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ABSTRACT 
Hippocampal neurogenesis in the adult brain is important for learning and 
memory processes, which are heavily affected in Alzheimer disease (AD). Thus, 
targeting processes that could stimulate neurogenesis is a logical step in the search 
for strategies offering neuronal renewal and brain repair. However, the 
pathological lesions in the AD brain start to accumulate decades before the onset of 
clinical symptoms and neuronal plasticity is likely to be compromised by the 
pathological burden. The aim of this thesis was to provide a deeper understanding 
of how pathological mechanisms in AD affect stem cell differentiation and 
cholinergic signaling mechanisms, with implications for future regenerative 
therapies.  

The progressive loss of cholinergic neurons in AD may be a 
consequence of accumulation of β-amyloid (Aβ) in the brain. In paper I, there were 
prevailing differences in Aβ assemblies between early onset AD and late onset AD 
and that reduced cholinergic activity correlated with distinct Aβ oligomers. In 
paper II, the impact of nerve growth factor (NGF) and Aβ treatment on the 
development of cholinergic neurons from human embryonic stem (hES) cells was 
investigated. NGF treatment increased differentiation into functional cholinergic 
neurons, oligomeric Aβ treatment decreased the number of functional neurons, 
and fibrillar Aβ promoted glial differentiation. In paper III, fibrillar Aβ treatment 
altered the secretion of cholinergic enzymes from hES cells, resulting in low levels 
of acetylcholine. These changes were linked with an altered secretion pattern for 
cytokines, reduced neuronal differentiation and increased gliogenesis. In paper IV, 
the effects of hippocampal human neural stem cell transplantation alone, or in 
combination and modulation of Aβ levels with (+)-phenserine or the partial α7 
nicotinic acetylcholine receptor (nAChR) agonist JN403 on neurogenesis, graft 
survival, astrocytosis and cognitive performance in young Tg2576 mice 
(representing the early stages of AD) was studied. Neural stem cell transplantation 
increased endogenous neurogenesis and reduced memory impairment in AD mice 
not receiving the drugs but not in those receiving the drugs. JN403 decreased the 
number of α7 nAChR-expressing astrocytes, which correlated with reduced 
neurogenesis. We thus hypothesize that α7 nAChR-expressing astrocytes are 
involved in neurogenic processes during the development of neuropathology.  
 It is hoped that the findings presented in this thesis will provide 
novel targets for further studies, with potential for stimulating neuronal 
regeneration in AD.   
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INTRODUCTION 
In Greek mythology, the Titan Prometheus stole fire from the Olympic gods and 

gave it to mankind, resulting in the development of all art and science. For his 

crime, Prometheus was doomed to eternal torment, and each day an eagle was 

sent to feast on his liver, which then regenerated to be eaten again the next day 

(Figure 1). However, little did Prometheus or the Olympic gods know that the 

ever-lasting, regenerating liver was a result of the unlimited regrowth capacity of 

stem cells.  

There has been great progress in stem cell biology and regenerative 

medicine over the last two decades, with resultant potential for a variety of 

therapeutic healthcare strategies to augment, repair, replace or regenerate organs 

and tissues.  

 

Figure 1.  Prometheus was doomed to eternal torment, and each day an eagle was sent to feast on 

his liver, which then regenerated to be eaten again the next day. The legend captures the body’s 

remarkable ability to regenerate itself. Illustration: Oscar Utas Hornegård.   
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Until 25 years ago, the central dogma was that new neurons were not 

formed in the brain after adolescence, and that there was limited capacity for the 

structure of neurons to change or be rearranged in the existing circuitry of the 

brain in response to new experiences. However, in the years since, neurological 

studies have established that the brain retains its early capacity for plasticity, or 

the capacity to be reshaped, throughout the human lifetime. Nonetheless, there are 

many hurdles to be overcome before stem cell therapy can become a viable clinical 

option in the brain. It is imperative that we learn more about stem cell biology in 

order to understand how proliferation, migration and differentiation are regulated 

in the context of various pathological stimuli. Furthermore, it must be proved that 

stem cell therapy is safe and adds complementary benefit to existing therapies. 

 The studies in this thesis highlight the potential of stem cells derived 

from the embryo or fetal brain and their ability to regenerate new neurons and 

glial cells in a microenvironment mimicking Alzheimer disease (AD).  

PLASTIC FANTASTIC – THE REGENERATIVE POTENTIAL OF STEM CELLS    

Stem cells are defined by their unlimited capacity for self-renewal and 

differentiation into more than one cell type. Stem cells can be classified by their 

developmental potential: totipotency, pluripotency, and multipotency. Totipotent 

stem cells, derived from the zygote and the unspecialized cells of the 8-cell morula, 

possess the potential to produce both intra- and extra-embryonic tissue. The 

morula continues to divide to form the blastocyst, a hollow structure made up of 

an outer layer of trophoblast cells and an inner cell mass (ICM) within the cavity. 

The trophoblast develops into extra-embryonic tissue, such as the placenta. The 

ICM, a cluster of pluripotent stem cells, forms the three germ layers (endoderm, 

mesoderm and ectoderm) of the embryo and ultimately develops into the entire 

fetus (Figure 2). Multipotent stem cells, with the capacity to differentiate into 

several cell types in a single germ layer, emerge during development of the 

embryo.  
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Figure 2. Pluripotent human embryonic stem cells originate from the inner cell mass (ICM) of the 

blastocyst.  These cells can differentiate into any cell type in the body from the three different germ 

layers; mesoderm, endoderm and ectoderm.  

Human embryonic stem cells 

Human embryonic stem (hES) cells are derived from the ICM of the blastocyst and 

thus have the capacity to differentiate into any cell type in the body. Permanent 

hES cell lines were first derived in 1998 from surplus embryos from in vitro 

fertilization (IVF) or from embryos found to have genetic defects by pre-

implantation genetic diagnosis (Thomson et al., 1998). However, the use of non-

human materials bears the associated risk of transmitting pathogens, thus placing 

limitations on their use in pharmaceutical and clinical therapeutic applications. 

Improvements in the derivation process and the quality of hES cell lines that have 

been made in recent years include the development of xeno-free culture systems 

using human skin fibroblasts instead of mouse embryonic fibroblasts as feeder 

cells (Hovatta et al., 2003; Strom et al., 2010), and recombinant laminin matrixes 

(Rodin et al., 2014; Rodin et al., 2010). hES cell cultures can be expanded 

indefinitely in vitro and have provided an invaluable model system for studying 
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developmental biology, and may provide a source for generating cell types that 

can be used for cell replacement paradigms. 

Neural stem cells in the fetal brain 

The mammalian brain develops from the embryonic neuroectoderm, and gives 

rise to the cells of the entire nervous system. Neuroepithelial (NE) cells are 

primordial neural stem cells that are derived from the neuroectoderm that forms 

the neural tube. Their differentiation is determined by the concentration gradient 

of various morphogens, such as retinoic acid, bone morphogenetic protein, and 

sonic hedgehog protein (Bally-Cuif and Hammerschmidt, 2003; Briscoe and 

Ericson, 2001; Pierani et al., 1999). NE cells can be regarded as “true” neural stem 

cells that can differentiate into either neurons or glial cells with equal probability. 

NE cells can transform into neural crest cells and radial glial (RG) cells. RG cells 

divide asymmetrically, and subsequently give rise to neurons and intermediate 

progenitor cells of neuronal, astroglial and oligodendrocytic lineage, as reviewed 

by Cameron and Rakic (Cameron and Rakic, 1991; Rakic, 2003). It is thought that 

the expression of the intermediate filament protein nestin, which is expressed in 

both NE and RG cells, distinguishes progenitor cells from more differentiated cells 

(Lendahl et al., 1990).  

 Neural stem/progenitor cells can be derived from human or other 

mammalian fetal brain tissue. Neural stem cells are multipotent and can 

differentiate into astrocytes, oligodendrocytes and neurons, thus enabling in vitro 

modeling of nervous system development and diseases.  

Neural progenitor cells in the adult brain 

The mammalian brain continues to generate neurons, astrocytes, and 

oligodendrocytes after reaching adulthood. Neural progenitor cells are confined to 

specific brain regions, such as the subventricular zone of the lateral ventricle, and 

the granular layers of the hippocampus, cortex, cerebellum, spinal cord, striatum 

and olfactory bulb (Davis and Temple, 1994; Dore-Duffy et al., 2006; Goritz et al., 

2011; Hartfuss et al., 2001; Johansson et al., 1999; Reynolds and Weiss, 1992; 

Sabelstrom et al., 2013).  However, neural progenitor cells are difficult to identify 
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because of their heterogeneity, and several different progenitors for the same 

lineage can coexist within a tissue (Goritz and Frisen, 2012). RG-like cells persist 

postnatally in several brain regions (Malatesta et al., 2000). In fact, the description 

of stem cells as RG-like or astrocyte-like has generated confusion, and their exact 

relationship is hard to decipher. Nonetheless, mounting evidence suggests that 

glial cells are a substantial source of new neurons in the adult brain, as reviewed 

recently (Goritz and Frisen, 2012; Morrens et al., 2012).  

Adult neural progenitor cells are usually isolated from rodent brains, 

followed by subsequent expansion of the cultures. They can also be isolated from 

postmortem human brain tissue or human brain biopsies (Leonard et al., 2009; 

van Strien et al., 2014), but this procedure is usually more difficult. These cells can 

then be used to study the behavior of human adult neural progenitor cells in vitro, 

in healthy individuals, or in patients with neurodegenerative diseases.     

Induced pluripotent stem cells 

The discovery of induced pluripotent stem (iPS) cells has revolutionized the field 

of stem cell research and regenerative medicine; the Nobel Prize in Physiology or 

Medicine 2012 was awarded to Sir John B. Gurdon and Shinya Yamanaka “for the 

discovery that mature cells can be reprogrammed to become pluripotent”. Gurdon 

and colleagues showed in 2003 that the nuclei of adult mammalian somatic cells 

can be reprogrammed to express the pluripotency marker Oct-4, when 

transferred into amphibian oocytes (Byrne et al., 2003). A few years later, 

Yamanaka and colleagues showed that reprograming mouse and human 

fibroblasts was possible by introducing the transcription factors Oct-4, Sox-2, 

Klf4 and c-Myc (the Yamanaka factors) into the cells (Takahashi et al., 2007; 

Takahashi and Yamanaka, 2006). These cells represent an invaluable tool for 

studying the mechanisms underlying both normal and pathogenic human tissue 

formation and regeneration. iPS cells also provide a source of patient-specific 

stem cells with potential for therapeutic use in a variety of disorders.  However, 

despite their immense potential, concerns have been raised regarding the safety 

of the procedure, since both the use of viral vectors and the insertion of these 

transgenes into human cells has been implicated in tumorigenesis (Okita et al., 

2007).   
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NEW NEURONS IN OLD BRAINS 

In the adult mammalian brain, neurogenesis occurs mainly in two brain regions: 

the dentate gyrus of the hippocampal formation and the subventricular zone (SVZ) 

of the lateral ventricle (Altman and Das, 1965; Cameron and Gould, 1994; Doetsch 

et al., 1997; Kempermann et al., 1998b; Kuhn et al., 1996; Lois and Alvarez-Buylla, 

1994; Luskin, 1993). Neurons born in the SVZ migrate through the rostral 

migratory stream and are incorporated into the olfactory bulb to become 

interneurons (Lois and Alvarez-Buylla, 1994). Eriksson and colleagues 

investigated whether neurogenesis persists in the adult human brain by injecting 

the thymidine analog bromodeoxyuridine (BrdU) into terminally ill cancer 

patients, which enabled postmortem identification of the progenitor cells that had 

committed to neuronal differentiation (Eriksson et al., 1998). The authors 

concluded that the human hippocampus retained the ability to generate neurons 

throughout life, although it seemed that the SVZ lacked this possibility. Since then, 

a new sophisticated technique that offers unique possibilities to estimate the age 

of neurons in various regions in the human brain has been developed, which is 

taking advantage of the integration of 14C in human DNA (generated by the nuclear 

bomb testing during the Cold War) (Spalding et al., 2005). Recent studies have 

supported the findings that neurogenesis persists in the human hippocampus 

(Spalding et al., 2013) but seems to be very limited or doesn't exist in the 

neocortex and the olfactory bulb (Bergmann et al., 2012; Bhardwaj et al., 2006). 

Interestingly, it was recently discovered that new neurons also integrate into the 

striatum, which is adjacent to the SVZ (Ernst et al., 2014). The findings suggest that 

neurogenesis in the human brain may differ from that in other mammals, and this 

needs to be taken into consideration when studying these processes in animal 

models of disease. 

