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ABSTRACT 

The calcium ion (Ca
2+

) is a highly versatile and ubiquitous signaling messenger in all cell types. Signal 

transduction occurs through changes in the cytosolic Ca
2+

 concentration after the opening of Ca
2+

 

channels in the plasma membrane (PM) and endoplasmic reticulum (ER). The difference in Ca
2+

 

concentration between the extracellular space and the cytosol is large, around 10,000 fold, creating a 

steep gradient that causes Ca
2+

 to rapidly flow into the cell. Signaling via Ca
2+

 is fundamental for 

triggering numerous vital processes in the cell, ranging from fertilization to cell death. Calcium 

signaling is also critical for regulating neurogenesis in various ways, some of which have been 

explored in this work. 

 

Proliferation of neural progenitors is dependent on spontaneous Ca
2+

 activity that occurs in small-scale 

networks. Ca
2+

 activity is correlated with electrical activity both in vitro and in vivo and depends on 

connexin 43 gap junction and PM channels. Differentiation of neural progenitors is also regulated by 

Ca
2+

 signaling. We have found that T α1h voltage-dependent Ca
2+

 channels promote spontaneous Ca
2+

 

activity and direct the differentiation of human neuroepithelial stem cells towards neurons, depending 

on caspase-3 enzymatic activity. These results were confirmed with T α1h knockout mice that showed 

a decreased number of neurons in the dorsal cortex. Neuronal migration also depends on Ca
2+

 

signaling. We demonstrated that glial derived neurotrophic factor (GDNF) stimulates a Ca
2+

 response 

through the activation of the receptor tyrosine kinase (RET). The subsequent downstream signaling 

cascade includes phospholipase Cγ, which binds to RET Tyr1015. Mutating RET at Tyr1015 inhibits 

neuronal progenitor migration towards the cortical plate. We also showed that neurogenesis was altered 

by the addition of non-cytotoxic concentrations of polychlorinated biphenyls that disrupt spontaneous 

Ca
2+

 activity. Polychlorinated biphenyls are common food contaminants. In addition, methyl mercury, 

another food contaminant, disrupts neuronal differentiation in the opposite direction. Altogether, these 

data demonstrate the huge impact of Ca
2+

 signaling on the development of the embryonic brain. 

 

To conclude, we have analyzed Ca
2+

 signaling during three critical steps of neurogenesis: proliferation, 

differentiation, and migration. All of these processes are known to be dependent on Ca
2+

. A deeper 

understanding of how Ca
2+

 regulates such different physiological processes is crucial for the field of 

regenerative medicine, in which control of the expansion and differentiation of neural stem cells can 

increase the production of neuronal cells in vitro for use in cell replacement therapies. 
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1 INTRODUCTION 

 

1.1 Ca2+ SIGNALING 

 

An experiment performed 130 years ago by Sydney Ringer marked the beginning of the calcium (Ca
2+

) 

signaling field. Ringer was studying contraction using isolated rat hearts suspended, under his 

admission, in tap water. The hearts contracted beautifully in London’s hard water. When Ringer 

decided to increase the quality of his experiment and use distilled water, hearts gradually stopped to 

contract. Ringer had to add Ca
2+

 salts to maintain cardiac contraction. Thus, this experiment, which by 

today’s standards was deeply flawed, instigated the study of Ca
2+

 signaling.  

 

1.1.1 Ca2+ signaling toolkit 

 

The cytoplasmic Ca
2+

 concentration in a healthy cell is approximately 100 nM, while the extracellular 

concentration is 10,000–20,000 fold higher (between 1 and 2 mM), thus creating a strong gradient 

across the plasma membrane (PM). When channels on the membrane are open, Ca
2+

 can passively 

diffuse into the cells and increase the cytoplasmic concentration to approximately 1 µM. Intracellular 

compartments such as the endoplasmic reticulum (ER) or the mitochondrion maintain specific Ca
2+

 

concentrations of 0.2–1 mM and 0.1–10 µM, respectively.  

 

Ca
2+

 homeostasis in a cell is regulated by a multitude of Ca
2+

 regulators that are highly coordinated to 

control spatial and temporal changes in Ca
2+

 concentration. The set of all Ca
2+ 

regulators is called the 

Ca
2+

 signaling toolkit. Ca
2+

 signaling can then be divided in to four processes:  

 

Encoding: This process involves the activation of the Ca
2+

 signaling toolkit in response to intra- or 

extracellular stimuli. For example, membrane depolarization of excitable cells leads to the opening of 

the voltage-operated Ca
2+

 channel (VOCs) in the PM. On the endoplasmic reticulum (ER), 1,4,5-

trisphosphate (InsP3) activates the InsP3 receptor to release Ca
2+

 stored in the ER. 

 

ON mechanism: Elevation of intracellular Ca
2+

 can be generated from the extracellular space or from 

the intracellular Ca
2+

 stores (i.e., the ER) after the opening of the channels. Channels in the PM and in 
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ER open in response to different stimuli, such as changes in voltage, binding of an agonist, or release 

of calcium, etc. (Table 1). 

 

ON mechanisms that increase intracellular calcium levels 

Channels Location Example 

Voltage-operated channels 

(VOCs) 

Plasma membrane L, P/Q, N, R, T type 

Receptor-operated channels 

(ROCs) 

Plasma membrane NMDA, AMPA, ATP 

receptors 

Second messenger operated 

channels (SMOCs) 

Plasma membrane CNG, HCN 

Store-operated Ca
2+

 channels 

(SOCs) 

Plasma membrane Orai1, Orai2, Orai3 

Transient Receptor Potential 

(TRP) ion channels 

Plasma membrane TRPC1-7, TRPV1-6, 

TRPM1-8 

Inositol 1,4,5 triphosphate 

receptor 

Endoplasmic 

Reticulum 

InsP3R1-3 

Ryanodine receptors Endoplasmic 

Reticulum 

RyR1-3 

Store-operated Ca
2+

 channels 

(SOCs) 

Endoplasmic 

Reticulum 

STIM1, STIM2 

  

Table 1: On mechanism channels. 

 

Decoding: translation of increased levels of Ca
2+

 into a physiological process. Ca
2+

 is an ion and it is 

the only second messenger that does not undergo any structural or molecular changes to initiate 

signaling. The binding of Ca
2+

 to a calcium-binding protein can modulate the conformation and charge 

state of such proteins with consequences on their function. These Ca
2+ 

binding proteins can be a Ca
2+

 

sensor or Ca
2+

 buffer, but only proteins in the first category are directly involved in signaling, 

activating different cellular processes after Ca
2+

 binding. Ca
2+

 buffers undergo only minor 

conformational changes and consequently function only as buffer or transporters. Through its four EF-
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hands that can bind Ca
2+

, calmodulin (CaM) is one of the most global sensor proteins, and interacts 

with more than 100 target proteins that regulate a variety of different processes, such as gene 

transcription or muscle contraction. The most common Ca
2+

 binding proteins are listed in Table 2 

 

Ca
2+

 sensors Calmodulin, TroponinC, Synaptotagmin, S100, Annexin, 

Neuronal Ca
2+

 sensor, Hippocalcin, DREAM 

Ca
2+

 buffers 

 

Cytosolic: CalbindinD-28K, calbindin-D9k, Calretinin, 

Parvalbumin 

ER/SR: Calnexin, calreticulin, GRP 78 

  

Table 2: Intracellular Ca
2+

 binding proteins.  

 

Each type of cell possesses different Ca
2+

 regulators whose expression can be remodeled depending on 

the need. Many enzymes or transcription factors are indirectly regulated by calcium, such as those 

reported in Table 3.  

 

Ca
2+

 sensitive enzymes CAMK, myosin light chain kinase, phosphorylase, 

Adenylyl cyclase, PYK2, PKC, nitric oxide synthase, 

calcineurin, phosphodiesterase  

Ca
2+

 sensitive 

transcription factors 

NFAT, CREB,CBP 

 

Table 3: Enzymes and transcription factors indirectly sensitive to Ca
2+

. 

 

OFF mechanism: The removal of Ca
2+

 is necessary for the restoration of the basal Ca
2+

 level in the 

cytoplasm. Long-term increases in Ca
2+

 are toxic for the cell, so it is fundamental to have an efficient 

and rapid Ca
2+ 

removal system. Ca
2+

 pumps and exchangers are located on the PM and the ER and are 

summarized in Table 4.  
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OFF mechanisms that decrease intracellular calcium levels 

Pumps and exchangers Location Example 

Plasma membrane Ca
2+

 ATP-

ases  

Plasma membrane PMCA1-4 

Sodium/Ca
2+

 exchangers  Plasma membrane NCX1-3 

Sarco-endoplasmic reticulum 

ATP-ases 

Endoplasmic Reticulum SERCA1-3 

Mitochondrial channels and 

exchangers 

Mitochondria Uniporter, NCX 

Golgi pumps Golgi apparatus SPCA1, SPCA2 

 

Table 4: Off mechanism channels. 

 

In conclusion, the Ca
2+

 toolkit contains a wide range of channels and pumps that allow transient Ca
2+

 to 

enter into the cytoplasm from the extracellular space and intracellular stores. The duration, localization, 

and amplitude of the Ca
2+

 increase determine the transduction of the signal. In Figure 1, the main 

players of the Ca
2+

 toolkit are visualized.   

 

The articles included in this thesis focus on VOCs and InsP3R, and these channels will be described in 

the next section.  
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Figure 1: The Ca
2+

 signaling toolkit. The ON mechanisms are shown in red and the OFF mechanisms 

are shown in blue. Picture from Per Uhlén. 

 

1.1.2 Voltage-operated Ca2+ channels and Inositol 1,4,5-trisphosphate receptors 

 

1.1.2.1 Voltage-operated Ca
2+

 channels 

 

Voltage-operated Ca
2+

 channels (VOCs) are fundamental transducers of changes in membrane 

potential into intracellular Ca
2+

 transients initiating physiological events. They are characterized by 

activation and inactivation periods. Depending on their physiological and pharmacological properties, 

voltage-dependent Ca
2+

 channels are divided into high voltage-activated (HVA) and low voltage-

activated (LVA) channels. HVA Ca
2+

 channels are comprised of five different subunits (α1, α2δ, β, and 

γ), while LVA channels are comprised of only an α1 subunit. The α1 subunit is responsible for the 

properties of the channels, so different voltage-dependent Ca
2+

 channels are usually referred to by their 

α1 subunits. For example, there are four different α1 subunits for L-type Ca
2+

 channels: 1S, 1C, 1D, 

and 1F (table 5). In total, there are ten members of the voltage-operated Ca
2+

 channel family in 

mammals, and they play distinct roles in cellular signal transduction. The Cav1 (L-type) subfamily, a 
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HVA Ca
2+

 channel that is sensitive to dihydropyridines, initiates contraction, secretion, regulation of 

gene expression, integration of synaptic input in neurons, and synaptic transmission. The Cav2 (N, P/Q 

and R-type) subfamily is primarily responsible for the initiation of synaptic transmission at fast 

synapses. The Cav3 (T-type) subfamily is important for repetitive firing of action potentials in 

rhythmically firing cells, such as cardiac myocytes and thalamic neurons (Catterall, 2011). Of these, T-

type channels are the first Ca
2+

 channels to be expressed in developing neurons (Chemin et al., 2002). 

 

(Tsien et al., 1988) (Snutch 

et al., 

1990) 

(Ertel et al., 

2000) 

Voltage 

type 

Associated 

subunits 

L-type (“Long  

Lasting” or “DHP 

Receptor”) 

α 1S 

α 1C 

α 1D 

α 1F 

Cav1.1 

Cav1.2 

Cav1.3 

Cav1.4 

HVA 

 

α2δ,β,γ 

 

P-type (“Purkinje”)/ Q 

type Ca
2+

 channel 

α 1A 

 

Cav2.1 

 

HVA 

 

α2δ,β,(γ) 

 

N-type (“Neural” or 

“Non-L”) 

 

α 1B 

 

Cav2.2 

 

HVA 

 

α2δ/β1, β3, 

β4,(γ) 

 

R-type (“Residual”) α 1E Cav2.3 HVA α2δ,β,(γ) 

T-type (“Tiny” or 

“Transient”) 

α 1G 

α 1H 

α 1I 

Cav3.1 

Cav3.2 

Cav3.3 

LVA 

 

 

 

Table 5: Summary of the different nomenclatures and the associated subunits of the ten types of VOCs. 

 

Comparison of the amino acid sequences of the individual calcium channels revealed relationships 

among the channel classes. An early evolutionary event separated the α1 subunits into LVA and HVA 

channels and a later evolutionary event divided the HVA channels into two subfamilies, L-type and 

neuronal types. Individual members of both subfamilies share greater than 80% sequence homology 

(Figure 2). 
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Figure 2: Homology among the different VOCs (Lacinova, 2005). 

 

1.1.2.2 Inositol 1,4,5-trisphosphate receptor 

 

The InsP3R, a tetramer located on the ER membrane, is the mediator of the cellular response to InsP3 

(Streb et al., 1983), and is present as three different subtypes, InsP3R1–R3. All three isoforms allow the 

release of Ca
2+

 and are expressed in most cells, but their different mechanistic and molecular properties 

mediate different physiological events (Mendes et al., 2005; Wagner and Yule, 2012). InsP3R1 is 

highly expressed in the Purkinje cells in the cerebellum and the Ca1 pyramidal cell layer of the 

hippocampus. Knockout animals for InsP3R1 exhibit ataxia and epileptic seizures and die prematurely 

(Matsumoto et al., 1996). The primary phenotypes exhibited by InsP3R2–R3 double knockout mice are 

impaired saliva secretion and growth abnormalities (Futatsugi et al., 2005). 

There are five functional domains in the receptor: an N-terminal coupling/suppressor domain, an InsP3-

binding core domain, an internal coupling domain, a transmembrane/channel-forming domain, and a 

gatekeeper domain (Mikoshiba, 2007). The domain responsible for the difference in the affinity of 

InsP3 for different InsP3R subtypes is the suppressor domain (Iwai et al., 2007). 

Activation of InsP3R by the InsP3 molecule stimulates Ca
2+

 diffusion from the ER through the receptor. 

InsP3 is formed by the hydrolysis of PInsP2 by activated phospholipase C (PLC), accompanied by the 

release of diacylglycerol (DAG) (Figure 3). Ca
2+

 and InsP3 also act as co-activators of InsP3R in a 

concentration and isoform-dependent manner. For example, the opening of InsP3R is inhibited both in 



8  

high and low Ca
2+

 conditions and so only moderate increases in cytosolic Ca
2+

 can open the channel 

(Bezprozvanny et al., 1991; Choe and Ehrlich, 2006; Tu et al., 2005). 

