to transplantation by injection of donor cells/antigens, in 

discordant pig-to-rodent models.  Hyper-immune antibodies were often generated by repeated

injections of splenocytes from the donor species and included both anti-MHC class I and II 

antibodies of both IgM and IgG class. In general, immune serum injections in recipient rats or

mice accelerated xenograft rejection [76-78].

In our study, we did not observe any effect of immune antibodies on graft survival. We 

immunized mice by islet transplantation in order to get islet graft-specific antibodies. No 

second challenge with antigen was performed. The transplanted islet grafts were normally 

cultured for 20 hours, and during culture, some infiltrating macrophages and exocrine tissue 

may disappear, which makes islets less immunogenic. IgG antibody titers increased between 

week 3 and 4, and were maintained up to 6-7 weeks post-transplantation, even though the 

grafts were normally rejected around POD 7. The immune serum samples were collected 4-6 

weeks after transplantation. At that time, IgM antibodies may not be present, even though we 

detected both IgM and IgG antibodies in pooled immune serum. In paper I, we used a similar 

method for sensitization, which was enough to prevent long-term graft survival by 

costimulation blockade. Thus, in our model anti-donor antibody did not affect graft survival 

or the ability of costimulation blockade to induce long-term graft survival. Taken together the

results of paper I and II suggests that in order to achieve long-term graft survival in sensitized

recipients one should focus on preventing memory T activation. A potential point of attack, 

besides the memory T-cells themselves, to accomplish this could be to control also the 

dendritic cell population, which is known to influence the development of Treg or memory T 

cells.

4.3 Paper III

4.3.1 No clear effect of ARA 290 on rat islets during culture 

To evaluate effect of ARA 290 on the islet culture, we added various concentrations of ARA

290  to  the  culture  medium  and  the  cells  were  cultured  for  48  hours.  Caspase  activity

increased during the 48 hours of culturing, most likely due to hypoxia and central necrosis in

the islet core. No significant difference was observed among any of the treatment doses. 
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4.3.2 ARA 290 protects islets from pro-inflammatory 

cytokine-mediated cytotoxicity

To mimic the inflammatory situation, a mixture of proinflammatory cytokines was added in

islet culture medium with/without ARA 290 (100 nM). Other study indicated 10 nM ARA

290 is sufficient to protect tissue damages (personal communication with Professor Östenson

Karolinska  Institutet,  Sweden  and  professor  Cerami,  Leiden  University  Medical  Center,

Leiden, the Netherlands). In our hand, ARA 100 nM in culture did not show any toxic effect

on rat islets.  Therefore, we decide to use 100 nM ARA 290 as coculture concentration with

proinflammatory cytokines. 

4.3.2.1 Caspase 3/7 activities

The caspase 3/7 activity of islets stimulated with pro-inflammatory cytokines for six hours
was significantly lower in the ARA 290 treated group than in the cytokine group (cytokine
and  ARA treated  group:  152±18  vs.  cytokine  group:  182±18  luminescence/dsDNA(ng),
p<0.05). During 12 hours of incubation, the ratio increased but the ARA 290 treated group
still showed a lower value than the cytokine group (199±25 vs. 172±21, respectively  n.s.)
(Figure 9).
 

Figure 9 Caspace 3/7 activities of islets stimulated with proinflammatory cytokines.
50 islets were cultures in 35 mm plate and stimulated with proinflammatory cytokines with or without ARA290 
treatment. After 6 hours and 12 hours, Caspace 3/7 activities were measured and islet amount was corrected by 
dsDNA (ng/ml).

4.3.2.2 Islet viability (MTT assay)

In order to assess viability of islets, the MTT assay was performed with islets exposed to pro-

inflammatory cytokines with/without ARA 290 for 6 hours. The viabilities of the islets were 

measured as OD values (Figure 10). The viability of the islets stimulated by cytokines for 6 

hours was clearly reduced but the ARA 290 treated group maintained the viability 
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significantly better (the % values of non-cytokine exposed islets was 55±4.5 vs. 75±5.6 %, 

respectively, p<0.05) 

Figure 10 Viabilities of islets stimulated with proinflammatory cytokines, assessed by the MTT assay. 
MTT assays were performed with 20 islets per well. The islets were incubated with proinflammatory cytokines 
with or without addition of ARA 290 for 6 hours. The figure shown is % OD values compared with islets without
cytokine activation. 

