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ABSTRACT 
Few injuries have as profound and long-lasting consequences as spinal cord injury. The 

primary areas of impaired function typically include sensation, mobility, bladder, bowel 

and sexual function. The economic, social and personal effects can also be devastating. 

Today there is no cure available but the discovery of neural stem cells in the adult 

spinal cord has raised the hope for a treatment. It has, however, proven difficult to 

identify these stem cells and several different cell types including ependymal cells, 

astrocytes and oligodendrocyte progenitors have been proposed to function as neural 

stem or progenitor cells in the adult spinal cord. We assessed the generation of new 

cells from these cell populations under physiological conditions and after spinal cord 

injury. In Paper I, we identify ependymal cells as latent neural stem cells. They have in 

vitro stem cell potential and are multipotent in vivo after injury, giving rise to scar-

forming astrocytes and remyelinating oligodendrocytes. We also show that 

oligodendrocyte progenitors and astrocytes are lineage restricted progenitors in the 

adult spinal cord. We offer an integrated view of how several different endogenous cell 

populations generate new cells under physiological and pathological conditions.  

Scar formation has traditionally been seen as an impediment to functional recovery 

after spinal cord injury. However, in Paper II, we show that scarring by ependymal 

cell-derived astrocytes is required to reinforce the tissue to prevent expansion of the 

lesion and further damage. We also identify ependymal cell progeny as a major source 

of neurotrophic support, and find substantial neuronal loss in the absence of this 

component of the scar tissue.  

In order to modify the endogenous stem cell response following an injury it is 

important to understand if all spinal cord ependymal cells have stem cell properties, or 

if this feature is limited to a subpopulation. In Paper III, we show that ependymal cells 

are functionally heterogeneous with proliferating progenitors and quiescent stem cells. 

The latent neural stem cell population in the adult spinal cord is made up of a small 

subpopulation of ependymal cells that are activated, proliferate and give rise to a large 

number of cells both in vitro and in response to injury. This thesis is an ependymal cell 

quest that provides new insights to the identity and function of a latent neural stem cell 

population residing in the center of the spinal cord. 

  



POPULAR SCIENCE ABSTRACT (SWEDISH) 
I slutet av förra milleniet visade forskare för första gången att det bildas nya nervceller i 

vår vuxna hjärna och att dessa nervceller kommer från omogna stamceller. Sedan dess 

har jakten på hjärnans stamceller varit i full gång och förhoppningar har höjts om att 

kunna använda dem för att ersätta förlorade celler i en rad olika sjukdomar och skador i 

nervsystemet. Vid en ryggmärgsskada kapas nervfibrerna som leder signaler mellan 

hjärnan och resten av kroppen, vilket bland annat kan leda till förlamning. Efter en 

ryggmärgsskada aktiveras många olika sorters celler i ryggmärgen och där skadan skett 

bildas ett ärr. I det första delarbetet använder vi laboratoriemöss för att identifiera vilka 

av cellerna i ryggmärgen som är stamceller och hur de tillsammans med andra celltyper 

hjälps åt att bilda ärrvävnad. Ryggmärgens stamceller är så kallade ependymceller som 

täcker ytan kring de vätskefyllda hålrummen som finns i hjärnan och ryggmärgen. I 

detta delarbete visar vi även att stamcellerna är viktiga för läkningsprocessen, detta då 

de bildar stödjeceller som isolerar och skyddar överlevande nervbanor. Fram tills nu 

har forskare varit mycket oense kring huruvida ärret som bildas efter en skada är bra 

eller dåligt för läkningen. En av anledningarna till att det varit så omtvistat är att ärret 

består av flera olika celltyper och komponenter där stamcellerna bara utgör en viss del. 

I det andra delarbetet använder vi oss av ett genetisk trick för att stänga av stamcellerna 

i möss så att de inte kan aktiveras efter en skada. Vi visar att när ärrbildningen från 

stamceller blockerats växer sig skadan djupare med tiden och fler nervfibrer går av. 

Detta tyder på att stamcellerna hindrar skadan från att växa och bli större. Vi visar även 

att stamceller producerar livsviktiga överlevnadsfaktorer till nervceller i närheten av 

skadan utan vilka dessa nervceller dör. I det tredje delarbetet studerar vi ependymceller 

i mer detalj och visar att de består av flera olika grupper av celler varav endast en liten 

del är stamceller. 

Huvudsyftet men den här avhandlingen är att identifiera ryggmärgens stamceller och 

visa att de är viktiga under läkningsprocessen efter en ryggmärgsskada genom att bilda 

både ärrvävnad som främjar läkning och stödjeceller som isolerar nervtrådar. I 

ryggmärgen finns det celler som har olika stamcellsegenskaper och om vi kan lära oss 

mer om hur olika sorters stamceller reagerar på skada så kan vi kanske styra dem till att 

bli bättre på att läka skador, potentiellt genom att bilda fler stödjeceller. 

 



LIST OF PUBLICATIONS 

I.  Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, 
Meletis K, Frisén J. Origin of new glial cells in the intact and injured adult 
spinal cord. Cell Stem Cell, 2010, 7, 470-482. 
 

II.  Sabelström H, Stenudd M, Réu P, Dias DO, Elfineh M, Zdunek S, Damberg 
P, Göritz C, Frisén J. Resident neural stem cells restrict tissue damage and 
neuronal loss after spinal cord injury in mice. Science, 2013, 342, 637-40. 
 

III.  Sabelström H, Stenudd M, Ståhl F, Göritz C, Basak O, Clevers H, Brismar H, 
Barnabé-Heider F, Frisén J. Spinal cord ependymal cells are functionally 
heterogeneous with proliferating progenitor cells and quiescent stem cells. 
Manuscript. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
Publications not included in this thesis: 
Barnabé-Heider F, Meletis K, Eriksson M, Bergmann O, Sabelström H, 
Harvey M., Mikkers H, Frisén J. Genetic manipulation of adult mouse 
neurogenic niches by in vivo electroporation. Nature Methods. 2008, 
Feb;5(2):189-96. 
 
Sabelström H, Stenudd M, Frisén J. Neural stem cells in the adult spinal 
cord. Experimental Neurology. 2013, doi: 10.1016/j.expneurol.2013.01.026 

 



TABLE OF CONTENTS 

1� The identity and functional role of spinal cord neural stem cells ............................... 1�
1.1� Adult neural stem and progenitor cells ........................................................... 1�

1.1.1� Subventricular zone of the lateral ventricle wall ............................ 1�

1.1.2� Dentate gyrus of the hippocampus .................................................. 2�

1.1.3� The third ventricle by the hypothalamus ........................................ 4�

1.2� Adult spinal cord neural stem and progenitor cells ........................................ 4�
1.2.1� Astrocytes are not stem cells in the adult spinal cord ..................... 5�

1.2.2� NG2 cells are restricted oligodendrocyte progenitors .................... 7�

1.2.3� Ependymal cells are neural stem cells in the adult spinal cord .... 10�

1.3� Spinal cord injury .......................................................................................... 13�
1.4� Regenerative approaches ............................................................................... 16�

1.4.1� Cellular replacement by transplantation ....................................... 16�

1.4.2� Modulating the injury microenvironment ..................................... 17�

1.4.3� Modulating the injury response from endogenous cells ............... 18�

1.4.4� Resident neural stem cells restrict tissue damage and neural loss 

after spinal cord injury ............................................................................... 20�

1.5� Neural stem cell heterogeneity ...................................................................... 24�
1.5.1� Heterogeneity in the subventricular zone ..................................... 24�

1.5.2� Heterogeneity in the dentate gyrus ............................................... 25�

1.5.3� Heterogeneity within the ependymal layer ................................... 26�

1.5.4� Spinal cord ependymal cells are functionally heterogeneous ...... 27�

2� Conclusions and Perspectives ................................................................................... 31�
2.1.1� Conclusions ................................................................................... 31�

2.1.2� Ependymal cells are latent neural stem cells in the adult spinal 

cord…… .................................................................................................... 31�

2.1.3� Ependymal cells restrict tissue damage and neural loss after spinal 

cord injury. ................................................................................................. 32�

2.1.4� Spinal cord ependymal cells are functionally heterogeneous ...... 34�

3� Acknowledgements ................................................................................................... 36�
4� References ................................................................................................................. 40�
 



LIST OF SELECTED ABBREVIATIONS 

BDNF 
BLBP 

BrdU 
CNTF 

CSF 

Brain-derived neurotrophic factor 
Brain lipid-binding protein 

5-bromo-2´-deoxyuridine 
Ciliary neurotrophic factor 

Cerebrospinal fluid 
EAE 

EdU 
FoxJ1 

GFAP 
GFP 

Experimental autoimmune encephalomyelitis 

5-ethynyl-2´deoxyuridine 
Forkhead box protein J 

Glial fibrillary acidic protein 
Green fluorescent protein 

Glast 
HFH4 

HGF 
IGF-1 

NG2 
NGF 

Glutamate aspartate transporter 
Hepatocyte nuclear factor/forkhead homologue 4 

Hepatocyte growth factor 
Insulin-like growth factor-1 

Nerve/glial antigen 2 
Nerve growth factor 

PDGFRα 

TGFβ1 
VEGF 

YFP 

Platelet-derived growth factor receptor alpha 

Transforming growth factor beta 1 
Vascular endothelial growth factor 

Yellow fluorescent protein 





 

 1 

1 THE IDENTITY AND FUNCTIONAL ROLE OF SPINAL 
CORD NEURAL STEM CELLS 

 

Stem cells are defined by two characteristic properties, the capacity to self-renew 

through mitotic cell division and the capacity to differentiate into specialized cell 

type(s) (1, 2). Stem cell properties are usually assessed on a tissue or cell population 

level, but in order to be classified as a bona fide or true stem cell both these 

characteristic must be present at the single cell level. Different stem cells are defined by 

their potential to self-renew and differentiate and this is often directly linked to the 

source of where you find them. The most potent stem cells are found in early embryos 

and as development progresses stem cells lose some of their original potential. In adult 

vertebrates, stem cells remain in most organs where they participate in tissue 

homeostasis and repair. Tissues that turnover fast have more pronounced stem cell 

activity, such as the skin or the intestine (3). Some adult stem cells divide frequently 

but the typical adult stem cell is quiescent and divides rarely to generate fast dividing 

progenitor cells (4). These progenitor cells are more restricted cells that are limited in 

their potential for differentiation and/or self-renewal (5). It is crucial to characterize 

differences and establish relationship between stem and progenitor cells in order to 

better understand tissue homeostasis, regeneration after injury and potential therapeutic 

applications. 

