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ABSTRACT 

Mood disorders, including bipolar disorder (BPD) and major depressive disorder (MDD), are 

highly complex psychiatric disorders. Decades of genetic studies have generated a large number 

of putative genetic susceptibility variants. However, with exception of CACNA1C, SYNE1 and 

ANK3 in BPD no robust association has as yet been identified. In this thesis my aim was to find 

predisposing genetic risk factors for mood disorders.  

In paper I, my hypotheses were that the FKBP5 gene is a risk gene for MDD, contributes to 

severity and is involved in treatment response to an antidepressant, Citalopram. We tested for 

association of three markers using the STAR*D cohort (Level 1). Rs1360780 was significantly 

associated with MDD. Rs4713916 was significantly associated with remission following 

treatment with Citalopram when two study populations were analyzed together. We determined 

that there is a stratification issue and no correlation can be made for treatment response or 

severity of MDD. In paper II, my hypothesis was that candidate genes for MDD are acting 

synergistically to contribute to risk for MDD. We applied three different algorithms to evaluate 

SNP-SNP interactions. Although none of the interactions survived corrections for multiple 

comparisons, our results contribute valuable information to future genetic studies in MDD. The 

logistic regression methods identified large interaction effects. None of the top interactions 

explain a large proportion of MDD in the general population. Among the top interactions, none of 

the three algorithms identify identical pairs of markers for risk of MDD. Moreover, none of the 

top ranked interactions has previously been implicated to act synergistically in MDD-

susceptibility. We also noted that markers selected for predicted interaction effects were not 

among the top interactions. In paper III, my hypothesis was that rare and highly penetrant large 

structural genomic variations (CNVs) increase the risk for BPD. We searched for CNVs across 

diagnostic boundaries and included individuals with BPD, schizophrenia (SZ) or schizoaffective 

disorder (SA). To increase the possibility that the CNV should be highly penetrant we searched 

for CNVs in affected individuals in BP-pedigrees and identified CNVs in the MAGI1 gene in two 

families and showed that it was more frequent in individuals with BPD, SZ and SA than controls. 

In paper IV, my hypothesis was that inherited CNVs contribute with risk to BPD irrespective of 

their frequency. We developed an algorithm that combines linkage-data with the CNV content 

within and across families. We identified one significant region with a CNV that maps to 19q13, 

and stretches over the PSG genes. The PSG proteins has been shown to activate TGF-β. 

Moreover, two CNV SNPs are reported as likely eQTL’s for regulation of NFκB. Thus, this CNV 

involves several putative molecular targets in BPD-etiology.  

In conclusion, the work conducted in this thesis has contributed to our knowledge of the etiology 

of mood disorders. For BPD we found two new susceptibility loci. In the analysis of MDD we 

increased the knowledge of the genetic interacting landscape in 63 candidate genes. We also 

showed that FKBP5 is associated with risk for MDD. 
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1 INTRODUCTION 

Mood disorders (also known as affective disorders) are psychiatric disorders that cause 

an abnormal and uncontrollable shift in a person’s mood. Mood disorders are divided 

into major depressive disorder (MDD) and bipolar disorder (BPD). Both MDD and 

BPD are diverse groups of disorders and several subcategories are used for their 

classification (1). 

Major depressive disorder, also known as unipolar disorder, is manifest by an 

abnormally low mood and periods of persistent anhedonia with a sad mood and 

pessimism, loss of interest, low energy, problems with concentration and decision-

making, feelings of worthlessness or emptiness, sleeping and eating disturbances. 

Thoughts of death and suicide are common. Psychomotor disturbances frequently occur 

which often consists of slowing down of locomotor expression. Agitation is occasionally 

the locomotory sign (1, 2). Bipolar disorder manifests by shifts in mood that alternate 

from abnormally elevated mood (mania) to periods of depressed mood. The manic phase 

involve inflated self-image and increased self-esteem, irritability, racing thoughts, 

decreased need for sleep, acting impulsively and having high-risk behavior. The 

psychomotor activity is characterized by accelerated activity both in speech and 

locomotion. The symptoms during the depressed phase are similar to those observed in 

MDD (1, 2). Persons who are affected by BPD rarely experience a single episode of 

symptoms. The most common course of the disorder is a recurrent or chronic abnormal 

variation in mood which can be depressed (MDD) or cycling, or a mixed state of 

depressed and elevated mood (BPD) (1, 3). 

Mood disorders are highly prevalent, affecting people of all ages, from children to the 

elderly, of both sexes as well as across race and ethnicity (4-7). MDD and BPD are 

conditions that have a severe impact on a person’s normal daily life activities and the 

World Health Organization (WHO) ranks MDD and BPD among the top leading causes 

of impairments on quality of life (8, 9). Clinical observations and biological research 

unambiguously demonstrate that mood disorders are brain disorders with disrupted brain 

function as the under lying cause. This means that all facets of a persons’ life will be 

involved. Dysregulation of cognitive processes, autonomic and endocrine functions 

affect the person’s physical and mental health (3). Research has demonstrated that there 

is an accumulated effect from an unexpectedly large number of genetic and 

environmental risk factors that are likely to interact with each other to impact on 

vulnerability to disease, rather than a single causative factor. MDD and BPD are thus 

both highly complex disorders. In parallel to their complex nature, mood disorders are 

highly heterogeneous whereby different risk factors have central roles in different sub-

types of these disorders (1, 4). Although research has increased understanding of the 

disease causing mechanisms and why people are at risk the exact etiology is still poorly 

understood. A variety of treatment options (both pharmacological and cognitive 

therapies) are available for MDD and BPD. Although the acute efficacy of treatments 

tends to be satisfactory, with both high response- and remission rates the long-term 

effects are largely unknown. A recognized problem is the large variation in inter-
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individual response effects to certain treatment options. Since the hallmark of MDD and 

BPD is a cycling feature with recurrent symptoms, there is a need to evaluate the 

efficacy of available treatments that results in short and long-term remission effects, 

respectively (10-12). 

Taken together, MDD and BPD constitute a spectrum of psychiatric disorders that have 

a high prevalence, morbidity, and mortality (13-17), resulting in a substantial burden, for 

both for the individual as well as society in general (18, 19). It is therefore of a critical 

concern, for both those who are affected and for the public in general to improve the 

understanding of the underlying causes of these disorders. Improvements may finally 

lead to better prevention, patient management and ultimately curative treatments. The 

scientific community as a whole has therefore made attempts to accelerate research in 

these disorders by organizing and working in large collaborative projects and consortia 

(20, 21). 

 

1.1  MOOD DISORDERS – ORIGIN, EVOLUTION AND CURRENT 

DIAGNOSTIC SYSTEM 

MDD and BPD have been established as psychiatric diagnoses through a process that 

can be traced back to a couple of thousand years. Mania and melancholia were already 

described as two different mental disorders by Hippocrates (460-337 BC), although 

these disorders had also been described by Greek physicians even before this time 

period. During the 1st century CE Aretaeus of Cappadocia described for the first time 

the possible connection between mania and melancholia and suggested them as two 

different images of the same disorder (22). Since then many physicians and psychiatrists 

have described these conditions (21, 22). However, it was not until the end of the 19th 

century that schizophrenia (SZ) and affective disorder became two separated entities, 

when Emil Kraepelin established a new paradigm that dichotomized insanity into 

“dementia praecox” and “manic-depressive insanity”. The Kraepling categorization led 

to a unification of affective disorders into one group (manic-depressive insanity). 

Contemporary leading psychiatrists opposed Kraepling, however, and argued that 

different but subtly affective syndromes occur, including unipolar depression (22). The 

classification of mental disorders into different diagnoses continued, which in the middle 

of twentieth century culminated in a classification of manic-depressive reaction and 

depressive reaction in the American Psychiatric Association’s first edition of the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-I) 1952. In the second 

edition of DSM (1968) depressive neurosis was described, and in the 3rd edition, DSM-

III, (1980) diagnoses of major depressive disorder and bipolar disorder were described 

for the first time (23). In early 2013, the 5th edition of the DSM classification system was 

published.  

The DSM was developed by the American Psychiatric Association [24] and the 

Interanational Statistical Classification of Diseases and Related Health Problems (ICD), 
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was developed by the World Health Organization (WHO). Of note, although these 

diagnostic systems have evolved and accentuated under a long period of time, 

throughout subsequent editions in two independent manuals, there is yet no established 

protocol for a molecular, genetic- or other laboratory tests that can be performed to 

verify a diagnosis. The only diagnostic tool available today is interview-based and 

focuses on the persons’ own experiences. It is often laborious and difficult in the clinical 

situation to determine a correct diagnosis due to the relatively discrete boundaries 

between the different subtypes of mood disorders. In mild cases there is also an 

ambiguous distinction between diseased and non-diseased (4). In some literature is 

mood disorder is also known as affective disorder. This classification is replaced with 

mood disorder in the ICD-10 and DSM-IV since in some European classification 

affective disorder refers to include anxiety states (1).  

Taken together, endpoint diagnoses of the various subtypes of MDD and BPD are a final 

consensus entity of the contemporarily divergent and evolving field of psychopathology. 

A diagnosis of mood disorders should hence not only be seen in perspective of current 

knowledge and standards of the medical discipline but also in the perspective of social, 

ideological, political, cultural and the moral standards of its time (24). 
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2 THEORIES FOR THE UNDERLYING ETIOLOGY OF MOOD 

DISORDERS 

2.1 OVERVIEW 

It has become clear that both psychosocial and neurobiological factors underlie the 

etiology of mood disorders. These factors are not mutually exclusive but rather are 

interdependent and likely to act together to manifest into a mood disorder (25). Our 

current knowledge is nonetheless rudimentary in understanding the exact mechanisms 

for how these risk factors connect into different networks and predispose to mood 

disorders. Although our current knowledge is limited we have gained a lot of insight into 

the disease causing mechanisms through the results from clinical observations, animal 

models, pharmacological studies, post mortem studies, advances in brain imaging and 

from genetic studies.  These lines of evidence have converged into theories which 

suggest that abnormalities of the brain nerve circuits, dysregulation of neurotransmitters, 

neurotrophin systems and immunological mechanisms are the underlying causes of 

mood disorders (25-28). These theories will be summarized below to be able to 

understand the scope of the problem and to motivate the two main genetically 

approaches, candidate gene analyses and genome-wide scans, which were both applied 

in this thesis. 

 

2.2 LIMBIC SYSTEM 

Since the limbic system was identified to have a role in controlling emotions there have 

been a plethora of studies focusing on the limbic structures, i.e. amygdala, hippocampus, 

thalamus and hypothalamus, with trajectories to the prefrontal cortex and brain stem 

regions, for understanding the basis of mood disorders (29). The prefrontal cortex (PFC) 

integrates sensory-motoric input with motivation and regulates emotion, mood, 

locomotory systems, neuroendocrine and autonomic functions through nerve circuits to 

both the limbic system and brain stem region (see Figure 1 for illustration) (30-32). The 

Striatum, nucleus accumbens and amygdala mediates rewarding to emotional stimuli, 

and thus, may thus explain the loss of motivation and anhedonia that is one dominating 

characteristic feature of depressive disorder. Activation of the limbic system will also 

activate regions in the brain stem and midbrain that in turn mediates pain modulation 

and locomotor functions.  
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Figure 1. Brain circuits in mood disorders.  

A: Connecting nerve circuits between various brain regions that have been suggested 
to be involved in regulation of mood disorders.  

B: Feed-forward and feed-backward regulation of the HPA-axis.  
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These circuits explain the dysregulation in pain modulation and psychomotor 

impairments that are observed in patients with mood disorders. Brain imaging studies, 

using magnetic resonance imaging (MRI and fMRI) and positron emission tomography 

(PET) technologies, have demonstrated strong correlation between mood disorders and 

structural and functional abnormalities in PFC, the limbic system and their connections 

(33-37). The structural and functional abnormalities that are connected with mood 

disorders consist of a decrease in brain volume and in decrease of blood flow in the 

limbic-PFC circuits. These abnormalities can be reversed by treatment with 

pharmacological compounds (38).These findings are not consistent, however, and many 

questions remain unsolved. In fact, some studies contradict the change of brain volume 

in patients with mood disorder (28, 39). 

 

2.3 HPA-AXIS 

Dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis is a well established 

finding in mood disorders (40). The theory of the HPA-axis incorporates psychosocial 

stress into neurobiology and reactivity to mood disorder. Nerve circuits from PFC to the 

limbic system activate the HPA-axis as a response to stress. Studies in both humans and 

in animal models have shown that experiences of stressful life events will activate a 

feed-forward cascade in which the hypothalamus releases corticotrophin releasing 

hormone (CRH) which in turn activates the pituitary gland to release 

adrenocortocotropic hormone (ACTH) (41). The adrenal glands are activated by ACTH 

to produce the stress hormone cortisol which prepares the entire body, including the 

brain, to adapt to the stressful event (Figure 1). Cortisol will act on glucocorticoid 

receptors located in the amygdala, hippocampus, hypothalamus and pituitary. The 

lipophilic properties of the glucocorticoids (cortisol) allows for diffusion over the 

plasma membrane into the cytosol where it binds to the glucocorticoid receptors (GR). 