4.3.2.3 ARA 290 preserved beta cell function in the presence of pro-inflammatory 

cytokines

The capacity of islets to secrete insulin in response to high concentrations of glucose was

tested  in  SGIS.  In  responses  to  low  glucose,  no  significant  differences  were  observed

regardless of the presence of ARA 290. In the responses to high glucose, the islets in the

cytokine and ARA 290-treated group secreted significantly higher insulin than those in the

cytokine alone group (0.74±0.10 vs. 0.33±0.03 ng/ml, respectively) (Figure 11A). In addition,

the stimulation index in the cytokine and ARA 290-treated group was also higher than that in

the cytokine alone group (1.67±0.22 vs. 0.97±0.15, respectively) (Figure 11B). 
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Figure 11 Static glucose-stimulated insulin secretion (SGIS) of islets after stimulation by proinflammatory 
cytokines with or without ARA 290. The islets (20/well) were incubated for 6 hours with proinflammatory 
cytokines (Cytokine) or proinflammatory cytokines with ARA290 (Cytokine+ARA 290). Shown are: (A) the 
insulin concentration in response to low glucose, (open bars) and high glucose (filled bars) and the (B) 
stimulation index (insulin concentration in high glucose/insulin concentration in low glucose) of each group. 
*p<0.05 insulin amount at high glocuse stimulation in Cytokine group vs. in Cytokine+ARA 290 group. Mean ± 
SD of 4 experiments are shown. 

Taken together, ARA 290 could enhance the resistance of the islet cells against cytokine-

induced apoptosis.

4.3.3 The effect of ARA 290 treatment on islet graft function 

during syngeneic islets transplantation of a marginal mass

4.3.3.1 Non-fasting blood glucose and body weight

The effect of ARA 290 treatment was examined in rat syngeneic islet transplantation. In this

series, recipients were transplanted with 220 islets and ARA 290 injections were administered

subcutaneously for two weeks.  In the control  group, two out of five rats  showed partial

function of the engrafted islets during the fourth week after transplantation (blood glucose

between 10mM and 20 mM) and in the ARA 290 treated group, one out of four rats (25%)

was cured after 14 post-operative days (POD). No significant differences were observed in

the non-fasting blood glucose levels between the two groups during 28 days of observation. 

To further characterize the graft function, OGTT was performed in the fourth week after

transplantation (2-3 days before graftectomy). Transplanted groups showed delayed recovery

of blood glucose levels compared with naïve control,  however, there was no differences

between the two transplanted groups. 

The insulin amount of the grafts was also examined four weeks after transplantation. In the

mice that were not cured, almost no insulin was detected in the graft bearing kidney, whereas

the cured mice showed 3-7 μg of insulin. The results are summarized in Table 5.

Table 5: Results of marginal mass islet transplantation study

 Control Group
ARA 290 treated

group
p- 
value

number of animals 5 4  
failure 3 3  

partial cure 2 0  
cure 0 1  

% cure 0% 25% ns
mean of non-fasting blood glucose (mM) 23.8±5.4 20.9±6.4 ns

graft insulin (µg) 1.2 (range 0.1-3.0) 1.9 (0.1-7.4) ns
body weight gain (g) 20±11 21±8 ns

OGTT:  AUC in blood glucose    mMx120 2365±703 1286±593 ns
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min
OGTT: AUC in plasma insulin µg/mL x60

min 23,0±10.4 23.8±6,2 ns

4.3.3.2 OGTT

To further characterize the graft function, OGTT was performed in the fourth week after

transplantation (2-3 days before graftectomy). Transplanted groups showed delayed recovery

of blood glucose levels compared with naïve controls; however, there were no differences

between the two transplanted groups. 

The insulin amount of the grafts was also examined four weeks after transplantation. In the

mice that were not cured, almost no insulin was detected in the graft bearing kidney, whereas

the cured mice showed 3-7 μg of insulin. 