 

 

1.1 ADULT NEURAL STEM AND PROGENITOR CELLS 

1.1.1 Subventricular zone of the lateral ventricle wall 

Neural stem cells can be found in the adult brain in a few distinct, well-defined stem 

cell niches, which are the microenvironment supporting and regulating stem cells. The 

first major region that produces new neurons in the adult mammalian brain is the 

subventricular zone lining the lateral wall of the lateral ventricles in the forebrain. 

Neurogenesis in the subventricular zone is important for certain aspects of the sense of 

smell as newly born immature neurons migrate from the subventricular zone, through 

the rostral migratory stream, to the olfactory bulb where they integrate as mature 

interneurons. Olfactory bulb neurogenesis has been implicated in olfactory memory 
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formation, odorant discrimination and social interactions (6). The neurogenic niche in 

the subventricular zone consists of several different cell types.  

 

The neural stem cells share ultrastructural and antigenic features with astrocytes and are 

often referred to as type B cells (4, 7). Some type B cells are mitotically active whereas 

others are quiescent stem cells (4, 7, 8). Activated type B cells undergo cell division to 

self-renew and generate transit-amplifying progenitor cells (TAPs or type C cells) that 

will generate large numbers of immature neurons, namely neuroblasts, which will 

migrate in long chains through the rostral migratory stream to the olfactory bulb where 

they will integrate as functional interneurons. Type B cells can also generate cells of the 

oligodendrocyte lineage (9).  

 

The lateral ventricle walls are lined by post-mitotic ciliated ependymal cells, which 

function as a border between the cerebrospinal fluid and the subventricular zone. The 

neurogenic niche also contains blood vessels, which are closely associated with type B 

and type C cells (10, 11). Proliferating cells in the subventricular zone are often 

associated with blood vessels or the extracellular matrix around them (11, 12), 

suggesting that factors derived from the vasculature may regulate both neural stem 

and progenitor cells and thus establishing an important role of the niche.  

 

 

1.1.2 Dentate gyrus of the hippocampus 

Another major region that produces new neurons in the adult mammalian brain is the 

dentate gyrus of the hippocampus (2, 13-15). New neurons in the adult dentate gyrus 

have been implicated in learning and memory (16-19), and alterations in neurogenesis 

in this brain region has been linked to psychiatric diseases such as depression (20, 21) 

as well as to neuroinflammation (22) and epilepsy (23). Interestingly, anti-depressant 

drugs and increased physical activity have shown an increased proliferation of cells in 

the subgranular zone of dentate gyrus (20, 21). The neurogenic niche in the subgranular 

zone has been studied to some extent in rodents and new hippocampal neurons are 

born in the subgranular zone of the dentate gyrus. Radial astrocytes function as neural 

stem cells in the subgranular zone, similar to observations in development and in the 

adult subventricular zone. These radial astrocytes give rise to intermediate progenitor 

cells, referred to as type D cells (24) or type II progenitors (25, 26), that proliferate 
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and gradually mature into functional neurons (24, 25, 27). Nonradial, or horizontal, 

astrocytes have also been proposed to act as primary progenitor cells in the adult 

subgranular zone (28). Nonradial astrocytes lack radial processes and some have 

extensions parallel to the dentate granule cell layer (28). The stem cell potential of 

nonradial astrocytes and their lineage relationship to other stem and progenitor cells 

remain unclear (29, 30). 

 

Several studies have investigated neurogenesis in the human brain but this has proven 

to be difficult due to limitations of the methods used. Studies in rodents have relied on 

administration of thymidine analogues, such as BrdU, to label dividing cells and at a 

later time point analyzing labeled presumably newly born neurons. Since BrdU is 

incorporated into the genomic DNA it is not given to humans. However, in a study 

from the late ‘90’s several terminal cancer patients were given BrdU as a potential 

treatment. The brains of these patients were later donated to research and constituted a 

milestone as it showed newly born neurons in the hippocampus indicating neurogenesis 

in adult humans (31).  

 

More recently, the Jonas Frisén lab has devised a new method to study cell turnover in 

the human brain using retrospective birth dating of cells by measuring the levels of 

carbon-14 in the genomic DNA (32). This is possible due to the above-ground nuclear 

bomb tests during the Cold War that made the atmospheric levels of carbon-14 spike. 

Several recent studies have been able to confirm that there is no neurogenesis in the 

adult human cerebral cortex, but that new neurons are integrated into the hippocampus 

of adult humans, with comparable neuronal turnover rates in middle-aged humans and 

mice (31-34). Surprisingly, although adult humans generate neuroblasts in the 

subventricular zone, there is no detectable neurogenesis in the adult olfactory bulb (35-

37) instead there is integration of newly born interneuron in the striatum, which is 

adjacent to the subventricular (38). This highlights the importance of confirming 

animal studies in humans, as some biological processes can vary greatly or even be 

profoundly different. 
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1.1.3 The third ventricle by the hypothalamus 

A third, less studied neurogenic region in adult brain is the third ventricle by the 

hypothalamus. An increasing number of studies in rodents are suggesting that 

tanycytes in the ependymal layer that line the third ventricle have neural stem cell 

properties and generate both neurons and glia under physiological conditions, as well 

as multipotent neurospheres in vitro (39-44). The hypothalamus is involved in 

functions regulating feeding, sleep, reproduction, circadian rhythms, stress response, 

blood pressure, and core body temperature (45). Neurogenesis in the third ventricle 

has been suggested to be involved in the control of the body’s energy balance (46-

48).  

Tanycytes are a type of ependymal cell, which are ciliated cells lining the entire 

ventricular system of the adult brain. Hypothalamic tanycytes have elongated radial 

glial-like morphology with long basal processes, similar to neural stem cells in other 

regions of the developing and adult brain. A stem cell niche-like architecture, similar 

to the one in the subventricular zone, also exists in the hypothalamus region lining the 

third ventricle (49). However, this neurogenic niche needs to be studied in greater 

detail in order to assess the regulation and neural stem/progenitor cell potential of 

hypothalamic tanycytes, as well as, the functional role of hypothalamic neurogenesis. 

In addition, the potential involvement of hypothalamic tanycytes in adult human 

neurogenesis needs to be addressed. 

 

1.2 ADULT SPINAL CORD NEURAL STEM AND PROGENITOR CELLS 

Because of the lack of specific markers and challenges associated with in vivo 

studies, in vitro stem cell assays have been remarkably useful. Indeed, although no 

neurogenesis occurs in the adult spinal cord, in vitro assays have shown that stem 

cells reside along the entire axis of the central nervous system (50-52). One of the 

most common ways to define a neural stem cell is by the neurosphere assay (50) 

where putative neural stem cells are propagated in vitro in the presence of growth 

factors to produce self-renewing free-floating clusters of cells, called neurospheres, 

which can be induced to differentiate into multiple neural lineages upon growth factor 

withdrawal. There are only few distinct neurogenic areas in the adult brain, however 

neurospheres can be isolated from the entire neuroaxis of the adult central nervous 
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system (50-52). Astrocytes rarely proliferate outside the neurogenic regions in the 

adult brain, but after injury they can start proliferating and even acquire stem cells 

properties in vitro (53-57). Oligodendrocytes are constantly being generated 

throughout the adult brain by lineage restricted progenitors (54, 58) and some studies 

have suggested that these cells could acquire stem/progenitor cell properties in vitro 

(58, 59). Ependymal cells, which are mostly quiescent in the adult brain, have been 

suggested to form neurospheres in some regions (44, 50). Studies using BrdU 

incorporation showed that several glial cell populations (including astrocytes, 

oligodendrocytes and ependymal cells) were mitotically active in the adult spinal cord 

(60), leaving the door open to the identity of spinal cord neural stem cells. 

 

 

1.2.1 Astrocytes are not stem cells in the adult spinal cord 

Astrocytes are highly active cells in the adult central nervous system where they have 

complex functions that play critical role in homeostasis, including interactions with 

synapses and regulation of blood flow (61, 62). In addition, subtypes of astrocytes are 

bona fide neural stem cells in the brain. There is no neurogenesis in the adult spinal 

cord but there are proliferating glial cells (60) and astrocytes represent one of these 

proliferating populations (Paper I). To assess the stem- and progenitor cell potential of 

astrocytes in the adult spinal cord we used the inducible Cre-LoxP system to generate a 

transgenic mouse (Figure 1). The promoter of an astrocyte-specific gene was used to 

drive the expression of a tamoxifen-dependent Cre recombinase, called CreER (63). 

This mouse was then crossed with a reporter strain that upon Cre-mediated 

recombination expresses a reporter gene, for example YFP (64), allowing inducible and 

permanent labeling of astrocytes and their progeny. In Paper I, we utilized Connexin30 

(Cx30) which is a gap junction protein expressed in astrocytes in the central nervous 

system (65-67). The Cx30-CreER mouse line allows specific recombination of 

astrocytes in the adult brain (68) and spinal cord (Paper I). More than 70% of Sox9-

positve astrocytes in the adult spinal cord were recombined in the Cx30-CreER mouse 

(Paper I). These cells also expressed the astrocytic markers GFAP and S100β, but not 

the oligodendrocyte lineage markers Sox10, NG2 or PDGFRα (Paper I). Based on 

morphology and marker expression these astrocytes were divided into three 

subpopulations, one in the white matter expressing Sox9 and GFAP and two different 

ones in the grey matter. A small number of recombined cells in the grey matter were 
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A 

       Transgenic mouse lines 

 

Ependymal cells: FoxJ1-CreER 

Resident astrocytes: Cx30-CreER 

Oligodendrocyte progenitors:  

Olig2-CreER 

 

 

B              C 

 
 
 
 
 
 
 
 

Figure 1. Fate mapping of cells in the adult spinal cord with the inducible Cre-LoxP system.  
 