The role of hippocampal neurogenesis in learning and memory  

The hippocampus is essential for learning and memory, which depend on 

functional and structural changes such as long-term potentiation (LTP) and 

synaptic remodeling (Bliss and Lomo, 1973; Matsuzaki et al., 2004). A number of 

studies in rodents have shown that adult neurogenesis contributes to normal 



 

 7 

cognitive function and memory formation (Rola et al., 2004; Shors et al., 2001; 

Shors et al., 2002; Trouche et al., 2009).  

Neurogenesis in the dentate gyrus (DG) of the hippocampus involves 

multiple developmental steps, in which resident neural stem cells and progenitor 

cells proliferate, differentiate and migrate to the granular cell layer, where the 

immature neurons integrate into existing networks and terminally differentiate 

into dentate granular cells (Ehninger and Kempermann, 2008), schematically 

illustrated in Figure 3. 

 

Figure 3. Schematic illustration of hippocampal neurogenesis. Abbreviations: DG – dentate gyrus, GCL 

– granular cell layer. 

In detail, RG-like progenitor cells (type 1 cells), which have radial processes 

that span the entire granular cell layer of the DG (Kempermann et al., 2004), are 

generally identified by their expression of markers such as nestin and glial 

fibrillary acidic protein (GFAP) (Fukuda et al., 2003). RG-like cells can self-amplify 

and give rise to intermediate type 2a and type 2b cells, which express nestin and 

later doublecortin (DCX) but not GFAP (Kempermann et al., 2004). The type 2 cells 

give rise to type 3 cells, which are DCX-expressing neuroblasts that proliferate and 

terminally differentiate into dentate granular cells that integrate into existing 

networks (Figure 4) (Benarroch, 2013; Ming and Song, 2011).   

The heterogeneous nature of the precursor cell populations in the 

hippocampus generates several questions that have implications for future studies 
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of neurogenesis. First, it is important to understand the inter-relationships 

between the different precursor cells; i.e. can a type 3 cell revert back to a type 2 

or even a type 1 cell under the right conditions? At what point do the precursor 

cells become lineage-restricted? Second, are type 1 cells multipotent in vivo and 

how does this relate to gliogenesis in the hippocampus? Third, does the course of 

neuronal development change in response to pathological stimuli such as those 

encountered in neurodegenerative diseases?  

 

 

Figure 4. Sequence of cell types in hippocampal neurogenesis and the markers they express. 

Abbreviations: RG – radial glia, DCX – doublecortin.   

Regulation of adult hippocampal neurogenesis 

The neurogenic niche, which consists of endothelial cells, astrocytes, microglia, 

and mature neurons, regulates the permissiveness of neuronal development from 

progenitor cells (Ming and Song, 2011; Morrens et al., 2012). The molecular 

regulation of adult neurogenesis is highly dependent on extrinsic signals as well as 

intrinsic cellular factors. Extracellular signals include morphogens,  growth factors 

such as brain-derived neurotrophic factor (BDNF), vascular endothelial growth 

factor, and insulin-like growth factor (IGF)-1, and neurotransmitters such as 

GABA, serotonin and glutamate, as reviewed by several authors (Benarroch, 2013; 
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Kempermann, 2011; Kuhn et al., 2001). Furthermore, external factors such as 

physical activity and environmental enrichment can effectively induce 

hippocampal neurogenesis (Brandt et al., 2010; Kempermann et al., 1998a; 

Kempermann et al., 1998b; Wolf et al., 2011). However, environmental cues can 

also induce opposite and negative effects; for example, stress-induced responses 

have been shown to inhibit neurogenesis (Gould et al., 1997; Gould et al., 1998). 

Hippocampal neurogenesis occurs throughout life but decreases with advancing 

age in rodents (Kuhn et al., 1996), implying very limited regenerative potential in 

the senescent brain. However, it seems that the aging rodent brain may still be 

responsive to therapeutic interventions that enhance neurogenesis (Jin et al., 

2003). A recent study suggests that neurogenesis does not decline with advancing 

age in humans (Spalding et al., 2013), which raises hopes of stimulating 

regenerative mechanisms in the normal aging brain.  

Further, it appears that neural progenitor cells can remain dormant under 

physiological conditions, but possess the capacity to respond to insult or injury to 

the brain. For example, neurogenesis is generally increased after acute seizures in 

animal models of temporal lobe epilepsy (Gray and Sundstrom, 1998), and cortical 

neurogenesis has been observed in a rat model of ischemic stroke (Gu et al., 2000). 

These observations imply that the brains’ regenerative capacity is increased in 

response to insult, which could prove useful in therapeutic approaches against 

neurodegenerative diseases, such as AD. 

ALZHEIMER DISEASE  

AD, a lethal and progressive neurodegenerative disorder affecting over 30 million 

people worldwide, is the most common form of dementia. The clinical course of 

the disease starts with subtle changes in episodic memory, which later spread to 

other cognitive domains such as language, orientation and behavior. As the disease 

progresses, the patient's cognitive and functional abilities relentlessly decline. In 

advanced AD, patients need help with the basic activities of daily living such as 

eating, dressing, and sanitary needs. This devastating disease robs a person of 

his/her identity, leaving an empty shell, one who has lost the ability to 

communicate with and recognize loved ones.  
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The prevalence of AD increases exponentially with age; only 1 % of people 

aged 60-64 are afflicted but, amongst the oldest-old (age 85 and over) 

approximately 30 % suffer from the disease (Hebert et al., 2013; Prince et al., 

2013; Thies and Bleiler, 2013). With longer life expectancies, the prevalence of AD 

is expected to triple by the year 2050 (Hebert et al., 2013; Prince et al., 2013). The 

sinister nature of the progression of the disease, the increasing number of 

patients, and the long duration of the illness contribute significantly to the high 

socioeconomic cost of this rapidly growing epidemic (Wimo et al., 2013). 

 The German physician Alois Alzheimer described the main 

pathological hallmarks of AD in 1906 (Alzheimer et al., 1995). Extensive research 

in recent decades has provided useful information on the underlying disease 

mechanisms and disease progression. However, the etiology of AD is still not 

completely understood and the numerous investigative studies and clinical trials 

carried out over the past decades have not yet resulted in effective therapies that 

can halt or change the course of the disease. 

Pathological changes in the Alzheimer brain  

The characteristic neuropathological lesions in the AD brain are β-amyloid (Aβ) 

plaques and neurofibrillary tangles (NFTs). Postmortem studies have enabled the 

staging of these and have demonstrated distinct spatio-temporal distributions. 

NFTs are first observed in the temporal lobe, and spread from there to the 

entorhinal region and the hippocampus, and then to the neocortex (Braak and 

Braak, 1995; Braak and Braak, 1997). Amyloid pathology first initiates in the 

neocortex, in particular in the basal portions of the frontal, temporal and occipital 

lobes, but by the end stages of the disease deposits can be observed in all 

neocortical areas (Braak and Braak, 1997). The hippocampus is, however, only 

mildly affected by amyloid pathology, even in the end stages (Braak and Braak, 

1991).    

β-amyloid 

According to the amyloid cascade hypothesis, accumulation of Aβ in the brain 

causes a series of pathological events, such as inflammatory processes, oxidative 

stress, and NFT formation, which subsequently lead to synaptic dysfunction and 
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neuronal cell death (Hardy and Selkoe, 2002; Hardy and Higgins, 1992; Mattson, 

2004).  

 The Aβ peptide is derived from the amyloid precursor protein 

(APP) by proteolytic cleavage, and abnormal processing, decreased degradation or 

clearance of the APP leads to the gradual accumulation of Aβ. APP is widely 

expressed in the nervous system and has been attributed with a number of 

physiological functions such as neuronal survival, neuritic outgrowths, and 

synapse formation (De Strooper and Annaert, 2000; Mattson, 1997; Tyan et al., 

2012). APP is processed by two physiological pathways: the non-amyloidogenic 

pathway and the amyloidogenic pathway (Haass et al., 1993). In the non-

amyloidogenic pathway, α-secretase cleaves the APP within the Aβ domain, 

releasing sAPPα and the C83 fragment, whereupon γ-secretase cleaves the C83 

fragment into the p3 fragment and the APP intracellular domain (AICD). The 

physiological functions of these cleavage products are not entirely understood, 

although the AICD is thought to regulate the transcription of several genes, and to 

modulate calcium homeostasis and ATP content (Cao and Sudhof, 2004; Hamid et 

al., 2007; Pardossi-Piquard et al., 2005), whereas sAPPα is believed to modulate 

neuronal excitability, synaptic plasticity, and cell survival (Mattson, 1997). In the 

amyloidogenic pathway, β-secretase cleaves APP, releasing a soluble sAPPβ 

fragment, which is subsequently cleaved by γ-secretase, resulting in the formation 

of the Aβ peptide and the AICD (Haass et al., 1993). Proteolytic cleavage by γ-

secretase generates peptides of different lengths: Aβ forms that are 1-40 and 1-42 

amino acids long are the most prominent forms in the AD brain. Aβ 1-42 is more 

liable to aggregate and is therefore one of the main constituents of Aβ plaques (De 

Strooper and Annaert, 2010; Selkoe, 2001).  

 Initially, it was believed that fibrillar Aβ present in the plaques 

was mediating the neurotoxic effects. However, the Aβ plaque burden correlates 

poorly with the severity of dementia, and emerging evidence suggests that Aβ 

oligomers, rather than Aβ fibrils, may be the fundamental molecular pathogens 

that trigger synaptic dysfunction and the memory deterioration observed in the 

disease (Lambert et al., 1998; Selkoe, 2008; Walsh et al., 2002). Aβ can aggregate 
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in vitro to different sized aggregation forms (Chromy et al., 2003); various 

structurally distinct forms, including dimers (Walsh et al., 2002), globulomers 

(Barghorn et al., 2005), protofibrils (Harper et al., 1997), and ring structures 

(Chromy et al., 2003), have been identified (Figure 5). There is strong evidence of 

the neurotoxic properties of Aβ oligomers in vitro (Jang et al., 2007; Lacor et al., 

2004; Lacor et al., 2007; Urbanc et al., 2010) but, to date, only a few studies have 

explored the occurrence of different oligomeric Aβ species in autopsy brain tissue 

from healthy subjects and AD patients (Lesne et al., 2013; Mc Donald et al., 2010; 

Shankar et al., 2008). Furthermore, it has been hypothesized that large, insoluble 

deposits of Aβ might serve as reservoirs of bioactive synaptotoxic Aβ oligomers 

(Haass and Selkoe, 2007). However, the nature of the relationships between 

different Aβ species regarding their length, aggregation form, and propensity for 

inducing neurotoxicity in vivo remains elusive.   

 

Figure 5. Schematic illustration of Aβ aggregation from soluble Aβ monomers to Aβ oligomers and 

further maturation to Aβ fibrils. 

Tau 

Tau is a microtubule-associated protein (MAP), which stabilizes the microtubules 

and regulates axonal transport within neurons. Abnormal hyperphosphorylation 

of tau and its aggregation into NFTs are pathological hallmarks of AD (Alzheimer 

et al., 1995; Grundke-Iqbal et al., 1986). The non-fibrillized hyperphosphorylated 

tau sequesters the normal tau, MAP1, and MAP2, and disrupts the microtubule, 

which leads to slow progressive retrograde degeneration and thus loss of 

synapses in the affected neurons, as reviewed by Alonso and Iqbal (Alonso et al., 

1994; Iqbal et al., 2009).  In contrast to the number of Aβ plaques, the number of 

NFTs correlates well with the severity of AD (Arriagada et al., 1992a). NFTs seem 

to be required for clinical manifestation of AD, since Aβ pathology alone does not 
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produce cognitive symptoms (Iqbal et al., 2009; Jack et al., 2010). In related 

tauopathies that are clinically characterized by dementia, such as fronto-temporal 

dementia with tau mutations, progressive supranuclear palsy, and Pick's disease, 

neurofibrillary degeneration occurs without an Aβ plaque burden, as reviewed by 

Iqbal (Iqbal et al., 2009). NFTs can be present in cognitively normal individuals as 

well, but the lesions are then confined to the entorhinal cortex, Braak stage I-II 

(Price and Morris, 1999). The true nature of the relationship between tau and Aβ 

is currently under investigation, and the ongoing studies will hopefully increase 

our understanding of the interplay between these molecules in AD (Giacobini and 

Gold, 2013). 

