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ABSTRACT 

MYCN is a member of the MYC family of proto-oncogenes, encoding transcription factors (c-

MYC, MYCN and L-MYC) that play crucial roles for normal cellular functions and during 

development. However, the expression of MYC (here referring to c-MYC and MYCN) is 

found elevated in a large number of human cancers where it is implicated in most aspects of 

tumorigenesis and correlates to poor clinical outcome.  

Neuroblastoma is a heterogenous childhood cancer of the sympathetic nervous system. 

Tumors harboring amplification of the MYCN gene are highly aggressive and these patients 

have a poor prognosis. Consequently, new treatments directed against high MYC expressing 

tumors could help to improve the survival rates of these children.  

In Paper I, we screened 80 chemotherapeutic drugs and small chemical compounds to assess 

their selectivity against MYC-overexpression, using cancer cells with conditional c-MYC or 

MYCN expression. Positive hits belonged to distinct classes of chemical agents acting on 

selective cellular processes, including RNA, DNA and protein synthesis and turnover, and 

those inhibiting microtubules and topoisomerases. These results may provide indications for 

future drug development and treatment optimization towards MYC. 

One important goal in cancer research is to identify small molecules, which can interfere with 

MYC’s function, since today, no therapeutically relevant therapy acting directly against 

MYC exists. In Paper II we demonstrated that a previously identified c-MYC binding 

molecule, 10058-F4, showed selectivity towards high MYCN expressing neuroblastoma cells 

and resulted in prolonged survival in a MYCN-driven transgenic mouse model of 

neuroblastoma. In Paper IV, we further demonstrated that 10058-F4 and a few additional c-

MYC-binding small molecules bind directly to the corresponding region of MYCN, and that 

their binding affinities correlated with the level of growth suppression in cells.  

Metabolic rewiring is an important feature in aggressive tumors. In Paper II we showed that 

downregulation of MYCN in neuroblastoma cells leads to accumulation of cytoplasmic lipid 

droplets caused by mitochondrial dysfunction. In this regard, MYCN was found to be linked 

with an overall elevated mitochondrial metabolism important for mediating tumor 

aggressiveness in neuroblastoma.  

In Paper III, we carried out a systematic investigation of metabolic alterations associated 

with MYCN in neuroblastoma, using patient gene expression data, quantitative proteomics 

and functional studies of metabolic pathway fluxes. MYCN was found to positively regulate 

glycolysis, respiration as well as oxidation of exogenous fatty acids in neuroblastoma cells, 

suggesting that MYCN mediates metabolic plasticity, which could account for an important 

survival mechanism during neuroblastoma tumor progression.  

Together the work comprised in this thesis support the development of targeted therapy 

against MYCN and identified MYCN-induced metabolic signals as a potential approach to 

target high risk neuroblastoma. 
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1 INTRODUCTION 

1.1 CANCER 

1.1.1 Definition 

Cancer is a collective name for over 100 different types of diseases affecting different tissues, 

in which cells become abnormal and grow out of control, beyond their natural boundaries and 

can spread (metastasize) to other organs, which is a major cause of death from the disease (1, 

2). Throughout the world, especially in Western countries, cancer is a major health problem 

and cause of mortality, accounting, for instance, for 20 % of all deaths in Europe (3, 4).  

1.1.2 Cancer is a disease of deregulated growth signals and dysfunctional 
control systems in cells 

More than 35 years of empirical observation and testing have supported cancer as a gradual 

“Darwinian” evolutionary process (see Figure 1), driven by clonal selection of somatic (or 

germ-line, in case of familial cancers) gene alterations (DNA mutations, copy number 

alterations, or epigenetic changes) affecting oncogenes and/or tumor suppressor genes, 

ultimately conferring selective growth and survival advantages (1, 5).  

In multicellular organism there are highly efficient cancer suppressive control mechanisms 

operating to both prevent and ensuing elimination of pre-malignant cells or lesions (1).  

Hence, cancer is only “allowed” to develop when the various control systems of tissue 

homeostasis which are normally under tight regulation have gone awry and the cancer cells 

hence can escape from being “held in check” (1). In normal tissues, cell growth is strictly 

regulated by both growth-suppressive and promoting (mitogenic) signals. As a simplified 

example, cell growth can be mediated through growth factor molecules, which bind to cell 

surface receptors, in turn harboring intracellular tyrosine kinase receptors. These transfer the 

signal further, leading to a cascade of downstream signaling events in the cells which together 

impact on cell cycle progression and cell growth (2). There are also negative feedback-loops 

of regulatory signals as well as tumor suppressor molecules whose function is to inhibit 

tumor growth by sensing genetic and functional imbalances and thereafter dampening or 

halting proliferation, or inducing cell senescence or apoptosis to eliminate defective cells (2). 

In tumors, various mechanisms operate to evade these control systems, consequently leading 

to constitutive activation of growth-inducing signals and avoidance of cell death (2), which is 

a major cause of treatment failure (6). 

1.1.3 Cancer involve the activation of oncogenes and inactivation of tumor 
suppressors  

Proto-oncogenes are genes that during normal physiological conditions are necessary for 

processes such as proliferation, differentiation and survival, while their activation leads to 

tumorigenesis. Genetic alterations that cause activation of proto-oncogenes and consequently 

leads to elevated expression or increased activity of the encoded onco-proteins, promote 

cancerous events by providing growth and survival advantages (7). Examples of onco-
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proteins include transcription factors (e.g. MYC and TWIST) (8, 9), receptor tyrosine kinases 

(RTK) (e.g. vascular endothelial growth factor receptor (VEGF)) (10), growth factors (e.g. 

epidermal growth factor (EGF)) (11), serine/threonine kinases (e.g. cycline dependent 

kinases, CDKs) (12) regulatory GTPases (such as RAS) (13), cell cycle regulators (including 

cyclins) (12) and regulators of cell death (e.g. members of the BCL2 family of proteins) (14). 

Likewise, as already mentioned, tumor formation and progression also involve the 

inactivation of so called tumor suppressor genes, encoding for tumor suppressor proteins. The 

normal function of tumor suppressors in cells is to protect cells from tumor formation, 

mediated by suppression of cell growth, detecting and repairing damage to DNA, regulating 

the ubiquitination and degradation of proteins, and inducing apoptosis (7, 15, 16). The 

transcription factor p53 is a classic example of a tumor suppressor since it is deleted or 

mutated in ~50 % of all human tumors, and is often referred to as “the guardian of the 

genome” due to its important anti-tumorigenic functions (17).  

 

Figure 1. Representative pattern of clonal evolution in solid cancers. The development of 

cancer is a complex process involving the expansion of cancer clones acquiring selectively 

advantageous lesions to survive selective pressures or restraints (vertical lines), genetic 

diversification of co-existing cell clones (represented by differentially colored circles) driven 

e.g. by additional mutations and other genetic or epigenetic changes and the tumor milieu, as 

well as clonal selection. These processes occur in close connection with the tumor 

microenvironment of “tissue ecosystems”. CIC: carcinoma in situ, Tx: treatment. From 

Greaves M & Maley CC, 2012, with permission from the publisher (1). 

Accumulating gene mutations and/or gene copy number alterations during tumor progression 

can furthermore trigger genomic instability, leading to events such as chromosomal gains and 

losses. Consequently the genetic diversity is further increased and accelerates the malignant 
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development (2, 5). Importantly, the tumor formation process is furthermore believed to 

progress by natural selection, similar to in organisms, driven by the competition for space and 

resources of the cancer cells (see Figure 1) (1, 18). 

1.1.4 Recurring themes in cancer despite an enormous complexity 

Cancer is an extremely heterogeneous disease; in fact each tumor is unique, originating from 

different types of tissues and cells of origin, and harbors diverse types of mutations and 

genetic alterations (1, 19-21). Moreover, due to the clonal evolvement of cancer, each tumor 

can be viewed as multiple different cancers or subclones, occupying distinct or intersecting 

tumor territories (1, 22). 

The rapid development of second generation high throughput sequencing techniques has 

allowed for deep analyses of cancer genetics and epigenetics and has consequently further 

revealed the complexity of human tumors (1, 19, 20). However, despite the enormous genetic 

and histological heterogeneity seen both within specific tumor types as well as between 

different forms of cancers, these techniques have also allowed for the discovery that a 

relatively small number of recurring alterations or “driver events” exists across cancers. 

These identified events or “oncogenic signatures” are coupled to distinct, well recognized 

oncogenic pathways (including MYC driven proliferation) and can be used to characterize 

tumors independently of tissue of origin (19). Similarly, a limited number of phenotypic traits 

or “hallmarks of cancer” which are the functional outcome of accumulated genetic 

alterations, can be delineated across cancers, and have been recognized since decades. These 

traits include the acquired ability of: unlimited cell growth by sustaining proliferative 

signaling and evading growth suppressors, avoidance of apoptosis, allowing for replicative 

immortality by taking control over the machinery that regulates chromosomal telomere 

shortening, and inducing angiogenesis (new intra-tumor blood vessels) and metastasis (2). 

Also, cancers share some common attributes of metabolic aberrations, as will be discussed in 

further detail later (page 10). 

1.1.5 Clues from the biology of embryonic development 

Importantly, the phenotypic traits of cancer just described (2) are not restricted to tumors but 

also occur naturally during physiological processes (e.g. cell migration during wound 

healing) and during embryonic development (e.g. cell migration and invasion of neural crest 

cells). In fact, there is a large amount of evidence suggesting that similar signaling programs 

regulate cell fates during both normal and embryonic development and tumorigenesis. For 

instance, factors involved in mediating rapid cell growth during morphogenesis (including 

MYC), differentiation, as well as the process of epithelial to mesenchymal transition (EMT) 

needed for cells to detach from their original position and migrate in the developing embryo, 

are readily implicated in cancer (23, 24).  



 

4 

1.1.6 Tumors consist of many different cell types  

The tumor microenvironment is an important component of tumors and is crucial for cancer 

progression. In fact, tumors are not simply made up by malignant cancer cells. Instead, 

diverse cell types are recruited from the tumor surroundings such as fibroblasts, vascular and 

inflammatory cells that together constitute the cancer associated fibroblasts (CAFs), or 

stroma (see Figure 2) (25, 26). Together, these cells are potent modulators of the tumorigenic 

process. In addition, both the tumor cells and the tumor microenvironment are modulated by 

factors such as nutrients, inflammation and hormones and by lifestyle factors such as diet and 

the degree of genotoxic exposure (1). 

Although there is still some controversy regarding the origins of CAFs, these cells are in 

general believed to originate in the bone marrow and are known to promote cancerogenous 

events such as inducing EMT important for the metastatic process, inducing a stem cell 

phenotype, angiogenesis, therapy resistance and tumor-relapse (1, 26-29).  

In this way, cancer can be viewed as complex tissues involving cross-talk between different 

cell types (2, 26).  

 

Figure 2. The tumor microenvironment. Tumors are heterogeneous and are composed not 

only of neoplastic tumor cells, but also of extracellular matrix, endothelial cells, fibroblasts 

and immune cells. These different cell types can confer both pro- and anti-tumorigenic 

functions, and together form the tumor microenvironment, which can vary radically even 

within the same tumor. From Junttila MR & de Sauvage FJ (2013), with permission from the 

publisher (26).  
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1.1.7 Cancer stem cells 

The view of cancer is further complicated by the increasing evidence for the existence of 

cancer stem cells (CSC) in the majority of human tumors (30). Such tumor initiating cells are 

defined by their efficient ability to form new tumors when implanted into recipient immune-

deficient mice (2). Although the exact origin of CSC is not clear, these cells express stem cell 

markers similar to normal stem cells of the tissue of origin and are capable of self-renewal as 

well as of giving rise to more differentiated derivatives of multiple lineages. These cells are 

also less sensitive to therapy and irradiation and have been coupled to tumor cell dormancy 

and cancer relapse (1, 2, 31). Hence, the cancer stem cell model proposes that only a 

subpopulation of the cells in a tumor, i.e. the tumor stem cells, actually possess the ability to 

regenerate new tumors, since these are the actual drivers of cancers through their self-renewal 

capacities (30, 32).  