A. To specifically label different cell populations in the adult mouse spinal cord, the tamoxifen-
dependent Cre-recombinase (CreER) was expressed under different promoters. The human 
FoxJ1 promoter was used to specifically label ependymal cells (green), a BAC containing the 
Connexin30 (Cx30) promoter for resident astrocytes (red), and a knock-in of CreER into the 
endogenous Olig2 locus was used to label oligodendrocyte progenitors (blue). 
B-C. The cell-type specific promoters drive the expression of CreER and upon tamoxifen 
administration CreER gets relocalized from the cytoplasm into the nucleus where is recombines 
LoxP sites in a reporter allele (R26R) to remove a Stop codon and allow reporter gene 
expression (YFP). This allows an inducible and permanent YFP labeling of the different cell 
populations, which is inherited to their progeny. Adapted from Paper 1 and Paper II. 
 

located close to the ependymal layer with a bipolar morphology and expressing Sox9 

and GFAP. The vast majority of recombined astrocytes in the grey matter have the 

elaborate morphology of protoplasmatic astrocytes and express Sox9, lower levels of 

GFAP mostly around the cell body and surprisingly, the oligodendrocyte lineage 

marker Olig2. Since these cells did not express any other oligodendrocyte lineage 

marker, they were considered to be astrocytes (Paper I). This has also been reported in 

the brain for Olig2 expression in astrocytes (54). Cx30-CreER astrocytes did not 

produce progeny of other lineages in the uninjured spinal cord and their number stayed 

constant over time  (comparing 5 days and 4 months after recombination; Paper I), 

suggesting that Cx30-CreER astrocytes are limited progenitor cells that proliferate to 

compensate for some cell loss to maintain the size of their cell populations. Ge and 
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colleagues reported similar findings in the postnatal cortex where differentiated 

astrocytes only generated new astrocytes (69). 

 

To assess the in vitro stem cell potential of astrocytes in the adult spinal cord, we 

generated neurospheres from Cx30-CreER mice. We found one recombined 

neurosphere in all the primary cell cultures (n=3 mice, average 93 neurospheres per 

culture; paper I). We collected and passaged that one neurosphere to assess its stem 

cells potential since restricted progenitor cells have been shown to give rise to 

primary neurospheres with limited self-renewal and/or differentiation potential (70, 

71). The single recombined Cx30-CreER-derived neurosphere did not generate a 

secondary neurosphere demonstrating that is was generated from a restricted 

progenitor cell (Paper I). While astrocytes harbor neural stem cell properties in 

neurogenic niches of the brain, they do not contribute to more than their own 

population in the spinal cord during physiological conditions. 

 

 

1.2.2 NG2 cells are restricted oligodendrocyte progenitors 

Oligodendrocytes are a numerous glial cell type in the adult central nervous system and 

they are scattered throughout the white and grey matter of the brain and spinal cord. 

Oligodendrocytes insulate axons with myelin sheaths to allow fast saltatory conduction 

and protect nerve fibers that travel long distances throughout the brain and spinal cord 

(72). Mature oligodendrocytes are post-mitotic but can be replenished from 

progenitor cells (73). Oligodendrocyte progenitors are also found in white and grey 

matter throughout the central nervous system and they express the markers PDGFRα, 

Olig2, NG2 and the oligodendrocyte lineage marker Sox10 (74). Oligodendrocyte 

progenitors, also referred to as NG2-positive cells or polydendrocytes, represent the 

main proliferating cell population in the intact spinal (Paper I) (75) and have been 

proposed as neural stem cells in the adult spinal cord, however, recently it has been 

highly debated whether oligodendrocyte progenitors are committed oligodendrocyte 

lineage cells or if they can generate other neural cell types (74, 76).  

 

Several studies using different approaches to identify and fate map oligodendrocyte 

progenitor cells have attempted to assess their stem cell potential in vivo. This has, 

however, proven to be difficult with the use of traditional tracing methods as they have 
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innate limitations. For instance, studies using viral labeling of proliferating cells have 

led to the suggestion that oligodendrocyte progenitors in the adult spinal cord have 

neural stem cell properties and produce cells of multiple lineages in vivo (75, 77-79). 

However, lentivirus injection to label cells can be unspecific which makes it difficult to 

identify the founder cell and, in addition, the virus and injection itself causes an injury, 

which could affect the outcome (75, 77, 80). Fate mapping in transgenic mice with a 

promoter-driven expression of a reporter gene, such as LacZ or GFP, is dependent on 

the expression of the promoter by potential oligodendrocyte progenitor cell progeny, 

otherwise the label is transient and lost as cells differentiate, in addition, there is also 

the risk of false positives if another lineage turn on the promoter (81, 82). It was not 

until the development of the Cre-loxP transgenic mouse system that fate mapping and 

lineage relationship between oligodendrocyte progenitor cells and their progeny could 

be determined. Some initial studies using the Cre-loxP system to fate map potential 

oligodendrocyte progenitors from embryonic stages suggested that they have greater 

lineage potential and generate protoplasmic grey matter astrocytes in addition to 

oligodendrocytes (78, 83). One concern with the Cre-LoxP system is that cells will 

recombine and express the reporter gene (e.g. GFP or LacZ) as soon as the Cre-driving 

reporter is active. This often happens during development and thus one needs to 

carefully characterize which cells are recombined in the adult since this may not reflect 

promoter activity and/or the expression of the endogenous gene.  

 

In order to determine the stem cell potential of oligodendrocyte progenitor cells, we 

used the tamoxifen inducible Cre-LoxP system (Figure 1). We used the Olig2-CreER 

mouse to label oligodendrocyte progenitors. Olig2 is expressed in oligodendrocyte 

progenitors and mature oligodendrocytes in the adult spinal cord (75, 84) and it is an 

important transcription factor in oligodendrocyte development and it is also required 

for the specification of oligodendrocyte progenitor cells (85, 86). Both mature 

oligodendrocytes and oligodendrocyte progenitors are recombined in the Olig2-CreER 

mice during development (86, 87) and in the adult spinal cod (Paper I). Recombined 

Olig2-CreER cells are scattered within white and grey matter in the adult spinal cord 

and almost all recombined Olig2-CreER cells express Olig2 and Sox10 and a quarter 

of them are mature APC-positive oligodendrocytes (Paper I). The recombination 

efficiency is rather low within the oligodendrocyte lineage (>5% of all Sox10-

positive oligodendrocyte lineage cell; Paper I) but it is more efficient in 

oligodendrocyte progenitors (approximately 40% of NG2-positive cells; Paper I). A 
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very small fraction (Approximately 1%) of recombined Olig2-CreER cells is Olig2-

positive grey matter astrocytes expressing Sox9 and GFAP, which corresponds to 

<1% of grey matter astrocytes. The very inefficient recombination in Olig2-positive 

astrocytes allowed us to distinguish between astrocytes and oligodendrocyte lineages 

cells in Olig2-CreER and Cx30-CreER mice (Paper I). Since some protoplasmic 

astrocytes appears to be positive for the oligodendrocyte lineage marker Olig2 (Paper 

I) (54) one should be careful to distinguish between cell types based on single 

markers, and use several lineage markers in combination with morphology to 

characterize, for instance, oligodendrocyte lineage cells. 

 

We were able to confirm that oligodendrocyte lineage cells are indeed the main 

proliferating cell population in the intact spinal cord with 80% of BrdU-positive cells 

(Paper I). To identify the progeny of these proliferating cells we analyzed the 

phenotype and numbers of recombined Olig2-CreER cells after tamoxifen-induced 

recombination. The total number of recombined cells increased significantly 4 months 

after recombination due to a large increase of recombined mature oligodendrocytes 

(Paper I). The number of recombined progenitor cells stayed constant indicating that 

these cells both self-renew and produce new mature oligodendrocytes (Paper I). 

Previous work has suggested that adult spinal cord oligodendrocyte progenitors are 

bipotent and generate astrocytes (75, 77-79), but our genetic lineage analysis does not 

support this. Our results rather indicate that spinal cord oligodendrocyte progenitors 

are similar to those in the forebrain, which have been demonstrated by similar genetic 

fate mapping strategies to give rise to new oligodendrocytes but not astrocytes (54, 

58). Our findings that oligodendrocyte progenitors are restricted oligodendrocyte 

lineage progenitor cells in the adult spinal cord have been confirmed by other research 

groups using the PDGFRα-CreER and NG2-CreER mouse lines (88, 89).  

 

To assess the in vitro stem cell potential of oligodendrocyte progenitors in the adult 

spinal cord, we generated neurospheres from Olig2-CreER mice but we could not 

find any recombined neurospheres demonstrating a lack of in vitro stem/progenitor 

cell properties (Figure 2D; Paper I). Other studies have also failed to generate 

multipotent neurospheres from oligodendrocyte progenitors, however it seems 

possible to generate fate-restricted neurospheres under certain injury conditions (59). 

Thus, oligodendrocyte progenitors are, in spite of their extensive self-renewal 

capacity in vivo, better defined as restricted progenitor cells than stem cells. 
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1.2.3 Ependymal cells are neural stem cells in the adult spinal cord 

Ependymal cells are cells with motile cilia lining the ventricular walls in the brain and 

the central canal in the spinal cord. Several functions have been suggested for 

ependymal cells, including propulsion of cerebrospinal fluid (CSF), and a barrier 

function between CSF and brain parenchyma (90). Ependymal cells are thought to filter 

CNS molecules to protect the brain and spinal cord from harmful substances in the 

CSF, optimize the dispersion of neural messengers in the CSF and move cellular debris 

in the direction of bulk CSF flow (90). Ependymal cells constitute a heterogeneous 

group of cells, with variations in both morphology and marker expression (91-96). The 

two most abundant ependymal cell morphologies in the spinal cord are multi-ciliated 

cuboidal cells and single ciliated tanycytes (94, 96, 97). Tanycytes have a basal 

process, which can contact blood vessels or neurons suggesting interactions between 

ependymal cells and the surrounding niche (94, 96). Tanycytes in the third ventricle 

have been reported to have neuroendocrine functions with long processes going into 

the hypothalamus parenchyma (98). A third, less common, ependymal cell is the radial 

ependymal cell, which reside in the dorsal and ventral poles of the central canal and 

extend long processes towards the pial surface (94).  

 

In contrast to mammals, postnatal spinal cord neurogenesis occurs in several non-

mammalian model organisms, including adult fish and urodele amphibians (99, 100). 

These species are also able to regenerate their spinal cord throughout their lifespan. 