Cholinergic dysfunction in AD 

Basal forebrain cholinergic neurons (BFCNs) are important for memory function, 

learning, and behavior, and are progressively lost in AD pathogenesis (Mesulam et 

al., 1983a; Mesulam et al., 1983b; Mufson et al., 2003). Relevant structures in the 

basal forebrain include the septal area (Ch1), the vertical and horizontal limbs of 

the diagonal band of Broca (Ch2 and Ch3), and the nucleus basalis of Meynert 

(Ch4) (Mesulam et al., 1983a; Mesulam et al., 1983b) (Figure 6). The BFCNs 

provide the main cholinergic innervation of the hippocampus (Ch1-2), the 

olfactory system (Ch3), and the amygdala and cortex (Ch4) (Mesulam and Geula, 

1988; Mesulam et al., 1983a; Mesulam et al., 1983b; Selden et al., 1998).  

A number of studies have demonstrated a reduction in BFCNs (Davies and 

Maloney, 1976; Whitehouse et al., 1981; Whitehouse et al., 1982) and in cortical 

and hippocampal choline acetyltransferase (ChAT) activity in AD brains (Candy et 

al., 1983; DeKosky et al., 1992; DeKosky et al., 2002; Perry et al., 1978), which 

correlates with cognitive decline in the disease (DeKosky et al., 1992; Perry et al., 

1978). Intriguingly, the loss of synapses correlates well with the cognitive decline 

observed in AD, and has been suggested to precede the loss of BFCNs (Terry et al., 

1991). Thus, the relationship between neuroplasticity and cognition in the brain 

seems far more complex than if restricted to a certain neurotransmitter system or 

neuronal subtype. 
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Figure 6. Projections of basal forebrain cholinergic neurons in the brain. Abbreviations: MS – 

medial septal nuclei, NBM – nucleus basalis of Meynert. 

Nicotinic acetylcholine receptors 

Several lines of evidence point to a link between nAChRs and the development of 

AD, as reviewed by Paterson and Nordberg (Paterson and Nordberg, 2000). 

Neuronal nAChRs belong to a gene superfamily of ligand-gated ion channels. The 

subunits can be classified as α (α2-10) or β (β2-4) subfamilies, with either a 

homomeric or heteromeric pentameric subunit arrangement. Neuronal nAChRs 

are expressed on axons, as well as on presynaptic and postsynaptic terminals; 

activation of the receptor modulates the release of various transmitters, including 

acetylcholine (ACh), noradrenaline, dopamine, glutamate and GABA (Alkondon et 

al., 1997; Marshall et al., 1997; Paterson and Nordberg, 2000; Wonnacott, 1997).  

Studies in AD autopsy brain tissue have shown loss of nicotinic receptor 

binding sites as well as reduced protein levels (Guan et al., 2000; Nordberg and 

Winblad, 1986). The α7 nAChR subtype, which is involved in neuroprotection and 

plasticity (Kihara et al., 1997; Liu and Zhao, 2004), is highly expressed on 

hippocampal neurons, and may thus be involved in the integration of synaptic 

functions in the hippocampus (Albuquerque et al., 1997).  Although the expression 

of α7 nAChRs on neurons is significantly lower in postmortem AD brains than in 

healthy control brains, the expression of α7 nAChRs on reactive astrocytes is 

increased; these astrocytes seem to accumulate in the vicinity of the Aβ neuritic 

plaques (Marutle et al., 2013; Yu et al., 2005), suggesting that they are involved in 
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inflammatory processes in the brain.  

Impaired neurotrophin signaling 

Neurotrophin signaling is impaired in AD and levels of the neurotrophins nerve 

growth factor (NGF) and BDNF decline during progression of the disease as a 

result of dysmetabolism and impaired axonal transport (Bruno et al., 2009; 

Capsoni and Cattaneo, 2006; Laske et al., 2006; Michalski and Fahnestock, 2003; 

Peng et al., 2005). The actions of NGF on its high affinity receptor neurotrophic 

tyrosine kinase receptor A are important for the proliferation, differentiation and 

survival of BFCNs ¸(Heese et al., 2006; Schindowski et al., 2008). BDNF, which 

regulates synaptic plasticity and is involved in regulating memory formation 

(Laske and Eschweiler, 2006), is decreased in both the brain and cerebrospinal 

fluid (CSF) in AD (Laske et al., 2006; Michalski and Fahnestock, 2003; Peng et al., 

2005), correlating with cognitive decline (Laske et al., 2006). Impaired balance 

between levels of mature NGF and the NGF precursor, shifting the balance in favor 

of the precursor, has been suggested to underlie the cholinergic dysfunction 

observed in AD (Cuello et al., 2010). In light of this, it can be speculated that the 

decreased levels of NGF and BDNF, as well as the impaired signaling of these 

neurotrophins, could contribute to the progression of AD. 

Inflammation in AD 

The AD brain is characterized by low levels of systemic inflammation, with 

increased reactive microgliosis and astrocytosis in the vicinity of the Aβ plaques, 

as has been reviewed by several authors (Akiyama et al., 2000; Wyss-Coray and 

Mucke, 2002; Yu et al., 2005). Reactive astrocytes are also located in the 

hippocampus, where the fibrillar Aβ burden is usually low (Marutle et al., 2013).  

However, it has not been established whether inflammation is a cause, a 

contributor, or a consequence of AD.  

Microglia, the residing brain macrophages, are usually maintained in a 

quiescent state in the brain. However, when activated, they can display a plethora 

of functions such as recognition of pathogens, phagocytic properties, antigen 

presentation for activation of T lymphocytes, production of cytokines, chemokines, 
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and proteases, and participation in the regulation of stem cell differentiation, as 

reviewed by Boche (Boche et al., 2013). Macrophages can be classified as 

classically activated (M1) or alternatively activated (M2) phenotypes, each of 

which are capable of performing a subset of functions (Gordon, 2003).  The M1 

activation state is defined by an enhanced microbicidal capacity, and production of 

high levels of pro-inflammatory cytokines, which could exacerbate 

neurodegeneration (Combs et al., 2001). The M2 phenotype can be regulatory 

macrophages or can have functions associated with wound healing. Regulatory 

macrophages produce the anti-inflammatory cytokines IL-10 and transforming 

growth factor β (Fadok et al., 1998; Martinez et al., 2008). Wound-healing 

macrophages produce extracellular matrix components, as reviewed in (Kreider et 

al., 2007; Mosser and Edwards, 2008). It has been suggested that the same 

macrophage can adapt to either the M1 or M2 phenotype, depending on the type 

of stimulus (e.g. chronic disease or injury) or the cell status before the stimulus 

(activated or not) (Mosser and Edwards, 2008). Inflammation in the AD brain has 

been associated with the M1 activation of microglia, which are surrounding the 

neuritic plaques (Griffin et al., 1989).  

Astrocytes have multiple functions in the adult brain, including brain 

homeostasis, provision of structural and metabolic support to neurons, and 

involvement in the regulation of neurogenesis and modulation of synaptic activity 

(Parpura et al., 2012).  Furthermore, astrocytes are essential components of the 

neurovasculature and regulate the properties of the blood-brain barrier. Increased 

levels of the Aβ peptide activate astrocytes, with subsequent release of pro- and 

anti-inflammatory mediators in the brain (Heneka et al., 2010; Parpura et al., 

2012). Glial-derived inflammatory molecules can suppress LTP, which is a crucial 

factor for memory formation and consolidation in the hippocampus (Murray and 

Lynch, 1998; Tancredi et al., 1990).  Moreover, chronic inflammation may disrupt 

the normal production and secretion of glial-derived growth factors supporting 

the surrounding neurons (Nagatsu and Sawada, 2005), suggesting that several 

mechanisms may contribute to cognitive dysfunction in AD.   

It has been hypothesized that pro-inflammatory stimuli caused by high Aβ 

levels in the brain can create a self-propagating cycle that can lead to increased 
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APP processing, further Aβ accumulation and inflammation in patients with AD 

(Heneka et al., 2010; Heneka et al., 2005). The proposed mechanisms by which Aβ 

activates microglia and astrocytes involve Aβ binding to the receptor for advanced 

glycation end products (RAGE) and to other scavenger receptors (Jones et al., 

2013; Paresce et al., 1996; Yan et al., 1998), followed by the release of 

inflammatory mediators such as cytokines and nitric oxide (Heneka et al., 2010; 

Jana et al., 2008; Lindberg et al., 2005). Activated microglia and astrocytes are also 

implicated in the phagocytosis of Aβ, as a means of counterbalancing the increased 

Aβ load (Bolmont et al., 2008; Hjorth et al., 2010; Nagele et al., 2003). Studies using 

postmortem brain tissue have revealed the presence of senescent and dystrophic 

microglia in the aged and AD brain. It is suggested that these microglia are unable 

to clear the amyloid load, and it is therefore possible that both deficient and 

excessive inflammatory responses result in pathological conditions (Streit, 2005; 

Streit et al., 2004).   

Cholinergic regulation of inflammation 

In the periphery, ACh signaling can inhibit cytokine release by acting on α7 

nAChRs on macrophages, thus exerting an anti-inflammatory effect. This is a 

physiological pathway in which the autonomic nervous system, via the vagus 

nerve, can modulate cytokine production, a phenomenon that has been termed the 

“cholinergic anti-inflammatory reflex” (Czura et al., 2003; Czura and Tracey, 

2005). It has been hypothesized that Aβ accumulation increases the activity of the 

ACh hydrolyzing enzyme butyrylcholinesterase (BuChE), which could contribute 

to the early cholinergic deficit observed in AD (Darreh-Shori et al., 2011a; Darreh-

Shori et al., 2011b; Darreh-Shori et al., 2009a; Darreh-Shori et al., 2009b). Thus, 

reduced cholinergic signaling could disrupt the normal regulation of inflammatory 

cascades, leading to over-activation of the immune responses in the brain. A link 

between inflammation and diminished neurogenesis has been proposed (Ekdahl 

et al., 2003; Monje et al., 2003). However, whether Aβ-induced inflammatory 

events exert similar effects on stem/progenitor cell populations in the brain 

remains to be determined.  
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Metabolic changes 

A growing body of evidence suggests that metabolic disturbances in the brain, 

such as insulin-resistance, impaired glucose utilization, and mitochondrial 

dysfunction, could contribute to the pathological changes observed in AD (De 

Felice et al., 2014; de la Monte and Tong, 2014; Ferreira et al., 2014; Riemer and 

Kins, 2013).  

Insulin and IGF have potent effects in the brain, stimulating both 

synaptogenesis and synaptic re-modeling (Abbott et al., 1999). Dysregulated 

insulin signaling is associated with impaired neurogenesis and inflammation 

(Craft and Watson, 2004). The term insulin resistance refers to the reduced ability 

of insulin to act on target tissue expressing insulin receptors, and is linked to 

processes associated with cognitive decline, as well as increased intracellular Aβ 

deposits, reduced Aβ clearance, and increased tau phosphorylation (Cholerton et 

al., 2013).  Type 2 diabetes confers an increased risk of AD and vascular dementia 

(Luchsinger, 2008; Strachan et al., 2008). Metabolic syndrome and type 2 diabetes 

have been linked with brain injury over time, and the vasculature damage and 

inflammation associated with these conditions can contribute to diffuse white 

matter loss and subsequent hippocampal atrophy (den Heijer et al., 2003).  

There is also evidence that oxidative damage (Nunomura et al., 2001) and a 

reduced number of mitochondria (Hirai et al., 2001) occur early in the disease 

process. Mitochondria are the main source and target of oxidative stress, and 

damage to mitochondria in neurons could be detrimental because of the limited 

capacity of neurogenesis to affect the adult human brain.  

Collectively, these findings indicate that disturbances in insulin signaling 

and related metabolic changes could be part of the underlying molecular 

mechanisms contributing to the cognitive decline and histopathological lesions 

observed in AD.  

Genetics and risk factors 

AD can be classified as sporadic or familial (FAD); FAD constitutes only 1 % of all 

diagnosed AD cases (Pastor and Goate, 2004). Genetic studies have revealed 
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autosomal-dominant mutations in three genes in FAD – the APP gene on 

chromosome 21, and the presenilin (PSEN) genes, PSEN1 on chromosome 14 and 

PSEN2 on chromosome 1, which are components of the γ-secretase complex 

(Goate et al., 1991; Levy-Lahad et al., 1995; Sherrington et al., 1995). To date, over 

260 mutations in these three genes have been discovered 

(www.molgen.ua.ac.be/ADMutations). Transgenic mouse models that harbor 

some of these mutations have been developed; these are valuable in vivo model 

systems for studying disease pathogenesis (Ashe and Zahs, 2010; Lithner et al., 

2011). 

The main genetic risk factor for developing AD is the apolipoprotein E 

(APOE) ε4 allele (Corder et al., 1993); heterozygotes have a 4-fold increased risk 

and homozygotes have a 15-fold increased risk (Ashford, 2004). The APOE gene is 

located on chromosome 19 and is polymorphic (ε2, ε3, ε4), thus enabling six 

different genotypes. An estimated 20-30 % of the US population carries one or two 

copies of APOE ε4, whereas only about 2 % carries two copies (Farrer et al., 1997). 

