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To my Mother Anna-Greta. I wish you were here. 





Abstract 
The overall aim of this work has been to investigate methodological issues connected to 
long-term follow-up of infections diseases. The work extended to prevalent cohorts in 
general. The common denominator for the main methodological efforts in these four papers 
is issues connected to selection bias. In the first three papers methods for visualizing 
selection bias in prevalent cohorts were explored and different approaches to adjust for this 
bias discussed. In the fourth paper, capture-recapture modeling was used to examine 
ascertainment level for liver cancer in the Swedish Cancer Register. 

Study 1: In this study we investigated a novel approach to visualize and adjust for selection 
bias in prevalent cohorts. The method is an extension of the standard interval-based 
approach, where a risk estimate is calculated for disjointed time periods after inclusion in the 
cohort of interest. In the proposed method, observation time and events are cumulated, 
giving more power and more precise estimates which may be useful for studies with few 
events where it may be difficult to judge what is a true effect and what is random noise. The 
proposed method, cumulative SIR, is exemplified using data on hepatitis-C virus infection 
and the outcome liver cancer and non-Hodgkin lymphoma. The results using this novel 
approach were comparable to a standard approach with disjoint intervals. The results 
indicate that the method may be useful in situations with few events in the cohort. The 
method is only useful for cohorts where the risk of the studied outcome is fairly stable over 
time. 

Study 2: Spurious observations have indicated that there may be a relationship between 
hepatitis C virus (HCV) infection and kidney cancer. In this study the relationship between 
HCV-infection and kidney cancer was investigated by use of disease registers. In addition 
the known association of HCV-infection and other forms of kidney disease was explored 
further. Methods for investigating selection bias explored in Paper I were used, in addition 
new ideas were investigated which were further developed in paper III. The relationship 
between HCV-infection and kidney cancer was not confirmed in this study, but the 
association of HCV-infection with other kidney-related diseases was investigated further. 

Study 3: For cohorts that may have high hazard immediately after inclusion in the cohort, 
which then first decreases to later increase with follow-up time, the method of cumulative 
SIR must not be used. The cumulative properties will obscure the initial decrease and the 
method cannot give clear answers. In paper III we used restricted cubic splines to model to 
instantaneous failure rate (hazard). The shape of the hazard function may give an indication 
of the possible presence of selection bias in the cohort. The proposed method was 
exemplified using 1) data on HCV-infection where the outcome of interest was ‘kidney 
disease’ and 2) a cohort a patients with Monoclonal Gammapathy of Uncertain Significance 
(MGUS) and the outcome of interest ‘death’. The model was useful to study the shape of the 
hazard in the cohorts and the number of knots was adjusted to give a suitably flexible model, 
clearly showing the shape of the hazard without being too flexible. 

Study 4: In this study we explored capture-recapture modeling, using a log-linear model to 
estimate ascertainment level of the Swedish Cancer Register (CR). We used a three-source 
model: CR, the National Patient Register (PR) and the Cause of Death Register (DR). Due to 
the limited degrees of freedom in available data, a full model can not be used. We chose to 
estimate a single two-way interaction between the most dependent registers (DR and PR) 
and a three-way interaction. This model will estimate the number of unreported cases of 
liver cancer to about 25% of the total number of cases in all three registers together, 
accounting for overlap. The analysis is likely to be biased by false positive cases 
identified in the PR and/or DR. 
 



List of publications 
 
 

I.  Törner A, Duberg AS, Dickman P, Svensson A. 
A proposed method to adjust for selection bias in cohort studies. 
Am J Epidemiol. 2010 Mar 1;171(5):602-8. 
 

II.  Hofmann JN, Törner A, Chow WH, Ye W, Purdue MP, Duberg AS. 
Risk of kidney cancer and chronic kidney disease in relation to hepatitis C 
virus infection: a nationwide register-based cohort study in Sweden. 
Eur J Cancer Prev. 2011 Jul;20(4):326-30.  
 

III.  Törner A, Dickman P, Duberg AS, Kristinsson S, Landgren O, Björkholm M, 
Svensson Å.  
A method to visualize and adjust for selection bias in prevalent cohort 
studies. 
Am J Epidemiol. 2011 Oct 15;174(8):969-76.  
 

IV.   Anna Törner, Knut Stokkeland, Fereshte Ebrahim, Åke Svensson, Paul 
Dickman, Rolf Hultcrantz, Scott M Montgomery, Ann-Sofi Duberg.  
Liver Cancer in Sweden. Combining information from different registers 
and using a log-linear model to estimate the true incidence of liver cancer. 
Manuscript in preparation. 
 

 
  



Table of contents 
1. Introduction .............................................................................................................. 1 

2. Cohorts for research ................................................................................................ 1 
HCV-cohort ............................................................................................................................ 1 
MGUS-cohort ......................................................................................................................... 2 
The Swedish Cancer Register ................................................................................................ 2 
The Cause of Death Register ................................................................................................. 2 
The National Patient Register ................................................................................................ 2 
Statistics Sweden .................................................................................................................... 3 

3. Selection bias ............................................................................................................. 3 

4. Correcting for selection bias ................................................................................... 6 

5. Selection bias using casual inference and DAG-theory ....................................... 7 

6. Capture-recapture models to quantify ascertainment level in registers ........... 9 
Introduction ............................................................................................................................ 9 
Models for capture-recapture ............................................................................................... 10 
Capture recapture models – assumptions ............................................................................ 13 
Ascertainment of cases ......................................................................................................... 13 
Variable catchability and closed population ........................................................................ 14 

7. Conclusion ............................................................................................................... 15 

8. Summary of papers ................................................................................................ 17 
Paper I ...................................................................................................................................... 17 

Motivation ............................................................................................................................ 17 
Material ................................................................................................................................ 17 
Methods ................................................................................................................................ 18 
Results .................................................................................................................................. 18 
Conclusion ............................................................................................................................ 21 

Paper II .................................................................................................................................... 22 
Motivation ............................................................................................................................ 22 
Material ................................................................................................................................ 22 
Methods ................................................................................................................................ 22 
Results .................................................................................................................................. 23 
Conclusion ............................................................................................................................ 24 

Paper III ................................................................................................................................... 24 
Motivation ............................................................................................................................ 24 
Material ................................................................................................................................ 25 
Methods ................................................................................................................................ 25 
Results .................................................................................................................................. 25 
Conclusion ............................................................................................................................ 27 

Paper IV ................................................................................................................................... 28 
Motivation ............................................................................................................................ 28 
Material ................................................................................................................................ 28 
Methods ................................................................................................................................ 28 
Results .................................................................................................................................. 29 
Conclusion ............................................................................................................................ 31 



List of abbreviations 
 
 
CR The Swedish Cancer Register 

 

DR The Cause of Death Register 

 

PR The National Patient Register 

 

HBV Hepatitis B Virus 

 

HCC Hepatocellular Carcinoma 

 

HCV 

 

Hepatitis C Virus 

 

MGUS 

 

Monoclonal gammapathy of uncertain significance 

 

SIR Standardised Incidence Ratio 

	  	  
 



 

 1 

1. Introduction 
 
The focus of this thesis is selection bias – how and why register based cohort studies 

may be biased because the cohort we study is not be representative of the population 

we are interested in. Usually a cohort or a register contains a subset of the population 

we are interested in, and different selection processes and mechanisms affect which 

population is actually captured by the register. There are almost no exceptions to this 

rule, even the birth register listing all live births in Sweden is thought to miss 0.5-3 % 

of all births (1). Other registers, which are thought to be complete, e.g. the cause of 

death register, may be complete in the sense that all or most deaths are captured, but 

instead the correctness of the recorded underlying causes of death may be questioned. 