This ligand-receptor complex translocates into the nucleus where it acts as a 

transcription factor. Upon binding to glucocorticoid response elements (GRE) it induces 

transcription of a variety of genes necessary for stress adaptation (41). A negative feed-

back loop is activated to ensure that, the active state of the HPA-axis successively 

normalizes after the stressful event has ceased. Chronic stress, or dysregulation due to 

mutation of key regulatory genes within the HPA-axis, will cause a disinhibition of the 

HPA-axis. This leads to pathological levels of cortisol and to decreased levels of 

glucocorticoid receptors (GR) (42-44), resulting in pathologically increased activation of 

the HPA-axis (28). Multiple brain regions convey afferent stimuli to the structures of the 

HPA-axis. Stress induced activation of the hippocampus and other limbic regions lead to 

expression of serotonin and noradrenaline neurons that in turn activates the 

hypothalamus and feed the forward cascade of the HPA-axis that progressively leads to 

increased level of cortisol (28). The stress hormone response pathway described as the 

HPA-axis is thus more comprehensive than the nerve circuits between hypothalamus-

pituitary and the adrenal gland. The hypothalamus also innervates the locus coeruleus 

with activation of the autonomic nervous system in preparation for adaptive stress 
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response and maintenance of body homeostasis (45). Based on these observations 

several genes with key regulatory functions in the HPA-axis have become interesting 

targets for mood disorders (41, 46). 

 

2.4 GLUTAMATE HYPOTHESIS 

An accumulation of results indicates that mood disorders are influenced by 

dysregulation of the glutamatergic system (47). Glutamate transmission regulates 

synaptic plasticity and neuronal survival. Exactly how altered glutamate levels 

contribute to the pathophysiology underlying mood disorders is still unclear although 

there is growing evidence that glutamate mediate cognitive-emotional functions related 

to stress response through cell atrophy and cell death (48). Stress-induced atrophy in 

neurons of the hippocampus (49) has been attributed to dysfunction in glucocorticoid 

receptors (50). Moreover, glutamate has also been reported to be involved in stress 

mediated dysfunction of the HPA-axis (28, 51). Treatment with antidepressants has been 

reported to reverse structural and functional alterations that are observed in glutamate 

receptors in chronic stress models (48). Of note, the mood stabilizer compound lithium 

targets the NMDA receptor signaling cascade, underlining the significance of glutamate 

in regulation of mood disorders. 

 

2.5 NEUROTROPHIN HYPOTHESIS 

The neurotrophin hypothesis refers to reduced levels of neurotrophin levels in the limbic 

system which give rise to a reduction in cell survival, growth and differentiation. Such 

morphological changes have been a hallmark of mood disorders (28, 52). The structural 

variations in the brain observed in post mortem studies and neuroimaging studies of 

mood depressed individuals have been attributed to decreased levels of neurotrophic 

factors, e.g. the brain-derived neurotrophic factor (BDNF) (25, 53). Genes coding for 

neurotrophins, such as BDNF, its receptors and the signal transduction cascades that are 

involved in the regulation of neuroplastic events such as neural cell growth, axonal 

sprouting and synaptogenesis, involves a large number of plausible susceptibility 

candidates of mood disorders (25). 

 

2.6 MONOAMINE HYPOTHESIS  

A milestone in the understanding of the neurobiology of mood disorders is the 

monoamine hypothesis. This theory proposed that deficiency of monoamines forms the 

basis of depressed mood (54) and has been a prevailing hypothesis for understanding the 

etiology of mood disorders for the last 40 years (55). This theory has indisputable paved 
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the way for the development of several new drugs with better efficacy and fewer side 

effects. In a broad sense, antidepressant drugs used routinely in the clinic act either by 

inhibiting the reuptake (i.e. reuptake inhibitors, SSRIs) or by inhibiting the degradation 

(MAOIs) to increase synaptic levels of monoamine transmitters (52, 56). Pre-clinical 

results from human and animal models combined with the results from clinical studies 

have produced evidence for abnormal (i) synthesis (ii) receptor binding and (iii) 

degradation of the monoamines as a source of information to understand the disease 

mechanisms of mood disorders (56). How significant the role of monoamines is in the 

etiology of mood disorders is still intensively discussed. Given the complex etiology of 

mood disorders and the large variation in the efficacy of compounds based on the 

monoamine theory, there is an ongoing debate which questions whether this group of 

neurotransmitters will actually help in understanding the nature of mood disorders (52, 

57). 

 

2.7 OTHER MOLECULAR MECHANISMS  

Additional theories should have merited a detailed description but will only be briefly 

mentioned. First, the innate immune system has recently been shown to associate with 

mood disorders and is a good candidate for further studies to unravel one of the many 

sources leading to vulnerabilities of MDD and BPD. The background is the observation 

that stress influence the function of pro-inflammatoric cytokines (IL-1 and IL-6) and 

tumor necrosis factor alpha (TNF-alpha) (58). These cytokines have a role in 

neurotransmission and thus become putative candidates in dysregulation of 

neurotransmission in the brain (58). Other candidates that have been proposed to be 

involved in mood disorders are molecules that mediate functions in cell adhesion, DNA 

repair, epigenetic regulation, transcriptional modifiers and neurotrophic signaling (25, 

52, 55). In summary, although the different theories described above are well established 

there are still many controversies and there is no consensus for the exact mechanisms of 

how these risk factors may affect brain nerve circuits and their reactivity to stress (28, 

54). Models that are currently in use to study stress-induced variation regarding the 

central nervous system have major limitations. Clinical studies of depressed individuals 

have still not unraveled cause from effect. We should also keep in mind that not all 

persons who are exposed to stress will develop a mood disorder. 



 

 9 

3 THE GENETIC LANDSCAPE OF MOOD DISORDER 

Genetic epidemiological research of family and twin studies has consistently supported 

the genetic contribution to susceptibility to mood disorders. Caution should be made 

when interpreting risk estimates, due to the relatively large variability of inclusion 

criteria, diagnosis definitions, study designs and the number of included study 

individuals that have occurred over time. These estimates are substantially larger for 

BPD than what is reported for MDD (59, 60). A survey of the literature for familiar 

aggregation reveals that in MDD the first degree relatives of depressed probands are 3-

10 times more likely than controls to be affected by MDD (61-63), while first degree 

relatives to BPD-diagnosed probands are 7 times more likely to develop bipolar disorder 

(64, 65). Although measurements of concordance rates in monozygotic twins compared 

to dizygotic twins show a large variability they support the contribution of a substantial 

genetic background for BPD (8 times higher in MZ compared to DZ twins) and to a 

lesser extent MDD (3 times higher in MZ compared to DZ) (61) (64). The concordance 

rate for MZ twins is less than 100% (< 70% in BPD and < 50% in MDD) which 

underlines the additional influences of non-genetic risk factors (61, 64). Although the 

heritability rates (derived from concordance rate estimates in twin studies) vary between 

studies they are higher for BPD (71-93%) (66-68) than for MDD (~37%) (61). Genetic 

epidemiological studies further reveal that there is a shared genetic background between 

BPD and MDD. A large Danish study reported that relatives to BPD affected individuals 

have an increased risk for developing depressive disorder, schizophrenia as well as other 

mental disorders (69). From other population survey studies there is evidence for an 

increased frequency of occurrence of mood disorders in close relatives to probands with 

BPD or SZ (65, 70-72). Another observation is that the relative risk of mood disorders 

declines substantially when genetic relatedness diminishes (64, 73, 74). Attempts to 

understand the mode of inheritance have largely been ineffective in establishing a simple 

mode of inheritance. Results from a large number of linkage studies indicates that mood 

disorders have a complex mode of inheritance and leaves no room for a model 

representative of few genes predisposing for either MDD or BPD. 

Although the extensive reports from family and twin studies provides strong evidence 

that genetic factors confer risk to mood disorders, linkage and association approaches 

have not delivered any robust and convincingly replicated predisposing gene or risk 

locus. Those genes that have emerged in single studies, both in candidate gene and 

genome-wide association studies (GWAS) approaches, only confer risk with a relative 

small effect sizes with odds ratios (OR) generally ranging between 1.1 and 1.4. Linkage 

analyses face the same reality, and no region has yet yielded strong evidence for linkage 

in genome-wide scans. Figure 2 summarizes association and linkage studies performed 

up to the present time (73, 75-81). These results show that an exceptional number of 

regions have been reported to influence susceptibility to mood disorders, but with a 

general absence of overlap between independent studies. In spite of this complicated and 

puzzling picture there are some interesting observations. Firstly, in none of the eight 

GWAS in MDD that has been published, did any locus reach GWAS significance level 
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(82-89). Neither was a recent meta-analysis successful (90). However, when an 

approach was applied to increase the spectrum of a shared genetic background using a 

combined dataset of MDD and BPD samples (known as a cross-disorder meta-analysis), 

the GWAS yielded several significant markers in 3p21.1 (90). Secondly, genetic studies 

in BPD have been somewhat more rewarding than for MDD (8, 91). The first waves of 

BPD GWAS failed to reach conventional GWAS significance levels for the top 

candidate signals. The following waves with larger sample sizes have been more 

successful, where four, ANK3, CACNA1, NCAN and ODZ4, reach genome-wide 

significance. Additionally, a few sub-threshold candidates have been reported which 

overlap with 3p21.1 in the MDD-BPD cross-disorder analysis (8, 90). These results 

together with familial studies, support clinical and genetic overlap between mood 

disorders. A shared genetic background has also been reported between BPD and SZ 

(92, 93). Accumulating data thus demonstrates that MDD and BPD are both clinically 

and genetically heterogeneous disorders with different risk factors being important in 

different subgroups. These results also reveal that these disorders are exceptionally 

complex with multiple genetic and environmental risk factors predisposing to 

vulnerability. Such risk factors are presumably not acting on their own, but are rather 

part of networks with interacting effects between multiple genes and environmental 

exposures. 

A recent discovery that may explain a part of the elusive genetic risk to psychiatric 

disorders is represented by a variety of genomic polymorphisms. These genomic 

changes are not only restricted to variation at individual nucleotide bases such as SNPs 

in the DNA sequence (93-96). 
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Figure 2A: 
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Figure 2B: 
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Figure 2. Karyotype illustrating genome regions for which linkage and association have 
been reported in BPD and MDD. 

Black arrows: region with linkage.  
Blue arrows: region with gene from association study surviving significance level.  
Green arrows: region with gene at GWAS significant level.  
Red arrows: region with associated gene reported in region with linkage. 
 
A: Results of analysis in BPD reported since 1990. Arrows represent regions with at 
least suggestive linkage from genome-wide linkage scans and from candidate gene 
studies and GWAS reaching study-wise significant levels.  

B: Results of analysis in MDD with at least suggestive linkage from genome-wide 
linkage scans reported in the literature since 2001, and from candidate gene studies 
and GWAS reaching study-wise significant levels, as reviewed in 2007. 

 
Ideogram has been derived from David Adler and with permission for publication.  
(http://www.pathology.washington.edu/research/cytopages/idiograms/human/)  
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4 COPY NUMBER VARIATION 

4.1 BACKGROUND 

Due to rapid advances in the development of molecular biology techniques we now have 

a firm understanding that variation in the human genome is far more complex and 

diverse than microscopic visible aberrations. The diversity of such variations comprises 

aberrations involving gain or loss of entire chromosomes (aneupliody) to changes at the 

level of single nucleotide base pairs within the DNA. Several lines of evidence clearly 

illustrate that DNA rearrangements involve a diverse form of variable DNA segments 

that causes the genomic architecture to differ between any two individuals (97, 98). 

Historically, large structural abnormalities were detected using microscopically 

visualized stained and non-stained chromosomes. In contrast, the techniques currently 

used, such as PCR-based sequencing, can identify variations at the level of a single base-

pair and repetitive segments such as micro- and minisatellites, ranging from a few base 

pairs up to a couple of hundreds of base pairs in size (99). With the advent of 

technologies such as fluorescence in-situ hybridization (FISH) and more recently of 

high-throughput arrays (clone-based and SNP genotyping-based), the capability to 

interrogate the genome at a high resolution dramatically improved and larger segments, 

mega-bases in size, were further identified (99). Within this group, the low copy repeats 

(LCR) (defined as short repetitive sequences that occur a few times in one diploid 

genome compared to another) and copy number variants (CNVs) (defined as deletions, 

duplications, inversions and translocations ranging between 1 kb to 3 Mb in one diploid 

genome compare to another) have attracted a great deal of interest in understanding the 

diversity of human traits since these forms of variants contains a substantial part of 

DNA, including genes and regulatory regions (100-102). 

An overview of different forms of human genomic variations, mutation rate and 

technologies used for their detection is provided in Figure 3. Investigation of the CNV 

content in non-diseased individuals reveals that CNVs contain a large proportion of the 

human genome (~12%), frequently overlap with genes (~13%) and frequently alter the 

gene transcripts (101-103). CNVs are likely to be an important source of genomic 

variations with influences on survival and fitness since reported CNVs often map to 

genes responsible for cell adhesion and immune responses as well as responses to 

environmental stimuli (101). Cross-population (102, 103) and cross-species CNV-based 

analyses (104, 105) demonstrate that CNVs are highly preserved across populations and 

species, thereby suggesting that CNVs are have a role in evolution and adaptation. Of 

particular interest, several independent studies have recently linked CNVs to a variety of 

complex disorders (103, 106) including psychiatric disorders (94, 96, 107). 
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Figure 3. Genomic variations, mutation rates and resolution of detection methods. 