Further, it is estimated that 40-65 % of patients diagnosed with AD are ε4 carriers 

(Thies and Bleiler, 2013). Although carrying one or two APOE ε4 alleles is 

associated with an increased risk of developing AD, it has a low predictive value 

for discovering who will develop AD (Patterson et al., 2008).   

Advancing age is regarded as the most prominent risk factor for developing 

AD (Kawas, 2003; Nussbaum and Ellis, 2003). However, sporadic AD is considered 

a multifactorial disease and there are several risk factors implicated in its etiology. 

Cardiovascular disease and factors that are associated with cardiovascular disease, 

such as diabetes mellitus (Reitz et al., 2011), high blood glucose, smoking (Anstey 

et al., 2007; Rusanen et al., 2011), obesity (Kivipelto et al., 2005; Whitmer et al., 

2008), hypertension, and high blood cholesterol in midlife (Anstey et al., 2008; 

Kivipelto et al., 2005), increase the risk of developing AD.  Conversely, factors that 

protect the heart, such as physical activity, could therefore also protect the brain 

and reduce the risk of developing AD and other dementias (Reitz et al., 2011). 

Engaging in social and cognitive activities could also support brain health (Hall et 

al., 2009), and it has been hypothesized that education, occupational attainment, 

and leisure activities in later life increase neuronal connections in the brain, which 

http://www.molgen.ua.ac.be/ADMutations
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can compensate for the early brain changes of AD (Evans et al., 1997; Stern et al., 

1994). This concept, named the cognitive reserve, could account for the individual 

variations in susceptibility to age-related brain changes (Stern, 2012).  

Brain imaging and CSF biomarkers 

The rapid development of new molecular imaging techniques has enabled 

longitudinal studies of pathological changes in living patients, which it is hoped 

will help the evaluation of treatment strategies as well as the early diagnosis of AD. 

Early detection or prediction of AD could enable intervention strategies with 

disease-modifying effects. Amyloid positron emission tomography (PET) tracers, 

such as 11C-Pittsburgh compound B (PIB), have enabled investigation of Aβ 

deposition in vivo in AD patients (Klunk et al., 2004; Nordberg, 2004; Nordberg et 

al., 2010). Longitudinal PIB-PET imaging studies of patients with MCI or AD have 

revealed that Aβ levels reach a plateau early in the disease progression (Engler et 

al., 2006; Forsberg et al., 2010; Forsberg et al., 2008; Kadir et al., 2010; Scheinin et 

al., 2009). Interestingly, a widespread Aβ plaque burden can be present in 

cognitively normal individuals (Aizenstein et al., 2008; Mintun et al., 2006), but 

these plaques seem to lack dystrophic neurites (Arriagada et al., 1992a; Arriagada 

et al., 1992b; Katzman et al., 1988). Since the development of PIB-PET, other 

amyloid PET tracers have been developed and approved by the U.S. Food and Drug 

Administration and the European Medicines Agency for use in clinical practice. 

Several tau tracers are also in development for use in in vivo PET imaging for AD 

(Maruyama et al., 2013; Okamura et al., 2013; Villemagne et al., 2014; Zhang et al., 

2012). The expectation is that these tau tracers will enable detection of specific AD 

forms of tau inclusion as well as increasing understanding of how tau pathology 

spreads in living patients. In addition, longitudinal imaging of tau and Aβ in 

patients may provide new insights into the relationships among the different 

pathophysiological processes in AD, while also offering a powerful tool for the 

evaluation of anti-tau treatment (Giacobini and Gold, 2013). 

 Glucose metabolism deteriorates in both MCI and AD patients 

(Mosconi et al., 2005); monitoring this deterioration using the glucose analog 18F-

fluoro-deoxy-D-glucose (18F-FDG) is an established method in clinical practice. 
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FDG-PET measurements in patients with FAD and a PSEN1 mutation indicate that 

glucose hypometabolism can be detected years before cognitive symptoms arise 

(Scholl et al., 2011). In AD patients, glucose metabolism continues to deteriorate 

even after the amyloid load has reached its plateau (Kadir et al., 2012). 

 Nicotine binding using 11C-nicotine-PET has demonstrated regional 

decreases in the number of binding sites in AD patients (Nordberg et al., 1990; 

Nordberg et al., 1995). Cortical 11C-nicotine binding also correlates with attention 

in patients with mild AD (Kadir et al., 2006; Nordberg et al., 1995). 

The PET tracer 11C-deprenyl binds to monoamine oxidase type B, an 

enzyme located in the outer mitochondrial membrane, predominantly on reactive 

astrocytes (Fowler 2005). A pioneering multitracer PET study by Carter and 

colleagues suggested that astrocytosis may be an early phenomenon in AD, since 

higher astrocytosis was seen in a cohort of MCI patients compared with a cohort of 

AD patients (Carter et al., 2012). Thus, like the accumulation of amyloid, 

astrocytosis could be regarded as an early event in the disease pathogenesis 

process, with an onset many years before the clinical symptoms occur. However, 

the spatial distribution pattern for astrocytosis seems to be different from that for 

amyloid deposition, as shown in both PET studies in living patients and binding 

studies in postmortem AD brains (Carter et al., 2012; Kadir et al., 2011; Marutle et 

al., 2013). It has also been shown that microglia activation, measured using (R)-

[11C]-PK11195, is increased in both MCI and AD patients (Schuitemaker et al., 

2013; Yokokura et al., 2011). These early inflammatory events may be driving the 

pathogenesis of the disease, but could also be a protective mechanism initiated to 

circumvent the pathological burden of amyloid accumulation, oxidative stress and 

metabolic disturbances in the brain. 

Three established CSF biomarkers are currently used to diagnose AD in 

clinical practice. These are used to measure the total amount of tau, which reflects 

the intensity of neuronal degeneration; the amount of phosphorylated-tau, which 

is believed to correlate with tangle pathology; and the amount of Aβ42, which is 

inversely correlated with the amyloid plaque burden (Blennow et al., 2010). The 

combination of these biomarkers can distinguish AD patients from controls with a 
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sensitivity and specificity of over 80 % (Blennow and Hampel, 2003). Clinical 

research studies employing molecular imaging techniques and CSF biomarkers 

have shown that the pathological processes associated with AD precede the onset 

of clinical symptoms by approximately 10-20 years (Hardy and Selkoe, 2002; Jack 

and Holtzman, 2013; Jack et al., 2010; Nordberg et al., 2010; Villemagne et al., 

2013) (Figure 7). 

 

Figure 7. Temporal changes of biomarkers in preclinical Alzheimer's Disease (AD), mild cognitive 
impairment (MCI), and AD (Jack and Holtzman, 2013; Jack et al., 2010; Nordberg et al., 2010). 
Abbreviations: FDG – fluoro-deoxy-D-glucose, PET – positron emission tomography, PIB – 
Pittsburgh compound B.  

Diagnostic criteria for AD 

A definite AD diagnosis is verified postmortem by histopathological examination 

of the brain for the presence of amyloid plaque and NFTs. However, AD can be 

diagnosed clinically in living patients. In Sweden, dementia is commonly classified 

according to the Diagnostic and Statistical Manual of Mental Disorders, fourth 

edition (DSM IV). The criteria for diagnosing dementia of the Alzheimer type are 

memory impairment and one or more of the following: aphasia (language 

problems), agnosia (failure to recognize objects), apraxia (impaired motor ability), 

or deterioration in executive function. This should also be accompanied by loss of 

independence.      

Two sets of criteria for the clinical diagnosis of AD have been published; 
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one was developed by the International Working Group (Dubois et al., 2010; 

Dubois et al., 2007) and the other by the Alzheimer’s Association and the National 

Institute of Aging (Albert et al., 2011; Sperling et al., 2011). Three stages of AD are 

identified. In the preclinical AD stage, the patient has pathological changes in 

biomarkers in the CSF and/or plasma, measurable changes in the brain, but no 

cognitive symptoms. The second stage is mild cognitive impairment (MCI), also 

referred to as prodromal AD, where the patient has biomarker evidence from CSF 

or imaging that support the presence of AD pathological changes, accompanied by 

subjective or objective memory impairment, although their ability to carry out 

everyday activities is not affected. The last stage, AD dementia, is characterized by 

biomarker evidence of Alzheimer pathology and specific memory changes that 

impair the patient’s ability to function in daily life. Although both criteria 

recognize the use of biomarkers in the diagnostic guidelines, these are not 

required by the Alzheimer’s Association and the National Institute of Aging. In 

addition, the two sets of criteria have different views on what is meant by disease 

(Morris et al., 2014).   

NEUROGENESIS IN AD 

It has been hypothesized that memory deficits seen during normal and 

pathological aging may be linked to alterations in hippocampal neurogenesis 

(Lazarov and Marr, 2010; Mu and Gage, 2011; Shruster et al., 2010). Investigation 

of postmortem AD brains has indicated that neurogenesis appears to increase in 

the hippocampus during the disease process (Jin et al., 2004b), which may reflect 

compensatory mechanisms initiated to circumvent pathological conditions. In 

contrast, however, impaired hippocampal neurogenesis has also been reported 

(Crews et al., 2010). Furthermore, another study demonstrated a decrease in the 

number of stem cells (type 1 cells) and increased proliferation of neuronal 

precursor cells (type 2b cells) in the AD brain, although differentiation into mature 

neurons remained virtually unchanged (Perry et al., 2012). This study also 

indicated that cholinergic pathology correlated with the reduced number of stem 

cells. It has been suggested that amyloid pathology could transiently promote the 

generation of immature non-functional neurons that are unable to integrate into 

existing networks (Shruster et al., 2010; Waldau and Shetty, 2008). Boekhoorn 
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and colleagues demonstrated that increased cell proliferation in the hippocampus 

of AD subjects reflects glial and vasculature-associated changes, rather than 

indications for altered neurogenesis (Boekhoorn et al., 2006). These studies 

indicate that the pathophysiological environment in AD could affect neurogenesis, 

although decreased neurogenesis has not been confirmed. 

Investigations into hippocampal neurogenesis in animal models of 

AD have also provided conflicting results; both impaired neurogenesis (Haughey 

et al., 2002a; Haughey et al., 2002b; Rodriguez et al., 2008; Wang et al., 2004; 

Zhang et al., 2007) and increased proliferation and neuronal differentiation have 

been reported (Jin et al., 2004a; Lopez-Toledano and Shelanski, 2007). Such 

discrepancies may be a consequence of different animal models used, differences 

in the age of the animals, which would influence their pathological burden, or 

differences in the markers used to study neurogenesis.  

TREATMENT STRATEGIES FOR AD 

A moment of relief  – current symptomatic treatment  

Current treatment options, cholinesterase inhibitors (ChEIs) and/or the N-methyl-

D-aspartate (NMDA) receptor antagonist memantine, give symptomatic relief to 

AD patients. The ChEIs donepezil and galantamine target the enzyme AChE, 

whereas rivastigmine targets both AChE and BuChE (Darreh-Shori et al., 2002). 

Since both enzymes hydrolyze ACh, ChEIs are designed to reduce the activity of 

either AChE or BuChE in the brain, thereby prolonging the neurotransmitter 

signal. Memantine, on the other hand, inhibits the NMDA receptor, thus protecting 

the neurons from glutamate-induced neurotoxicity.  

PET studies have reported both increased regional cerebral glucose 

metabolism and stabilization of glucose metabolism in AD patients following 

treatment with galantamine, rivastigmine and donepezil (Keller et al., 2010; 

Stefanova et al., 2006; Teipel et al., 2006). Rivastigmine has also been shown to 

increase 11C-nicotine binding, as measured by PET in the brains of AD patients 

(Kadir et al., 2007). Further, the increased regional cerebral blood flow following 

galantamine treatment positively correlates with the density of nAChRs and 

cognition (Keller et al., 2010), indicating that nAChRs may be a potential drug 
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target. Although these drugs can reduce the symptoms of the disease, they cannot 

ameliorate decreased cognitive function or reverse ongoing neurodegeneration, 

which highlights the need for disease-modifying interventions early in the disease 

progression process.  