The cancer register aims to be complete, and diagnosis of cancer is notifiable by law, 

but completeness may be questioned (2). The same is true for the National Patient 

Register, which is used routinely for all inpatient episodes; meaning that all patients 

who are hospitalised are recorded in this register, but the validity of the recorded 

diagnoses may sometimes be questioned 

 

2. Cohorts for research 
 
 

The methods discussed in the papers for this thesis have utilized epidemiological cohort 

data from a number of registers in Sweden. These registers are described briefly below. 

 

HCV-cohort 

For a number of infectious diseases in Sweden, it is mandatory to report newly 

diagnosed cases, which are recorded in national registers kept by The Public Health 

Agency of Sweden. Hepatitics C virus infection is among those infections that are 

notifiable by law. HCV was detected in 1989 and between the years 1990 and 2006, 

43,000 cases of HCV-infection were reported. Before 1990, HCV was not diagnosed. 

Since HCV-infection often is asymptomatic or mildly symptomatic during long periods 

of time before being recognized,  it is likely that a large number  of individuals with 

HCV are not identified at all and also that diagnosis sometimes occurs late in the course 

of infection. HCV infection has been linked to cancers such as non-Hodgkin 

lymphoma, liver cancer and also kidney diseases (non-cancer) (3-5). 
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MGUS-cohort 

Monoclonal gammopathy of uncertain significance (MGUS) is a condition in which an 

abnormal protein (monoclonal protein or M protein) is increased in the blood. Some 

patients with MGUS may progress to malignant disease and it is likely that mortality is 

elevated in this patient population (6). Since MGUS is a silent asymptomatic condition, 

it is likely to be diagnosed in conjunction with medical problems emerging from 

MGUS or other unrelated medical problems. The studied cohorts, who have been 

gathered in hospital clinics, are therefore not likely to be representative of a true cross-

sectional selection of patients with MGUS. 

 

The Swedish Cancer Register 

The Swedish Cancer Register (CR) was founded in 1958. It is compulsory for every 

health care provider to report newly detected cancer cases to the registry. A report has 

to be sent for every cancer case diagnosed at clinical, morphological or other laboratory 

examinations as well as cases diagnosed at autopsy, i.e. dual reports in most cases. The 

basis for diagnosis is recorded. The CR does not receive information from death 

certificates for the purpose of ascertaining new cases. A quality study of the CR 

estimated the underreporting at approximately 4 percent and found the degree of 

underreporting was dependent on the cancer site, increased with age and diagnoses 

without histology or cytology were overrepresented (2). The liver and pancreas are 

among the cancer sites with a higher degree of underreporting.   

 

The Cause of Death Register 

The Cause of Death Register (DR) includes all deaths among Swedish residents, relies 

on information from death certificates (missing in only 1-2% of deaths). In the DR, the 

date and cause of death (underlying and contributing) and the basis for the diagnosis are 

recorded. 

 

The National Patient Register 

In the 1960's the National Patient Register (PR) started to collect information regarding 

inpatients at public hospitals. From 1984 the participation was mandatory for all county 

councils and from 1987 the PR includes all inpatient care in Sweden. Every inpatient 

episode is recorded with dates and diagnoses at discharge. The validity has been 
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reported to be high for most inpatient diagnoses. Patients who have never been 

inpatients will not be in this register. In this study we did not use the outpatient register. 

 

Diagnoses in these three registers are coded according to the International Statistical 

Classification of Diseases and Related Health Problems (ICD). The cancer diagnoses in 

the Cancer Register are available as ICD-7 codes for the whole study period, 1975–

2011. The diagnoses in the Patient Register and Death Register were classified 

according to ICD-8 in 1968–1986, ICD-9 in 1987–1996, and ICD-10 from 1997 and 

afterwards. 

 

Statistics Sweden 

Statistics Sweden keeps census data for the full population, including migration, 

demographic and economic data. All Swedish citizens have a unique 10-digit personal 

identification number (7). This identification number may be used to uniquely connect 

entries in different register. It may also be used to retrieve general information on 

demographic characteristics and migration from Statistics Sweden. 

 
 

3. Selection bias 
 
Selection bias is a concern in any cohort where the individuals in the cohort are not 

representative of the cohort of interest (8). Figure 1 below describes the relationship 

between a source population and a study population. A) The source population is the 

total population of all individuals with the condition of interest, diagnosed and 

undiagnosed. Nested within the source population is B), the diagnosed cohort: all 

individuals diagnosed and included in the register or cohort. Finally, nested within B) is 

C), the study population which is often smaller than the diagnosed cohort, because for 

example, individuals are excluded to avoid selection bias. The study population is 

seldom a random selection of the source population, which means that the possibility 

for selection bias must be considered (6). 
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Figure 1. An example showing the relationship between source population, diagnosed 

cohort and study population for patients with HCV-infection. 

 

Selection bias is a concern in both incident and prevalent cohorts, but the mechanisms 

may be different and also adjustment for this bias needs to be addressed in different 

ways. In this thesis, only selection bias for prevalent cohorts is discussed. 

 

Prevalent versus incident cohort 
A prevalent cohort may be described as a cohort where individuals are sampled 

according to a cross-sectional sampling criterion (9). This means that the first period of 

the disease is usually unobserved. The length of this unobserved period may differ 

between individuals. In contrast, an incident cohort is a cohort where individuals are 

included at the onset of disease and followed forwards. For some diseases the onset is 

asymptomatic or very mildly symptomatic. These diseases are rarely diagnosed at onset 

but rather at some later time point; either through screening programs or when the 

disease is reaching a symptomatic stage or as complications to the condition arise or as 

a coincidental finding when patients seek medical attention for other, unrelated health 

care problems.  

The possibility for selection bias is obvious when the underlying disease develops 

under long time periods and patients reaching a symptomatic stage of the disease have a 

higher probability of being diagnosed with the disease. When the probability of 

diagnosis of the initial disease, and thereby inclusion in the cohort, is related to the risk 

of the studied outcome, the cohort may be affected by selection bias.  

The term prevalent cohort was used frequently in the early HIV/AIDS era to discuss 

and model scenarios for HIV developing into AIDS (10-12). For the cohorts and 
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conditions studied in this research project; HCV and MGUS, the terms prevalent cohort 

and the theory surrounding prevalent cohorts are equally valid since these conditions 

are rarely diagnosed at the onset of disease. Both MGUS and HCV are asymptomatic 

or mildly symptomatic before eventually turning into a more severe disease (13). 

When the first time period of the disease or infection is unobserved in a prevalent 

cohort, this may lead to additional challenges. Usually, the length of the unobserved 

period of the initial disease varies between individuals and the length of this period is 

usually unknown. Sometimes the length of the unobserved period may be related to 

some specific covariate and if this specific covariate is not taken into account this may 

result in a specific form of bias called onset confounding (10). The first unobserved 

time for individuals in prevalent cohorts is termed backward recurrence time (14). An 

additional challenge is left-truncation, i.e. patients may have experienced the outcome 

of interest, i.e. HCV-infection followed by liver cancer before being included in the 

cohort (15). 

If the length of backward recurrence times are ignored in epidemiological studies, it 

would mean that all individuals are evaluated on the same time scale; follow-up time. If 

the interest is focused on the natural course of disease, ignoring left-censoring and left-

truncation will give non-informative risk estimates. Sometimes covariates, such as 

CD4-count in HIV infection, may give information on the duration of the unobserved 

period of disease. If all information about the length of the unobserved time period 

could be captured by covariates, left-censoring of data would not be important, the 

information would be captured by the covariate. 