Different classes of genomic variation in the human genome with corresponding 
mutation rates in correlation to size of the DNA involved. The top panel illustrates the 
detection methods. Variation in the DNA sequence occurs from the level of one single 
base pair to the entire chromosome. The figure shows that CNVs are highly variable, 
comprise a substantial part of DNA and that detection methods have an optimum 
range to find various forms of genomic variations. Abbreviations: FISH; fluorescence in-
situ hybridization, PFGE; pulsed-field gel-electrophoresis.  

The figure is adapted from ref. 103 and 111. Data included in figure are compiled from 
ref. 101, 103, 104, 108 and 110. 

 

 

4.2 FORMATION OF CNVS 

Various models of both recombination- and replication based mechanisms are widely 

accepted for formation of CNVs (108, 109). A well documented mechanism underlying 

rearrangements, studied in different model systems, has revealed that genomic regions 

enriched for low-copy repeats (LCR), mediates formation of non-allelic homologous 

recombination (NAHR) (106). During cross-over, the presence of large segmental 

duplications located within a close distance, possessing a high degree of sequence 
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similarity, enables misalignment of homologous chromosomes and formation of NAHR. 

Mispairing may also occur between sister chromatids or within the same chromatid arm 

(Figure 4 for illustration) (100). 

Another form of recombination-based mechanisms for generation of CNVs is non-

homologous end joining (NHEJ). The initiator of this form of chromosomal 

rearrangements is the repair of a DNA double-strand break without the need for LCR. 

Double strand repair mechanisms are present in virtually all organisms as DNA strand 

breaks are deleterious for all cells. Evolutionary preserved proteins are responsible for 

bringing the DNA ends together, bridging the gap between the non-matching ends and 

finally their ligation without the need for homologous sequences (Figure 4 for 

illustration). The repair region is prone to insertion of additional nucleotides resulting in 

a variable segment with insertions, deletions of various lengths (108, 110). 

Experimental evidence for replication-error based genomic rearrangements has recently 

been proposed, termed fork stalling and template switching (FoSTeS) (108, 111, 112). 

The initial step of FoSTeS consists of an arrest of the DNA polymerase. The interruption 

in propagation of the replication fork allows for switching of the lagging strand between 

the original stalled and adjacent replication fork. The lagging strand disengages from its 

template and attach to another DNA polymerase. The template switch may occur with a 

DNA polymerase located in the physical proximity up/down stream of the original, or a 

DNA polymerase located on a homologous or non-homologous chromosome. 

Depending on the direction of the invading fragment and the direction of the replication 

fork different forms of genomic rearrangements are generated (111) (illustrated in 

Figure 4). Although CNVs are inherited they also occur as somatic mutations that results 

in differences in CNVs between different tissues in the same individual and between 

identical twins (113, 114). 
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Figure 4: 
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Figure 4. Formation of CNVs.  

A: Non-allelic homologous recombination (NAHR). Chromosomes (grey), with 
centromere (grey circle), are illustrated with regions of low copy repeats (LCR) (colored 
arrows). Black crosses indicate recombination.  The figure illustrates the principles for 
recombination-based genomic rearrangements, leading to formation of deletions, 
duplications, inversions and translocations. 

B: Non-homologous end-joining (NHEJ). NHEJ does not require a homologous 
template. The successive steps contains; (1) detection, (2) bridging the two DNA-ends, 
(3) modification and (4) ligation. The repaired region may contain additional DNA 
sequences, and thus formation of extra segments and CNV.  

C: Replication error, fork stalling and template switching (FoSTeS). Fork stalling (right) 
allows the lagging strand (c) to disengage from the template strand (a) and to anneal to 
an adjacent replication fork (template switch) at the 3’ end. This event can lead to 
priming of continued DNA synthesis and formation of CNV. Figure is adapted from ref. 
102, 112 and 114. 
 

 

 

4.3 IMPLICATIONS OF CNVS ON HUMAN PHENOTYPE AND DISEASE    

Exactly how CNVs affect gene expression and susceptibility to disease is not known in 

detail. Common CNVs identified in blood donors often overlap with established disease 

genes and it therefore seems that not all CNVs result in phenotypic change. However, 

CNVs have in numerous studies been reported to cause genetic imbalance and convey 

severe consequence to human health, leading to a variety of complex disorders through 

various mechanisms (106, 115). 

CNVs represent variants of gain or loss and may alter the gene-dosage resulting in 

increased or decreased gene expression. Alteration in transcription levels may be the 

consequence of deletions or insertions in regulatory sequences. Transcription level 

modifications may also be induced from variations occurring in intronic or exonic 

sequences. These forms of variants may also cause splice variants. Inversions that flip an 

exonic region can lead to change of amino acid sequence, whereas inversions that flip a 

regulatory sequence may silence (or activate) a gene. Conversely, translocations will 

give rise to a multitude of different changes depending on the region involved. For 

example, a translocation of a gene into a different regulatory region of an active gene 

may lead to increased transcription, whereas translocations that involve part of the gene 

may cause truncated gene product (98, 116, 117). 
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There are many more potentially mechanisms through which CNVs may disrupt gene 

function including indirect transcriptional regulation through cis- and trans-regulatory 

elements, collectively known as ‘positional effects’. Of interest, emerging evidence 

shows that CNVs may give rise to positional effects through gene regulatory elements of 

distances up to ~2 Mb up/down stream of the causative gene (106, 118, 119). A 

probable mechanism is alterations in DNA sequence which induces chromatin structural 

changes and epigenetic modifications that indirectly influence gene function (119). A 

fundamental mechanism, albeit often overlooked, concerns alterations in binding sites 

for transcription factors (TF), which will influence on transcription levels (120, 121). 

These observations indicate the uncertainty in predicting the various direct and indirect 

benign and pathological effects of the presence of CNV. It also apparent that unraveling  

the functional impact on CNVs on human diseases will be of a significant importance 

but also a significant challenge for future studies. In this respect several caveats must be 

taken into consideration. The most obvious problem is the lack of reference sample. 

Results from CNV should therefore be taken with carefully interpreted. In terms of 

computational strategies, the different CNV-calling algorithms differ widely in 

sensitivity of detecting CNVs (122). Finally, the conceptually different detection 

methods do not coincide in identification of CNVs and none of the methods seems to be 

adequate enough to discover all forms of genetic variations (101). For these reasons 

caution is advised before functional implications for certain CNVs can be established.  
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5 FINDING GENETIC RISK FACTORS FOR MOOD DISORDERS 

As described in section 1.3, it is unlikely that a few causative risk factors (genetic or 

environmental) will be sufficient to lead to the development of a mood disorder. The 

extensive heterogeneity and the exceptional complex nature of mood disorders have 

made it difficult to pinpoint risk genes. The observation that detected genetic loci 

explain only a very small proportion of the genetic variance has been described as the 

missing heritability (123). Fundamentally different hypotheses, ranging from rare to 

common allele frequencies, have been used to explain the genetic susceptibility and may 

serve to explain the missing heritability (Figure 5). The two most well known 

hypotheses, that have contributed with valuable insights into the nature of the disorders, 

are the common-disease common-variant (CD-CD) hypothesis and the common-disease 

rare-variant (CD-RV) hypothesis. However, neither has been demonstrated to be 

perfectly adequate (further discussed in 5.4.1). 

Of interest, promising knowledge has emerged. Firstly, genetic studies indicate that 

there is an overlap with shared genetic and clinical signatures between the subtypes of 

BPD and MDD. Severe forms of BPD (bipolar disorder type I) seem to share genetic 

and clinical manifestations with SZ whereas subtypes of MDD seem to overlap with 

anxiety disorders (92). Secondly, genetic studies have so far been more rewarding in 

BPD than in MDD which is mainly due to the larger heritability rates in BPD but also 

due to cross-disorder analyses in which the presumably shared genetic backgrounds 

between SZ and BPD have been an advantage. These observations contribute with 

valuable knowledge and may guide future studies attempting to reduce heterogeneity 

and to use forms of common clinical manifestations or common dysfunctional biological 

systems (gene, gene product, nerve circuit or signaling pathway) as ascertainment 

criteria.  

The effect-size/allele-frequency correlation paradigm (Figure 5) may illustrate the 

rationale for using certain methods in the search of genetic predictors to common 

complex disorders such as mood disorders. As illustrated in the figure, no method by 

itself will be sufficient to cover all aspects of the spectrum of anticipated genetic risk 

factors. Thus, any chosen approach possesses its strength and weakness and a specific 

model will not yield a final solution to unravel all risk variables to mood disorder by 

itself. The heritability rates are higher in BPD but with lesser prevalence with the 

opposite relationship in MDD, family based study designs are being more suited to 

identify genetic risk factors for BPD whereas population based study designs are favor 

unraveling of genetic risk to MDD. 

Risk loci at gradually lower allele frequencies and at low effect sizes (approaching 

towards the lower left quadrant in Figure 5) requires the use of a marker chip for 

coverage of rare alleles combined with sequencing technologies to be detected. As allele 

frequencies decline larger study populations are needed. Two general approaches are 

currently commonly used to address the problem of not robustly reporting genetic risk 

factors in mood disorder. First, increasing the sample size results in improved statistical 
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power and is a central solution. However, this approach also increases the chance of an 

expansion of the heterogeneity. Secondly, an alternative strategy would therefore be to 

reduce both genetic and environmental diversity with regards to underlying risk and thus 

search for predisposing factors in smaller groups of individuals with close similarities 

with regard to background risk. However, the strategy to use an increased sample size 

when looking for single genetic risk factors, within the paradigm of effect size and allele 

frequency, will not explain the missing heritability and help to elucidate the genetic 

architecture for complex mood disorders. The number of risk loci and the mode of 

interaction with other genetic loci and environmental exposures are also important 

factors. Incomplete LD between causal and tagging variants leads to reduced effect size 

estimates, and undetected rare variants may also contribute to the missing heritability 

(123, 124). 

The allele-frequency/genetic-risk paradigm thus does not describe the full picture of the 

genetic landscape. Other factors that may explain the missing heritability, though not 

described in this thesis, are epigenetic influences (125) or just due to an overestimation 

of the heritability estimates (126). 
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Figure 5. Correlation between effect size and allele frequency for human genetic traits.  

The suggested underlying force for these estimates and correlations is selection 
pressure. The right lower quadrant in the figure represents disorders that have 
complex genetic background, i.e. many different risk loci, with a high allele frequency 
and at a low effect size. Disorders of this category are represented by the common 
disease common variant (CD-CV) hypothesis. Association studies of case-control design 
are preferentially used to search for genetic risk factors in this category of genetic 
polymorphisms. Alleles with high penetrance, but which are rare in the population, are 
depicted in the left-side of the figure. Disorders of this category are represented by the 
common disease rare variant (CD-RV) hypothesis. Study designs optimal for genetic 
polymorphisms in this category of disorders are family-based studies using linkage 
analysis. An increased focus has been directed towards the lower left quadrant to find 
very rare genetic risk underlying common complex disorders such as mood disorders.  

The figure is adapted from ref. 125. 
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6 HYPOTHESIS 

The overall hypothesis of this thesis was: 

 Genetic variation from a single locus and interaction from pair-wise sets of loci 

contribute with risk to mood disorders. 

The specific hypotheses in the separate projects include: 

 The FKBP5 gene is a risk gene for MDD and contributes to severity of MDD 

(paper I). 

 The FKBP5 gene is involved in the treatment response to antidepressants for 

individuals diagnosed with MDD (paper I). 

 The candidate genes for MDD are acting synergistically to contribute with risk 

to MDD (paper II). 

 Rare and highly penetrant large structural genomic variations (CNVs) 

contribute with risk to BPD (paper III). 

 Inherited large structural genomic variations (CNVs), irrespective of the 

frequency of occurrence, contribute with risk to BPD (paper IV).  

 

 

 



 

24 

7 AIMS 

Our overall aim of this thesis was; 

 To find genetic predisposing factors to mood disorders.  

The specific aims in the separate projects include; 

 Paper I. In the first project we aimed to evaluate the involvement of the FKBP5 

gene in (i) efficacy to treatment of an antidepressant drug, (ii) to involvement in 

severity of MDD and (iii) for risk to MDD. These analyses were intended to 

replicate previous correlation studies of the FKBP5 gene (127).  

 Paper II. In the second project we aimed to find interactions between genetic 

variations that contribute to risk of MDD. We applied three different algorithms 

to evaluate SNP-SNP interactions and to map the genetic interacting landscape 

in candidate genes to MDD. We developed a new algorithm to search for 

genetic interactions on an additive scale.  

 Paper III. In the third project we aimed to find rare large structural variants 

(CNV) that have high penetrance to BPD. Individuals diagnosed bipolar 

disorder, schizophrenia or schizoaffective disorders were included in our 

analysis. 

 Paper IV. In the last project we aimed to identify inherited regions containing 

larger structural variations that irrespective of the frequency of occurrence 

confer risk to BPD. To achieve this we developed an algorithm that combines 

genome-wide linkage data with the CNV content within and across families, 

and searched for regions with CNVs that mediate risk to BPD.  
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8 MATERIALS 

8.1 STUDY POPULATION I; STAR*D (PAPERS I & II) 

The Sequenced Treatment Alternative to Relieve Depression (STAR*D) was a 

prospective treatment-response study designed for the clinical setting of evaluating 

efficacy of antidepressant treatments and care managing for persons diagnosed with 

MDD. Of note, no control group was ascertained (128). Participants were recruited 

during 2001 to 2004 from primary and specialty care practices at 14 regional centers, at 

41 clinical sites across USA. The selected patients chosen were seeking their physician 

for symptoms of depression. Those who met criterion for DSM-IV MDD and who 

would receive medication or psychotherapy were asked to participate. Inclusion criteria 

were; age 18-75 years (without regard to race, ethnicity or sex), scoring ≥ 14 on the 17-

item Hamilton Rating Scale for Depression (HRSD17) and single or recurrent non-

psychotic MDD. To be representative for the clinical situation the exclusion criteria 

were low (129). A diagnosis of bipolar disorder, schizophrenia, schizoaffective disorder, 

psychosis or obsessive-compulsive disorder led to exclusion. Otherwise the inclusion 

criteria were broad to ensure that the study participants (cases) would be representative 

of the clinical situation to optimize evaluation of the efficacy of the antidepressant 

treatment. Comorbidity from medical and other psychiatric disorders not described 

above were thus allowed (129).  