Current development of therapeutics for AD 

Current research efforts are directed towards identifying disease-modifying 

therapies. There are several candidate drugs in various phases of development, 

and ongoing clinical trials are investigating therapeutic strategies for inhibiting Aβ 

production and aggregation, and the administration of NGF, anti-inflammatory 

drugs, and drugs targeting tau phosphorylation (Mangialasche et al., 2010). One 

clinical trial investigating the AChEI and amyloid-lowering drug (-)-phenserine 

demonstrated enhanced glucose metabolism and cognition as well as a reduced Aβ 

plaque load, as measured with 11CPIB-PET (Kadir et al., 2008), which lends support 

to the view that reducing the brain amyloid load could improve cognition in AD 

patients. (-)-Phenserine reached phase III clinical trials, which showed beneficial 

results in AD patients (Winblad et al., 2010). However, in another of the phase III 

trials, (-)-phenserine failed to show any efficacy and further development of the 

drug was abandoned. It has since been argued that this trial had some 

methodological lapses, and (-)-phenserine may thus have been prematurely 

dropped (Becker and Greig, 2012; Becker and Greig, 2013).  

Other clinical trials aiming at reducing Aβ production with γ-secretase 

inhibitors have unfortunately been terminated because of cognitive worsening 

and the development of adverse side effects. This highlights the importance of 

developing more selective inhibitors or modulators that have minor effects on 

other γ-secretase substrates (De Strooper and Annaert, 2010).    

Vaccines against Aβ have been tested in clinical trials since 2001. One trial 

was aborted because of adverse side effects such as encephalitis and increased 

loss of brain volume (Gilman et al., 2005; Orgogozo et al., 2003). At present, a 

variety of Aβ antibody therapies are being tested in clinical trials. These include 

both active and passive immunization with antibodies that recognize different 

conformations of the Aβ peptide (Gandy and DeKosky, 2013; Grill and Cummings, 
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2010; Karran and Hardy, 2014; Lemere and Masliah, 2010; Morgan, 2006). The 

first study to show target engagement demonstrated a 15-25 % reduction in 

amyloid but no cognitive benefits in patients with mild to moderate AD (Rinne et 

al., 2010). In addition, two recent phase III clinical trials were unable to show 

cognitive benefits in mild to moderate AD (Doody et al., 2014; Salloway et al., 

2014). There are several possible explanations for these failures. For example, a 

greater reduction in amyloid may be required to show functional benefit. Or it 

could be that primary prevention of amyloid pathology is required to improve 

cognition and the therapy was given to patients who already had advanced 

synaptic and neuronal loss. Or cognitive impairment in AD may be a consequence 

of the accumulation of Aβ oligomers rather than amyloid plaques and, because 

amyloid imaging cannot visualize Aβ oligomers, the response to anti-amyloid 

therapy was not documented (Gandy and DeKosky, 2013). To date, clinical trials 

aiming at reducing the brain amyloid load have not been able to show robust proof 

of concept with cognitive benefits to patients, as reviewed by (Gandy and 

DeKosky, 2013; Karran and Hardy, 2014). It could simply be that reduction of the 

amyloid load is not a suitable treatment strategy for AD and that the amyloid 

cascade hypothesis is erroneous.   

The development of novel nAChR agonists is an important strategy; 

these molecules could protect neurons against Aβ-induced toxicity and improve 

cholinergic neurotransmission (Toyohara and Hashimoto, 2010). Thus, cholinergic 

drugs with nAChR agonist activity are currently being evaluated in ongoing clinical 

trials (Dunbar et al., 2007). One of these studies, which used a selective agonist for 

α4β2 and α2β2 nicotinic receptors over a period of 12 weeks, failed to show proof 

of concept according to the AD Assessment Scale-Cognitive Subscale (Frolich et al., 

2011). However, long-term studies might be warranted in order to fully evaluate 

the therapeutic potential of nicotinic drugs and to target other nicotinic subtypes.  

The first clinical trial of growth factor treatment used an 

intracerebroventricular infusion of NGF in one AD patient; the results showed 

increased glucose metabolism and nicotine binding, measured using PET (Olson et 

al., 1992). Unfortunately, there were adverse side effects such as pain, weight lost 

and the appearance of a herpes zoster infection. While a second study with a 
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reduced dose of NGF showed increased nicotine binding, this was not as 

prominent as in the first study (Eriksdotter Jonhagen et al., 1998) and some of the 

patients still suffered from pain. A different approach using genetically modified 

fibroblast-expressing NGF inserted into the forebrains of AD patients improved 

cognition and cerebral blood flow (Tuszynski et al., 2005).  In a similar approach 

utilized by Eriksdotter-Jonhagen and colleagues, in continuation of their 

pioneering studies with NGF, NGF-secreting capsules were implanted into the 

basal forebrains of six AD patients. The surgical implantations were well tolerated, 

with positive findings in cognition and nicotinic receptor binding in two patients 

(Eriksdotter-Jonhagen et al., 2012; Wahlberg et al., 2012).  

Future AD therapy will probably be dependent on early diagnosis and 

subsequent early treatment. The recent progress in molecular imaging and CSF 

biomarkers could help the early detection and diagnosis of the disease (Hampel et 

al., 2010; Nordberg et al., 2010). This is important for evaluating both the short- 

and long-term effects of drug treatment, which would help establish the most 

effective time for administering treatment, with subsequent improvements to the 

efficacy of both current and future drugs.  

Stimulating regeneration in the AD brain 

Neurogenic mechanisms in the brain are novel therapeutic targets for preventing 

deterioration of neurological function. Compromised neurogenesis has been 

demonstrated with increasing pathology in animal models (Donovan et al., 2006; 

Lilja et al., 2013b; Rodriguez et al., 2008); these studies have also indicated that 

the type and magnitude of the pathology could influence the efficacy of the 

regenerative treatment regimens. There is evidence from studies in AD Tg2576 

mice that stimulation of endogenous regenerative mechanisms may be possible by 

reducing the pathological burden through pharmacological treatment with the 

APP-lowering neurotrophic drug (+)-phenserine (Lilja et al., 2013a; Lilja et al., 

2013b). Moreover, the neurosteroid allopregnanolone appears to induce 

endogenous neurogenesis and restore memory function, as well as reducing Aβ 

burden and inflammation, in the 3xTg-AD mouse model (Chen et al., 2011; Singh et 

al., 2012). Altering the microenvironment in the brain by reducing the pathological 
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burden, in combination with application of drugs with neurotrophic mechanisms 

of action, may thus be a viable approach for stimulating regeneration in the AD 

brain.  

 Other strategies for enhancing endogenous neurogenesis in AD 

include environmental enrichment and physical activity. Both enrichment and 

physical activity reduced the Aβ1-42/Aβ1-40 ratio and increased the number of 

newborn neurons in the APP23 mouse model of AD (Mirochnic et al., 2009; Wolf et 

al., 2006).  

Stem cell transplantation 

It has long been argued that stem cell replacement therapy could be an attractive 

therapeutic method of compensating for lost or damaged neuronal cells, thus 

potentially restoring functionality to AD brains. However, questions have also 

been raised as to whether neuronal replacement can ever be a viable strategy for 

AD because of its multifactorial etiology and the loss of multiple neuronal subtypes 

in several brain regions (Lindvall and Kokaia, 2010).  

A recent study has shown that hippocampal transplantation of murine 

NSCs improved cognitive deficits in the 3xTg-AD mouse model through a BDNF-

secreting mechanism, without affecting the pathology (Blurton-Jones et al., 2009). 

Moreover, improved endogenous neurogenesis and memory has been 

demonstrated following intra-hippocampal transplantation of murine neural 

precursor cells over-expressing the IL-1 receptor antagonist in Tg2576 mice (Ben 

Menachem-Zidon et al., 2014). Several studies have demonstrated improved 

spatial memory following murine or human NSC transplantation in rats with 

cholinergic lesions, although these animals did not have amyloid or tau pathology 

(Moghadam et al., 2009; Park et al., 2012a; Park et al., 2012b).  

However, we need to better understand the mechanisms of the changes 

following stem cell transplantation before these findings can be translated into 

therapeutic approach in clinical practice. Thus, it was considered important to 

investigate in experimental studies whether modulation of the AD brain 

microenvironment could benefit effective regeneration to support cognitive 

functions.  
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AIMS 
The main aim of this thesis was to investigate how the pathophysiological 

microenvironment in the AD brain affects stem cell neuronal differentiation and 

cholinergic signaling mechanisms, with implications for future regenerative 

therapies (Figure 8).  

 

The specific objectives were the following: 

Paper I To characterize the presence of different Aβ oligomer assemblies in 

postmortem brains of AD patients and to examine the relationship 

between these and the age of disease onset and cholinergic synaptic 

function. 

Paper II To investigate the effects of NGF, and fibrillar and oligomeric Aβ on 

human embryonic stem cell-derived cholinergic neuronal 

development. 

Paper III To study how Aβ-evoked inflammatory responses influence human 

embryonic stem cell differentiation and cholinergic signaling. 

Paper IV To investigate how hippocampal stem cell transplantation in 

combination with the amyloid-modulatory drug (+)-phenserine or 

the α7 nAChR agonist JN403 affect endogenous neurogenesis and 

cognition in AD Tg2576 mice.  
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Figure 8. Schematic overview of the projects presented in this thesis. The pathophysiological 

environment in the Alzheimer disease (AD) brain may limit the use of therapies intended to 

stimulate neurogenesis. Taken together, these studies will improve understanding of how 

neuroplasticity and regenerative mechanisms can be stimulated in order to develop novel, effective 

treatment strategies for AD.   
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METHODOLOGICAL CONSIDERATIONS 
This section contains a general discussion of the model systems and methods used 

in this thesis. Detailed descriptions of each experimental procedure are provided 

in the respective papers.  

ETHICAL CONSIDERATIONS  

Human brain tissue was obtained from the Brain Bank at Karolinska Institutet and 

the Netherlands Brain Bank, and permission to use autopsy brain material in 

experimental procedures was granted by the Regional Human Ethics committee in 

Stockholm and the Swedish Ministry of Health (S024/01). 

 The human embryonic stem cell lines HS293 and HS346 were 

derived from fresh, poor quality embryos that had been donated to the Fertility 

Unit of the Karolinska University Hospital, Huddinge, Sweden, for research. 

Informed consent was given by both partners after receiving oral and written 

descriptions of the study. The Ethics Board of Karolinska Institutet approved the 

derivation and research use of these lines (S454/02). 

 All experimental animal procedures were carried out in accordance with the 

guidelines provided by the Swedish National Board for Laboratory Animals. The 

ethical applications were approved for drug treatment, human stem cell 

transplantation, and Morris water maze (MWM) tests using Tg2576 mice (S53/10, 

S54/10 and S172/11).  

OF MICE AND MEN - MODEL SYSTEMS USED 

Postmortem human brain tissue 

Although postmortem brain tissue represents the end stage of the disease, it 

allows the underlying molecular disease processes to be studied in patients with 

AD and compared with healthy controls. The postmortem delay should be kept as 

short as possible to best preserve the tissue for subsequent morphometric and 

biochemical studies, and substantial differences in postmortem delay between 

subjects need to be taken into consideration when selecting the tissue. In paper I, 

because 3H-nicotine binding (to assess the density of nAChRs) and ChAT activity 
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were measured, it was important to take into consideration whether the subjects 

were smokers or had received drug treatment, as this could have confounded the 

results.  

Human embryonic stem cells 

The hES cell lines HS293 and HS346 used in papers II-III were derived at the 

Fertility Unit at the Karolinska University Hospital, Huddinge, Sweden. Each hES 

cell line was derived from one donor and was developed under special conditions. 

These hES lines have remained chromosomally stable after many (>100) passages; 

the karyotype of HS293 is 46, XY and that of HS346 is 46, XX. Although in theory all 

hES cell lines are the same, their propensity for differentiation, behavior and 

surface markers can differ (Adewumi et al., 2007; Cahan and Daley, 2013). It is 

therefore imperative to compare different stem cell lines to obtain comprehensive 

results and allow general conclusions to be drawn.  

In order to exclude animal components, the cells were grown on human 

foreskin fibroblasts and were cultured in a commercially available serum-

replacement medium (Hovatta et al., 2003). For neural induction, the cells were 

removed from the feeder layer and cultures were expanded in serum-free 

medium. The cells were propagated as free-floating neurospheres and 

mechanically passaged every 2-3 weeks. At this stage, the neurospheres constitute 

a mixture of NE and RG cells expressing nestin, Pax6, brain lipid-binding protein 

(BLBP) and GFAP, but they do not express the primitive endodermal marker α-

fetoprotein or the mesodermal marker brachyury (Nilbratt et al., 2010).  

Human neural stem cells 

The human neural stem/progenitor cells (hNSCs) transplanted into the 

hippocampi of Tg2576 mice in paper IV were originally isolated from 18- to 22-

week-old human fetal cortical tissue and were purchased from Lonza Walkersville, 

Inc. These cells, which were expanded in serum-free culture medium, can be 

readily differentiated into neurons and glial cells both in vitro and in vivo (Kwak et 

al., 2010; Kwak et al., 2011; Marutle et al., 2007). The hNSCs were cultured as free-

floating neurospheres; the neurospheres are easily expandable in vitro and are 
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multipotent and do not form teratomas in vivo. These attractive features explain 

why we transplanted hNSCs instead of the hES cells used in papers II-III.  