1.2 THE MYC ONCOPROTEINS MEDIATE MALIGNANCY IN CANCER 

The MYC (v-myc avian myelocytomatosis viral oncogene homolog) oncogenes encode 

pleiotropic basic helix-loop-helic leucine zipper (HLHLZip) transcription factors (c-MYC, 

MYCN and L-MYC), which are central in cancer by contributing to the genesis and 

aggressiveness of the majority of all human tumors (33, 34). The MYC proteins (here 

referring to c-MYC and MYCN) form heterodimers with a partner protein called MAX (see 

Figure 3), and the MYC/MAX complexes consequently bind to regulatory sequences (termed 

E-boxes) of DNA to trans-activate or repress gene expression in cooperation with multiple 

other factors (8, 35). 

 

Figure 3. The protein structure of the MYCN and MAX proteins. The MYC proteins 

contain several domains that are important for their normal functions as well as for their 

transformation abilities: the caboxy-terminal domain of MYC is responsible for the 

dimerization with the MAX protein (helix-loop-helix, HLH and leucine zipper, Zip), and for 

binding to regulatory sequences of DNA (basic region, b). The amino-terminal 

transcriptional transactivation domain (TAD) confers activation of gene transcription. MYC 

homology boxes (MB) are regions responsible for interacting with other proteins. MBIV 

contains the nuclear localization signal, responsible for subcellular localization to the 

nucleus. From Westermark, U, (2011), with permission from the publisher (36). 
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While the role of L-MYC is less well understood, MYCN and to an even higher extent c-

MYC, are implicated in mediating malignancy in up to 70 % of all human cancers (8). The 

target genes of c-MYC and MYCN are largely overlapping, and MYCN can even substitute 

for c-MYC expression in murine development (37). A major difference between the two 

proteins is their respective expression patterns, as c-MYC is normally ubiquitously expressed 

in all proliferating cells whereas the expression of MYCN is restricted to specific tissues 

during development (8, 38, 39). The MYC proteins are important for normal development 

(40-45) and cell physiology and the expression of MYC is normally tightly regulated, 

guaranteeing that its levels are kept low and is only induced upon cell cycle entry. Tumor 

suppressor-mediated negative feedback loops (such as p53), ensure that MYC expression is 

held in check, and their inactivation is often needed in order for MYC to reach its fully 

malignant potential (8).  

1.2.1 MYC expression is elevated through multiple mechanisms in cancer 

In cancer, the MYC genes are found deregulated by mutations, gene amplification and 

chromosomal translocations as well as by common polymorphisms in regulatory regions 

close to MYC (8, 35, 46). In common for these events is that it all leads to constitutively high 

expression of MYC, and consequently to aberrant regulation of its downstream genomic 

targets. This in turn causes uncontrolled proliferation which is uncoupled from growth-factor 

stimulation (47). Except from genetic alterations, MYC can also be up-regulated caused by 

enhanced translation or due to changes in its protein stability as well as in response to 

deregulated upstream signaling events which leads to elevated MYC transcription. In this 

regard, most key mitogenic signals in cells converge on MYC to carry out their growth 

promoting functions, including receptor tyrosine kinase signals like RAS/ERK/MAPK and 

PI3/AKT, as well as other important ligand-membrane receptor signals such as TGF-β and 

Notch. In addition, defects in the WNT/APC signaling pathway brings about MYC activation 

(8). Consequently MYC is believed to play important roles for the initiation and maintenance 

of cancer even in cases where no obvious genetic alterations in MYC exist. Importantly, this 

idea is supported in vivo by the finding that knock down of endogenous MYC expression, by 

expression of a dominant negative inhibitor of MYC, systemically in all cells in the adult 

mouse, is sufficient to cause tumor regression even if the tumors are induced by another 

oncogene (48, 49). 

Except from its role in gene regulation, MYC also directly controls the expression of a 

number of small non-coding RNAs called microRNAs, with important consequences for the 

transformation process (8, 50, 51), and MYC has also been linked to other cellular processes 

like DNA replication and mRNA cap-dependent translation (8, 52, 53).  

1.2.2 Which are the tumor promoting mediators downstream of MYC? 

A large interest and focus during the last decades has been to map the downstream 

transcriptional program of MYC in cancer in the search for a common core set of target 

genes. Hence, the common goal has been to understand how MYC confers malignancy in 
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tumors. Intriguingly however, this work has revealed that MYC is able to directly bind to the 

promoters of ~15 % of all known genes, and drives transcription mediated by all three RNA 

polymerases; in fact, MYC has been coupled to almost all aspects of tumorigenesis (8, 54). 

Furthermore, the overlap between the “MYC target gene signatures” identified in different 

cell systems, which could explain MYC´s biological output in cancer, is surprisingly low (47, 

55). Nevertheless, a main reason why MYC is implicated in so many cancers is believed to 

relate to its crucial role in regulating the cellular machinery for cell mass expansion and 

proliferation, which is a prerequisite capability in tumors (8, 56). Studies from lower 

organisms like flies to multiple mammalian systems and tumor models have identified MYC 

to regulate genes involved in organellar biogenesis, in particular ribosomal and mitochondrial 

genes. Chromatin immunopricipitation (ChiP) sequencing (ChiP-seq) and gene expression 

studies have identified core sets of MYC targets induced by serum stimulation that include 

genes involved in nucleotide metabolism, ribosomal biogenesis, RNA processing, and DNA 

replication (8, 57). Also, studies designed to identify tissue independent MYC targets have 

shown enrichment for ribosomal genes, again showing that MYC´s primary function may be 

to promote biomass accumulation (8, 56, 58). These findings hence confirm MYC to control 

cell growth and cell cycle regulation, and provide a strong link to its regulation of energy 

metabolism (8, 35, 54, 59-63). 

Another essential aspect is that the MYC proteins play crucial roles in the regulation of 

pluripotency and self-renewal of normal and cancer stem cells (8, 64, 65) and have been 

reported to drive an embryonic stem cell (ESC) program which is also induced in various 

cancers (66). MYC is furthermore important for the recruitment and maintenance of the 

tumor microenvironment (49, 67) and for inducing EMT and metastasis (68). Systemic 

inhibition (in all tissues) of endogenous MYC leads to collapse of the tumor environment 

including the neo-vasculature, leading to tumor regression, again demonstrating the 

importance of the tumor associated stroma for tumorigenesis (49, 67). It also suggests that 

this function of MYC is critical for its tumor promoting ability (69).  

1.2.3 How does MYC regulate gene transcription?  

Based on the collected knowledge gained from genome wide association studies of MYC 

transcription, it is generally believed that MYC functions as a general transcription factor 

since it binds to ~15 % of all promoters in proliferating cells and have widespread types of 

targets. It has been suggested that upon elevated levels of MYC, its presumably constitutive 

expression leads to occupancy of non-canonical E-boxes, normally bound by other 

transcription factors. Consequently this could bring about alterations in genes that are not 

regulated by MYC during physiological conditions (8). In this regard, studies have shown 

that different threshold levels of MYC determine the biological outcome (70, 71). Additional 

mechanism to how MYC may regulate transcription relate to its demonstrated ability to 

directly influence global chromatin structure (72), and to bind to actively transcribed genes 

and function to mediate RNA polymerase II pause release, which consequently speeds up the 

transcriptional elongation process (73). Recently, new important insights into the function of 
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MYC have been reported that may lead to considerable refinement of the “MYC target gene 

concept” (47, 55). It was shown both in tumor cells and in physiological conditions and stem 

cells that, instead of activating a new set of specific target genes, elevated c-MYC levels 

causes an increased, or amplified expression of already actively transcribed genes (47, 55). 

Hence, higher levels of c-MYC leads to its binding to the same set of genes as already bound, 

although at elevated levels compared to when c-MYC is expressed at low levels. This 

increase in c-MYC’s gene occupancy (involving both the core promoters and enhancers of 

the same genes), consequently leads to overall elevated levels of all the mRNA transcripts 

already actively transcribed in the cell (47). Consequently this newly proposed role of MYC 

as a universal amplifier of already “predetermined“ gene expression (74), could help 

explaining the little degree of overlap generally seen in MYC-induced gene expression 

between different cell types. It could also explain how MYC can control such a great number 

of diverse cellular processes (55). Nevertheless, more research is needed to fully elucidate 

how MYC affects e.g. the stoichiometry of amplified mRNAs and its role in transcriptional 

repression (75). 

1.2.4 Targeting MYC as cancer therapy 

The concept of oncogene addiction proposes that although cancers contain endless numbers 

of genetic lesions, some tumors are still dependent on one single, or a few, dominant 

transforming oncogenes for their survival. Consequently, the targeted inactivation of the same 

oncogene(s) is sufficient to halt or revert tumor progression (20, 76). This theory has been 

supported by a large number of pre-clinical studies as well as by therapeutic applications of 

some cancers (76, 77). 

MYC is a well-known example of this notion (78), although so far no therapies against MYC 

exist (79). Multiple in vitro studies as well as transgenic mouse models have confirmed that 

deregulated MYC expression is sufficient to induce different types of cancer (8, 33, 34). 

MYC is also important for cancer maintenance since in conditional MYC mouse models, 

withdrawal of ectopic MYC expression is sufficient to cause tumor regression mediated by 

apoptosis, senescence and/or differentiation, as shown in multiple different tumor models (8, 

34, 80, 81). As mentioned above, it was demonstrated that systemic inhibition (in all tissues) 

of endogenous MYC in adult mice causes regression of tumors induced by other oncogenes 

while sparing normal cells and tissues, suggesting that MYC-directed therapies could be 

fairly well tolerated (48, 49). These findings, together with the realization that MYC is as an 

upstream regulator of numerous oncogenic events, implicate MYC as an attractive target in 

many types of tumors (33, 82). Importantly, the fact that MYC expression is deregulated in 

the majority of cancers suggest that therapeutic targeting of MYC and/or its key oncogenic 

functions could have wide-ranging application to the treatment of cancer (82, 83).  

1.2.5 How to target MYC in cancer? 

To this end, several different strategies to inhibit MYC have been proposed, including 

targeting of its transcription or translation, its mRNA or protein stabilization, as well as its 
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dimerization to MAX or other chromatin-interacting factors important for its transcriptional 

function (33, 79). In this respect, large interest has been recently paid to the BET domain-

containing transcriptional regulator, bromodomain containing 4 (BRD4), since it was found 

to play critical roles for MYC induced transcription, as well as for the transcription of the 

MYC gene itself. BRD4 recognizes and binds acetylated histones of chromatin. Its chemical 

inhibition by small molecules including JQ1 has been successful in inhibiting tumorigenesis 

in some pre-clinical models, including hematopoietic cancers and neuroblastoma (83-87). 

The molecule JQ1 binds to the domain of BRD4 which is important for its interaction with 

acetylated lysines in histones (79). These studies hence show that MYC inhibition, through 

the targeting of chromatin regulators, may be possible in some cancers.  