For the genetic analyses a control sample obtained from the NIMH Genetic Initiative for 

Schizophrenia comprising 739 individuals was used. All control samples underwent a 

psychiatric screening for not having a diagnosis of bipolar disorder, schizophrenia or 

psychosis (130). 

 

8.2 STUDY POPULATION II; GAIN MDD (PAPER II) 

The second study population was from the Genetic Association Information Network 

major depressive disorder (GAIN MDD) study, a cohort study of major depressive 

disorder conducted in the Netherlands. Individuals with MDD were recruited from 4 

cohort studies in the Netherlands. The main study was a longitudinal study of depression 

and anxiety, the Netherlands Study of Depression and Anxiety (NESDA), which aimed 

to examine the prevalence of psychiatric disorders in the Netherlands. The recruitment 

process took place between 2004 and 2007 and individuals with a diagnosis of MDD 

ascertained in 1966, 1977 and 1999 were enrolled (83). A smaller sample was also 

obtained from The Netherlands Mental Health Survey and Incidence (NEMESIS) Study 

(131) , the Adolescents at Risk for Anxiety and Depression (ARIADNE) study (132), 

and finally from the Netherlands Twin Registry (NTR) (133). Enrolled individuals were 

mainly recruited from the primary care and mental health care organizations with a 

small proportion of participants arising from the municipality. All cases underwent a 

phenotypic characterization, using the Composite International Diagnostic Interview 
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(CIDI), to meet the stringent DSM-IV criteria for MDD. The study participants were 

aged 18-65 years (both sexes) and had self-reported western European ancestry. The 

exclusion criteria were bipolar disorder, schizophrenia, schizoaffective disorder, 

obsessive-compulsive disorder or substance dependence (83). Control samples were 

mainly from a longitudinal study, the Netherland Twin Registry (NTR), and were 

recruited period-wise every second to third year from 1991 until 2005. Only biologically 

unrelated individuals were included. A smaller subset was also recruited from the 

NESDA and ARIDANE studies. The control samples had no diagnosis of MDD or 

anxiety disorders (as assessed by CIDI) (134). 

 

8.3 STUDY POPULATION III; NIMH BP-PEDIGREES (PAPERS III & IV) 

The third sample was a family-based study population and was provided from the 

NIMH Bipolar Disorder Genetic Initiative (135), a nationwide effort in USA to provide 

resources for identifying the genetic basis of bipolar disorder. Families were collected 

from multiple sites from 1991 to 2003 through a screening process of clinical and non-

clinical treatment facilities. Families were required to have a proband with a diagnosis of 

bipolar type 1 (BP-I) and a first-degree relative with diagnosis of BP-I or schizoaffective 

bipolar-type (SABP). The final collection of nuclear and extended BP-pedigrees 

included a spectrum of bipolar disorders; BP-I, BP-II, SABP or recurrent unipolar 

disorder (RUDD). The diagnostic instruments were DSM-III-R for BP-I and SABP and 

research diagnostic criteria (RDC) for BP-II and RUDD (136).  

Given the complex background of etiology of BPD, our study design aimed at selecting 

families presumed to carry a genetic form of BPD. A screening was performed of 637 

BP-pedigrees encompassing 3,849 individuals, based on family-wise genome-wide 

linkage analysis or by analyzing candidate genes for presence of large stretches of 

deletions in these families.  

The specific criteria we used for selecting BP-pedigrees were a parametric family-wise 

LOD score > 1.1, or if several families were found to have overlapping family-wise 

LOD scores of > 1.0 in the same genomic region. We also selected a family if several 

genomic regions with LOD scores close to but below 1.0 were identified. Linkage 

analyses were evaluated using several different transmission models and a microsatellite 

marker map with average marker distance of ~10 cM. 

Additionally, a sample of 978 individuals was also screened for larger stretches of 

deletions in 357 candidate genes for BPD using a runs of homozygosity (ROH) analysis 

and a mendelian-error analysis. Finally, we selected 46 BP-pedigrees for our analyses 

comprising 277 individuals with DNA and 97 individuals for whom DNA was not 

available. 
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8.4 REPLICATION SAMPLES (PAPER III) 

A collection of unrelated patients with a diagnosis of SZ, BPD or SA from 20 clinical 

trials conducted at Johnson & Johnson Pharmaceutical Research & Development were 

used for confirmation of the initial findings in paper III, and were obtained as a part of a 

collaborative project. The DNA samples were genotyped using the Illumina Human 1M-

duo platform. Additional confirmation samples were obtained from a literature search in 

publicly available databases with information from original articles. In total 3,683 BPD, 

7,242 SZ or SA, and 16,747 control samples were included. A complete list of these 

samples is provided in paper III. 
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9 METHODS 

9.1 CANDIDATE GENES, GENOTYPING AND MARKER SELECTION 

9.1.1 STAR*D (papers I & II) 

The STAR*D study was a candidate gene study with genes selected on the basis of 

previous results of association to MDD and, for association to response to antidepressant 

treatment (Table S1 in paper II display the final collection of 68 the candidate genes) 

(137). Markers were selected to achieve an optimal coverage of the 68 candidate genes 

based on the reference sequence from HapMap phase I (CEU Nov 2004) with a minor 

allele frequency of at least 7.5%, and filtered for linkage disequilibria between markers 

with an r2 ≥ 0.8 (137). DNA samples from 1,953 patients and 739 controls were used for 

genotyping. Signal intensities from an Illumina bead array chip (130) were decoded 

using an algorithm that called genotypes with high accuracy (138). A smaller sub-set of 

markers was genotyped using a TaqMan assay. A complete concordance of genotype 

calling between the genotyping platforms was ensured using a subset of DNA samples 

that were genotyped using both platforms (137). A sample consisting of 780 markers 

from 1,809 cases and 634 control individuals (of different ethnic backgrounds, mainly of 

White non-Hispanic and Black ancestries) remained after the initial quality control 

procedures. 

 

9.1.2 GAIN (paper II) 

Genotypes for the GAIN MDD sample were derived from a genome-wide SNP array-

based platform (600K Perlegen chip) by Perlegen Science (83, 134). The marker 

selection was based on a tagging approach using the European and Asian reference 

samples in the HapMap phase II data with an applied stringent threshold for a pair-wise 

r2 value > 0.89 and r2 value > 0.96 for multi-marker analyses. After initial QC analyses 

genotypes from 599,164 markers in 1,821 cases and 1,822 controls were available for 

our analyses. We also used data from 35 trio families for the following QC analyses. 

 

9.1.3 NIMH BP-pedigrees (papers III & IV) 

The DNA samples were obtained from Rutgers University and Cell Repository (New 

Jersey, USA) and genotyped using the Illumina Human 610quad chip at Uppsala 

University, Sweden. To ensure high accuracy of genotypes a Genotype Call (GC) score 

exceeding 0.8 was required, generating a sample of 598,821 markers in 277 individuals 

(46 pedigrees). 
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9.1.4 Quality control 

Array-based genotyping make use of hybridization intensities that are translated into 

genotypes using a genotype calling algorithms are not error-free processes (139). 

Incorrectly called genotypes will mislead the statistical inference and this a potential 

source of error that may have contributed to the inconsistency of reported associations 

(140).  

In all projects within this thesis we put emphasis on calling genotypes with high 

accuracy and designed a series of QC filters with the aim of reducing erroneous 

genotypes, identifying population stratification and identifying cryptic relatedness which 

otherwise may have misled our statistical analyses. This included a series of QC filters 

to control for sample mixed-up, poor DNA quality, level of heterozygosity, call rate per 

marker and per person, cryptic relatedness and population substructure (for details, see 

the Methods sections of the separate papers). In the last project we applied filtering 

approaches to zero-out genotypes in regions with presence of CNVs. We also applied an 

approach to avoid rejecting informative markers for the linkage analyses and selected 

markers for linkage equilibrium (LE) based on a case-control population. 

 

 

9.2 STATISTICAL MODELS TO MAP RISK LOCI TO MOOD DISORDERS 

9.2.1 Background 

Mapping genes to human traits has undergone substantial changes over time. In the early 

20th century the discovery that Mendel’s law of inheritance could explain transmission 

of genes for traits in model organisms spurred geneticists and statisticians to develop 

linkage analysis for genetic mapping in human families (141, 142). 

Linkage analysis makes use of the pattern of inheritance to an offspring of two loci that 

are closely linked on the same chromosome. Two loci are co-segregated if no 

recombination occurs between them during meiosis (143). The initial attempts with 

linkage studies were not successful for complex diseases, which led to focus on 

association analyses, a contrasting method that does not make use of inheritance of risk 

alleles within relatives. In this approach correlation between genotype and phenotype is 

tested in unrelated individuals making use of the assumption that individuals with the 

same trait share the same alleles and that shared genetic risk factors are organized in 

block structures in the human genome (142). Early association studies were limited in 

that they were restricted to searching for potential risk loci based on biological 

presumptions of underlying disease pathology. The discovery of naturally occurring 
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DNA polymorphisms and the creation of the human map offered the advantage of 

linkage analysis to screen the whole genome without the need to prioritize regions with 

assumed biological function (141). 

Mapping genes using linkage analysis and association analysis have different 

advantages and limitations, and there are fairly strong arguments for the both approaches 

given a certain assumption of the genetic architecture underlying the trait of interest, as 

illustrated in the allele frequency – effect size relation paradigm model of Figure 5 

(144). Both association analyses and linkage analyses have been successful for mapping 

genes for many human traits (141, 142), but the efforts have been less rewarding in 

analyses of highly complex disorders such as mood disorders (see section 1.5). 

Human complex traits, with no exception to mood disorders, are characterized by the 

genetic influences from multiple variants of incomplete penetrance, locus and allelic 

heterogeneities and different forms of genetic variants occurring in various frequencies 

reflecting selection pressure. Environmental exposures also affect the risk of developing 

the trait by often interacting with genetic risk factors. Accordingly, different theoretical 

models have been proposed which aim to explain the occurrence of the disease genes in 

the population. The most prevailing theory is the common disease common variant (CD-

CV) hypothesis (145). The opposing theory is the common disease rare variant (CD-

RV) hypothesis (146). These hypotheses have practical implications for how to detect a 

disease causing variant in the population in terms of choice of statistical models, variants 

to investigate and populations to analyze (147, 148). The latter theory implies that risk 

genes are relatively new in the population, and thus due to modest selection pressure 

existing risk genes are mildly or highly deleterious and thus not so frequent in the 

population. It also implies that these forms of genetic variations are more likely to be 

functional as they have not been under selection pressure for a long time period. 

Conversely, the former theory implies that the human population has expanded rapidly 

over a long time and has been under selection pressure for a long period. For this reason 

risk genes are common and they each confer a small risk. The CD-CV hypothesis has 

inspired and led to the GWAS era with great hope of finding polymorphisms responsible 

for genetic risk. The CD-RV theory motivated linkage studies since this method is better 

suited to find genes with a modest or high risk.  

Thus far, no consensus model that fully characterizes the complete genetic contribution 

to mood disorders has been presented. Possible explanations for the missing heritability 

have been proposed, varying from (i) a multiple explanatory model in which both 

theories are correct but a variety of genetic risk factors exists, (ii) an alternative model 

which incorporates both theories (iii) pleiotropy effects or (iv) that gene-gene and gene-

environmental mechanisms hold the understanding why people are at risk for mood 

disorders which then cannot be explained by existing theoretical frameworks (142, 147). 

For these reasons it has been a great challenge to map risk genes of mood disorders. A 

variety of approaches are is in use and are emerging. New sophisticated statistical 

models that can take into account gene-gene and gene-environment effects, prediction of 

markers with high prior probability of impact on disease thus leading to screening of 
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even larger datasets with a reduction of the necessity to correct for a large number of 

tests, and better ascertainment procedures with higher accuracy for correct diagnosis are 

ongoing, and this will undoubtedly improve the success of identifying risk genes.  

In this thesis work a variety of currently available statistical methods of linkage-, 

association- and gene-gene interactions effects were applied to analyze family-based and 

population-based study populations for genetic risk factors to mood disorders. In a 

collaborative project we extended an existing software (149) to test for additive 

interaction between two genetic loci under a logistic regressions model. The software is 

coded in JAVA and is intended to screen large datasets for interaction effects and to 

simulate data under the null hypothesis of no association, using a permutation analysis. 

We also developed an algorithm to search for inherited larger genomic variations 

(CNVs) that convey risk to BPD. 