Another way to capture information on the length of the unobserved time period of 

disease is to use available epidemiologic information to model the unobserved time 

period (3, 4). For our previous work on HCV-infection and non-Hodgkin lymphoma 

and liver cancer respectively, we constructed a model taking into account development 

of the HCV-infection epidemic in Sweden, age and route of transmission of infection. 

The subsequent analysis may then use this information, either to stratify results by prior 

time of disease or as part of the statistical analysis.  Some statistical methods are better 

suited to handle left-truncated data (14). 

The presented methods to investigate and adjust for selection bias in this thesis may be 

applicable to a wider range of cohorts. In any situation where the method or process for 

gathering (identifying) members of the cohort is positively correlated with the risk for 

the studied outcome, the proposed methods may be applicable. This means that in a 

situation where there is a common cause for both the studied outcome and probability 
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of inclusion in the cohort, there is a possibility for selection bias. However for 

conditions and diseases where the condition confers an immediate risk of the studied 

outcome, like influenza or meningitis, a higher risk of the studied outcome (e.g. death) 

early after inclusion in the cohort may not be described as selection bias and the 

methods discussed here are not applicable. These are incident cohorts and selection bias 

must be handled in other ways. 

 

4. Correcting for selection bias 
 
Selection bias in prevalent cohorts is well known and a method, which is sometimes 

used to adjust for selection bias, is simply to remove some observation time (months 

to years) and any events occurring during this first time period of observation. When 

the cohorts are large with many events, this is a reasonable approach. 

A simple method to investigate selection bias in cohort studies is to calculate effect 

estimates for several disjoint time periods after inclusion in the cohort (16). If the 

planned statistical method for the analysis is Standardized Incidence Ratio (SIR), this 

SIR is calculated for several separate time periods from the start of the observation 

time. This means that one estimate is calculated for the first 6 months the individuals 

(patients) are members of the cohort, another SIR estimate for month 7-12, month 13-

18, month 19-24 etc. If these estimates are higher (not necessarily statistically 

significantly) during some of the earlier time periods compared to later time periods, 

this may indicate selection bias of the type discussed here. The judgment is informal 

and from a statistical point of view, the effect estimates for the time periods are very 

seldom statistically significantly different due to low power. Judgment is based on 

observing the point estimates and using medical knowledge and information on how 

the cohort has been gathered. After removing person years and events occurring 

during these early time periods, the analysis is conducted as planned. 

The increase in the effect estimate during the first few time periods may be due to 

selection bias, but there are also other possibilities. Another explanation may be 

surveillance bias; an observed higher incidence of the studied outcome during the first 

time period after inclusion in the cohort due to increased surveillance for the studied 

outcome. An increased surveillance for the studied outcome may lead to an initial 

higher incidence of the studied outcome and the incidence will then decrease as the 

initial depletion of outcomes takes effect. If the true incidence is increasing with 

follow-up time in the cohort, this could theoretically give a “double peak” in the 
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studied outcome. For the outcomes studied in the two papers on selection bias in this 

thesis, non-Hodgkin lymphoma, liver cancer, death and hospitalisation due to kidney 

related disease, surveillance bias has been assumed to be negligible (17, 18). The 

reason for this is the severity of the studied outcomes, making it very likely these 

outcomes would be diagnosed approximately at the same time, regardless of diagnosis 

of the underlying condition. 

The distinction between selection bias and surveillance bias may be subtle. The 

selection bias described above may also be understood as a surveillance bias if the 

focus is diagnosis of  HCV-infection or MGUS. Patients presenting with medical 

problems, maybe emerging liver problems or symptoms relating to a failing immune 

system, will be subject to further medical examinatons and an HCV-infection or 

MGUS is more likely to be diagnosed for these patients compared to patients who are 

well. If one chooses this perspective, this bias may be described as surveillance bias, 

i.e. increased surveillance for HCV/MGUS. In the projects presented in these papers, 

we choose to view the problem from another perspective, and that is how representative 

the cohort is for the source population. Which terminology is the most appropriate to 

describe a bias not always clear and another expression which is sometimes mixed up 

with selection bias is confounding by indication (19). What matters is to understand the 

mechanism of bias and to be able to describe how this bias arises and to understand 

how this bias may be avoided or adjusted for. 

 

 

5. Selection bias using casual inference and DAG-theory  
 

In discussions of confounding and selection bias, directed acyclic graphs (DAGs) may 

be used to graphically describe and analyse how selection bias enters a cohort study 

(20). Possible mechanisms for selection bias in prevalent cohorts is described in Figure 

2 using DAGs. 

The objective is to study if the asymptomatic or mildly symptomatic disease (X) causes 

the outcome (Y), this is denoted X → Y. The disease X may cause Y either directly or 

by first developing into a more severe symptomatic stage (S) before progressing to Y. 

Only patients diagnosed with the disease (X) can enter a diagnosed cohort (D), which 

forms the basis for the cohort study. Since the disease is asymptomatic or mildly 

asymptomatic, not all patients with disease X are diagnosed. Patients who have entered 

a symptomatic stage of the disease (S) will more easily be identified and diagnosed as 
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having X. This increased probability of diagnosis of patients with symptomatic disease 

will lead to selection bias; that is, patients in the diagnosed cohort D will not be 

representative of the total study base (source population). Patients with a more severe 

stage of disease X, already progressing towards Y, will be over-represented among the 

diagnosed. In the situation described in the directed acyclic graph, we are interested in 

the relation whereby X causes Y  (X→Y), either directly or over the symptomatic stage 

S . Conditioning on D, that is being diagnosed with the condition X, which we must do 

because we may only study patients who have been diagnosed and are part of the 

diagnosed cohort, opens a path from X to Y over the inverted fork D, leading to the 

selection bias described. Quantitative estimates of the risk of Y for patients with the 

disease X, may be biased toward higher estimates because the population in D is not 

representative of the total population with the disease X. Other unknown or 

unmeasured common causes (here, named U) that both cause the outcome Y and lead 

to diagnosis of X  (i.e., D = 1) may introduce further selection bias into the analysis. An 

example of an unknown, unmeasured confounder would be in the MGUS-example 

presented in paper 3, where patients with a severe illness are more readily  diagnosed 

with the condition X (MGUS) and also have and increase risk of dying, which was the 

study objective: to investigate if MGUS patients have increased mortality. Estimates of 

mortality for the MGUS-cohort may therefore be biased towards showing excessively 

high mortality. 

 

 

Figure 2. Description of selection bias using Directed Acyclic Graphs. 

 

 

 



 

 9 

The processes described here should ideally be viewed as processes over time, 

something that may be quite complicated by using causal inference and directed acyclic 

graph theory. Selection bias caused by diagnosis of patients who have reached a 

symptomatic phase of the disease (S) may be dealt with by excluding patients who very 

soon after diagnosis of X reach the outcome Y. In practice this means that we choose to 

disregard the first time period (and outcomes Y) occurring soon after diagnosis of X. 

This will weaken the path between S and D. When the common cause U leading to the 

outcome Y and diagnosis of X  (i.e. D=1) is an acute illness, the selection bias effect of 

this common cause is likely to be more pronounced just after diagnosis of the acute 

illness. 

Theoretically we could close the backdoor path by either conditioning on S 

(conditioning will close this node) or by not conditioning on D (this will close an 

inverted fork). However, we may only study patients who are actually diagnosed, i.e. 

D=1, and there is no straightforward way to correct for S because it is only possible to 

study individuals that are actually diagnosed. A better approach is to weaken the arrow 

between S and D by removing time and events after diagnosis of X as described above. 