 

 

 

Figure 3: Pathway of InsP3 and activation of InsP3R. Figure from Per Uhlén. 

 

1.1.3 Types of Ca2+signals 

 

An elementary event in calcium signaling is an increase in intracellular Ca
2+

 close to the channel that 

allows the Ca
2+

 to diffuse from the extracellular space or the intracellular stores. This event is the 

primary component of Ca
2+

 signaling and has different names and characteristics depending on its 

origin: Puffs, Bump, and BOB are produced by the InsP3Rs; RyRs generate Sparks, STOC, and 

SMOC; and VOCs give rise to QED (Bootman and Berridge, 1995). Elementary elements can regulate 

many localized cellular processes or combine to produce larger signaling microdomains, which are 

especially important in cardiac and muscular physiology (Wang et al., 2004).  

 

The most common forms of Ca
2+

 signals are transients, oscillations and sustained signals  (Uhlen and 

Fritz, 2010).  Ca
2+

 oscillations are comprised of multiple Ca
2+

 transients (peaks) and can be induced by 

various compounds, such as hemolysine (Uhlen et al., 2000), ouabain (Aizman et al., 2001), and 

testosterone (Estrada et al., 2006). Ca
2+

 oscillations have been implicated in the control of numerous 
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biological processes, including oocyte activation at fertilization (Miyazaki et al., 1993), proliferation of 

neural progenitors (Weissman et al., 2004), differentiation (Ciccolini et al., 2003), and the 

establishment of neurotransmitter cell phenotypes (Borodinsky et al., 2004).  

 

As the Ca
2+

 ion cannot undergo modification, changes Ca
2+

 in concentration must be very flexible in 

space, time, and form, but also precisely regulated to coordinate all Ca
2+

 functions.  

 

1.1.3.1 Spatial range 

Transient oscillations and sustained signals occur in the cytoplasm and have a wide spatial range. Ca
2+

 

signals can be localized, diffusing only nanometers, as in the case of sparks and puffs, but can also be 

very large, covering even centimeter distances in waves (Bootman et al., 1997). The first Ca
2+

 signal 

close to the mouth of the intracellular or PM channels can transmit the signal to an enzyme in the 

immediate vicinity or recruit additional Ca
2+

 channels, triggering a chain of autocatalytic Ca
2+

 releasing 

events that give rise to a Ca
2+

 wave.  

 

1.1.3.2 Temporal range 

The temporal range is fundamental in Ca
2+

 signaling, varying from microseconds (as in exocytosis), 

minutes or hours (in proliferation, differentiation, gene transcription), or months (as in memory 

function). The frequency of the signal determines the effectors that will be activated and thus the 

physiological output. For example, low frequency Ca
2+

 signals activate NF-kB, and high frequency 

Ca
2+

 signals activate NFAT (Dolmetsch et al., 1998). Furthermore, CaM Kinase II is able to recognize 

the frequency of the oscillations and vary its activity accordingly (De Koninck and Schulman, 1998; 

Wheeler et al., 2008). 

 

1.1.3.3 Amplitude 

The amplitude of Ca
2+

 signals can be measured, but it is technically challenging because most of the 

dyes used in Ca
2+

 imaging are also Ca
2+

 buffers. Some genes can be activated by varying the amplitude 

of Ca
2+

 signals in relation to frequency and duration (Berridge et al., 1998; Dolmetsch et al., 1997; Li 

et al., 2012). 
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1.1.4 Cellular consequences  

 

Ca
2+

 ions were discovered to be fundamental for many physiological processes, including fertilization, 

differentiation, exocytosis, gene expression/transcription, memory function, proliferation, and cell 

death. This explains the most famous quotation regarding Ca
2+

, credited to Otto Loewi (1873-1961), a 

Nobel-prize winning physiologist and professor at New York University: 

 

"Ja, Kalzium, das ist alles" 

(Yes, Ca
2+

 is everything) 

 

Here, a brief summary of the main Ca
2+

 related physiological consequences is presented. Proliferation, 

differentiation, and migration will be examined in depth in the following sections. 

 

1.1.4.1 Fertilization 

It has been known from the early 1920s that eggs can be activated by raising their free Ca
2+

 

concentration (Loeb, 1921), which depolarizes the PM (Jaffe, 1985). This happens after the 

introduction of cationic channels into the PM of the eggs by the sperm (Lynn and Chambers, 1984), 

provoking activation of PLCζ and the release of Ca
2+

 from internal stores. Consequent Ca
2+

 induced 

Ca
2+

 release (CICR) sustains the oscillation for some hours (Miyazaki et al., 1992). Recently, it has 

been demonstrated that Ca
2+

 influx from the extracellular space is fundamental for replenishing Ca
2+

 

stores and for the activation of signaling pathways upstream of CaMKIIγ that are required for complete 

egg activation (Miao et al., 2012).  

 

1.1.4.2 Proliferation 

Ca
2+

 has a fundamental role in the mammalian cell cycle and is especially important early in G1, at the 

G1/S and G2/M transitions (Kapur et al., 2007; Roderick and Cook, 2008). The role of Ca
2+

 in 

proliferation was well studied in lymphocyte activation, where antigen binding activates PLCγ and 

InsP3. Ca
2+

 recruited from the ER then activates store-operated Ca
2+ 

channels (SOCs), stimulating 

progression of the cell cycle through store-operated Ca
2+

 entry (SOCE) (Feske, 2007). 
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1.1.4.3 Differentiation 

Ca
2+

 has been shown to regulate many aspects of differentiation, from the induction of a cell phenotype 

to the development of cell-specific features. In neurons, for example, spontaneous Ca
2+

 events have 

been correlated to dendrite outgrowth and neurotransmitter phenotypes (Borodinsky et al., 2004; 

Ciccolini et al., 2003). 

 

1.1.4.4 Migration 

Migration of mature neurons towards their final destination is also Ca
2+

 dependent, and treatment with 

N-type Ca
2+

 channel inhibitors decreases neuronal migration (Komuro and Rakic, 1996). Recently, T-

type Ca
2+

 channels have also been reported to affect migration in cultured neurons (Louhivuori et al., 

2013), and intracellular Ca
2+

 stores have been shown to play a role in neuronal migration as well (Guan 

et al., 2007; Pregno et al., 2011). 

 

1.1.4.5 Gene transcription 

Since the 1980s, changes in intracellular Ca
2+

 fluxes have been known to affect gene transcription. The 

first observation of this was made during a study of the expression of the prolactin gene in culture of 

CH3 cells (White, 1985). Since then, the number of genes reported to be Ca
2+

 regulated has increased 

rapidly. Both late response and immediate-early genes, including the c-fos proto-oncogene, have been 

determined to be Ca
2+

 sensitive. Ca
2+

 sensitive genes are able to discriminate between fluxes through 

the voltage Ca
2+

 channels and glutamate ion channels in neurons because of their different localization 

in the PM, i.e., dendrites versus soma (Bading et al., 1993). Most of the information on the role of Ca
2+

 

in gene transcription stems from work on CREB, a transcription factor that binds to the cAMP 

responsive element (CRE) and the Ca
2+

 response element (CARE) and is activated upon CaMKIV 

activation. The activation of genes by Ca
2+

 oscillations is more effective than that by sustained Ca
2+

 

increase, since prolonged Ca
2+

 increase can become toxic for cells (Carafoli et al., 2001). Ca
2+

 

mediated CREB activity is an example of when an effector (in this case, the Ca
2+

 dependent 

phosphatase calcineurin) is able to decode information in the temporal aspect of Ca
2+

 into functionally 

specific signals (Schwaninger et al., 1995). Another transcription factor activated after 

dephosphorylation by calcineurin is NFAT (Clipstone and Crabtree, 1992). Ca
2+

 can also directly affect 

gene transcription, through the downstream regulatory element antagonist modulator (DREAM) in the 

prodynorfin gene (Carrion et al., 1999). 
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1.1.4.6 Memory and Learning 

Processes that change the strength of synapses, such as long-term potentiation (LTP) and long-term 

depression (LTD), are generally assumed to underlie memory storage. The α isoform of CaMKII is the 

most abundant protein in the postsynaptic density (Kennedy, 1993) and can affect the storage process 

via structural modification of proteins. 

 

1.1.4.7 Cell death 

A typical aspect of many pathological conditions is the excessive entry of Ca
2+

 through the PM, termed 

Ca
2+

 overload. 

Ca
2+

 overload leads to the permanent activation of signaling pathways, including those that mediate the 

activation of hydrolytic enzymes (proteases). Cells attempt to cope with the cytosolic increase in Ca
2+

 

by activating removal systems, particularly via the mitochondria. Ca
2+

-dependent mitochondrial 

activation is depicted in Figure 4. During conditions of acute cellular stress, mitochondria can store 

large amounts of Ca
2+

 in the form of hydroxyapatite granules. However, if the Ca
2+

 overload conditions 

persist, a point of no return will be reached when mitochondria lose their membrane potential and the 

ability to produce ATP, thus depriving energy to the pumps that remove the calcium. As a 

consequence, the cell will undergo death through necrosis (Fleckenstein et al., 1974). 

Apoptosis is another form of cell death that is not linked to pathological conditions. Apoptosis is a 

normally programmed event during development and the normal turnover of adult cells. The classic 

apoptotic proteins, caspases, are not directly Ca
2+

 dependent, unlike the Ca
2+-

activated thiol protease 

calpain (Guroff, 1964). 

Necrosis, on the other hand, has long been considered an unregulated process. However, recent 

evidence suggests that necrosis can also take place in a controlled procedure called necroptosis 

(Vanlangenakker et al., 2008). 

Recent findings suggest that the process through which cell death occurs is not pre-determined, but can 

be decided based on the severity of the injury and the status of the cells, specifically the resting 

concentration of ATP and the mitochondrial status (Orrenius et al., 2003).  
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Figure 4: Causes and consequences of Ca
2+

 overload in neurons. Ca
2+ 

channels, Ca
2+ 

buffering  

proteins and mitochondrial functions are deregulated in pathological conditions. Figure modified from 

(Marambaud et al., 2009). 

 

1.1.4.8 Secretion 

Secretion of active compounds in intracellular vesicles occurs frequently in response to cellular 

stimulation. This event is mediated by second messengers, among whom Ca
2+

 is particularly important. 

The first to identify Ca
2+

 as playing a role in this process were Hodgkin and Keynes (Hodgkin and 

Keynes, 1957), who suggested that influx into the nerve terminals could have a role in the secretion of 

acetylcholine. Nowadays, it is well known that the basis of the process is the fusion of the vesicles that 

store the compound to be secreted with the PM. Moreover, exocytotic emission of the compound into 

the extracellular space occurs in a Ca
2+

 dependent manner. Within the same cells, different granule 

populations may be secreted with different Ca
2+

 affinities (Nusse et al., 1998) depending on the 

involvement of different Ca
2+

 sensors, such as synaptotagmin, annexins, S-100 proteins, and 

calmodulin (Sudhof and Rizo, 1996).  
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1.1.4.9 Contraction 

In the 1950s, Sandow proposed that Ca
2+

 could link action potential in the PM to myosin contraction 

(Sandow, 1950). Later, it was shown that activating Ca
2+

 came from intracellular stores located in the 

terminal cisternae of the sarcoplasmic reticulum.  

Contraction of skeletal and cardiac muscles was later shown to be mediated not by myosin, but rather 

by a set of proteins that includes actin, tropomyosin, and troponin. Troponin C, one of the proteins in 

the troponin complex, was demonstrated to be the Ca
2+

 sensor in the myofibrils via its EF-hands motifs 

(Hitchcock, 1975).  In smooth muscles, action potential brings in sufficient Ca
2+

 to activate contraction 

through a Ca
2+-

calmodulin dependent process (Carafoli et al., 2001; Sparrow et al., 1981). 

 

1.1.4.10 Regulation of enzymes  

Ca
2+

 indirectly regulates phosphorylation and dephosphorylation on the serine/threonine residues of 

many enzymes, usually after interaction with and activation of CaM. Example of kinases and 

phosphatases that are regulated by Ca
2+

 are listed in Table 3. 
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1.2 Ca2+ SIGNALING AND PROLIFERATION 

 

1.2.1 Ca2+ dependent proliferation 

 

As reported in the previous section, Ca
2+

 signaling is important for the proliferation and regulation of 

the cell cycle, mainly in G1 and at the G1/S and G2/M transitions. Both increases in the basal cytosolic 

calcium concentrations ([Ca
2+

]i) and [Ca
2+

]i transients play a major role in cell cycle progression, cell 

proliferation, and division. 

 

How is this mediated? Cell cycle and cell division are under the strict control of cyclins and CDK 

complexes. Ca
2+

 regulates the expression, activity, and localization of the transcription factors that 

control G1 cyclins (Fos, Jun, MyC, CREB–ATF1, and NFAT), but also acts directly on the cyclins 

after stimulation of CaM (Kahl and Means, 2003), as shown in Figure 5. Ca
2+

 and CaMKII also control 

centrosome duplication and separation, allowing the distribution of replicated chromosomes to 

daughter cells. Furthermore, Ca
2+

 oscillations occur at the G1/S boundary (centrosome duplication) and 

the G2/M transition (centrosome separation), during which CaMKII localizes to the centrosomes 

(Roderick and Cook, 2008). 

 

 

Figure 5: Ca
2+

 dependent regulation of cell cycle. Ca
2+

 /CaM is required at two points during the 

reentry from quiescence, early after mitogenic stimulation and later near the G1/S boundary. 
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Additionally, Ca
2+

/CaM is implicated in the G2/M transition, M phase progression, and exit from 

mitosis. Figure modified from (Kahl and Means, 2003). 

 

1.2.2 Ca2+ channels affecting proliferation 

 

The use of Ca2+ channel blockers has been one of the main arguments in support of the role of 

calcium in cell proliferation. Drugs that block L- and T-type VOCs and SOCE and NCCE channels, 

such as verapamil, diltiazem, mibefradil, 2-APB, SK&F 96365, and carboxyamidotriazole, have 

been shown to have anti-proliferative effects in several tissues (Chung et al., 1994; Enfissi et al., 

2004; Panner and Wurster, 2006; Taylor and Simpson, 1992). 

 

L-type Ca
2+

 channels have been connected to neural proliferation in cells from rat mesencephalon 

kept under hypoxic conditions (Guo et al., 2010), but the underlying mechanism of this effect is still 

unknown. 