Microglia 

Microglia are the macrophages of the CNS and ultimately have myeloid origin 

(Chan et al., 2007). The human primary microglia used in paper III were derived 

at the National Institutes of Health, USA, and are commercially available for 

research via 3H Biomedical AB, Uppsala, Sweden. The cells were derived from the 

whole brain at gestation weeks 15-20, and cultured in proprietary medium for 1-2 

weeks to enable selection of microglia. However, human microglia are difficult to 

derive and are easily contaminated with fibroblasts, and it is therefore important 

to monitor the cultures carefully for both morphology and expression of microglia 

specific markers.   

 Although the literature indicates that murine microglia are more 

commonly used, their properties differ from those of human microglia. For 

example, inducible nitric oxide synthase (iNOS) expression and NO production 

have been well established in rodent microglia but iNOS expression appears to be 

restricted to astrocytes in the human brain (Zhao et al., 1998). Such discrepancies 

may reflect species-specific responses, highlighting the importance of using 

human cell lines. However, one of the challenges of primary cell cultures is that the 

in vitro conditions could stimulate the highly sensitive microglia to acquire 

amoeboid morphology (they become spherical in shape, lack processes, and 

contain numerous phagocytic vacuoles), which does not necessarily represent 

their in vivo status (Boche et al., 2013; Streit, 2004).  

Tg2576 mice 

Mice expressing the APP Swedish mutation (APPSWE2576Kha; Tg2576), which 

were used in paper IV, were bred at the Karolinska Institutet animal care facility 

by backcrossing with B6SJL (F1) females (Taconic). Their genotype was 

determined using polymerase chain reaction (PCR) technology, and wild-type 

littermates served as control animals. All animals were housed in enriched cages 

with 12-hour light-dark cycles and ad libitum access to food and water.  
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Tg2576 mice express high levels of soluble oligomers in the brain and, at around 

10 months of age, start to deposit Aβ plaques (Lithner et al., 2011; Mustafiz et al., 

2011). These mice also exhibit reduced levels of the synaptic marker 

synaptophysin from 1 month of age, impaired memory performance from 6 

months of age, and reduced neuronal maturation at 15-18 months of age (Lesne et 

al., 2006; Lilja et al., 2013b; Unger et al., 2005). They do, however, lack tangle 

pathology and neuronal loss in the brain, which are prominent features in the 

human AD brain.  

Although no transgenic mouse model replicates the full spectrum of AD 

changes, the models provide a valuable in vivo model system for studying 

molecular pathological changes and the effects of various interventions, which are 

not feasible in living patients (Lithner et al., 2011). Animal models rely on the 

genetic mutations associated with FAD, based on the rationale that the 

downstream events of the initial trigger share common features (LaFerla and 

Green, 2012). Because of the differences between the mouse models and AD 

patients, findings from such studies need to be interpreted with caution.  

 In paper IV, Tg2576 mice aged 7-9 months were used as a model 

system of the early pathological changes in AD in order to study regenerative 

mechanisms in the brain. We were also able to assess how regenerative processes 

could be modulated through paradigms involving pharmacological intervention 

and hNSC transplantation.  

EXPERIMENTAL PROCEDURES 

Aβ preparation and characterization 

In paper I, Aβ oligomers were extracted from postmortem autopsy brain tissue 

from AD patients and healthy subjects using a modified protocol as described 

earlier (Shankar et al., 2008). Frozen tissue was first homogenized in tris-buffered 

saline (TBS) to obtain a water-soluble fraction. The resulting pellet was re-

homogenized after centrifugation in TBS-T extraction buffer to obtain membrane-

associated Aβ oligomers, and the remaining pellet was then homogenized in 

guanidine-HCl extraction buffer. The different Aβ assemblies were assessed using 
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western blotting and Aβ oligomer-specific antibodies (Lambert et al., 1998). The 

identification and derivation of soluble Aβ assemblies are difficult, mainly because 

soluble Aβ assemblies are sensitive to the solutions and detection conditions used. 

There is also a risk that in vitro artifacts will be formed when extracting different 

Aβ assemblies, especially when using harsh extraction buffers such as guanidine-

HCl.  

 In papers II-III, recombinant oligomeric Aβ species were prepared by 

dissolving 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-pretreated Aβ1-40 or Aβ1-42 

(rPeptides, Bogart, GA, USA) in DMSO, followed by sonication and filtration. This 

protocol yields a high proportion of monomers, which then aggregate into larger 

Aβ assemblies that were assessed using western blotting in paper I. To verify that 

the oligomeric Aβ did not aggregate into fibrillar Aβ species, a thioflavine T (ThT) 

fluorescence assay was performed. The ThT fluorescence of the samples was 

measured at 37°C in neural proliferation medium over 72 h, i.e. the same 

conditions as used in the cell culture experiments. The ThT assay is a widely 

accepted assay that can detect protein fibrillization over a period of time by 

measuring the intensity of fluorescence emitted when ThT binds to β-plated 

sheets.  

 Different experimental conditions, including the different aggregation 

states of Aβ that are generated, could influence the differentiation of hES cells. 

Such discrepancies should be taken into consideration when comparing results 

from different studies using recombinant or synthetic Aβ. 

Quantitative gene expression 

Reverse transcription combined with real-time quantitative PCR  (qPCR) is a 

powerful method of quantifying gene expression. In paper II, qPCR was used to 

detect differences in gene expression between groups receiving Aβ or NGF 

treatment and an untreated control group. One of the most commonly used 

methods of analyzing data from real-time qPCR experiments is relative 

quantification, which relates the PCR signal of the target transcript to that of 

another sample, such as one from a control group. To avoid confounding factors 
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that could influence the PCR signal, such as RNA input errors or reverse 

transcription efficacy errors, the target transcript is normalized to that of an 

internal control. The internal control should have a constant level of expression, 

which should ideally not change with the treatment. In paper II, the 2-∆∆Ct 

method was used to calculate the relative gene expression from the real-time 

qPCR experiments (Livak and Schmittgen, 2001).   

 It is also important to consider the primer and probe design and their 

efficacy. The amplicon should be unique to the gene of interest and should 

preferably span exon-to-exon boundaries to be mRNA-specific. The primers 

should have close to 100 % efficiency, which can be easily tested prior to 

experiments by making dilution series. Analyzing the qPCR data using the ∆∆Ct 

method is based on the assumption that the primers have 100 % efficiency.   

Quantitative protein measurements  

In papers I-II, western blotting was used to detect and quantify different 

oligomeric Aβ assemblies. Western blotting separates proteins according to size 

and enables detection using specific antibodies. The method also permits 

quantification, although it is considered to be a semi-quantitative method. 

However, in some experimental settings, western blotting is the only available 

technique for quantifying different protein assemblies. For instance, in paper I, in 

order to detect and quantify different oligomeric Aβ assemblies it was imperative 

to separate the aggregates according to size.   

 In papers III-IV, enzyme-linked immunosorbent assays (ELISAs) 

were used to quantify protein expression.  The ELISA is a conventional method of 

quantifying protein expression that is based on the capture and detection of an 

antigen using epitope-specific antibodies. A similar method, Meso Scale Discovery 

(MSD) technology, was used in paper III to detect cytokine secretion in the cell 

medium. MSD technology uses electrochemiluminescence detection of the 

captured antigen. The ruthenium-conjugated detection antibodies yield a 

luminescent signal upon electrochemical stimulation of the electrode surface of 

the microplate, which makes it highly sensitive. In comparison, ELISAs use 
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enzyme-linked detection antibodies to emit fluorescence upon addition of a 

substrate.  

 In papers II-III, fluorescent immunocytochemistry was used to detect 

and quantify the number of glial cells, neurons, and neuronal subtypes after 

various treatments. The number of immunoreactive cells was quantified by 

manually counting >600 cells that had migrated and differentiated away from the 

sphere. In paper IV, immunohistochemistry on mice coronal brain sections was 

employed to study the regional distribution of astrocytes and to quantify the 

number of α7 nAChR-expressing astrocytes in the hippocampus. The extent of 

neurogenesis in the DG of the hippocampus was also quantified by counting the 

number of DCX-positive cells. Double labeling with a human nuclei-specific 

antibody and a marker for either neurons or astrocytes was used to determine the 

fate of the grafted cells. To ensure comparable results between the different 

animals, 3 coronal sections from approximately the same hippocampal region 

were chosen for the different staining experiments.  

Drug treatment 

In paper IV, the amyloid-lowering neurotrophic drug (+)-phenserine or the partial 

α7 nAChR agonist JN403 was administered to Tg2576 mice in combination with 

intrahippocampal hNSC transplantation. (+)-Phenserine (25 mg/kg) or JN403 (0.3 

mg/kg) were administered by intraperitoneal (i.p.) injection once daily for 5 

weeks. To monitor for potential adverse drug reactions, JN403 was initially 

administered at dosages of 0.01 mg/kg (days 1-2) and 0.1 mg/kg (days 3-4) before 

reaching the full dose from day 5. 

(+)-Phenserine is an APP synthesis inhibitor, and thus lowers Aβ levels 

(Lahiri et al., 2007; Shaw et al., 2001). Furthermore, (+)-phenserine has 

neurotropic and neuroprotective actions both in vitro (Lilja et al., 2013a) and in 

vivo (Lilja et al., 2013b; Marutle et al., 2007).   

JN403 is a selective α7 nAChR partial agonist which has a significantly 

lower affinity for other subtypes of human nAChRs. Furthermore, in vivo 

pharmacological characteristics show good systemic exposure and brain 
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penetration, and acute administration of JN403 facilitates learning and memory in 

the social recognition test in mice (Feuerbach et al., 2009). 

 I.p. injections are commonly used to administer drugs to small 

laboratory rodents, since intravenous access can be challenging. Absorption of the 

drug is slower than after intravenous injection, and the bioavailability is lower. 

The primary route of absorption is into the mesenteric veins, which drain into the 

portal vein, and consequently the substance may undergo hepatic metabolism 

(Turner et al., 2011). The pharmacokinetics of drugs administered by i.p. injection 

are thus similar to those after oral administration, although i.p. injection is 

considered to be a parenteral route. The advantage, however, is the ease of 

administration, even when larger volumes are required.   

Stem cell transplantation 

In paper IV, Tg2576 mice received bilateral hippocampal injections of 25 000 

hNSCs per hemisphere. The animals were anesthetized using a constant flow of 

4% isoflurane and kept warm under a heating lamp throughout the 

transplantation procedure. The head of the mouse was fixed using ear and tooth 

bars before a skin incision was made, to facilitate the location of the following 

coordinates relative to the bregma: AP -2.06, ML ±1.75, DV -1.75. Prior to the 

transplantation procedure, methylene blue was injected to verify that the 

coordinates targeted the DG of the hippocampus. The animals were monitored 

daily after the transplantation procedure to ensure recovery after surgery.   

 Stem cells have been reported to exert immunomodulatory actions 

(Kokaia et al., 2012). Immunosuppressive drugs may prevent graft rejections but 

the use of such substances could be inappropriate in studies where 

immunomodulatory effects may be of interest.  Previous studies in APP 

overexpressing transgenic mice have indicated that immunosuppressive drugs are 

not necessary to ensure proper integration of the graft in time frames similar to 

that used in paper IV (Kwak et al., 2011; Marutle et al., 2007).  

 The number of hNSCs transplanted could influence the results when 

comparing studies using transplantation paradigms. However, a study in stroke-
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damaged rats has demonstrated that transplanting a greater number of stem cells 

does not result in a greater number of surviving cells or increased neuronal 

differentiation (Darsalia et al., 2011). 

Morris water maze 

In paper IV, the MWM test was used to assess hippocampal-dependent spatial 

learning and memory following transplantation of hNSCs in Tg2576 mice. The 

mice were randomly placed in one of four fixed positions around the wall of a 

circular 1 meter diameter swimming pool. During the acquisition period, the mice 

learned the location of a hidden platform by using visual cues on the walls around 

the pool. In order to assess hippocampal-dependent memory, the animals were 

subjected to a probe trial 24 hours after the last acquisition trial, in which the 

platform was removed and the escape latency was measured. The baseline 

acquisition values for escape latency were subtracted from the follow-up probe 

values (Δ latency) to evaluate differences in learning and memory between the 

groups. However, in the probe trial the standard measurement of memory was the 

time spent in the target quadrant compared with that spent in the other 

quadrants, rather than the latency to reach the target quadrant. The mice in paper 

IV spent only a short time in the target quadrant, thus showing a low persistence, 

which is not unusual for mice.  