If this arrow is weakened or abolished by removal of observation time and events, the 

backdoor path over S is closed. 

 

6. Capture-recapture models to quantify ascertainment 
level in registers 

 
Introduction 

Capture-recapture modelling was originally known from ecological research to quantify 

wild-life population sizes. The principle is easy and the basic idea is to capture a 

number of animals in a defined area/population, mark these animals in some way, let 

them go, and then make a second capture. Based on the information of the number of 

marked animals in the second capture, it is possible to estimate the total population 

size. This simple model assumes independence between the two sources (captures) of 

animals. In medical epidemiological research the situation is more complex, partly 

because independence between sources cannot be assumed and also because other 

factors beyond statistics may influence the validity of the results to an even greater 

extent. The capture-recapture methods have been extended to handle more complex 

scenarios with dependent sources and covariates. These methods are now used in 

epidemiology to estimate ascertainment level in medical registers (21, 22).  
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For a two-source model as described above, the data that will be available for 

modelling has three degrees of freedom and for this  reason independence between the 

two sources is assumed; there is not enough information to model a possible 

dependence between sources (23). For models using three or more sources, more 

information will be available and it is possible to model dependence between sources.  

In the capture-recapture modelling presented in this thesis (paper IV) we have used the 

following sources (captures); the Swedish Cancer Register (CR), the National Patient 

Register (PR) and the Cause of Death Register (DR) in an attempt to estimate the true 

liver cancer incidence in Sweden and to explore the usefulness of capture-recapture 

models in this setting. These sources are clearly not independent as reporting into the 

various registers are highly dependent processes, e.g. a cancer being diagnosed in the 

hospital during an inpatient episode will increase the probability of this cancer also 

being reported to the CR. Further, a patient with a liver cancer reported to the CR who 

later dies is more likely to be recorded in the DR, with liver cancer either as underlying 

cause of death or contributing cause of death, compared to a patient with an 

undiagnosed liver cancer. 

 

Models for capture-recapture  

The full model 

Capture-recapture modelling may be done in different ways, but a simple 

straightforward approach is log-linear modelling (24). A full (saturated) log-linear 

model for a three source model would be on the following form where the three sources 

are named A, B and C. The model will need coefficients for the three separate sources 

(β), there are also three separate two-way interactions (γ), one three-way interaction (θ) 

and in addition the intercept (α); in total 8 parameters. 

 

log𝑁 =   𝛼 +   𝛽! ∙ 𝐴 +   𝛽! ∙ 𝐵 + 𝛽! ∙ 𝐶 + 𝛾! ∙ 𝐴𝐵 + 𝛾! ∙ 𝐵𝐶 + 𝛾! ∙ 𝐴𝐶 + 𝜃 ∙ 𝐴𝐵𝐶 

  

Data from three different registers as described above and the information on which 

cases are registered in two or three of these registers will provide 7 degrees of freedom 

(number in each separate register, number in all combinations of two registers and 

number of cases present in all three registers). This means that a fully saturated model 

is not possible to fit, at least one of the parameters in the model needs to be omitted. In 
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some previous studies, the three-way interaction has been set to zero (22, 25-27). This 

may be a major assumption. When the three-way interaction is set to zero, the intercept 

is simply adjusted to fit with three two-way interactions and a no three-way interaction. 

For our modelling, all two-way interaction terms have negative coefficients since the 

registers in our example are all positively correlated, i.e. the overlap is greater as would 

be expected for independent sources. Therefore, in our modelling, to accommodate 

three negative two-way interactions, the intercept will take a large positive value when 

the three-way interaction is fixed to zero. The number of “missing” cases, i.e. cases 

captured by any of the three registers, is estimated as exp (𝛼), and therefore an inflated 

intercept will give a high number of unreported cases. Also, we have no means of 

evaluating model fit since we cannot check the assumption of a zero three-way 

interaction (28). A log-linear model may also include covariates, which may to some 

extent compensate for dependence between sources (21). 

 

Modelling options 

Since a full model including a three-way interaction is not possible, we explored the 

following modelling options: 

 

A. A two-source model, created by joining the two most dependent sources 

(registers). 

B. A three-source model with three separate two-way interactions and no three-

way interaction. 

C. A three-source model with a single two-way interaction for the two most 

dependent registers (sources) and a three-way interaction. 

 

Model A 

Joining the two most dependent source into one source is a useful approach if two 

sources are heavily dependent and if independence between this joined source and the 

remaining source may be assumed (29). Of the models discussed here, model (A) 

would be expected to be slightly conservative since the process of joining two sources 

and then assuming independence would be expected to underestimate the number of 

unidentified cases. Model A may therefore be considered to provide a lower bound for 

the number of unascertained cases (30). By positive dependence we understand that the 

sources overlap to a greater extent than would be expected from independent sources. If 

we fail to compensate for a ‘net positive dependence’ we risk underestimating the 



 

 12 

number of undiagnosed cases and also vice versa; if we fail to compensate for ‘net 

negative dependence’ we may overestimate the number of undiagnosed cases (31). 

 

Model B 

In our case, model B turns out to give a very large number of unreported cases, but it is 

not possible to say that a model without a three-way interaction will always over-

estimate the number of unreported cases. In a full log-linear model as described above, 

the three-way interaction doesn’t have an intuitive value or interpretation. Therefore, 

when fitting a model with a three-way interaction set to zero, we have limited means of 

investigating if this assumption is reasonable, it may be difficult to know if it is 

conservative assumption or if we risk overestimating the number of unreported cases. 

As described previously the intercept will be adjusted to account for three separate two-

way interactions, which in the application investigated for our paper will inflate the 

intercept and give a very high number of unascertained cases. 

 

Model C 

Model C, which was the model we chose for our application, involves fitting a two-way 

interaction for the two most dependent sources and a three-way interaction. For the 

studied application of liver cancer, the overlap between the PR and DR was the greatest 

overlap and therefore this interaction term was estimated. The suggested model takes 

into consideration the strongest dependence between two of the sources, while ignoring 

the weaker dependencies. Therefore, all other assumptions being valid, this model 

should also be slightly conservative, i.e. underestimate the number of unreported cases. 

The most important feature of model C compared to model A and model B is that a 

three-way interaction is estimated. Also other models involving a three-way interaction 

are possible to fit. An obvious example would be a model with two separate two-way 

interactions and a three-way interaction (in addition to an intercept and a coefficient for 

each source). Such a model will give a slightly higher estimate of unreported cases 

compared to a model with one two-way interaction. The reason for our preference for 

the simpler model with one two-way interaction is simplicity and the desire to choose a 

slightly conservative model. Most dependencies will be captured by one two-way 

interaction and a three-way interaction. To the non-statistician, the concept of adjusting 

for the two most dependent sources should be straightforward. From a methodological 

perspective we consider this model to be superior to the model with the three-way 
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interaction set to zero since the assumptions we are making may be more readily 

examined. 

 

Capture recapture models – assumptions 

There are a number of underlying assumptions and conditions for capture recapture 

estimates to be valid (32). 

1) Firstly, the cases need to be defined and ascertained in the same way for all 

sources. This is an important condition, which may be violated for 

epidemiological studies employing different sources where it is possible that 

the diagnosis was made in different ways and where bases for diagnosis differ 

between sources. 

2) Within a source, each case needs to have the same probability of being 

diagnosed by that source. However, all sources do not have to capture the 

same number of cases or have the same probability of capturing a case as 

another source. In formal language, the requirement is homogenous 

catchability. 

3) The methods are applicable for closed populations. If individuals move in and 

out of the cohort, they are available to be captured for shorter time periods, 

implying they will have a lower chance of being captured since they are 

available in the cohort for a shorter time period, i.e. a special case of variable 

catchability as described under 2).  