 

T-type calcium channels are widely expressed in cancer cells. The unique low voltage-dependent 

activation/inactivation and slow deactivation of T-type calcium channels indicate that they may carry 

a depolarizing current at low membrane potentials. These channels could play an important role in 

regulating Ca
2+

 in non-excitable tissues. At low voltage, T-type calcium channels mediate a 

mechanism called “window current” (Crunelli et al., 2005) caused by a voltage overlap between 

activation and steady state inactivation. This results in a sustained inward calcium current carried by 

a small portion of channels, regulating calcium homeostasis at low or resting potential (Bean and 

McDonough, 1998).  

 

A complex sequence of events involving Orai1 and Orai3 in the PM and STIM1 and STIM2 on the 

ER membrane is necessary for SOCE activation. SOCE is triggered by depletion of the Ca
2+

 stores of 

the ER through InsP3 or RyRs and subsequent refilling of the intracellular stores by Ca
2+ 

entry 

through PM channels. This can give rise to Ca
2+

 oscillations that have been implicated in cell cycle 

progression in mouse embryonic stem (ES) cells (Kapur et al., 2007; Varnai et al., 2009). STIM1 

also binds to transient receptor potential canonical cationic channels (TRPCs), suggesting a role for 

TRP channels in SOCE (Capiod, 2011; Zitt et al., 2002). 
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Another set of PM calcium channels can be activated independent of ER Ca
2+

 depletion and calcium 

entry via other second messengers, such as DAG (Gudermann et al., 2004). This type of calcium entry 

is known as non-capacitative calcium entry (NCCE) and is involved in the proliferation of non-

excitable cells (Capiod, 2013).  

 

1.2.3 Ca2+ and gap junctions in neural proliferation 

 

Gap junctions are channels that form a connection between the cytoplasm of two adjacent cells and 

allow the exchange of electrical currents and small molecules (<1 kDa). Two hemichannels on 

opposing membranes make up one gap junction. Hemichannels are composed of six connexin (Cx) 

subunits, each having four transmembrane domains and two extracellular loops (Evans and Martin, 

2002).  

 

Gap junctions were first described in the mature brain in the late 1970s. There are 20 genes encoding 

different connexins in rodents and humans with distinct permeability and regulation properties. Five 

of these are highly expressed in the rodent embryonic cerebral cortex, including Cx26, Cx36, Cx37, 

Cx43, and Cx45, with a distinct spatial and temporal pattern that gives rise to significant functional 

differences. Cx26, Cx37, and Cx45 are largely distributed from the ventricular zone (VZ), the major 

proliferative area of the developing cortex, to the cortical plate, whereas Cx36 and Cx43 are highly 

expressed in the VZ and less in the cortical plate (Cina et al., 2007; Nadarajah et al., 1997). 

 

Gap junctions have been recently shown to govern many different aspects of development, including 

coupling, hemichannel function, adhesion, and signaling. Systematic intercellular contacts also 

mediated by gap junctions determine the complexity of the cerebral cortex. Indeed, the ability of gap 

junctions to create morphogenic gradients and synchronize electrical activities is fundamental for 

controlling embryonic morphogenesis and generating cortical circuits, but also as an architectural 

tool (Elias and Kriegstein, 2008; Elias et al., 2007; Zsiros and Maccaferri, 2008). Moreover, Ca
2+ 

waves mediated by gap junctions divide the mammalian neocortex into distinct neuronal domains 

(Bennett and Zukin, 2004; Yuste et al., 1995). Spontaneous gap junction-dependent Ca
2+ 

waves are 

also observed in the developing retina (Kandler and Katz, 1998), and a novel model in which Ca
2+

 

plays dual roles in directing the fate of a specific type of olfactory neuron within the innexin (i.e., 
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analog of connexins in invertebrates) network in C. elegans was recently proposed (Schumacher et 

al., 2012). 

 

Ca
2+

 waves propagate through radial glial cells in the proliferative cortical ventricular zone (VZ). 

Radial glial Ca
2+

 waves require connexin hemichannels, P2Y1 ATP receptors, and intracellular 

InsP3-mediated Ca
2+

 release. Wave disruption in neural progenitors decreases VZ proliferation 

during the peak of embryonic neurogenesis (Weissman et al., 2004).  
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1.3 Ca2+ SIGNALING AND DIFFERENTIATION  

 

1.3.1 Differentiation of embryonic stem cell and neuroepithelial stem cells into 

neurons 

 

ES cells are self-renewing pluripotent cells from the inner mass of the blastocyst that give rise to 

cells of all three germ layers: endoderm, ectoderm, and mesoderm. Neuroepithelial stem (NS) cells 

are a population of self-renewing and multipotent cells that can generate the main cell types in the 

nervous system: neurons, astrocytes, and oligodendrocytes.  

 

The in vitro generation of neurons from ES and NS cells is a promising approach for producing 

neurons for cell-based replacement therapies of the nervous system as well as developmental studies. 

The challenge is to try to replicate the complex process of embryonic development in a reproducible 

and efficient way using all the available methods. To do so, a deep understanding of the cellular and 

molecular events that are involved in this process is required. 

  

Many different approaches have been used to achieve in vitro neural differentiation, focused 

primarily on generating regionally specific neural progenitors or differentiated neuronal and glial 

subtypes. Initially, the most common methods were embryoid body (EB) formation in the presence 

of retinoic acid (Bain et al., 1995) or co-culture of ES cells with stroma/conditioned medium 

(Kawasaki et al., 2000). However, as ES cells are pluripotent and thus have the capacity to 

differentiate into almost any cell type, the efficiency of neural conversion was limited and lineage 

selection was usually necessary to ensure the homogeneity of the differentiated population (Li et al., 

1998).  

 

A simpler way to reconstitute neural commitment in vitro and achieve efficient neuronal production 

relies upon monolayer differentiation of ES cells, a method developed by Ying and co-workers (Ying 

et al., 2003) in which ES cells are cultured in defined serum- and feeder-free conditions in the 

absence of BMP signals, which are known to inhibit neural fate. Under these conditions, ES cells 

undergo neural commitment through an autocrine induction mechanism, in which FGF signaling 

plays a crucial role, just as it does in the embryo (Stavridis et al., 2007). This method results in a 
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more efficient neural commitment and differentiation, which likely results from a more authentic 

mimicry of the events that occur in the embryo, especially in cortical development.  

 

Neuroepithelial progenitors cells derived in medium supplemented with N2B27 organize into neural 

tube-like rosettes where they display the morphological and functional characteristics of their 

embryonic counterparts, namely, apico-basal polarity, active Notch signaling, and proper timing of 

production of neurons and glia (Abranches et al., 2009). Such spontaneous organization has been 

shown in both mouse and human differentiating ES cells (Gaspard et al., 2009; Shi et al., 2012). 

 

1.3.2 Ca2+ dependent neural induction 

 

Spontaneous Ca
2+

 events appear to be common occurrences in the developing brain. In Zebrafish and 

amphibian embryos, localized Ca
2+

 transients have been imaged during gastrulation in the dorsal 

region. These Ca
2+

 transients were temporally and spatially correlated with neural induction (Leclerc 

et al., 1997).  

 

In mammals, neural induction studies have mainly involved the use of ES cells due to difficulties in 

manipulating early embryos. The results obtained from Xenopus and mouse models reveal that the 

mechanisms that govern neural induction involve cross-talk between several signaling pathways and 

require inhibition of the BMP pathway, activation of the FGF/Erk pathway, and controlled Ca
2+

 

homeostasis. In mouse ES cells, Ca
2+

 signaling increases the phosphorylation of Erk and triggers 

neural induction (Lin et al., 2010), so an increase in [Ca
2+

]i appears to be crucial for the control of 

neural fate determination in vertebrates.  

 

This increase in [Ca
2+

]i may result from an influx of Ca
2+

 through Ca
2+

 channels on the PM and/or 

Ca
2+

 release from the ER. However, the route of Ca
2+

 increase seems to differ between the 

amphibian and the mammal models, being dependent on L-type VOCs in Xenopus and TRP 

channels in mouse, since ES cells do not express VOCs, only TRPC1 and TRPC2 (Leclerc et al., 

2012) as shown in Figure 6. 
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Figure 6: Signaling pathway occurring during neuronal induction in amphibian ectoderm cells and in 

ES cells. An increase in intracellular Ca
2+

 concentration is a common signal that drives embryonic cells 

toward the neural fate. In amphibian, the main source of Ca
2+

 increase rely on an influx through VOCs  

but ESCs instead do not express VOCs. Both cell types expressed TRP channels, probably TRPC, 

which could contribute to the Ca
2+

 signals. Figure modified from (Leclerc et al., 2011). 
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Ca
2+

 release from the ER, the main source of Ca
2+

 in ES cells, is mediated by InsP3Rs but not by 

ryanodine receptors (RyRs). Both plasma membrane Ca
2+

-ATPase (PMCA) and the Na
+
/Ca

2+
 

exchanger (NCX) contribute to the extrusion of Ca
2+

 from the cytoplasm (Yanagida et al., 2004).  

 

1.3.3 Ca2+ dependent dendritic outgrowth 

 

The growth, branching, and guidance of neural projections during development are controlled by 

complex mechanisms that include both diffusible and local Ca
2+

 signals. Spontaneous Ca
2+

 activity 

occurs during a period of intense dendritic growth in neurons, in which the increase in Ca
2+

 confers 

stability in the branching of embryonic retinal ganglion cells (Yamashita, 2008).  

 

Calcium signal propagation to the nucleus requires calcium influx primarily through NMDA type 

glutamate receptors and L-type voltage sensitive calcium channels. Synaptic transmission that 

contributes to the elevation of intracellular Ca
2+

 levels through VOCs also induces CICR from the 

intracellular stores and contributes to stabilization of the new branches (Lohmann et al., 2002). 

 

Intracellular Ca
2+

 elevation can affect dendritic growth via downstream regulators, especially 

through CaMKs activated by the complex calcium/CaM. CaMKII is highly expressed in the brain, 

and the β isoform of CaMKII is required to initiate branching of dendrites in sympathetic and 

hippocampal neurons (Fink et al., 2003; Vaillant et al., 2002). The α isoform of CaMKII is required 

for dendritic growth in cortical neurons (Wu and Cline, 1998). 

CaMKIV, which is generally localized in the nucleus, is also involved in dendritic growth in cortical 

neurons through phosphorylating CREB in response to Ca
2+

 influx through VOCs. Surprisingly, 

however, CREB activation alone through the classic pathway involving cAMP and PKA is not 

sufficient to promote dendritic growth (Redmond et al., 2002). 

 

Another transcription factor that is important for dendritic growth is the Ca
2+

-responsive transactivator 

(CREST). Analysis of CREST knockout mice revealed defects in the dendritic growth of cortical and 

hippocampal neurons. In addition, cortical neurons from CREST mutant mice showed impaired 

dendritic growth in response to depolarization (Aizawa et al., 2004). 
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The mitogen activated protein (MAP) kinase signaling pathway has been implicated in dendritic 

growth. Activation of this pathway via sustained activation of ERK1/2 is crucial for stabilization of 

new neurons in the hippocampus (Wu et al., 2001) and cerebellar granule cells (Borodinsky et al., 

2003) and for dendritic growth mediated by the Na
+
/K-ATPase (Desfrere et al., 2009). 

 

These signaling pathways are summarized in figure 7 

 

 

 

Figure 7: Neuronal Ca
2+

 signaling. Ca
2+ 

entry through VOCs or ROCs activates a variety of signaling 

pathways that regulate gene transcription after phosphorylation of the transcription factor CREB. 

 

1.3.4 Ca2+ dependent neurotransmitter specification 

 

The specification of neurotransmitter phenotype has been considered, for many years, a fixed 

mechanism. However, recent findings have demonstrated that it is dependent on early electrical 

activity. Molecular or pharmacological alteration of electrical and Ca
2+

 activity can change the 

number of neurons expressing excitatory and inhibitory transmitters in Xenopus spinal cord in a 
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homeostatic way. Thus, increasing Ca
2+

 activity increases inhibitory synapses and decreasing Ca
2+

 

activity increases excitatory synapses (Figure 8). Changes in transmitter specification are matched by 

changes in postsynaptic neurotransmitter receptor expression, thus influencing synaptic transmission 

and affecting behavior (Borodinsky et al., 2004; Spitzer, 2012). Furthermore, a correlation between 

the GABAergic phenotype and Ca
2+

 activity was shown in differentiating neural stem cells in mice 

(Ciccolini et al., 2003). 

 

 

 

Figure 8: The homeostatic model for neurotransmitters specification. The expression of transcription 

factors affects the presence of ion channels that produce pattern of Ca
2+

 activity modulated by 

signaling protein. Different patterns of spike activity activate Ca
2+

 dependent transcription factors 

and regulate the enzymes that store specific transmitters in a homeostatically way. Figure modified 

from (Spitzer et al., 2005). 

 

1.3.5 Caspase-3 dependent differentiation 

 

Caspases are cysteine-aspartic acid proteases that have a fundamental role in apoptosis, necrosis, and 

inflammation. Twelve caspases have been identified in humans, categorized as initiators (caspases 2, 

8, 9, and 10) and effectors (caspases 3, 4, 5, 6, 7, 11, and 12). Initiator caspases target other caspases 
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as substrate, while effector caspases cleave other protein substrates in the cells to trigger apoptosis. 

This post-translational regulation of caspases assures rapid activation of the apoptotic process 

(Salvesen and Riedl, 2008).  

 

Caspase-3 is the final executor of the two canonical caspase signaling pathways, the intrinsic 

(mediated by mitochondria and cytochrome c) and the extrinsic (through death receptor) pathways, 

as shown in Figure 9. Non-canonical apoptotic pathways are mediated by different caspases. 

 

 

 

Figure 9: the two different pathways of activation of caspase-3. The extrinsic, receptor-mediated 

pathway occurs through activation of caspase-8 and the intrinsic mitochondria-mediated pathway 

requires activation of caspase-9. Figure modified from (Orrenius et al., 2003). 

 

Recently, various non-lethal roles of caspase-3 have been demonstrated in PC12 cells and primary 

culture of striatal neurons, in which neural differentiation was associated with an increase in caspase-

3 activation but not cell death (Fernando et al., 2005; Rohn et al., 2004). Thus, caspase-3 appears to 

be involved in neurogenesis and synaptic activity (Abdul-Ghani and Megeney, 2008; D'Amelio et 

al., 2010).  
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Tissue development and maintenance are dependent on a complex interplay of stem cell self-

renewal, differentiation, and apoptosis/programmed cell death. Caspase-induced cleavage of Nanog 

in differentiating ES cells was demonstrated by Fujita and collaborators, reporting that stem cells 

lacking the gene coding for caspase-3 showed marked defects in differentiation (Fujita et al., 2008). 