 

 

9.2.2 Linkage analysis 

The central theorem of linkage depends on the probability of transmission (segregation) 

of two alleles located on the same chromosome to be passed on to the same gamete (egg 

or sperm) and thus to be transmitted together to the offspring. This probability depends 

on the occurrence of recombination (estimated as a theta value) when homologous 

chromosomes align during meiosis. More closely located loci have a higher probability 

to be co-segregated. When using linkage to identify disease loci, linkage between a 

genetic marker and the disease is tested. A factor that influences the probability of co-

segregation is the genetic model which concerns the relative distribution (frequency) of 

the risk allele in the population and the mode of disease transmission. As the genetic 

model is in most instances unknown for complex traits these factors have to be 

estimated. Such estimates are given by the penetrance vectors. Model-based linkage 

tests for recombination and estimates of linkage are generated using the logarithms of 

odds (LOD) scores that two loci on the same chromosome are inherited together under 

the assumption of the penetrance vector used. The parameters of the genetic model have 

to be specified, which is the frequency as well as the penetrance for the risk allele. 

Test for linkage is calculated as a function of the joint probability of trait and marker 

genotype. In detail, the calculation is conducted to test for the probability of linkage (i.e. 

occurrence of recombination, thus leading to joint occurrence of trait and marker 

phenotype, theta < 0.5) divided by the probability of no linkage (free recombination, 

theta >= 0.5). Morton suggested a method to test for linkage across families using LOD 

scores (150). However, if the genetic model is not correctly specified the power of the 

parametric linkage analysis diminishes. In such circumstances a non-parametric (model-

free) linkage analysis could be preferred (151). 
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The non-parametric linkage relies on evaluating the proportion of shared alleles among 

affected individuals at a particular locus without needing to specify the genetic model. 

Non-parametric linkage analysis makes use estimates of allele sharing identical-by-

descent (IBD) to test for linkage between the marker and disease loci. Estimation of IBD 

tests if alleles are inherited from the same parent. For full siblings the numbers of shared 

alleles 0, 1 or 2 at each locus have the probabilities ¼, ½ and ¼ respectively under the 

null hypothesis that this locus is not linked to disease. If a locus is linked to disease it is 

expected that the IBD sharing is increased for affected sib-pairs. Making use of the 

observed allele sharing calculation for linkage can then be made employing a variety of 

different algorithms.  

In spite of extensive debates and discussions in favor of one or other of the different 

approaches it is still not clear whether parametric or non-parametric linkage models will 

be the most powerful statistical model for mapping genes in mood disorders (151). We 

therefore chose both parametric and non-parametric linkage models under a variety of 

parameter settings which then were then applied on different liability classes of the 

disorder, known as affection status models (ASMs). 

 

9.2.3 Association analysis 

Association studies aim at localizing risk genes through comparisons of allele 

frequencies between unrelated affected and unaffected individuals. As opposed to 

linkage analysis, association testing requires linkage disequilibrium (LD) between the 

marker locus and the causative locus. Population studies reflect a historical perspective 

of LD pattern, haplotype blocks generated over many generations being much shorter 

than what is observed in family-based population samples (142). These narrow LD 

blocks provide one advantage to linkage in that the statistical test captures a causative 

locus within a short genomic distance. Allele-wise and genotype-wise tests were used to 

calculate P values, odds ratios (OR) and 95% confidence intervals (C.I.) in unrelated 

cases versus unrelated controls. The disadvantages of association analyses is the 

necessity to correct for many independent tests, the sensitivity for population 

stratification, and the occurrence of genotyping errors leading to spurious associations 

that reduce the probability of reporting true associations (152). 

 

9.2.4 Gene-gene interaction analysis 

An increasing interest has been directed towards studying the combined effects of genes 

to understand the underlying mechanisms of mood disorders (93, 153). The combined 

effect, or joint effect, of two genetic variants resulting in an unexpected phenotype that 

is not explained by the combined effect from the individual genetic variants is known as 

genetic interaction (154). In genetics, the term ‘interaction’ has been described as 
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epistasis or synergy (155, 156). In this thesis these terms are used interchangeably and 

refer to the probability to develop a disease given a certain combination of genotypes at 

two loci. There has been confusion about what interaction means, and how to detect 

interaction effects with statistical models and how interpret these findings biologically 

(155, 157). Numerous methods are available for detecting gene-gene interactions, each 

one designed with a different assumption of how biological interactions may be detected 

using statistical methods (158, 159). As there is no consensus for which method is best 

to detect interaction effects with relevance to disease status (160) we used two logistic 

regression methods (multiplicative and additive) and one data mining and machine 

learning (multifactor dimensionality reduction, MDR) approach to examine what extent 

these different statistical methods report synergy effects with relevance to diagnosis of 

MDD. 

 

Regression approaches 

The two logistic regression methods are based on the multiplicative and additive 

interaction models. For both methods, interaction is tested under recessive and dominant 

genetic models. To accomplish this, the binary genetic risk factors, SNPA and SNPB, are 

coded risk (=1) or non-risk (=0) respectively according to each separate genetic model. 

Odds ratio (OR) for each combination of risk and no-risk at SNPA and SNPB are 

calculated in a logistic regression model according to: 

(Eq 1): 

Log odds = β0 + β1X1 + β2X2 + β3X1X2 

The multiplicative interaction model tests for interaction using the interaction term β3. 

Test for significance is made by testing the null hypothesis β3 = 0 against a two-sided 

alternative hypothesis.  

The additive interaction model is based on a theory in which genetic risk factors (or 

environmental) are organized in sufficient causes that may lead to disease. The model 

assumes that there is additivity between these sufficient causes but not within them 

(161). 

To address this hypothesis the binary genetic risk factors SNPA and SNPB with risk (= 1) 

or no-risk (= 0) were re-coded into 4 new variables (149) A0BO, A1B0, A0B1, A1B1:  

If: SNPA = 0; SNPB = 0 then A0BO = 1, A1B0 = 0, A0B1 = 0, A1B1 = 0  

If: SNPA = 1; SNPB = 0 then A0BO = 0, A1B0 = 1, A0B1 = 0, A1B1 = 0  

If: SNPA = 0; SNPB = 1 then A0BO = 0, A1B0 = 0, A0B1 = 1, A1B1 = 0 

If: SNPA = 1; SNPB = 1 then A0BO = 0, A1B0 = 0, A0B1 = 0, A1B1 = 1 
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The disease model is then defined as: 

(Eq 2):  

 

If A0B0: odds = eβ0  

If A1B0: odds = eβ0+β1   

If A0B1:  odds = eβ0+β2   

If A1B1: odds = eβ0+β1+β2+β3 

 

Test for interaction is defined as departure from additivity by estimating the attributable 

proportion (AP) due to interaction according to:   

(Eq 3):  

AP = (ORA1B1 - ORA1B0 - ORA0B1 +1) / ORA1B1 (149). 

The ORs are calculated relative to the reference group A0B0 so that the baseline 

parameter (β0) is cancelled out. An AP value > 0 measures the proportion individuals 

among those who are exposed to risk at both SNPs and who are diseased due to 

interaction between the risk factors, whereas AP < 0 measures the proportion of 

individuals among those who are exposed to risk at both SNPs and who are protected 

from developing diseased due to interaction from both genetic factors. Assuming a 

normal distribution of the estimated AP value under the null hypothesis of no additive 

interaction (true AP = 0), test for significance is made by evaluating how much the risk 

with double exposure differs from what is expected under the additive model. Deviation 

from additivity is interpreted as the two risk factors being in the same sufficient cause 

(161).  

 

MDR approach 

As it is widely recognized that the inheritance patterns deviate from classic Mendelian 

ratios in mood disorders we also used a genetically model-free MDR approach to 

evaluate interaction effects. 

MDR is a data mining and machine learning approach that seeks to identify 

combinations of multi-locus genotypes that predict high versus low risk to a certain 

discrete phenotypic outcome. The dataset is divided into training and testing sets (157) 

(procedure illustrated in Figure 6). First, using the training dataset, for a two-locus 

model with three genotypes at each locus a matrix (multi-factor classes) is generated 

containing 9 genotype combinations (i.e., a high dimension of data). The ratio of cases 

to controls is calculated for each cell in the matrix. If this ratio exceeds a threshold T = 
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1.0 the corresponding combination of two locus genotypes is classified high risk, if the 

ratio is less than 1.0 it is classified low risk (step 2 in Figure 6). Based on this 

classification two new groups are generated, high versus low risk groups (step3). Thus, 

this process has now reduced the high dimension of data, of multifactor’s, by pooling 

the data into one dimension with two classes (high and low risk), i.e. a multifactor 

reduction. In the fourth step the sum of errors for each genotype combination at all 

tested loci is ranked. The sum of errors refers to the total deviation from the threshold T 

= 1.0 for the nine different genotype combinations at each pairs of markers. This process 

is known as feature selection. The model (i.e. the combination of two SNPs) with the 

lowest rank best predicts the phenotype. The consistency for the best model is then 

calculated. To achieve this, the training dataset is divided into 10 equal parts that are 

used for a 10-fold cross-validation analysis. The best model is selected. In this process 

the balanced accuracy value is calculated (162). Finally, the test dataset is used to 

evaluate the best model from the training dataset. 

Decision to determine whether a pair-wise set of markers predicts the phenotype is made 

through observation from (i) the metrics for how accurate data is classified into high 

versus low risk groups, denoted by a balanced accuracy value, and (ii) the cross-

validation consistency (CVC) value. Effect size (odds ratio) can readily be generated 

through calculation of number of cases and controls in high versus low risk groups. Test 

for significance is made through permutation analysis. A combination of markers that 

receive a high balanced accuracy and high CVC values are selected for further 

interpretation for relevance to disease. Based on the matrix of risk/no-risk 

classifications, a genetic model is inferred (Figure 6). 
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Figure 6. Principles of the MDR approach.  

Workflow of the MDR-analysis is illustrated by means of a hypothetical number of 
cases and controls. The figure is adapted from ref. 159.  
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9.2.5 Approach to find inherited CNVs with risk to BPD 

To define genomic regions with CNVs that confer risk for BPD we developed an 

algorithm that calculates for linkage only in the presence of CNVs that are shared 

between individuals of BPD-ascertained families. The sum of average family-wise 

parametric LOD scores, or non-parametric Z scores, are calculated over regions for 

which families share overlapping CNVs (illustrated in Figure 7). For families with at 

least two members with overlapping CNVs the average linkage score in the region is 

calculated and added to those observed in the same region in other families. The 

algorithm thus generates a CNV-weighted linkage scores for genomic segments 

representing regions with CNVs that are shared within and across families. This 

approach thus identifies inherited regions harboring CNVs that could convey risk to 

BPD. The CNV-weighted linkage scores are then ranked with higher score values 

considered to have greater impact on the phenotypic trait. Test for significance is made 

through a permutation analysis (label switch of case-control status) to generate null 

expectations of linkage data. Empirical level of significance is defined based on family-

wise error rate (FWER) analysis. 

 

Figure 7. 
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Figure 7. Principles for region for which one CNV-weighted linkage score is calculated. 

Lod scores from two families (family ID: 20-1049 and 12-330) for a certain chromosome 
are depicted. The occurrence of CNVs for individuals within these families is also 
illustrated. The average linkage score (parametric lod score or non-parametric Z-score) 
is calculated over the region with overlapping CNV from at least two individuals in the 
same family. The average linkage score from all families with overlapping CNV in at 
least two individuals is added. A CNV-weighted linkage score is thus generated for a 
defined region that share overlapping CNVs for more than 1 individual per family. To 
illustrate the calculation; an example is given with three markers that are located in a 
region with four overlapping CNVs, at the position 60- 75cM.  

For these 3 markers, the lod scores for the two families are: 
Fam-ID 12-330:  0.9, 0.9 and 0.9 
Fam-ID: 20-1049: 0.2, 0.4 and 0.1 
The CNV-weighted linkage score (the sum of average linkage score) is then calculated 
as: 
Fam-ID 12-330: (0.9 + 0.9 + 0.9)/3 = 0.9 
Fam-ID: 20-1049: (0.2 + 0.4 + 0.1)/3 = 0.23  
Total CNV-weighted linkage score = 0.9 + 0.23 = 1.13 



 

 39 

10 RESULTS 

10.1 PAPER I 

In a previous study, Binder et al. (127) determined that hospitalized MDD diagnosed 

individuals of Caucasian ancestry who were homozygous for the T-allele at the SNP 

rs1360780 in the FKBP5 gene were associated with a better response when treated with 

antidepressants and the number of depressive episodes. This marker was not found to be 

associated to disease status. Two additional markers, rs4713916 and rs3800373, in the 

FKBP5 gene were also tested but did not display association to either disease, number of 

depressive episodes or outcome in treatment response. The antidepressant medication 

varied among the individuals enrolled for the analysis and could be classified into three 

groups: selective serotonin reuptake inhibitors, tricyclic antidepressants and drugs 

targeting the serotonin 2C and α2A-adrenergic receptors.  

Our study aim was to replicate the association in the Binder study using a better 

powered study population, provided from the STAR*D study. The same three markers 

in the FKBP5 gene were tested for correlation to risk of MDD, to number of depressive 

episodes of MDD and to treatment-response. The study sample used in this study 

consisted of non-hospitalized MDD diagnosed individuals of a more ethnically diverse, 

White non-Hispanic and Black, origin.   

 

Case-control analysis 

We determined significant association (corrected for multiple comparisons) for marker 

rs1360780 to disease status in the White non-Hispanic group (Table 1). A genotype-

wise based analysis revealed that the TC-genotype was more frequent in cases (46%) 

than in controls (38%), whereas the CC-genotype was more frequent in controls (50%) 

than in cases (44%). None of the other markers were significantly associated to MDD 

after correction for multiple testing. An allele-wise test did not reveal significant results. 