Ependymal cells act as neural stem cells and they show morphological similarities to 

radial glia cells, which are the neural stem cells during development of the central 

nervous system (99, 101). Radial glia cells give rise to ependymal cells in mammals 

and some ependymal cells retain the expression of the radial glial markers RC1 and 

BLBP (90, 94, 95, 102). Several other molecular markers associated with immature 

neural cells are expressed in the ependymal layer, including the intermediate 

filaments Vimentin and Nestin, and the neural stem cell associated markers CD15, 

Musashi1, CD133/prominin-1, Sox2, Sox3 and Sox9 (93-95). Tanycytes in the third 

ventricle of adult rodent brains represent a specialized type of ependymal cells that 

share many morphological characteristics and marker expression with radial glial 

cells and they have been shown to have stem/progenitor cell properties, as mentioned 

above (39, 43, 44). Ependymal cells in other regions of the adult brain are post-

mitotic (4, 103-105). However, ependymal cells in the uninjured adult spinal cord 
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have been shown to proliferate (51, 60, 94). The proportion of BrdU-labeled 

ependymal cells is similar to that of oligodendrocyte lineage cells (4%–5%) but 

substantially lower than for astrocytes (<1%) (Paper I). However, oligodendrocyte 

progenitors proliferate approximately 10 times more frequently than ependymal cells 

making the oligodendrocyte lineage the dominating proliferative cell population 

during physiological conditions (Paper I). Ependymal cells do not generate progeny 

of any other cell fate under physiological conditions suggesting that they only 

proliferate to maintain their population (94) (Paper I). 

 

The Jonas Frisén lab has been trying to identify cells with in vitro neural stem cell 

potential in the adult spinal cord for a long time and early studies indicated that 

neurosphere-forming cells are situated close to the central canal (51). This study had 

some methodical limitations as injection of fluorescent dyes into the cerebrospinal fluid 

to fate map ependymal cells may not be as specific as later developed methods and the 

dye gets diluted over time as cells divide (51). Some subsequent studies by other 

groups were either able to verify the findings using microdissection of the spinal cord 

(106) or find sphere-forming cells in medial and lateral parts of the spinal cord (59, 84). 

In a more recent study, the Frisén lab was for the first time able to genetically fate map 

ependymal cells and showed that only ependymal cell-derived neurospheres are 

multipotent and can be expanded for several passages (94). Pfenninger and colleagues 

verified that the in vitro neural stem cells potential of the adult spinal cord is confined 

to the ependymal cell population by flow cytometric isolation (105).  

 

Genetic fate mapping of ependymal cells is possible using the FoxJ1 promoter to 

drive CreER expression in the adult mouse spinal cord (Figure I) (94). FoxJ1 (also 

called HFH4) is expressed in cells with motile cilia or flagella (107), which is specific 

for ependymal cells lining the central canal of the adult spinal cord (94). We have 

assessed the in vitro neural stem cells potential of three distinct cell populations in the 

adult spinal cord and only recombined FoxJ1-CreER ependymal cell-derived 

neurospheres are self-renewing and multipotent (Figure 3D; Paper I).  
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Figure 2. Distribution of new cells in the adult spinal cord. 
(A) Distribution of ependymal cells (green), resident astrocytes (red) and oligodendrocyte 
progenitors (blue). 
(B) Generation of new cells 4 months after recombination. Cells are depicted at 50% of their 
numbers in (A) and (B). 
(C) Ependymal cells and resident astrocytes self-renew, whereas oligodendrocyte progenitors 
both self-renew and generate mature oligodendrocytes. 
(D) Ependymal cells generate multipotent self-renewing neurospheres in vitro. Resident 
astrocytes generate few primary neurospheres that cannot be passaged further. 
Based on data from Paper I. Figure from (108). 
 

Recombined Olig2-CreER oligodendrocyte progenitors did not generate any 

neurospheres and the one Cx30-CreER astrocyte-derived neurosphere could not be 

passaged (Figure 3D; Paper I). Thus, we confirmed that ependymal cells are the in 

vitro neural stem cells of the adult spinal cord (94, 105) (Paper I). We also found that 

ependymal cell and astrocyte proliferation is restricted to self-duplication to maintain 

their populations in the uninjured spinal cord, whereas oligodendrocyte progenitors 

self-renew and give rise to an increasing number of mature oligodendrocytes (Figure 

3C). Therefore, virtually all in vitro stem cell potential is restricted to one class of glial 

cells in the adult spinal cord, namely ependymal cells.  
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1.3 SPINAL CORD INJURY 

Spinal cord injury typically results in a loss of motor function and sensory input 

below the level of the lesion. There is a significant loss of neurons and glial cell, and 

a dramatic increase in proliferation followed by recruitment of cells to the injury site 

(51, 80, 109, 110). Various types of cells from the spinal cord and the blood are 

recruited such as glial cells, pericytes, leukocytes, microglia and thrombocytes (111), 

which contribute to the scar that is formed at the lesion site. The scar is composed of 

a fibrotic core surrounded by a glial scar. The glial scar can serve as a major barrier 

for regenerating axons, but it also helps to restrict the inflammation to the lesion 

epicenter and protect the intact tissue from further damage (112-115). The glial scar 

is generated by astrocytes derived from resident astrocytes and ependymal cells 

(Paper I) (94, 116), and the fibrotic scar tissue is formed by perivascular cells, 

including type-A pericytes (109, 117, 118). When oligodendrocytes are lost, axons are 

left partly demyelinated and unable to efficiently propagate impulses. The loss of 

oligodendrocytes is thought to cause further impairment of neurological function in 

partial spinal cord injuries, the most common type of injury in humans, which is why 

rapid remyelination is important (119, 120). Both oligodendrocyte progenitors and 

ependymal cells have previously been demonstrated to generate myelinating 

oligodendrocytes after spinal cord injury (54, 58, 94). Neurons that are lost after injury 

are not replaced since there is no neurogenesis following spinal cord injury (80, 82, 

121, 122).  

 

Most studies on cell fate mapping within the injured spinal cord have focused on 

following the progeny of one specific population of dividing cells. To get an 

integrated view of how different neural cell populations contribute to new cells after 

spinal cord injury, we characterized the distribution and phenotypes of progeny from 

Olig2-CreER mice for oligodendrocyte progenitors, Cx30-CreER mice for resident 

astrocytes, and FoxJ1-CreER mice for ependymal cells at different time points after a 

dorsal funiculus incision. The cut was made transversely without reaching the grey 

matter or central canal and extended rostrally with microsurgical scissors to span one 

segment (94). All three cell populations increased their proliferation after injury and 

about 80% of all recombined cells were labeled with BrdU 5 days after injury (Paper 

I). The number of recombined cells increased 5.5 fold in the ependymal FoxJ1-CreER 

line and about 2-fold in the astrocytic Cx30-CreER and oligodendrocytic Olig2-
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CreER lines by 2 weeks after injury. The total numbers of recombined cells were then 

maintained at almost the same level for up to 4 months. This shows that the recruited 

endogenous cells persistently contribute to new cells at the lesion site. Despite the 

dominance in proliferation of oligodendrocyte progenitors under physiological 

conditions (Figure 2B), they come in third place for the net cell contribution 4 months 

after spinal cord injury (Figure 3B; Paper I). This is due not to a reduced production 

of progeny by Olig2-CreER oligodendrocyte lineage cells, which is doubled, but to a 

larger increase in the production of progeny by FoxJ1-CreER ependymal cells (39% 

of new glial cells) and Cx30-CreER astrocytes (34% of new glial cells) (Figure 3B; 

Paper I). The careful comparison of the injury response between the different mouse 

lines reveled that ependymal cells, resident astrocytes and oligodendrocyte 

progenitors produce progeny that occupy complimentary domains after spinal cord 

injury. Under physiological conditions ependymal cells are exclusively found 

surrounding the central canal, however, after injury ependymal cell proliferation 

increases and the progeny is found at the center of the lesion as scar-forming 

astrocytes and in small numbers scattered in the parenchyma as oligodendrocytes 

(Figure 3A; Paper I) (51, 80, 82, 94, 121, 123). Cx30-CreER astrocyte progeny 

accumulates in the perimeter of the glial scar, outside the fibrotic core and the 

ependymal-derived astrocytic scar. In chronic lesions ependymal cells and resident 

astrocytes are each contributing to about half of the glial scar. This is consistent with 

previous reports showing an ependymal cell and/or astrocytic origin of the glial scar 

(51, 82, 94). All Cx30-CreER recombined cells maintained astrocytic features, 

expressing Sox9 and high levels of GFAP. The phenotype of grey matter astrocytes 

was altered after injury, with few expressing Olig2 and now displaying a less 

ramified and more elongated morphology (Paper I). 

 

Following demyelinating injuries such as focal demyelination and experimental 

autoimmune encephalomyelitis (EAE), oligodendrocyte progenitors were shown to 

generate Schwann cells, which are the myelinating cells in the peripheral nervous 

system, as well as a small number of astrocytes (124, 125). To assess the 

differentiation potential of oligodendrocyte progenitors after spinal cord injury, we 

analyzed the phenotype of recombined cells in Olig2-CreER mice. We found that 

oligodendrocyte progenitor progeny is increased throughout the entire injured 

segment and consist exclusively of oligodendrocyte lineage cells, 97% of new 

oligodendrocytes are generated from Olig2-CreER recombined cells, compared to 3%  
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Figure 3. Distribution of new cells 4 months after spinal cord injury.  
(A) Ependymal cells (green), resident astrocytes (red), oligodendrocyte progenitors (blue) 
and type-A pericytes (orange) contribute to new cells in complimentary domains after injury.  
(B) Origin of astrocytes (A), oligodendrocytes (O) and stromal cells (SC) from the different cell 
lineages indicated by different colors in C. 
(C) Ependymal cells self-renew and give rise to scar-forming astrocytes and oligodendrocytes 
after injury. Resident astrocytes self-renew and oligodendrocyte progenitors self-renew and 
give rise to mature oligodendrocytes, whereas type-A pericytes self-renew and generate stromal 
cells after injury. 
Based on data from Paper I and from (109). Figure from (108). 
 

from FoxJ1-CreER recombined ependymal cells (Figure 3B; Paper I). These findings 

demonstrate that resident astrocytes and oligodendrocyte progenitors are lineage-

restricted progenitor cells whereas ependymal cells are multipotent after traumatic 

spinal cord injury.  