 Ataxia, poor vision and impaired motor behavior are parameters that 

could influence the outcome of the MWM test, and such attributes should be 

carefully monitored prior to testing. One of the advantages of the MWM test is that 

it is a well-recognized hippocampal-dependent memory test that has been 

extensively studied in Tg2576 mice.  

Statistics 

GraphPad Prism 5.0 or 6 (GraphPad Software, Inc., La Jolla, CA, USA) was used for 

all univariate statistical analyses in papers I-IV. In papers I and IV, the data were 

assumed to have a non-gaussian distribution and were thus analyzed using the 

Mann-Whitney test for comparing two groups or the Kruskal-Wallis 1-way 

analysis of variance (ANOVA) by rank, followed by Dunn's post hoc test for 
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comparison among more than two groups. The Spearman rank correlation was 

used in correlation analysis, which was visualized graphically using simple 

regression analysis. 

 In the in vitro experiments in papers II and III, the unpaired 

Student’s t-test was used for comparing two groups. ANOVA followed by Dunnett’s 

post hoc test was used to compare more than two groups. The Z-test was used for 

differences in proportion for data from the calcium imaging experiment in paper 

II.  

Orthogonal projections to latent structures (SIMCA-P software, Umetrics 

AB, Umeå, Sweden), a method of multivariate data analysis, were employed to 

confirm the parameters differentiating the groups in paper I from each other 

(Wold et al., 2001). All multivariate analyses were performed using mean 

centering and unit variance scaling. Values were also log-transformed in order to 

acquire a more normal distribution of the data. In all papers, the data are 

presented as means ± standard errors of the mean (SEM). P-values <0.05 were 

considered to be significant.  
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RESULTS AND DISCUSSION 
This section summarizes and discusses the main findings of the thesis. An in-depth 

description of all results can be found in the respective papers.  

DIFFERENT Aβ ASSEMBLIES IN EOAD AND LOAD  

Age is the most significant risk factor for AD (Kawas, 2003; Nussbaum and Ellis, 

2003) and the contribution of the different Aβ oligomer assemblies in normal 

aging and during disease progression is not well understood. The main difference 

between early-onset AD (EOAD; disease onset <65 years) and late-onset AD 

(LOAD; disease onset >65 years) is that EOAD is associated with a more clinically 

aggressive disease progression compared to LOAD.  In paper I, we extracted Aβ 

oligomers from postmortem frontal cortex brain tissue from AD patients and 

control subjects, and the various Aβ assemblies were studied using oligomer-

specific antibodies.  This study revealed that both pentamers (5mers) and 

decamers (10mers) in the soluble fraction were elevated in AD patients compared 

with controls.  Intriguingly, we also detected various oligomeric species in non-

demented subjects, indicating a distinct physiological role for Aβ oligomers. 

Recently, Aβ oligomers have been detected in cognitively intact individuals 

ranging from young children to the elderly, which is supportive of our findings 

(Lesne et al., 2013).  

 When stratifying the AD patients as EOAD or LOAD, there were 

significant differences in the Aβ oligomer assemblies detected. The levels of 

dodecamers (12mers) in the soluble fraction and pentamers in the insoluble 

fraction were higher in EOAD than in LOAD. It was noteworthy that we did not 

find any differences in ChAT activity, nAChR binding density, 3H-PIB binding 

levels, or total levels of Aβ1-40 or Aβ1-42 between EOAD and LOAD. In addition, a 

PET study in EOAD patients reported regional glucose hypometabolism in the 

brain compared with LOAD patients, while comparable high 11C-PIB uptake was 

observed in both groups (Rabinovici et al., 2010). An improved understanding of 

the pathological differences associated with the Aβ assemblies during the 

progression of disease may have implications for the development of therapeutic 

strategies for AD. Our findings indicate that patients with EOAD and LOAD may 
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need tailored anti-amyloid therapy, and that they should be stratified accordingly 

to achieve cognitive benefits in clinical studies. It is also tempting to speculate that 

the differences in the Aβ assemblies between EOAD and LOAD could have 

implications with respect to the plasticity of the brain, which could explain why 

some people develop AD at an early stage and some seem to have a more resilient 

brain, and are thus better equipped to cope with the pathological burden.  

Aβ OLIGOMERS CORRELATE WITH IMPAIRED CHOLINERGIC ACTIVITY  

Both synaptic loss and cognitive impairment show strong correlations with levels 

of soluble Aβ in AD (Lue et al., 1999; McLean et al., 1999). However, which of the 

different Aβ assemblies contribute to neuronal dysfunction and memory loss in AD 

is under heated debate, and a more comprehensive understanding of the 

pathophysiological role of Aβ oligomers will have important implications for the 

development of new treatment strategies.  

 The significant decrease in ChAT activity measured in paper I 

correlated with increased levels of pentamers in the soluble fraction, which 

further supports an essential role for distinct Aβ oligomers in AD pathogenesis. It 

has previously been shown that cholinergic dysfunction causes a rapid increase in 

APP in both the cortex and the CSF, leading to an amyloidogenic metabolism that 

contributes to neuropathology and cognitive dysfunction (Giacobini, 2002).  This 

is thus indicative of synergistic effects of Aβ accumulation and impaired 

cholinergic transmission.  

The substantial loss of nAChRs in AD patients in paper I correlated with 

increased 3H-PIB binding. This observation corroborates earlier in vivo findings 

where brain areas with high fibrillar Aβ burdens also showed decreased density of 

nAChR binding sites (Kadir et al., 2006). These findings suggest that both 

oligomeric and fibrillar forms of Aβ induce impairment of the cholinergic system 

in AD pathogenesis.  

CHOLINERGIC DIFFERENTIATION OF STEM CELLS  

Elucidation of the molecular signals governing cholinergic neuronal development 

and dysfunction is essential for the development of drugs that could stimulate 



 

 43 

regeneration and neuroprotection in the AD brain. In paper II, we generated and 

characterized BFCNs derived from hES cells by stimulating the cells with NGF, as 

previously described (Nilbratt et al., 2010). The levels of NGF decline during AD 

and BFCNs are dependent on NGF for maintenance of their cholinergic phenotype 

and synaptic integrity (Capsoni and Cattaneo, 2006; Cuello et al., 2010). In paper 

II, differentiation to BFCNs was more extensive in hES cells treated with NGF than 

in untreated hES cells. Significantly more NGF-exposed BFCNs responded to both 

ACh and KCl, reflecting an increase in the proportion of neurons expressing 

cholinergic receptors as well as voltage-gated calcium channels. Since then, only 

two additional protocols have been developed for the generation of BFCNs using 

hES cells and iPS cells (Bissonnette et al., 2011; Crompton et al., 2013; Duan et al., 

2014). Although these two protocols both appear to generate robust populations 

of BFCNs, the use of mouse embryonic fibroblasts as a feeder layer could introduce 

variability in the cultures and complicate further therapeutic use of the cells. In 

comparison, our protocol is entirely xeno-free, thus providing a reproducible 

environment that offers the possibility of moving towards translational and 

clinical research.  

EFFECTS OF Aβ ON STEM CELL DIFFERENTIATION, INFLAMMATION AND 
CHOLINERGIC SIGNALING 

Neurogenesis is affected by inflammatory processes (Ekdahl et al., 2003; Monje et 

al., 2003), which may be linked to altered cholinergic signaling. Our findings from 

paper I suggested that distinct Aβ assemblies could induce impairment of the 

cholinergic system, which prompted us to investigate the impact of fibrillar and 

oligomeric Aβ on cholinergic signaling, inflammatory processes and neuronal 

development of hES cells (papers II and III).  

Oligomeric Aβ impairs the differentiation of cholinergic neurons 

The quantification of immunocytochemical staining in paper II showed that, 

following oligomeric Aβ1-42 exposure, the proportion of βIII-tubulin-positive cells 

was similar to that in untreated hES cells. However, the number of MAP2-positive 

cells was decreased by oligomeric Aβ1-42 exposure, indicating that the capacity of 

these cells to differentiate into mature neurons was reduced. Furthermore, 
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oligomeric Aβ1-42 inhibited differentiation into BFCNs and significantly decreased 

the number of functional neurons, as deduced by intracellular Ca2+-imaging. 

Exposure to oligomeric Aβ1-40 impaired cholinergic differentiation, although the 

functional properties of the hES cell-derived neurons were improved compared to 

untreated cells. These findings suggest a physiological function for Aβ1-40 

regarding neuronal development, and indicate that the mechanism of action of 

Aβ1-40 on stem cell differentiation may be different from that of Aβ1-42. The 

findings from paper II also suggest that factors governing neurogenesis in the AD 

brain depend on the state of aggregation of Aβ. In combination, these findings 

suggest that oligomeric Aβ1-42 could disrupt the maturation and function of newly 

formed neurons, and that progenitor cells existing in neurogenic regions in the 

brain may have a diminished capacity for regeneration in AD pathogenesis. 

Therefore, targeting the microenvironment with growth factor support or 

pharmacological treatment could promote survival and maturation of stem cell-

derived neurons. However, anti-amyloid therapy targeting both Aβ1-40 and Aβ1-42 

may not be a suitable strategy, given the possible supportive role for Aβ1-40 in 

stem cell differentiation.  

Fibrillar Aβ shifts the balance of ACh synthesis and degradation  

It has been hypothesized that Aβ accumulation disrupts normal inflammatory 

regulation in the brain by increasing the activity of the ACh hydrolyzing enzyme 

BuChE (Darreh-Shori et al., 2011a; Darreh-Shori et al., 2011b; Darreh-Shori et al., 

2009a; Darreh-Shori et al., 2009b).  

In paper III, fibrillar Aβ caused a time-dependent reduction in the release 

of ChAT, while the secreted levels of the ACh-degrading enzyme BuChE from 

differentiating neurospheres increased highly significantly. In contrast, oligomeric 

Aβ did not influence the secretion of these proteins. Thus, prolonged exposure to 

fibrillar Aβ caused a pronounced shift in the ACh regulatory machinery that 

favored maintenance of low levels of ACh. Furthermore, a comparison between the 

levels of functional BuChE and the levels of total BuChE protein suggested that 

fibrillar Aβ induced a hyperactive phenotype of BuChE, a phenomenon that has 

also been reported in the CSF of AD patients (Darreh-Shori et al., 2011a; Darreh-
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Shori et al., 2011b; Darreh-Shori et al., 2012). Given that ACh is expected to exert 

suppressive, anti-inflammatory effects on immunogenic cells such as the 

cholinoceptive astroglial cells, altered levels of these cholinergic enzymes could 

promote an environment favoring increased secretion of inflammatory mediators, 

with repercussions for neurogenesis.   

Fibrillar Aβ promotes glial differentiation and inflammatory mechanisms 

In paper III, we found that neurospheres derived from hES cells secreted the pro-

inflammatory cytokines IL-1β, TNFα, INFγ, IL-6 , IL-2 and IL-10.  A transient 

increase in IL-2 and IL-1β levels was observed after 20 days of differentiation 

following fibrillar Aβ treatment, indicating that these signaling molecules may 

have a role in the fate-commitment of the cells. After 29 days of differentiation, IL-

6 levels had increased over 20-fold following fibrillar Aβ exposure. In contrast, 

oligomeric Aβ treatment did not affect the secretion of cytokines from 

neurospheres. 

 The increased secretion of cytokines coincided with reduced 

neuronal differentiation of the neurospheres, and increased numbers of stem cell-

derived glial cells. In paper II, an increase in the gene expression of the glial 

marker GFAP was demonstrated following fibrillar Aβ exposure. Furthermore, in 

papers II and III, immunocytochemical and morphological examinations of the 

differentiating neurospheres showed an increased number of cells expressing 

GFAP and a reduced number of βIII-tubulin-positive cells.  In paper III, we also 

demonstrated a transient increase in the levels of S100B, an astrocytic secretory 

protein with cytokine-like properties, while the levels of GFAP steadily increased 

throughout the course of differentiation following fibrillar Aβ exposure. These 

findings suggest either that the secreted cytokines drive the differentiation of 

neurospheres toward gliogenesis or that increased secretion of the cytokines is a 

consequence of the increased gliogenesis induced by fibrillar Aβ treatment.  