Some reports have also suggested that some key MYC-induced pathways, or the fact that 

MYC overexpressing cells are dependent on nutrients like glucose or glutamine, can be 

explored for therapy (8, 88, 89). The important role of MYC in maintaining the tumor stroma 

(49, 67) is interesting, as targeting of the tumor microenvironment has been suggested as 

therapy (27, 90). There are furthermore reports pointing towards the possibility that inhibiting 

specific MYC-regulated microRNAs may be sufficient to prevent tumor progression (8, 50, 

91). Moreover, targeting of specific pathways showing synthetic lethality with high MYC 

expression may be fruitful. The concept of synthetic lethality was originally defined in 

classical genetics as a state in which the mutation of either of two pro-survival genes, alone, 

promotes survival, whereas the simultaneous mutation of both genes leads to cell death. In 

cancer, this model has been adopted and is used as a conceptual basis for identification and 

development of cancer specific cytotoxic agents. Consequently, targeting a gene which is 

synthetic lethal with a cancer associated mutation or other cancer related aberrations, leads to 

cancer-specific cell death while sparing normal cells (92, 93). For instance, in relation to 

MYC, targeting of mitotic processes (Aurora kinases and CDK1) or a specific sumoylation 

mediating enzyme SAE1/2 has been shown to induce synthetic lethal therapeutic responses in 

mouse models (8, 79, 94-96).  

The strategy of directly targeting MYC pharmacologically is extremely challenging for 

several reasons. Since MYC is a transcription factor it lacks the typical targetable clefts 

usually found in enzymes (82). Monomeric MYC in solution is a flexible, intrinsically 

disordered (ID) protein, which possesses only transient tertiary structure. Such proteins are 

commonly found among transcription factors, and it allows them to form weak but specific 

interactions with other proteins (such as MAX) via coupled folding and binding, required for 

their functions (97). In order for a small molecule to inhibit this binding the interaction must 

overcome the enthalpic and entropic changes associated with the favorable interaction of a 

partner protein. However, the “lock in” of a tertiary structure by selective molecules has been 

proposed to be possible, based on the finding that although the interacting domains of ID 

proteins are flat and featureless and hence hard to target, only a minor part of the dimer 

interface seems to be responsible for the protein-protein interaction. Consequently, targeting 

of these “hot spots” may be sufficient to prevent the proteins to interact properly (79, 82, 98-

100). There are several examples of small compounds which have been shown to be 
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relatively potent inhibitors of protein-protein interactions (79). As an example, small 

molecules like the nutlins and RITA have been shown to interfere with the interaction 

between p53 and its suppressor MDM2, which leads to activation of wild type p53 (101, 

102). 

A number of small molecules identified in cellular screens have been documented to interfere 

with the c-MYC/MAX interaction and to induce selective growth inhibition in MYC 

overexpressing cells (103-105). Some of these molecules have furthermore been confirmed to 

bind directly to the basic helix-loop-helix leucine zipper (bHLHLZip) domain of c-MYC, 

which is responsible for its interaction with MAX (98, 100, 106, 107) (see Figure 8). 

Consequently these reports suggest that “direct” inhibition of MYC, through binding and 

consequent interference with the MYC/MAX dimerization, can be achieved, at least in vitro, 

using small molecules. Concerns however relate to the lack of drug-like structural properties, 

rapid turnover, and relatively low potency of currently known molecules (108). Importantly, 

we have showed for the first time that treatment with one of these small molecules, 10058-F4, 

is sufficient to induce prolonged survival in vivo using a transgenic tumor model of 

neuroblastoma (Paper II) (109). We have also characterized the direct binding to MYCN for 

several of the small molecules initially identified to bind to c-MYC, including 10058-F4 

(Paper IV, Plos One, 2014, in press). Our results revealed that all molecules previously 

identified to bind to c-MYC, also bind to MYCN with equal affinities, and that the binding as 

such may be important for inducing a reduced MYCN/MAX dimerization and cell growth 

inhibition.  

1.3 CANCER METABOLISM 

Instead of being viewed as an indirect, secondary effect of proliferative signals, today the 

importance of an altered metabolism in tumors is evidently clear and is considered to be an 

emerging core hallmark of cancer, as those described by Hanahan and Weinberg (110-113). 

In fact, metabolic reprogramming including increased nutrition uptake and utilization occurs 

in direct response to oncogenic signaling, and is required to support anabolic growth of 

tumors (110, 113, 114). Hence the reprogramming of cellular metabolism may be a primary 

causal function selected for during tumorigenesis in response to activated oncogenes and 

inactivated tumor suppressors (110, 115). 

1.3.1 Glycolysis versus mitochondrial metabolism 

Traditionally, cancer cell metabolism has been defined based on Otto Warburg’s 

groundbreaking work starting over 80 years ago when he demonstrated that normal non-

proliferating cells mainly use mitochondrial oxidative phosphorylation (oxphos) to produce 

energy, whereas cancer cells, despite the presence of oxygen, show an increased glucose 

uptake and enhanced glycolytic capacity resulting in lactate production at the expense of 

mitochondrial respiration (112, 114, 116-118). However, although an elevated glycolysis is 

indeed observed in most rapidly growing cell lines and tumors (119), a more dynamic view of 

cancer bioenergetics has emerged during recent years. Specifically, it has become clear that 
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metabolic reprogramming in tumors is not simply a passive response to damaged 

mitochondria (110, 119). Instead, mitochondria are fundamental for anabolic reactions 

needed in order for the tumor to grow. Hence most tumor mitochondria are not defective in 

their ability to carry out their oxphos function, but instead the oxphos machinery is rewired 

away from ATP production to instead generate building blocks for anabolic reactions such as 

lipolysis and protein synthesis needed in the rapidly proliferating tumor cells (110, 119). 

Similarly, an increased glycolytic flux not only provides for a rapid source of ATP, but is also 

important for NADPH production for lipid synthesis and purimidine/ purine (nucleotide) 

metabolism via the pentose phosphate and folate pathways, respectively, as well as for amino 

acid metabolism (113, 115, 120).  

1.3.2 “Metabolic plasticity”: an escape mechanism in aggressive tumors? 

It is important to note that large variability exist among cancer types as well as within specific 

tumor types, and the various bioenergetic types of tumors ranges from exclusively glycolytic 

to mainly oxphos-dependent (119). For instance, glioma cells display either a glycolytic- or 

oxphos dependent phenotype (121), and such metabolic heterogeneity has also been 

documented in diffuse large B cell lymphoma (122). It was also shown that breast cancer 

cells, compared to their normal counterparts originating from non-breast cancer tissue, show 

an elevated metabolic adaptation in response to hypoxia (condition in which the tumor cells 

are deprived of adequate oxygen supply) and glucose deprivation, mediated by an increased 

mitochondrial oxphos capacity (123). These findings suggest that switching between different 

energetic states can occur in cancer cells during tumor progression (119). The harsh 

conditions in the tumor environment, which is known to include both hypoxia and nutrient 

deprivation, may hence trigger metabolic adaptations of mitochondria in the tumor cells 

(123). In this regard, it has been shown that simply changing substrate availability can restore 

the defective mitochondrial function in tumor cells (124). Such adaptations may hence be an 

important survival mechanism for cancer cells in response to changes in the 

microenvironment and in their biosynthetic needs, and could promote tumor progression 

(119). The tumor microenvironment is an also important modulator of tumor cell metabolism 

through the “fueling” of anabolic growth of the cancer cells, mediated by the secretion of 

nutrients (such as fatty acids and lactate) from the CAFs and adipocytes of the tumor stroma 

or metastatic niches (125-127).  

The concept of “metabolic plasticity” is important from a therapeutic point of view, since 

conventional cytotoxic drugs target rapidly dividing cancer cells which are likely to have high 

glycolytic rates, but presumably misses quiescent cells, which could be dependent on oxphos. 

Indeed, a recent study has highlighted the importance of an oxphos capacity in treatment-

resistant cancer cells (128). The authors found that cancer cells which enter a state of 

dormancy in tumors due to tumor hypoxia and limited nutrition availability, and hence are not 

killed off by cytotoxic treatment, are sensitive to inhibition of mitochondrial oxphos. This 

finding suggests that the ability of some cancer cells to switch between different 

bioenergetics states could explain the re-growth of tumors after conventional treatment (128).  
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There are also interesting links between mitochondrial bioenergetic properties and cancer 

stem cell functions. In mouse embryonic stem cells, the level of mitochondrial oxphos 

capacity was shown to modulate both the differentiation and tumor formation capacity (129), 

and an induced dependency on oxphos has been documented during the transformation of 

human mesenchymal stem cells (130).  

1.3.3 MYC is a key regulator of metabolism in cancer 

As described earlier, MYC is a key mediator of metabolism by regulating the core machinery 

for biosynthetic reactions and cell growth (131) (see Figure 4). In fact, this function of MYC 

is important as MYC-driven cancer cells are addictive to various nutrients, and it has been 

suggested that such addicted state can be exploited for therapy (115).  

MYC is a known inducer of aerobic glycolysis; many glycolytic enzymes have been 

described as both direct and indirect targets of MYC, including lactase dehydrogenase A 

(LDHA) and glucose transporters as well as hexokinase 2 (HK2), among others (46, 132, 

133). There is a well-documented interplay between MYC and the hypoxia inducible factor 1 

(HIF1) transcription factor in the regulation of glycolysis, suggesting that HIF1 regulates 

glycolysis under hypoxic conditions in collaboration with MYC, whereas MYC regulates the 

same genes under non-hypoxic conditions (46, 134).  

In addition, MYC overexpressing cells have been shown to be dependent on glutamine for 

survival, referred to as glutamine addiction. This state is believed to evolve in some 

glycolytic tumors in response to the compensatory need for glutamine anapleurosis 

(replenishment) of the tricarboxylic acid cycle (TCA)/citric acid cycle intermediates, to 

maintain the activity of mitochondrial biosynthetic processes (131, 135, 136). Glutamine may 

also be important for maintenance of phospohlipid synthesis while the contribution from 

glucose decreases (136), as well as for providing a source of NADPH and nucleotide 

biosynthesis (137). MYC overexpression directly promotes glutaminolysis by upregulating 

transporters that enhance glutamine uptake, and by inducing the expression of the glutamine-

to-glutamate catalyzing enzyme glutaminase (GLS) (131, 136). Furthermore, MYC has been 

shown to indirectly mediate glutaminolysis through suppression of the microRNA miR-

23a/b, which negatively regulates GLS (138). Importantly, many different types of tumor 

cells in culture are highly addicted to glutamine (89, 139, 140), suggesting that this could 

relate to high MYC expressing tumors as well. 

Interestingly, in addition to promoting glycolysis and glutaminolysis, a large number of 

studies demonstrate that one of MYC’s main functions is to regulate mitochondrial 

biogenesis and function through direct gene activation of a large number of nuclearly 

encoded mitochondrial proteins, as well as through activation of other factors which promote 

mitochondrial biogenesis (141-143). In fact, MYC has been demonstrated to be crucial for 

the regulation of mitochondrial mass, structure and dynamics (141, 144). For instance, myc-/- 

rat fibroblasts have fewer and smaller mitochondria with less visible cristae, as well as 

reduced membrane polarization compared to wild type myc+/+ expressing cells, whereas the 
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mitochondrial mass, length and cristae pattern was slowly restored (over weeks) following 

activation of ectopic myc (144). Chronic depletion of myc in rat fibroblasts furthermore leads 

to a reduced oxphos capacity (144, 145), whereas induction of MYC in pre-B cells leads to 

enhanced oxygen consumption rates (141, 143). Interestingly, it was shown that a high MYC-

induced proliferation rate is clearly linked to an increased mitochondrial function. In myc 

negative cells, which show dramatically reduced proliferation rates, proliferation was 

demonstrated to depend primarily on glycolysis, while myc positive cells used both 

glycolysis and oxidative phosphorylation for maximal proliferation (145). 