 

The discoveries of new roles for caspases is not limited to stem cells and neurons: recent findings have 

revealed non-apoptotic roles for caspases in specialized cellular structures, such as immune regulation 

and spermatogenesis (Yi and Yuan, 2009). Moreover, caspase-3 activity has been associated with the 

regenerative response after cortical stroke (Fan et al., 2013) and synaptic dysfunctions in the early 

stages of Alzheimer’s disease (D'Amelio et al., 2011).  

 

1.3.6 Perturbation of differentiation: developmental neurotoxicity 

 

Neurotoxicity is defined as the study of the adverse effects induced by exogenous or endogenous 

factors (biological, chemical, or physical) on the nervous system (Tilson et al., 1995).  

 

The developing central nervous system is continually undergoing remodeling processes in which 

active proliferation, differentiation, and migration are tightly controlled in time. During 

development, there is a “window of susceptibility”, a period in which the neurotoxic agent in contact 

with the cells is fundamental for determining the effect on brain maturation. The developing brain is 

particularly vulnerable to toxic insults compared to the adult brain because of the lack of a functional 

barrier. The placenta only partially protects the fetal brain and the blood brain barrier is not fully 

developed until after birth (Adinolfi, 1985). Moreover, fetuses do not possess a complete set of liver 

enzymes for efficient detoxification of exogenous substances. 

 

Polychlorinated biphenyls (PCBs) and methyl mercury (MeHg) are common food contaminants that 

raise many concerns because of their persistence and prevalence in the environment. PCBs and 

MeHg undergo bio-accumulations (i.e., the levels in exposed organisms increase with continued 

exposure) and bio-magnification (i.e., the levels increase with trophic level).  
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Understanding the effect of exposure to neurotoxic agents during development is problematic 

because of the complexity and heterogeneity of the nervous system. In vitro models that utilize 

culture cells originating from the nervous system permit investigation of the molecular mechanism of 

neurotoxicity. However, exclusion of the effect of the metabolic transformation induced by 

neurotoxic substances has to be taken in to consideration (Qian et al., 2000). 

 

Because it is so intimately involved in proliferation, differentiation, and cell death, Ca
2+

 signaling 

can be highly perturbed by the action of neurotoxic agents. Spontaneous Ca
2+

 oscillations are 

particularly evident during the middle stages of neuronal differentiation (Ciccolini et al., 2003); thus, 

their frequencies can be used as a marker of proper cell differentiation. 
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1.4 Ca2+ SIGNALING AND NEURONAL MIGRATION  

 

Migration of neuronal precursors and neurons from the site of origin to their final location is a crucial 

process in the development of the nervous system and the correct organization of neuronal structures 

and circuits. This aspect of neurogenesis is sequential, but also overlaps with proliferation and 

differentiation mechanisms and is dependent on Ca
2+

 signaling. Influx of Ca
2+

 from the extracellular 

medium represents the main mechanism, and a more delimited but specific role is played by Ca
2+

 

release from intracellular stores. Moreover, radial and tangential migration in the cerebellum and 

cortex are governed by different mechanisms, involving VOCs and the neurotransmitters GABA and 

glutamate, respectively (Lovisolo et al., 2012). Furthermore, early electrical activity dependent on PM 

Ca
2+

 channels and internal stores affect neuronal migration. 

 

1.4.1 VOC-dependent migration 

 

Many reports have demonstrated the involvement of voltage-dependent Ca
2+

 channels in neuronal 

migration. In the early 1990s, analysis of neuronal migration in mouse cerebellar slice preparations 

revealed that postmitotic granule cells initiate migration only after the expression of N-type Ca
2+

 

channels. Furthermore, selective blockade of these channels by the addition of ω-conotoxin to the 

incubation medium decreased cell movement. On the other hand, inhibitors of L- and T-type Ca
2+

 

channels, as well as those of sodium and potassium channels, had no effect on the rate of granule cell 

migration (Komuro and Rakic, 1992). Migration of gonadotropin-releasing hormone-1 (GnRH-1) 

neurons has also been associated with N-type voltage Ca
2+

 channels (Toba et al., 2005). It has been 

reported that migrating neurons experience Ca
2+

 oscillations that are dependent on L-type Ca
2+

 

channels but that do not affect migration (Darcy and Isaacson, 2009). However, recent observations 

report a new role for T-type Ca
2+

 channels in neuronal migration. Time-lapse imaging of 

differentiating neurospheres cultured in the presence of T-type channel blockers showed a significant 

decrease in the number of actively migrating neuron-like cells and neurite extensions (Louhivuori et 

al., 2013).  
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1.4.2 Neurotransmitter-dependent migration 

 

Ca
2+

 signaling also controls neural migration through GABA and glutamate signaling (Platel et al., 

2008). It has been shown that the amplitude and frequency of Ca
2+

 oscillations are positively correlated 

with the rate of granule cell movement in cerebellar microexplant cultures. Moreover, NMDA receptor 

antagonists reduce neuronal migration in cerebellar slices, whereas activation with glycine or inhibition 

of glutamate reuptake increases the rate of migration (Komuro and Rakic, 1993, 1996). Recent findings 

using inhibition and knock-down of TRPC channels delineate a controversial role for these channels in 

migration (Ariano et al., 2011; Storch et al., 2012).  

 

1.4.3 Internal stores dependent migration 

 

The chelation of intracellular Ca
2+

 with 10 μM BAPTA-AM and decrease of internal Ca
2+ 

release with 

1 μM thapsigargin results in a significant reduction in Ca
2+

 frequency in the granule cell somata and 

decreased cell movement. Furthermore, inhibition of upstream Ca
2+

 signaling by inhibition of 

phospholipase C (PLC) with 1 μM U73122 also significantly decreased Ca
2+

 transient frequency and 

cell movement (Komuro and Kumada, 2005). Neuregulin1 induces migratory activity through a long-

lasting increase in [Ca
2+

]i that is dependent on the release of Ca
2+

 from intracellular stores and 

consequent activation of SOCE (Pregno et al., 2011). CICR is also involved in neuronal migration, 

since it underlies the long-range Ca
2+

 signaling from the growth cone to the soma that mediates the 

reversal of neuronal migration induced by slit-2, a repulsive factor (Guan et al., 2007).  
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2 AIMS 

 

The goal of this thesis was to investigate the different roles of Ca
2+

 in neurogenesis. Specifically, my 

defined aims were to:  

 

1-Examine and characterize spontaneous Ca
2+ 

oscillations and their role in stem cell-derived neural 

progenitors. 

 

2-Define the role and molecular consequences of T-type channel-dependent Ca
2+

 signaling during the 

differentiation of human neural progenitors. 

 

3-Describe the effect of non-cytotoxic concentrations of polychlorinated biphenyls (PCBs) on 

neurogenesis using spontaneous neuronal Ca
2+

 oscillations to monitor the state of the cells. 

 

4-Study the mechanism and role of Ret-dependent Ca
2+ 

signaling. 
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3 RESULTS AND DISCUSSION 

 

3.1 PAPER I: NEURAL PROGENITORS ORGANIZE IN SMALL-WORLD NETWORKS TO 

PROMOTE CELL PROLIFERATION  

 

3.1.1 Neural progenitors differentiating from mES cells display spontaneous Ca2+ 

activity  

 

In this project, we focused on spontaneous Ca
2+

 activity in neural progenitor cells. Mouse ES cells 

were plated on PA6 stromal cells and differentiated towards dopaminergic neurons. Cells were loaded 

with Ca
2+

 sensitive dye and time-lapse recording was performed between day 0 and 14 of 

differentiation to examine intracellular Ca
2+

 homeostasis in neural progenitors. Spontaneous activity 

was present from day 7–14 in neural culture conditions, when cells expressed both the neural 

progenitor marker nestin and the neuronal marker Tuj1. Using in vivo imaging, we demonstrated that 

neural progenitor cells in E9.5 embryos also display spontaneous Ca
2+

 activity.  

 

3.1.2 Cross-correlation and network analysis show that neural progenitor Ca2+ 

signaling is highly coordinated 

 

Cross-correlation analysis, a well-established mathematical method for analyzing multiple time series 

data, was performed to determine if spontaneous Ca
2+

 activity is independent, due to pacemaker 

activity, or if cells are connected in clusters. Cross-correlation analysis of undifferentiated ES cells 

showed low correlation between neighboring cells, while differentiating cells were connected to 

neighboring cells forming neural networks. The formation and presence of a network was then studied 

with an algorithm implemented in MATLAB, revealing a distinct group of cells with a high correlation 

coefficient and low intercellular distance. Network analysis revealed the presence of a scale-free and 

small-world network. Scale-free properties are suggested by the presence of hubs cells, which were 

highly connected to other cells. Small-world networks are instead related to the connectivity between 

most of the cells, meaning that most nodes (cells) can be reached from every other node in a small 

number of steps (connections). Many real networks have been shown to possess small-world 

properties; for example, newborn human brains and cultured neurons (Fransson et al., 2011). 
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3.1.3 Ca2+ enters from plasma membrane channels that are dependent on gap 

junctions to become activated 

 

To identify the source of Ca
2+

 and signaling mechanism in neural progenitors, we challenged the cells 

with a wide range of pharmacological agents. ATP receptor antagonists (suramin and PPADS) had no 

effect on spontaneous activity, nor did the extracellular ATP depletion agent, hexokinase. The SERCA 

pump blockers cyclopiazonic acid and thapsigargin also failed to inhibit activity, and the same was 

observed for the synaptic transmission blockers tetradotoxin (TTX, a Na
2+

 channel blocker), D-AP5 

and NBQX (NMDA and AMPA blockers, respectively). The removal of extracellular Ca
2+

 completely 

inhibited spontaneous activity, as did low concentrations of nickel (50 µM), which blocks VOCs. 

Moreover, the gap junction blockers 1-octanol (1 mM) and flufenamic acid (FFA, 100 µM) effectively 

inhibited most spontaneous Ca
2+

 activity.  

 

3.1.4 In vitro and in vivo electrophysiological experiments reveal that neural 

progenitors are electrically connected  

 

Whole cell patch clamp was performed on neural progenitors, revealing high frequency activity that 

was blocked by 1 mM 1-octanol and 50 µM nickel and 100 μM cadmium. To investigate the 

interconnectivity between touching and non-touching progenitor cells, multi-electrode patch-clamp 

recordings were carried out on differentiating neural progenitors and E9.5 embryonic midbrain tissue. 

The results showed that neural progenitors both in vivo and in vitro are electrically connected through 

gap junctions. Moreover, electrical coupling was blocked by 1-octanol and flufenamic acid and 18α-

glycyrrhetinic acid, confirming the role of gap junctions. 

 

3.1.5 Gap junction-dependent Ca2+ oscillations are fundamental for neural 

progenitor proliferation 

 

We then analyzed the physiological role of gap junction-related Ca
2+

 signaling mechanisms. The 

inhibition of Ca
2+

 activity with long-term treatment with 1-octanol resulted in reduced BrdU 

incorporation and a decrease in the number of proliferating cells, suggesting a role for this signaling 

mechanism in the expansion of the neural progenitor pool. Intracellular Ca
2+

 signaling has been 
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implicated in the transition between the G1 and the S phases (Kapur et al., 2007; Roderick and Cook, 

2008), and such transition was clearly inhibited by 1-octanol in our system. On the other hand, 

proliferation assays on undifferentiated ES cells showed no effect of treatment with 1-octanol or nickel.  

 

3.1.6 Connexin 43 is highly expressed in differentiated cells and regulates neural 

progenitor proliferation  

 

As explained in section 1.2.3, there are several types of gap junctions that are formed by different 

connexins (Cx). We analyzed the expression profile of the different connexins and found that Cx43 is 

the most highly expressed throughout the differentiation of mES. To confirm the involvement of Cx43 

in proliferation of neural progenitors, we performed knock-down of Cx43, resulting in a lower 

percentage of proliferating cells compared to control. Conversely, over-expression of Cx43 had no 

detectable effect on Ca
2+

 activity, networking, or proliferation, most likely due to saturated levels of 

endogenous Cx43. 

 

3.1.7 In vivo analysis of the inhibition of gap junction revealed reduced proliferation 

of neural progenitors without an increase in the number of apoptotic cells 

 

To examine whether acute pharmacological blockade of gap junctions affects proliferation and brain 

development in vivo, we injected 1-octanol  (0.5 mg/g body weight) intraperitoneally into pregnant 

mice at E12.5. At E17.5 days, EdU was injected and after 1 hour, embryos were removed and 

immunostained. Treatment of pregnant mice with 1-octanol affected the size of the embryonic brain 

and the number of neural progenitors in S-phase. Moreover, the thickness of the cortical layers as 

indicated by the markers satb2, tbr1, and ctip2 was reduced in 1-octanol-treated animals. Brain surface 

area was also decreased, demonstrating a clear role for gap junction-related Ca
2+

 signaling in neural 

proliferation. Cx43 knockout mice would have been a useful tool to confirm our finding, but early 

heart defects resulting in developmental compensation among the 20 connexins were a limitation 

(Reaume et al., 1995). On the other hand, mice carrying conditional knockout of Cx43 exhibited 

reduced size of the hippocampus, cortex, and cerebellum in postnatal animals, confirming our findings 

(Wiencken-Barger et al., 2007). 
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Thus, our in vitro and in vivo experiments indicate that spontaneous Ca
2+

 activity through gap junctions 

is involved in cellular processes that control the proliferation of neural progenitor cells. Blocking 

small-world networks with 1-octanol in differentiating neurons and in embryos reduced cortical 

thickness in the embryonic brain (Figure 10). 

 

 

 

Figure 10: Schematic draft over Ca
2+

 signaling network through VOCs and gap junctions in neural 

progenitor cells that affects cell proliferation. 
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3.2 PAPER II: T α1h-CHANNEL-DEPENDENT SPONTANEOUS Ca2+-ACTIVITY 

REGULATES NEURONAL DIFFERENTIATION THROUGH CASPASE-3 

 

3.2.1 Differentiating neural stem cells exhibit spontaneous Ca2+ activity when they 

start to respond to depolarization 

 

Mouse embryonic stem (mES) cells and fetal human neuroepithelial stem (hNS) cells were cultured in 

a defined medium (Shi et al., 2012; Ying et al., 2003) that allows fast and efficient monolayer 

production of neural progenitors and neurons. The neuroectodermal marker PAX6 and the progenitor 

marker nestin were both present from day 4 of differentiation of mES, at which the pluripotent marker 

Oct4 disappeared. Expression of βIII tubulin, a marker of immature neurons, increased from day 6. 