No significant signal was observed within the ethnic Black group. 
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Table 1. Results of case-control and treatment-response analyses. 

             
A. Case-control analysis, genotype-wise test           

   
Cases Controls 

  
Over all 

  
Min/ Minor 

 
Major Minor 

 
Major 

 
Nominal  Corrected 

 
SNP id Maj Hom Het Hom Hom Het Hom OR (95% C.I.) P value P value 

W
h

it
e 

n
o

n
-H

is
p

an
ic

s 

rs3800373 C/A 0.09 0.43 0.48 0.09 0.39 0.52 
CC/AA 
1.05 (0.78-1.42) 

AC/AA 
1.22 (0.99-1.51) 0.18 ns 

rs1360780 T/C 0.10 0.46 0.44 0.11 0.38 0.50 
TT/CC 
1.01 (0.74-1.40) 

TC/CC 
1.39 (1.14-1.70) 0.0038 0.046 

rs4713916 A/G 0.092 0.44 0.47 0.095 0.39 0.52 
AA/GG 
1.08 (0.77-1.52) 

AG/GG 
1.29 (1.05-1.58) 0.046 ns 

 

        
  

   

        
  

  

B
la

ck
s 

rs3800373 C/A 0.17 0.51 0.31 0.15 0.44 0.41 
CC/AA 
1.51 (0.76-2.99) 

AC/AA 
1.52 (0.91-2.53) 0.23 ns 

rs1360780 T/C 0.17 0.49 0.34 0.16 0.45 0.39 
TT/CC 
1.19 (0.62-2.29) 

TC/CC 
1.26 (0.76-2.07) 0.66 ns 

rs4713916 A/G 0.004 0.18 0.81 0.01 0.19 0.80 
AA/GG 
0.34 (0.02-7.38) 

AG/GG 
0.95 (0.53-1.70) 0.8 ns 

 

 

B. Treatment-response analysis,  allele-wise test     

  

Remitters Non-Remitters 

 

Nominal Corrected 

 

SNP id Minor Major Minor Major OR (95% C.I.) P value P value 

A
ll 

rs3800373 C (0.33) A (0.67) C (0.31) A (0.69) 1.05 (0.88-1.25) 0.59 ns 

rs1360780 T (0.34) C (0.66) T (0.33) C (0.67) 1.01 (0.89-1.27) 0.48 ns 

rs4713916 A (0.30) G (0.70) A (0.24) G (0.76) 1.37 (1.14-1.65) 0.00074 0.013 

 

        

W
h

it
e 

n
o

n
-H

is
p

an
ic

s 

rs3800373 C (0.32) A (0.68) C (0.28) A (0.72) 1.19 (0.95-1.49) 0.12 ns 

rs1360780 T (0.34) C (0.66) T (0.30) C (0.70) 1.21 (0.97-1.50) 0.088 ns 

rs4713916 A (0.34) G (0.66) A (0.28) G (0.72) 1.35 (1.90-1.69) 0.0064 ns 

 

        

B
la

ck
s 

rs3800373 C (0.42) A (0.58) C (0.46) A (0.54) 0.84 (0.54-1.28) 0.42 ns 

rs1360780 T (0.40) C (0.60) T (0.45) C (0.55) 0.84 (0.54-1.29) 0.42 ns 

rs4713916 A (0.10) G (0.90) A (0.08) G (0.92) 1.17 (0.56-2.26) 0.67 ns 
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Treatment response analysis 

In the treatment response analysis two measures of outcome were evaluated, remission 

(defined as symptom-free) and response (defined as having residual symptoms). The 16-

item clinician-rated measurement tool QIDS-C16 (Quick Inventory of Depressive 

Symptomatology) was used for evaluation of treatment response. Patients with 

remissions were defined as having a QIDS-C16 score ≤ 5 at an end point of the treatment 

period whereas non-remitters were defined as a having a QIDS-C16 score ≥ 10. 

Responders were defined to have a 50% reduction of QIDS-C16 scores at the last 

treatment visit in comparison to initiation of the treatment. Non-responders were defined 

to have a 40% reduction of the QIDS-C16 scores. 

In a genotype-wise analysis, of the two ethnic groups together, the marker rs4713916 

survived correction for multiple comparisons in a test for remission. Test for outcome to 

response did not yield significance levels (Table 2, paper I). In a follow-up analysis, for 

the comparison of remitters and non-remitters, an allele-wise association test was also 

significant after correction for multiple comparisons, and which showed that the A-allele 

was over-represented (30%) within the remitters versus non-remitters (24%) (Table 1).  

Testing the three markers for association in the two ethnic groups separately did not 

reach significant levels. However, we observed that for the two intronic markers, 

rs1360780 and rs4713916, the OR estimates of the allele-wise test went in opposite 

directions between two ethnic groups (White non-Hispanics and Blacks) (Table 1). This 

led us to test the LD structure between the three markers in the FKBP5 gene within 

these two groups. In the population of the White non-Hispanics the LD structure 

between the three markers were high with an r2 of 0.67 between rs1360780 and 

rs4713916, and an r2 of 0.86 between rs1360780 and rs4713916, and finally an r2 of 0.54 

between rs3800373 and rs1360780. This indicates that these markers reside in one 

haplotype block for individuals of this ethnical origin. For the Black population this 

pattern looked somewhat different. Two of the markers, rs3800373 and rs1360780, 

resides in one block (r2 of 0.86), whereas marker rs4713916 and rs1360780 belongs to a 

different block (r2 = 0.09). The LD was also weak (r2 = 0.08) between rs3800373 and 

rs4713916. 

Outcome in treatment response over the 14-week treatment period was evaluated using 

the mean QIDS-C16 estimates. Analyses were performed for genotypes of the three 

markers at; entry of treatment, after 2 weeks, 4 weeks, 6 weeks, 9 weeks, 12 weeks and 

finally at 14 weeks. Although a reduction of symptoms was observed this was not 

correlated to genotypes of any one of the three selected markers, rs3800373, rs1360780 

and rs4713916 (Figure 1, paper I). 
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Number of previous episodes of depression 

Finally, a genotype-wise analysis was conducted to test for correlation to the number of 

self reported episodes of previous depression (indication for severity of MDD). None of 

the markers reached nominal statistical significance thresholds (Figure 2, paper I).  

 

Conclusions 

This study provided a better power than the initial study by Binder and collaborators, 

and thus was able to report significant association to disease status for the rs1360780 

marker in the White non-Hispanic population. Inclusion of White non-Hispanics and 

Black individuals and analyzing them as one group for outcome to treatment-response 

allowed for identification of association of rs4713916 to remission, but not to response. 

Inclusion of the Black population provided an indication for the A-allele as the 

functional allele in the treatment-response. We suggest that the FKBP5 gene is an 

interesting candidate for further studies to better understand part of the complex etiology 

in MDD and for prediction in outcome of antidepressant treatment. 

 

 

10.2 PAPER II 

Test for heterogeneity 

Preceding the interaction analyses in paper II we evaluated if the two study populations, 

STAR*D and GAIN had a shared genetic risk to MDD. Assessment of heterogeneity 

was based on a nominal P value (P < 0.05) generated from single marker association 

analysis. None of the nominally associated markers in STAR*D were found to be 

nominally associated in either genotyped or and imputed markers in the GAIN sample. 

Moreover, none of the nominally associated markers in the two study populations were 

in high LD. In a final meta-analysis using the identical marker with the same risk allele 

(10 markers) only one nominally associated SNP was identified (P = 0.039). A shared 

genetic risk between the two study-populations could not be confirmed. Therefore only 

the GAIN sample, which was the sample with more complete genotyping in the 

candidate genes, was used for the subsequent gene-gene interaction analyses. 
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Interaction analyses 

Overall results 

Genotyped and imputed genotypes in 63 candidate genes (chromosome X genes 

excluded and two autosomal genes not represented with markers in GAIN) were tested 

for a 2-way SNP-SNP interaction analysis. For each of the regression models 92 

markers were tested against 3,704 markers (entire dataset) for evaluation of interaction 

effects, which constituted 340,768 pair-wise tests. The 92 markers were selected based 

on two sources of information, main effect (i.e. single marker association analysis at P < 

0.05, n = 43) or using an algorithm (163) that predict interaction effects (n = 49). In the 

MDR method 3,704 markers were tested in an exhaustive interaction analysis 

(representing ~6.1 million interactions). 

The large number of tests performed penalized our approach with regard to report a 

significant interaction, and none of the tests generated a P value that survived correction 

for multiple testing (Figure 2 A-C, paper II). Without rejecting that all results are due to 

random variation we hypothesized, based on the observation that our study sample was 

lacking power, that the 0.5% most significant interactions would harbor interactions 

involved in MDD-susceptibility. Adopting a conservative approach, we therefore next 

considered the top 10 ranked interactions (LD filtered, r2 ≤ 0.2) in each of the different 

interaction methods as a source of information to provide a better understanding of the 

genetic interactions in these candidate genes that may explain part of the risk to MDD 

(Table 1, paper II). 

For the additive model our first observation concerns the unrealistic large fraction of 

negative AP values that exceeded the theoretical limit of -1.0 (i.e. AP < -1.0). We 

therefore aimed to investigate if the negative AP values were valid estimates for 

reduction of risk (Supplementary Figure 2A-D, paper II). We observed a skewing of AP 

values towards the negative side of the distribution and a correlation between large 

negative AP values and few individuals in one of the exposure groups. There did not 

appear to be any correlation between the lowest observed OR and negative AP, since AP 

< -1.0 was observed for both OR close to 1.0 and large OR's for single exposure. 

However, there was a negative correlation between the largest observed single exposure 

OR and AP when AP < 0. No deflecting pattern was observed for the positive AP 

values. These observations led us to simulate AP values (data not shown) with the aim 

to find out situations that give rise to negative AP estimates, especially those below the 

theoretical limit of -1. Our result identifies an inborn error in the definition of AP, which 

results in occasional estimates below -1.0 that often have a large magnitude. We 

concluded that although these negative AP values may indicate negative interactions, 

their magnitudes are far too large to warrant statistical analysis. Consequently, we 

decided not to draw any statistical conclusions from these estimates for susceptibility of 

MDD.   
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Top 10 interactions 

Of the ten strongest interactions generated from the three different algorithms, none 

represents pairs of markers that have previous been reported to interact in the 

susceptibility to MDD. We also noted that within this group of interactions the markers 

did not represent those selected based on predictive interaction effects using main effect 

or an algorithm that predict involvements SNP-SNP interactions. Although the three 

different methods generated metrics of interaction effects with different assumptions and 

were thus not readily to comparable, we further noted that the estimates of interaction 

effects were surprisingly strong for the regression models. In the multiplicative method 

(recessive interaction model), the strongest estimate was for two glutamate genes 

(GRIN2B and GRIN2A) with an OR (generated from the interaction term β3) of 4.99 

(95% C.I., 2.26-11.03). All of the ten strongest interactions of the multiplicative method 

had OR (from the β3 term) values were higher than 1.84.  

For the additive method (recessive interaction model) markers in the genes ARHGAP10 

and GRIK4 had an AP value of 0.72 (95% C.I., 0.42-1.02). All of the ten strongest 

interactions of the additive method had AP values higher than 0.51. 

The effect measures of the MDR approach were modest. None of the top 10 interactions 

had OR exceeding 1.51. The strongest interaction was for markers in the GRIN2B and 

HTR3C genes with a balanced accuracy value of 0.55 and a cross validation consistency 

value of 4/10. 

The different algorithms used detected different pairs of interacting markers with 

relevance for MDD-susceptibility. As a consequence we further noted that the three 

algorithms reported on a divergent set of genes. We did not, however, determine 

whether these findings are simply due to chance. Moreover, as the number of markers 

per gene varied substantially (Supplementary Table 1, paper II) we did not make 

inference with the observation that genes from e.g. the glutamate system are frequently 

reported. We did note, however, that genes with only a few markers were also reported 

among the top 10 interactions. 

  

 Test for correlation between the different interaction methods 

There was little overlap of identified interactions between the 10 most significant 

observations for each model. To find out to what extent the different algorithms 

identified pairs of markers of relevance to disease we performed a test for correlation 

between the three interactions methods. We computed the Pearson's correlation 

coefficient (r) to test the covariance of interactions among the 0.5% region in one 

method against the entire dataset of another method. This test was used for combinations 
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of all methods (Figure 3 A-L, paper II). Overall, the measures of correlations were weak, 

with r values < 0.33. 

 

Model fitting and quantifying the genotype-total MDD relation 

To assess the importance of these interactions for susceptibility to MDD we estimated 

the population attributable fraction (PAF) for the top 10 interactions in each model. We 

also calculated the number of cases predicted as cases (true positive rate) against the 

number of controls predicted as cases (false positive rate) at each level of combination 

of risk and no-risk of two tested loci (Table 1 A-E, paper II). 

Although the estimates of the proportion of MDD in the population that is attributable to 

the exposure of the risk factors were low (i.e. the PAF values), these estimates were 

larger for the additive model in comparison to the multiplicative and MDR approaches. 

However, considering the PAF values for the interaction analysis versus the estimates 

from the single-marker analysis, the proportion population risk attributable risk due to 

interaction was only marginally larger, and in some instance these estimates were even 

lower (Supplemental Table 4 A-E, paper II).  