As already mentioned, in addition to glycolysis and mitochondrial metabolism, MYC directly 

regulates ribosomal biogenesis and RNA processing and consequently causes enhanced 

protein synthesis (131). Moreover, MYC is an important regulator of nucleotide biogenesis, 

and this function of MYC is critical for the orchestration of DNA replication (46, 131, 146).  

 

Figure 4. MYC and metabolic alterations go hand in hand in cancer. MYC is linked to all 

key aspects of metabolic reprogramming in cancer, comprising the induction of aerobic 

glycolysis, enhanced glutaminolysis and lipogenesis, as well as up-regulation of 

mitochondrial metabolism. In addition, one of MYC’s major functions in cancer involves the 

positive regulation of ribosomal biogenesis and function and consequently protein 

production. Together, these MYC-induced metabolic alterations lead to rapid cell mass 

expansion and hence to tumor growth.  

1.3.4 MYC regulates lipid metabolism 

Relatively few studies have addressed the link between MYC signaling and the regulation of 

lipid metabolism in cancer. However, Morrish et al demonstrated that high-myc expressing 
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rat fibroblasts show a 2-fold increased glucose-derived de novo synthesis of palmitate, 

compared to fibroblasts with chronically depleted myc (147). Some reports have also 

addressed the cancer cell usage of fatty acid oxidation (FAO), also referred to as  β-oxidation, 

in relation to MYC. Fatty acid β-oxidation was found to either increase after induction of 

MYC in FL5.12 pro-B cells (148), whereas it was found decreased in high MYC-expressing 

p493-6 B cells compared to when MYC was turned off, as measured by the conversion of 
14

C-labeled oleic acid to 
14

C-labeled CO2 (149). Similarly, MYC induction in myocardiocytes 

was shown to decrease the rate of FAO, while glycolysis and mitochondrial biogenesis was 

induced (150). We have found that NB cells with high MYCN expression show a 

dramatically enhanced capacity to oxidize exogenously added fatty acids (palmitate), 

compared to when MYCN was downregulated (Paper III). Furthermore, we have 

demonstrated that lipid droplets accumulate upon MYCN inhibition in NB cells, and 

experiments using inhibitors against FAO and lipolysis suggested that impairment of FAO is 

involved in this process (Paper II) (109). The different outcomes on the utilization of fatty 

acids in response to MYC signaling obtained in different cell systems is not surprising as the 

response to MYC signaling on metabolism is likely to be both cell and context dependent (8, 

151).  

1.4 NEUROBLASTOMA 

Neuroblastoma (NB) is a rare pediatric cancer usually affecting very young children, under 

five years of age. Tumors are found in sympathetic nervous tissue along the spinal cord; most 

often in the adrenal glands (see Figure 5). NB originates from a population of cells in the 

developing embryo called the neural crest. Neural crest cells give rise to a number of different 

cell lineages during development, whereof those forming the sympathetic nervous system are 

the precursors of NB (152-155) (see Figure 6). Although NB is a rare disease, it is the most 

common extracranial (non-brain) solid tumor type in children and the most commonly 

diagnosed cancer in infants (children under 1 year of age). NB is also one of the most deadly 

cancers in children (20). In Sweden, there are approximately 15-20 new cases diagnosed per 

year (156), whereas, for instance in the US, 710 children are estimated to be diagnosed with 

NB in 2014, representing 7 % or all childhood cancers (157). NB is an extremely 

heterogeneous disease, ranging from differentiated tumors which are highly curable and 

which can even sometimes spontaneously regress, to rapidly growing metastatic tumors, 

which are refractory to treatment (153, 158).   

At the time of diagnosis over 60 % of NB patients over the age of 1 have metastases and 

show unfavorable outcomes (154, 159). Activation of the MYCN oncogene through 

amplification (MNA) is the most common genetic lesion (15~25 % of all NB) and is a 

hallmark of advanced disease and poor prognosis (152, 153, 158). Despite intensive 

treatment, which includes a combination of high dose chemotherapy, surgery, myoablative 

chemotherapy and hematopoietic stem cell transplantation (36), MNA is associated with a 

survival rate of only 15-35 % (36). Importantly, high activity of the MYC signaling pathway 

is predictive of high risk and stage of disease independently from MYCN amplification 
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(MNA) (160), and overexpression of the human MYCN protein in sympathoadrenal cells 

driven by the rat tyrosine hydroxylase (th) promoter leads to NB development in mice (161) 

as well as in zebrafish when co-expressed with activated anaplastic lymphoma receptor 

tyrosine kinase (ALK) (162).  

 

Figure 5. Distribution of neuroblastomas. Neuroblastoma develops in sympathetic neuronal 

tissue. Tumors most frequently occur in the adrenal gland or along the sympathetic ganglia 

in the abdomen, but can also arise in sympathetic nervous tissue in the neck, chest and pelvis 

regions. Illustration from: American Society of Clinical Oncology (163), with permission 

from the publisher. 

1.4.1 Genetic alterations in neuroblastoma 

In contrast to some cancers in adults, NB tumors show few recurrent somatic mutations (164) 

although a few important examples exist, including activating mutations in the chromatin 

remodeling ATP dependent helicase: α-thalassaemia/mental retardation syndrome X-linked 

(ATRX), and in other chromatin remodeling genes, as well as genes in the RAC-RHO 

pathway, among others (154).  Most NB tumors develop sporadically, but there are also rare 

cases of familial NB (˂ 2 % of all NB cases) in which important predisposing single 

nucleotide polymorphisms (SNPs) adjacent to specific genes have been identified, including 

activating mutations in the receptor tyrosine kinase ALK, and deactivating mutations in the 

transcription factor paired-like homeo-box 2b (PHOX2B), which normally plays important 

roles for the development of the neural crest-derived sympathoadrenal neuronal lineage (152, 

154, 165). The receptor tyrosine kinase ALK is important since it is one of the most common 

oncogenic driver-lesions found in both familial and sporadic NB, where ALK can be both 
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mutated and amplified. It is normally expressed in neural crest cells of the sympathoadrenal 

lineage during development, where it is believed to regulate the fine-tuning of differentiation 

and proliferative signals (154).  

Several research reports have also uncovered important epigenetic alterations and differential 

expression of microRNAs, which play significant roles for the disease (51, 154, 166-168). 

These microRNAs can be used as biomarkers and may have potential as therapeutic targets 

(169). In contrast to the low mutation frequency found in NB (164) chromosomal aberrations 

are instead common, where segmental gains and losses (including gain of chromosome 17q, 

and 1p, and loss of 11q) are found in high risk tumors whereas whole chromosomal gains are 

generally present in low risk tumors (153, 154). Prognostic factors predicting a favorable 

outcome include young age < 18 months, a differentiated histology and high expression of 

the neurotrophic tyrosine kinase receptor TrkA (encoded by the NTRK1 gene) (152-154, 

158). 

 

Figure 6. Neuroblastoma is a cancer derived from cells of the neural crest during 

development. The neural crest is a transient population of multipotent stem cells in the 

developing embryo of vertebrates, which become invasive (through EMT) and delaminate 

from the roof plate of the neural tube and migrate to the periphery of the embryo. Along the 

migration route, the neural crest cells encounter specific signaling cues, leading to the 

activation of transcriptional programs that in turn mediate differentiation. The neural crest 

cells give rise to various cell types, including: peripheral and enteric (of the gut) neurons and 

glia, melanocytes, smooth muscle cells, and cells of the adrenal medulla and craniofacial 

skeleton. NB is widely accepted to be derived from the neural crest cells of the 

sympatoadrenal lineage, however, the mechanisms and timing of the initiating 

cancerogenous events remain unknown. 
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1.4.2 Differentiation capacities of neuroblastoma cells and tumors 

Studies of NB cells in culture have revealed their fascinating physiology involving the 

capability of differentiation along the sympathoadrenal lineage (154). It was discovered early 

on that vitamin A derivatives (retinoids) induces differentiation in vitro, and these findings 

were translated to the clinic where 13-cic-retinoic acid is still included as a standard treatment 

for the targeting of minimal residual disease in high risk patients (36, 154, 170). Interestingly, 

MYCN down regulation precedes differentiation induced by retinoic acid, and direct genetic 

down regulation of MYCN also leads to neuronal differentiation in vitro (36). The degree of 

tumor differentiation is used in the Shimada histology grading system where a differentiated 

histology including high presence of Schwannian stromal content (a type of glial cells) is 

predictive of low risk disease (154), and the expression of differentiation markers can 

furthermore predict stage and outcome in patients (160). The Schwann cells, developmentally 

derived from the neural crest, are reported to influence the clinical behavior of NB and to 

confer a favorable prognostic impact that correlates with low MYCN/high TrkA expression. 

Despite conflicting reports regarding the origin of Schwann cells in NB tumors, identical 

genetic composition in neuroblasts and Schwann cells from the same tumors indicate the 

presence of a common self-renewing pluripotent tumor cell in NB. Schwann cell abundance 

in NB tumors may hence reflect the consequence of a more differentiated tumor state (171). 

This conclusion is supported by the identification of cells characteristic of neural crest stem 

cells both in vitro and in NB tumors. Some NB cell lines can be induced to differentiate along 

specific neural crest lineages including neuronal and Schwann cell-like cell types (172, 173). 

NB cells can also be enriched as non-adherent tumor neurospheres in culture with stem cell 

like properties (174). In this regard, MYCN may be important since it has been shown that 

MYCN induces the expression of pluripotency genes in NB cells (64).  

1.4.3 Little is known about the role of tumor energy metabolism in 
neuroblastoma 

Except from our previous report (109) (Paper II), only a few studies have investigated the 

role of tumor metabolism in NB cells. In the non-MYCN amplified (NMNA) human NB cell 

line SH-SY-5Y, both the oxphos capacity and glycolysis was found to increase in response to 

ATRA treatment (175). However, this study did not take into account the role of MYCN in 

the modulation of mitochondrial metabolism. Presumably, the outcome on metabolism by 

ATRA may differ in NB cell lines with MNA, since down regulation of MYCN is well-

known to precede differentiation by ATRA (36). Interestingly, a marked increase in total lipid 

levels (including cholesterol, phospholipids, free fatty acids and cholesterol esters) was 

documented in NB cells in response to differentiation (176). Similarly we have seen that 

ATRA treatment of MNA NB cells, except from causing dramatically reduced MYCN levels 

and leading to differentiation, also results in lipid accumulation (unpublished observations). 

The most convincing report on the role of glycolysis in NB showed that, in tissues from 47 

patients, elevated mRNA and protein expression of the glucose transporter GLUT1 correlated 

with a poor clinical outcome (177). Treatment with the glycolysis inhibitor 3-bromopyruvate 

(3BrPA) furthermore suppressed proliferation of NB cells with high GLUT1 gene expression 
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compared to those with low expression (177). However, the connection to MNA was not 

investigated. 

 



 

 19 

2 AIMS 

The overall aims of this thesis were to investigate different strategies of targeting MYC in 

cancer cells and to gain insights into how MYCN reprograms tumor cell metabolism in 

childhood neuroblastoma. This thesis comprises four papers with the specific aims to: 

 

Paper I. Identify cytotoxic drugs showing selectivity towards MYC overexpressing tumor 

cells. 