4) For epidemiological applications the time window must not be to short, the 

‘case’ needs time to be available for catching by the different sources (31). 

This fourth criterion aligns with criteria 2) and 3) concerned with variable 

catchability. 

 

Ascertainment of cases 

In a register-based study, identifying cancers from three different registers, it is evident 

that the bases for diagnosis between these sources may differ considerably. Validity of 

data is important in capture-recapture modelling and there should not be misdiagnosed 

cases in any of the sources. Misdiagnosis, false positive and false negative cases, may 

lead to over- or under estimating the number of missing cases (33, 34).  

For the registers studied in paper four there were 13,749 patients with a diagnosis of 

liver cancer in the three registers. Of these 13,749 patients, 6,439 were reported to the 
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CR and 12,475 patients were reported to the PR and/or DR. A large number of patients 

were reported to the PR and/or DR with liver cancer, but not to the cancer register. One 

reason for the large number of patients reported to the PR but not to the CR with liver 

cancer may be the increasing use of non-invasive imaging methods such as CT and MR 

for diagnosis. Doctors may be reluctant to report a liver cancer diagnosis to the CR 

without PAD, or it may simply be forgotten. Another possible explanation may be that 

some of the liver cancer diagnoses reported to the PR were not so certain. It may be that 

liver cancer was the diagnosis available for the PR at that time, but later when more 

information was available, either retrieved from earlier records or complimentary 

investigations, the final cancer diagnosis reported to CR was a different cancer 

diagnosis. 

This hypothesis is supported by the fact that a large proportion of patients with liver 

cancer diagnosis in the PR were reported to the CR, but with other cancer diagnoses, 

either occurring before the current diagnosis of liver cancer in the PR or after. Of the 

7,310 patients with liver cancer reported to the PR and/or DR, which were not reported 

to the CR, 3,925 of these (54 %) were found in the cancer register with some other 

cancer diagnosis, reported to the CR either before the liver cancer diagnosis or after. 

About 1,390 of these patients were reported with ICD-code 199, cancer at unspecified 

site. It is plausible that a proportion of the liver cancers in the PR and/or DR are not 

liver cancer, but metastases to other cancers. Also, some patients who were reported to 

the PR with liver cancer in conjunction with hospitalisation were later reported to the 

CR with other cancer diagnoses. The large proportion of patients reported with liver 

cancers in the PR and some other cancer diagnosis in CR, indicate that this was an 

important source of bias. Since the capture-recapture modelling relies on the overlap 

(and non-overlap) of registers, a large number of liver cancers in the PR and/or DR that 

are not true liver cancers will seriously inflate the estimate of unascertained cases. The 

present results indicate that the assumption of equal criteria for diagnosis/reporting of a 

case may not have been fulfilled. 

 

Variable catchability and closed population 

An underlying assumption for capture-recapture models to be valid is the assumption of 

homogenous catchability (32, 35). In essence this means that all cases (cancers) should 

have equal probability of being captured by each source (register). Each register 

doesn’t have to “catch” an equal number of cases, but each case should have equal 
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probability of being captured by a given source. This condition is obviously violated for 

register-based studies, e.g. all cancers are not fatal, meaning that all cancers cannot be 

captured by the DR. Also, it may be easily shown that patients with liver cancer in the 

PR and/or DR only, differ with regards to demographic characteristics to patients 

reported to the CR, one example being age; patients in the CR were in our study an 

average of 69 years at the time of reporting of liver cancer while patients with liver 

cancer in PR/DR only, were on average 7 years older. In modelling, if we ignore 

variable catchability, this will give a conservative bias, i.e. we will underestimate the 

number of unreported cases (28, 36). Variable catchability may be accounted for, at 

least to some extent, by including covariates in the log-linear modelling. However, in 

register-based research, most of the interesting covariate information, such as disease 

severity, will not be available. In our modelling we have chosen to ignore variable 

catchability. The justification for this is that 1) the bias is conservative (which is more 

acceptable than non-conservative bias), 2) most covariates that would be of interest to 

adjust for catchability are not available and finally; 3) other sources of bias a likely to 

play a larger role. 

 

7. Conclusion 
 
The papers dealing with selection bias are just scratching the surface (17, 18). Selection 

bias related to study populations not being truly representative for the intended cohorts 

is probably part of most epidemiological research projects. Refining methods for 

analysing and presenting data in epidemiological research can never fully compensate 

for systematic errors in the form of bias. Systematic errors may not be analysed away 

using large samples, we need to deal with these sources of errors with more intelligent 

tools. At the start of this research project, the approach for the three methodological 

papers was aimed at statistical approaches and the objective was to explore useful 

methodologies. Working with these projects made it clear that in depth understanding 

of data and how data has been collected is the basis for an adequate analysis. Selection 

bias may never be interpreted by simply looking at curves in graphs. We need to 

understand the characteristics of the population and the unique features of the disease 

and mechanism whereby patients are identified. Therefore, there is no one solution to 

analyse and adjust for selection bias. Probably some of the most useful tools are graphs 

of hazards, DAG and other visual methods, whereby we can understand the 
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mechanisms for how bias may enter the cohort. By understanding we may adjust our 

analyses to compensate for this bias. 

Regarding the capture-recapture modelling for epidemiological research using disease 

registers, there are some papers focused on modelling and comparing models by 

statistical criteria. In our work it became clear that some of the basic conditions for the 

use of these models might not be fulfilled, at least not for the Swedish registers. If we 

cannot be sure that we don’t have large numbers of large false positives in one of the 

registers, adding log-linear modelling to estimate ascertainment level makes little sense. 

Again, understanding data and the basis for collecting and interpreting data is the 

fundament for an intelligent analysis. 

Equally important is to challenge the models and the assumptions we make. For any 

model we chose to use, we should question this model; by considering alternative 

models (which then preferably should give a similar result) and by examining 

assumptions. For the selection bias papers (17, 18) we had the possibility to compare 

different approaches, which gave concordant results. For capture-recapture models we 

may examine the validity of the model by comparing with simpler models providing 

lower bounds for the number of missing cases. Regarding the validity of underlying 

assumptions these assumption may often be clarified by examining data in more detail. 

For the capture-recapture models discussed in the fourth paper, there are reasonable 

solutions for modelling that can handle interactions and covariates. However, for the 

issues related to differences in case ascertainment by different sources (registers) there 

are no clear-cut solutions that can adjust for this. To adequately analyse data we must 

truly understand data. 

Sometimes questions are as important as answers. The methodological papers in this 

thesis probably create more questions than providing answers. However, questions are 

in some way also answers, if we know enough to question processes, such as selection 

of individuals into cohorts, we can interpret results in light of these uncertainties and 

limitations. 
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8. Summary of papers 
 
Paper I 
 
Motivation 

The idea behind the proposed method in the first paper was to improve the “interval 

based method” for investigating selection bias in prevalent cohort studies. The effect 

measure investigated was Standardized Incidence Ratio (SIR). A common method to 

investigate possible selection bias in a cohort is to calculate SIR for several disjoint 

intervals, where follow-up time and events are divided by follow-up time from 

inclusion in the cohort. If the SIR estimates for the first intervals after inclusion are 

significantly higher (also by the non-statistical meaning of the word) these time periods 

with higher effect estimates are discarded from analysis. It is difficult to give guidance 

on what is “higher”, but generally in prevalent cohorts, there is no obvious reason for 

why the risk of the outcome interest would decrease immediately after inclusion in the 

cohort. The observed risk estimates needs to be judged in light of the known 

characteristics of the medical condition. However, often the number of outcomes in 

each disjoint interval is low (unless very common outcomes are studied). This means 

that the precision and power in each interval is poor with regards to judging what is a 

truly elevated effect measure and what is random noise. The idea in the first paper was 

to develop this interval-based method into a cumulative measure that would have better 

power to reveal how long time periods after inclusion in the cohort that should be 

removed to avoid selection bias. The idea was also to visualize more clearly what is the 

impact of removing a certain time period and the events associated with this time 

period. 