 

Following spinal cord injury proliferation is increased in situ and the number of in vitro 

neural stem cells is also increased and a larger number of faster growing neurospheres 

can be isolated after an injury (75, 84, 126, 127). Cortical astrocytes are similar to 

spinal cord astrocytes in that they do not generate cells of other fates during 

physiological or injured conditions (53, 69) (Paper I). However, cortical astrocytes 

can give rise to neurospheres after injury (53, 56, 57). To investigate if spinal cord 

astrocytes also gain in vitro stem cell properties after injury, we generated 

neurospheres from Cx30-CreER mice. Similar to physiological conditions, only one 

neurosphere was generated from Cx30-CreER astrocytes (n= 3 mice, average 298 

neurospheres per culture; paper I) and this neurosphere could not be further passaged. 
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Thus, there is considerable heterogeneity with regard to stem cell properties between 

astrocytes in different parts of the adult central nervous system. We continued to 

assess the neurosphere-forming potential of ependymal cells and oligodendrocyte 

progenitors after injury and we were able to confirm that self-renewing, multipotent 

neurospheres are exclusively generated from recombined FoxJ1-CreER ependymal 

cells (Paper I).  

 

In paper I, we provided an integrated view of how different cell populations contribute 

to new cells during homeostasis and after injury. We defined the final distribution of 

the progeny, with ependymal-derived astrocytes mostly within the lesion, astrocyte-

derived astrocytes forming the lesion borders, and oligodendrocyte progenitor-

derived and, to a lesser extent, ependymal-derived new oligodendrocytes present in 

spared tissue surrounding the lesion. We showed that ependymal cells are latent 

neural stem cells in the spinal cord and their neurosphere-forming potential is 

enhanced after injury, whereas astrocytes and oligodendrocyte progenitors are lineage 

restricted progenitors devoid of in vitro stem cell potential. 

 

 

1.4 REGENERATIVE APPROACHES 

1.4.1 Cellular replacement by transplantation 

Spinal cord injury results in the loss of several different cell types, such as neurons and 

oligodendrocytes. The rapid initial loss of cells is increased over time due to secondary 

damage. Therefore, many studies have focused on cellular replacement by 

transplantation of different kinds of stem cells or stem cell-derived cells to promote 

functional recovery after spinal cord injury (128). The spinal cord environment is 

highly gliogenic and not permissive for neurogenesis. Ependymal cells with the 

potential to differentiate into neurons in vitro, do not contribute to any detectable 

neurogenesis in the injured spinal cord and only generate astrocytes and 

oligodendrocytes (94) (Paper I). Similar observations have been reported when adult or 

embryonic neural stem cells are transplanted into an injured spinal cord as they also 

only give rise to astrocytes and oligodendrocytes (129-133). Interestingly, when such 

neural stem cells are transplanted into the neurogenic environment of the hippocampus, 

they do make new neurons (132). Thus, the environment in the adult spinal cord 

appears to be highly restrictive for neuronal differentiation and/or fail to support 
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neuronal survival. This was further confirmed by Hofstetter and colleagues by showing 

that neural stem cells engineered to express the pro-neural gene Neurogenin2 (Ngn2) 

almost exclusively differentiate to neurons in vitro, but only to glial cells upon 

transplantation into the injured spinal cord (133). The increased generation of 

oligodendrocytes improved functional outcome compared to transplantation of 

unaltered neural stem cells (133). Several other studies have shown that increasing the 

number of oligodendrocytes by transplanting oligodendrocyte progenitor cells and 

embryonic or neural stem cells directed to an oligodendrocyte fate can improve 

functional recovery (134-136). Given the gliogenic nature of the adult spinal cord, it 

might seem more feasible to promote functional recovery by modulating or enhancing 

the generation of non-neuronal cells than by trying to replace lost neurons. However, a 

recent study by Lu and colleagues, suggested that the non-permissive inhibitory 

environment in the adult spinal cord could be overruled if fetal neural stem cell 

transplants are embedded in fibrin matrices containing a cocktail of growth factors 

including BDNF, IGF-1, HGF, EGF and bFGF (137). The authors reported an 

increased neuronal differentiation, axonal growth and connectivity in the grafts and 

improved functional recovery (137). Although the long-distance growth of the grafted 

cells in this study is impressive, it could be possible that some of the beneficial 

effects are from the administration of growth factors in the fibrin matrices.  

 

 

1.4.2 Modulating the injury microenvironment 

In cell transplantation studies it can be difficult to elucidate where the beneficial effects 

come from. Cellular replacement has its obvious benefits as it can replace lost cells and 

cell grafts can help bridging the scar allowing axonal regeneration. Increasing levels of 

growth or survival factors can reduce cell death and promote a more permissive 

environment. Transplantation of non-neural cells has also proven to be beneficial for 

functional recovery after injury. This is believed not to be due to cellular replacement 

but rather that transplanted cells modulate the microenvironment in beneficial ways. 

For instance, it is highly controversial if transplanted mesenchymal stem cells can 

generate neural progeny while there is more evidence supporting that their beneficial 

effect is through modulation of the injured spinal cord environment (138, 139). 

Mesenchymal stem cells synthesize a number of neurotrophic cytokines that stimulate 

axonal growth and neuronal survival, including BDNF, NGF, and VEGF (139-141). 
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Transplantation of fibroblasts modified to produce neurotrophic factors or 

administration of the growth factors alone can improve recovery (136, 142-149). 

Several mechanisms are behind the beneficial effects of growth factor treatments and 

some of the proposed mechanisms include increased sprouting, axonal growth, 

neuronal and/or oligodendrocyte survival (136, 144, 150, 151). In addition, growth 

factor treatments could potentially modulate the endogenous neural stem cell 

response to an injury, such as by increasing the proliferation of ependymal cells (106, 

146, 152). A recent study by Hawryluk and colleagues showed that in vitro 

neurosphere cultures isolated from the adult rat spinal cord express numerous growth 

factors such as CNTF and TGFβ1 (153). We have previously shown that ependymal 

cells are the neurosphere-forming cells in the spinal cord (Paper I) (94). The finding 

that ependymal-derived cells can produce neurotrophic factors in vitro is very 

interesting from a therapeutic perspective since ependymal cells play a central role in 

scar formation and could potentially constitute an endogenous source of neurotrophic 

support after injury (Paper I) (82, 94). 

 

 

1.4.3 Modulating the injury response from endogenous cells 

It has been shown that promoting oligodendrogenesis can improve functional recovery 

after spinal cord injury (75, 133-136). Both oligodendrocyte progenitors and 

ependymal cells generate new oligodendrocytes after injury (Paper I) (94, 154). From a 

clinical perspective it would be ideal to be able to stimulate the production of 

oligodendrocytes from these endogenous stem/progenitor cells to avoid invasive cell 

transplantation therapy and the need for immunosuppression. However, it is not clear if 

manipulating ependymal cells towards an oligodendrocyte fate, at the expense of scar-

forming astrocytes, will indeed lead to a more beneficial outcome. The function of the 

glial scar has long been under discussion and several studies have demonstrated that it 

has both positive and negative effects on recovery (112, 114, 155-157). The classical 

view of the scar as only bad is now becoming more challenged as more and more 

studies are showing clear positive effects. One of the reasons why the scar harbors 

distinct, almost opposite, functions could be that it is made up by several different cell 

types, which could have detrimental or beneficial effect on recovery (Paper I) (108). 

The traditional view of the scar is that it is a physical barrier preventing axons to grow 

through the scar which limits regeneration (156, 157). Reactive astrocytes in the glial 
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scar express a number of inhibitory factors, such as chondroitin sulfate proteoglycans 

and several mouse studies have shown beneficial effects from blocking reactive gliosis 

by knocking out GFAP and Vimentin, which are highly expressed in reactive astrocytes 

(158-160). However, GFAP and Vimentin are expressed by both reactive resident 

astrocytes and by a subset of ependymal cell progeny. Therefore, it is difficult to know 

exactly how the scar is affected in these animals before we know if the two different 

astrocytic populations have similar or separate functions (Paper I and Paper II). In 

addition to studies demonstrating detrimental effects of the glial scar, there are many 

that, on the contrary, report various beneficial effects. Specifically, Faulkner and 

colleagues investigated the role of reactive astrocytes after spinal cord injury using a 

transgenic mouse that express herpes simplex virus-derived thymidine kinase under 

the control of the GFAP promoter (GFAP-TK mouse) to kill dividing astrocytes upon 

administration of the antiviral drug ganciclovir (161). They found that elimination of 

reactive astrocytes resulted in a massive infiltration of inflammatory cells, a larger 

lesion volume, an increased loss of neurons and a worsened functional outcome (112). 

One potential caveat using this method is that it leads to the death of dividing cells, 

which in itself can exacerbate the damage. A recent study by Bardehle and colleagues 

showed that perivascular astrocytes in the cortex divide after injury. If the same cells 

exist in the spinal cord it could also help explain some of the detrimental effects seen 

in the GFAP-TK mouse such as the increased infiltration of immune cells (162). 

 

More recently, other studies have used the Cre-LoxP system to conditionally knock 

out genes involved in reactive gliosis specifically in Nestin or GFAP expressing cells. 

The gene of interest is flanked by two loxP sites, which upon Cre-mediated 

recombination will excise the gene sequence between them to create a knock out 

(Figure 4). Nestin is expressed by both ependymal cell-derived and astrocyte-derived 

reactive astrocytes and specific deletion of signal transducer and activator of 

transcription 3 (Stat3), which is a key player in astrocyte differentiation (163) in 

either Nestin or GFAP expressing cells resulted in disrupted glial scar formation after 

injury (113-115). Using these transgenic mice, it was confirmed that elimination of 

reactive astrocytes results in a massive infiltration of inflammatory cells and worsened 

functional outcome (113-115). Okada and colleagues also showed that deletion of the 

protein suppressor of cytokine signaling 3 (Socs3) in Nestin-positive cells increased 

the reactive state of astrocytes, leading to the opposite effect: increased astrocyte 

migration, premature glial scar formation and improved recovery (114). Taken 
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together, these studies suggest that the glial scar prevents inflammatory processes 

from spreading to the healthy tissue around the lesion. 

 

In summary, the glial scar has been shown to have clear beneficial and detrimental 

effects on functional recovery after a spinal cord injury. It is tempting to speculate that 

the two different astrocyte populations derived from ependymal cells and resident 

astrocytes could be differentially contributed by these different properties of the glial 

scar. It is crucial to further understand the function of the different glial scar 

components to be able to modulate the injury response in order to improve recovery.  

 

 

1.4.4 Resident neural stem cells restrict tissue damage and neural loss after 

spinal cord injury 

To study the role of ependymal cell progeny after spinal cord injury, we used 

transgenic mice to specifically ablate proliferation of ependymal cells and thereby 

block the generation of ependymal cell progeny after injury (Figure 4). This transgenic 

line was made by crossing the ependymal cell-specific FoxJ1-CreER mouse with an 

inducible knockout of Ras (denoted rasless) (Figure 4; Paper II) (94, 164). There are 3 

Ras genes, H, N and K, which are required for cells to go through G1 phase to mitosis 

and the 3 genes are partially redundant (109, 164). The rasless mouse is homozygous 

for H-Ras and N-Ras null alleles and homozygous for floxed K-Ras alleles (Figure 4). 