 

Paper II. Analyze the effects of a conventional c-MYC binding small molecule, 10058-F4 

towards MYCN overexpressing NB, as well as in vivo in the TH-MYCN transgenic mouse 

model and in a cell xenograft model of NB.  

 

Paper III. Investigate how MYCN impacts on tumor cell metabolism in aggressive NB by 

using the combined information obtained from quantitative proteomics, gene expression 

analysis of patient data, and functional analysis using NB cells with conditional MYCN 

expression. 

 

Paper IV. Characterize the binding of 10058-F4 and other structurally related and unrelated 

small molecules to MYCN using surface plasmon resonance (SPR), and assess their 

biological effects in NB cells. 
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3 RESULTS AND DISCUSSION 

3.1 PAPER I. IDENTIFICATION OF CYTOTOXIC DRUGS THAT SELECTIVELY 
TARGET TUMOR CELLS WITH MYC OVEREXPRESSION 

Elevated levels of c-MYC can be found in a wide range of human malignancies and is readily 

correlated with tumor aggressiveness and an adverse outcome in patients (33). In Burkitt’s 

lymphoma (BL), a cancer of immune cells called B-cells, c-MYC is constitutively expressed 

due to the translocation of c-MYC to one of the immunoglobulin (Ig) loci, and these tumors 

grow rapidly and are fatal if left untreated (178-180). BL exists in three variants: the endemic 

(malaria associated) type present in sub-Saharan Africa (sometimes referred to as the 

lymphoma belt), which often affects young children and adolescents, the less common 

sporadic type present in the rest of the world, and the AIDS-related BL. In all three types of 

BL, the c-MYC translocation is the chief driver event in the disease (179). Except from BL, c-

MYC translocation is also frequent in other hematological malignancies including 

lymphoblastic and myeloid leukemia (33, 181). As already discussed (on page 14), 

amplification of the MYCN gene is highly correlated to aggressive disease and poor clinical 

outcome in NB, and the survival rate of these patients is approximately 30 %  despite 

intensive treatment (165, 182, 183). Amplification of MYCN is also observed in other 

cancers, including glioma, medulloblastoma, rhabdomyosarcoma and small cell lung cancer 

(33). In spite of important efficacy of chemotherapeutics in the treatment of many cancers, 

concerns relate to the lack of selectivity for the tumor cells, resulting in severe side effects 

and to the development of chemotherapy resistance in some patients (6, 184). For these 

reasons, identification of anti-cancer drugs and compounds showing selectivity against 

deregulated MYC expression could be important for treatment optimization of a broad range 

of cancers by providing for more effective treatments with fewer side effects (33, 185, 186).  

In this paper, our aim was to investigate the selectivity of known chemotherapeutic drugs and 

compounds towards MYC-overexpression in cancer cells. Hence, we screened a library of 80 

conventional compounds to assess their ability to induce synthetic lethal interactions with 

MYC in BL and NB cells. Cell lines inducible for c-MYC (BL) and MYCN (NB) were used 

to assess the effect of the drugs on proliferation and apoptosis.  

Our results revealed that only 25 % of the compounds showed specificity towards MYC 

overexpression in terms of mediating reduced cell growth (using 30 % difference as cut-off), 

where the majority did not discriminate between c-MYC and MYCN-overexpression. We 

found that MYC overexpression sensitizes cells to inhibition of specific cellular mechanisms 

or pathways, since, out of the positive hits, specific classes of drugs targeting certain cellular 

components could be delineated. Largely, these were compounds acting on microtubules 

(vinblastine (VBL), paclitaxel (TAX) and podophyllotoxin (POD)), topoisomerases (10-

hydroxycamptothecin (OH-CPT), camptothesin (CPT), doxorubicin (DXR), etoposide (ETO) 

and daunorubicin)), and on the biosynthetic machinery of DNA, RNA and protein synthesis 

and turnover (anisomycin, gliotoxin, mitomycin C, MG132, methotrexate, cycloheximide, 

actinomycin D, heatshock protein 90 (HSP-90) inhibitors, and aphidicholin). In addition, the 
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histone deacetylase inhibitor trichostatin A (TSA), and the kinase inhibitor staurosporin were 

identified. 

Importantly, we classified these compounds and drugs based on their major known function, 

however, many of these agents can also be divided into several subcategories. As an example, 

anisomycin is an antibiotic which inhibits protein- and partly DNA synthesis, but is also an 

activator of stress-activated kinases and MAP kinases (187). 

Interestingly, although only a subset of the chemical agents used showed selectivity towards 

MYC-overexpressing tumor cells, these actually belong to the same classes of drugs as 

currently used for the treatment of both NB and BL, including DNA alkylating agents, 

microtubule-targeting agents and topoisomerase inhibitors, antibiotics and the dihydrofolate 

reductase DHFR inhibitor methotrexate (in the case of BL) (33, 184, 188). In common for 

these chemotherapeutic regiments is that these are directed against mechanism important in 

highly proliferating cells. Nevertheless, these same pathways are also known to be integrally 

linked with elevated MYC signaling in cancer (8). An interesting example is the folate 

antagonist methotrexate which is one of the earliest clinically used chemotherapeutics (189), 

as it has been shown that one of the few genes which can partially rescue the c-myc knockout 

phenotype in rat embryonic fibroblasts, is a mitochondrial enzyme of folate synthesis, (120), 

and c-MYC directly induces folate metabolism (145). Folate is important for purine and 

consequently DNA synthesis (189, 190), and folate deficiency is linked with impaired DNA 

methylation and has been shown to result in gene expression changes of fatty acid 

metabolism in mice (191). Consequently, some of the currently used treatments for NB and 

BL as well for other types of cancers are already directed against MYC overexpression, 

although non-intentionally, since these drugs are used due to their effectiveness in treating 

patients, without taking into account their specific actions towards MYC. Hence, this notion 

highlights the use of chemical screens as a potent strategy to identify new compounds active 

in a MYC overexpressing setting. This is important since, although the identified MYC-

related pathways in our screen are already susceptible for treatment, this study also shows the 

need for new, more selective inhibitors, as currently used drugs are associated with 

cytotoxicity and drug resistance (6, 192, 193).   

Theoretically, the observed MYC selectivity of identified hits on growth inhibition and 

apoptosis could be due to effects on MYC itself or its functions, referring to the concept on 

oncogene addiction discussed earlier (see page 8) (20, 76-78). The MYC selectivity could 

also be related to synthetic lethal interactions upon inhibition of certain pathways in a MYC 

overexpressing setting, as also mentioned before (see page 9). To understand the mechanisms 

behind the MYC selectivity of our identified hits, the specific action towards MYC for some 

of these drugs was consequently analyzed in more detail. We found that treatment with the 

topoisomerase inhibitors CPT, OH-CPT and DXR, and the histone deacetylase inhibitor TSA 

led to reduced c-MYC levels, while no effect was observed by the topoisomerase II inhibitor 

ETO. Importantly, the rapid c-MYC downregulation was demonstrated to precede CPT- and 

OH-CPT-induced apoptosis, showing that the reduced c-MYC levels did not happen as an 
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indirect response to cell death. Although all three microtubule-targeting agents induced 

apoptosis to a significantly higher extent in MYC overexpressing cells, none of these drugs 

affected the c-MYC levels. These chemotherapeutic drugs act by disrupting the dynamics of 

microtubules during mitotic spindle formation, which causes mitotic arrest followed by 

apoptosis (194, 195). Interestingly, synthetic lethal interactions between MYC and 

components of mitotic processes, including Aurora kinases and CDK1, have been shown 

before (95, 96). There are also interesting links between tubulin dynamics and mitochondrial 

voltage dependent anion channels (VDAC) in the regulation of respiration (196, 197). To 

analyze effects on c-MYC/MAX DNA binding we performed electrophoretic mobility shift 

assays (EMSAs) on cell extracts treated with the following eight drugs: CPT, OH-CPT, 

DXR, ETO, TAX, POD, VBL or TSA. None of these agents were effective in disrupting the 

c-MYC/MAX DNA binding, except from DXR, which caused a reduction in the amount of c-

MYC/MAX as well as MNT/MAX bound to the E-box containing oligonucleotide probe, 

while the DNA binding by upstream-stimulatory factor 1 (USF) remained unaffected. Hence, 

DXR may act by disturbing the transcriptional activity of MYC.  

Taken together, these data provide clues concerning which pathways are sensitive for 

inhibition in MYC overexpressing tumor cells. These insights can be used when designing 

and developing novel drugs directed against MYC for cancer therapy.  
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3.2 PAPER II. MYC INHIBITION INDUCES METABOLIC CHANGES LEADING 
TO ACCUMULATION OF LIPID DROPLETS IN TUMOR CELLS 

The MYC oncoproteins are among the most attractive targets in cancer due to their critical 

roles in mediating aggressiveness in the majority of human tumors (79).  The fact that many 

different tumor cell types are in particular need of elevated MYC expression for their survival 

and tumor progression (8, 34, 80, 81), and since inhibition of MYC in normal cells is fairly 

well tolerated in mice (48, 49), it highly supports MYC as an important target for a wide 

range of cancers. In NB, elevated MYCN signaling is not only important for mediating 

aggressiveness in the MNA tumors but can also be implemented to predict high risk and stage 

of the disease in patients with NMNA tumors, who were initially classified as intermediate 

risk (160). In MNA NB cells, down regulation of MYCN leads to apoptosis as well as to 

neuronal differentiation (36, 170).  

A number of c-MYC selective small molecules have been identified in cellular screens, and 

some of these have been demonstrated to bind to c-MYC, to disrupt its protein-protein 

interaction with MAX, and induce c-MYC selective growth inhibition (98, 103, 104, 106, 

198, 199). However, all of these studies have been focused on the c-MYC protein, and the 

only two previously published investigations of possible in vivo effects showed lack of anti-

tumor responses and rapid metabolic degradation of the molecules (108, 200). These reports 

hence support the general conception that protein-protein interactions are nearly 

“undruggable”, at least in vivo, as discussed before (see page 9).  

The small molecule 10058-F4 shows efficacy in NB both in vitro and in vivo 

In this paper, we made the important discovery that a previously identified small c-MYC-

binding molecule, 10058-F4, shows efficacy against MYCN in NB cells in addition to its 

previously documented effects against c-MYC in other tumor cell lines. This molecule was 

originally identified as a disruptor of c-MYC/MAX dimerization, leading to c-MYC-selective 

cell growth inhibition and apoptosis in vitro (104, 198, 199),  but its potency against MYCN 

had previously not been investigated, nor had it been shown that in vivo effects can be 

obtained by a small MYC-binding molecule. Here, we revealed for the first time that 10058-

F4 treatment was sufficient to elicit anti-tumorigenic effects in mouse models of NB, where 

the survival of MYCN-transgenic mice treated with 10058-F4 was significantly prolonged. 

This well-established MYCN-driven NB model highly resembles high risk NB in humans 

(161). We also applied 10058-F4 treatment in a cell xenograft model of NB using an 

aggressive, MNA and p53-mutated cell line, SK-N-BE(2), derived from a tumor after relapse 

(201). Here, the effects were less striking, although we did see a significant tumor growth 

delay, and we also detected more cleaved caspase-3 staining in treated tumor sections, 

indicating apoptosis-induction by 10058-F4.  