 

Results of 3-way interaction analyses 

We also conducted a 3-way interaction analysis based on the observation that several 

markers of the top 10 interactions were involved in more than one interaction (Table 1 

A-E, paper II). This analysis was performed in the model-free (MDR) approach for 371 

markers which were included based on results from the 2-way analysis with a balanced 

accuracy value > 0.54. The results of the 3-way analysis were weak. The classification 

(accuracy value) for the best model was 0.57, with a cross-validation consistency value 

of 3/10. None of the top 3-way models confirmed the assumed higher order of 

interactions observed from the separate 2-way models (data not shown). 

 

Conclusions 

None of the tested interactions were significant after correction for multiple 

comparisons. We assumed that the top 10 ranked interactions would provide information 

to better understand the genetic interacting landscape in these candidate genes, and can 

conclude that none of the top ranked interactions have previously been reported for 

synergy effects to MDD-susceptibility. We further note that the three different statistical 

approaches are not likely to identify the same pairs of interacting markers involved in 

risk for MDD. We also observe that the two logistic regression models identify 
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interactions with a large effect sizes, whereas the MDR approach reports weak 

interactions effects. None of the top interactions explain a large proportion of MDD in 

the general population. 

 

10.3 PAPER III 

Recent genetic studies have revealed that part of the genetic risk for BPD is shared with 

SZ (92, 164). An accumulation of data further indicates that high penetrant rare CNVs 

may constitute a part of the genetic risk to SZ and BPD (93). To increase the chance to 

find high penetrant rare CNVs we applied a multistage analysis and searched for CNVs 

in individuals diagnosed with BPD, SZ or SA. Of note, due to some differences (see 

section 1.1), in classification of mood disorders in paper III, the diagnosis classification 

bipolar affective disorder (BPAD) is used but for the phenotypic classification this is 

identical to BPD. 

In the initial phase, a sample consisting of 46 BP-pedigrees (275 individuals) were 

selected presumed to carry a genetic form of BPD through screening process consisting 

of family-wise parametric linkage analysis and analysis of large regions of deletion (runs 

of homozygosity). This sample was analyzed for the presence of CNVs larger than 10 

kb and not overlapping with CNVs reported in the Database of Genomic Variants 

(DGV). This process ensures that CNVs are robustly called and that they are rare in the 

general population. A ranking system was designed to select presumptive risk families. 

CNVs were ranked based on the number of affected individuals per family in which they 

were found and selected for further analysis.  

This raking approach identified one family (family 11-158), consisting of seven 

individuals of which six were diagnosed as bipolar type 1 and of which all had a CNV in 

the same region (Figure 1, paper III). The CNV is a 200 kb deletion and maps to intron 1 

of the MAGI1 gene. Due to the selection process, the identified CNV in the MAGI1 gene 

in the six bipolar affected individuals (family 11-158) was considered as a hypothesis-

generating step and excluded from further analyses. Another BP-family (11-130) with a 

shared CNV in the MAGI1 genes was found.  

To investigate if the CNV finding could be observed in an independent sample, we first 

analyzed unrelated individuals (sampled for the purpose of clinical trials) with a 

diagnosis of BPD, SZ and SA disorder were provided by Johnson & Johnson 

Pharamceutical Research & Development. In this sample three individuals with a 

diagnosis of SZ had a CNV (one deletion and two duplications) which also maps to the 

first intron in the MAGI1 gene and that partially overlapped with the CNV identified in 

family 11-158. In the final stage we searched publicly available databases of case-

control samples and unaffected control samples. Three additional cases (BP and SZ) and 

2 healthy controls, with a CNV overlapping with intron 1 of the MAGI1 gene were 

identified (Figure 1, paper III). A statistical test was performed to assess if the frequency 
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of MAGI1 CNV was higher in cases versus controls. Excluding the initial BP-family 

(11-158) (considered as a hypothesis-generating step), a test for association of CNVs in 

cases with BPD, SZ or SA (n=7) versus controls (n=2) was significant at P = 0.023. 

 

Conclusions 

Our multistep approach to search for rare highly penetrant CNVs involved in BPD by 

searching across diagnostic boundaries including individuals with BPD, SZ and SA 

allowed for identification of a CNV in the MAGI1 gene at 3p41.1. We identified 7 cases 

and 2 control samples with CNV in the MAGI1 gene. A statistical test reveals that the 

there is a significant difference between cases and controls and we therefore suggest that 

this gene is an interesting candidate for future studies in the etiology to BPD and SZ. 

 

 

10.4 PAPER IV  

The same sample as in paper III consisting of 46 BP-pedigrees was selected and 

presumed to carry a genetic form of BPD. Two forms of analyses were performed (i) 

linkage analysis and (ii) a combined CNV and linkage analysis. To account for both 

clinical and genetic heterogeneity we analyzed the dataset using three affections status 

models (ASM1-3), and calculated linkage using multipoint parametric heterogeneity 

(HLOD) scores and non-parametric linkage analysis. 

 

Linkage analysis 

The non-parametric (NPLALL) linkage analysis reached a suggestive level on 3p14.1 for 

all affection status models. The broad affection status model (ASM3) exhibited the 

strongest peak, NPL Z = 3.56. For the parametric linkage analyses, four regions reached 

a level of suggestive linkage (HLOD), all in the ASM3.The strongest signal of linkage 

occurred at 6p12.3, HLOD = 2.64 (Table 2, paper IV). 

 

CNV-weighted linkage analysis 

We identified 2,806 CNVs in our dataset that were used to generate CNV-weighted 

linkage scores in nine different linkage and affection status models (genome-wide plots 

in Figure 1, paper IV). The parametric dominant model (ASM1), exhibited a significant 

CNV-weighted linkage score on 19q13, after a 1,000-fold simulation including FWER 
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correction. A detailed analysis revealed that the significant CNV-weighted linkage score 

was generated from 12 individuals (5 families) who shared a CNV in this region. Figure 

2, paper IV illustrates the genomic location of the CNV in relation to the linkage scores 

from these 5 families and the complete set of genes that resides in the linkage region. 

In a subsequent analysis we aimed to find out if the CNVs are inherited or arise de novo 

by performing a haplotype analysis in the 5 families that contributed with the significant 

CNV-weighted linkage score in 19q13 (Figure 3A, paper IV). The phased haplotype 

analysis revealed that there are frequently occurring recombinations in this region, or 

alternatively that we have missed the detection of CNVs in some individuals. We also 

observed that within the 5 BP-families contributing to the CNV-weighted linkage score, 

not all affected under the ASM1 model were CNV carriers, and moreover, that some 

unaffected individuals were also CNV carriers. These results suggest that if the CNV is 

functional in causing a risk for BPD, and if we detected all CNVs in these families, the 

CNV has an incomplete penetrance and that some individuals in these families 

developed BPD due to other reasons. The CNV stretches over a region that harbors a 

family of genes encoding the pregnancy-specific glycoproteins (PSGs). The PSG genes 

have not previously been reported to be involved in BPD. A bioinformatic analysis 

revealed that two markers within the PSG gene are likely eQTLs for FBXO30 protein 

with regulatory properties of NFκB (165), a transcription factor for neurogenesis and 

inflammatory response (166, 167). Of note, within the linkage peak-region there were 

several other candidate genes (GRIK5, GSK3A and CEACAM21) previously implicated 

in BPD and SZ (75, 168-170). 

 

Conclusions 

For the linkage analysis, we identified four loci that reached suggestive levels of linkage 

to BPD of which three confirmed previously published results (1q23, 3p14 and 10q26). 

The CNV-weighted linkage analysis identified one significant region with a CNV. This 

region mapped to 19q13 and stretched over a gene family, the PSG genes. Of interest, 

the PSGs have recently been shown to have a regulatory role in secretion of 

inflammatory cytokines and to activate transforming growth factor TGF-β (171). TGF-β 

proteins are involved in regulation of cell growth and immune cell functions, two 

suggested mechanisms underlying the pathophysiology of mood disorders.    

In addition, two SNP-markers are likely eQTL’s for FBXO30 (located on chromosome 

6). The FBXO30 protein has a regulatory function of the transcription factor NFκB, 

making this pathway an interesting candidate to partly understand the complex etiology 

to BPD (166, 167). The role of NFκB in the pathophysiology of mood disorders is 

suggested to be mediated through increased levels of the cytokine TNF-alpha. During 

periods of depressed mood increased levels of TNF-alpha leads to lower levels of BDNF 

which in turn reduce NFκB translocation. This process induces apoptosis and thus serves 

as proposed model for the regional reduced brain volume that is observed in mood 
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disorders (166). Finally, within the linkage peak region there are several candidate genes 

with putative roles in BPD, e.g. GRIK5 and GSK3A. 

Our results indicated that the CNV is inherited. However, as not all the affected were 

CNV carriers and since recombinations frequently occur we conclude that the CNV has 

a low penetrance to mood disorder. A prioritized follow-up analysis would be to 

molecularly (PCR technology) confirm the signal in 19q13 before a more functional link 

to BPD could be made by the candidates in this region. 
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11 DISCUSSION 

11.1 PAPER I 

The A-allele of the rs4713916 marker was more frequent among remitters (30%) than 

non-remitters (24%) when both White non-Hispanics and Blacks were included in the 

analysis. This test yielded a P = 0.013 after correction for multiple comparisons. 

However, we observed that the allele frequencies for the three markers were not 

identical between the two ethnical groups (Table 1. For marker rs4713916 the allele 

frequencies for the minor and major alleles in the White non-Hispanic population were 

34% and 28% respectively. These estimates were 10% respectively 8% in the Black 

population. This observation prompted us to clarify whether there is a stratification issue 

when both groups are analyzed together. We therefore performed a meta-analysis using 

ethnicity as a covariate and found that there is a genetic heterogeneity between the two 

ethnical groups (Figure 8). The test for heterogeneity was significant (P = 0.046). This 

implies that there is stratification with a different allele frequency between the two study 

populations for rs4713916. These results indicate that our approach to combine the two 

ethnical groups into one sample when testing association to treatment response was not 

correct and no significant association of FKBP5 genotypes to treatment-response 

remained after correction for multiple comparisons. 

 

 

Figure 8. Test for heterogeneity.  

Marker rs4713916 was tested in a meta-analysis (Mantel-Haenzel) with White non-
Hispanics and Blacks, for A/G genotype to remission. Test for heterogeneity, chi-square 
test (1 d.f.), reached significance level with P = 0.046. 
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The HPA-axis is an established neuroendocrine stress-response pathway, which has 

been proven to be important in both in humans and in animal models (41). In these feed-

forward and feed-backward pathways, glucocorticoids are suggested to be a critical 

component for activation and termination of the stress-response. The weak result 

regarding the correlation of SNP-marker to risk of MDD, and the fact that the 

association to treatment-response was not significant when combining data from the two 

ethnic groups in a correct way, urged us to address the questions of whether the FKBP5 

gene is a key regulatory factor for conferring risk to MDD and whether the FKBP5 gene 

has a regulatory role in treatment-response with antidepressants. 

First of all, in the study by Binder et al. 2004 the marker rs1360780 was reported to be 

significantly associated with response to antidepressants. However, the reported 95% 

C.I. was 0.60-48.3 in the replication sample. No significant association to disease status 

was reported by Binder et al. while it is associated to disease status among White non-

Hispanics in our study. Secondly, a limitation which makes it difficult to distinguish true 

drug effects from placebo is the absence of a control group in both our study and the 

Binder study. Thirdly, the therapeutic effects of antidepressant drugs are slow, for most 

patients effects appearing after 2-4 weeks of treatment (172). In light of this observation 

the results from our study and the Binder study should be taken with caution as both 

studies indicate a rather rapid decline in symptoms after the first weeks of treatment. 

Fourthly, a treatment-response analysis (Citalopram treatment) of the STAR*D sample 

using genome-wide marker coverage did not report markers of the FKBP5 region 

among the strongest candidates (173). Lastly, results from genome-wide association 

studies of the STAR*D-sample did not report FKBP5 markers among the highest ranked 

candidates to risk of MDD (89). 

Taken together, these notions suggest that the FKBP5 gene may still be one important, 

although, not likely the only system mediating influences to MDD-pathophysiology. 

 

 

11.2 PAPER II 

At the time of the planning of this study there was no clarity about the magnitude of the 

interaction effect we were expected to discover. We therefore assumed that the effect 

would be more marked than our present results. As there is no evidence for which 

statistical model that has practical consequences, i.e. that may detect interacting loci 

involved in disease susceptibility (160), we decided to use different algorithms. As there 

is also no robust method for predicting markers with interaction effects, we decided to 

screen as many markers as was computationally practical.  

None of the identified interactions survived correction for multiple comparisons, and as 

a consequence we cannot exclude that the results are just caused by chance and have no 
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biological meaning. However, we speculate that our results may hold some important 

information that leads to a better understanding of the genetic landscape in MDD within 

these candidate genes. We argue that our results performed indicate a direction that 

supports previously made assumptions about the contribution of genetic background for 

mood disorders and therefore make sense and merits discussion. 

First, our approach to rank interaction based on test for significance may be questioned 

as our aim was to search for strong interaction effects. A sufficient large sample size will 

generate small P values, although, the most relevant question concerns the risk 

estimates. When looking into these estimates we can see that the regression models 

generated marked effect size estimates for the top 10 strongest interactions. We note 

however, that small P values do not necessarily correlate to largest effect size estimates. 