Mice with a double knockout of two Ras genes will appear normal but upon 

recombination, when the third Ras gene is excised, cells are no longer able to 

proliferate (164). Thus, the FoxJ1-rasless mouse (i.e. FoxJ1-CreER:R26R-YFP:H-Ras -

/-:N-Ras -/-:K-Ras fl/fl) allows for both specific and inducible ablation of ependymal 

cell proliferation and expression of YFP in ependymal cells in the adult spinal cord 

after tamoxifen administration. We used mice with the same genotype as controls, but 

they received oil rather than tamoxifen to avoid recombination. 
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Figure 4. Ablating the generation of ependymal cell progeny in FoxJ1-rasless mice.  
 
A-B Schematic outline of the strategy to block proliferation of ependymal cells. An ependymal 
cell-specific inducible CreER-loxP mouse line (FoxJ1-CreER:R26R-YFP, described in Figure 
1) was crossed to a conditional Ras knockout mouse. The mouse is homozygous for H-ras and 
N-ras null alleles and K-ras is flanked by two loxP sites that upon Cre-mediated recombination 
will excise the K-ras gene to get a rasless mouse. Adapted from Paper II.  
 

To characterize the impact of the impaired ependymal cell response we studied chronic 

injuries, 14 weeks after a dorsal incision injury. We found that 79% of FoxJ1-rasless 

mice, the mice without ependymal cell response, displayed scars with various degrees 

of tissue defects, ranging from minimal gapping at the injury site to single large cysts 

(Paper II). Cyst formation is common after spinal cord injuries in for instance humans 

and rats, but not in mice (165), and our control mice never developed a cyst. All control 

mice had dense glial scars at the site of the lesion (Paper II). This suggests that 

ependymal cell progeny is needed to restrict the spreading of the lesion. Indeed, further 

analysis of the lesion site revealed that the injuries were deeper, there was less spared 

tissue and the spinal cords were thinner, implying atrophy of the tissue in FoxJ1-rasless 

mice compared to control mice (Paper II). Since analysis and surgeries were made 

blindly, we assumed that the injuries were initially comparable between the groups. 

This suggests that the injuries grew deeper in a secondary process after the initial cut.  

 

To assess the consequence of enlarged lesions, we examined the integrity of the 

corticospinal tract, which is a major axonal tract located immediately ventral to the 

lesion in this paradigm. We found that the corticospinal tract was spared in most 

control mice, whereas it was disrupted in the majority FoxJ1-rasless mice (1 of 14 

and 9 of 14 corticospinal tracts were disrupted in control and FoxJ1-rasless mice, 

respectively; Paper II). This suggests that scarring by ependymal cells progeny is 
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required to reinforce the tissue to prevent secondary enlargement of the lesion and 

severance of axons spared by the initial injury (Figure 5). To assess the dynamics of 

this process, an additional cohort of mice was followed over several weeks with 

longitudinal magnetic resonance imaging (MRI). The lesions in control mice were 

reduced with 17% of their initial depth 9 weeks after injury, whereas the lesions in 

FoxJ1-rasless mice had gradually grown larger by 29% of their original depth and some 

animals had developed a single large cyst (Paper II). This shows that ependymal cell 

progeny is important to restrict an injury and without them the injury will keep growing 

(Figure 5). The longitudinal MRI also allowed us to confirm that FoxJ1-rasless mice 

developed a significant atrophy of the spinal cord over time (Paper II). The observed 

atrophy raises the question of what kind of tissue is lost in the absence of ependymal 

cell progeny. We found a 20% increase in neuronal loss in FoxJ1-rasless mice in 

segments adjacent to chronic lesions (Paper II). Already at 2 weeks after injury, an 

increased number of cleaved caspase 3-positive apoptotic neurons were found in 

animals without ependymal cell progeny (Paper II).  

 

Neurotrophic factor expression is typically upregulated in response to spinal cord injury 

(145, 153, 166). We assessed the expression levels of several neurotrophic factors and 

found significant attenuation of the up-regulation of CNTF, HGF, IGF-1 and TGFβ1 

mRNA in FoxJ1-rasless mice 2 weeks after injury (by 47-77% compared to injured 

control mice; Paper II). Immunohistochemistry in the injured spinal cord of control 

mice showed that CNTF, HGF and IGF-1 are synthesized by ependymal cell-derived 

astrocytes (Paper II). Administration of these neurotrophic factors has been shown to 

improve functional recovery and/or rescue neurons after spinal cord injury (144, 145, 

167). These results suggest that ependymal cell progeny play a role in keeping neurons 

alive after injury, possibly through supplying neurotrophic factors in the spinal cord.  

 

To verify that the phenotype was specific for the absence of ependymal cell progeny 

and not a general consequence of impaired scarring, we looked in another mouse line 

with impaired scarring. Göritz and colleagues have shown that Glast-rasless mice, with 

blocked type-A pericyte response, failed to seal the lesion and regain tissue integrity 

(109). We were, however, not able to find any other similar phenotypes. The Glast-

rasless mice did not have lesions extending deeper or increased atrophy compared 

with control animals and, in addition, they did not have increased neuronal loss 

suggesting that these are FoxJ1-rasless specific phenotypes (Paper III). 
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Figure 5. Ependymal cell progeny restrict tissue damage after spinal cord injury. 
A-C. The illustration shows a simplified view of lesion development after spinal cord injuries 
in mice, with (Control) and without (FoxJ1-rasless) the ependymal cell injury response. 
Ependymal cells (green) in control mice (upper panel) respond to injury by producing 
progeny that migrate to the lesion site (upper panel in B) where they contribute to the forming 
glial scar (upper panel in C). Without ependymal cell progeny (lover panel), the injury 
gradually expands (lower panel in B and C) and more nerve fibers are cut off caudal to the 
lesion (right in illustration). Illustrations from Mattias Karlén. 

 
Thus, we have proposed two novel functions for ependymal cells, the latent neural stem 

cells of the adult spinal cord. The first is a scaffolding function that prevents the injury 

from growing after the initial damage to restrict secondary injury. The second function 

is in supplying neurotrophic support that keeps neurons from dying in the toxic 

environment after spinal cord injury. In conclusion, glial scars have been proposed to 

have both beneficial and detrimental effects on recovery. We have identified the origin 

of a beneficial part of the glial scar, which could be an attractive target to modulate in 

response to injury. 
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1.5 NEURAL STEM CELL HETEROGENEITY 

Several studies have described heterogeneity of neural stem and progenitor cells in the 

brain. Below follows some major examples of functional, regional and morphological 

heterogeneity within neural stem cell niches. 

 

 

1.5.1 Heterogeneity in the subventricular zone 

The subventricular zone of the lateral ventricle wall is one of the most studied 

neurogenic regions in brain. Stem/progenitor cells in the subventricular zone are 

generating various kinds of neural cells, including astrocytes, oligodendrocytes and 

several different kinds of olfactory bulb interneurons (4, 7, 9). GFAP-expressing stem 

cells (type B1 cells) can generate both oligodendrocyte progenitors and transit 

amplifying (type C) cells (168). These committed progenitors can divert from one 

lineage to another when their oligodendrogenic or neurogenic fate determinants are lost 

(169), suggesting that they have a common bi-potent neural stem cell (type B cell) that 

can give rise to both oligodendrocyte lineage and neuronal lineage cells (170).  On the 

contrary, viral targeting or genetic lineage tracing studies have shown that neural stem 

cells are heterogeneous when it comes to generating different neuronal subtypes in 

the olfactory bulb. It has been shown that neural stem cells display functional 

regional diversity and specific subtypes of interneurons are made within specific 

regions along the dorso-ventral and rostro-caudal axis of the adult subventricular zone 

(30, 171-177). Merkle and colleagues showed that the regional specification of neural 

stem cells is cell-intrinsic and maintained even after transplantation or after multiple 

passages in culture (174).  

 

The progenitor cell state of type C cells can be reverted to a stem cell state by 

exposure to growth factors as shown by their ability to generate self-renewing, 

multipotent neurospheres in vitro (178). Thus, certain stimuli can induce 

dedifferentiation of cells. Astrocytes outside the neurogenic niches in the brain do not 

actively divide (53, 54, 58).  However, astrocytes can become reactive and start 

proliferating after injury. Buffo and colleagues were able to show that a subset of 

reactive astrocytes in the cerebral cortex gain in vitro stem cell properties after a stab 

wound injury and were able to generate multipotent self-renewing neurospheres (53). 

Another study, by Carlén and colleagues showed that another post-mitotic, 
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differentiated glial cell type gain multi-lineage potential after injury. Ependymal cells 

in the neurogenic niche by the lateral ventricle wall can give rise to both astrocytes and 

neuroblasts after a stroke (103). However, unlike spinal cord ependymal cells, these 

forebrain ependymal cells do not self-renew and become depleted in the process of 

generating progeny (103). Oligodendrocyte progenitors are also recruited after a brain 

injury, but they are restricted to their own lineage and do not show any in vitro stem 

cell potential (54, 88). Thus, it seems that an injury can induce various stem/progenitor 

cell responses in local quiescent glial cells in the adult brain. 

 

 

1.5.2 Heterogeneity in the dentate gyrus 

The neural stem and progenitor cells of the adult hippocampus consist of a 

heterogeneous pool of cells that display different marker expression (15, 27, 179-182) 

and morphologies (24, 28). There has been conflicting evidence about whether 

hippocampal neural stem/progenitor cells are self-renewing or depleted during the 

process of generating new neurons (29, 30). Differences in differentiation potential 

have also been reported for hippocampal stem/progenitor cells. These apparently 

contradicting results might reflect the coexistence of several cell populations with 

different stem cell properties. Indeed, a recent study by Decarolis and colleagues 

suggests functional heterogeneity of hippocampal radial glia-like stem cells using two 

different transgenic mouse lines (Glast-CreER and Nestin-CreER) to fate map potential 

stem/progenitor cells (179). They found that both cell populations contribute to 

neurogenesis, however, the Glast-CreER cell population seemed to be much smaller 

and was suggested to represent dormant or “long-term” stem cells, whereas the Nestin-

CreER cell population was fast dividing and suggested to represent “short-term” stem 

cells. When neurogenesis was manipulated, either by stimulation or ablation of cells, 

they found that Glast-CreER radial glial cell contributed to neurogenesis whereas 

Nestin-CreER radial glial cells did not (179). This heterogeneity could indicate that 

there are different subpopulations of stem cell-like cells in the hippocampus raging 

from unipotent committed progenitors to self-renewing multipotent neural stem cells. 