Ca
2+

 imaging was performed at days 0, 2, 4, 6, 8, and 10, and showed sparse spontaneous Ca
2+

 activity 

early in differentiation, while spontaneous Ca
2+

 activity significantly increased after 8 days. To test the 

ability of the cells to respond to depolarization during differentiation, cells were challenged with 50 

mM KCl. Cells showed a prominent Ca
2+

 increase from day 6 onward. 

 

3.2.2 A higher percentage of cells with spontaneous Ca2+ activity are positive for 

caspase-3 than non-active cells 

 

To further investigate the role of spontaneous Ca
2+

 activity during neural differentiation, we performed 

back-tracing of single cells. Active cells were first detected with time-lapse Ca
2+

 imaging and 

thereafter fixed and post-immunostained for caspase-3. Both cells with high and low spontaneous 

activity were detected and the corresponding activated caspase-3 levels were analyzed. These 

experiments revealed that a higher number of cells with high levels of spontaneous activity were 

positive for caspase-3 compared to cells with low levels of calcium activity. Calcium activity has been 

associated with many physiological roles, as explained in the previous sections, but not directly with 

cell death. On the contrary, spontaneous activity mediated by synapses in newborn neurons has been 

associated with cell survival (Heck et al., 2008; Wagner-Golbs and Luhmann, 2012). However, recent 

findings reveal a new role for caspase-3 in differentiating neural progenitors from ES cells (Abdul-

Ghani and Megeney, 2008; Fernando et al., 2005). 
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3.2.3 Expression of voltage-dependent Ca2+ channels varies during neuronal 

differentiation  

 

Because the spontaneous Ca
2+ 

activity coincides with the ability of neural progenitors to respond to 

depolarization treatments, we next investigated the expression pattern of all voltage-dependent PM 

Ca
2+

 channels with real-time PCR. At days 0, 2, 4, 6, 8, and 10, differentiating stem cells were 

examined for mRNA expression of Tg, Ld, Lc, R, N, Th, and P/Q Ca
2+

 channels. At day 8, the 

expression of T α1h VOCs increased dramatically and continued to increase by day 10.  

 

3.2.4 Spontaneous Ca2+ activity is initiated by LVA  

 

To study the impact of VOCs on spontaneous Ca
2+

 activity, cells at day 8 were challenged with various 

pharmacological inhibitors. Nickel, at a concentration specific for T α1h (30 µM) (Lee et al., 1999), 

almost completely blocked spontaneous activity, but failed to inhibit the response to depolarization. 

Mibefradil, a Ca
2+

 antagonist acting mainly on T-type Ca
2+

 channels, was used at two different 

concentrations: 3 µM and 30 µM. Both concentrations inhibited spontaneous activity but failed in 

inhibiting the response to KCl. Upon 3 µM mibefradil treatment, the KCl-induced Ca
2+

 transient was 

partially blocked, while upon 30 µM mibefradil, a concentration that inhibits both L and T Ca
2+

 

channels (Ertel and Clozel, 1997), the Ca
2+

 response to depolarization was completely abolished. 

 

3.2.5 Altering the open probability of T α1h VOCs affects enzymatic caspase-3 

activity and mitochondrial membrane polarization 

 

Next, the functional implications of T α1h VOCs were tested using hNS cells, since they are a more 

homogeneous system. hNS cells at day 4 of differentiation were treated for 6 h with 3 μM mibefradil or 

a low concentration of KCl (12 mM). These concentrations were chosen because they affect T α1h 

VOCs but not HVA Ca
2+

 channels. The caspase-3 and -7 inhibitor z-DEVD-FMK and the caspase-3 

activator staurosporin were used as negative and positive controls, respectively. Mibefradil and z-

DEVD-FMK treatments decreased significantly the enzymatic activity of caspase-3, while treatment 

with 12 mM KCl had no effect. As expected, staurosporin significantly increased enzymatic caspase-3 

activity. TMRE, a positively charged dye that accumulates in active mitochondria with negatively 

charged membranes, was used to study the influence of mitochondria. The number of cells that 
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incorporated TMRE significantly increased when cells were pre-treated with mibefradil and z-DEVD-

FMK, while cells pre-treated with 12 mM KCl showed a slight decrease in TMRE incorporation and 

staurosporin treatment significantly reduced the number of cells stained by TMRE. When apoptosis 

and necrosis were assessed by annexin-V and PI staining, only staurosporin significantly increased the 

number of apoptotic cells. These data indicate that altering T α1h VOC permeability affects enzymatic 

caspase-3 activity and mitochondrial membrane polarization without triggering apoptosis. 

 

3.2.6 T α1h VOCs critically regulate caspase-3 and differentiation 

 

The specific role of T α1h VOCs in neural differentiation was then investigated by performing 

lentiviral–mediated knock-down of T α1h VOC expression. Cells were transduced at day 1 of 

differentiation, when the spontaneous Ca
2+

 activity was present in these cells. Knock-down of T α1h 

VOC expression with lentiviral vectors resulted in a significant decrease in the expression of βIII 

tubulin RNA with a consistent decrease in the expression of T α1h VOCs. Caspase-3 enzymatic 

activity was also decreased in T α1h VOC knock-down cells. To examine whether activated caspase-3 

was regulating cell death in our cell model, we next performed annexin-V staining. These experiments 

revealed no changes in cell death indicated by annexin-V. Caspase-3 levels were then assessed by 

immunostaining, and revealed decreased activation of capsase-3 in T α1h VOC knock-down cells. 

Over-expression of T α1h VOC led to a significant decrease in PAX6 expression and increase in βIII 

tubulin expression and caspase-3 enzymatic activity. The degree of over-expression was very strong at 

the mRNA level, with no differences in annexin-V staining. Levels of activated caspase-3 detected by 

immunostaining were also increased in T α1h VOC over-expressing cells. 

Taken together, these results indicate that T α1h VOCs strongly affect caspase-3 activation and NS cell 

differentiation. Increases in cytosolic Ca
2+

 can activate both caspases and calpains, which regulate the 

processes of differentiation, apoptosis and necrosis. Fine regulation of caspases versus calpains 

activation may be the determining factor that decides cell fate (Chan and Mattson, 1999). 

 

3.2.7 T α1h VOCs critically regulates embryonic brain development 

 

To study the impact of VOC on NS cells in an in vivo setting, we examined brain development in mice. 

First, the VOC expression profile in the mouse forebrain was analyzed at different stages of 

development. At E9.5 the expression levels of VOC L and T were similar to that in differentiated 
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neural stem cells at day 4. The expression profiles of VOC L and T also showed correlation at between 

E14.5 and day 8 and between E15.5 and day 10.  

Next, a T α1h VOC knockout mouse was used to examine the effect on brain architecture. Coronal 

sections of E14.5 brains were cut and immunostained for markers of neural differentiation. The 

expression levels of Tuj1 and MAP2 in the dorsal cortex were calculated in normal and knockout 

animals. Knockout mice showed a decrease in the thickness of the Tuj1 and MAP2 layer in the dorsal 

cortex. Furthermore, T α1h VOC knockout mice exhibited ventricular disruptions similar to those 

found in caspase-3, 9, Apaf1, and cytochrome c knockout animals (D'Amelio et al., 2010), suggesting 

that these molecules function in the same signaling pathway. Further analysis of T α1h VOC knockout 

animals revealed significant non-lethal cell abnormalities, including abnormal blood vessel 

morphology, cardiac fibrosis, and deficiencies in context-associated memory, as well as reduced size 

(Chen et al., 2003; Chen et al., 2012).  

 

In summary, we report a novel signaling mechanism that connects Ca
2+

 entry through T α1h VOCs 

with caspase-3 activation and directs neural progenitor differentiation (Figure 11). 

 

 

 

Figure 11: Schematic draft over Ca
2+

 signaling and caspase-3 activation that affects neural 

differentiation of neuroephitelial stem cells. 
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3.3 PAPER III: NON–DIOXIN-LIKE POLYCHLORINATED BIPHENYLS INTERFERE WITH 

NEURONAL DIFFERENTIATION OF EMBRYONIC NEURAL STEM CELLS  

 

3.3.1 Non-cytotoxic concentrations of PCBs 153 and 180 enhance differentiation on 

neural stem cells  

 

Neural stem cell cultures were used as a model to identify potential developmental neurotoxicants. 

Sub-lethal concentrations of PCB 153 and PCB 180 influence spontaneous differentiation of rat 

embryonic neural stem cells (NSCs). Both PCB 153 and PCB 180 induce a significant increase in the 

number of neurite-bearing Tuj1-positive cells with a concomitant decrease in cells expressing nestin, 

but no changes in the frequency of GFAP-positive cells or in necrotic or apoptotic cell death.  

 

3.3.2 Exposure to PCBs 153 and 180 results in decreased neural stem cells 

proliferation  

 

Cell cycle analysis was performed using FUCCI plasmids (Sakaue-Sawano et al., 2008) that encode 

fluorescent proteins, a system that allows different cell cycle phases to be distinguished. Depending on 

the protein level of Cdt1 and Geminin, which oscillate inversely (Cdt1 is accumulated in G1 phase and 

Geminin in S/G2/M phase), the cells express either a green or red fluorescence protein. The percentage 

of cells in S/G2/M phase (i.e., proliferating) decreased when treated with PCB 153 and 180. Further 

analysis with EdU staining confirmed this data. 

 

3.3.3 PCBs decrease the number of cells with spontaneous Ca2+ activity 

 

Micromolar concentrations of PCBs have been shown to disrupt Ca
2+

 homeostasis in many different 

cell types at different levels: alteration of basal Ca
2+

 concentrations, alteration of PKC activation, 

CAMKII functionality, or InsP3 hydrolysis (Brown et al., 1998; Kodavanti et al., 1994). Moreover, it 

has been demonstrated that PCBs disrupt ryanodine sensitive release channels (Wong et al., 1997) and 

VOC-related Ca
2+

 signaling (Inglefield and Shafer, 2000). After 7 days of differentiation, cells were 

loaded with Fluo3-AM and Ca
2+

 imaging was performed. Exposure to PCB 153 or 180 decreased the 

number of cells showing spontaneous Ca
2+

 activity, in line with our observation of decreased 

differentiation. Spontaneous Ca
2+

 signals in undifferentiated cells can persist for many days, but they 
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become less frequent as the stem cells differentiate into fully differentiated and mature neurons. This 

has been shown in primary culture of mouse NS cells from embryonic day 14, in which both global 

and local spontaneous Ca
2+

 signals were shown to be more frequent during the early stages of neural 

precursor differentiation (Ciccolini et al., 2003). Moreover, both PCBs increased the number of 

glutamate responsive cells, demonstrating that the cells were more competent with regard to Ca
2+

 

signaling.  

 

3.3.4 Notch signaling is repressed by exposure to PCBs  

 

The Notch signaling pathway has been implicated in a wide variety of essential cellular events, such as 

proliferation, migration, differentiation, and neurite outgrowth (Artavanis-Tsakonas et al., 1999). The 

expression of total Notch1 was analyzed by immunoblotting, revealing higher levels of expression in 

cells treated with PCBs 153 and 180. mRNA expression of the Notch target genes Hes5 (anti-neuronal) 

and Math1 (pro-neuronal) was also analyzed, revealing an upregulation of Hes5 and a downregulation 

of Math1 in PCB-treated cells.  

In conclusion, non-cytotoxic nanomolar concentrations of both PCBs 153 and 180 interfere with the 

spontaneous neuronal differentiation of NSCs. NSCs appear to be a relevant model for in vitro 

neurotoxicity studies, and analysis of physiological events, such as cell proliferation and 

differentiation, are sensitive parameters by which to identify substances with potential developmental 

neurotoxicity. 
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3.4 PAPER IV: THE RET PLCγ PHOSPHOTYROSINE BINDING DOMAIN REGULATES 

Ca2+ SIGNALING AND NEOCORTICAL NEURONAL MIGRATION 

 

3.4.1 Ca2+ signaling is affected by RET receptor activity  

 

Hela cells were transfected with green fluorescent protein(GFP)-tagged wild-type RET and other RET 

constructs bearing point mutations of tyrosine residues at positions 1062, 1015, or both, to assess the 

effect of RET on Ca
2+

 signaling. Tyrosine 1015 was involved in the response to GDNF, which was 

oscillatory in 58% of the cases. The RET receptor-induced Ca
2+

 response to GDNF was dependent on 

PLCγ and internal Ca
2+

 stores. Tyr1015 is known to bind PLCγ to the RET receptor, suggesting that 

PLC plays a role in this signaling pathway. The response to GDNF was blocked by treatment with the 

PLC-inhibitor U73122 and in PLCγ knock-down cells. Further analysis showed that the Ca
2+

 response 

to GDNF was also blocked by 2-APB, an inhibitor of InsP3R, but not by treatment with ryanodine or 

dandrolene, which are RyR inhibitors. Thapsigargin treatment, which depletes internal Ca
2+

 stores, 

completely inhibited the response to GDNF.  

 

3.4.2 GDNF/RET-induced Ca2+ signaling phosphorylates ERK1/2 and CaMKII through 

Tyr 1015  

 

Cells transfected with the wild-type RET and exposed to GDNF for 2 to 30 min showed a time-

dependent increase in ERK1/2 phosphorylation, which was decreased in the presence of BAPTA, a 

cytosolic Ca
2+

 buffer. Mutation of Tyr1015 in RET severely reduced or abolished its ability to induce 

ERK1/2 and CAMKII phosphorylation. Thus, we demonstrated that the increase in Ca
2+

 after RET 

stimulation is important for ERK1/2 and CAMKII phosphorylation and that Tyr1015 plays a 

fundamental role in this signaling mechanism.  

 

3.4.3 RET is expressed in the embryonic neocortex 

 

The expression of RET in the embryonic neocortex was confirmed by immunohistochemistry, western 

blot, and real-time PCR analyses. Immunohistochemical analysis of mouse E14.5 brain coronal slices 

revealed homogenous RET expression in the VZ, the intermediated zone, and the cortical plate. 
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Quantification of RET expression was low compared to the positive control (cerebellum) but sufficient 

to have a physiological effect.  