Hitherto, no attempts of using high throughput proteomic analysis in tumor cells in response 

to treatment with small MYC-binding molecules have been documented. Here, using 

proteomics and gene ontology (GO) predictions, we found that the biological outcome after 

treatment with 10058-F4 for 20 hours was highly similar as compared to genetic down 
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regulation using shRNA against MYCN in NB cells. Ingenuity analysis predictions 

furthermore showed that c-MYC and MYCN were the two most significantly affected 

transcription factors in response to both treatments. The overall patterns of affected proteins 

in response to both treatments involved striking changes in ribosomal proteins and other 

factors related to protein synthetic processes. In terms of MYC inhibition, this biological 

outcome is expected given the important role of c-MYC in ribosomal biogenesis and function 

(56, 58, 61). Similarly, a large fraction of the affected proteins were involved in 

mitochondrial respiratory- and oxphos-related pathways. Although, c-MYC is a well-known 

regulator of mitochondrial metabolism (131, 141, 143), the possible implication of an 

MYCN- mediated elevated mitochondrial metabolism for tumor aggressiveness in NB had 

previously not been shown.  

Surprisingly, despite the described similarities between the two treatments, in terms of 

affected biological pathways and processes, there was little overlap when looking at the exact 

protein identities (not shown). One explanation for this discrepancy could be due to the 

respective mechanisms of MYC-inhibition, since shMYCN treatment for 20 hours leads to 

MYCN protein down regulation, while 10048-F4-treatment at this short time-point was 

shown to decrease the MYCN/MAX interaction in cells but not to cause MYCN down 

regulation until after ~48 hours. It is also important to note that the binding-selectivity of 

10058-F4 towards MYC has never been thoroughly investigated. Although it was shown in 

the original report  that 10058-F4 caused a more robust inhibition of the c-MYC/MAX 

association compared to other protein-protein interactions of the bHLH-ZIP, HLH or ZIP 

family of proteins analyzed, still, it did cause some degree of inhibition of the interaction 

between other proteins (104). It is hence very probable that this molecule binds to additional 

proteins, which hence could influence on the biological outcome in cells.  

Based on our results in NB cells, we proposed that 10058-F4 may bind to MYCN (similarly 

as shown for c-MYC) leading to decreased MYCN/MAX interaction, which in turn causes 

MYCN protein destabilization, ultimately resulting in its degradation, as supported by 

proteasome inhibition experiments. Importantly, we also detected an overall, although slight, 

decrease in MYCN protein levels in tumors from transgenic mice when comparing five 

control-treated, to five 10058-F4-treated tumors, as analyzed by western blot (unpublished 

results). However, the animal experiment was primarily designed to assess the overall 

survival in response to 10058-F4-treatment, and the tumors were hence grown to a size that 

warranted sacrifice of the animals. Consequently, this experiment was not optimal for 

analyzing possible biological differences in the tumors, as such changes may be detected at a 

much earlier time-point, before the tumors reach their maximal sizes, especially when 

considering the documented poor potency of 10058-F4 (108).  

Importantly, in vitro, 10058-F4 induced cell growth inhibition and apoptosis to a higher 

extent in MNA NB cells compared to NMNA cells. Treatment also caused morphological 

differentiation which, was potentiated by nerve growth factor (NGF),  indicating involvement 

of functional TrkA receptor signaling (170). Indeed, we detected increased TrkA mRNA as 
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well as protein expression levels in MNA NB cells upon 10058-F4 treatment. High 

expression of TrkA is the most reliable marker known to predict a favorable outcome in NB 

patients, and its expression correlates inversely with amplification of MYCN. (36, 153, 170). 

Consequently these results indicate that MYC-directed therapies may have potential in terms 

of mediating differentiation in NB.  

Together our data showed that 10058-F4 targets MYCN-overexpressing NB cells and elicit in 

vivo efficacy in NB tumors in vivo. Hence, these results highlight the potential of developing 

small molecules directed against MYCN in the management of MNA NB.  

New findings of possible clinical relevance on mitochondrial metabolism in high risk NB  

While investigating the actions of 10058-F4 in NB cells, we also made the unexpected 

discovery that treatment resulted in accumulation of cytoplasmic lipid droplets, as revealed 

by Oil red O staining and electron microscopy. This effect occurred in all NB cell lines tested, 

as well as in a breast cancer cell line, which is known to possess elevated c-MYC levels 

(202). Interestingly, treatment of normal non-transformed dermal and lung fibroblasts did not 

result in accumulating lipid droplets, indicating that this effect is related to MYC-inhibition in 

cancer cells and not in normal cells. Using shMYCN treatment of NB cells, we confirmed that 

lipids accumulated in direct response to MYCN down regulation. Likewise, treatment with 

the BRD4 inhibitor JQ1 (mentioned at page 9) led to MYCN protein degradation and lipid 

accumulation. Lipid droplet formation furthermore applies to c-MYC inhibition as well, as 

shown in experiments using isogenic rat embryonic fibroblasts with different myc expression 

status in combination with 10058-F4 treatment. Importantly, lipid accumulation was not 

simply an effect of cell growth inhibition since out of three cytotoxic drugs tested, only 

cisplatin (CIS) induced lipid accumulation while it did not impact on the cell cycle profile at 

the concentration used. In contrast,  CPT  and ETO induced cell growth arrest in the absence 

of lipid droplet formation.  

In an attempt to identify the metabolic explanation behind this lipid-phenomenon we 

analyzed our proteomic data in search for metabolic enzymes differentially regulated by 

10058-F4. Since mapping of enzymatic alterations revealed that several metabolic pathways 

were affected, we next used inhibitors of key enzymes of these pathways to analyze if their 

inhibition would lead to lipid accumulation, similar as to after MYCN-down regulation. We 

found that inhibition of β-oxidation (using etomoxir and thioridazine) as well as of complexes 

of the respiratory chain (using oligomycin, rotenone, 2-thenoyltrifluoroacetone (TTFA), 

Antimycin-A) led to lipid accumulation, while the glycolysis inhibitor 3BrPA or 

glycolysis/oxphos-inhibitor dichloroacetic acid (DCA) did not. The fact that inhibition of 

lipid synthesis, using an inhibitor of FASN, cerulenin, did not prevent lipid accumulation by 

10058-F4, furthermore suggested that a continued lipolysis was not likely to be responsible 

for the observed lipid response. Instead, based on our collected data and the fact that FAO-

inhibition has been shown to result in lipid accumulation in non-adipose cells (203-205), the 

most apparent explanation is that MYCN inhibition leads to mitochondrial dysfunction, and 

these changes in turn limits the process of FAO whereby excess lipids accumulate outside of 
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mitochondria. The link between β-oxidation and respiration is well-established, considering 

that β-oxidation generates electron donors in the form of FADH2 and NADH and these 

molecules are shuffled into the respiratory chain (206). In support of our theory, we found 

that the mitochondria in response to 10058-F4 treatment were structurally altered, with less 

elaborate cristae. This phenotype demonstrates an overall reduced protein content in the 

mitochondria and further proves that mitochondrial dysfunction occurs upon MYCN 

inhibition. 

Importantly, we found that high expression of the majority of identified mitochondria-related 

enzymes, including those of the respiratory chain, the citric acid cycle and β-oxidation, 

correlates with poor survival in NB patients. Hence, it indicates that these pathways are 

important for mediating tumor aggressiveness. 

Together these findings demonstrate that MYCN is linked to an elevated mitochondrial 

metabolism important for the aggressiveness of MNA NB tumors. This data also suggested 

that high MYCN-expressing cells use fatty acids as an energy source. 

 

Figure 7. Effects of the small molecule 10058-F4 in neuroblastoma cells and mouse 

models. Treatment with 10058-F4 resulted in decreased MYCN/MAX dimerization, and 

induced apoptosis and cell growth inhibition in MNA NB cells compared to NMNA cells. It 

also caused NB cell differentiation including upregulation of TrkA expression levels, and 

treatment in vivo led to prolonged survival of TH-MYCN transgenic mice. We also found that 

10058-F4 induced lipid accumulation in NB cells. Importantly, lipid droplet formation 

occurred in direct response to MYCN inhibition, caused by mitochondrial dysfunction and 

possibly involving interference with fatty acid oxidation. Illustration from: Zirath H and 

Arsenian Henriksson M, Onkologi i Sverige, (2013) (207), with permission from the 

publisher. 
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3.3 PAPER III. MYCN MEDIATES METABOLIC PLASTICITY IN CHILDHOOD 
NEUROBLASTOMA 

Metabolic remodeling is a key feature of advanced cancers by providing growth and survival 

advantages (113, 114). The perturbed metabolism in tumors allows for accumulation of 

biosynthetic building blocks such as nucleic acids, lipids and proteins, needed for anabolic 

reactions in the rapidly proliferating cancer cells. (208). It is also important for tumor cell 

adaptations in response to changes in the tumor environment (112, 114). 

Despite the aggressive behavior of MNA NB tumors, the connection between MYCN-

signaling and tumorigenic cell metabolism is largely unexplored (see page 17). Therefore, 

elucidating the cellular and molecular mechanism underlying MYCN-dependent tumor 

metabolism may have substantial clinical benefit since it could reveal targetable bioenergetic 

pathways crucial for tumor survival. 

In this paper, we have investigated in greater detail as compared to in Paper II (109), the 

direct outcome of MYCN-expression on NB metabolism by using the combined information 

obtained from high resolution proteomics, mRNA expression profiling of clinical tumor 

samples, as well as functional assays using anti-MYCN sh-RNA in NB cells (209).  

MYCN is a master inducer of metabolic capacities in NB 

Our analysis of protein and gene expression alterations associated with MYCN highlighted 

glycolytic enzymes (e.g. hexokinase 2, HK2 and GLUT1), as well as enzymes involved in 

lipolysis (e.g. fatty acid synthase, FASN) and β-oxidation (e.g. hydroxyacyl-CoA 

dehydrogenase, HADH) to play functional roles in the disease, since their high expression 

correlated to reduced patient survival. Evidently, MYCN mediates an overall activated 

mitochondrial metabolism, based on the observed elevated expression of components of the 

respiratory chain, the citric acid cycle, and of detoxification systems of reactive oxygen 

species (ROS). Overall, this MYCN-linked mitochondrial signature appears highly important 

for tumor aggressiveness since the majority of corresponding transcripts correlate to an 

adverse outcome in patients when expressed at high levels. Consequently, MNA tumors may 

have greater demands for mitochondrial functions including high ROS detoxification 

capacities for their cell survival. 

Interestingly, we could functionally demonstrate that MYCN expression not simply confers 

either an induced glycolytic or respiratory capacity in NB cells, but instead persistently 

mediates an enhanced metabolic pathway flux depending on nutrition availability. We 

showed for the first time that MYCN directly induces glycolysis, as well as an elevated 

respiratory capacity in NB cells. In addition, MYCN was wound to positively regulate the 

oxidation of exogenous fatty acids. Hence, this is to our knowledge the first time it is 

demonstrated that MYC, or any singe onco-protein, regulates all key aspects of metabolism 

in the same cell system. We therefore hypothesize that MYCN may confer metabolic 

flexibility or “plasticity” in NB cells which could be an important mechanism for tumor 

aggressiveness. 
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Potentially important roles of lipid metabolism in NB 

Lipid metabolism is an emerging field in cancer research that has received less attention than 

the Warburg effect and the role of mitochondrial respiratory processes, and glutamine 

metabolism (208, 210). Hence, it was interesting to note that MYCN regulates important lipid 

metabolic pathways in NB cells and tumors, including FAO-related enzymes and lipolytic 

pathways, the latter which included an elevated expression of FASN and enzymes involved in 

ketone and cholesterol metabolism (not shown).  