 
 
Material 

To illustrate the use of the proposed method we used data derived from the Swedish 

Institute for Infectious Disease Control and the Swedish Cancer register. All individuals 

with a reported HCV-diagnosis during the time period 1990-2006, after exclusion of 

patients with concomitant HBV-infection, were connected by use of the unique 

personal identification number to the Swedish Cancer register. All patients with a 

diagnosis of liver cancer or non-Hodgkin lymphoma were identified. Data from 

Statistics Sweden was used to correct the cohort for death and emigration. Standardized 
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Incidence Rates were calculated using age-, sex- and calendar year specific incidence 

data for the general population from the Cancer Register.  

 

Methods 

The proposed method of cumulative SIR is based on estimating SIR for the cohort 

repeated many times, removing one day at a time. First the SIR is estimated for the full 

cohort, follow-up starting at day of inclusion in the cohort. In the next step SIR is 

estimated starting from day 2, i.e. the first day with “person years” and events 

occurring during this first day is removed. This procedure is repeated by removing one 

additional day (with person years and events) for each reiterated calculation. This 

procedure is repeated a large number of times, e.g. 730 days (2 years) and the resulting 

estimates are plotted in a graph against time since inclusion in the cohort, see Figure 3 

below showing cumulative SIR for liver cancer in a HCV-cohort. If the estimated SIR 

decreases with time since inclusion in the cohort, this may indicate selection bias. In a 

prevalent cohort where time of inclusion in the cohort is not related to an emerging 

outcome, no specific decrease in hazard immediately after inclusion in the cohort 

would be expected.  

Based on the graph, a suitable cut-off is chosen, where the estimated SIR has levelled 

off to a constant level. If the risk of the studied outcome increases considerably with 

time, the method of cumulative SIR may be difficult to use. The reason for this is that 

this method cumulates observation time and events occurring from day (i) and forward. 

If the risk is higher for long follow-up times, this higher incidence will obscure the 

initial decrease in the SIR estimate. This method is therefore only applicable when the 

SIR levels off to some constant value after the selection bias has worn off. 

 

Results 

The proposed method was illustrated using a cohort of patients notified with HCV-

infection. The studied outcomes were liver cancer and Non-Hodgkin lymphoma, one 

frequent cancer (liver cancer) in this patient population of HCV-infected and one not so 

frequent cancer (non-Hodgkin lymphoma) in this cohort.  

 

Liver cancer 
For liver cancers the number of observed cancers is very high and the calculated SIR 

was in the range SIR=33-40 depending on how much observation time (and events) 
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after inclusion in the cohort was removed, Figure 3. The estimated SIR was high 

immediately after inclusion in the cohort and then decreased during the first year down 

to approximately 34. This indicated that at least a year of observation time and events 

after inclusion in the cohort should be removed to correct for selection bias. Since the 

number of observed events was high, removing observation time and events had little 

impact on the precision of the final results, i.e. width of confidence intervals. SIR was 

estimated to around 34 if at least a year was removed. 

 

 
Figure 3. The cumulative standardised incidence ratio for liver cancer for individuals 

notified with hepatitis C virus (HCV). Dashed lines, 95% confidence interval. 

 
 

Non-Hodgkin lymphoma 
Non-Hodgkin lymphoma is a rare cancer in the HCV-cohort, compared to liver cancer, 

and in a previous study investigating if HCV may increase the risk of non-Hodgkin 

lymphoma, the number of cancers was just sufficient to show this relationship with 

statistical significance (3). In this situation it was difficult to motivate removing long 

time periods and many observed events, unless it really could be shown that selection 

bias was a problem. Also from a medical perspective, these cancers occurring very 

soon after HCV-diagnosis are likely to be related to the HCV-infection, but the only 
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reason these patients were diagnosed with HCV-infection, and included in the cohort, 

was that HCV was diagnosed as a consequence of symptoms of the emerging outcome 

(cancer).  For the data of non-Hodgkin lymphoma, SIR was calculated for disjoint 

intervals after inclusion in the cohort showed high SIR immediately after inclusion in 

the cohort, but the SIR varied between intervals, and it was difficult to set an absolute 

cut-off, Figure 4. The cumulative SIR shows that SIR was slightly elevated if no time 

after inclusion in the cohort was removed, but the impact of selection bias was small if 

3-6 months of observation time and events were removed, Figure 5. 

 

 
 
 
Figure 4. The standardized incidence ratio for non-Hodgkin lymphoma for individuals 
notified with hepatitis C virus (HCV). Interval based method, in which the standardised 
incidence ratio is calculated separately for different time intervals after diagnosis of 
HCV. Dashed lines, 95% confidence intervals. 
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Figure 5. The cumulative standardised incidence ratio for non-Hodgkin lymphoma for 
individuals notified with hepatitis C virus (HCV). Dashed lines, 95% confidence 
interval. 
 
Conclusion 

The examples of HCV-infection and liver cancer and lymphoma show that the 

cumulative method works and that for some scenarios it may have advantages over a 

standard approach; calculating SIR for disjoint intervals. This is especially true if the 

number of events are few and it is therefore important not to discard observation time 

and events unnecessarily.  

The impact of removing a specific time period and events belonging to this time period 

may be read directly from the graph. 

However, the proposed method of cumulative SIR has several important limitations. 

Firstly, this concept of selection bias as it is discussed here is only relevant for 

prevalent cohorts, i.e. when inclusion of the patient in the cohort is not directly 

connected to the time point when the patient contracts the infection of the disease 

which is the denominator for the cohort. HCV-registers are good examples of prevalent 

cohorts. The infection may be symptomatic at infection and the patient may carry the 

infection for years or decades before finally being diagnosed, either in conjunction with 

random screening, because of other medical problems or because the patient is 

presenting with an emerging outcome of the infection, i.e. liver cancer. For incident 
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cohorts, e.g. the study of influenza and mortality, decreasing hazard after inclusion in 

the cohort may have other more likely interpretations such as declining risk of death 

with time. 

Another important limitation of the method is that use of the method assumes that the 

hazard is high immediately after inclusion in the cohort (selection bias) and then 

declines to a steady state level, or at least that the hazard is increasing very slowly with 

time. If the hazard increases steeply with follow-up, the graphing will not work, as 

increasing hazard with follow-up will affect the early parts of the graph, because data is 

cumulated. It is therefore important to map out how the overall hazard for the outcome 

of interest appears in the cohort before applying the proposed method. 

 
Paper II 
 

Motivation 

Chronic hepatitis C virus (HCV) infection is an established cause of liver cancer, and 

studies have also suggested a link with kidney cancer (4). HCV-infection has also been 

shown to increase the risk of other kidney related diseases and this association was 

further explored in this paper. 

 
Material 

The Swedish nationwide register of HCV-infected individuals during the years 1990-

2006 compromising 43,000 individuals was connected to the Swedish Cancer Register 

to identify patient with kidney cancer diagnoses (ICD7 180.0 and 180.9). Data on 

hospitalisation discharge diagnoses were extracted from the National Patient Register, 

using the following ICD-codes:  

1) Glomerular diseases (ICD-9 codes 580–583, ICD-10 codes N00-N08)  

2) Renal failure (ICD-9 codes 584–586, ICD-10 codes N17-N19 

3) Other kidney diseases (ICD-9 codes 587–589 and 593, ICD-10 codes N25-N28).  