 

3.4.4 GDNF-stimulated neocortical progenitor migration in the developing brain is 

modulated by Tyr1015 in the RET receptor 

 

Ex utero electroporation was performed to determine whether Tyr1015 plays a role in neocortical 

neuronal migration. Wild-type or the mutant RET constructs and were injected into the lateral 

ventricles of E14.5 embryonic forebrains, followed by culture of cortical slices. Beads soaked in 

GDNF were used to induce neuronal migration towards the cortical plate. The migration was inhibited 

by U73122 or by mutation of Tyr1015 in RET, demonstrating a role for Tyr1015 in neuronal migration 

induced by GDNF, as well as PLCγ. It was previously reported that GDNF/RET modulate 

differentiation and migration through different pathways, such as Ras/ERK in the case of enteric 

nervous system progenitors and PI3K/Akt in cortical GABAergic neurons (Natarajan et al., 2002; 

Pozas and Ibanez, 2005). This is the first report of direct stimulation of cytosolic Ca
2+

 release from the 

ER by RET signaling, through the PLCγ phosphotyrosine binding site Tyr1015 of RET. This Ca
2+

 

increase then induces phosphorylation of the downstream effectors ERK1/2 and CaMKII (Figure 12). 

 

 

 

Figure 12: Schematic draft over Ca
2+

 signaling dependent on RET and PLCγ that interact through 

Tyr1015 and activate InsP3R. Ca
2+

 released from ER leads to phosphorylation of ERK1/2 and CAMKII 

with consequences on neuronal migration. 
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4 GENERAL CONCLUSIONS 

 

This thesis presents four studies on Ca
2+

 signaling that elucidate the major aspects of neurogenesis.  

 

In paper I, using a multidisciplinary approach we demonstrate that immature cells in the developing 

brain organize in to small-world networks that critically regulate neural progenitor proliferation. Neural 

progenitors exhibit Ca
2+

 activity that is dependent on PM channels and gap junctions. 

 

In paper II, we show that T α1h VOCs are highly expressed during neuronal development and promote 

spontaneous Ca
2+

 activity. Furthermore, T α1h VOCs strongly affect caspase-3 activation and NS cell 

differentiation, but not apoptosis.  

 

In paper III, we proved that nanomolar concentrations of selected polychlorinated biphenyls interfere 

with neuronal spontaneous differentiation of NSCs through Notch signaling. Moreover, NSCs are 

validated as a valuable in vitro model for the identification of potential developmental neurotoxins. 

 

In paper IV, we identified a novel RET mediated signaling pathway through RET Tyr1015 and PLCγ 

that leads to the elevation of cytosolic Ca
2+

 and phosphorylation of ERK1/2 and CaMKII and affects 

neuronal migration in the developing neocortex.  

 

In conclusion, Ca
2+

 is an ubiquitous and versatile signaling messenger that regulates three of the most 

highly coordinated events in neurogenesis: proliferation, differentiation, and migration. 

  



44  

5 ACKNOWLEDGEMENTS 
 

I would like to thank my supervisor Per Uhlén for accepting me in the lab and for always being very 

supportive of all my choices and my “bipolar” moments. It has been a long journey together and we 

have learnt a lot about different mentalities and attitudes! The freedom you granted me in your lab was 

precious; it gave me the possibility to fail a lot but also to learn so much and for sure to become a 

stronger person. 

 

I thank my co-supervisors Ernest Arenas for always being available to help me with scientific advice 

and promising projects, Seth Malmersjö for teaching me the basis of Ca
2+

 imaging and Carlos 

Villaescusa for giving valuable scientific and moral support in the last part of my PhD.  

 

I would like to thank Professor Michael J. Berridge for being my opponent. It is such a great honor! 

 

I thank also Professor Gilberto Fisone, Professor Erik Gylfe and Professor Jonas Muhr for accepting 

to be my examination board despite all Lucia’s related tasks.  

 

Thanks to Patrik Ernfors, Sten Linnarsson, Goncalo Castelo-Branco, Jens Hjerling-Leffler, 

Ulrika Marklund, Igor Adameyko and Tibor Harkany for making Mol Neuro such a vibrant 

environment! 

 

Uhlén’s group, present and past  

Thanks to Shigeaki for your great and humble help in all the embryo work, for organizing all our stuff 

and for your patience in teaching lab techniques; Simone for your sincere support and constructive 

critiques, Cristian for fruitful collaboration and for pushing me to give my best, Erik for great work 

with neural networks, Ivar for enduring conversations på svenska, Teresa for your true and contagious 

enthusiasm for science and tips with slice staining, Songbai for help with molecular biology and orders 

and for your enjoyable presentations, Manuel for bringing good cheer in the lab, Staffan for valuable 

medical recommendations and fear-of-flying support, Göran for the help at the microscope and the 

patience in handling my mass of data in the imaging pc, without giving in to the tempting solution to 

just cancel everything, Nicolas for your help in getting in to the lab, for teaching me so much and for 

the feedback on this thesis, Marie for your kindness and your helpful attitude especially in these last 



 

    45 

months, Hiromi for teaching me cloning and for your hilarious way to be, Antonio for your positive 

support even from New Zealand. 

. 

Ernfors’ group, present and past  

Natalia for your sharp humor, for sharing being foodie and for giving me the occasion to re-discover 

Portugal, Boris for your true friendship even if covered with bitterness, your contagious hard working 

inclination and gossip sharing…and for the “nice” music you share with us in the lab, Hind for all the 

lunches and boxes supply and honest friendship, even if sometimes explosive, Daohua for insight into 

the Chinese medicine and culture, Alessandro for sharing the shame and discouragement regarding 

Italian politics, Blanchi for making every single moment spent with you in the lab so funny and for 

keeping order in our division, Lili Li for being a nice company in the ex-office, Moritz for being 

always prompt to organize events, Dimitry for help in the lab and for your fabulous photos, Marina 

for suggestions regarding the knockout mice, Ruani for your generosity and for helping me to get in 

the lab, Sergi for sharing FACS knowledge and disappointments and for so many useful suggestions, 

Helena for your firm belief and courage in maintaining safety rules and order in the lab (maybe it was 

not so evident but we really have appreciated that), Isa for nice time spent together and for your 

persistence, Olga for having brought new pets at Mol Neuro and for funny moments in the lab and in 

Portugal. 

 

Arenas’s group, present and past  

I thank Pia for sincere friendship and mutual gym support, Alca for making me feeling so well that 

evening at haga parken and never stopping in inviting me to do activities (I really appreciate that!), 

Carmen for your smiling and kind South European inclination and for being a great boss of CCPD, 

Spyros for your stoicism…I am so jealous that nothing can bother you! Thanks Lottie for efficient 

organization of the chemicals, Enrique for the IWP compound, your humor and the 4-cokes expensive 

microwave, Shanzeng for useful suggestions regarding in utero electroporation and pipette 

preparations, Geeta for being a nice new office-mate, Isabel MC for patiently listening to my projects 

and for the feedback you gave me, Catarina for sharing so many lunches, brunches, dinners, PhD and 

life experiences and for being always so pro-active in organizing stuff, Diogo for the arguments in and 

outside the lab including our nice trip to Toronto, my mentor Paola Sacchetti for all the scientific and 

life suggestions, far but close to me! Thanks Sandro for the help with mES, for being a sincere friend 

away and for the great tour of Coimbra, Emma for helping me with E9.5 embryos’ dissection (I 



46  

enjoyed the lesson a lot!), Linda A for your cheerfulness and generosity (I really hope to see you back 

one day), Linda E for funny lunch discussions, Fabia for your support in the lab and for leaving your 

great seat in the office to me. Good luck to you and Mark in Danmark! 

 

Linnarsson’s group, present and past 

Hanna Jo for your strong determination in making things work and for keeping our minds always 

fresh in the office, Hanna Ju for being a calm and respectful office-mate, Casper for the mouse pad (it 

was a funny moment!), Una for the books and all useful suggestions about future careers, Saiful for 

sharing the pain of the last part of the PhD and for our nice trip to Toronto, Pawel for your friendship, 

many coffees and chat together in the old times and for introducing me to the Bandy world. 

 

Harkany’s group, present and past  

Giuseppe for your humble and always positive inclination and help with the cortical measurements, 

Daniela for helping me to stand Boris in the office, Roman for patience in explaining 

electrophysiology to me, Orsi for the efficient maintenance of the cryostat. Good luck in Wien! 

 

Adameyko’s group  

Nina for funny discussions in the office and for making me aware about privacy issues in the 

acknowledgements chapter, Maryam for nice lunch conversations and help with Swedish. 

 

Castelo-Branco’s group  

Sueli for your sweetness, Ana MF for your great positive energy! 

 

Hjerling-Leffler’s group  

Ana BM for your support in the lab and nice moments in Stockholm, Hermany for fruitful discussion 

about T channels and interesting stories from Brazil.  

 

Johnny and Alessandra: Special mention for Mol Neuro’s heart and mom, this division could not 

survive without you two! Thanks Johnny for your humble hard work and for the funny conversations 

in Swedish, always with a big smile on your face. Thanks Alessandra for your support and help for any 

kind of problem I had in all these years: I feel safe with you around!  

 



 

    47 

 

Ex Mol Neuro  

Thanks Francois for your hard and high quality work (it is nice to see that it can still lead to something 

in the modern fast-science), Saida for spending so much time in consoling me and trying to make me 

understand all the paths to go through towards a successful scientific career. Your determination and 

charm will make you such a great leader! Thanks Mia for trying to help me to find the committee 

members and for the funny chats in the cell culture room, Anna O for your acute contagious laughs, 

Shermaine and Petra for many funny moments in and outside the lab. 

 

Collaborators 

Thanks to Michael Andäng for introducing me to FACS, Shaimaa, Kalle, Katsutoshi, Isabel L, 

Hampus, Evantia, Abdel El Manira and Gilad Silberberg for fruitful collaborations, Roshan, Wan 

and Sandra Ceccatelli for giving me the opportunity to learn more about neurodevelopmental 

toxicology, Michalina for funny chats in front of the Ca
2+

 system, your fantastic biscuits and for 

teaching me so much about cortical neurons’ signaling, Ola Hermanson for helping me in scientific 

disputes, Anna Falk for the hNS cells (I am so glad that you derived them!). 

 

Södersjukhuset  

Thanks to Shahidul Islam for giving me the opportunity to come to Sweden, for introducing me to the 

world of Ca
2+

 recording and for good advice at my half time! Thanks Amanda, Kristina and Anna B 

for being helpful and patient co-workers during my first period in Sweden.  

 

Medical Product Agency  

I would like to thank Torbjörn Arvidsson for letting me to work at MPA, Ahmad Amini for teaching 

me so much about mass spect in so little time and to Annette Perolari for taking care of me in the new 

lab. 

 

Friends in Stockholm 

Thanks Nina and Santi for all the fun that we had together (Santi, as you know I don’t hate you out of 

the ski-slopes), Angela for all your advice regarding life, science and in organizing the PhD party, 

Nicoletta, Antonio, Marta Mauro, Elena and Stefano for being my Italy in Stockholm, for all the 

nice lunches, dinner, parties, support, and for reducing my homesickness a lot! Ida for great support 



48  

and friendship during the most sensitive part of my PhD, Raffaele, Claudia and Francesca for the fun 

at Fogdevreten and Jägargatan, Paolo B and Korinna for many nice moments included the bike trip in 

Utö, Alessio DG for all the help in Padua and in Stockholm (it was so comforting to have you here on 

the night of my arrival!), Ana Cristina, Paolo S and Luca for helping me live abroad in many ways.  

 

Theater, present and past  

Laura grazie per l’appoggio artistico, i “sermoni”, le risate e le chiacchierate davanti a un caffè, thanks 

Silvia for Herman and for your funny uncontrolled laugh, Christian for your friendship in the crazy 

Jägargatan’s old times… we still miss you a lot! Thanks Elisa M for your sincere support during all 

these years, for sharing many sorrows but also many funny moments and for coming to Bologna… it 

was so nice to see you there! Thanks Simone and Marianna for all the movies and the great moments 

spent in Stockholm and in Rome, Giulio for sharing your great expertise in apoptosis and caspases and 

for showing us the “best” pubs of Stockholm, Elisa S for your everlasting enthusiasm, Giuseppe G, 

Chiara T, Chiara B, Flaminia and Alessandro for many funny moments on the stage, Maddalena 

for joining the group! 

  

Family and friends in Italy 

Grazie mamma per avermi sempre supportato (e sopportato) in tutto quello che faccio. Certo non 

avevi scelta, ma sei stata brava a non farlo vedere! Papà, sei il motivo per cui sono qui a fare quello 

che sto facendo, peccato tu non sia voluto venire; grazie Mirco per tutte le visite, i consigli e il 

supporto morale in tutti questi anni a distanza! Barbara, la più grande fan di Stoccolma, grazie per 

aver trascinato qui Mirco e mamma così tante volte! Grazie Ilenia per la duratura amicizia, ma basta 

postare foto dalle Hawaii (è pura crudeltà verso chi vive in Svezia!), Fede, Mery e Irene per le tante 

serate passate insieme e l’efficiente organizzazione di eventi ogni volta che ritorno in Italia, Elena per 

tutte le nostre discussioni riguardo futuro, presente, passato, poesia, affari, letteratura e universo, Sara, 

Maddi, Elisa S e Stefano per le avventure e gli spritz del mercoledì patavino, Chiara, Matteo, 

Alberto, Alessio T, Elisa B e Alice grazie per tutti i bei momenti passati al T.L.Caro e per essere 

ancora così vicini dopo tanti anni.Vi adoro!  

 

Family in Stockholm  

Last but not at all least: for all the patience, all the support, all the fun during this tough period… 

thanks Alba! And of course thanks Roberto for being always here close to me. I am joking, even if 



 

    49 

Alba was a great company during my thesis writing, this PhD is, in part, also yours Robi! The patience 

and the endurance that you demonstrated during these 5 years are the proof that you are going to be a 

fantastic and already well trained psychologist, and that I am a very lucky person! Thanks thanks 

thanks!  

 

  



50  

6 REFERENCES 

 

Abdul-Ghani, M., and Megeney, L.A. (2008). Rehabilitation of a contract killer: caspase-3 directs stem 

cell differentiation. Cell Stem Cell 2, 515-516. 

Abranches, E., Silva, M., Pradier, L., Schulz, H., Hummel, O., Henrique, D., and Bekman, E. (2009). 

Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the 

embryo. PLoS One 4, e6286. 

Adinolfi, M. (1985). The development of the human blood-CSF-brain barrier. Dev Med Child Neurol 

27, 532-537. 

Aizawa, H., Hu, S.C., Bobb, K., Balakrishnan, K., Ince, G., Gurevich, I., Cowan, M., and Ghosh, A. 

(2004). Dendrite development regulated by CREST, a calcium-regulated transcriptional 

activator. Science 303, 197-202. 