We next examined the top interactions for determining disease status (calculated from 

sensitivity and specificity scores). We noted that none of the interactions were able to 

correctly classify diseased individuals and non-diseased individuals to a large extent 

(Table 1, paper II). Finally, the PAF estimates for the top interactions were only 

marginally larger than for the single-marker analysis (Supplementary Table 4, paper II). 

Taken together, these observations illustrate that none of these interactions could explain 

their contribution to risk of MDD to a large extent. The relevance of these findings can 

be explained. These findings concord with emerging data from genetic studies in 

psychiatric disorders (see section 1.3), evolutionary theories of mood disorder (174, 175) 

as well as from interaction studies in model organisms (154). Traits that are evolutionary 

old and that are crucial for the organism for survival are thought to have an extensive 

network of interactions (156, 159) which supports the assumption that no gene or 

signaling pathway stands out being significantly more important than any other. The last 

argument is further supported by interaction studies in model systems in which the 

majority of the genes have been shown to be dispensable (176, 177). 

These results provide an interesting lead to future interaction studies. It implies that new 

approaches will be needed not only to predict specific disease-associated genes but also 

to predict systems of genes. A possible solution to reduce the number of independent 

tests would thus be accomplished by testing systems of genes or network of genes rather 

than testing separate genes (154). Another important note that requires explanation 

concerns the interpretation of the additive model. AP values do not indicate how many 

sufficient causes there are, but only refer to a measure of the currently tested double 

exposure. In respect to the negative AP estimates, we have identified an inherent 

problem with the algorithm to quantify these estimates and we cannot interpret these 

negative AP measures other than to say that they indicate an interaction reducing the risk 

to developing MDD. 

Our approach to test for interactions, which was not restricted among predicted markers, 

yielded important information since none of the currently prediction methods seems to 

be optimal. Previously reported gene interactions with suggested relevance for 

involvement in MDD-etiology were not evident among the strongest reported 

interactions in this study. The high LD-structure between markers is likely not a 
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disadvantage for the interpretation of the results since we have simulated data to 

generate exact P values by randomizing case-control status and not genotypic correlates. 

Genetic interaction analysis is an important instrument aiming to find genes with 

relevance in disease pathology, but our knowledge of how to bridge the gap between 

statistical signals to function is still limited. Interpretation of genetic interaction into 

etiology of mood disorders is therefore a challenging task as the identification of genetic 

interactions using statistical models does not imply that the two gene products physically 

interact, or that identified genes are in the same pathway or even that they are temporally 

co-expressed (178). 

Our approach, using three different algorithms, did not deliver any conclusive result for 

which approach is preferable. The three approaches define interaction with different 

assumptions and therefore do not identify the same pairs of interacting markers. This is 

further supported from interaction analysis in model systems which reveal that all 

genetic interactions are not simplistic additive or multiplicative, and that different 

definitions of interaction results in dramatically divergent identification of genetic 

interactions (160). This line of evidence motivates the application of different statistical 

methods for the detection of all forms of interactions. A standard procedure in genetic 

studies is replication of results in an independent sample set. In order for such a process 

to be valid the two sample populations are required to have been exposed to similar 

genetic and environmental risk factors. We demonstrate that the STAR*D and GAIN 

samples do not appear to share similar genetic background, maybe because of exposure 

to different environmental risk factors. Thus, the STAR*D sample is not optimal for 

replicating interaction findings from the GAIN study. As no optimal replication sample 

was available in our study and no functional studies have been performed our results can 

only be referred to as being exploratory (179). The replication issue will be of significant 

challenge for future interaction studies in mood disorders as there is a pronounced 

environmental influence. In addition, even small differences in allele frequency in 

replication sample between tagging marker and risk marker has a large impact on the 

power to replicate initial results (180). 

 

11.3 PAPERS III & IV 

In studies III & IV we addressed several proposed reasons as to why genetic risk factors 

for BPD have not been robustly reported. As an initial step we selected a study sample 

likely to have genetic risk for bipolar disorder by screening a large sample of BP-

pedigrees with family-wise parametric genome-wide linkage analyses and for the 

presence of large stretches of deletions in candidate genes for BPD. In this process 46 

BP-pedigrees were selected. According to our pre-agreed analysis strategy we would not 

report any locus that constituted a criterion for selection of these families. The notion 

that we in fact did not identify any of the final results in any of the loci that constituted 

the selection criteria confirms the pronounced heterogeneity in BPD, since a slightly 

different composition of individuals in the BP-families points to another risk locus. 
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In study III our hypothesis was that rare high penetrant CNVs contribute with risk to 

BPD. To increase power to detect such genomic variants we took advantage of that 

genetic risk has been shown to be shared across disorder boundaries. To ensure that the 

CNV should be inherited our first criterion was that the CNV should be identified in BP-

pedigrees. We also aimed to ensure that the CNV should be rare and therefore screened 

the results from our CNV-calls for overlapping variations catalogued in a database 

containing CNVs from healthy control samples. To identify inherited highly penetrant 

CNVs involved in BPD our method was to rank the number of CNV based on the 

number of affected individuals per family in which they were found. To investigate if 

this CNV could also be found in the general population we searched a large case-control 

sample consisting of cases diagnosed as BPD, SZ and SA and a sample consisting of 

unaffected individuals. One region was reported, located in the intronic region of the 

MAGI1 gene. 

A limitation of the study design in paper III is due to the lack of evidence for CNV being 

correlated to BPD in the pedigree sample in any other respect than that the CNV is 

observed among BPD individuals. Other regions with possible stronger correlations to 

disorder may exist. Nevertheless, the confirmation analysis correlates the CNV to the 

disorder and we presented a possible functional role for the MAGI1 protein in the 

etiology to BPD. But since the frequency difference of the CNV between affected and 

non-affected sporadic cases was small, although significant, it could be questioned 

whether this CNV has a high relevance for BPD. 

In study IV we tested the hypothesis that inherited large structural genomic variations 

(CNVs), irrespective of the frequency of occurrence, contribute with risk to BPD. We 

developed an algorithm that combines genome-wide linkage data with the CNV content 

within and across families and searched for regions enriched for CNVs that mediated 

risk for BPD. This method has the advantage that an identified region with a CNV is 

correlated to BPD using a linkage analysis. Thus this approach ensures that a potential 

region with CNV has implications to disease etiology. To reduce the problem with 

incorrect called genotypes in CNV regions we designed a QC filtering with the aim to 

zero-out markers in CNV regions. As accumulating data reveals that there are both 

genetic and clinical heterogeneity for those affected by BPD, we sub-categorized the 

sample in three affection status models (ASM1-ASM3) that are commonly used (136). 

This means that in this study we applied an opposite approach to what was performed in 

study III, and aimed to take advantage of information of heterogeneity to search for 

genetic risk in a sample assumed to be more genetically convergent in its risk to BPD. 

All of our CNV calls were tested for overlap (performed 2013) to 150,000 catalogued 

CNVs from unaffected individuals. This should be compared to the previous analysis in 

paper III (performed 2009), with only 30,000 catalogued CNVs from unaffected 

individuals. Our approach has potential limitations and caveats that merits discussion. 

The subset of pedigrees used in our analyses was selected from a large sample of 

possible pedigrees using data from linkage analysis as a proof that they segregated 

genetic variants affecting BPD. This has a potential bias ascertainment as it will have the 

effect of increasing the effect size of any genetic effect that is detected. A possible 
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alternative approach would therefore to account for this by selecting pedigrees based on 

non-genomic criteria for linkage to BPD.  

The CNV-weighted linkage analysis identified 19q13 as a potential risk locus for BPD. 

However, a bioinformatic search revealed an eQTL in the CNV region with functional 

role in BPD etiology, but also that several previously found candidate gens are located 

in the linkage region. Our results support a recent notion in that CNVs are more 

common than previously expected and confer risk to disorder with less penetrance. We 

also see that the CNV occur in a region reported with frequent recombinations. We 

checked our results to find out how the identified CNV in the MAGI1 gene correlated to 

BPD (Table S5, paper IV), and observed that this CNV is ranked in 23’rd place and 

confirms that it correlates with BPD, although with small effect on the linkage score. 

Taken together, the results from studies III & IV indicate that the potential risk loci for 

BPD can be identified through two complementary approaches to handle genetic and 

clinical heterogeneity. Although no candidate gene could conclusively be pinpointed we 

suggest that the CNV-weighted linkage approach could be a useful instrument for future 

studies in complex disorders. 
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12 FUTURE PERSPECTIVES 

In this thesis, I tested four hypotheses, all concerning identification of susceptibility 

genes for mood disorders. I addressed several known and debated issues regarding 

difficulties in successfully identifying genetic risk factors. In the analysis of major 

depressive disorder we identified the FKBP5 gene contributing with risk to MDD in the 

STAR*D cohort, no effect was observed to treatment response. Testing for interaction 

effects in the GAIN sample we did not detect any pairs of markers contributing to risk of 

MDD. Nonetheless, we contributed valuable information for the analysis of genetic 

interaction effects and provided a speculative insight into how the genetic interaction 

pattern looks in candidate genes for MDD. In the analysis of BPD we presented two 

potential risk loci for future studies to understand part of the complex etiology for BPD.  

The path towards identification of biological processes leading to mood disorders 

through the identification of susceptibility genes will be a challenging task. Studies 

designed to test correlation of genomic variation to human trait and disease is only a first 

initial step in a long series of subsequent analyses until conclusions about function can 

be made. The raising prevalence of the disorders is likely to be influenced by 

environmental risk exposures and interactions from gene-environmental risk factors 

(181). Identification of such risk effects would be of a great value. Although the success 

will likely depend on collaborative projects designed for translational research work 

across domains of genetic analyses, statistical analyses and animal models, much of the 

progress will lie in the genetic epidemiology. Prospective studies and better diagnostic 

system that has a high accuracy to discern the different subcategories of mood disorders 

will bring valuable improvements for finding genetic risk factors. However, it seems 

that there is a ‘Catch-22’ situation. A validated genetic risk factor would be an initial 

step to understand molecular mechanisms underlying risk for the disorder, and could 

thus lead to an improvement of the diagnostic system. Conversely, a more accurate 

diagnose classification would improve the ability to find a genetic predisposing factor. A 

central element for the relation of the cause-effect-loop concerns non-genetic risk 

factors. Non-genetic factors refer to a wide range of social adversities and its 

contribution to vulnerability to mood disorders is firmly established (4, 5). One of the 

most well known risk factors is early stressful life events (childhood adversities, such as 

parental loss, sexual abuse or parental mental disorders). A variety of exposure factors 

(socio-economical related or comorbidity from other psychiatric or medical disorders) 

may also trigger debut of the disorders in late adolescence or even later in life (13). 

However, there are many controversies. In spite of the growing awareness that such risk 

factors have substantial influence on vulnerability there is little evidence that a specific 

event can be attributed to a manifest disorder. Far from all that are exposed to social 

adversities develop the disorders. This scenario has consequences for the success of 

genetic studies and could explain why any initial genetic observation is as yet not 

robustly replicated in an independent study sample. This could be explained by 

differences in environmental exposures in the different study populations. Thus, 

different social-economical exposures that interact with the genetic background are 
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likely to be part of the reason as to why predisposing genetic factors have still not been 

identified. 

Animal models have added a significant insight into the etiology and new strategies for 

finding better treatments in mood disorders, and will indisputable be a central instrument 

in the future gene validation process. However, there are certain points worth 

mentioning. The observation that mapping genes using linkage analysis in animal 

models has been more successful than in human populations can be explained by reason 

of power. A first possible argument is that an inbred strain might have a fixation of a 

rare allele or have a limited number of other involved loci (182). A second argument is 

that animal models have a higher probability for being more informative for linkage, 

which will then result in a higher power for finding segregating loci than in an human 

population (183). Conversely, it is unclear if these depression-like phenotype models are 

satisfactory proxies for the human diseases (184).  

To conclude, identification of genetic determinants would be a considerable step 

towards unraveling the complex background of mood disorders. Besides providing a 

substrate for functional analyses and molecularly evaluating the effect in affected versus 

unaffected individuals it would serve as a valuable platform for studying the effect of 

social stressors. It would also provide an instrument to identify neuronal circuits in an 

animal model related to mechanisms underlying human depression and bipolar disorder 

pathophysiology. It appears that different methods generate results suggesting different 

genetic risk factors to mood disorders. One of the question concerns whether larger 

study populations should be used to search for risk genes including broader phenotypic 

boundaries, or if a more narrow disease classification approach should be used. The 

former approach will find susceptibility genes (a large enough sample will find a risk 

locus), but it is not given that a certain risk gene pertains all sub-phenotypes of the 

disorders and these may be missed. Conversely, searching for genes restricted to a 

certain sub-phenotype may be inapplicable for other sub-phenotypes. As yet, there are 

several uncertainties as to which way that will be the most successful. Continued 

research will answer these questions. It is unlikely that a single approach will unravel all 

genetic risk to mood disorder (illustrated in Figure 6). This notion implies that there is 

no room for a reductionistic thinking, various methods and approaches will contribute 

with valuable information. Indeed, currently there are arguments that both concede or 

refute the different proposed theories for how a potential genetic risk profile might 

appear (182). Thus, the proposed hypotheses aiming to describe the mutation-selection 

balance and the presence of susceptibility genes may serve as a platform for testing our 

hypothesis and form a valuable instrument for deciphering the genetic influences to 

mood disorders. However, it should not restrict our mind to think in other dimensions.  

Success will lie in translational research, sharing data and open discussions. 
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