Rapidly proliferating tumor cells are in great demand of fatty acids for synthesizing new cell 

membranes (which are mainly composed of phospholipids), and for use as signaling 

molecules (208). In fact, a highly recognized feature in cancer is an elevated de novo fatty 

acid synthesis mediated by the enzyme FASN, which is linked with tumor aggressiveness and 

poor survival (211). We found that FASN is expressed at high levels in MNA tumors at the 

mRNA level and that its high expression correlates with poor survival. Surprisingly however, 

in NB cells, MYCN-down regulation led to increased FASN protein levels. Consequently it 

would be interesting to assess the FASN levels in tumor samples using 

immunohistochemistry (IHC), to further evaluate the potential role of FASN in NB. 

Several recent reports have demonstrated that FAO is an important pro-tumorigenic feature in 

some cancers (208, 212, 213). In prostate cancer, FAO is a major bioenergetic pathway (214), 

and was shown to involve the oxidation of exogenous fatty acids (215). In our study, the 

expression of several enzymes involved in β-oxidation was differentially regulated by MYCN 

both at the mRNA and/ or at the protein level. We found that high expression of enzymes 

regulating the last steps of fatty acid oxidation correlates with a poor outcome (e.g. HADH), 

whereas those involved in the first steps are generally inversely associated with reduced 

survival. These differences could relate to an altered preference for specific fatty acid 

substrates in benign as compared to in malignant NB tumors, mediated by specific FAO 

enzymes. Anti-tumor effects such as decreased proliferation have been documented in NB 

cells in response to treatment with different fatty acid substrates other than palmitate (216, 

217). In contrast, we showed here that high MYCN-expressing SK-N-BE(2) cells possess an 

elevated capacity to oxidize exogenously added palmitate compared to after MYCN 

downregulation, whereas endogenous FAO seemed not to be actively used in these cells 

based on the lack of effect by etomoxir on the oxygen consumption rates (OCR). Etomoxir is 

an inhibitor of one of the rate limiting enzymes of fatty acid β-oxidation, the fatty acid 

transporter carnitine palmitoyltransferase (CPT1) (205). Interestingly, high expression of the 

brain specific variant of this enzyme, CPT1c, has been documented in a large number of 

tumors including NB, where it is suggested to promote tumor cell growth and survival (218). 

In NB, high CPT1c expression correlates with poor survival independently from MNA or an 

elevated MYC signaling, suggesting that it mediates aggressiveness in NMNA tumors 

(unpublished observations).  

In ovarian cancer, it was shown that adipocytes in the microenvironment of the omentum 

causes preferential homing of metastatic tumor cells to these areas by providing for nutrients 
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in the form of fatty acids (125). It is hence tempting to speculate that a similar mechanism 

could relate to NB tumors as well. As an organ specialized in steroid hormone synthesis and 

secretion, the adrenal gland requires fuel in the form of neutral fat, fatty acids, and fatty acyl 

esters of cholesterol. These precursor molecules are stored as lipid droplets in steroid 

synthesizing cells and are as such an important component in the adrenal physiology (219). 

Together our results consequently further support a potentially important role of fatty acid β-

oxidation in MNA NB, as suggested in Paper II (109). It also proposes that MYCN confers 

“metabolic plasticity” in NB, which could represent an important mechanism for cancer cell 

adaptation and survival during tumor progression (119, 129, 130), and could also have 

implications in cancer treatment resistance (128). 
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3.4 PAPER IV. TARGETING OF THE MYCN PROTEIN WITH SMALL 
MOLECULE C-MYC INHIBITORS 

Due to the difficulties inherent with disrupting protein-protein interactions (discussed on page 

9-10) which are common among transcription factors (e.g. the MYC/MAX dimerization), 

their specific inhibition using small organic molecules is widely considered to be a difficult 

task (220). However, several small molecules, especially those identified in Edward 

Prochownik´s group, have shown interesting potential (73, 82, 104), whereof some were 

demonstrated to bind directly to the bHLHZip domain of c-MYC (98, 100, 106, 107). Out of 

these, 10058-F4 is by far the most studied c-MYC-binding molecule, and it has been shown 

to cause anti-cancerous effects in different tumors cell lines in vitro (103-105) and is the first 

MYC-binding molecule shown to cause anti-tumorigenic effects in vivo (Paper II) (109).   

Our findings in Paper II (109) suggested targeting of MYCN by the small molecule 10058-

F4 and also revealed in vivo effects by this compound (109). Encouraged by these previous 

findings, here we wanted to confirm the direct binding of 10058-F4 to the bHLHLZip domain 

of MYCN, by using the highly sensitive surface plasmon resonance (SPR) method (221). In 

addition to 10058-F4, we also included three of its previously characterized structural analogs 

(#474, #764 and the non-c-MYC binder 10058-F4(7RH)) (105), a structurally unrelated 

compound (10074-G5) shown to bind to a distinct region of the bHLHLZip domain of c-

MYC (105), as well as an 10058-F4-derived metabolite, C-m/z 232 (108) (see Figure 8), in 

order to compare the MYCN-binding affinities (if present) and biological effects (growth 

inhibition, apoptosis, neurite outgrowth, and lipid accumulation) of these molecules in MNA 

NB cells. We also assessed whether these molecules could decrease the MYCN/MAX 

interaction, using proximity ligation assays (PLAs).  

We found that all molecules previously shown to bind c-MYC (10058-F4, #474, #764, 

10074-G5) as well as the metabolite C-m/z 232 (for which the binding has never been tested 

before) also bind to MYCN. Although our data indicated binding by #764 to both MYC 

proteins, we could not determine its KD-value, and hence its binding affinity. Interestingly, 

the binding affinities for the other molecules correlated positively with the IC50 values 

obtained from growth inhibition assays, suggesting that the binding to MYC per se is 

important for the growth inhibition capacity of these small compounds. While keeping in 

mind that standard errors, especially in case of #474 and 10075-G5, were quite large, the 

order of the compounds showing the lowest to the highest affinities to MYCN was as 

follows: C-m/z 232, 10058-F4, #474 and 10074-G5.  

Interestingly, only 10058-F4, #474, #764 and 10074-G5, decreased the interaction between 

MYCN and MAX (after treatment for 6 hours in MNA NB cells), as assessed by proximity 

ligation assays (PLAs). Hence, it suggests that the affinity of the binding to MYCN is 

important for causing a reduced interaction between MYCN and MAX by these small 

molecules, which in turn could be responsible the observed anti-proliferative effects seen in 

NB cells. In addition, these same molecules (10058-F4, #474, #764 and 10074-G5) showed 

higher levels of apoptosis-induction in high MYCN-expressing Tet21N cells as compared to 
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after MYCN down regulation by doxycycline, whereas the metabolite (C-m/z 232), which 

showed the lowest MYCN binding affinity, did not induce apoptosis in either setting. 

To test our previous assumption (mentioned in the discussion on Paper II on page 25) that 

10058-F4, by binding to MYCN and preventing its interaction with MAX, eventually leads to 

MYCN protein destabilization and proteasomal degradation, we assessed the effects on 

MYCN protein levels after the molecule-treatments. Surprisingly, only 10058-F4 and the 

structurally unrelated compound 10074-G5 caused down regulation of MYCN protein levels. 

Interestingly, these two molecules were also the most potent in inducing both neurite 

outgrowths and lipid accumulation in MNA NB cells.  

Consequently, two MYCN-binding molecules (10058-F4 and 10074-G5), decreased the 

MYCN/MAX interaction, caused reduced MYCN levels, elicited enhanced growth 

suppression and apoptosis induction in high MYCN-expressing NB cells, and were potent in 

inducing neurite outgrowth and lipid accumulation. In contrast, the MYCN-binding molecule 

#474 did not lead to decreased MYCN levels, although it did cause reduced MYCN/MAX 

dimerization and showed MYCN-selective effects on growth suppression and apoptosis. 

Interestingly, #474-treatment did not induce morphological differentiation or lipid droplet 

accumulation in MNA NB cells. The metabolite C-m/z 232, showed the weakest binding 

affinity and was not sufficient to reduce the association between MYCN and MAX, or 

causing reduced MYCN levels. It was also inefficient in reducing cell growth, and did not 

induce apoptosis. It furthermore only led to lipid droplet accumulation at very high 

concentrations, indicating that this effect was an unspecific response (222). Nevertheless, it 

did induce some morphological differentiation in terms of longer neurite outgrowths, 

although this effect was much less striking as compared to 10058-F4 and 10074-G5.  

These results suggest that the decreased MYCN/MAX interaction alone can be sufficient to 

cause MYCN-selective biological responses in MNA NB cells. However, conceptually, an 

induced apoptosis in NB cells with high MYCN levels could also reflect unspecific targeting 

of other mechanisms selective in cells with higher proliferation rates (192, 193). Similarly, 

lipid droplet accumulation by C-m/z 232 may also occur as a stress response upon 

mitochondrial dysfunction, mediated by other mechanism not directly related to MYC-

inhibition (222).  

Taken together, these results confirm that the small molecule 10058-F4 as well as several 

other c-MYC-targeting compounds binds directly to the MYCN oncoprotein in addition to c-

MYC. It also suggests that the binding, as such, to MYC, is responsible for causing 

interference with the MYCN/MAX dimerization and for causing growth inhibition in vitro.  
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Figure 8. Illustration shows the secondary structure of the bHLHZip domain of MYC where 

the aligned amino acids of human MYCN and c-MYC are shown below. The small molecules 

analyzed in this paper are indicated under their reported (10058-F4, #474 and #764, 10074-

G5) (93) or assumed (C-m/z 232) binding sites. From Paper IV (Mueller I, 2014, Plos One, 

in press), with permission from the publisher. 
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4 CONCLUSIONS AND FUTURE DIRECTIONS 

One main reason for the improved overall outcome of NB, as well as of BL patients over the 

last decades, is due to intensified treatments, including the use of chemotherapeutic drugs 

(158, 223) Nevertheless, regarding NB, still today, children affected with high risk disease 

have a poor survival, especially those whose tumors are MYCN amplified or show 

chromosome 11q deletion (158). Hence, considering the poor prognosis of these children, 

new therapeutic approaches are urgently needed.  

Investigating different strategies of inhibiting MYC in cancer is important since it could 

provide for new insights for future novel cancer therapies that could have potential against a 

broad array of human tumors, including pediatric malignancies.  

By analyzing the MYC-selective effects of 80 chemotherapeutic drugs and compounds in 

Paper I (195), we found that MYC-overexpressing cells are dependent on a restricted 

number of yet specific signaling pathways for their survival. Importantly, among the 

identified hits were drug classes acting against topoisomerases, microtubules, and the cellular 

biosynthetic machinery of DNA, RNA and protein synthesis and turnover, all inherently 

associated with MYC in cancer cell growth (8). These pathways may be particularly 

vulnerable for targeting in MYC-deregulated tumors and provide hints towards future 

treatment optimization. Unfortunately, chemotherapy often causes severe side effects 

including acute and long term toxicities, and in this sense children are particularly vulnerable 

(154, 165, 223). In fact, treatment resistance of recurring NB is the major cause of failure of 

treatment and for death (165). Consequently, future studies that take into account the 

mechanisms behind tumor drug resistance are especially important in order to find new 

treatment strategies against recurring high risk childhood cancers (6). The fact that MYC is 

highly associated with a “stemness” phenotype in cancer (8, 64-66), which also relate to 

MYCN in NB (172-174), is important, since CSCs are believed to be responsible for tumor 

cell dormancy and drug resistance in cancer (1, 2, 31, 224). Hence, this specific feature of 

MNA NB cells could be applied when designing new chemical screens, in order to enrich for 

molecules which target cells with characteristics of tumor initiating cells. This concept was 

shown to be successful in terms of identifying CSC-selective compounds in breast cancer, 

using a high throughput screen on breast cancer cells that had been induced to go through 

EMT (224).  