Further studies need to investigate the relationship between different heterogeneous 

cell populations and mechanisms governing their stem cell potential. 
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1.5.3 Heterogeneity within the ependymal layer 

Ependymal cells are present throughout the entire axis of the adult central nervous 

system and they display regional differences. Ependymal cells in the lateral ventricle 

wall are post-mitotic, whereas they have stem cell properties in other regions such as 

the third ventricle and the spinal cord (4, 43, 90, 94). Although ependymal cells in 

different regions share many features they still constitute a heterogeneous group of cells 

(91-96). Pfenninger and colleagues showed that there are differences in gene expression 

between ependymal cells in the lateral ventricle wall and the spinal cord (105). Spinal 

cord ependymal cells show higher expression of genes involved in cell division, cell 

cycle regulation and chromatin stability and they share some transcripts with radial glia 

cells of the embryonic forebrain such as Fen1, which is important for telomerase 

activity (105). This goes well with their physiological base-line proliferation and latent 

stem cell potential. Post-mitotic ependymal cells in the lateral ventricle wall express 

genes regulated by TGFβ family members. These genes are involved in neuronal 

specification and keeping cells in undifferentiated states and could potentially help 

explain how forebrain ependymal cells can turn into neuroblasts after stroke (103, 105).  

 

In addition to gene expression, the ependymal cells are also morphologically 

heterogeneous. For instance, the ependymal layer in the spinal cord consist of equal 

numbers of cuboidal ependymal cells and tanycytes, based on electron microscopy 

analysis (94), whereas the forebrain ependymal layer consists almost exclusively of 

cuboidal ependymal cells (denoted E1 and E2 cells) (104). Interestingly, the neural 

stem cells (type B cells) in the subventricular zone protrude through the layer of 

cuboidal ependymal cells and contact the ventricle on its apical side with a primary 

cilium and extend a basal process to a blood vessel, in many ways resembling the 

morphology of tanycytes (104). The ependymal layer in the neurogenic third ventricle 

has a gradient of cuboidal ependymal in dorsal regions and tanycytes in ventral 

regions (98). The neurogenic potential in the hypothalamic ependymal layer is 

exclusively found in tanycytes (39, 40, 42, 43, 98, 183). Tanycytes in the third 

ventricle have been studied for decades. Morphological studies have mapped and 

defined subpopulations of tanycytes according to their position in the ventricle wall 

and where their basal process projects (43, 98, 184). There are at least four different 

tanycytic subpopulations described in the literature and they are heterogeneous in 

marker expression (e.g. GFAP, FGF10, FGF18 and Glast) and stem cell potential (39, 
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40, 42, 43, 98, 183). Ependymal cells in the spinal cord also display heterogeneity in 

expression of markers associated with immature neural cells such as BLBP, RC1, 

Nestin and CD15 (94, 95, 102). Other markers that have a suggested expression in 

ependymal subpopulations include the astrocyte and neural stem cell marker GFAP, the 

neural cell adhesion molecule PSA-NCAM and the cannabinoid receptor CB-1 (92, 

95). The heterogeneity in stem cell/immature marker expression suggests a potential 

functional heterogeneity within different subpopulations of ependymal cells.  

 

 

1.5.4 Spinal cord ependymal cells are functionally heterogeneous 

Ependymal cells are latent neural stem cells in the adult spinal cord (Paper I) (94). The 

stem cell properties of ependymal cells have been assessed on a population level since 

the vast majority of ependymal cells are recombined in the FoxJ1-CreER line (Paper I) 

(94). One intriguing question is if all ependymal cells have stem cell properties or if 

this is contained to a subpopulation of ependymal cells? 

 

To assess the stem cell potential of different ependymal cell subpopulations we used 

two different CreER mouse lines on Cre-reporter background (R26R-YFP or R26R-

tdTomato; Figure 1). The first mouse line expressed CreER under the Glast promoter 

(Slezak et al., 2007). The Glast-CreER mouse recombines type A pericytes and a small 

subpopulation of ependymal cells (approximately 10% of all pericytes and 3.5±1.7% of 

ependymal cells, respectively, Mean±SEM, Paper III) (109). Recombined Glast-CreER 

cells are concentrated in the dorsal region of the ependymal layer, which is also where 

proliferating ependymal cells are most numerous under physiological conditions (Paper 

III) (91, 93). To investigate if recombined Glast-CreER cells proliferate, mice received 

BrdU continuously for 3 weeks before analysis. We found that recombined Glast-

CreER cells do proliferate, but not more frequently than the average of all ependymal 

cells (Paper III), demonstrating that the Glast-CreER subpopulation is not the only 

proliferating subpopulation in the ependymal layer. Proliferation within the ependymal 

layer is always in close proximity to the surrounding vasculature (Hamilton et al., 

2009) and interestingly, the vast majority of Glast-CreER cells extended basal 

processes that often ended on blood vessels (Paper III). This could suggest an important 

role for Glast-CreER within the spinal cord stem cell niche, where blood vessels are 

one important component (93, 95). To investigate the in vitro neural stem cell potential 
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of recombined Glast-CreER cells, neurospheres were generated and the recombination 

assessed over several passages. We found that the recombined Glast-CreER ependymal 

subpopulation was highly enriched for generating neurospheres. Recombination went 

up from 1.6±0.2% of ependymal cells in biopsies, to 34.3±3.8% of primary 

neurospheres in culture (mean±SEM for n=5 animals, Paper III). However, the 

recombination rate decreased rapidly as the neurospheres were passaged and by the 4th 

passage almost no neurospheres were recombined (0.6±0.3% recombination at passage 

4, mean±SEM, Paper III). This demonstrated that neurospheres derived from Glast-

CreER ependymal cells have limited self-renewing capacity and may better be 

described as progenitor cells. Two previous studies have used the human GFAP 

promoter to fate map and study one ependymal cell subpopulation. They report similar 

morphology, marker expression and, most importantly, the same limited in vitro self-

renewal potential for their ependymal cell subpopulation as for Glast-CreER 

ependymal cells (Paper III) (95, 185). This suggests that cells that are labeled using the 

human GFAP promoter and recombined Glast-CreER cells might be the same, or 

overlapping, progenitor populations (Paper III) (95, 185). 

 

Spinal cord injury induces a dramatic increase in proliferation throughout the injured 

segment (51, 80, 110). Horky and colleagues investigated the role of dividing versus 

quiescent parenchymal progenitors acutely after an injury. They wanted to determine 

if the dividing progenitor pool was responsible for posttraumatic gliogenesis or if 

quiescent progenitors were recruited. They pre-labeled dividing cells with BrdU and 

characterized the injury response 24 hours after injury. They found that the vast 

majority of pre-labeled dividing progenitors died or remained post-mitotic (80). We 

found that ependymal cells act in a similar way when we analyzed animals that had 

received BrdU for 4 weeks before a dorsal funiculus incision. We could not find a 

single proliferating ependymal cell pre-labeled with BrdU 4 days after the injury 

(Paper III). In addition, we found that the location of proliferating ependymal cells 

within the ependymal layer shifted from the dorsal region during physiological 

conditions, to the ventral region after injury (Paper III). Together these findings 

suggest that quiescent cells are recruited to proliferate in the acute phase after spinal 

cord injury. To assess if Glast-CreER ependymal cells are proliferating after injury, 

we performed dorsal funiculus incisions and analyzed the animals 7 days later. We 

were not able to find any proliferating Glast-CreER ependymal cells, nor were they 

migrating towards the injury site or in any other way reacting to the injury (Paper III). 
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In summary, our results suggest that the Glast-CreER ependymal subpopulation 

represent restricted progenitors, which proliferate under physiological conditions, but 

which neither display in vitro neural stem cell properties nor contribute to scar 

formation or remyelination in response to injury (Figure 6, Paper III). 

 

The second mouse line used in paper III was the Troy-CreER mouse. Troy is a Tumor 

necrosis factor receptor family member, which has been implicated in stem cell activity 

in other organs (186). The Troy-CreER mouse recombines a small subpopulation of 

ependymal cells (approximately 6% of ependymal cells, Paper III) and a subset of 

pericytes that do not generate progeny or leave the vessel wall after spinal cord injury 

(data not shown). The vast majority of recombined Troy-CreER ependymal cells have 

tanycyte-like processes contacting blood vessels, however they are completely 

quiescent under physiological conditions (Paper III). To assess the in vitro neural stem 

cell potential of recombined Troy-CreER cells, neurospheres were generated and 

recombination was assessed over several passages. We found similar recombination 

rates in ependymal cell biopsies as in primary neurosphere cultures (6.7±1.2% and 

7.7±1.5% recombination of ependymal cells and neurospheres, respectively, 

mean±SEM for n=4, Paper III). However, contrary to what was seen for recombined 

Glast-CreER neurospheres, the recombination rate kept on increasing as the Troy-

CreER neurospheres were passaged. By the 4th passage most neurospheres from Troy-

CreER mice were recombined (87.8±2.7% recombination at passage 4, mean±SEM for 

n=4, Paper III). This demonstrated that neurospheres derived from recombined Troy-

CreER cells have sustained self-renewal potential over time in culture suggesting that 

Troy-CreER ependymal cells account for close to all the in vitro neural stem cell 

potential in the ependymal layer and thus the entire adult spinal cord (Figure 6, Paper 

III).  

 

Next we wanted to investigate if recombined Troy-CreER ependymal cells contribute 

to scar formation and generation of oligodendrocytes after an injury. We found that 

quiescent Troy-CreER ependymal cells started to proliferate after injury and gave rise 

to progeny that migrated towards the lesion site where they differentiated into 

astrocytes (Figure 6, Paper III). In addition, we found mature recombined 

oligodendrocytes in Troy-CreER mice 3.5 months after injury, demonstrating that the  
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Figure 6. Ependymal cells are functionally heterogeneous. 
 