4.3.4 Discussion

The mechanism by which EPO protects tissues from damage in vivo is not fully understood. 

The expression of the EPO receptor on non-hematopoietic cells is not very high. It is 

upregulated by inflammation. Therefore, its effects became more evident when target cells 

were incubated with proinflammatory cytokines [58]. Islets in culture, where inflammatory 

mediators are sparse, did not respond to ARA 290, perhaps because of lack of receptor. 

We have also tested the effect of ARA 290 during islet isolation with or without cold 

ischemia. In contrast to the clinical situation when islets are derived from brain dead, 

deceased donors, the exposure of islets from animal donors for pro-inflammatory cytokines 

can be anticipated to be very limited. Donor rat treatment with ARA 290 or co-injection of 

ARA 290 with collagenase solution did not improve islet yields, viability or function. The 

results were similar in an islet isolation model with prolonged cold ischemia (18 hours).

The effect of ARA 290 on graft survival after transplantation was also examined using an 

under the kidney capsule transplantation model. This model does not cause very severe 

inflammation compared to islet transplantation via portal vein injection. Two different 

treatment protocols were tested in the syngeneic rat transplantation model under kidney 

capsule, but no clear differences were observed with or without ARA 290. Protective effects 

of ARA 290 on islets following exposure to pro-inflammatory cytokines have been repeatedly

observed in both mice and rat islets. In the type 2 diabetes model, Goto-Kakizaki rats, ARA 

290 protected the islets from apoptosis and increased their glucose sensitivity.  [79]

Therefore, we will further evaluate the effect of ARA 290 on islet graft function after islet 

transplantation via the portal vein.
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One key component in order to achieve prolonged islet graft function is to regulate 

macrophage activity. They are activated during islet transplantation via the portal vein and 

activated macrophages produce free radicals that impair islet function and reduce islet 

viability. NF B is a key factor for activation of macrophages. The reports regarding the 
effect of EPO on NF B regulation and thereby macrophage activity are controversial. [ 80] 

If ARA 290 can down regulate macrophage activity, it could become a useful treatment as an 

anti-inflammatory drug.

4.4 PAPER IV

4.4.1  Mice injected with STZ lost more body weight than 

mice injected with alloxan

The general effects of STZ and ALX on mice were assessed by measuring their body weight 

and blood glucose levels following injection. All mice showed elevated blood glucose levels 

48 hours after drug injection. During the four day observation period, mice with ALX-

induced diabetes had significantly higher blood glucose levels at day two compared to mice 

injected with STZ (33.2±2.3 vs. 19.7±5.6; p<0.001; Figure 12A). STZ-injected mice 

appeared weaker, as indicated by less movement, and lost more body weight than ALX-

injected mice [11.5±1.8% (n=7) vs. 7.13±0.8 (n=15), p=0.049; Figure 12B].

Figure 12 Changes of blood glucose and body weight after STZ or ALX injection 
Blood glucose and body weight during four days after ALX or STZ injection was monitored. (A) Mean ±SD of 
non-fasting blood glucose of ALX iv group (n=15, grey line) and STZ iv group (n=7, black line) is shown. Blood
glucose was measured before injection, 6 hours after injection and days 1, 2, 3 and 4 after injection. (B) % 
reduction of body weight during four days was calculated and compared. 

4.4.2 STZ injected mice had fewer splenocytes than 

ALX-injected mice

Spleens were harvested at four days after drug injection and recovered splenocytes were 

counted. STZ-injected mice had significantly fewer splenocytes (9.2±3.2 x 106;  n=3) 
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compared to mice injected with ALX (22.7±9.3 x 106; n=3; p<0.05). Both ALX- and STZ-

injected mice had significantly fewer splenocytes than healthy control mice (65.7±3.5 x 106; 

n=3; p<0.05).