Events were defined as the first hospitalisation per subject for which each of the listed 

conditions above were registered as the principal diagnosis code. 

Statistics Sweden provided information on death and date of emigration (if applicable). 

 
Methods 

The Standardized Incidence Ratio (SIR) was calculated using the HCV-cohort linked 

with the Cancer Register and the data on the incidence of kidney cancer in the general 
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population. Indirect standardization was performed with regards to calendar year, age 

(5-year intervals) and sex. To investigate and adjust for selection bias, the cumulative 

SIR method was used and SIRs were calculated with varying lag times (no lag-time up 

to two years) (18).  

For the Cox-regression, a control cohort matched for age, sex and county of residence 

at time of HCV-infection was used. For each HCV-infected individual, five controls 

were selected.  

To avoid selection bias, subjects were excluded from these analyses if they had ever 

been hospitalised with kidney disease as the principal diagnosis from 1969 until one 

year after HCV-notification or the corresponding reference dates for non-HCV-infected 

subjects.  

Subjects who were hospitalised for any condition in the year prior to HCV-notification 

were also excluded, leaving 25,412 HCV-infected subjects and 198,124 controls in 

these analyses. 

Restricted cubic splines were fitted to investigate the change in hazard over time in the 

cohort. These analyses revealed a fairly sharp decrease in hazard over the first year and 

then a slowly decreasing hazard from one year onwards (37). This slowly decreasing 

hazard was judged to reflect frailty in a population consisting of patients with different 

underlying intensity for hospitalisation for kidney-related disease. Conducting an 

analysis based on time to first event will gradually attenuate the population with 

regards to patients with high propensity for hospitalisation, and the hazard will 

therefore decrease slowly with time.  To further control for selection bias, related to the 

sharp decrease in hazard during the first year, follow-up started one year after 

notification of HCV-diagnosis, Figure 6, paper III. 

 

Results 

The calculated SIR for kidney cancer in the HCV-cohort was 1.2 (95% CI: 0.8-1.7) 

using a one year lag-time. Therefore the results of this study do not indicate a 

relationship between HCV-infection and kidney cancer. Chronic HCV-infection was 

associated with a significantly increased risk of hospitalisation for other non-cancer 

kidney diseases. Risk of all non-cancer kidney diseases differed significantly by sex  

(Pinteraction = 0.045). Hazard ratios of 3.9 (95% CI 3.2–4.8) and 5.8 (95% CI 4.2–7.9) 

were observed among men and women, respectively. Among men, risk estimates 

ranged from 2.9 (95% CI 2.0–4.3) for glomerular diseases to 4.6 (95% CI 3.7–5.8) for 
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renal failure. Among women, risk estimates ranged from 5.1 (95% CI 3.0–8.8) for 

glomerular diseases to 10 (95% CI 2.7–37) for other non-cancer kidney diseases. The 

interaction is likely to reflect a lower absolute risk level in women and a poor fit of a 

multiplicative model for both sexes.  

Treatment of end-stage renal disease may involve blood transfusions and 

haemodialysis, which are potential risk factors for HCV-transmission. Reverse 

causation bias was therefore a potential concern in the analyses of hospitalisations for 

non-cancer kidney diseases. However, the impact of this type of bias on the reported 

results is likely minimal because all individuals with prior diagnoses of kidney diseases 

since 1969 were excluded from these analyses. Also, risk estimates were similar after 

excluding subjects for whom transfusion of blood/blood products or nosocomial 

infection was the suspected route of HCV-transmission. 

 

Conclusion 

The present study did not confirm that HCV-infection increases the risk of kidney 

cancer. The known relationship of HCV-infection and other kidney diseases such as 

renal failure and glomerular disease was further confirmed and described in this study. 

 
Paper III 
 
Motivation 

The objective of the method presented in the second paper was similar to that of the 

first paper; to explore methods for visualizing, and thereby providing an opportunity 

to correct for selection bias in prevalent cohorts.  

The proposed method is based on modelling the instantaneous failure rate using a 

restricted cubic spline model. The basic idea is to investigate how and if the hazard 

for the outcome of interest changes as a function of time since inclusion in the study. 

Theoretically, in a cohort where date of inclusion in the cohort is unrelated to any 

emerging symptoms of the outcome studied, no specific change of hazard in relation 

to time of inclusion in the cohort would be expected.  However, if the hazard 

decreases immediately after inclusion in the cohort, to later stabilize or increase 

again, this may indicate selection bias.  
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Material 

The proposed method was applied on two data sets used for previous studies.  

 

1. The HCV-cohort linked to the Swedish Cancer Register described in the 

second paper, studying the association of HCV-infection with hospitalisation 

for kidney related disease (5).  

2. Data from a study examining the excess mortality for patients with MGUS, 

monoclonal gammapathy of uncertain significance (6). 

 
Methods 

The hazard for the cohort is modelled as a function of time since inclusion in the 

cohort. In practice any method for modelling the hazard may be used, as long as the 

model is flexible and the estimates are fairly smooth. The particular advantages of the 

suggested restricted cubic spline model are however several. 

The model is flexible, but not too flexible, where the number of knots (connecting the 

cubic polynomials) may be varied from a few knots up to 10 knots to give a sufficiently 

flexible model. If the model is extremely flexible it may be difficult to discern what is 

true change in hazard and what is random noise. If the model is not flexible enough, the 

model may be too rigid to model the hazard adequately. Since the model allows for a 

range of number of knots, flexibility may be varied to verify that different models give 

approximately the same result with regards to follow-up time that may be affected by 

selection bias.  

The calculations are easy to perform, using just a few lines of code and the package 

stmp2 in STATA. The resulting graphs are easily interpretable and may give additional 

information on e.g. how the hazard for the studied outcome develops over time (37). 

 
Results 

The examples shown; MGUS and HCV with the studied outcomes death and 

hospitalisation due to kidney related disease, respectively, show that this method works 

in practice to identify a time period after inclusion in the cohort possibly affected by 

selection bias. 

For HCV-infection and kidney related disease, the hazard was very high immediately 

after inclusion in the cohort and decreases steeply up to a year after inclusion in the 

cohort. The hazard continued to decrease also after about one year, but very slowly. 
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The first steep phase was interpreted as selection bias – there was no other obvious 

cause for the hazard to decrease immediately after inclusion in the cohort for a 

prevalent condition. The second phase with very slowly decreasing hazard was 

interpreted as frailty as discussed for the second paper above. This may also explain 

why the risk of the studied outcome did not increase with time, Figure 6. 

 

 
 

Figure 6. The hazard for the outcome “first hospitalisation for kidney-related disease” 

was modelled by using a restricted cubic spline model for survival data. The timescale 

on the x axis is time since hepatitis C virus (HCV) diagnosis in years. The solid line 

denotes the hazard for the HCV-cohort modelled with 3 knots; the dotted line, 5 knots; 

and the dashed line, the hazard for the matched control cohort (3 knots). 
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Figure 7. The hazard for the outcome death was modelled by using a restricted cubic 
spline model for survival data. The timescale on the x axis is time since diagnosis of 
monoclonal gammopathy of uncertain significance (MGUS) in years. The solid line 
denotes a model with 2 knots for the baseline hazard; the small dotted line, 5 knots; and 
the dashed line, 7 knots. 
 