A. Recombined Glast-CreER ependymal cells (green) proliferate under physiological 
conditions, have limited self-renewal capacity in vitro, but do not give rise to progeny after 
spinal cord injury.  
B. Recombined Troy-CreER ependymal cells (green) are quiescent under physiological 
conditions, but display stem cell properties with extensive self-renewal in vitro and give rise to 
both scar-forming astrocytes and oligodendrocytes in vivo after spinal cord injury. Based on 
data from Paper III. Adapted from (108) 
 
 

Troy-CreER ependymal subpopulation consists of multipotent cells that can generate 

both astrocytes and oligodendrocytes. 

 

In paper III we identified functionally distinct subpopulations of ependymal cells using 

fate mapping in two different mouse lines. Glast-CreER ependymal cells represents a 

subpopulation of restricted progenitors that proliferates under physiological conditions 

but have limited self-renewal capacity in vitro, and do not give rise to progeny after 

spinal cord injury. Troy-CreER ependymal cells are latent neural stem cells, which are 

completely quiescent in the intact spinal cord, but proliferate and give rise to a large 

number of progeny both in vitro and in response to injury. In summary, spinal cord 

ependymal cells are functionally heterogeneous with proliferating progenitors and 

quiescent, latent neural stem cells. 
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2 CONCLUSIONS AND PERSPECTIVES 
The main objective of this thesis was to identify spinal cord neural stem cells and 
investigate their functional role after spinal cord injury. 
 
2.1.1 Conclusions 

Specifically we found that: 
 
1. Ependymal cells are latent neural stem cells in the adult spinal cord, which are 
activated in vitro and upon spinal cord injury. 
 
2. Ependymal cells restrict tissue damage and neural loss after spinal cord injury. 
 
3. Spinal cord ependymal cells are functionally heterogeneous, including both restricted 
progenitor cells and quiescent stem cells. 
 
 
2.1.2 Ependymal cells are latent neural stem cells in the adult spinal cord 

Most studies using cell fate mapping within the injured spinal cord have focused on 

following the progeny of one specific population of dividing cells. To provide an 

integrated view of the endogenous cell response, we have followed the three main 

proliferating neural cell populations in parallel: oligodendrocyte progenitors, resident 

astrocytes and ependymal cells. Our main findings are that these cells generate 

progeny that occupy complimentary domains in the injured spinal cord and that 

resident astrocytes and oligodendrocyte progenitors are lineage restricted progenitors. 

Moreover, we identify ependymal cells as latent multipotent neural stem cells, which 

can generate both scar-forming astrocytes and oligodendrocytes after injury. This is 

similar to what is seen in regenerating species, such as urodele amphibians, where 

radial glia-like ependymal cells act as neural stem cells (99). 

 
 
Our results are based on incision injuries, specifically in the dorsal funiculus, which is 

quite mild and unimpairing. This injury model has many advantages when studying 

endogenous cellular responses like migration and activation since it is a localized 

injury. However, this is not the best clinically relevant injury model since most humans 

with spinal cord injury have contusion injuries. Ependymal cells do, indeed, respond to 

contusion injuries in a similar way as to incision injuries (187) (unpublished 

observations), which validates our model for basic cell fate mapping. 
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The role of ependymal cells in humans needs to be studied further. Although it is 

known that adult humans have neurosphere-forming cells in the spinal cord, it is not 

known if these cells are ependymal cells (188). When ependymal cell-progeny or type-

A pericyte-progeny is blocked after injury, cyst formation occurs in some mice (Paper 

II) (109). Cyst formation does typically not occur in mice, but is frequent in rats and 

humans after spinal cord injury (165). One intriguing thought is if these cysts could be 

the consequence of inefficient recruitment of ependymal cells or type-A pericytes to the 

lesion. If we learn more about how ependymal cells and type-A pericytes interact in 

scar formation in mice, we might get more insights into how we might be able to 

prevent cyst formation in rats and humans.  

 

Another intriguing question is to which extent endogenous stem cells are recruited after 

lesion or disease? In order to answer that question one could look into other types of 

injuries in the spinal cord such as multiple sclerosis (MS), to define differences and 

similarities in cellular responses and environmental cues. MS is a demyelinating 

inflammatory chronic disease that can be studied in EAE mice. There is little evidence 

to support that ependymal cells are reacting to EAE, but previous studies have only 

assessed proliferation activity (187) or utilized a fate mapping strategy that only 

includes a small subset of ependymal cells (189). It would be interesting to further 

investigate if ependymal cells are recruited in EAE or any other demyelinating injury or 

condition. 

 
 
2.1.3 Ependymal cells restrict tissue damage and neural loss after spinal cord 

injury. 

Glial scarring has traditionally been seen as something bad to overcome after a spinal 

cord injury, in Paper II we show that scarring by ependymal cells has beneficial effects 

on recovery. This is in line with some similar studies using GFAP/Vimentin/Nestin 

promoter elements or knockouts to block or kill reactive astrocytes (112-115, 159, 

190). However, since these studies target two distinct reactive astrocyte populations at 

the same time (derived from ependymal cells or resident astrocytes, respectively) it is 

hard to draw definite conclusions and the results have at times appeared contradicting. 

In Paper II, we were able to characterize distinct beneficial functions of ependymal-

derived astrocytes using the FoxJ1-rasless line. Göritz and colleagues assessed the 

functional role of type-A pericyte-derived fibrotic cells, using a Glast-rasless line (109). 
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They found that the fibrotic core of the scar is important to seal a lesion (109). Before 

being able modulate the scar in a beneficial way it is crucial to get a more complete 

view of the role of the distinct domains of the scar (Figure 3). For this purpose it would 

be valuable to characterize the injury response in an astrocyte-specific rasless mouse 

where the function of reactive astrocytes can be specifically studied without 

contamination from ependymal cell progeny. Depending on what these studies show, it 

might be desirable to modulate the stromal core together with non-ependymal-derived 

reactive astrocytes as a future therapeutic approach. Stromal cells derived from type-A 

pericytes are required to seal the lesion, but it has been suggested that partial inhibition 

of these cells might have beneficial effects after injury (109, 191). Therefore, a 

combinatorial treatment strategy with partial inhibition of both these cell populations 

might be beneficial for recovery.  

 

The beneficial effects of ependymal cells after an injury are most likely not only due to 

their cell replacement properties by generating scar tissue and remyelinating 

oligodendrocytes. In paper III, we show that ependymal derived cells are a major 

source of neurotrophic support, which makes it likely that some beneficial effect is 

from modulating the injury environment to make is less toxic and this could explain 

why we see an increased neuronal loss without ependymal cell progeny. However, the 

mechanism behind the neurotrophic effect on neurons is not clear. One way to identify 

the neurotrophic factor(s) involved in this process is to utilize FoxJ1-rasless mice and 

then treat them with different factors in order to rescue the deleterious phenotype. 

 

We have several candidate neurotrophic factors, such as IGF-1, HGF and CNTF which 

are highly expressed in ependymal cells and ependymal–derived cells 7 days after 

injury (unpublished observations). Ependymal cells are still expressing these factors 14 

days after injury, but then more distributed within the parenchyma (Paper II). It is 

possible that ependymal cells distribute these factors to the surrounding tissue.  

  

It is tempting to speculate that the close interplay between ependymal cells and CSF 

plays a role in regulating their proliferative v/s quiescent state. We see a significant 

increase in proliferation of ependymal cells in segments distant from a spinal cord 

injury (Paper III), which possibly could be explained by increasing levels of growth 

factors in the CSF. Indeed, infusion of growth factors (bFGF and EGF) into the 4th 
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ventricle induces proliferation of spinal cord ependymal cells (106). It would be very 

informative to analyze the levels of growth factors in CSF after an injury to get insights 

into how endogenous at all levels of the central nervous system cells are being affected 

by an injury. Moreover, many transplantation studies have been shown to lead to 

trophic support by expression of various growth factors. However, the effect on 

proliferation and differentiation of resident stem cells (ependymal cells) has often been 

overlooked or not studied at all. 

 
2.1.4 Spinal cord ependymal cells are functionally heterogeneous 

We have characterized ependymal cell injury response and the functional implication of 

ependymal cell activation and scarring (Paper I and Paper II). However, in order to be 

able to modulate the injury response to promote recovery one needs to characterize 

ependymal cells further. Troy-CreER cells represent a small subpopulation of quiescent 

ependymal cells that can generate both astrocytes and oligodendrocytes after injury. 

This raises the question if individual ependymal cells are multipotent in vivo and if the 

same ependymal cells generate scar-forming astrocytes and oligodendrocytes? To 

address these questions one could do in vivo clonal cell analysis of individual 

ependymal cells. 

 

Decarolis and colleagues recently reported functional heterogeneity of radial glial-like 

neural stem cells in the hippocampus using the Nestin-CreER and Glast-CreER lines. 

They show that both cell populations represent neurogenic stem cells and propose that 

Glast-CreER cells are “dormant” under physiological conditions but that they are the 

cells that respond to injury (179). This is similar, although molecularly different, to 

what we find in Paper III; quiescent Troy-CreER cells respond to spinal cord injury, 

whereas mitotic Glast-CreER cells do not. These two niches should be further 

evaluated in the sense of harboring two types of progenitor/stem cells that are 

functionally heterogeneous. In addition, investigating differences and similarities 

between physiological and injury-induced proliferation in these regions could provide 

valuable insights to stem cell maintenance and activation.  

 

Several pieces of evidence suggest that tanycytes are the ependymal cell type with 

stem/progenitor cell properties, both in the hypothalamus and spinal cord, and that 

cuboidal ependymal cells might have other important functions, such as propulsion of 
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CSF flow (90). Cuboidal ependymal cells might constitute post-mitotic niche cells (as 

they do in the lateral ventricle wall) whereas tanycytes are cells that signals between the 

CSF and parenchyma and a sub population of tanycytes could, in addition, be 

proliferating or quiescent neural stem cells. In the future, it would be interesting to 

compare the transcriptional profile of different subtypes of tanycytes and cuboidal 

ependymal cells in the spinal cord to get more insights about their functional 

differences and roles. This would provide a better understanding of the need and utility 

of having both limited progenitor cells that maintain homeostasis versus quiescent stem 

cells that are activated only upon injury. It ultimately comes down to the intriguing 

questions of how we should define stem cells when stemness is transient and dependent 

on context. One cell can act as a stem cell in one setting but not at all in another, 

whereas cues that do not affect the already active stem cell pool can activate a dormant 

cell. Once we understand these concepts better we might be able to induce and 

modulate cellular responses in a beneficial way to promote recovery after spinal cord 

injury. 
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