Inhibiting MYC’s function by the action of selective small molecules which bind to the MYC 

protein and consequently interfere with its binding to MAX, represents a challenging yet 

attractive goal in cancer research (79). Our findings in Paper II (109) and Paper IV, that a 

small molecule, 10058-F4, binds directly to MYCN, reduces its dimerization to MAX, and 

was sufficient to elicit anti-tumorigenic events in vivo, is important as it provides proof of 

principle of “direct MYC targeting” that may strengthen the idea of developing small 

molecules directed against MYCN as a treatment for pediatric cancer. Applying new 

chemistry and further validation of the selectivity of both new and existing MYC-binding 

compounds may hopefully lead to more effective inhibitors with therapeutic potential. 
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Importantly, our study (Paper I) (195) supports the use of chemical screens as a powerful 

approach to identify compounds active in a MYC overexpressing setting, and hence future 

screens may lead to the discovery of novel compounds with clinical potential.  

There are also some interesting examples of already existing targeted strategies, which are 

aimed at inhibiting signaling pathways involved in deregulating the expression of MYCN. 

These include inhibition of the Aurora A kinase, as well as BET bromodomain inhibitors, and 

these approaches have shown potential in pre-clinical studies (86, 94, 154, 225). Importantly, 

while using 10058-F4 as a research tool we identified novel biological functions of MYCN 

that could have important clinical implications. We found (in Paper II (109) and Paper III) 

that MYCN induces profound metabolic reprogramming in NB cells, indicative of an 

enhanced metabolic plasticity in MNA NB. Our data hence provide important suggestions for 

future therapeutic interventions by pointing towards selective targetable metabolic 

biomarkers and/or bioenergetics functions in MNA NB, including an elevated ROS 

detoxification system and a deregulated lipid metabolism. It has been shown for other cancers 

that LC-MS metabolomic-based methods can be used to identify new metabolic biomarkers 

and possible therapeutic targets involved in conferring tumor aggressiveness (226). Hence it 

would be interesting to use this approach in NB to compare with our findings from 

quantitative proteomics and gene expression profiling.  

Understanding the key differences of mitochondria involved in mediating tumor 

aggressiveness in MNA NB may be important as several mitochondrial targeting anticancer 

agents (mitocans) already exist (227). One interesting example of an approved mitocan is 

metformin: a widely used anti-diabetic drug that has received renewed attention, since it was 

revealed from population studies that it also possesses antineoplastic activity. Metformin 

usage is associated both with reduced cancer risk and/or improved prognosis in cancer 

patients (228, 229). It is believed to work through the inhibition of the complex I of the 

respiratory chain (208, 228), but has also been shown to activate the AMP-activated kinase 

(AMPK) both in vitro and in vivo (230, 231). AMPK is known to play key roles as a sensor 

of cellular energy homeostasis, and shows tumor suppressor functions in many types of 

cancers (231, 232). In NB we have shown that MYCN regulates the expression of several 

subunits of complex I of the respiratory chain, and that high expression of these components 

correlates with reduced survival (Paper II and III) (109). Furthermore, low mRNA 

expression of the alpha catalytic subunits of AMPK is correlated with poor overall survival in 

NB (unpublished observations). Consequently it would be interesting to investigate the effect 

of metformin in pre-clinical models of NB.  

The discovery that MNA NB tumors and cells possess an induced expression of antioxidant 

mediating enzymes (including GSH-regulators and peroxiredoxins) is particularly interesting, 

as changes in ROS detoxification capacities has been coupled to chemotherapy resistance in 

cancer stem cells (233), and elevated ROS levels is linked to MYC-mediated genomic 

instability (8). Targeting of cancer specific antioxidant systems could hence provide a means 

of inducing selective toxicity in tumor cells by causing intolerable high levels of ROS, which 
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could lead to cell death (227). There are several examples of drugs and natural compound 

acting against ROS detoxification systems in cancer (227). For instance, the natural 

compound β-phenylethyl isothiocyanate (PEITC) which is found in cruciferous vegetables, 

was shown to effectively inhibit the GSH antioxidant system in transformed ovarian 

epithelial cells, and this consequently led to preferential killing of the transformed cells 

mediated by severe accumulation of ROS (234).  

Also, the seemingly important role of fatty acid metabolism in NB is interesting and should 

be investigated further, since several pre-clinical inhibitors of fatty acid metabolism exist, 

whereof some are already approved for clinical use (208), including orlistat (which targets 

FASN) (235) and ranolazine (which targets CPT1) (236). Also, two drugs used for 

antianginal medication, trimetazidine and ranolazine, targets β-oxidation by inhibiting the 

acetyl-CoA acyltransferase 2 (ACAA2) enzyme. We found that high mRNA expression of 

ACAA2 is correlated with poor outcome in NB (Paper III), and consequently it would be 

interesting to assess whether MNA NB cells are sensitive to these drugs. 

Our finding that MYCN induces the capacity of oxidation of exogenous fatty acids in NB fits 

well with our parallel identified link between MYCN and an elevated oxphos- and ROS 

scavenger system, as β-oxidation of long chain fatty acids has been shown to result in high 

levels of ROS production (237, 238). Also, it has been demonstrated that prostate cancer 

cells, in which FAO is used as a primary source of energy (214), possesses a high antioxidant 

production required for cancer cell survival by maintaining the cellular redox balance (215). 

Likewise, a distinct oxphos tumor subset was been identified in diffuse large B cell 

lymphoma with an elevated capacity of using FAO, and these cells show high levels of 

antioxidant scavenger systems. The perturbation of FAO and glutathione synthesis 

furthermore proved selectively toxic to this tumor subset (122).  

In conclusion, together our findings on small MYC-binding molecules, and on metabolic 

alterations associated with MYCN in NB, may be of importance for the development of new 

treatment options for high risk NB patients. 
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5 PUPULÄRVETENSKAPLIG SAMMANFATTNING 

Cancer är ett samlingsnamn för en grupp på över hundra olika sjukdomar som både kan vara 

godartade (benigna) eller elakartade (maligna), och kan drabba alla slags celltyper. 

Gemensamt för cancersjukdomarna är att celler börjar växa på ett okontrollerat sätt och 

inkräktar på kroppens normala hälsotillstånd. Många typer av cancrar är idag inte livshotande 

utan går att bota. Aggressiv cancer som växer in i omkringliggande vävnad och sprider sig 

och bildar dottertumörer (metastaser) på anda ställen i kroppen innebär däremot ofta en 

försämrad chans till överlevnad hos patienten.  

Cancer uppkommer till följd av skador på cellers genetiska material, dvs. på DNA:t som finns 

i varje cell. Skadorna kan vara medärvda eller uppkomma till följd av olika livsstilsfaktorer 

som exponering för skadliga ämnen eller strålning, men sker även ofta helt slumpartat. 

Risken för att få cancer ökar dock med stigande ålder.  I DNA finns koder (i form av gener) 

som ger upphov till proteiner vilka i sin tur utgör grunden för cellens maskinerier och 

signaleringssystem. Man  kan därför säga att de genetiska skadorna leder till felsignalering i 

cellen. Skadorna måste dock träffa specifika gener, och vara av sådan karaktär att de ger 

cellen överlevnadsfördelar vilket gör att den kan dela sig obehindrat samt undkomma de 

kontrollsystem som normalt sätt ser till att eliminera felaktiga celler. Under tidens gång 

ansamlas fler och fler skador i de felaktiga cellerna och en slags ”micro-evolution” pågår där 

vissa celler dör  medan andra blir mer aggressiva. Ibland kan det ta årtionden för en tumör att 

utvecklas medan cancerbildning kan ske snabbt i andra fall. Det är extra svårt att förstå varför 

barn får cancer. Cancer hos vuxna och barn skiljer sig åt i vissa avseenden. Till exempel så 

vet man att barncancer generellt sett ofta utvecklas till följd av att något gått fel under 

fosterutvecklingen, snarare än att de utsatts för olika riskfaktorer.  

Neuroblastom är en typ av barncancer som uppstår från de celler som under 

fosterutvecklingen bildar det yttre sympatiska nervsystemet. Tumörerna hittas oftast i en av 

binjurarna eller i nervvävnad längs med ryggraden. Neuroblastom är en ovanlig sjukdom  

med ca 15-20 nya fall per år i Sverige, och drabbar oftast små barn under fem år. Det finns 

flera olika undergrupper av cancern som skiljer sig från väldigt godartade till extremt 

aggressiva, och prognosen varierar därför stort. Trots att sjukdomen är ovanlig så tillhör 

neuroblastom en av de dödligaste typerna av barncancer, och det är därför som forskningen 

kring neuroblastom är så viktig.  Något som är en tydlig indikation på aggressivitet hos 

sjukdomen är då genen MYCN  återfinns i för många kopior, genom s.k. gen-amplifikation. 

Detta betyder att för mycket MYCN-protein bildas, eller ”uttrycks” i cellerna vilket i sig 

fungerar som en gaspedal för snabb celltillväxt och aggressivitet. Överlevnaden för patienter 

som drabbas av denna typ av neuroblastom är endast 15-30 %. MYCN tillhör en grupp 

proteiner som innefattar c-MYC, MYCN och L-MYC. MYC proteinerna är så kallade 

transkriptionsfaktorer, vilket betyder att de binder till DNA och reglerar gener och därmed 

specifika proteiner, vilka i sin tur påverkar cellen. MYC proteinerna är viktiga för cellers 

normala funktioner och för att en normal fosterutveckling ska kunna ske. I ett stort antal 

cancertyper så återfinns däremot MYC (främst c-MYC och MYCN) i för stor mängd. Detta 
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leder till allvarliga felsignaler som gör att celler växer alltför fort och utvecklar ytterligare 

egenskaper som leder till aggressivitet hos tumörceller.  

Den här avhandlingen baseras på arbeten där vi undersökt olika strategier för att selektivt ta 

död på cancerceller som innehåller för mycket MYC protein, med fokus på barncancern 

neuroblastom. Vi har även utforskat en av de bakomliggande mekanismerna till hur MYCN 

proteinet ger upphov till aggressivitet i neuroblastom, nämligen genom omprogrammering av 

cellmetabolismen.  

Våra upptäckter ger ledtrådar till hur man kan optimera behandling mot MYC-

överuttryckande cancerceller, samt ger indikationer på att det i framtiden kan gå att utveckla 

behandlingsmetoder baserade på små molekyler som slår direkt mot MYC i cancer. Våra 

studier uppmärksammar även betydelsen av cellmetabolismen i aggressiv neuroblastom, där 

speciellt en överaktiverad mitokondriemetabolism är starkt kopplad till aggressivitet i 

tumörer. Våra resultat kan därför komma att vara av betydelse för utvecklandet av nya 

behandlingsmetoder mot cancerspecifik metabolism.    

För en mer utförlig populärvetenskaplig beskrivning av arbete nr II (Paper II), se: Zirath, H., 

och Arsenian Henriksson, M. Onkologi i Sverige, (2013) (207). 
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