 
For MGUS, which is basically an asymptomatic disease in early stages, there was a 

steep decrease in hazard during the first two years after inclusion in the cohort and then 

the hazard started to increase with time, indicating that the hazard (risk) of dying for 

MGUS-patients was increasing with time, Figure 7. 

 

Conclusion 

As for the method cumulative SIR, the method proposed in this paper is not applicable 

for the study of acute diseases where the risk of the studied outcome would be expected 

to be highest immediately after contraction of the disease. In this case a decreasing 

hazard for the outcome studied, immediately after inclusion in the cohort is likely to 

have other explanations. The method is suited for prevalent cohorts where the patients 

are identified as members of cohort at different time points after contraction of the 

initial disease. 
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The method using restricted cubic splines to model hazard has several advantages over 

the method proposed in the first paper. The method of cumulative SIR assumes that the 

hazard reaches a steady state level to which the estimated SIR may level off towards, 

otherwise the early estimations of selection bias are influence by later higher SIR. 

Another advantage of the restricted cubic spline model is that it gives a good view over 

the hazard for the event of interest in the cohort over time, which may provide 

additional information on how the risk of the studied outcome changes over time in the 

cohort. 

 

Paper IV 
 
Motivation 

The aim of this project was to investigate the completeness of the Swedish Cancer 

Register (CR) for hepatocellular carcinoma (HCC) diagnoses and to investigate if the 

low and declining incidence of HCC in Sweden represents a true decrease, or may be 

a result of changed diagnostic procedures. Another objective was to produce a more 

accurate estimate of the true incidence of primary liver cancer in Sweden by 

combining information from the CR, the Cause of Death Register (DR) and the 

Patient Register (PR). A secondary objective of the study was to investigate whether 

a capture-recapture model can be used to reliably estimate the number of cancers not 

reported to any of the registers.  

 
Material 

For the descriptive graphs of liver cancer over time, cancer incidence data was derived 

from the CR for the years 1970-2011. In addition, all individual patients with a cancer 

diagnosis 1550 (primary liver cancer) or 156 (liver cancer, unspecified) in the CR were 

extracted for the years 1975-2011. From the Cause of Death Register, for 1997-2012, 

patients with code C22.0, C22.9 and C22.99 (depending on year), either as underlying 

cause of death or as contributing cause of death, were extracted. The same codes were 

used for extraction from the PR. For the capture-recapture modelling and estimation of 

the true incidence of liver cancer, data from 1997-2012 was used. 

 
Methods 

Liver cancer incidence over the time period 1970-2011 derived from the cancer register 

was presented descriptively, as were the bases for liver cancer diagnoses during the 
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same time period. The number of patients with liver cancer in the CR, the DR and the 

PR were graphed in proportional Venn diagrams showing the number of patients in 

each register separately and also the number of patients present in more than one of the 

registers. The Venn diagrams were fitted so that areas were proportional to the number 

of patients, as closely as possible. For comparison, Venn diagrams for colon cancer and 

lymphoma were graphed and presented, Figure 8. 

 
For the time period 1997 – 2011 data from the CR, DR and the PR was used to model 

the number of liver cancers not reported at all. A log-linear capture recapture model 

was used to estimate the number of liver cancers not reported at all based on the 

number of patients in the CR, PR and DR. A saturated model would need 8 degrees of 

freedom, however, available data has only 7 degrees of freedom so a full model with 

coefficients for each source, all two-way interactions and a three-way interaction is not 

possible to fit. Different models were explored and the model chosen was a model with 

a parameter for each source, one two-way interaction used for one of the possible two-

way interactions and a three-way interaction. Different options for the two-way 

interaction were considered but naturally the model with the two-way interaction for 

the two most overlapping registers was be most appropriate and yielded the lowest 

Akaike value. 

To investigate a lower bound for the number of unreported cases, a two-source model 

was constructed by joining the two most dependent sources (registers), the PR and the 

DR. For a two-source model, independence between these sources must be assumed. A 

two-source-model assuming independence should underestimate the number of 

unreported cases, all other assumptions being correct. Also, a three-source model with 

three different two-way interactions and no three-way interaction was also explored 

since this is an option other researchers have chosen. 

 
Results 

The number of liver cancers in the CR has decreased steadily over since 1970. In the 

same time period, the bases for diagnosis have changed. The proportion of patients with 

a diagnosis based on non-invasive imaging techniques has increased during the later 

years, but biopsy confirmed diagnosis is the most common basis for diagnosis in recent 

time. 
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The graphing using Venn-diagrams showed a large overlap between the registers, 

which would be expected since reporting to different registers is a highly dependent 

process, Figure 8 (38). 

For liver cancer the overlap was largest between the PR and the DR. Noticeably, there 

were a large number of patients reported with liver cancer to the PR, who were not 

reported to the CR. For other cancer investigated, colon cancer and lymphoma, a 

different pattern emerged, with much stronger dependence (overlap) between the PR 

and the CR. This was judged to reflect the different reporting processes where 

diagnosis of liver cancer in an inpatient setting may be set based on non-invasive 

imaging techniques while diagnosis of colon cancer and lymphoma commonly is based 

on histologic confirmation. For these cancers, the diagnosing laboratory, as well as the 

clinic, sends reports to the CR. 

 

Figure 8. Venn diagrams showing number of reported cancers to different registers and 

combination of registers. Areas adjusted to fit number of cases as closely as possible. 

 

The index year was defined as the first year a patient appeared in any of the three 

registers. The total number of liver cancers in all three registers with index year 2008-

2010 was 13,749.  

When studying the patients with liver cancer diagnoses from the DR and PR, not 

reported to the CR, it was found that as many as 3,925 (54%) of these 7,310 patients 

were reported to the CR for other cancer diagnoses. Of these, 1,390 patients were 

reported with ICD-code 199, i.e. malignant neoplasm without specification of site. This 

may indicate that at least part of the liver cancers identified only in PR and/or DR, were 

liver metastases related to other cancers. Making the drastic assumption that all 3,925 

patients registered in the cancer register for other cancer diagnoses had received their 

liver cancer diagnosis erroneously in the PR and DR, this will bring down the total 
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number of liver cancers to 9,824 for the time period 1998-2010. Also, the completeness 

of the CR would then be estimated to 66%, assuming that all liver cancers were 

captured by at least one of the registers, i.e. not accounting for unreported cancers. 

 
Sensitivity analysis 
 
The two-source model gave an estimated number of liver cancers not reported to any 

register corresponding to about 13% of the total number of liver cancers in the three 

registers together, the corresponding figure for the three-source model with a single 

two-way interaction was about 25%.  The three-source model, not accounting for a 

three-way interaction gave very high estimates of the number of unreported cases.  

 

Conclusion 

The CR is likely to underestimate the true incidence of liver cancer in Sweden. A large 

number of cases were reported to the PR and/or DR only. The reason for this may be 

the recommended use of non-invasive diagnostic methods based on imaging 

technologies for liver cancer diagnosis, resulting in a clinical diagnosis which is not 

always reported to the CR. 

The large number of patients with liver cancer reported in the PR and/or DR raises 

concern. It is likely that at least some of these reported cancers are other cancers and 

not liver cancers. When using the capture-recapture model, although mathematically 

correct, the results must therefore be interpreted cautiously.  In spite of these concerns, 

it is likely that the incidence of liver cancer is underreported in the Swedish CR. 

The Venn-diagrams for liver cancer compared to the Venn-diagrams for colon cancer 

and lymphoma indicate differences in reporting routines. The diagnoses of colon cancer 

and lymphoma are usually given on the basis of laboratory histologic confirmation. For 

these cancers the CR appears to be much more complete with about 80% of all cancers 

reported to the CR. 
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