Aizman, O., Uhlen, P., Lal, M., Brismar, H., and Aperia, A. (2001). Ouabain, a steroid hormone that 

signals with slow calcium oscillations. Proc Natl Acad Sci U S A 98, 13420-13424. 

Ariano, P., Dalmazzo, S., Owsianik, G., Nilius, B., and Lovisolo, D. (2011). TRPC channels are 

involved in calcium-dependent migration and proliferation in immortalized GnRH neurons. Cell 

Calcium 49, 387-394. 

Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch signaling: cell fate control and 

signal integration in development. Science 284, 770-776. 

Bading, H., Ginty, D.D., and Greenberg, M.E. (1993). Regulation of gene expression in hippocampal 

neurons by distinct calcium signaling pathways. Science 260, 181-186. 

Bain, G., Kitchens, D., Yao, M., Huettner, J.E., and Gottlieb, D.I. (1995). Embryonic stem cells 

express neuronal properties in vitro. Dev Biol 168, 342-357. 

Bean, B.P., and McDonough, S.I. (1998). Two for T. Neuron 20, 825-828. 

Bennett, M.V., and Zukin, R.S. (2004). Electrical coupling and neuronal synchronization in the 

Mammalian brain. Neuron 41, 495-511. 

Berridge, M.J., Bootman, M.D., and Lipp, P. (1998). Calcium--a life and death signal. Nature 395, 

645-648. 

Bezprozvanny, I., Watras, J., and Ehrlich, B.E. (1991). Bell-shaped calcium-response curves of 

Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 

351, 751-754. 

Bootman, M., Niggli, E., Berridge, M., and Lipp, P. (1997). Imaging the hierarchical Ca2+ signalling 

system in HeLa cells. J Physiol 499 ( Pt 2), 307-314. 

Bootman, M.D., and Berridge, M.J. (1995). The elemental principles of calcium signaling. Cell 83, 

675-678. 

Borodinsky, L.N., O'Leary, D., Neale, J.H., Vicini, S., Coso, O.A., and Fiszman, M.L. (2003). GABA-

induced neurite outgrowth of cerebellar granule cells is mediated by GABA(A) receptor 

activation, calcium influx and CaMKII and erk1/2 pathways. J Neurochem 84, 1411-1420. 

Borodinsky, L.N., Root, C.M., Cronin, J.A., Sann, S.B., Gu, X., and Spitzer, N.C. (2004). Activity-

dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429, 

523-530. 

Brown, A.P., Olivero-Verbel, J., Holdan, W.L., and Ganey, P.E. (1998). Neutrophil activation by 

polychlorinated biphenyls: structure-activity relationship. Toxicol Sci 46, 308-316. 

Capiod, T. (2011). Cell proliferation, calcium influx and calcium channels. Biochimie 93, 2075-2079. 

Capiod, T. (2013). The need for calcium channels in cell proliferation. Recent Pat Anticancer Drug 

Discov 8, 4-17. 



 

    51 

Carafoli, E., Santella, L., Branca, D., and Brini, M. (2001). Generation, control, and processing of 

cellular calcium signals. Crit Rev Biochem Mol Biol 36, 107-260. 

Carrion, A.M., Link, W.A., Ledo, F., Mellstrom, B., and Naranjo, J.R. (1999). DREAM is a Ca2+-

regulated transcriptional repressor. Nature 398, 80-84. 

Catterall, W.A. (2011). Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3, a003947. 

Chan, S.L., and Mattson, M.P. (1999). Caspase and calpain substrates: roles in synaptic plasticity and 

cell death. J Neurosci Res 58, 167-190. 

Chemin, J., Nargeot, J., and Lory, P. (2002). Neuronal T-type alpha 1H calcium channels induce 

neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell 

line. J Neurosci 22, 6856-6862. 

Chen, C.C., Lamping, K.G., Nuno, D.W., Barresi, R., Prouty, S.J., Lavoie, J.L., Cribbs, L.L., England, 

S.K., Sigmund, C.D., Weiss, R.M., et al. (2003). Abnormal coronary function in mice deficient 

in alpha1H T-type Ca2+ channels. Science 302, 1416-1418. 

Chen, C.C., Shen, J.W., Chung, N.C., Min, M.Y., Cheng, S.J., and Liu, I.Y. (2012). Retrieval of 

context-associated memory is dependent on the Ca(v)3.2 T-type calcium channel. PLoS One 7, 

e29384. 

Choe, C.U., and Ehrlich, B.E. (2006). The inositol 1,4,5-trisphosphate receptor (IP3R) and its 

regulators: sometimes good and sometimes bad teamwork. Sci STKE 2006, re15. 

Chung, S.C., McDonald, T.V., and Gardner, P. (1994). Inhibition by SK&F 96365 of Ca2+ current, IL-

2 production and activation in T lymphocytes. Br J Pharmacol 113, 861-868. 

Ciccolini, F., Collins, T.J., Sudhoelter, J., Lipp, P., Berridge, M.J., and Bootman, M.D. (2003). Local 

and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic 

phenotype during neural precursor differentiation. J Neurosci 23, 103-111. 

Cina, C., Bechberger, J.F., Ozog, M.A., and Naus, C.C. (2007). Expression of connexins in embryonic 

mouse neocortical development. J Comp Neurol 504, 298-313. 

Clipstone, N.A., and Crabtree, G.R. (1992). Identification of calcineurin as a key signalling enzyme in 

T-lymphocyte activation. Nature 357, 695-697. 

Crunelli, V., Toth, T.I., Cope, D.W., Blethyn, K., and Hughes, S.W. (2005). The 'window' T-type 

calcium current in brain dynamics of different behavioural states. J Physiol 562, 121-129. 

D'Amelio, M., Cavallucci, V., and Cecconi, F. (2010). Neuronal caspase-3 signaling: not only cell 

death. Cell Death Differ 17, 1104-1114. 

D'Amelio, M., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., Diamantini, A., De Zio, 

D., Carrara, P., Battistini, L., et al. (2011). Caspase-3 triggers early synaptic dysfunction in a 

mouse model of Alzheimer's disease. Nat Neurosci 14, 69-76. 

Darcy, D.P., and Isaacson, J.S. (2009). L-type calcium channels govern calcium signaling in migrating 

newborn neurons in the postnatal olfactory bulb. J Neurosci 29, 2510-2518. 

De Koninck, P., and Schulman, H. (1998). Sensitivity of CaM kinase II to the frequency of Ca2+ 

oscillations. Science 279, 227-230. 

Desfrere, L., Karlsson, M., Hiyoshi, H., Malmersjo, S., Nanou, E., Estrada, M., Miyakawa, A., 

Lagercrantz, H., El Manira, A., Lal, M., et al. (2009). Na,K-ATPase signal transduction triggers 

CREB activation and dendritic growth. Proc Natl Acad Sci U S A 106, 2212-2217. 

Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C., and Healy, J.I. (1997). Differential activation of 

transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855-858. 

Dolmetsch, R.E., Xu, K., and Lewis, R.S. (1998). Calcium oscillations increase the efficiency and 

specificity of gene expression. Nature 392, 933-936. 

Elias, L.A., and Kriegstein, A.R. (2008). Gap junctions: multifaceted regulators of embryonic cortical 

development. Trends Neurosci 31, 243-250. 



52  

Elias, L.A., Wang, D.D., and Kriegstein, A.R. (2007). Gap junction adhesion is necessary for radial 

migration in the neocortex. Nature 448, 901-907. 

Enfissi, A., Prigent, S., Colosetti, P., and Capiod, T. (2004). The blocking of capacitative calcium entry 

by 2-aminoethyl diphenylborate (2-APB) and carboxyamidotriazole (CAI) inhibits proliferation 

in Hep G2 and Huh-7 human hepatoma cells. Cell Calcium 36, 459-467. 

Ertel, E.A., Campbell, K.P., Harpold, M.M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., 

Snutch, T.P., Tanabe, T., Birnbaumer, L., et al. (2000). Nomenclature of voltage-gated calcium 

channels. Neuron 25, 533-535. 

Ertel, S.I., and Clozel, J.P. (1997). Mibefradil (Ro 40-5967): the first selective T-type Ca2+ channel 

blocker. Expert Opin Investig Drugs 6, 569-582. 

Estrada, M., Uhlen, P., and Ehrlich, B.E. (2006). Ca2+ oscillations induced by testosterone enhance 

neurite outgrowth. J Cell Sci 119, 733-743. 

Evans, W.H., and Martin, P.E. (2002). Gap junctions: structure and function (Review). Mol Membr 

Biol 19, 121-136. 

Fan, W., Dai, Y., Xu, H., Zhu, X., Cai, P., Wang, L., Sun, C., Hu, C., Zheng, P., and Zhao, B.Q. 

(2013). Caspase-3 Modulates Regenerative Response after Stroke. Stem Cells. 

Fernando, P., Brunette, S., and Megeney, L.A. (2005). Neural stem cell differentiation is dependent 

upon endogenous caspase 3 activity. FASEB J 19, 1671-1673. 

Feske, S. (2007). Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7, 690-

702. 

Fink, C.C., Bayer, K.U., Myers, J.W., Ferrell, J.E., Jr., Schulman, H., and Meyer, T. (2003). Selective 

regulation of neurite extension and synapse formation by the beta but not the alpha isoform of 

CaMKII. Neuron 39, 283-297. 

Fleckenstein, A., Janke, J., Doring, H.J., and Leder, O. (1974). Myocardial fiber necrosis due to 

intracellular Ca overload-a new principle in cardiac pathophysiology. Recent Adv Stud Cardiac 

Struct Metab 4, 563-580. 

Fransson, P., Aden, U., Blennow, M., and Lagercrantz, H. (2011). The functional architecture of the 

infant brain as revealed by resting-state fMRI. Cereb Cortex 21, 145-154. 

Fujita, J., Crane, A.M., Souza, M.K., Dejosez, M., Kyba, M., Flavell, R.A., Thomson, J.A., and Zwaka, 

T.P. (2008). Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem 

Cell 2, 595-601. 

Futatsugi, A., Nakamura, T., Yamada, M.K., Ebisui, E., Nakamura, K., Uchida, K., Kitaguchi, T., 

Takahashi-Iwanaga, H., Noda, T., Aruga, J., et al. (2005). IP3 receptor types 2 and 3 mediate 

exocrine secretion underlying energy metabolism. Science 309, 2232-2234. 

Gaspard, N., Bouschet, T., Herpoel, A., Naeije, G., van den Ameele, J., and Vanderhaeghen, P. (2009). 

Generation of cortical neurons from mouse embryonic stem cells. Nat Protoc 4, 1454-1463. 

Guan, C.B., Xu, H.T., Jin, M., Yuan, X.B., and Poo, M.M. (2007). Long-range Ca2+ signaling from 

growth cone to soma mediates reversal of neuronal migration induced by slit-2. Cell 129, 385-

395. 

Gudermann, T., Hofmann, T., Mederos y Schnitzler, M., and Dietrich, A. (2004). Activation, subunit 

composition and physiological relevance of DAG-sensitive TRPC proteins. Novartis Found 

Symp 258, 103-118; discussion 118-122, 155-109, 263-106. 

Guo, Z., Shi, F., Zhang, L., Zhang, H., Yang, J., Li, B., Jia, J., and Wang, X. (2010). Critical role of L-

type voltage-dependent Ca2+ channels in neural progenitor cell proliferation induced by 

hypoxia. Neurosci Lett 478, 156-160. 

Guroff, G. (1964). A Neutral, Calcium-Activated Proteinase from the Soluble Fraction of Rat Brain. J 

Biol Chem 239, 149-155. 



 

    53 

Heck, N., Golbs, A., Riedemann, T., Sun, J.J., Lessmann, V., and Luhmann, H.J. (2008). Activity-

dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex. Cereb Cortex 18, 

1335-1349. 

Hitchcock, S.E. (1975). Regulation of muscle contraction: bindings of troponin and its components to 

actin and tropomyosin. Eur J Biochem 52, 255-263. 

Hodgkin, A.L., and Keynes, R.D. (1957). Movements of labelled calcium in squid giant axons. J 

Physiol 138, 253-281. 

Inglefield, J.R., and Shafer, T.J. (2000). Polychlorinated biphenyl-stimulation of Ca(2+) oscillations in 

developing neocortical cells: a role for excitatory transmitters and L-type voltage-sensitive 

Ca(2+) channels. J Pharmacol Exp Ther 295, 105-113. 

Iwai, M., Michikawa, T., Bosanac, I., Ikura, M., and Mikoshiba, K. (2007). Molecular basis of the 

isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem 

282, 12755-12764. 

Kahl, C.R., and Means, A.R. (2003). Regulation of cell cycle progression by calcium/calmodulin-

dependent pathways. Endocr Rev 24, 719-736. 

Kandler, K., and Katz, L.C. (1998). Coordination of neuronal activity in developing visual cortex by 

gap junction-mediated biochemical communication. J Neurosci 18, 1419-1427. 

Kapur, N., Mignery, G.A., and Banach, K. (2007). Cell cycle-dependent calcium oscillations in mouse 

embryonic stem cells. Am J Physiol Cell Physiol 292, C1510-1518. 

Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., Nishikawa, S.I., 

and Sasai, Y. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-

derived inducing activity. Neuron 28, 31-40. 

Kennedy, M.B. (1993). The postsynaptic density. Curr Opin Neurobiol 3, 732-737. 

Kodavanti, P.R., Shafer, T.J., Ward, T.R., Mundy, W.R., Freudenrich, T., Harry, G.J., and Tilson, H.A. 

(1994). Differential effects of polychlorinated biphenyl congeners on phosphoinositide 

hydrolysis and protein kinase C translocation in rat cerebellar granule cells. Brain Res 662, 75-

82. 

Komuro, H., and Kumada, T. (2005). Ca2+ transients control CNS neuronal migration. Cell Calcium 

37, 387-393. 

Komuro, H., and Rakic, P. (1992). Selective role of N-type calcium channels in neuronal migration. 

Science 257, 806-809. 

Komuro, H., and Rakic, P. (1993). Modulation of neuronal migration by NMDA receptors. Science 

260, 95-97. 

Komuro, H., and Rakic, P. (1996). Intracellular Ca2+ fluctuations modulate the rate of neuronal 

migration. Neuron 17, 275-285. 

Lacinova, L. (2005). Voltage-dependent calcium channels. Gen Physiol Biophys 24 Suppl 1, 1-78. 

Leclerc, C., Daguzan, C., Nicolas, M.T., Chabret, C., Duprat, A.M., and Moreau, M. (1997). L-type 

calcium channel activation controls the in vivo transduction of the neuralizing signal in the 

amphibian embryos. Mech Dev 64, 105-110. 