Our observations lead us to propose a mechanism whereby fibrillar Aβ 

increases glial differentiation by promoting a microenvironment favoring hypo-

cholinergic signaling and increased cytokine secretion. 
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Fibrillar Aβ reduces cytokine secretion from microglia 

Different aggregation forms of Aβ can activate microglia, with consequential 

neurodegenerative effects (Garcao et al., 2006; Maezawa et al., 2011). Microglia 

are also implicated in the regulation of postnatal neurogenesis (Walton et al., 

2006). Thus, we were interested in whether Aβ altered innate inflammatory 

responses from human microglia. In paper III, examination of the cytokine 

secretion profile revealed that exposure of oligomeric Aβ to microglia reduced the 

secretion of IL-1β, although levels of the other cytokines assessed (including IFNγ, 

TNFα, IL-2, IL-10, and IL-6) remained unchanged. Fibrillar Aβ reduced the 

secretion of TNFα, IL-1β, IL-2, and IL-10 after 48 hours exposure.  

 Exposure of the differentiating neurospheres to conditioned medium 

from microglia treated with fibrillar Aβ promoted differentiation of glial cells, 

while simultaneously impairing maturation of neurons. These findings suggest 

that suppressing the basal physiological secretion of cytokines from microglia 

could alter neuronal differentiation in favor of gliogenesis, possibly reflecting the 

dual function of the innate immune system in modulating cell genesis and repair. 

Alternatively or additionally, these findings may point to a yet unidentified 

factor(s) in the conditioned medium that compromises the neuronal 

differentiation of neurospheres. 

COMBINING DRUG TREATMENT AND STEM CELL TRANSPLANTATION 

The findings presented so far clearly indicate that the pathophysiological 

environment affects neurogenesis. A recent study has indicated that there is a 

regenerative window in Tg2576 mice and that endogenous neurogenesis can be 

enhanced by treatment with the amyloid-modulatory neurotrophic drug (+)-

phenserine (Lilja et al., 2013b). In paper IV, the aim was to investigate whether 

altering the brain microenvironment using (+)-phenserine or the partial α7 

nAChR agonist JN403, in combination with hippocampal stem cell transplantation, 

could improve neurogenesis and cognition in young Tg2576 mice (representing 

the early stages of AD) (Figure 9).   
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Figure 9. Schematic overview of the study design in paper IV. 

Hippocampal stem cell transplantation improves neurogenesis and 
cognition  

Bilateral hippocampal transplantation of hNSCs in 6- to 9-month-old Tg2576 mice 

increased the number of DCX-positive cells in the DG. The DCX-positive cells were 

found exclusively in the subgranular layer, whereas hNuclei-positive cells, a 

marker for the grafted hNSCs, were found in the polymorph layer of the DG, 

indicating that the hNuclei-positive cells were derived from the transplanted cells, 

whereas the DCX-positive cells were mainly derived from the endogenous stem 

cell pool. Furthermore, the increase in endogenous neurogenesis was associated 

with improved hippocampal-dependent memory, as assessed by the MWM. These 

findings are in line with other studies, which have reported memory improvement 

following transplantation of murine stem cells (Ben Menachem Zidon et al., 2013; 

Blurton-Jones et al., 2009). 

The amyloid-lowering drug (+)-phenserine interferes with stem cell 
transplantation-induced neurogenesis and cognition 

Surprisingly, we found that administration of (+)-phenserine prevented the hNSC-

induced increase in endogenous neurogenesis and memory improvement in 

Tg2576 mice. In an earlier study, (+)-phenserine induced increased neuronal 

differentiation of transplanted hNSCs in the brains of AD APP23 transgenic mice 
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(Marutle et al., 2007), although no functional outcome was assessed in that study. 

Intriguingly, in paper IV, the grafted cells survived for longer and neuronal 

differentiation increased in Tg2576 mice following (+)-phenserine treatment 

(Figure 10), but this failed to translate into cognitive benefits.  

 

Figure 10. The total number of MAP2-positive cells co-located with hNuclei-positive cells, following 
transplantation of hNSCs into the dentate gyrus of Tg2576 mice. For abbreviations, see Figure 9.
  

In vitro, (+)-phenserine exerts prosurvival effects on progenitor cell populations; 

both the mitogen-activated protein kinase (MAPK) and phosphokinase C signaling 

pathways are reportedly mediators of these neurotrophic actions (Lilja et al., 

2013a). MAPK and the downstream transcription factor cAMP response element-

binding protein (CREB) are important regulators of BDNF (Autry and Monteggia, 

2012; Lu et al., 2008) and other key regulators of adult neurogenesis (Faigle and 

Song, 2013). It is plausible that hNSCs exert their beneficial effects on 

neurogenesis and memory through signaling cascades regulating trophic support, 

which has been shown previously following murine stem cell transplantation 

(Blurton-Jones et al., 2009). Thus, (+)-phenserine co-administration could 

interfere with hNSC signaling cascades, inhibiting the neurotrophic effects of these 

cells on the brain environment that supports neurogenesis in Tg2576 mice. 

However, further studies are needed to support this hypothesis.  
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The α7 nAChR agonist JN403 impairs neurogenesis by down-regulating α7 
nAChR-expressing astrocytes  

The α7 nAChRs are involved in both neuroprotective (Kihara et al., 1997; Liu and 

Zhao, 2004) and inflammatory processes (Shytle et al., 2004; Tracey, 2002; Tracey, 

2009). Although the α7 nAChRs are widely distributed in the hippocampus (Court 

et al., 1997), it is not clear whether the beneficial responses of agonist stimulation 

are mediated by the α7 nAChRs expressed on astrocytes, the α7 nAChRs expressed 

on neurons, or a combination of the two. In paper IV, we observed a high number 

of α7 nAChR-expressing astrocytes surrounding the injection site in the DG of 

Tg2576 mice. In addition, a positive correlation was found between the numbers 

of α7 nAChR-expressing astrocytes and the numbers of DCX-positive neurons in 

the DG. These findings indicate that this subclass of astrocytes is involved in repair 

processes and tissue remodeling in the brain.   

In paper IV, JN403 prevented the beneficial effects of hNSC transplantation 

on neurogenesis and memory. In fact, JN403 actually reduced the number of DCX-

positive neurons compared with the group receiving hNCS transplantation only. 

Furthermore, JN403 reduced the number of α7 nAChR-expressing astrocytes in 

the DG, possibly suppressing their normal physiological and neuroprotective 

functions. It should be mentioned, however, that α7 nAChR expression on the 

neurons was not quantified in this study and therefore it cannot be excluded that 

JN403 exerted antagonistic functions through mechanisms involving neuronal α7 

nAChRs. Since α7 nAChRs are easily desensitized, the dosing regimen or the long 

treatment period in paper IV could possibly have had a desensitizing effect, thus 

becoming contra-therapeutic in this particular setting. It is therefore possible that 

a different dosing regimen and/or treatment period could have had the opposite 

effect to that shown in this study, which would be interesting to investigate in the 

future. In addition, α7 nAChRs are expressed on human stem cells (as shown in 

paper II), where they probably have effects on cholinergic signaling, which may 

affect stem cell survival and differentiation. 

In conclusion, our findings indicate that α7 nAChR-expressing astrocytes 

may be an important component of the neurogenic niche in the brain, and should 

be considered further in the development of therapeutic strategies for AD.  
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CONCLUDING REMARKS AND FUTURE PERSPECTIVE 
The main focus of this thesis was the study of the influence of the pathological 

microenvironment in the AD brain on stem cell regeneration and plasticity, with 

associated implications for finding targets for novel intervention strategies.   

STEM CELL DIFFERENTIATION IS AFFECTED BY AD PATHOLOGY 

The findings presented in this thesis clearly show that different aggregation forms 

of Aβ can induce impairments in both cholinergic activity and cholinergic neuronal 

differentiation. The hippocampus receives robust cholinergic innervations and 

stem cells express cholinergic receptors and enzymes, indicating that cholinergic 

signaling can regulate adult neurogenesis. Given that the accumulation of Aβ 

occurs between 10 and 20 years before the onset of clinical AD symptoms, subtle 

changes in the plasticity of the cholinergic system could thus occur early in the 

disease process, which could affect regenerative processes that then diminish with 

increasing pathology. Furthermore, hNSC transplantation stimulates endogenous 

neurogenesis in young AD Tg2576 mice (when the pathological burden in the 

brain is low). This may imply that regenerative processes could be induced in 

preclinical AD or in MCI patients, by applying disease-modifying strategies (those 

that include regenerative approaches) early in the AD pathological process (Figure 

11). 

 

Figure 11. Tentative time-line for establishing regenerative therapies for AD. 
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TARGETS FOR REGENERATIVE THERAPIES IN AD 

NGF treatment enhances cholinergic neuronal differentiation and may thus 

enhance plasticity in the cholinergic system in the AD brain.  However, since 

oligomeric Aβ impairs the function of new neurons and fibrillar Aβ alters 

inflammatory processes and stimulates glial differentiation, further studies are 

warranted to investigate whether NGF treatment can sufficiently enhance 

cholinergic regeneration and plasticity mechanisms in the presence of AD 

pathology.  

My findings also indicate that suppressing the basal physiological secretion 

of cytokines could impair neuronal differentiation. In addition, it was found that 

α7 nAChR-expressing astrocytes may represent an inflammatory component that 

promotes neurogenesis through their involvement in processes that support 

tissue remodeling and repair. Thus, broad anti-inflammatory therapies may 

reduce unwanted inflammation but may also be contra-therapeutic by impeding 

the beneficial functions of inflammation.  

It is thus proposed that regenerative therapies for AD must also target the 

pathological burden of the disease for there to be long-term benefits in cognitive 

functioning. The results presented in this thesis indicate that targeting growth 

factor depletion, decreasing Aβ1-42 load, and stimulating α7 nAChR-expressing 

astrocytes could lead to disease-modifying therapies that will enhance 

regeneration in the brain (Figure 12). However, such putative approaches need to 

be further explored in future studies. 

 
Figure 12. Regenerative targets for disease-modifying therapies in AD. 
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POTENTIAL AND PITFALLS - REGENERATIVE STUDIES IN AD 

The use of human stem cells for studying neurogenesis in AD presents several 

challenges and limitations. Mimicking AD pathology in vitro only replicates some 

aspects of the microenvironment in the AD brain. The discovery of iPS cells has 

revolutionized the field of regenerative medicine and has generated unique 

cellular model systems obtained from living FAD and sporadic AD patients that 

enable detailed study of neurogenesis in relation to patient-specific disease 

mechanisms. Initial studies have focused on FAD-iPS cells, especially regarding 

APP and tau metabolism and related signaling pathways (Doege and Abeliovich, 

2014). The derivation of neurons using iPS cell reprograming technologies could 

provide a source of neuronal cells for replacement therapies in those afflicted with 

or at risk of developing AD, and for testing novel drugs with potential for disease-

modifying effects, which is likely to accelerate new drug discovery.  

Although such model systems will play a central role in regenerative 

medicine, several questions remain to be addressed in future studies. The 

foremost of these questions is: do iPS cells from FAD and sporadic AD patients 

show a deviant pattern of differentiation or is it the local microenvironment in the 

AD brain, generated by a plethora of cell types, that affects neurogenesis?  If the 

latter is true, it implies that hES cells or hNSCs will be equally good models for 

regenerative studies in AD. In fact, hES cells have been extensively studied and 

defined xeno-free and feeder-free culture systems have been developed, offering 

phenotype stability (Rodin et al., 2014). A recent report has also shown efficient 

derivation of iPS cells under xeno-free and feeder-free conditions (Nakagawa et al., 

2014). However, the use of the reprograming factors still leads to some safety 

concerns, especially with regard to long-term epigenetic and genetic stability, as 

well as the high tumorogenic potential of these cells. These could all have 

implications for cell replacement therapies in clinical practice (Forsberg and 

Hovatta, 2012). Before such safety issues can be adequately addressed, hES cells 

are likely to continue to play an important role in regenerative studies in AD, 

especially with regard to the evolvement of cell transplantation paradigms.   
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FROM BENCH TO BEDSIDE – ADVANCING STEM CELL THERAPIES TO THE 
CLINIC 

A translational approach using hES cells, AD-iPS cells, and animal models of AD 

could aid the search for novel drug targets that stimulate regeneration in the AD 

brain. However, the current limited knowledge regarding in vivo neurogenesis 

during the disease course highlights the need to develop biomarkers that can 

effectively measure and evaluate neurogenic processes in the brain and the 

efficacy of regenerative therapies.  

This thesis shows that grafted hNSCs interact with the local 

microenvironment and exert beneficial effects through stimulating endogenous 

neurogenesis, which holds great therapeutic promise. Although safety issues 

regarding stem cell transplantations remain to be resolved, the question remains: 

which patients would benefit most from such therapies? If regenerative therapies 

must be introduced early for long-term beneficial effects, we need to effectively 

predict which patients will develop AD. Thus, carriers of known FAD mutations 

may be a candidate group for proof-of-concept regenerative studies. 
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