4.4.3 Islet xenograft survival was longer in STZ-injected 

than in ALX-injected mice

Graft survival was monitored by daily measurements of non-fasting blood glucose. The day

of graft rejection was set to be the first post-operative day that recipient mice had non-fasting

blood glucose levels over 20 mM for more than two consecutive days.  Allogeneic islets

survived for 6-10 days in the ALX-injected group (n=4) and for 7-11 days in the STZ-injected

group (n=5, ns: between the groups) (Figure 13). Xenogeneic rat islets survived for 6-7 days

in the ALX-treated group (n=11) and 7-24 days in the STZ-treated group (n=7; p=0.0006,

Figure 13).
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Figure 13 Non-fasting blood glucose after islet transplantation 
Diabetes was induced in C57BL/6 mice by an iv injection of STZ (180 mg/kg) or ALX (75 mg/kg). Panel (A) 
shows non-fasting blood glucose after allogeneic islet transplantation (upper panel ALX iv, n=4, middle panel 
STZ iv, n=5) and survival curve (lower panel). Panel (B) shows non-fasting blood glucose levels after rat-to-
mouse xenogeneic islet transplantation (ALX iv, n=11, and STZ iv, n=7) and survival curve. Time to rejection of 
transplanted grafts was longer in mice injected iv with STZ compared to that seen in ALX injected mice. The 
difference was significant (p=0.0006) in the xenotransplantation model. 
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4.4.4   STZ and ALX cytotoxicity on human and murine leukemic cells

ALX appeared not to be toxic for the studied cell lines with estimated IC50 values of 2809, 

3679 or over 4000µg/ml for HL60, K562 and C1498 cells, respectively. STZ was more toxic,

especially for the human myeloid leukemia cell line, HL60. The IC50 values of STZ were 

11.7, 904 and 1024 µg/ml for HL60, K562 and C1498 cells, respectively. Results also 

showed that the murine leukemic cells are more resistant to STZ and ALX cytotoxicity than 

human leukemic cells (Table 6)

Table 6: Fifty percent inhibitory concentrations (IC50) of Streptozotocin and Alloxan on 
human (K562 and HL-60) and murine (C1498) leukemia cell lines.   
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Drug name HL-60 cells 
IC50 (g/mL)

K562 cells
 IC50 (g/mL)

C1498 cells
 IC50 (g/mL)

Streptozotocin 11.7 904 1024

Alloxan 2809 3679 >4000



5 CONCLUSIONS

Triple costimulation blockade with a combination of CTLA4Ig, anti-CD154 and anti-LFA-1 

antibodies were not sufficient to prolong allogeneic islet graft survival in sensitized 

recipients.

Immune serum did not affect rat islet xenografts in the immediate post-transplantation period 

or the graft survival long-term. The treatment efficiency of costimulation blockade was 

preserved despite administration of immune serum.

The erythropoietin analogue, ARA 290, which is lack of hematopoietic function but tissue 

protective, may protect also islets from damage caused by inflammation.

Streptozotocin appeared more toxic on immune cells in vivo and more cytotoxic on leukemia 

cells in vitro than alloxan. Thus, ALX is a better reagent for diabetes induction in islet 

transplantation models.
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6 FUTURE WORK

Based on the work in this thesis there are many outstanding questions to resolve in order to 

make islet transplantation the treatment modality of choice for patients with diabetes:

Improving islet quality: Improved islet isolation procedures that preserves islet viability and 

functionality are needed. Addition of agents with a cytoprotective effect could be one way of 

accomplishing this. We will further evaluate ARA 290 in that respect.

Improving islet engraftment. Important for the future will be to prevent IBMIR and to 

promote engraftment. Understanding the immediate events following intraportal injection of 

islets, and preventing those will be essential in order to be able to decrease the number of 

donors needed for each patient. Gene therapeutic approaches by which factors are expressed 

in the graft that can interfere with IBMIR may be a path forward to improve the number of 

surviving islets.

Preventing graft rejection: Further studies are needed to delineate the effect of different 

blockers of costimulation, particularly in terms of inhibiting memory T-cells. Additional 

blocking agents including inhibitors of the integrins VLA-4 (CD49d/CD29) and LFA-1 

(CD11a/CD18), the CD134:CD134L pathway, the IL-2 receptor  chain, CD122, or the 

CD2:LFA-3 (CD58) interaction should be investigated in models with sensitized recipients.
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