Leclerc, C., Neant, I., and Moreau, M. (2011). Early neural development in vertebrates is also a matter 

of calcium. Biochimie 93, 2102-2111. 

Leclerc, C., Neant, I., and Moreau, M. (2012). The calcium: an early signal that initiates the formation 

of the nervous system during embryogenesis. Front Mol Neurosci 5, 3. 

Lee, J.H., Gomora, J.C., Cribbs, L.L., and Perez-Reyes, E. (1999). Nickel block of three cloned T-type 

calcium channels: low concentrations selectively block alpha1H. Biophys J 77, 3034-3042. 

Li, L., Stefan, M.I., and Le Novere, N. (2012). Calcium input frequency, duration and amplitude 

differentially modulate the relative activation of calcineurin and CaMKII. PLoS One 7, e43810. 



54  

Li, M., Pevny, L., Lovell-Badge, R., and Smith, A. (1998). Generation of purified neural precursors 

from embryonic stem cells by lineage selection. Curr Biol 8, 971-974. 

Lin, H.H., Bell, E., Uwanogho, D., Perfect, L.W., Noristani, H., Bates, T.J., Snetkov, V., Price, J., and 

Sun, Y.M. (2010). Neuronatin promotes neural lineage in ESCs via Ca(2+) signaling. Stem Cells 

28, 1950-1960. 

Lohmann, C., Myhr, K.L., and Wong, R.O. (2002). Transmitter-evoked local calcium release stabilizes 

developing dendrites. Nature 418, 177-181. 

Louhivuori, L.M., Louhivuori, V., Wigren, H.K., Hakala, E., Jansson, L.C., Nordstrom, T., Castren, 

M.L., and Akerman, K.E. (2013). Role of low voltage activated calcium channels in 

neuritogenesis and active migration of embryonic neural progenitor cells. Stem Cells Dev 22, 

1206-1219. 

Lovisolo, D., Ariano, P., and Distasi, C. (2012). Calcium signaling in neuronal motility: 

pharmacological tools for investigating specific pathways. Curr Med Chem 19, 5793-5801. 

Lynn, J.W., and Chambers, E.L. (1984). Voltage clamp studies of fertilization in sea urchin eggs. I. 

Effect of clamped membrane potential on sperm entry, activation, and development. Dev Biol 

102, 98-109. 

Marambaud, P., Dreses-Werringloer, U., and Vingtdeux, V. (2009). Calcium signaling in 

neurodegeneration. Mol Neurodegener 4, 20. 

Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., Takano, H., Minowa, O., Kuno, J., 

Sakakibara, S., Yamada, M., et al. (1996). Ataxia and epileptic seizures in mice lacking type 1 

inositol 1,4,5-trisphosphate receptor. Nature 379, 168-171. 

Mendes, C.C., Gomes, D.A., Thompson, M., Souto, N.C., Goes, T.S., Goes, A.M., Rodrigues, M.A., 

Gomez, M.V., Nathanson, M.H., and Leite, M.F. (2005). The type III inositol 1,4,5-trisphosphate 

receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280, 

40892-40900. 

Miao, Y.L., Stein, P., Jefferson, W.N., Padilla-Banks, E., and Williams, C.J. (2012). Calcium influx-

mediated signaling is required for complete mouse egg activation. Proc Natl Acad Sci U S A 

109, 4169-4174. 

Mikoshiba, K. (2007). IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J 

Neurochem 102, 1426-1446. 

Miyazaki, S., Shirakawa, H., Nakada, K., and Honda, Y. (1993). Essential role of the inositol 1,4,5-

trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization 

of mammalian eggs. Dev Biol 158, 62-78. 

Miyazaki, S., Yuzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S., and Mikoshiba, K. 

(1992). Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate 

receptor in fertilized hamster eggs. Science 257, 251-255. 

Nadarajah, B., Jones, A.M., Evans, W.H., and Parnavelas, J.G. (1997). Differential expression of 

connexins during neocortical development and neuronal circuit formation. J Neurosci 17, 3096-

3111. 

Natarajan, D., Marcos-Gutierrez, C., Pachnis, V., and de Graaff, E. (2002). Requirement of signalling 

by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor 

cells during mammalian embryogenesis. Development 129, 5151-5160. 

Nusse, O., Serrander, L., Lew, D.P., and Krause, K.H. (1998). Ca2+-induced exocytosis in individual 

human neutrophils: high- and low-affinity granule populations and submaximal responses. 

EMBO J 17, 1279-1288. 

Orrenius, S., Zhivotovsky, B., and Nicotera, P. (2003). Regulation of cell death: the calcium-apoptosis 

link. Nat Rev Mol Cell Biol 4, 552-565. 



 

    55 

Panner, A., and Wurster, R.D. (2006). T-type calcium channels and tumor proliferation. Cell Calcium 

40, 253-259. 

Platel, J.C., Dave, K.A., and Bordey, A. (2008). Control of neuroblast production and migration by 

converging GABA and glutamate signals in the postnatal forebrain. J Physiol 586, 3739-3743. 

Pozas, E., and Ibanez, C.F. (2005). GDNF and GFRalpha1 promote differentiation and tangential 

migration of cortical GABAergic neurons. Neuron 45, 701-713. 

Pregno, G., Zamburlin, P., Gambarotta, G., Farcito, S., Licheri, V., Fregnan, F., Perroteau, I., Lovisolo, 

D., and Bovolin, P. (2011). Neuregulin1/ErbB4-induced migration in ST14A striatal progenitors: 

calcium-dependent mechanisms and modulation by NMDA receptor activation. BMC Neurosci 

12, 103. 

Qian, X., Shen, Q., Goderie, S.K., He, W., Capela, A., Davis, A.A., and Temple, S. (2000). Timing of 

CNS cell generation: a programmed sequence of neuron and glial cell production from isolated 

murine cortical stem cells. Neuron 28, 69-80. 

Reaume, A.G., de Sousa, P.A., Kulkarni, S., Langille, B.L., Zhu, D., Davies, T.C., Juneja, S.C., 

Kidder, G.M., and Rossant, J. (1995). Cardiac malformation in neonatal mice lacking 

connexin43. Science 267, 1831-1834. 

Redmond, L., Kashani, A.H., and Ghosh, A. (2002). Calcium regulation of dendritic growth via CaM 

kinase IV and CREB-mediated transcription. Neuron 34, 999-1010. 

Roderick, H.L., and Cook, S.J. (2008). Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for 

cancer cell proliferation and survival. Nat Rev Cancer 8, 361-375. 

Rohn, T.T., Cusack, S.M., Kessinger, S.R., and Oxford, J.T. (2004). Caspase activation independent of 

cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell 

Res 295, 215-225. 

Salvesen, G.S., and Riedl, S.J. (2008). Caspase mechanisms. Adv Exp Med Biol 615, 13-23. 

Sandow, A. (1950). The latent period of muscular contraction. Arch Phys Med Rehabil 31, 367-377. 

Schumacher, J.A., Hsieh, Y.W., Chen, S., Pirri, J.K., Alkema, M.J., Li, W.H., Chang, C., and Chuang, 

C.F. (2012). Intercellular calcium signaling in a gap junction-coupled cell network establishes 

asymmetric neuronal fates in C. elegans. Development 139, 4191-4201. 

Schwaninger, M., Blume, R., Kruger, M., Lux, G., Oetjen, E., and Knepel, W. (1995). Involvement of 

the Ca(2+)-dependent phosphatase calcineurin in gene transcription that is stimulated by cAMP 

through cAMP response elements. J Biol Chem 270, 8860-8866. 

Shi, Y., Kirwan, P., Smith, J., Robinson, H.P., and Livesey, F.J. (2012). Human cerebral cortex 

development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15, 477-

486, S471. 

Snutch, T.P., Leonard, J.P., Gilbert, M.M., Lester, H.A., and Davidson, N. (1990). Rat brain expresses 

a heterogeneous family of calcium channels. Proc Natl Acad Sci U S A 87, 3391-3395. 

Sparrow, M.P., Mrwa, U., Hofmann, F., and Ruegg, J.C. (1981). Calmodulin is essential for smooth 

muscle contraction. FEBS Lett 125, 141-145. 

Spitzer, N.C. (2012). Activity-dependent neurotransmitter respecification. Nat Rev Neurosci 13, 94-

106. 

Spitzer, N.C., Borodinsky, L.N., and Root, C.M. (2005). Homeostatic activity-dependent paradigm for 

neurotransmitter specification. Cell Calcium 37, 417-423. 

Stavridis, M.P., Lunn, J.S., Collins, B.J., and Storey, K.G. (2007). A discrete period of FGF-induced 

Erk1/2 signalling is required for vertebrate neural specification. Development 134, 2889-2894. 

Storch, U., Forst, A.L., Philipp, M., Gudermann, T., and Mederos y Schnitzler, M. (2012). Transient 

receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel 

complexes. J Biol Chem 287, 3530-3540. 



56  

Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I. (1983). Release of Ca2+ from a nonmitochondrial 

intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67-69. 

Sudhof, T.C., and Rizo, J. (1996). Synaptotagmins: C2-domain proteins that regulate membrane traffic. 

Neuron 17, 379-388. 

Taylor, J.M., and Simpson, R.U. (1992). Inhibition of cancer cell growth by calcium channel 

antagonists in the athymic mouse. Cancer Res 52, 2413-2418. 

Tilson, H.A., MacPhail, R.C., and Crofton, K.M. (1995). Defining neurotoxicity in a decision-making 

context. Neurotoxicology 16, 363-375. 

Toba, Y., Pakiam, J.G., and Wray, S. (2005). Voltage-gated calcium channels in developing GnRH-1 

neuronal system in the mouse. Eur J Neurosci 22, 79-92. 

Tsien, R.W., Lipscombe, D., Madison, D.V., Bley, K.R., and Fox, A.P. (1988). Multiple types of 

neuronal calcium channels and their selective modulation. Trends Neurosci 11, 431-438. 

Tu, H., Wang, Z., and Bezprozvanny, I. (2005). Modulation of mammalian inositol 1,4,5-trisphosphate 

receptor isoforms by calcium: a role of calcium sensor region. Biophys J 88, 1056-1069. 

Uhlen, P., and Fritz, N. (2010). Biochemistry of calcium oscillations. Biochem Biophys Res Commun 

396, 28-32. 

Uhlen, P., Laestadius, A., Jahnukainen, T., Soderblom, T., Backhed, F., Celsi, G., Brismar, H., 

Normark, S., Aperia, A., and Richter-Dahlfors, A. (2000). Alpha-haemolysin of uropathogenic E. 

coli induces Ca2+ oscillations in renal epithelial cells. Nature 405, 694-697. 

Vaillant, A.R., Zanassi, P., Walsh, G.S., Aumont, A., Alonso, A., and Miller, F.D. (2002). Signaling 

mechanisms underlying reversible, activity-dependent dendrite formation. Neuron 34, 985-998. 

Vanlangenakker, N., Vanden Berghe, T., Krysko, D.V., Festjens, N., and Vandenabeele, P. (2008). 

Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8, 207-220. 

Varnai, P., Hunyady, L., and Balla, T. (2009). STIM and Orai: the long-awaited constituents of store-

operated calcium entry. Trends Pharmacol Sci 30, 118-128. 

Wagner-Golbs, A., and Luhmann, H.J. (2012). Activity-dependent survival of developing neocortical 

neurons depends on PI3K signalling. J Neurochem 120, 495-501. 

Wagner, L.E., 2nd, and Yule, D.I. (2012). Differential regulation of the InsP(3) receptor type-1 and -2 

single channel properties by InsP(3), Ca(2)(+) and ATP. J Physiol 590, 3245-3259. 

Wang, S.Q., Wei, C., Zhao, G., Brochet, D.X., Shen, J., Song, L.S., Wang, W., Yang, D., and Cheng, 

H. (2004). Imaging microdomain Ca2+ in muscle cells. Circ Res 94, 1011-1022. 

Weissman, T.A., Riquelme, P.A., Ivic, L., Flint, A.C., and Kriegstein, A.R. (2004). Calcium waves 

propagate through radial glial cells and modulate proliferation in the developing neocortex. 

Neuron 43, 647-661. 

Wheeler, D.G., Barrett, C.F., Groth, R.D., Safa, P., and Tsien, R.W. (2008). CaMKII locally encodes 

L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. J Cell 

Biol 183, 849-863. 

White, B.A. (1985). Evidence for a role of calmodulin in the regulation of prolactin gene expression. J 

Biol Chem 260, 1213-1217. 

Wiencken-Barger, A.E., Djukic, B., Casper, K.B., and McCarthy, K.D. (2007). A role for Connexin43 

during neurodevelopment. Glia 55, 675-686. 

Wong, P.W., Brackney, W.R., and Pessah, I.N. (1997). Ortho-substituted polychlorinated biphenyls 

alter microsomal calcium transport by direct interaction with ryanodine receptors of mammalian 

brain. J Biol Chem 272, 15145-15153. 

Wu, G.Y., Deisseroth, K., and Tsien, R.W. (2001). Spaced stimuli stabilize MAPK pathway activation 

and its effects on dendritic morphology. Nat Neurosci 4, 151-158. 

Yamashita, M. (2008). Synchronous Ca(2+) oscillation emerges from voltage fluctuations of Ca(2+) 

stores. FEBS J 275, 4022-4032. 



 

    57 

Yanagida, E., Shoji, S., Hirayama, Y., Yoshikawa, F., Otsu, K., Uematsu, H., Hiraoka, M., Furuichi, 

T., and Kawano, S. (2004). Functional expression of Ca2+ signaling pathways in mouse 

embryonic stem cells. Cell Calcium 36, 135-146. 

Yi, C.H., and Yuan, J. (2009). The Jekyll and Hyde functions of caspases. Dev Cell 16, 21-34. 

Ying, Q.L., Stavridis, M., Griffiths, D., Li, M., and Smith, A. (2003). Conversion of embryonic stem 

cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21, 183-186. 

Yuste, R., Nelson, D.A., Rubin, W.W., and Katz, L.C. (1995). Neuronal domains in developing 

neocortex: mechanisms of coactivation. Neuron 14, 7-17. 

Zitt, C., Halaszovich, C.R., and Luckhoff, A. (2002). The TRP family of cation channels: probing and 

advancing the concepts on receptor-activated calcium entry. Prog Neurobiol 66, 243-264. 

Zsiros, V., and Maccaferri, G. (2008). Noradrenergic modulation of electrical coupling in GABAergic 

networks of the hippocampus. J Neurosci 28, 1804-1815. 

 

 

 

 

 


